State-of-the-art assessment of electric and hybrid vehicles
NASA Technical Reports Server (NTRS)
1978-01-01
Data are presented that were obtained from the electric and hybrid vehicles tested, information collected from users of electric vehicles, and data and information on electric and hybrid vehicles obtained on a worldwide basis from manufacturers and available literature. The data given include: (1) information and data base (electric and hybrid vehicle systems descriptions, sources of vehicle data and information, and sources of component data); (2) electric vehicles (theoretical background, electric vehicle track tests, user experience, literature data, and summary of electric vehicle status); (3) electric vehicle components (tires, differentials, transmissions, traction motors, controllers, batteries, battery chargers, and component summary); and (4) hybrid vehicles (types of hybrid vehicles, operating modes, hybrid vehicles components, and hybrid vehicles performance characteristics).
Electric vehicle equipment for grid-integrated vehicles
Kempton, Willett
2013-08-13
Methods, systems, and apparatus for interfacing an electric vehicle with an electric power grid are disclosed. An exemplary apparatus may include a station communication port for interfacing with electric vehicle station equipment (EVSE), a vehicle communication port for interfacing with a vehicle management system (VMS), and a processor coupled to the station communication port and the vehicle communication port to establish communication with the EVSE via the station communication port, receive EVSE attributes from the EVSE, and issue commands to the VMS to manage power flow between the electric vehicle and the EVSE based on the EVSE attributes. An electric vehicle may interface with the grid by establishing communication with the EVSE, receiving the EVSE attributes, and managing power flow between the EVE and the grid based on the EVSE attributes.
40 CFR 600.507-12 - Running change data requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... previously tested subconfiguration in the base level. (iv) Revising the calibration of an electric vehicle, fuel cell vehicle, hybrid electric vehicle, plug-in hybrid electric vehicle or other advanced technology vehicle in such a way that the city or highway fuel economy of the vehicle (or the energy...
Alternative Fuels Data Center: Silicon Valley-based Electric Vehicle Parade
Breaks Guinness World Record Silicon Valley-based Electric Vehicle Parade Breaks Guinness World Parade Breaks Guinness World Record on Facebook Tweet about Alternative Fuels Data Center: Silicon Valley -based Electric Vehicle Parade Breaks Guinness World Record on Twitter Bookmark Alternative Fuels Data
Coupling mechanism of electric vehicle and grid under the background of smart grid
NASA Astrophysics Data System (ADS)
Dong, Mingyu; Li, Dezhi; Chen, Rongjun; Shu, Han; He, Yongxiu
2018-02-01
With the development of smart distribution technology in the future, electric vehicle users can not only charge reasonably based on peak-valley price, they can also discharge electricity into the power grid to realize their economic benefit when it’s necessary and thus promote peak load shifting. According to the characteristic that future electric vehicles can discharge, this paper studies the interaction effect between electric vehicles and the grid based on TOU (time of use) Price Strategy. In this paper, four scenarios are used to compare the change of grid load after implementing TOU Price Strategy. The results show that the wide access of electric vehicles can effectively reduce peak and valley difference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
2015-01-01
Several U.S. Department of Defense-based studies were conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 included a survey of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization will be used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis formore » recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure.« less
The design of electric vehicle intelligent charger
NASA Astrophysics Data System (ADS)
Xu, Yangyang; Wang, Ying
2018-05-01
As the situation of the lack of energy and environment pollution deteriorates rapidly, electric vehicle, a new type of traffic tool, is being researched worldwide. As the core components of electric vehicle, the battery and charger's performance play an important roles in the quality of electric vehicle. So the design of the Electric Vehicle Intelligent Charger based on language-C is designed in this paper. The hardware system is used to produce the input signals of Electric Vehicle Intelligent Charger. The software system adopts the language-C software as development environment. The design can accomplish the test of the parametric such as voltage-current and temperature.
Long-term impacts of battery electric vehicles on the German electricity system
NASA Astrophysics Data System (ADS)
Heinrichs, H. U.; Jochem, P.
2016-05-01
The emerging market for electric vehicles gives rise to an additional electricity demand. This new electricity demand will affect the electricity system. For quantifying those impacts a model-based approach, which covers long-term time horizons is necessary in order to consider the long lasting investment paths in electricity systems and the market development of electric mobility. Therefore, we apply a bottom-up electricity system model showing a detailed spatial resolution for different development paths of electric mobility in Germany until 2030. This model is based on a linear optimization which minimizes the discounted costs of the electricity system. We observe an increase of electricity exchange between countries and electricity generated by renewable energy sources. One major result turns out to be that electric vehicles can be integrated in the electricity system without increasing the system costs when a controlled (postponing) charging strategy for electric vehicles is applied. The impact on the power plant portfolio is insignificant. Another important side effect of electric vehicles is their substantial contribution to decreasing CO2 emissions of the German transport sector. Hence, electric mobility might be an integral part of a sustainable energy system of tomorrow.
77 FR 73039 - Notice of Issuance of Final Determination Concerning Vantage Electric Vehicles
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
... Determination Concerning Vantage Electric Vehicles AGENCY: U.S. Customs and Border Protection, Department of... of Vantage Vehicle electric trucks and vans. Based upon the facts presented, CBP has concluded in the final determination that the United States is the country of origin of the Vantage Vehicle EVX1000 and...
40 CFR 600.210-12 - Calculation of fuel economy and CO2 emission values for labeling.
Code of Federal Regulations, 2014 CFR
2014-07-01
... not qualify for the second method as described in § 600.115 (other than electric vehicles). The second... values for electric vehicles. Determine FTP-based city and HFET-based highway fuel economy label values for electric vehicles as described in § 600.116. Convert W-hour/mile results to miles per kW-hr and...
40 CFR 600.210-12 - Calculation of fuel economy and CO2 emission values for labeling.
Code of Federal Regulations, 2012 CFR
2012-07-01
... not qualify for the second method as described in § 600.115 (other than electric vehicles). The second... values for electric vehicles. Determine FTP-based city and HFET-based highway fuel economy label values for electric vehicles as described in § 600.116. Convert W-hour/mile results to miles per kW-hr and...
40 CFR 600.210-12 - Calculation of fuel economy and CO2 emission values for labeling.
Code of Federal Regulations, 2013 CFR
2013-07-01
... not qualify for the second method as described in § 600.115 (other than electric vehicles). The second... values for electric vehicles. Determine FTP-based city and HFET-based highway fuel economy label values for electric vehicles as described in § 600.116. Convert W-hour/mile results to miles per kW-hr and...
Power-based Shift Schedule for Pure Electric Vehicle with a Two-speed Automatic Transmission
NASA Astrophysics Data System (ADS)
Wang, Jiaqi; Liu, Yanfang; Liu, Qiang; Xu, Xiangyang
2016-11-01
This paper introduces a comprehensive shift schedule for a two-speed automatic transmission of pure electric vehicle. Considering about driving ability and efficiency performance of electric vehicles, the power-based shift schedule is proposed with three principles. This comprehensive shift schedule regards the vehicle current speed and motor load power as input parameters to satisfy the vehicle driving power demand with lowest energy consumption. A simulation model has been established to verify the dynamic and economic performance of comprehensive shift schedule. Compared with traditional dynamic and economic shift schedules, simulation results indicate that the power-based shift schedule is superior to traditional shift schedules.
Intelligent vehicle electrical power supply system with central coordinated protection
NASA Astrophysics Data System (ADS)
Yang, Diange; Kong, Weiwei; Li, Bing; Lian, Xiaomin
2016-07-01
The current research of vehicle electrical power supply system mainly focuses on electric vehicles (EV) and hybrid electric vehicles (HEV). The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect; electrical/electronic devices (EEDs) applied in vehicles are usually directly connected with the vehicle's battery. With increasing numbers of EEDs being applied in traditional fuel vehicles, vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively. In this paper, a new vehicle electrical power supply system for traditional fuel vehicles, which accounts for all electrical/electronic devices and complex work conditions, is proposed based on a smart electrical/electronic device (SEED) system. Working as an independent intelligent electrical power supply network, the proposed system is isolated from the electrical control module and communication network, and access to the vehicle system is made through a bus interface. This results in a clean controller power supply with no electromagnetic interference. A new practical battery state of charge (SoC) estimation method is also proposed to achieve more accurate SoC estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel. Optimized protection methods are also used to ensure power supply safety. Experiments and tests on a traditional fuel vehicle are performed, and the results reveal that the battery SoC is calculated quickly and sufficiently accurately for battery over-discharge protection. Over-current protection is achieved, and the entire vehicle's power utilization is optimized. For traditional fuel vehicles, the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture, enhancing system reliability and security.
NASA Astrophysics Data System (ADS)
Yao, Lei; Wang, Zhenpo; Ma, Jun
2015-10-01
This paper proposes a method of fault detection of the connection of Lithium-Ion batteries based on entropy for electric vehicle. In electric vehicle operation process, some factors, such as road conditions, driving habits, vehicle performance, always affect batteries by vibration, which easily cause loosing or virtual connection between batteries. Through the simulation of the battery charging and discharging experiment under vibration environment, the data of voltage fluctuation can be obtained. Meanwhile, an optimal filtering method is adopted using discrete cosine filter method to analyze the characteristics of system noise, based on the voltage set when batteries are working under different vibration frequency. Experimental data processed by filtering is analyzed based on local Shannon entropy, ensemble Shannon entropy and sample entropy. And the best way to find a method of fault detection of the connection of lithium-ion batteries based on entropy is presented for electric vehicle. The experimental data shows that ensemble Shannon entropy can predict the accurate time and the location of battery connection failure in real time. Besides electric-vehicle industry, this method can also be used in other areas in complex vibration environment.
Electronic differential control of 2WD electric vehicle considering steering stability
NASA Astrophysics Data System (ADS)
Hua, Yiding; Jiang, Haobin; Geng, Guoqing
2017-03-01
Aiming at the steering wheel differential steering control technology of rear wheel independent driving electric wheel, considering the assisting effect of electronic differential control on vehicle steering, based on the high speed steering characteristic of electric wheel car, the electronic differential speed of auxiliary wheel steering is also studied. A yaw moment control strategy is applied to the vehicle at high speed. Based on the vehicle stability reference value, yaw rate is used to design the fuzzy controller to distribute the driving wheel torque. The simulation results show that the basic electronic differential speed function is realized based on the yaw moment control strategy, while the vehicle stability control is improved and the driving safety is enhanced. On the other hand, the torque control strategy can also assist steering of vehicle.
An Agent-Based Information System for Electric Vehicle Charging Infrastructure Deployment
DOT National Transportation Integrated Search
2012-08-18
The current scarcity of public charging infrastructure is one of the major barriers to mass household adoption of plug-in electric vehicles (PEVs). Although most PEV drivers can recharge their vehicles at home, the limited driving range of the vehicl...
NASA Astrophysics Data System (ADS)
Masaki, Nobuo; Iwano, Haruo; Kamada, Takayoshi; Nagai, Masao
For in-wheel electric motor drive vehicles, a new vehicle dynamics control which is based on the tire force usage rate is proposed. The new controller adopts non-linear optimal control could manage the interference between direct yaw-moment control and the tire force usage rate. The new control is considered total longitudinal and transverse tire force. Therefore the controller can prevent tire force saturation near tire force limit during cornering. Simulations and test runs by the custom made four wheel drive in-wheel motor electric vehicle show that higher driving stability performance compared to the performance of the same vehicle without control.
NASA Astrophysics Data System (ADS)
Dedinec, A.; Jovanovski, B.; Gajduk, A.; Markovska, N.; Kocarev, L.
2016-05-01
We consider an integration of renewable energy into transport and electricity sectors through vehicle to grid (V2G) technologies for an energy system that is predominantly based on lignite. The national energy system of Macedonia is modeled using EnergyPLAN which integrates energy for electricity, transport and heat, and includes hourly fluctuations in human needs and the environment. We show that electric-vehicles can provide the necessary storage enabling a fully renewable energy profile for Macedonia that can match the country's growing demand for energy. Furthermore, a large penetration of electric vehicles leads to a dramatic reduction of 47% of small particles and other air pollutants generated by car traffic in 2050.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
2015-02-01
In Task 1, a survey was completed of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization was used to select vehicles for further monitoring, which involves data logging of vehicle movements in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement ofmore » PEV charging infrastructure. This report provides the list of vehicles selected by MCBCL and Intertek for further monitoring and fulfills the Task 2 requirements.« less
Network based management for multiplexed electric vehicle charging
Gadh, Rajit; Chung, Ching Yen; Qui, Li
2017-04-11
A system for multiplexing charging of electric vehicles, comprising a server coupled to a plurality of charging control modules over a network. Each of said charging modules being connected to a voltage source such that each charging control module is configured to regulate distribution of voltage from the voltage source to an electric vehicle coupled to the charging control module. Data collection and control software is provided on the server for identifying a plurality of electric vehicles coupled to the plurality of charging control modules and selectively distributing charging of the plurality of charging control modules to multiplex distribution of voltage to the plurality of electric vehicles.
System and method for charging a plug-in electric vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bassham, Marjorie A.; Spigno, Jr., Ciro A.; Muller, Brett T.
2017-05-02
A charging system and method that may be used to automatically apply customized charging settings to a plug-in electric vehicle, where application of the settings is based on the vehicle's location. According to an exemplary embodiment, a user may establish and save a separate charging profile with certain customized charging settings for each geographic location where they plan to charge their plug-in electric vehicle. Whenever the plug-in electric vehicle enters a new geographic area, the charging method may automatically apply the charging profile that corresponds to that area. Thus, the user does not have to manually change or manipulate themore » charging settings every time they charge the plug-in electric vehicle in a new location.« less
Analysis of electric vehicle extended range misalignment based on rigid-flexible dynamics
NASA Astrophysics Data System (ADS)
Xu, Xiaowei; Lv, Mingliang; Chen, Zibo; Ji, Wei; Gao, Ruiceng
2017-04-01
The safety of the extended range electric vehicle is seriously affected by the misalignment fault. Therefore, this paper analyzed the electric vehicle extended range misalignment based on rigid-flexible dynamics. Through comprehensively applied the hybrid modeling of rigid-flexible and the method of fault diagnosis of machinery and equipment comprehensively, it established a extender hybrid rigid flexible mechanical model by means of the software ADAMS and ANSYS. By setting the relevant parameters to simulate the misalignment of shafting, the failure phenomenon, the spectrum analysis and the evolution rules were analyzed. It concluded that 0.5th and 1 harmonics are considered as the characteristic parameters of misalignment diagnostics for electric vehicle extended range.
Nuclear electric propulsion options for piloted Mars missions
NASA Technical Reports Server (NTRS)
George, Jeffrey A.
1993-01-01
Three nuclear electric propulsion (NEP) systems are discussed. The three systems are as follows: a system based on current SP-100 technology; a potassium Rankine-cycle based power conversion system, and an argon ion thruster system. The system will be researched for implementation in several possible vehicle configurations. The following are among the possible Mars vehicle configurations: a piloted 15 MWe multi-reactor vehicle; a piloted 10 MWe vehicle with ECCV; a piloted 10 MWe modular vehicle; piloted 10 and 15 MWe vehicles with ECCV and MEV; a piloted 5 MWe vehicle with ECCV; a 5 MWe cargo vehicle with 2 MEV's; and a 2.5 MWe vehicle with MEV.
Development of hybrid electric vehicle powertrain test system based on virtue instrument
NASA Astrophysics Data System (ADS)
Xu, Yanmin; Guo, Konghui; Chen, Liming
2017-05-01
Hybrid powertrain has become the standard configuration of some automobile models. The test system of hybrid vehicle powertrain was developed based on virtual instrument, using electric dynamometer to simulate the work of engines, to test the motor and control unit of the powertrain. The test conditions include starting, acceleration, and deceleration. The results show that the test system can simulate the working conditions of the hybrid electric vehicle powertrain under various conditions.
Optimal Electric Vehicle Scheduling: A Co-Optimized System and Customer Perspective
NASA Astrophysics Data System (ADS)
Maigha
Electric vehicles provide a two pronged solution to the problems faced by the electricity and transportation sectors. They provide a green, highly efficient alternative to the internal combustion engine vehicles, thus reducing our dependence on fossil fuels. Secondly, they bear the potential of supporting the grid as energy storage devices while incentivising the customers through their participation in energy markets. Despite these advantages, widespread adoption of electric vehicles faces socio-technical and economic bottleneck. This dissertation seeks to provide solutions that balance system and customer objectives under present technological capabilities. The research uses electric vehicles as controllable loads and resources. The idea is to provide the customers with required tools to make an informed decision while considering the system conditions. First, a genetic algorithm based optimal charging strategy to reduce the impact of aggregated electric vehicle load has been presented. A Monte Carlo based solution strategy studies change in the solution under different objective functions. This day-ahead scheduling is then extended to real-time coordination using a moving-horizon approach. Further, battery degradation costs have been explored with vehicle-to-grid implementations, thus accounting for customer net-revenue and vehicle utility for grid support. A Pareto front, thus obtained, provides the nexus between customer and system desired operating points. Finally, we propose a transactive business model for a smart airport parking facility. This model identifies various revenue streams and satisfaction indices that benefit the parking lot owner and the customer, thus adding value to the electric vehicle.
Oh, Yunjung; Park, Junhong; Lee, Jong Tae; Seo, Jigu; Park, Sungwook
2017-10-01
The purpose of this study is to investigate possible improvements in ICEVs by implementing fuzzy logic-based parallel hard-type power hybrid systems. Two types of conventional ICEVs (gasoline and diesel) and two types of HEVs (gasoline-electric, diesel electric) were generated using vehicle and powertrain simulation tools and a Matlab-Simulink application programming interface. For gasoline and gasoline-electric HEV vehicles, the prediction accuracy for four types of LDV models was validated by conducting comparative analysis with the chassis dynamometer and OBD test data. The predicted results show strong correlation with the test data. The operating points of internal combustion engines and electric motors are well controlled in the high efficiency region and battery SOC was well controlled within ±1.6%. However, for diesel vehicles, we generated virtual diesel-electric HEV vehicle because there is no available vehicles with similar engine and vehicle specifications with ICE vehicle. Using a fuzzy logic-based parallel hybrid system in conventional ICEVs demonstrated that HEVs showed superior performance in terms of fuel consumption and CO 2 emission in most driving modes. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sidorov, K. M.; Yutt, V. E.; Grishchenko, A. G.; Golubchik, T. V.
2018-02-01
The objective of the work presented in this paper is to describe the implementation of the technical solutions have been developed, with regard to structure, composition, and characteristics, for an experimental prototype of an electric vehicle which has been converted from a conventional vehicle. The methodology of the study results is based on the practical implementation of the developed concept of the conversion of conventional vehicles into electric vehicles. The main components of electric propulsion system of the experimental prototype of electric vehicle are developed and manufactured on the basis of computational researches, taking into account the criteria and principles of conversion within the framework of presented work. The article describes a schematic and a design of power conversion and commutation electrical equipment, traction battery, electromechanical transmission. These results can serve as guidance material in the design and implementation of electric propulsion system (EPS) components of electric vehicles, facilitate the development of optimal technical solutions in the development and manufacture of vehicles, including those aimed at autonomy of operation and the use of perspective driver assistance systems. As part of this work, was suggested a rational structure for an electric vehicle experimental prototype, including technical performance characteristics of the components of EPS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Morrow; Dimitri Hochard; Jeff Wishart
2011-09-01
Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in themore » further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.« less
Research on Acceleration Compensation Strategy of Electric Vehicle Based on Fuzzy Control Theory
NASA Astrophysics Data System (ADS)
Zhu, Tianjun; Li, Bin; Zong, Changfu; Wei, Zhicheng
2017-09-01
Nowadays, the driving technology of electric vehicle is developing rapidly. There are many kinds of methods in driving performance control technology. The paper studies the acceleration performance of electric vehicle. Under the premise of energy management, an acceleration power compensation method by fuzzy control theory based on driver intention recognition is proposed, which can meet the driver’s subjective feelings better. It avoids the problem that the pedal opening and power output are single correspondence when the traditional vehicle accelerates. Through the simulation test, this method can significantly improve the performance of acceleration and output torque smoothly in non-emergency acceleration to ensure vehicle comfortable and stable.
Dual motor drive vehicle speed synchronization and coordination control strategy
NASA Astrophysics Data System (ADS)
Huang, Hao; Tu, Qunzhang; Jiang, Chenming; Ma, Limin; Li, Pei; Zhang, Hongxing
2018-04-01
Multi-motor driven systems are more and more widely used in the field of electric engineering vehicles, as a result of the road conditions and the variable load of engineering vehicles, makes multi-motors synchronization coordinated control system as a key point of the development of the electric vehicle drive system. This paper based on electrical machinery transmission speed in the process of engineering vehicles headed for coordinated control problem, summarized control strategies at home and abroad in recent years, made analysis and comparison of the characteristics, finally discussed the trend of development of the multi-motor coordination control, provided a reference for synchronized control system research of electric drive engineering vehicles.
The role of nanotechnology in the development of battery materials for electric vehicles
NASA Astrophysics Data System (ADS)
Lu, Jun; Chen, Zonghai; Ma, Zifeng; Pan, Feng; Curtiss, Larry A.; Amine, Khalil
2016-12-01
A significant amount of battery research and development is underway, both in academia and industry, to meet the demand for electric vehicle applications. When it comes to designing and fabricating electrode materials, nanotechnology-based approaches have demonstrated numerous benefits for improved energy and power density, cyclability and safety. In this Review, we offer an overview of nanostructured materials that are either already commercialized or close to commercialization for hybrid electric vehicle applications, as well as those under development with the potential to meet the requirements for long-range electric vehicles.
The role of nanotechnology in the development of battery materials for electric vehicles.
Lu, Jun; Chen, Zonghai; Ma, Zifeng; Pan, Feng; Curtiss, Larry A; Amine, Khalil
2016-12-06
A significant amount of battery research and development is underway, both in academia and industry, to meet the demand for electric vehicle applications. When it comes to designing and fabricating electrode materials, nanotechnology-based approaches have demonstrated numerous benefits for improved energy and power density, cyclability and safety. In this Review, we offer an overview of nanostructured materials that are either already commercialized or close to commercialization for hybrid electric vehicle applications, as well as those under development with the potential to meet the requirements for long-range electric vehicles.
Tamayao, Mili-Ann M; Michalek, Jeremy J; Hendrickson, Chris; Azevedo, Inês M L
2015-07-21
We characterize regionally specific life cycle CO2 emissions per mile traveled for plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) across the United States under alternative assumptions for regional electricity emission factors, regional boundaries, and charging schemes. We find that estimates based on marginal vs average grid emission factors differ by as much as 50% (using National Electricity Reliability Commission (NERC) regional boundaries). Use of state boundaries versus NERC region boundaries results in estimates that differ by as much as 120% for the same location (using average emission factors). We argue that consumption-based marginal emission factors are conceptually appropriate for evaluating the emissions implications of policies that increase electric vehicle sales or use in a region. We also examine generation-based marginal emission factors to assess robustness. Using these two estimates of NERC region marginal emission factors, we find the following: (1) delayed charging (i.e., starting at midnight) leads to higher emissions in most cases due largely to increased coal in the marginal generation mix at night; (2) the Chevrolet Volt has higher expected life cycle emissions than the Toyota Prius hybrid electric vehicle (the most efficient U.S. gasoline vehicle) across the U.S. in nearly all scenarios; (3) the Nissan Leaf BEV has lower life cycle emissions than the Prius in the western U.S. and in Texas, but the Prius has lower emissions in the northern Midwest regardless of assumed charging scheme and marginal emissions estimation method; (4) in other regions the lowest emitting vehicle depends on charge timing and emission factor estimation assumptions.
NASA Astrophysics Data System (ADS)
Mozaffari, Ahmad; Vajedi, Mahyar; Chehresaz, Maryyeh; Azad, Nasser L.
2016-03-01
The urgent need to meet increasingly tight environmental regulations and new fuel economy requirements has motivated system science researchers and automotive engineers to take advantage of emerging computational techniques to further advance hybrid electric vehicle and plug-in hybrid electric vehicle (PHEV) designs. In particular, research has focused on vehicle powertrain system design optimization, to reduce the fuel consumption and total energy cost while improving the vehicle's driving performance. In this work, two different natural optimization machines, namely the synchronous self-learning Pareto strategy and the elitism non-dominated sorting genetic algorithm, are implemented for component sizing of a specific power-split PHEV platform with a Toyota plug-in Prius as the baseline vehicle. To do this, a high-fidelity model of the Toyota plug-in Prius is employed for the numerical experiments using the Autonomie simulation software. Based on the simulation results, it is demonstrated that Pareto-based algorithms can successfully optimize the design parameters of the vehicle powertrain.
Lithium Battery Power Delivers Electric Vehicles to Market
NASA Technical Reports Server (NTRS)
2008-01-01
Hybrid Technologies Inc., a manufacturer and marketer of lithium-ion battery electric vehicles, based in Las Vegas, Nevada, and with research and manufacturing facilities in Mooresville, North Carolina, entered into a Space Act Agreement with Kennedy Space Center to determine the utility of lithium-powered fleet vehicles. NASA contributed engineering expertise for the car's advanced battery management system and tested a fleet of zero-emission vehicles on the Kennedy campus. Hybrid Technologies now offers a series of purpose-built lithium electric vehicles dubbed the LiV series, aimed at the urban and commuter environments.
Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle
NASA Astrophysics Data System (ADS)
Zhang, Han; Zhao, Wanzhong
2018-02-01
To improve the maneuverability and stability of in-wheel-motor-drive electric vehicle, a control strategy based on nonlinear decoupling control method is proposed in this paper, realizing the coordinated control of the steering and driving system. At first, the nonlinear models of the in-wheel-motor-drive electric vehicle and its sub-system are constructed. Then the inverse system decoupling theory is applied to decompose the nonlinear system into several independent subsystems, which makes it possible to realize the coordinated control of each subsystem. Next, the μ-Synthesis theory is applied to eliminate the influence of model uncertainty, improving the stability, robustness and tracking performance of in-wheel-motor-drive electric vehicle. Simulation and experiment results and numerical analyses, based on the electric vehicle actuated by in-wheel-motors, prove that the proposed control method is effective to accomplish the decoupling control of the steering and driving system in both simulation and real practice.
Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?
Lebeau, Philippe; De Cauwer, Cedric; Macharis, Cathy; Verbeke, Wouter; Coosemans, Thierry
2015-01-01
Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks) and vehicle technology (petrol, hybrid, diesel, and electric vehicles). Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile. PMID:26236769
Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?
Lebeau, Philippe; De Cauwer, Cedric; Van Mierlo, Joeri; Macharis, Cathy; Verbeke, Wouter; Coosemans, Thierry
2015-01-01
Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks) and vehicle technology (petrol, hybrid, diesel, and electric vehicles). Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile.
Medium Duty Electric Vehicle Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackie, Robin J. D.
2015-05-31
The Smith Electric Vehicle Demonstration Project (SDP) was integral to the Smith business plan to establish a manufacturing base in the United States (US) and produce a portfolio of All Electric Vehicles (AEV’s) for the medium duty commercial truck market. Smith focused on the commercial depot based logistics market, as it represented the market that was most ready for the early adoption of AEV technology. The SDP enabled Smith to accelerate its introduction of vehicles and increase the size of its US supply chain to support early market adoption of AEV’s that were cost competitive, fully met the needs ofmore » a diverse set of end users and were compliant with Federal safety and emissions requirements. The SDP accelerated the development and production of various electric drive vehicle systems to substantially reduce petroleum consumption, reduce vehicular emissions of greenhouse gases (GHG), and increase US jobs.« less
Implementation Approach for Plug-in Electric Vehicles at Joint Base Lewis McChord. Task 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
2014-12-01
This study focused on Joint Base Lewis McChord (JBLM), which is located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at JBLM to begin the review of vehicle mission assignments and the types of vehicles in service. In Task 2, daily operational characteristics of select vehicles were identified and vehicle movements were recorded in data loggers in order to characterize the vehicles’ missions. In Task 3, the results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption (i.e., whethermore » a battery electric vehicle or plug-in hybrid electric vehicle [collectively referred to as PEVs] can fulfill the mission requirements0, as well as the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the JBLM fleet.« less
NASA Astrophysics Data System (ADS)
Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.
Published data from various sources are used to perform economic and environmental comparisons of four types of vehicles: conventional, hybrid, electric and hydrogen fuel cell. The production and utilization stages of the vehicles are taken into consideration. The comparison is based on a mathematical procedure, which includes normalization of economic indicators (prices of vehicles and fuels during the vehicle life and driving range) and environmental indicators (greenhouse gas and air pollution emissions), and evaluation of an optimal relationship between the types of vehicles in the fleet. According to the comparison, hybrid and electric cars exhibit advantages over the other types. The economic efficiency and environmental impact of electric car use depends substantially on the source of the electricity. If the electricity comes from renewable energy sources, the electric car is advantageous compared to the hybrid. If electricity comes from fossil fuels, the electric car remains competitive only if the electricity is generated on board. It is shown that, if electricity is generated with an efficiency of about 50-60% by a gas turbine engine connected to a high-capacity battery and an electric motor, the electric car becomes advantageous. Implementation of fuel cells stacks and ion conductive membranes into gas turbine cycles permits electricity generation to increase to the above-mentioned level and air pollution emissions to decrease. It is concluded that the electric car with on-board electricity generation represents a significant and flexible advance in the development of efficient and ecologically benign vehicles.
Autonomous Docking Based on Infrared System for Electric Vehicle Charging in Urban Areas
Pérez, Joshué; Nashashibi, Fawzi; Lefaudeux, Benjamin; Resende, Paulo; Pollard, Evangeline
2013-01-01
Electric vehicles are progressively introduced in urban areas, because of their ability to reduce air pollution, fuel consumption and noise nuisance. Nowadays, some big cities are launching the first electric car-sharing projects to clear traffic jams and enhance urban mobility, as an alternative to the classic public transportation systems. However, there are still some problems to be solved related to energy storage, electric charging and autonomy. In this paper, we present an autonomous docking system for electric vehicles recharging based on an embarked infrared camera performing infrared beacons detection installed in the infrastructure. A visual servoing system coupled with an automatic controller allows the vehicle to dock accurately to the recharging booth in a street parking area. The results show good behavior of the implemented system, which is currently deployed as a real prototype system in the city of Paris. PMID:23429581
Autonomous docking based on infrared system for electric vehicle charging in urban areas.
Pérez, Joshué; Nashashibi, Fawzi; Lefaudeux, Benjamin; Resende, Paulo; Pollard, Evangeline
2013-02-21
Electric vehicles are progressively introduced in urban areas, because of their ability to reduce air pollution, fuel consumption and noise nuisance. Nowadays, some big cities are launching the first electric car-sharing projects to clear traffic jams and enhance urban mobility, as an alternative to the classic public transportation systems. However, there are still some problems to be solved related to energy storage, electric charging and autonomy. In this paper, we present an autonomous docking system for electric vehicles recharging based on an embarked infrared camera performing infrared beacons detection installed in the infrastructure. A visual servoing system coupled with an automatic controller allows the vehicle to dock accurately to the recharging booth in a street parking area. The results show good behavior of the implemented system, which is currently deployed as a real prototype system in the city of Paris.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-23
... engine and engine parts manufacturing,'' ``Motor vehicle electrical and electronic equipment... manufacturing,'' ``Other motor vehicle electrical and electronic equipment manufacturing,'' and ``All other motor vehicle parts manufacturing'' in the second column from the list of required NAICS codes for the...
Simulation of demand management and grid balancing with electric vehicles
NASA Astrophysics Data System (ADS)
Druitt, James; Früh, Wolf-Gerrit
2012-10-01
This study investigates the potential role of electric vehicles in an electricity network with a high contribution from variable generation such as wind power. Electric vehicles are modelled to provide demand management through flexible charging requirements and energy balancing for the network. Balancing applications include both demand balancing and vehicle-to-grid discharging. This study is configured to represent the UK grid with balancing requirements derived from wind generation calculated from weather station wind speeds on the supply side and National Grid data from on the demand side. The simulation models 1000 individual vehicle entities to represent the behaviour of larger numbers of vehicles. A stochastic trip generation profile is used to generate realistic journey characteristics, whilst a market pricing model allows charging and balancing decisions to be based on realistic market price conditions. The simulation has been tested with wind generation capacities representing up to 30% of UK consumption. Results show significant improvements to load following conditions with the introduction of electric vehicles, suggesting that they could substantially facilitate the uptake of intermittent renewable generation. Electric vehicle owners would benefit from flexible charging and selling tariffs, with the majority of revenue derived from vehicle-to-grid participation in balancing markets.
Fuzzy logic electric vehicle regenerative antiskid braking and traction control system
Cikanek, S.R.
1994-10-25
An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.
Electric vehicle regenerative antiskid braking and traction control system
Cikanek, S.R.
1995-09-12
An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.
Electric vehicle regenerative antiskid braking and traction control system
Cikanek, Susan R.
1995-01-01
An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.
Fuzzy logic electric vehicle regenerative antiskid braking and traction control system
Cikanek, Susan R.
1994-01-01
An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.
Impact of electric vehicles on the IEEE 34 node distribution infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Zeming; Shalalfel, Laith; Beshir, Mohammed J.
With the growing penetration of the electric vehicles to our daily life owing to their economic and environmental benefits, there will be both opportunities and challenges to the utilities when adopting plug-in electric vehicles (PEV) to the distribution network. In this study, a thorough analysis based on real-world project is conducted to evaluate the impacts of electric vehicles infrastructure on the grid relating to system load flow, load factor, and voltage stability. IEEE 34 node test feeder was selected and tested along with different case scenarios utilizing the electrical distribution design (EDD) software to find out the potential impacts tomore » the grid.« less
Impact of electric vehicles on the IEEE 34 node distribution infrastructure
Jiang, Zeming; Shalalfel, Laith; Beshir, Mohammed J.
2014-10-01
With the growing penetration of the electric vehicles to our daily life owing to their economic and environmental benefits, there will be both opportunities and challenges to the utilities when adopting plug-in electric vehicles (PEV) to the distribution network. In this study, a thorough analysis based on real-world project is conducted to evaluate the impacts of electric vehicles infrastructure on the grid relating to system load flow, load factor, and voltage stability. IEEE 34 node test feeder was selected and tested along with different case scenarios utilizing the electrical distribution design (EDD) software to find out the potential impacts tomore » the grid.« less
Electric machine differential for vehicle traction control and stability control
NASA Astrophysics Data System (ADS)
Kuruppu, Sandun Shivantha
Evolving requirements in energy efficiency and tightening regulations for reliable electric drivetrains drive the advancement of the hybrid electric (HEV) and full electric vehicle (EV) technology. Different configurations of EV and HEV architectures are evaluated for their performance. The future technology is trending towards utilizing distinctive properties in electric machines to not only to improve efficiency but also to realize advanced road adhesion controls and vehicle stability controls. Electric machine differential (EMD) is such a concept under current investigation for applications in the near future. Reliability of a power train is critical. Therefore, sophisticated fault detection schemes are essential in guaranteeing reliable operation of a complex system such as an EMD. The research presented here emphasize on implementation of a 4kW electric machine differential, a novel single open phase fault diagnostic scheme, an implementation of a real time slip optimization algorithm and an electric machine differential based yaw stability improvement study. The proposed d-q current signature based SPO fault diagnostic algorithm detects the fault within one electrical cycle. The EMD based extremum seeking slip optimization algorithm reduces stopping distance by 30% compared to hydraulic braking based ABS.
Research on Heat Dissipation of Electric Vehicle Based on Safety Architecture Optimization
NASA Astrophysics Data System (ADS)
Zhou, Chao; Guo, Yajuan; Huang, Wei; Jiang, Haitao; Wu, Liwei
2017-10-01
In order to solve the problem of excessive temperature in the discharge process of lithium-ion battery and the temperature difference between batteries, a heat dissipation of electric vehicle based on safety architecture optimization is designed. The simulation is used to optimize the temperature field of the heat dissipation of the battery. A reasonable heat dissipation control scheme is formulated to achieve heat dissipation requirements. The results show that the ideal working temperature range of the lithium ion battery is 20?∼45?, and the temperature difference between the batteries should be controlled within 5?. A cooling fan is arranged at the original air outlet of the battery model, and the two cooling fans work in turn to realize the reciprocating flow. The temperature difference is controlled within 5? to ensure the good temperature uniformity between the batteries of the electric vehicle. Based on the above finding, it is concluded that the heat dissipation design for electric vehicle batteries is safe and effective, which is the most effective methods to ensure battery life and vehicle safety.
Vehicle to grid: electric vehicles as an energy storage solution
NASA Astrophysics Data System (ADS)
McGee, Rodney; Waite, Nicholas; Wells, Nicole; Kiamilev, Fouad E.; Kempton, Willett M.
2013-05-01
With increased focus on intermittent renewable energy sources such as wind turbines and photovoltaics, there comes a rising need for large-scale energy storage. The vehicle to grid (V2G) project seeks to meet this need using electric vehicles, whose high power capacity and existing power electronics make them a promising energy storage solution. This paper will describe a charging system designed by the V2G team that facilitates selective charging and backfeeding by electric vehicles. The system consists of a custom circuit board attached to an embedded linux computer that is installed both in the EVSE (electric vehicle supply equipment) and in the power electronics unit of the vehicle. The boards establish an in-band communication link between the EVSE and the vehicle, giving the vehicle internet connectivity and the ability to make intelligent decisions about when to charge and discharge. This is done while maintaining compliance with existing charging protocols (SAEJ1772, IEC62196) and compatibility with standard "nonintelligent" cars and chargers. Through this system, the vehicles in a test fleet have been able to successfully serve as portable temporary grid storage, which has implications for regulating the electrical grid, providing emergency power, or supplying power to forward military bases.
Kim, Hyung Chul; Wallington, Timothy J.
2016-08-17
Assessing the life-cycle benefits of vehicle lightweighting requires a quantitative description of mass-induced fuel consumption (MIF) and fuel reduction values (FRVs). We have extended our physics-based model of MIF and FRVs for internal combustion engine vehicles (ICEVs) to electrified vehicles (EVs) including hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs). We illustrate the utility of the model by calculating MIFs and FRVs for 37 EVs and 13 ICEVs. BEVs have much smaller MIF and FRVs, both in the range 0.04-0.07 L e/(100 km 100 kg), than those for ICEVs which are in the rangesmore » 0.19-0.32 and 0.16-0.22 L/(100 km 100 kg), respectively. The MIF and FRVs for HEVs and PHEVs mostly lie between those for ICEVs and BEVs. Powertrain resizing increases the FRVs for ICEVs, HEVs and PHEVs. Lightweighting EVs is less effective in reducing greenhouse gas emissions than lightweighting ICEVs, however the benefits differ substantially for different vehicle models. The physics-based approach outlined here enables model specific assessments for ICEVs, HEVs, PHEVs, and BEVs required to determine the optimal strategy for maximizing the life-cycle benefits of lightweighting the light-duty vehicle fleet.« less
Kim, Hyung Chul; Wallington, Timothy J
2016-10-18
Assessing the life-cycle benefits of vehicle lightweighting requires a quantitative description of mass-induced fuel consumption (MIF) and fuel reduction values (FRVs). We have extended our physics-based model of MIF and FRVs for internal combustion engine vehicles (ICEVs) to electrified vehicles (EVs) including hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs). We illustrate the utility of the model by calculating MIFs and FRVs for 37 EVs and 13 ICEVs. BEVs have much smaller MIF and FRVs, both in the range 0.04-0.07 L e /(100 km 100 kg), than those for ICEVs which are in the ranges 0.19-0.32 and 0.16-0.22 L/(100 km 100 kg), respectively. The MIF and FRVs for HEVs and PHEVs mostly lie between those for ICEVs and BEVs. Powertrain resizing increases the FRVs for ICEVs, HEVs and PHEVs. Lightweighting EVs is less effective in reducing greenhouse gas emissions than lightweighting ICEVs, however the benefits differ substantially for different vehicle models. The physics-based approach outlined here enables model specific assessments for ICEVs, HEVs, PHEVs, and BEVs required to determine the optimal strategy for maximizing the life-cycle benefits of lightweighting the light-duty vehicle fleet.
Analysis of Electric Vehicle DC High Current Conversion Technology
NASA Astrophysics Data System (ADS)
Yang, Jing; Bai, Jing-fen; Lin, Fan-tao; Lu, Da
2017-05-01
Based on the background of electric vehicles, it is elaborated the necessity about electric energy accurate metering of electric vehicle power batteries, and it is analyzed about the charging and discharging characteristics of power batteries. It is needed a DC large current converter to realize accurate calibration of power batteries electric energy metering. Several kinds of measuring methods are analyzed based on shunts and magnetic induction principle in detail. It is put forward power batteries charge and discharge calibration system principle, and it is simulated and analyzed ripple waves containing rate and harmonic waves containing rate of power batteries AC side and DC side. It is put forward suitable DC large current measurement methods of power batteries by comparing different measurement principles and it is looked forward the DC large current measurement techniques.
ELF magnetic fields in electric and gasoline-powered vehicles.
Tell, R A; Sias, G; Smith, J; Sahl, J; Kavet, R
2013-02-01
We conducted a pilot study to assess magnetic field levels in electric compared to gasoline-powered vehicles, and established a methodology that would provide valid data for further assessments. The sample consisted of 14 vehicles, all manufactured between January 2000 and April 2009; 6 were gasoline-powered vehicles and 8 were electric vehicles of various types. Of the eight models available, three were represented by a gasoline-powered vehicle and at least one electric vehicle, enabling intra-model comparisons. Vehicles were driven over a 16.3 km test route. Each vehicle was equipped with six EMDEX Lite broadband meters with a 40-1,000 Hz bandwidth programmed to sample every 4 s. Standard statistical testing was based on the fact that the autocorrelation statistic damped quickly with time. For seven electric cars, the geometric mean (GM) of all measurements (N = 18,318) was 0.095 µT with a geometric standard deviation (GSD) of 2.66, compared to 0.051 µT (N = 9,301; GSD = 2.11) for four gasoline-powered cars (P < 0.0001). Using the data from a previous exposure assessment of residential exposure in eight geographic regions in the United States as a basis for comparison (N = 218), the broadband magnetic fields in electric vehicles covered the same range as personal exposure levels recorded in that study. All fields measured in all vehicles were much less than the exposure limits published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE). Future studies should include larger sample sizes representative of a greater cross-section of electric-type vehicles. Copyright © 2012 Wiley Periodicals, Inc.
Distributed energy storage systems on the basis of electric-vehicle fleets
NASA Astrophysics Data System (ADS)
Zhuk, A. Z.; Buzoverov, E. A.; Sheindlin, A. E.
2015-01-01
Several power technologies directed to solving the problem of covering nonuniform loads in power systems are developed at the Joint Institute of High Temperatures, Russian Academy of Sciences (JIHT RAS). One direction of investigations is the use of storage batteries of electric vehicles to compensate load peaks in the power system (V2G—vehicle-to-grid technology). The efficiency of energy storage systems based on electric vehicles with traditional energy-saving technologies is compared in the article by means of performing computations. The comparison is performed by the minimum-cost criterion for the peak energy supply to the system. Computations show that the distributed storage systems based on fleets of electric cars are efficient economically with their usage regime to 1 h/day. In contrast to traditional methods, the prime cost of regulation of the loads in the power system based on V2G technology is independent of the duration of the load compensation period (the duration of the consumption peak).
ETX-I: First-generation single-shaft electric propulsion system program. Volume 2: Battery
NASA Astrophysics Data System (ADS)
1988-06-01
The overall objective of this research and development program was to advance ac powertrain technology for electric vehicles (EV). The program focused on the design, build, test, and refinement of an experimental advanced electric vehicle powertrain suitable for packaging in a Ford Escort or equivalent-size vehicle. A Mercury LN7 was subsequently selected for the test bed vehicle. Although not part of the initial contract, the scope of the ETX-I Program was expanded in 1983 to encompass the development of advanced electric vehicle batteries compatible with the ETX-I powertrain and vehicle test bed. The intent of the battery portion of the ETX-I Program was to apply the best available battery technology based on existing battery developments. The battery effort was expected to result in a practical scale-up of base battery technologies to the vehicle battery subsystem level. With the addition of the battery activity, the ETX-I Program became a complete proof-of-concept ac propulsion system technology development program. In this context, the term propulsion system is defined as all components and subsystems (from the driver input to the vehicle wheels) that are required to store energy on board the vehicle and, using that energy, to provide controlled motive power to the vehicle. This report, Volume 2, describes the battery portion of the ETX-I Program. The powertrain effort is reported in Volume 1.
Advanced vehicle systems assessment. Volume 3: Systems assessment
NASA Technical Reports Server (NTRS)
Hardy, K.
1985-01-01
The systems analyses integrate the advanced component and vehicle characteristics into conceptual vehicles with identical performance (for a given application) and evaluates the vehicles in typical use patterns. Initial and life-cycle costs are estimated and compared to conventional reference vehicles with comparable technological advances, assuming the vehicles will be in competition in the early 1990s. Electric vans, commuter vehicles, and full-size vehicles, in addition to electric/heat-engine hybrid and fuel-cell powered vehicles, are addressed in terms of performance and economics. System and subsystem recommendations for vans and two-passenger commuter vehicles are based on the economic analyses in this volume.
Medium-Duty Plug-in Electric Delivery Truck Fleet Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prohaska, Robert; Ragatz, Adam; Simpson, Mike
2016-06-29
In this paper, the authors present an overview of medium-duty electric vehicle (EV) operating behavior based on in-use data collected from Smith Newton electric delivery vehicles and compare their performance and operation to conventional diesel trucks operating in the same fleet. The vehicles' drive cycles and operation are analyzed and compared to demonstrate the importance of matching specific EV technologies to the appropriate operational duty cycle. The results of this analysis show that the Smith Newton EVs demonstrated a 68% reduction in energy consumption over the data reporting period compared to the conventional diesel vehicles, as well as a 46.4%more » reduction in carbon dioxide equivalent emissions based on the local energy generation source.« less
Medium-duty plug-in electric delivery truck fleet evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prohaska, Robert; Ragatz, Adam; Simpson, Mike
2016-06-01
In this paper, the authors present an overview of medium-duty electric vehicle (EV) operating behavior based on in-use data collected from Smith Newton electric delivery vehicles and compare their performance and operation to conventional diesel trucks operating in the same fleet. The vehicles' drive cycles and operation are analyzed and compared to demonstrate the importance of matching specific EV technologies to the appropriate operational duty cycle. The results of this analysis show that the Smith Newton EVs demonstrated a 68% reduction in energy consumption over the data reporting period compared to the conventional diesel vehicles, as well as a 46.4%more » reduction in carbon dioxide equivalent emissions based on the local energy generation source.« less
Medium-Duty Plug-In Electric Delivery Truck Fleet Evaluation: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prohaska, Robert; Ragatz, Adam; Simpson, Mike
2016-04-13
In this paper, the authors present an overview of medium-duty electric vehicle (EV) operating behavior based on in-use data collected from Smith Newton electric delivery vehicles and compare their performance and operation to conventional diesel trucks operating in the same fleet. The vehicles' drive cycles and operation are analyzed and compared to demonstrate the importance of matching specific EV technologies to the appropriate operational duty cycle. The results of this analysis show that the Smith Newton EVs demonstrated a 68% reduction in energy consumption over the data reporting period compared to the conventional diesel vehicles, as well as a 46.4%more » reduction in carbon dioxide equivalent emissions based on the local energy generation source.« less
Connecting plug-in vehicles with green electricity through consumer demand
NASA Astrophysics Data System (ADS)
Axsen, Jonn; Kurani, Kenneth S.
2013-03-01
The environmental benefits of plug-in electric vehicles (PEVs) increase if the vehicles are powered by electricity from ‘green’ sources such as solar, wind or small-scale hydroelectricity. Here, we explore the potential to build a market that pairs consumer purchases of PEVs with purchases of green electricity. We implement a web-based survey with three US samples defined by vehicle purchases: conventional new vehicle buyers (n = 1064), hybrid vehicle buyers (n = 364) and PEV buyers (n = 74). Respondents state their interest in a PEV as their next vehicle, in purchasing green electricity in one of three ways, i.e., monthly subscription, two-year lease or solar panel purchase, and in combining the two products. Although we find that a link between PEVs and green electricity is not presently strong in the consciousness of most consumers, the combination is attractive to some consumers when presented. Across all three respondent segments, pairing a PEV with a green electricity program increased interest in PEVs—with a 23% demand increase among buyers of conventional vehicles. Overall, about one-third of respondents presently value the combination of a PEV with green electricity; the proportion is much higher among previous HEV and PEV buyers. Respondents’ reported motives for interest in both products and their combination include financial savings (particularly among conventional buyers), concerns about air pollution and the environment, and interest in new technology (particularly among PEV buyers). The results provide guidance regarding policy and marketing strategies to advance PEVs and green electricity demand.
NASA Astrophysics Data System (ADS)
Lv, Chen; Zhang, Junzhi; Li, Yutong
2014-11-01
Because of the damping and elastic properties of an electrified powertrain, the regenerative brake of an electric vehicle (EV) is very different from a conventional friction brake with respect to the system dynamics. The flexibility of an electric drivetrain would have a negative effect on the blended brake control performance. In this study, models of the powertrain system of an electric car equipped with an axle motor are developed. Based on these models, the transfer characteristics of the motor torque in the driveline and its effect on blended braking control performance are analysed. To further enhance a vehicle's brake performance and energy efficiency, blended braking control algorithms with compensation for the powertrain flexibility are proposed using an extended Kalman filter. These algorithms are simulated under normal deceleration braking. The results show that the brake performance and blended braking control accuracy of the vehicle are significantly enhanced by the newly proposed algorithms.
Smart electric vehicle (EV) charging and grid integration apparatus and methods
Gadh, Rajit; Mal, Siddhartha; Prabhu, Shivanand; Chu, Chi-Cheng; Sheikh, Omar; Chung, Ching-Yen; He, Lei; Xiao, Bingjun; Shi, Yiyu
2015-05-05
An expert system manages a power grid wherein charging stations are connected to the power grid, with electric vehicles connected to the charging stations, whereby the expert system selectively backfills power from connected electric vehicles to the power grid through a grid tie inverter (if present) within the charging stations. In more traditional usage, the expert system allows for electric vehicle charging, coupled with user preferences as to charge time, charge cost, and charging station capabilities, without exceeding the power grid capacity at any point. A robust yet accurate state of charge (SOC) calculation method is also presented, whereby initially an open circuit voltage (OCV) based on sampled battery voltages and currents is calculated, and then the SOC is obtained based on a mapping between a previously measured reference OCV (ROCV) and SOC. The OCV-SOC calculation method accommodates likely any battery type with any current profile.
Vehicle's lightweight design vs. electrification from life cycle assessment perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayyas, Ahmad; Omar, Mohammed; Hayajneh, Mohammed
Lightwiegh materials and vehicles' electrification are among the most viable and economic solutions to improve fuel ecocnmoy of vehicles and reduce environmental impacts in the operational phase of typical vehicle's life cycle span. This study aims to shed more light on the combined effect of lightweighing and electrification by assessing different lightweight designs and electric powetrians from the environmental perspective using a life cycle analysis coupled with an emphasis on energy expenditures and carbon dioxide emissions. This article discusses the life cycle assessment for several advanced powertrains namely; plug-in hybrid electric vehicles (PHEV), battery electric vehicles (BEV) and hybrid electricmore » vehicles (HEV) relative to the conventional gasoline operated internal combustion engine based power train vehicles. The main focus will be on the energy greenhouse gas emissions (GHG) in the material extraction and resources phase, manufacturing phase and use phase (operation and maintenance). While most of the current studies focus on the use phase that does not reflect the correct environmental impacts associated with advanced powertrains, thus the presented text applies a holistic LCA approach that covers pre-manufacturing, manufacturing, operational and end-of-life phases, plus another indirect phase to account for fuel extraction, refining and transportation to the end-users or customers. Based on the LCA emissions results, one may infer that environmental policies that reduce emissions rates from the electricity sector can mitigate this effect without completely eliminating it. Interestingly, the analysis show that lightweight vehicles with internal combustion engines have less impacts on the environment as a direct result of upstream emissions associated with electricity generation in United States. This scenario can differ in other countries with higher renewable and sustainable energy generated electric powers.« less
Vehicle's lightweight design vs. electrification from life cycle assessment perspective
Mayyas, Ahmad; Omar, Mohammed; Hayajneh, Mohammed; ...
2017-08-17
Lightwiegh materials and vehicles' electrification are among the most viable and economic solutions to improve fuel ecocnmoy of vehicles and reduce environmental impacts in the operational phase of typical vehicle's life cycle span. This study aims to shed more light on the combined effect of lightweighing and electrification by assessing different lightweight designs and electric powetrians from the environmental perspective using a life cycle analysis coupled with an emphasis on energy expenditures and carbon dioxide emissions. This article discusses the life cycle assessment for several advanced powertrains namely; plug-in hybrid electric vehicles (PHEV), battery electric vehicles (BEV) and hybrid electricmore » vehicles (HEV) relative to the conventional gasoline operated internal combustion engine based power train vehicles. The main focus will be on the energy greenhouse gas emissions (GHG) in the material extraction and resources phase, manufacturing phase and use phase (operation and maintenance). While most of the current studies focus on the use phase that does not reflect the correct environmental impacts associated with advanced powertrains, thus the presented text applies a holistic LCA approach that covers pre-manufacturing, manufacturing, operational and end-of-life phases, plus another indirect phase to account for fuel extraction, refining and transportation to the end-users or customers. Based on the LCA emissions results, one may infer that environmental policies that reduce emissions rates from the electricity sector can mitigate this effect without completely eliminating it. Interestingly, the analysis show that lightweight vehicles with internal combustion engines have less impacts on the environment as a direct result of upstream emissions associated with electricity generation in United States. This scenario can differ in other countries with higher renewable and sustainable energy generated electric powers.« less
A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles.
Hwang, Jenn-Jiang; Hu, Jia-Sheng; Lin, Chih-Hong
2015-01-01
The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility.
A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles
Hwang, Jenn-Jiang; Lin, Chih-Hong
2015-01-01
The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility. PMID:26236771
Design study of flat belt CVT for electric vehicles
NASA Technical Reports Server (NTRS)
Kumm, E. L.
1980-01-01
A continuously variable transmission (CVT) was studied, using a novel flat belt pulley arrangement which couples the high speed output shaft of an energy storage flywheel to the drive train of an electric vehicle. A specific CVT arrangement was recommended and its components were selected and sized, based on the design requirements of a 1700 KG vehicle. A design layout was prepared and engineering calculations made of component efficiencies and operating life. The transmission efficiency was calculated to be significantly over 90% with the expected vehicle operation. A design consistent with automotive practice for low future production costs was considered, together with maintainability. The technology advancements required to develop the flat belt CVT were identified and an estimate was made of how the size of the flat belt CVT scales to larger and smaller design output torques. The suitability of the flat belt CVT for alternate application to an electric vehicle powered by an electric motor without flywheel and to a hybrid electric vehicle powered by an electric motor with an internal combustion engine was studied.
Aggregation server for grid-integrated vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempton, Willett
2015-05-26
Methods, systems, and apparatus for aggregating electric power flow between an electric grid and electric vehicles are disclosed. An apparatus for aggregating power flow may include a memory and a processor coupled to the memory to receive electric vehicle equipment (EVE) attributes from a plurality of EVEs, aggregate EVE attributes, predict total available capacity based on the EVE attributes, and dispatch at least a portion of the total available capacity to the grid. Power flow may be aggregated by receiving EVE operational parameters from each EVE, aggregating the received EVE operational parameters, predicting total available capacity based on the aggregatedmore » EVE operational parameters, and dispatching at least a portion of the total available capacity to the grid.« less
Tóth-Nagy, Csaba; Conley, John J; Jarrett, Ronald P; Clark, Nigel N
2006-07-01
With the advent of hybrid electric vehicles, computer-based vehicle simulation becomes more useful to the engineer and designer trying to optimize the complex combination of control strategy, power plant, drive train, vehicle, and driving conditions. With the desire to incorporate emissions as a design criterion, researchers at West Virginia University have developed artificial neural network (ANN) models for predicting emissions from heavy-duty vehicles. The ANN models were trained on engine and exhaust emissions data collected from transient dynamometer tests of heavy-duty diesel engines then used to predict emissions based on engine speed and torque data from simulated operation of a tractor truck and hybrid electric bus. Simulated vehicle operation was performed with the ADVISOR software package. Predicted emissions (carbon dioxide [CO2] and oxides of nitrogen [NO(x)]) were then compared with actual emissions data collected from chassis dynamometer tests of similar vehicles. This paper expands on previous research to include different driving cycles for the hybrid electric bus and varying weights of the conventional truck. Results showed that different hybrid control strategies had a significant effect on engine behavior (and, thus, emissions) and may affect emissions during different driving cycles. The ANN models underpredicted emissions of CO2 and NO(x) in the case of a class-8 truck but were more accurate as the truck weight increased.
Torque vectoring for improving stability of small electric vehicles
NASA Astrophysics Data System (ADS)
Grzegożek, W.; Weigel-Milleret, K.
2016-09-01
The electric vehicles solutions based on the individually controlled electric motors propel a single wheel allow to improve the dynamic properties of the vehicle by varying the distribution of the driving torque. Most of the literature refer to the vehicles with a track typical for passenger cars. This paper examines whether the narrow vehicle (with a very small track) torque vectoring bring a noticeable change of the understeer characteristics and whether torque vectoring is possible to use in securing a narrow vehicle from roll over (roll mitigation). The paper contains road tests of the steering characteristics (steady state understeer characteristic quasi-static acceleration with a fixed steering wheel (SH = const) and on the constant radius track (R = const)) of the narrow vehicle. The vehicle understeer characteristic as a function of a power distribution is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
2014-08-01
Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 alsomore » includes an assessment of charging infrastructure required to support this replacement. That is the subject of a separate report.« less
Simulation of an electric vehicle model on the new WLTC test cycle using AVL CRUISE software
NASA Astrophysics Data System (ADS)
Cristian Cioroianu, Constantin; Marinescu, Dănuţ Gabriel; Iorga, Adrian; Răzvan Sibiceanu, Adrian
2017-10-01
Nowadays, environmental pollution has become a general issue and the automotive industry is probably the most affected. The principal air-quality pollutant emissions from petrol, diesel and LPG engines are carbon dioxide, oxides of nitrogen, un-burnt hydrocarbons. Modern cars produce only quite small quantities of the air quality pollutants, but the emissions from large numbers of cars add to a significant air quality problem. Electric vehicles are an answer to this problem because they have absolutely no emissions. These vehicles have some major disadvantages regarding cost and range. In this paper, an electric vehicle model will be created in the AVL Cruise software. The constructed model is based on the existing Dacia Sandero. Also unlike the real car, the model presented has different characteristics since it is a full electric vehicle. It has an electric motor instead of the petrol engine and a battery pack placed in the trunk. The model will be simulated in order to obtain data regarding vehicle performance, energy consumption and range on the new WLTC test cycle. The obtained know-how will help on later improvements of the electric model regarding methods to increase the vehicle range on the new WLTC test cycle.
NASA Astrophysics Data System (ADS)
Song, Ke; Li, Feiqiang; Hu, Xiao; He, Lin; Niu, Wenxu; Lu, Sihao; Zhang, Tong
2018-06-01
The development of fuel cell electric vehicles can to a certain extent alleviate worldwide energy and environmental issues. While a single energy management strategy cannot meet the complex road conditions of an actual vehicle, this article proposes a multi-mode energy management strategy for electric vehicles with a fuel cell range extender based on driving condition recognition technology, which contains a patterns recognizer and a multi-mode energy management controller. This paper introduces a learning vector quantization (LVQ) neural network to design the driving patterns recognizer according to a vehicle's driving information. This multi-mode strategy can automatically switch to the genetic algorithm optimized thermostat strategy under specific driving conditions in the light of the differences in condition recognition results. Simulation experiments were carried out based on the model's validity verification using a dynamometer test bench. Simulation results show that the proposed strategy can obtain better economic performance than the single-mode thermostat strategy under dynamic driving conditions.
Dwivedi, Puneet; Khanna, Madhu
2014-01-01
Woody feedstocks will play a critical role in meeting the demand for biomass-based energy products in the US. We developed an integrated model using comparable system boundaries and common set of assumptions to ascertain unit cost and greenhouse gas (GHG) intensity of electricity and ethanol derived from slash pine (Pinus elliottii) at the production and consumption levels by considering existing automobile technologies. We also calculated abatement cost of greenhouse gas (GHG) emissions with respect to comparable energy products derived from fossil fuels. The production cost of electricity derived using wood chips was at least cheaper by 1 ¢ MJ−1 over electricity derived from wood pellets. The production cost of ethanol without any income from cogenerated electricity was costlier by about 0.7 ¢ MJ−1 than ethanol with income from cogenerated electricity. The production cost of electricity derived from wood chips was cheaper by at least 0.7 ¢ MJ−1 than the energy equivalent cost of ethanol produced in presence of cogenerated electricity. The cost of using ethanol as a fuel in a flex-fuel vehicle was at least higher by 6 ¢ km−1 than a comparable electric vehicle. The GHG intensity of per km distance traveled in a flex-fuel vehicle was greater or lower than an electric vehicle running on electricity derived from wood chips depending on presence and absence of GHG credits related with co-generated electricity. A carbon tax of at least $7 Mg CO2e−1 and $30 Mg CO2e−1 is needed to promote wood-based electricity and ethanol production in the US, respectively. The range of abatement cost of GHG emissions is significantly dependent on the harvest age and selected baseline especially for electricity generation. PMID:24937461
Dwivedi, Puneet; Khanna, Madhu
2014-01-01
Woody feedstocks will play a critical role in meeting the demand for biomass-based energy products in the US. We developed an integrated model using comparable system boundaries and common set of assumptions to ascertain unit cost and greenhouse gas (GHG) intensity of electricity and ethanol derived from slash pine (Pinus elliottii) at the production and consumption levels by considering existing automobile technologies. We also calculated abatement cost of greenhouse gas (GHG) emissions with respect to comparable energy products derived from fossil fuels. The production cost of electricity derived using wood chips was at least cheaper by 1 ¢ MJ-1 over electricity derived from wood pellets. The production cost of ethanol without any income from cogenerated electricity was costlier by about 0.7 ¢ MJ-1 than ethanol with income from cogenerated electricity. The production cost of electricity derived from wood chips was cheaper by at least 0.7 ¢ MJ-1 than the energy equivalent cost of ethanol produced in presence of cogenerated electricity. The cost of using ethanol as a fuel in a flex-fuel vehicle was at least higher by 6 ¢ km-1 than a comparable electric vehicle. The GHG intensity of per km distance traveled in a flex-fuel vehicle was greater or lower than an electric vehicle running on electricity derived from wood chips depending on presence and absence of GHG credits related with co-generated electricity. A carbon tax of at least $7 Mg CO2e-1 and $30 Mg CO2e-1 is needed to promote wood-based electricity and ethanol production in the US, respectively. The range of abatement cost of GHG emissions is significantly dependent on the harvest age and selected baseline especially for electricity generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Septon, Kendall K
Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).
Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, K.; Thornton, M.
A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehiclesmore » (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.« less
Prognostics and Health Monitoring: Application to Electric Vehicles
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan S.
2017-01-01
As more and more autonomous electric vehicles emerge in our daily operation progressively, a very critical challenge lies in accurate prediction of remaining useful life of the systemssubsystems, specifically the electrical powertrain. In case of electric aircrafts, computing remaining flying time is safety-critical, since an aircraft that runs out of power (battery charge) while in the air will eventually lose control leading to catastrophe. In order to tackle and solve the prediction problem, it is essential to have awareness of the current state and health of the system, especially since it is necessary to perform condition-based predictions. To be able to predict the future state of the system, it is also required to possess knowledge of the current and future operations of the vehicle.Our research approach is to develop a system level health monitoring safety indicator either to the pilotautopilot for the electric vehicles which runs estimation and prediction algorithms to estimate remaining useful life of the vehicle e.g. determine state-of-charge in batteries. Given models of the current and future system behavior, a general approach of model-based prognostics can be employed as a solution to the prediction problem and further for decision making.
Application of subharmonics for active sound design of electric vehicles.
Gwak, Doo Young; Yoon, Kiseop; Seong, Yeolwan; Lee, Soogab
2014-12-01
The powertrain of electric vehicles generates an unfamiliar acoustical environment for customers. This paper seeks optimal interior sound for electric vehicles based on psychoacoustic knowledge and musical harmonic theory. The concept of inserting a virtual sound, which consists of the subharmonics of an existing high-frequency component, is suggested to improve sound quality. Subjective evaluation results indicate that the impression of interior sound can be enhanced in this manner. Increased appeal is achieved through two designed stimuli, which proves the effectiveness of the method proposed.
Design of electric vehicle charging station based on wind and solar complementary power supply
NASA Astrophysics Data System (ADS)
Wang, Li
2018-05-01
Electric vehicles have become a major trend in the development of the automobile industry. Green energy saving is an important feature of their development. At the same time, the related charging facilities construction is also critical. If we improve the charging measures to adapt to its green energy-saving features, it will be to a greater extent to promote its further development. This article will propose a highly efficient green energy-saving charging station designed for the electric vehicles.
NASA Astrophysics Data System (ADS)
Chen, Te; Xu, Xing; Chen, Long; Jiang, Haobing; Cai, Yingfeng; Li, Yong
2018-02-01
Accurate estimation of longitudinal force, lateral vehicle speed and yaw rate is of great significance to torque allocation and stability control for four-wheel independent driven electric vehicle (4WID-EVs). A fusion method is proposed to estimate the longitudinal force, lateral vehicle speed and yaw rate for 4WID-EVs. The electric driving wheel model (EDWM) is introduced into the longitudinal force estimation, the longitudinal force observer (LFO) is designed firstly based on the adaptive high-order sliding mode observer (HSMO), and the convergence of LFO is analyzed and proved. Based on the estimated longitudinal force, an estimation strategy is then presented in which the strong tracking filter (STF) is used to estimate lateral vehicle speed and yaw rate simultaneously. Finally, co-simulation via Carsim and Matlab/Simulink is carried out to demonstrate the effectiveness of the proposed method. The performance of LFO in practice is verified by the experiment on chassis dynamometer bench.
Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles
Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva
2011-01-01
The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented. PMID:22163697
Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.
Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva
2011-01-01
The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.
Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light The Indianapolis Power & Light Co (IPL) offers special PEV charging rates, including year-round time-of-use based & Light Company Phone: (317) 261-5178 electric.vehicle@aes.com
Feasibility assessment for battery electric vehicles based on multi-day activity-travel patterns.
DOT National Transportation Integrated Search
2017-04-11
A Battery Electric Vehicle (BEV) feasibility considering State Of Charge (SOC) level is : assessed using multiday activity-travel patterns to overcome the limitations of using one-day : activity-travel patterns. Since multi-day activity-travel patter...
NASA Astrophysics Data System (ADS)
Aviquzzaman, Md
The benefit of using a Plug-in Hybrid Electric Vehicle (PHEV) comes from its ability of substituting gasoline with electricity in operation. Defined as the share of distance traveled in the electric mode, the utility factor (UF) depends mostly on the battery capacity but also on many other factors, such as travel pattern and recharging pattern. Conventionally, the UFs are calculated from the daily vehicle miles traveled (DVMT) of vehicles by assuming motorists leaving home in the morning with full battery and return home in the evening. Such assumption, however, ignores the impact of the heterogeneity in both travel and charging behavior. The main objective of the thesis is to compare the UF by using multiday GPS-based travel data in regards to the charging decision. This thesis employs the global positioning system (GPS) based longitudinal travel data (covering 3-18 months) collected from 403 vehicles in the Seattle metropolitan area to investigate the impacts of such travel and charging behavior on UFs by analyzing the DVMT and home and work related tours. The UFs based on the DVMT are found close to those based on home-to-home tours. On the other hand, it is seen that the workplace charge opportunities largely improve UFs if the battery capacity is no more than 50 miles. It is also found that the gasoline price does not have significant impact on the UFs.
Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caille, Gary
The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a keymore » program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.« less
Hybrid and Plug-in Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-05-20
Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacovides, L.J.; Cornell, E.P.; Kirk, R.
1981-01-01
A study of the energy utilization of gasoline and battery-electric powered special purpose vehicles is discussed along with the impact of electric cars on national energy consumption, the development of electric vehicles in Japan, the applicability of safety standards to electric and hybrid-vehicles, and crashworthiness tests on two electric vehicles. Aspects of energy storage are explored, taking into account a review of battery systems for electrically powered vehicles, the dynamic characterization of lead-acid batteries for vehicle applications, nickel-zinc storage batteries as energy sources for electric vehicles, and a high energy tubular battery for a 1800 kg payload electric delivery van.more » Subjects considered in connection with drive systems include the drive system of the DOE near-term electric vehicle, a high performance AC electric drive system, an electromechanical transmission for hybrid vehicle power trains, and a hybrid vehicle for fuel economy. Questions of vehicle development are examined, giving attention to the Electrovair electric car, special purpose urban cars, the system design of the electric test vehicle, a project for city center transport, and a digital computer program for simulating electric vehicle performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCluskey, R.K.; Arias, J.L.
1979-12-01
During the first 11 months of the EPRI/SCE Electric Vehicle Project, four electric vehicles (EVs) were tested and evaluated: the Jet Industries Electra-Van Model 500, the Volkswagen (VW) Type 2 Electrotransporter, a VW Type GM2 Transporter with DAUG electric drive, and the Battronic Minivan. The project emphasized road-testing of these vehicles to acquire data on their useful driving range, performance, and reliability. Each vehicle was driven more than 1000 miles along SCE-selected test routes to determine the effects of different terrains (level, slight grades, and steep grades), traffic conditions (one, two, three, and four stops/mile and freeway), and payload. Themore » vehicle component failures that occurred during testing are itemized and described briefly, and assessments of expected field reliability are made. Other vehicle characteristics and measurements of interest are presented. The data base on these test vehicles is intended to provide the reader an overview of the real world performance that can be expected from present-day state-of-the-art EVs.« less
NASA Astrophysics Data System (ADS)
Xiong, Lu; Yu, Zhuoping; Wang, Yang; Yang, Chen; Meng, Yufeng
2012-06-01
This paper focuses on the vehicle dynamic control system for a four in-wheel motor drive electric vehicle, aiming at improving vehicle stability under critical driving conditions. The vehicle dynamics controller is composed of three modules, i.e. motion following control, control allocation and vehicle state estimation. Considering the strong nonlinearity of the tyres under critical driving conditions, the yaw motion of the vehicle is regulated by gain scheduling control based on the linear quadratic regulator theory. The feed-forward and feedback gains of the controller are updated in real-time by online estimation of the tyre cornering stiffness, so as to ensure the control robustness against environmental disturbances as well as parameter uncertainty. The control allocation module allocates the calculated generalised force requirements to each in-wheel motor based on quadratic programming theory while taking the tyre longitudinal/lateral force coupling characteristic into consideration. Simulations under a variety of driving conditions are carried out to verify the control algorithm. Simulation results indicate that the proposed vehicle stability controller can effectively stabilise the vehicle motion under critical driving conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).
NASA Astrophysics Data System (ADS)
Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui
2017-09-01
Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem is formulated to rapidly and efficiently optimize both the control decision and parameters of the home battery energy storage system (BESS). Considering different time horizons of optimization, home BESS prices, types and control modes of PEVs, the parameters of home BESS and electric cost are systematically investigated. Based on the developed CP control law in home to vehicle (H2V) mode and vehicle to home (V2H) mode, the home with BESS does not buy electric energy from the grid during the electric price's peak periods.
Hybrid Electric Vehicle Testing | Transportation Research | NREL
Hybrid Electric Vehicle Evaluations Hybrid Electric Vehicle Evaluations How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an performance evaluations of hybrid electric vehicles compared to similar conventional vehicles. Learn about
A multi-criteria decision aid methodology to design electric vehicles public charging networks
NASA Astrophysics Data System (ADS)
Raposo, João; Rodrigues, Ana; Silva, Carlos; Dentinho, Tomaz
2015-05-01
This article presents a new multi-criteria decision aid methodology, dynamic-PROMETHEE, here used to design electric vehicle charging networks. In applying this methodology to a Portuguese city, results suggest that it is effective in designing electric vehicle charging networks, generating time and policy based scenarios, considering offer and demand and the city's urban structure. Dynamic-PROMETHE adds to the already known PROMETHEE's characteristics other useful features, such as decision memory over time, versatility and adaptability. The case study, used here to present the dynamic-PROMETHEE, served as inspiration and base to create this new methodology. It can be used to model different problems and scenarios that may present similar requirement characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyung Chul; Wallington, Timothy J.
Assessing the life-cycle benefits of vehicle lightweighting requires a quantitative description of mass-induced fuel consumption (MIF) and fuel reduction values (FRVs). We have extended our physics-based model of MIF and FRVs for internal combustion engine vehicles (ICEVs) to electrified vehicles (EVs) including hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs). We illustrate the utility of the model by calculating MIFs and FRVs for 37 EVs and 13 ICEVs. BEVs have much smaller MIF and FRVs, both in the range 0.04-0.07 L e/(100 km 100 kg), than those for ICEVs which are in the rangesmore » 0.19-0.32 and 0.16-0.22 L/(100 km 100 kg), respectively. The MIF and FRVs for HEVs and PHEVs mostly lie between those for ICEVs and BEVs. Powertrain resizing increases the FRVs for ICEVs, HEVs and PHEVs. Lightweighting EVs is less effective in reducing greenhouse gas emissions than lightweighting ICEVs, however the benefits differ substantially for different vehicle models. The physics-based approach outlined here enables model specific assessments for ICEVs, HEVs, PHEVs, and BEVs required to determine the optimal strategy for maximizing the life-cycle benefits of lightweighting the light-duty vehicle fleet.« less
Electric and hybrid electric vehicles: A technology assessment based on a two-stage Delphi study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vyas, A.D.; Ng, H.K.; Santini, D.J.
1997-12-01
To address the uncertainty regarding future costs and operating attributes of electric and hybrid electric vehicles, a two stage, worldwide Delphi study was conducted. Expert opinions on vehicle attributes, current state of the technology, possible advancements, costs, and market penetration potential were sought for the years 2000, 2010, and 2020. Opinions related to such critical components as batteries, electric drive systems, and hybrid vehicle engines, as well as their respective technical and economic viabilities, were also obtained. This report contains descriptions of the survey methodology, analytical approach, and results of the analysis of survey data, together with a summary ofmore » other factors that will influence the degree of market success of electric and hybrid electric vehicle technologies. Responses by industry participants, the largest fraction among all the participating groups, are compared with the overall responses. An evaluation of changes between the two Delphi stages is also summarized. An analysis of battery replacement costs for various types is summarized, and variable operating costs for electric and hybrid vehicles are compared with those of conventional vehicles. A market penetration analysis is summarized, in which projected market shares from the survey are compared with predictions of shares on the basis of two market share projection models that use the cost and physical attributes provided by the survey. Finally, projections of market shares beyond the year 2020 are developed by use of constrained logit models of market shares, statistically fitted to the survey data.« less
NASA Astrophysics Data System (ADS)
Tarroja, Brian; Eichman, Joshua D.; Zhang, Li; Brown, Tim M.; Samuelsen, Scott
2015-03-01
A study has been performed that analyzes the effectiveness of utilizing plug-in vehicles to meet holistic environmental goals across the combined electricity and transportation sectors. In this study, plug-in hybrid electric vehicle (PHEV) penetration levels are varied from 0 to 60% and base renewable penetration levels are varied from 10 to 63%. The first part focused on the effect of installing plug-in hybrid electric vehicles on the environmental performance of the combined electricity and transportation sectors. The second part addresses impacts on the design and operation of load-balancing resources on the electric grid associated with fleet capacity factor, peaking and load-following generator capacity, efficiency, ramp rates, start-up events and the levelized cost of electricity. PHEVs using smart charging are found to counteract many of the disruptive impacts of intermittent renewable power on balancing generators for a wide range of renewable penetration levels, only becoming limited at high renewable penetration levels due to lack of flexibility and finite load size. This study highlights synergy between sustainability measures in the electric and transportation sectors and the importance of communicative dispatch of these vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Steve
Several U.S. Department of Defense based studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provide observations related to placement of PEVmore » charging infrastructure. This report provides the results of the data analysis and observations related to replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of the charging infrastructure required to support this replacement, which is the subject of a separate report.« less
NASA Technical Reports Server (NTRS)
Witzberger, Kevin (Inventor); Hojnicki, Jeffery (Inventor); Manzella, David (Inventor)
2016-01-01
Modeling and control software that integrates the complexities of solar array models, a space environment, and an electric propulsion system into a rigid body vehicle simulation and control model is provided. A rigid body vehicle simulation of a solar electric propulsion (SEP) vehicle may be created using at least one solar array model, at least one model of a space environment, and at least one model of a SEP propulsion system. Power availability and thrust profiles may be determined based on the rigid body vehicle simulation as the SEP vehicle transitions from a low Earth orbit (LEO) to a higher orbit or trajectory. The power availability and thrust profiles may be displayed such that a user can use the displayed power availability and thrust profiles to determine design parameters for an SEP vehicle mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s advanced vehicle testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America to conduct several U.S. Department of Defense-based micro-climate studies to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). The study included Joint Base Lewis McChord, located in Washington State; Naval Air Station Whidbey Island, located in Washington State; and United States Marine Corp Base Camp Lejeune,more » located in North Carolina. The project was divided into four tasks for each of the three bases studied. Task 1 consisted of surveying the non-tactical fleet of vehicles to begin review of vehicle mission assignments and types of vehicles in service. In Task 2, the daily operational characteristics of the vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. Results of the data analysis and observations were provided. Individual observations of these selected vehicles provided the basis for recommendations related to PEV adoption (i.e., whether a battery electric vehicle or plug-in hybrid electric vehicle [collectively referred to as PEVs] can fulfill the mission requirements). It also provided the basis for recommendations related to placement of PEV charging infrastructure. In Task 4, an implementation approach was provided for near-term adoption of PEVs into the respective fleets. Each facility was provided detailed reports on each of these tasks. This paper summarizes and provides observations on the project and completes Intertek’s required actions.« less
At A Glance: Electric-Drive Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-07-01
Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).
Prediction on the charging demand for electric vehicles in Chengdu
NASA Astrophysics Data System (ADS)
yun, Cai; wanquan, Zhang; wei, You; pan, Mao
2018-03-01
The development of the electric vehicle charging station facilities speed directly affect the development of electric vehicle speed. And the charging demand of electric vehicles is one of the main factors influencing the electric vehicle charging facilities. The paper collected and collated car ownership in recent years, the use of elastic coefficient to predict Chengdu electric vehicle ownership, further modeling to give electric vehicle charging demand.
Identification of potential locations of electric vehicle supply equipment
NASA Astrophysics Data System (ADS)
Brooker, R. Paul; Qin, Nan
2015-12-01
Proper placement of electric vehicle supply equipment (charging stations) requires an understanding of vehicle usage patterns. Using data from the National Household Travel Survey on vehicle mileage and destination patterns, analyses were performed to determine electric vehicles' charging needs, as a function of battery size and state of charge. This paper compares electric vehicle charging needs with Department of Energy electric vehicle charging data from real-world charging infrastructure. By combining the electric vehicles charging needs with charging data from real-world applications, locations with high electric vehicle charging likelihood are identified.
Analysis of the BEV Technology Progress of America, Europe, Japan and Korea Based on Patent Map
NASA Astrophysics Data System (ADS)
Yurong, Huang; Yuanyuan, Hou; Jingyan, Zhou; Ru, Liu
2018-02-01
The paper analyzed the Battery Electric Vehicle patent application trend, major country distribution, main technology layout and patentee of America, Europe, Japan and Korea based on patent information from 2006 to 2016 by using patent map method, and visualized the Battery Electric Vehicle technology progress conditions of the four countries and regions in the last decade.
Aerodynamic characteristics of sixteen electric, hybrid, and subcompact vehicles
NASA Technical Reports Server (NTRS)
Kurtz, D. W.
1979-01-01
An elementary electric and hybrid vehicle aerodynamic data base was developed using data obtained on sixteen electric, hybrid, and sub-compact production vehicles tested in the Lockheed-Georgia low-speed wind tunnel. Zero-yaw drag coefficients ranged from a high of 0.58 for a boxey delivery van and an open roadster to a low of about 0.34 for a current four-passenger proto-type automobile which was designed with aerodynamics as an integrated parameter. Vehicles were tested at yaw angles up to 40 degrees and a wing weighting analysis is presented which yields a vehicle's effective drag coefficient as a function of wing velocity and driving cycle. Other parameters investigated included the effects of windows open and closed, radiators open and sealed, and pop-up headlights. Complete six-component force and moment data are presented in both tabular and graphical formats. Only limited commentary is offered since, by its very nature, a data base should consist of unrefined reference material. A justification for pursuing efficient aerodynamic design of EHVs is presented.
National Economic Value Assessment of Plug-in Electric Vehicles: Volume I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melaina, Marc; Bush, Brian; Eichman, Joshua
The adoption of plug-in electric vehicles (PEVs) can reduce household fuel expenditures by substituting electricity for gasoline while reducing greenhouse gas emissions and petroleum imports. A scenario approach is employed to provide insights into the long-term economic value of increased PEV market growth across the United States. The analytic methods estimate fundamental costs and benefits associated with an economic allocation of PEVs across households based upon household driving patterns, projected vehicle cost and performance attributes, and simulations of a future electricity grid. To explore the full technological potential of PEVs and resulting demands on the electricity grid, very high PEVmore » market growth projections from previous studies are relied upon to develop multiple future scenarios.« less
Development of a DC propulsion system for an electric vehicle
NASA Technical Reports Server (NTRS)
Kelledes, W. L.
1984-01-01
The suitability of the Eaton automatically shifted mechanical transaxle concept for use in a near-term dc powered electric vehicle is evaluated. A prototype dc propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the contractor's site. The system consisted of a two-axis, three-speed, automatically-shifted mechanical transaxle, 15.2 Kw rated, separately excited traction motor, and a transistorized motor controller with a single chopper providing limited armature current below motor base speed and full range field control above base speed at up to twice rated motor current. The controller utilized a microprocessor to perform motor and vehicle speed monitoring and shift sequencing by means of solenoids applying hydraulic pressure to the transaxle clutches. Bench dynamometer and track testing was performed. Track testing showed best system efficiency for steady-state cruising speeds of 65-80 Km/Hz (40-50 mph). Test results include acceleration, steady speed and SAE J227A/D cycle energy consumption, braking tests and coast down to characterize the vehicle road load.
NASA Astrophysics Data System (ADS)
Trowler, Derik Wesley
The research objective of this study was to develop a sizing method for community energy storage systems with emphasis on preventing distribution transformer overloading due to plug-in electric vehicle charging. The method as developed showed the formulation of a diversified load profile based upon residential load data for several customers on the American Electric Power system. Once a load profile was obtained, plug-in electric vehicle charging scenarios which were based upon expected adoption and charging trends were superimposed on the load profile to show situations where transformers (in particular 25 kVA, 50 kVA, and 100 kVA) would be overloaded during peak hours. Once the total load profiles were derived, the energy and power requirements of community energy storage systems were calculated for a number of scenarios with different combinations of numbers of homes and plug-in electric vehicles. The results were recorded and illustrated into charts so that one could determine the minimum size per application. Other topics that were covered in this thesis were the state of the art and future trends in plug-in electric vehicle and battery chemistry adoption and development. The goal of the literature review was to confirm the already suspected notion that Li-ion batteries are best suited and soon to be most cost-effective solution for applications requiring small, efficient, reliable, and light-weight battery systems such as plug-in electric vehicles and community energy storage systems. This thesis also includes a chapter showing system modeling in MATLAB/SimulinkRTM. All in all, this thesis covers a wide variety of considerations involved in the designing and deploying of community energy storage systems intended to mitigate the effects of distribution transformer overloading.
The impact of electric vehicles on the outlook of future energy system
NASA Astrophysics Data System (ADS)
Zhuk, A.; Buzoverov, E.
2018-02-01
Active promotion of electric vehicles (EVs) and technology of fast EV charging in the medium term may cause significant peak loads on the energy system, what necessitates making strategic decisions related to the development of generating capacities, distribution networks with EV charging infrastructure, and priorities in the development of battery electric vehicles and vehicles with electrochemical generators. The paper analyses one of the most significant aspects of joint development of electric transport system and energy system in the conditions of substantial growth of energy consumption by EVs. The assessments of per-unit-costs of operation and depreciation of EV power unit were made, taking into consideration the expenses of electric power supply. The calculations show that the choice of electricity buffering method for EV fast charging depends on the character of electricity infrastructure in the region where the electric transport is operating. In the conditions of high density of electricity network and a large number of EVs, the stationary storage facilities or the technology of distributed energy storage in EV batteries - vehicle-to-grid (V2G) technology may be used for buffering. In the conditions of low density and low capacity of electricity networks, the most economical solution could be usage of EVs with traction power units based on the combination of air-aluminum electrochemical generator and a buffer battery of small capacity.
NASA Astrophysics Data System (ADS)
Zhang, Chuanwei; Zhang, Dongsheng; Wen, Jianping
2018-02-01
In order to coordinately control the torque distribution of existing two-wheel independent drive electric vehicle, and improve the energy efficiency and control stability of the whole vehicle, the control strategies based on fuzzy control were designed which adopt the direct yaw moment control as the main line. For realizing the torque coordination simulation of the two-wheel independent drive vehicle, the vehicle model, motor model and tire model were built, including the vehicle 7 - DOF dynamics model, motion equation, torque equation. Finally, in the Carsim - Simulink joint simulation platform, the feasibility of the drive control strategy was verified.
NASA Astrophysics Data System (ADS)
Campanari, Stefano; Manzolini, Giampaolo; Garcia de la Iglesia, Fernando
This work presents a study of the energy and environmental balances for electric vehicles using batteries or fuel cells, through the methodology of the well to wheel (WTW) analysis, applied to ECE-EUDC driving cycle simulations. Well to wheel balances are carried out considering different scenarios for the primary energy supply. The fuel cell electric vehicles (FCEV) are based on the polymer electrolyte membrane (PEM) technology, and it is discussed the possibility to feed the fuel cell with (i) hydrogen directly stored onboard and generated separately by water hydrolysis (using renewable energy sources) or by conversion processes using coal or natural gas as primary energy source (through gasification or reforming), (ii) hydrogen generated onboard with a fuel processor fed by natural gas, ethanol, methanol or gasoline. The battery electric vehicles (BEV) are based on Li-ion batteries charged with electricity generated by central power stations, either based on renewable energy, coal, natural gas or reflecting the average EU power generation feedstock. A further alternative is considered: the integration of a small battery to FCEV, exploiting a hybrid solution that allows recovering energy during decelerations and substantially improves the system energy efficiency. After a preliminary WTW analysis carried out under nominal operating conditions, the work discusses the simulation of the vehicles energy consumption when following standardized ECE-EUDC driving cycle. The analysis is carried out considering different hypothesis about the vehicle driving range, the maximum speed requirements and the possibility to sustain more aggressive driving cycles. The analysis shows interesting conclusions, with best results achieved by BEVs only for very limited driving range requirements, while the fuel cell solutions yield best performances for more extended driving ranges where the battery weight becomes too high. Results are finally compared to those of conventional internal combustion engine vehicles, showing the potential advantages of the different solutions considered in the paper and indicating the possibility to reach the target of zero-emission vehicles (ZEV).
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.
NASA Astrophysics Data System (ADS)
Sibiceanu, A. R.; Ivan, F.; Nicolae, V.; Iorga, A.; Cioroianu, C.
2017-08-01
Given the importance of reducing carbon emissions from road transport, price and security of oil supply, hybrid electric vehicle can provide a viable alternative solution to conventional vehicles, equipped with thermal engines, which use fossil fuels. Based on the growing trends of new vehicles sales, which include hybrid and electric vehicles closely associated with their use in terms of harmful emissions, strict regulations are established. In this paper were created models of thermal and hybrid electric powertrains groups, using computer simulation program AVL Cruise, making a comparative study using petroleum fuels for continuously variable transmission. The results obtained highlights both fuel consumption as well as pollutant emissions.
Adaptive powertrain control for plugin hybrid electric vehicles
Kedar-Dongarkar, Gurunath; Weslati, Feisel
2013-10-15
A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.
A real-time insulation detection method for battery packs used in electric vehicles
NASA Astrophysics Data System (ADS)
Tian, Jiaqiang; Wang, Yujie; Yang, Duo; Zhang, Xu; Chen, Zonghai
2018-05-01
Due to the energy crisis and environmental pollution, electric vehicles have become more and more popular. Compared to traditional fuel vehicles, the electric vehicles are integrated with more high-voltage components, which have potential security risks of insulation. The insulation resistance between the chassis and the direct current bus of the battery pack is easily affected by factors such as temperature, humidity and vibration. In order to ensure the safe and reliable operation of the electric vehicles, it is necessary to detect the insulation resistance of the battery pack. This paper proposes an insulation detection scheme based on low-frequency signal injection method. Considering the insulation detector which can be easily affected by noises, the algorithm based on Kalman filter is proposed. Moreover, the battery pack is always in the states of charging and discharging during driving, which will lead to frequent changes in the voltage of the battery pack and affect the estimation accuracy of insulation detector. Therefore the recursive least squares algorithm is adopted to solve the problem that the detection results of insulation detector mutate with the voltage of the battery pack. The performance of the proposed method is verified by dynamic and static experiments.
Charging Guidance of Electric Taxis Based on Adaptive Particle Swarm Optimization
Niu, Liyong; Zhang, Di
2015-01-01
Electric taxis are playing an important role in the application of electric vehicles. The actual operational data of electric taxis in Shenzhen, China, is analyzed, and, in allusion to the unbalanced time availability of the charging station equipment, the electric taxis charging guidance system is proposed basing on the charging station information and vehicle information. An electric taxis charging guidance model is established and guides the charging based on the positions of taxis and charging stations with adaptive mutation particle swarm optimization. The simulation is based on the actual data of Shenzhen charging stations, and the results show that electric taxis can be evenly distributed to the appropriate charging stations according to the charging pile numbers in charging stations after the charging guidance. The even distribution among the charging stations in the area will be achieved and the utilization of charging equipment will be improved, so the proposed charging guidance method is verified to be feasible. The improved utilization of charging equipment can save public charging infrastructure resources greatly. PMID:26236770
Charging Guidance of Electric Taxis Based on Adaptive Particle Swarm Optimization.
Niu, Liyong; Zhang, Di
2015-01-01
Electric taxis are playing an important role in the application of electric vehicles. The actual operational data of electric taxis in Shenzhen, China, is analyzed, and, in allusion to the unbalanced time availability of the charging station equipment, the electric taxis charging guidance system is proposed basing on the charging station information and vehicle information. An electric taxis charging guidance model is established and guides the charging based on the positions of taxis and charging stations with adaptive mutation particle swarm optimization. The simulation is based on the actual data of Shenzhen charging stations, and the results show that electric taxis can be evenly distributed to the appropriate charging stations according to the charging pile numbers in charging stations after the charging guidance. The even distribution among the charging stations in the area will be achieved and the utilization of charging equipment will be improved, so the proposed charging guidance method is verified to be feasible. The improved utilization of charging equipment can save public charging infrastructure resources greatly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Naval Air Station Whidbey Island (NASWI) located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recordedmore » vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the NASWI fleet.« less
Alternator control for battery charging
Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.
2015-07-14
In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.
Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle
Boberg, Evan S.; Gebby, Brian P.
1999-09-28
A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.
Integrated thermal management of a hybrid electric vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Traci, R.M.; Acebal, R.; Mohler, T.
1999-01-01
A thermal management methodology, based on the Vehicle Integrated Thermal Management Analysis Code (VITMAC), has been developed for a notional vehicle employing the All-Electric Combat Vehicle (AECV) concept. AECV uses a prime power source, such as a diesel, to provide mechanical energy which is converted to electrical energy and stored in a central energy storage system consisting of flywheels, batteries and/or capacitors. The combination of prime power and stored energy powers the vehicle drive system and also advanced weapons subsystems such as an ETC or EM gun, electrically driven lasers, an EM armor system and an active suspension. Every majormore » system is electrically driven with energy reclamation when possible from braking and gun recoil. Thermal management of such a complicated energy transfer and utilization system is a major design consideration due to the substantial heat rejection requirements. In the present paper, an overall integrated thermal management system (TMS) is described which accounts for energy losses from each subsystem component, accepts the heat using multiple coolant loops and expels the heat from the vehicle. VITMAC simulations are used to design the TMS and to demonstrate that a conventional TMS approach is capable of successfully handling vehicle heat rejection requirements under stressing operational conditions.« less
Thermographic inspection and quality assurance of energy conservation procedures for electric buses
NASA Astrophysics Data System (ADS)
Fennell, Henri C.
1998-03-01
Electric buses are one of the solutions for improving air quality in our cities. Many states are adopting 'no new diesel bus' policies, thus increasing the pressure to develop alternative vehicles. The fledgling electric vehicle technology suffers from acceptance problems by major transit authorities due primarily to limited travel range from each battery charge. Utilizing electric buses in the Northeast has the added problem of maintaining an adequate cabin temperature without the availability of heat from a diesel motor. Heating the passenger cabin with an electric heater which draws from the batteries' stored energy significantly reduces the already modest range of these vehicles; therefore, energy conservation measures play an important role in allowing electric vehicles to provide practical transit services. IR thermography, in conjunction with air leakage pressurization diagnostics, has proven to be an excellent tool for developing energy-efficient bus designs as well as a valuable in-service performance testing method. This paper is based on tests performed on several Advanced Vehicle Systems, Inc. electric buses during research performed under Northeast Alternative Vehicle Consortium and Defense Advanced Research Projects Agency grants. The work demonstrates the thermographic methods used and the real- world increased performance of retrofitted and newly designed buses resulting from this initial Portland Transit retrofit project and in a follow-up project to develop a cold weather specification for a new generation of electric buses. Early diagnostic and new-technology follow-up thermographic performance testing was paralleled by energy modeling of early baseline and re-designed vehicles. Modeling and performance data are included. As a result of this research, thermography, air-leakage/pressurization testing, and fog analysis techniques are now being used regularly in research and development and quality assurance procedures by electric bus manufacturers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francfort, Jim; Bennett, Brion; Carlson, Richard
2015-09-01
Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s (DOE) Idaho National Laboratory (INL), is the lead laboratory for U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA). INL’s conduct of the AVTA resulted in a significant base of knowledge and experience in the area of testing light-duty vehicles that reduced transportation-related petroleum consumption. Due to this experience, INL was tasked by DOE to develop agreements with companies that were the recipients of The American Recovery and Reinvestment Act of 2009 (ARRA) grants, that would allow INL to collect raw data from light-duty vehicles andmore » charging infrastructure. INL developed non-disclosure agreements (NDAs) with several companies and their partners that resulted in INL being able to receive raw data via server-to-server connections from the partner companies. This raw data allowed INL to independently conduct data quality checks, perform analysis, and report publicly to DOE, partners, and stakeholders, how drivers used both new vehicle technologies and the deployed charging infrastructure. The ultimate goal was not the deployment of vehicles and charging infrastructure, cut rather to create real-world laboratories of vehicles, charging infrastructure and drivers that would aid in the design of future electric drive transportation systems. The five projects that INL collected data from and their partners are: • ChargePoint America - Plug-in Electric Vehicle Charging Infrastructure Demonstration • Chrysler Ram PHEV Pickup - Vehicle Demonstration • General Motors Chevrolet Volt - Vehicle Demonstration • The EV Project - Plug-in Electric Vehicle Charging Infrastructure Demonstration • EPRI / Via Motors PHEVs – Vehicle Demonstration The document serves to benchmark the performance science involved the execution, analysis and reporting for the five above projects that provided lessons learned based on driver’s use of the vehicles and recharging decisions made. Data is reported for the use of more than 25,000 vehicles and charging units.« less
Research on motor braking-based DYC strategy for distributed electric vehicle
NASA Astrophysics Data System (ADS)
Zhang, Jingming; Liao, Weijie; Chen, Lei; Cui, Shumei
2017-08-01
In order to bring into full play the advantages of motor braking and enhance the handling stability of distributed electric vehicle, a motor braking-based direct yaw moment control (DYC) strategy was proposed. This strategy could identify whether a vehicle has under-steered or overs-steered, to calculate the direct yaw moment required for vehicle steering correction by taking the corrected yaw velocity deviation and slip-angle deviation as control variables, and exert motor braking moment on the target wheels to perform correction in the manner of differential braking. For validation of the results, a combined simulation platform was set up finally to simulate the motor braking control strategy proposed. As shown by the results, the motor braking-based DYC strategy timely adjusted the motor braking moment and hydraulic braking moment on the target wheels, and corrected the steering deviation and sideslip of the vehicle in unstable state, improving the handling stability.
Rios-Torres, Jackeline; Liu, Jun; Khattak, Asad
2018-06-14
Here, improving fuel economy and lowering emissions are key societal goals. Standard driving cycles, pre-designed by the US Environmental Protection Agency (EPA), have long been used to estimate vehicle fuel economy in laboratory-controlled conditions. They have also been used to test and tune different energy management strategies for hybrid electric vehicles (HEVs). This paper aims to estimate fuel consumption for a conventional vehicle and a HEV using personalized driving cycles extracted from real-world data to study the effects of different driving styles and vehicle types on fuel consumption when compared to the estimates based on standard driving cycles. To domore » this, we extracted driving cycles for conventional vehicles and HEVs from a large-scale U.S. survey that contains real-world GPS-based driving records. Next, the driving cycles were assigned to one of three categories: volatile, normal, or calm. Then, the driving cycles were used along with a driver-vehicle simulation that captures driver decisions (vehicle speed during a trip), powertrain, and vehicle dynamics to estimate fuel consumption for conventional vehicles and HEVs with power-split powertrain. To further optimize fuel consumption for HEVs, the Equivalent Consumption Minimization Strategy (ECMS) is applied. The results show that depending on the driving style and the driving scenario, conventional vehicle fuel consumption can vary widely compared with standard EPA driving cycles. Specifically, conventional vehicle fuel consumption was 13% lower in calm urban driving, but almost 34% higher for volatile highway driving compared with standard EPA driving cycles. Interestingly, when a driving cycle is predicted based on the application of case-based reasoning and used to tune the power distribution in a hybrid electric vehicle, its fuel consumption can be reduced by up to 12% in urban driving. Implications and limitations of the findings are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios-Torres, Jackeline; Liu, Jun; Khattak, Asad
Here, improving fuel economy and lowering emissions are key societal goals. Standard driving cycles, pre-designed by the US Environmental Protection Agency (EPA), have long been used to estimate vehicle fuel economy in laboratory-controlled conditions. They have also been used to test and tune different energy management strategies for hybrid electric vehicles (HEVs). This paper aims to estimate fuel consumption for a conventional vehicle and a HEV using personalized driving cycles extracted from real-world data to study the effects of different driving styles and vehicle types on fuel consumption when compared to the estimates based on standard driving cycles. To domore » this, we extracted driving cycles for conventional vehicles and HEVs from a large-scale U.S. survey that contains real-world GPS-based driving records. Next, the driving cycles were assigned to one of three categories: volatile, normal, or calm. Then, the driving cycles were used along with a driver-vehicle simulation that captures driver decisions (vehicle speed during a trip), powertrain, and vehicle dynamics to estimate fuel consumption for conventional vehicles and HEVs with power-split powertrain. To further optimize fuel consumption for HEVs, the Equivalent Consumption Minimization Strategy (ECMS) is applied. The results show that depending on the driving style and the driving scenario, conventional vehicle fuel consumption can vary widely compared with standard EPA driving cycles. Specifically, conventional vehicle fuel consumption was 13% lower in calm urban driving, but almost 34% higher for volatile highway driving compared with standard EPA driving cycles. Interestingly, when a driving cycle is predicted based on the application of case-based reasoning and used to tune the power distribution in a hybrid electric vehicle, its fuel consumption can be reduced by up to 12% in urban driving. Implications and limitations of the findings are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
To assist federal agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory’s EVSE Tiger Teams.
HTS machines as enabling technology for all-electric airborne vehicles
NASA Astrophysics Data System (ADS)
Masson, P. J.; Brown, G. V.; Soban, D. S.; Luongo, C. A.
2007-08-01
Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development.
NASA Astrophysics Data System (ADS)
Ye, Fei
2018-04-01
With the rapid increase of electric automobiles and charging piles, the elastic expansion and online rapid upgrade were required for the vehicle networking system platform (system platform for short). At present, it is difficult to meet the operation needs due to the traditional huge rock architecture used by the system platform. This paper studied the system platform technology architecture based on "cloud platform +micro-service" to obtain a new generation of vehicle networking system platform with the combination of elastic expansion and application, thus significantly improving the service operation ability of system.
Fuel Economy Improvement by Utilizing Thermoelectric Generator in Heavy-Duty Vehicle
NASA Astrophysics Data System (ADS)
Deng, Y. D.; Hu, T.; Su, C. Q.; Yuan, X. H.
2017-05-01
Recent advances in thermoelectric technology have made exhaust-based thermoelectric generators (TEGs) promising for recovery of waste heat. Utilization of exhaust-based TEGs in heavy-duty vehicles was studied in this work. Given that the generated power is limited, the alternator is still indispensable. To improve the fuel economy, the generated electricity must be integrated into the automotive electrical system and consumed by electrical loads. Therefore, two feasible ways of integrating the generated electricity into the automotive electrical system are discussed: one in which the original alternator works only under certain conditions, i.e., the "thermostat" strategy, and another in which a smaller alternator is adopted and works together with the TEG, i.e., the "cooperative work" strategy. The overall performance and efficiency are obtained through simulation analysis. The simulation results show that both methods can improve the fuel economy, but the former provides better results. Moreover, if the electrical loads can be properly modified, the fuel economy is further improved. These simulation results lay a solid foundation for application of TEGs in vehicles in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).
Lightweighting Impacts on Fuel Economy, Cost, and Component Losses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooker, A. D.; Ward, J.; Wang, L.
2013-01-01
The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted themore » conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.« less
Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...
Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Electric Substation, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Looking north Beale Air Force Base, Perimeter Acquisition Vehicle ...
Looking north - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Electric Substation, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.
Raykin, Leon; MacLean, Heather L; Roorda, Matthew J
2012-06-05
This study examines how driving patterns (distance and conditions) and the electricity generation supply interact to impact well-to-wheel (WTW) energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW performance of a PHEV is compared with that of a similar (nonplug-in) gasoline hybrid electric vehicle and internal combustion engine vehicle (ICEV). Driving PHEVs for short distances between recharging generally results in lower WTW total and fossil energy use and GHG emissions per kilometer compared to driving long distances, but the extent of the reductions depends on the electricity supply. For example, the shortest driving pattern in this study with hydroelectricity uses 81% less fossil energy than the longest driving pattern. However, the shortest driving pattern with coal-based electricity uses only 28% less fossil energy. Similar trends are observed in reductions relative to the nonplug-in vehicles. Irrespective of the electricity supply, PHEVs result in greater reductions in WTW energy use and GHG emissions relative to ICEVs for city than highway driving conditions. PHEVs charging from coal facilities only reduce WTW energy use and GHG emissions relative to ICEVs for certain favorable driving conditions. The study results have implications for environmentally beneficial PHEV adoption and usage patterns.
Vehicle systems design optimization study
NASA Technical Reports Server (NTRS)
Gilmour, J. L.
1980-01-01
The optimum vehicle configuration and component locations are determined for an electric drive vehicle based on using the basic structure of a current production subcompact vehicle. The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current internal combustion engine vehicles. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages, one at front under the hood and a second at the rear under the cargo area, in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passenger and cargo space for a given size vehicle.
16 CFR 309.14 - Recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Distributors of Non-Liquid Alternative Vehicle Fuels (other Than Electricity) and of Electric Vehicle Fuel... vehicle fuels (other than electricity) and for electric vehicle fuel dispensing systems. You also must... for your certification on a permanent marking or permanent label attached to the electric vehicle fuel...
16 CFR 309.14 - Recordkeeping.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Distributors of Non-Liquid Alternative Vehicle Fuels (other Than Electricity) and of Electric Vehicle Fuel... vehicle fuels (other than electricity) and for electric vehicle fuel dispensing systems. You also must... for your certification on a permanent marking or permanent label attached to the electric vehicle fuel...
16 CFR 309.14 - Recordkeeping.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Distributors of Non-Liquid Alternative Vehicle Fuels (other Than Electricity) and of Electric Vehicle Fuel... vehicle fuels (other than electricity) and for electric vehicle fuel dispensing systems. You also must... for your certification on a permanent marking or permanent label attached to the electric vehicle fuel...
16 CFR 309.14 - Recordkeeping.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Distributors of Non-Liquid Alternative Vehicle Fuels (other Than Electricity) and of Electric Vehicle Fuel... vehicle fuels (other than electricity) and for electric vehicle fuel dispensing systems. You also must... for your certification on a permanent marking or permanent label attached to the electric vehicle fuel...
The impact of artificial vehicle sounds for pedestrians on driver stress.
Cottrell, Nicholas D; Barton, Benjamin K
2012-01-01
Electrically based vehicles have produced some concern over their lack of sound, but the impact of artificial sounds now being implemented have not been examined in respect to their effects upon the driver. The impact of two different implementations of vehicle sound on driver stress in electric vehicles was examined. A Nissan HEV running in electric vehicle mode was driven by participants in an area of congestion using three sound implementations: (1) no artificial sounds, (2) manually engaged sounds and (3) automatically engaged sounds. Physiological and self-report questionnaire measures were collected to determine stress and acceptance of the automated sound protocol. Driver stress was significantly higher in the manually activated warning condition, compared to both no artificial sounds and automatically engaged sounds. Implications for automation usage and measurement methods are discussed and future research directions suggested. The advent of hybrid- and all-electric vehicles has created a need for artificial warning signals for pedestrian safety that place task demands on drivers. We investigated drivers' stress differences in response to varying conditions of warning signals for pedestrians. Driver stress was lower when noises were automated.
Design study of toroidal traction CVT for electric vehicles
NASA Technical Reports Server (NTRS)
Raynard, A. E.; Kraus, J.; Bell, D. D.
1980-01-01
The development, evaluation, and optimization of a preliminary design concept for a continuously variable transmission (CVT) to couple the high-speed output shaft of an energy storage flywheel to the drive train of an electric vehicle is discussed. An existing computer simulation program was modified and used to compare the performance of five CVT design configurations. Based on this analysis, a dual-cavity full-toroidal drive with regenerative gearing is selected for the CVT design configuration. Three areas are identified that will require some technological development: the ratio control system, the traction fluid properities, and evaluation of the traction contact performance. Finally, the suitability of the selected CVT design concept for alternate electric and hybrid vehicle applications and alternate vehicle sizes and maximum output torques is determined. In all cases the toroidal traction drive design concept is applicable to the vehicle system. The regenerative gearing could be eliminated in the electric powered vehicle because of the reduced ratio range requirements. In other cases the CVT with regenerative gearing would meet the design requirements after appropriate adjustments in size and reduction gearing ratio.
DoD use of Domestically-Produced Alternative Fuels and Alternative Fuel Vehicles
2014-04-10
based fuels and biodiesel , in DoD vehicles; (2) current and projected actions by the DoD to increase the use of alternative fuels in vehicles; (3) a...fuels and vehicles. 15. SUBJECT TERMS alternative fuel infrastructure, electric vehicles, biofuels, ethanol, biodiesel , drop-in, synthetic fuel...of: (1) use and potential use of domestically-produced alternative fuels including but not limited to, natural gas based fuels and biodiesel , in DoD
Modeling and Controls Development of 48V Mild Hybrid Electric Vehicles
The Advanced Light-Duty Powertrain and Hybrid Analysis tool (ALPHA) was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types c...
National Plug-In Electric Vehicle Infrastructure Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Eric; Rames, Clement; Muratori, Matteo
This report addresses the fundamental question of how much plug-in electric vehicle (PEV) charging infrastructure—also known as electric vehicle supply equipment (EVSE)—is needed in the United States to support both plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs).
Electric Vehicle Modeling and Simulation.
1983-08-01
RD-RI39 709 ELECTRIC VEHICLE MODELING RHD SIMULRTION(U) AIR FORCE lit INST OF TECH NRIGHT-PRTTERSON RFD OH SCHOOL OF ENGINEERING A R DEMISPELARE RUG...for Public Release Distribution Unlimited Fl School of Engineering Air Force Institute of Technology Wright-Patterson Air Force Base, Ohio Table of... Engineering , 49: 49-51 (27 August 1979). 36. Renner -Smith, S. "Battery-Saving Flywheel Gives Electric Car Freeway Zip," Popular Science, 215(10): 82-84
Multivariable speed synchronisation for a parallel hybrid electric vehicle drivetrain
NASA Astrophysics Data System (ADS)
Alt, B.; Antritter, F.; Svaricek, F.; Schultalbers, M.
2013-03-01
In this article, a new drivetrain configuration of a parallel hybrid electric vehicle is considered and a novel model-based control design strategy is given. In particular, the control design covers the speed synchronisation task during a restart of the internal combustion engine. The proposed multivariable synchronisation strategy is based on feedforward and decoupled feedback controllers. The performance and the robustness properties of the closed-loop system are illustrated by nonlinear simulation results.
TROPIX: A solar electric propulsion flight experiment
NASA Technical Reports Server (NTRS)
Hickman, J. Mark; Hillard, G. Barry; Oleson, Steven R.
1993-01-01
The Transfer Orbit Plasma Interaction Experiment (TROPIX) is a proposed scientific experiment and flight demonstration of a solar electric propulsion vehicle. Its mission goals are to significantly increase our knowledge of Earth's magnetosphere and its associated plasma environment and to demonstrate an operational solar electric upper stage (SEUS) for small launch vehicles. The scientific investigations and flight demonstration technology experiments are uniquely interrelated because of the spacecraft's interaction with the surrounding environment. The data obtained will complement previous studies of the Earth's magnetosphere and space plasma environment by supplying the knowledge necessary to attain the strategic objectives of the NASA Office of Space Science. This first operational use of a primary ion propulsion vehicle, designed to withstand the harsh environments from low Earth orbit to geosynchronous Earth orbit, may lead to the development of a new class of electric propulsion upper stages or space-based transfer vehicles and may improve future spacecraft design and safety.
Alternative Fuels Data Center: Electric Vehicle Charging Stations
Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center : Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Stations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on
City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-12-31
The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.
Electric vehicle life cycle cost analysis : final research project report.
DOT National Transportation Integrated Search
2017-02-01
This project compared total life cycle costs of battery electric vehicles (BEV), plug-in hybrid electric vehicles (PHEV), hybrid electric vehicles (HEV), and vehicles with internal combustion engines (ICE). The analysis considered capital and operati...
Solar-to-vehicle (S2V) systems for powering commuters of the future
NASA Astrophysics Data System (ADS)
Birnie, Dunbar P.
Hybrid electric vehicles are growing in popularity and significance in our marketplace as gasoline prices continue to rise. Consumers are also increasingly aware of their carbon "footprint" and seek ways of lowering their carbon dioxide output. Plug-in hybrid and electric vehicles appear to be the next wave in helping transition from a gasoline-based transportation infrastructure to an electric-grid-sourced mode, though most plug-in scenarios ultimately rely on having the electric utilities converted from fossil sources to renewable generation in the long run. At present, one of the key advantages of plug-in hybrid/electric vehicles is that they can be charged at home, at night, when lower off-peak rates could apply. The present analysis considers a further advancement: the impact of daytime recharging using solar arrays located at commuters' work sites. This would convert large parking areas into solar recharge stations for commuters. The solar power would be large enough to supply many commuters' needs. The implications for electric car design in relation to commuter range are discussed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen Schey; Jim Francfort
Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy's Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity's Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Golden Gate National Recreation Area (GGNRA) fleet to identify daily operationalmore » characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies' fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. GGNRA identified 182 vehicles in its fleet, which are under the management of the U.S. General Services Administration. Fleet vehicle mission categories are defined in Section 4, and while the GGNRA vehicles conduct many different missions, only two (i.e., support and law enforcement missions) were selected by agency management to be part of this fleet evaluation. The selected vehicles included sedans, trucks, and sport-utility vehicles. This report will show that battery electric vehicles and/or PHEVs are capable of performing the required missions and providing an alternative vehicle for support vehicles and PHEVs provide the same for law enforcement, because each has a sufficient range for individual trips and time is available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle home base, high-use work areas, or intermediately along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in the emission of greenhouse gases and petroleum use, while also reducing fuel costs. The San Francisco Bay Area is a leader in the adoption of PEVs in the United States. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the GGNRA facility would be a benefit for both GGNRA fleets and general public use. Fleet drivers and park visitors operating privately owned PEVs benefit by using the charging infrastructure. ITSNA recommends location analysis of the GGNRA site to identify the optimal placement of the electric vehicle supply equipment station. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and GGNRA for participation in the study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and GGNRA personnel.« less
76 FR 72028 - Buy America Waiver Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-21
...-battery electric vehicles, 12 plug-in hybrid vehicles, and 5 neighborhood electric vehicles in San... a partial Buy America waiver is appropriate for the purchase of 12 all-battery electric vehicles, 12 plug-in hybrid vehicles, and 5 neighborhood electric vehicles in San Francisco County, California. In...
Electric and Plug-In Hybrid Electric Fleet Vehicle Testing | Transportation
Research | NREL Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations How Electric and Plug-In Hybrid Electric Vehicles Work EVs use batteries to store the electric energy that powers the motor. EV batteries are charged by
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rugh, J. P.
2013-07-01
Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.
NASA Astrophysics Data System (ADS)
Gourash, F.
1984-02-01
The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.
NASA Technical Reports Server (NTRS)
Gourash, F.
1984-01-01
The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Zhenhong; Dong, Jing; Liu, Changzheng
2012-01-01
The petroleum and electricity consumptions of plug-in hybrid electric vehicles (PHEVs) are sensitive to the variation of daily vehicle miles traveled (DVMT). Some studies assume DVMT to follow a Gamma distribution, but such a Gamma assumption is yet to be validated. This study finds the Gamma assumption valid in the context of PHEV energy analysis, based on continuous GPS travel data of 382 vehicles, each tracked for at least 183 days. The validity conclusion is based on the found small prediction errors, resulting from the Gamma assumption, in PHEV petroleum use, electricity use, and energy cost. The finding that themore » Gamma distribution is valid and reliable is important. It paves the way for the Gamma distribution to be assumed for analyzing energy uses of PHEVs in the real world. The Gamma distribution can be easily specified with very few pieces of driver information and is relatively easy for mathematical manipulation. Given the validation in this study, the Gamma distribution can now be used with better confidence in a variety of applications, such as improving vehicle consumer choice models, quantifying range anxiety for battery electric vehicles, investigating roles of charging infrastructure, and constructing online calculators that provide personal estimates of PHEV energy use.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology under § 86.1870-12, and requires the measurement of electrical current (in amps) flowing into the... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Special procedures related to electric vehicles, hybrid electric vehicles, and plug-in hybrid electric vehicles. 600.116-12 Section 600.116-12...
NASA Astrophysics Data System (ADS)
1990-03-01
Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Steve; Francfort, Jim
2015-07-01
Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. Task 2 selected vehicles for further monitoring and involved identifying daily operational characteristics of these select vehicles. Data logging of vehicle movements was initiated in order to characterize the vehicle’s mission. The Task 3 Vehicle Utilization report provided the resultsmore » of the data analysis and observations related to the replacement of current vehicles with PEVs. This report provides an assessment of charging infrastructure required to support the suggested PEV replacements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (Intertek) to conduct several U.S. Department of Defense base studies to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Marine Corps Base Camp Lejeune (MCBCL) located in North Carolina. Task 1 consisted of a survey of the non-tactical fleet of vehiclesmore » at MCBCL to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the MCBCL fleet. Intertek acknowledges the support of Idaho National Laboratory, Marine Corps headquarters, and Marine Corps Base Camp Lejeune fleet management and personnel for participation in this study. Intertek is pleased to provide this report and is encouraged by enthusiasm and support from MCBCL personnel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Smart
A preliminary analysis of data from The EV Project was performed to begin answering the question: are corridor charging stations used to extend the range of electric vehicles? Data analyzed were collected from Blink brand electric vehicle supply equipment (EVSE) units based in California, Washington, and Oregon. Analysis was performed on data logged between October 1, 2012 and January 1, 2013. It should be noted that as additional AC Level 2 EVSE and DC fast chargers are deployed, and as drivers become more familiar with the use of public charging infrastructure, future analysis may have dissimilar conclusions.
16 CFR 309.14 - Recordkeeping.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Distributors of Non-Liquid Alternative Vehicle Fuels (other Than Electricity) and of Electric Vehicle Fuel... vehicle fuels (other than electricity) and for electric vehicle fuel dispensing systems. You also must...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Zilai; Gough, Charles
The goal of this Cooperative Agreement was the development of a Next Generation Inverter for General Motors’ electrified vehicles, including battery electric vehicles, range extended electric vehicles, plug-in hybrid electric vehicles and hybrid electric vehicles. The inverter is a critical electronics component that converts battery power (DC) to and from the electric power for the motor (AC).
Alternative Fuels Data Center: Fuel Cell Electric Vehicle Emissions
Cell Electric Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Electric Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Electric Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicle Emissions
Alternative Fuels Data Center: Fuel Cell Electric Vehicles
Cell Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Google Bookmark Alternative Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesaran, A.; Wierzbicki, T.; Sahraei, E.
The EV Everywhere Grand Challenge aims to produce plug-in electric vehicles as affordable and convenient for the American family as gasoline-powered vehicles by 2022. Among the requirements set by the challenge, electric vehicles must be as safe as conventional vehicles, and EV batteries must not lead to unsafe situations under abuse conditions. NREL's project started in October 2013, based on a proposal in response to the January 2013 DOE VTO FOA, with the goal of developing computer aided engineering tools to accelerate the development of safer lithium ion batteries.
Torque blending and wheel slip control in EVs with in-wheel motors
NASA Astrophysics Data System (ADS)
de Castro, Ricardo; Araújo, Rui E.; Tanelli, Mara; Savaresi, Sergio M.; Freitas, Diamantino
2012-01-01
Among the many opportunities offered by electric vehicles (EVs), the design of power trains based on in-wheel electric motors represents, from the vehicle dynamics point of view, a very attractive prospect, mainly due to the torque-vectoring capabilities. However, this distributed propulsion also poses some practical challenges, owing to the constraints arising from motor installation in a confined space, to the increased unsprung mass weight and to the integration of the electric motor with the friction brakes. This last issue is the main theme of this work, which, in particular, focuses on the design of the anti-lock braking system (ABS). The proposed structure for the ABS is composed of a tyre slip controller, a wheel torque allocator and a braking supervisor. To address the slip regulation problem, an adaptive controller is devised, offering robustness to uncertainties in the tyre-road friction and featuring a gain-scheduling mechanism based on the vehicle velocity. Further, an optimisation framework is employed in the torque allocator to determine the optimal split between electric and friction brake torque based on energy performance metrics, actuator constraints and different actuators bandwidth. Finally, based on the EV working condition, the priorities of this allocation scheme are adapted by the braking supervisor unit. Simulation results obtained with the CarSim vehicle model, demonstrate the effectiveness of the overall approach.
Tire-road friction estimation and traction control strategy for motorized electric vehicle.
Jin, Li-Qiang; Ling, Mingze; Yue, Weiqiang
2017-01-01
In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS).
Tire-road friction estimation and traction control strategy for motorized electric vehicle
Jin, Li-Qiang; Yue, Weiqiang
2017-01-01
In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS). PMID:28662053
NASA Astrophysics Data System (ADS)
Karner, Donald; Francfort, James
The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and vehicle development programs. The AVTA has tested full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting baseline performance, battery benchmark and fleet tests of hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Testing has included all HEVs produced by major automotive manufacturers and spans over 2.5 million test miles. Testing is currently incorporating PHEVs from four different vehicle converters. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory.
Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles
in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability -electric vehicles (EVs)-also called electric-drive vehicles collectively-use electricity either as their charge the battery. Some can travel more than 70 miles on electricity alone, and all can operate solely
Sustainable Federal Fleets: Deploying Electric Vehicles and Electric Vehicle Supply Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) helps federal agencies reduce petroleum consumption and increase alternative fuel use through its resources for Sustainable Federal Fleets. To assist agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory's (NREL's) EVSE Tiger Teams.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM.... Electric vehicle means a vehicle that is powered by an electric motor drawing current from rechargeable... must be drawn from a source off the vehicle, such as residential electric service; and (2) The vehicle...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
This report focuses on the NASA White Sands Test Facility (WSTF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
2014-11-01
This report focuses on the National Institute of Health (NIH) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.
Trade Studies for a Manned High-Power Nuclear Electric Propulsion Vehicle
NASA Technical Reports Server (NTRS)
SanSoucie, Michael; Hull, Patrick V.; Irwin, Ryan W.; TInker, Michael L.; Patton, Bruce W.
2005-01-01
Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate vehicles must be identified through trade studies for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combines analysis codes for NEP subsystems with genetic algorithm-based optimization. Trade studies for a NEP reference mission to the asteroids were conducted to identify important trends, and to determine the effects of various technologies and subsystems on vehicle performance. It was found that the electric thruster type and thruster performance have a major impact on the achievable system performance, and that significant effort in thruster research and development is merited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaren, Joyce; Miller, John; O'Shaughnessy, Eric
With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for fourmore » charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (Intertek) to conduct several U.S. Department of Defense base studies to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 consisted of a survey of the non-tactical fleet of vehicles at MCBCL to begin the review of vehicle mission assignments and types of vehicles in service.more » Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provide observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of the charging infrastructure required to support this replacement, which is the subject of a separate report. Intertek acknowledges the support of Idaho National Laboratory, Marine Corps headquarters, and Marine Corps Base Camp Lejeune Fleet management and personnel for participation in this study. Intertek is pleased to provide this report and is encouraged by enthusiasm and support from MCBCL personnel.« less
NREL's EVI-Pro Lite Tool Paves the Way for Future Electric Vehicle
Electric Vehicle Infrastructure Planning NREL's EVI-Pro Lite Tool Paves the Way for Future Electric Vehicle electric vehicle charging station To assist state and local governments anticipating this type of growth in simplified version of the Electric Vehicle Infrastructure Projection Tool (EVI-Pro) model. Combining a sleek
Modeling and Validation of Power-split and P2 Parallel Hybrid Electric Vehicles SAE 2013-01-1470)
The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined ...
An assessment of research and development leadership in advanced batteries for electric vehicles
NASA Astrophysics Data System (ADS)
Bruch, V. L.
1994-02-01
Due to the recently enacted California regulations requiring zero emission vehicles be sold in the market place by 1998, electric vehicle research and development (R&D) is accelerating. Much of the R&D work is focusing on the Achilles' heel of electric vehicles -- advanced batteries. This report provides an assessment of the R&D work currently underway in advanced batteries and electric vehicles in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. Although the US can be considered one of the leading countries in terms of advanced battery and electric vehicle R&D work, it lags other countries, particularly France, in producing and promoting electric vehicles. The US is focusing strictly on regulations to promote electric vehicle usage while other countries are using a wide variety of policy instruments (regulations, educational outreach programs, tax breaks and subsidies) to encourage the use of electric vehicles. The US should consider implementing additional policy instruments to ensure a domestic market exists for electric vehicles. The domestic is the largest and most important market for the US auto industry.
NYPA/TH!NK Clean Commute Program Report – Inception through February 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Don Karner; James Francfort
The Clean Commute Program uses TH!NK city electric vehicles from Ford Motor Company’s electric vehicle group, TH!NK Mobility, to demonstrate the feasibility of using electric transportation in urban applications. The primary Program partners are the New York Power Authority (NYPA) and Ford. The other Program partners providing funding and other support include the Metropolitan Transportation Authority, Metro North Railroad, Long Island Railroad, New York State Energy Research and Development Authority, Long Island Power Authority, New York State Department of Transportation, New York City Department of Transportation, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA). The data inmore » this report is being collected via an internet-based questionnaire system by the AVTA through its subcontractor Electric Transportation Applications. Suburban New York City railroad commuters use the TH!NK city vehicles to commute from their private residences to railroad stations where they catch commuter trains into New York City. Electric vehicle charging infrastructure for the TH!NK cities is located at the commuters’ private residences as well as seven train stations. Eighty-seven commuters are using the TH!NK city vehicles, with 80% actively providing data to the AVTA. The participants have driven the vehicles nearly 150,000 miles since Program inception, avoiding the use of almost 7,000 gallons of gasoline. The TH!NK city vehicles are driven an average of between 180 and 230 miles per month, and over 95% of all trips taken with the TH!NK city vehicles replace trips previously taken in gasoline vehicles. This report covers the period from Program inception through February 2003.« less
Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Donald; Elgqvist, Emma; Santhanagopalan, Shriram
2015-06-01
This study highlights the U.S. foothold in automotive lithium-ion battery (LIB) production, globally. U.S.-based manufacturers comprise 17% of global production capacity. With increasing demand for electric and hybrid electric vehicles and U.S. vehicle manufacturers' proximity to customers, there is a growing opportunity for the United States to compete globally in the automotive LIB market.
Test and evaluation of 23 electric vehicles for state-of-the-art assessment
NASA Technical Reports Server (NTRS)
Dustin, M. O.; Denington, R. J.
1978-01-01
Eleven of the electric vehicles were passenger cars and 12 were commercial vans. Tests were conducted in accordance with an ERDS test procedure which is based on the SAE J227a Test Procedure. Tests included range, acceleration, coast-down, and braking. The results of the tests are presented, and comments on reliability are made.
16 CFR 309.10 - Alternative vehicle fuel rating.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Electricity) and of Manufacturers of Electric Vehicle Fuel Dispensing Systems § 309.10 Alternative vehicle.../code_of_federal_regulations/ibr_locations.html. (b) If you are a manufacturer of electric vehicle fuel... electric vehicle fuel dispensing system, you must possess a reasonable basis, consisting of competent and...
NASA Astrophysics Data System (ADS)
Al-Hallaj, Said; Selman, J. R.
A major obstacle to the development of commercially successful electric vehicles (EV) or hybrid electric vehicles (HEV) is the lack of a suitably sized battery. Lithium ion batteries are viewed as the solution if only they could be "scaled-up safely", i.e. if thermal management problems could be overcome so the batteries could be designed and manufactured in much larger sizes than the commercially available near-2-Ah cells. Here, we review a novel thermal management system using phase-change material (PCM). A prototype of this PCM-based system is presently being manufactured. A PCM-based system has never been tested before with lithium-ion (Li-ion) batteries and battery packs, although its mode of operation is exceptionally well suited for the cell chemistry of the most common commercially available Li-ion batteries. The thermal management system described here is intended specifically for EV/HEV applications. It has a high potential for providing effective thermal management without introducing moving components. Thereby, the performance of EV/HEV batteries may be improved without complicating the system design and incurring major additional cost, as is the case with "active" cooling systems requiring air or liquid circulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen Schey; Jim Francfort
Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the use of advanced electric drive vehicle transportation. This report focuses on the Fort Vancouver National Historic Site (FVNHS) fleet to identify dailymore » operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of electric vehicles (EVs) into the agencies’ fleet. Individual observations of the selected vehicles provided the basis for recommendations related to EV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles) could fulfill the mission requirements. FVNHS identified three vehicles in its fleet for consideration. While the FVNHS vehicles conduct many different missions, only two (i.e., support and pool missions) were selected by agency management to be part of this fleet evaluation. The logged vehicles included a pickup truck and a minivan. This report will show that BEVs and PHEVs are capable of performing the required missions and providing an alternative vehicle for both mission categories, because each has sufficient range for individual trips and time available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle’s home base, high-use work areas, or in intermediate areas along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in emission of greenhouse gases and petroleum use, while also reducing fuel costs. The Vancouver, Washington area and neighboring Portland, Oregon are leaders in adoption of PEVs in the United States1. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the FVNHS facility would be a benefit for both FVNHS fleets and general public use. Fleet drivers and park visitors operating privately owned plug-in electric vehicles benefit by using the charging infrastructure. ITSNA recommends location analysis of the FVNHS site to identify the optimal station placement for electric vehicle supply equipment. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and FVNHS for participation in this study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and FVNHS personnel« less
Crash simulation of UNS electric vehicle under frontal front impact
NASA Astrophysics Data System (ADS)
Susilo, D. D.; Lukamana, N. I.; Budiana, E. P.; Tjahjana, D. D. D. P.
2016-03-01
Sebelas Maret University has been developing an Electric Vehicle namely SmarT-EV UNS. The main structure of the car are chasis and body. The chasis is made from steel and the body is made from fiberglass composite. To ensure the safety of the car, both static and dynamic tests were carried out to these structures, including their materials, like: tensile test, bending test, and impact test. Another test needed by this vehicle is crashworthiness test. To perform the test, it is needed complex equipments and it is quite expensive. Another way to obtain vehicle crashworthiness behaviour is by simulate it. The purpose of this study was to simulate the response of the Smart-EV UNS electric vehicle main structure when crashing rigid barrier from the front. The crash simulation was done in according to the NHTSA (National Highway Traffic Safety Administration) within the speed of the vehicle of 35 mph. The UNS Electric Vehicle was modelled using SolidWorks software, and the simulation process was done by finite element method using ANSYS software. The simulation result showed that the most internal impact energy was absorbed by chassis part. It absorbed 76.2% of impact energy, then the base absorbed 11.3 %, while the front body absorbed 2.5 %, and the rest was absorbed by fender, hood, and other parts.
Electric vehicle station equipment for grid-integrated vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempton, Willett; Kiamilev, Fouad; McGee, Rodney
Methods, systems, and apparatus transferring power between the grid and an electric vehicle are disclosed. The apparatus may include at least one vehicle communication port for interfacing with electric vehicle equipment (EVE) and a processor coupled to the at least one vehicle communication port to establish communication with the EVE, receive EVE attributes from the EVE, and transmit electric vehicle station equipment (EVSE) attributes to the EVE. Power may be transferred between the grid and the electric vehicle by maintaining EVSE attributes, establishing communication with the EVE, and transmitting the EVSE maintained attributes to the EVE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
This report focuses on the Sleeping Bear Dunes National Lakeshore (SLBE) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.
Safe lithium-ion battery with ionic liquid-based electrolyte for hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Damen, Libero; Lazzari, Mariachiara; Mastragostino, Marina
2011-10-01
A lithium-ion battery featuring graphite anode, LiFePO4-C cathode and an innovative, safe, ionic liquid-based electrolyte, was assembled and characterized in terms of specific energy and power after the USABC-DOE protocol for power-assist hybrid electric vehicle (HEV) application. The test results show that the battery surpasses the energy and power goals stated by USABC-DOE and, hence, this safe lithium-ion battery should be suitable for application in the evolving HEV market.
NASA Astrophysics Data System (ADS)
Yazdanie, Mashael; Noembrini, Fabrizio; Dossetto, Lionel; Boulouchos, Konstantinos
2014-03-01
This study provides a comprehensive analysis of well-to-wheel (WTW) primary energy demand and greenhouse gas (GHG) emissions for the operation of conventional and alternative passenger vehicle drivetrains. Results are determined based on a reference vehicle, drivetrain/production process efficiencies, and lifecycle inventory data specific to Switzerland. WTW performance is compared to a gasoline internal combustion engine vehicle (ICEV). Both industrialized and novel hydrogen and electricity production pathways are evaluated. A strong case is presented for pluggable electric vehicles (PEVs) due to their high drivetrain efficiency. However, WTW performance strongly depends on the electricity source. A critical electricity mix can be identified which divides optimal drivetrain performance between the EV, ICEV, and plug-in hybrid vehicle. Alternative drivetrain and energy carrier production pathways are also compared by natural resource. Fuel cell vehicle (FCV) performance proves to be on par with PEVs for energy carrier (EC) production via biomass and natural gas resources. However, PEVs outperform FCVs via solar energy EC production pathways. ICE drivetrains using alternative fuels, particularly biogas and CNG, yield remarkable WTW energy and emission reductions as well, indicating that alternative fuels, and not only alternative drivetrains, play an important role in the transition towards low-emission vehicles in Switzerland.
Alternative Fuels Data Center: Electric Vehicle Charging Station Locations
Electric Vehicle Charging Station Locations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Facebook Tweet about Alternative Fuels Data Center : Electric Vehicle Charging Station Locations on Twitter Bookmark Alternative Fuels Data Center: Electric
2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler Grey; Chester Motloch; James Francfort
2010-01-01
The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporationmore » conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.« less
State-of-the-art assessment of electric vehicles and hybrid vehicles
NASA Technical Reports Server (NTRS)
1977-01-01
The Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976 (PL 94-413) requires that data be developed to characterize the state of the art of vehicles powered by an electric motor and those propelled by a combination of an electric motor and an internal combustion engine or other power sources. Data obtained from controlled tests of a representative number of sample vehicles, from information supplied by manufacturers or contained in the literature, and from surveys of fleet operators of individual owners of electric vehicles is discussed. The results of track and dynamometer tests conducted by NASA on 22 electric, 2 hybrid, and 5 conventional vehicles, as well as on 5 spark-ignition-engine-powered vehicles, the conventional counterparts of 5 of the vehicles, are presented.
Electric Vehicle Interaction at the Electrical Circuit Level
DOT National Transportation Integrated Search
2018-01-01
The objective of the Electric Vehicle Interaction at the Electrical Circuit Level project was to investigate electric vehicle (EV) charging as a means of mitigating transient over-voltages (TOVs) on the circuit level electric utility distribution gri...
Study on High Efficient Electric Vehicle Wireless Charging System
NASA Astrophysics Data System (ADS)
Chen, H. X.; Liu, Z. Z.; Zeng, H.; Qu, X. D.; Hou, Y. J.
2016-08-01
Electric and unmanned is a new trend in the development of automobile, cable charging pile can not meet the demand of unmanned electric vehicle. Wireless charging system for electric vehicle has a high level of automation, which can be realized by unmanned operation, and the wireless charging technology has been paid more and more attention. This paper first analyses the differences in S-S (series-series) and S-P (series-parallel) type resonant wireless power supply system, combined with the load characteristics of electric vehicle, S-S type resonant structure was used in this system. This paper analyses the coupling coefficient of several common coil structure changes with the moving distance of Maxwell Ansys software, the performance of disc type coil structure is better. Then the simulation model is established by Simulink toolbox in Matlab, to analyse the power and efficiency characteristics of the whole system. Finally, the experiment platform is set up to verify the feasibility of the whole system and optimize the system. Based on the theoretical and simulation analysis, the higher charging efficiency is obtained by optimizing the magnetic coupling mechanism.
Active System for Electromagnetic Perturbation Monitoring in Vehicles
NASA Astrophysics Data System (ADS)
Matoi, Adrian Marian; Helerea, Elena
Nowadays electromagnetic environment is rapidly expanding in frequency domain and wireless services extend in terms of covered area. European electromagnetic compatibility regulations refer to limit values regarding emissions, as well as procedures for determining susceptibility of the vehicle. Approval procedure for a series of cars is based on determining emissions/immunity level for a few vehicles picked randomly from the entire series, supposing that entire vehicle series is compliant. During immunity assessment, the vehicle is not subjected to real perturbation sources, but exposed to electric/magnetic fields generated by laboratory equipment. Since current approach takes into account only partially real situation regarding perturbation sources, this paper proposes an active system for determining electromagnetic parameters of vehicle's environment, that implements a logical diagram for measurement, satisfying the imposed requirements. This new and original solution is useful for EMC assessment of hybrid and electrical vehicles.
Electric vehicle fleet implications and analysis : final research project report.
DOT National Transportation Integrated Search
2016-11-01
The objective of this project was to evaluate the implementation and effectiveness of : electric vehicles (EVs) used in fleet operations. The study focuses on Battery-Electric : Vehicles (BEVs) and Plug-In Hybrid Electric Vehicles (PHEVs); collective...
40 CFR 600.507-12 - Running change data requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... calibration of an electric vehicle, fuel cell vehicle, hybrid electric vehicle, plug-in hybrid electric vehicle or other advanced technology vehicle in such a way that the city or highway fuel economy of the...
40 CFR 600.507-12 - Running change data requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... calibration of an electric vehicle, fuel cell vehicle, hybrid electric vehicle, plug-in hybrid electric vehicle or other advanced technology vehicle in such a way that the city or highway fuel economy of the...
40 CFR 600.507-12 - Running change data requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... calibration of an electric vehicle, fuel cell vehicle, hybrid electric vehicle, plug-in hybrid electric vehicle or other advanced technology vehicle in such a way that the city or highway fuel economy of the...
Phase 1 of the near term hybrid passenger vehicle development program
NASA Technical Reports Server (NTRS)
Montalenti, P.; Piccolo, R.
1979-01-01
In order to meet project requirements and be competitive in the 1985 market, the proposed six-passenger vehicle incorporates a high power type Ni-Zn battery, which by making electric-only traction possible, permits the achievement of an optimized control strategy based on electric-only traction to a set battery depth of discharge, followed by hybrid operation with thermal primary energy. This results in a highly efficient hybrid propulsion subsystem. Technical solutions are available to contain energy waste by reducing vehicle weight, rolling resistance, and drag coefficient. Reproaching new 1985 full size vehicles of the conventional type with hybrids of the proposed type would result in a U.S. average gasoline saving per vehicle of 1,261 liters/year and an average energy saving per vehicle of 27,133 MJ/year.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.116-12 Special procedures related to electric vehicles and plug-in hybrid electric vehicles. (a) Determine fuel economy...
Fuel Cell Electric Vehicle Evaluations | Hydrogen and Fuel Cells | NREL
Electric Vehicle Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the seven-year FCEV Learning Demonstration and focus on fuel cell stack durability and efficiency, vehicle
Series Hybrid Electric Vehicle Power System Optimization Based on Genetic Algorithm
NASA Astrophysics Data System (ADS)
Zhu, Tianjun; Li, Bin; Zong, Changfu; Wu, Yang
2017-09-01
Hybrid electric vehicles (HEV), compared with conventional vehicles, have complex structures and more component parameters. If variables optimization designs are carried on all these parameters, it will increase the difficulty and the convergence of algorithm program, so this paper chooses the parameters which has a major influence on the vehicle fuel consumption to make it all work at maximum efficiency. First, HEV powertrain components modelling are built. Second, taking a tandem hybrid structure as an example, genetic algorithm is used in this paper to optimize fuel consumption and emissions. Simulation results in ADVISOR verify the feasibility of the proposed genetic optimization algorithm.
Communicating with residential electrical devices via a vehicle telematics unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Rebecca C.; Pebbles, Paul H.
A method of communicating with residential electrical devices using a vehicle telematics unit includes receiving information identifying a residential electrical device to control; displaying in a vehicle one or more controlled features of the identified residential electrical device; receiving from a vehicle occupant a selection of the displayed controlled features of the residential electrical device; sending an instruction from the vehicle telematics unit to the residential electrical device via a wireless carrier system in response to the received selection; and controlling the residential electrical device using the sent instruction.
NASA Astrophysics Data System (ADS)
Ecker, Madeleine; Gerschler, Jochen B.; Vogel, Jan; Käbitz, Stefan; Hust, Friedrich; Dechent, Philipp; Sauer, Dirk Uwe
2012-10-01
Battery lifetime prognosis is a key requirement for successful market introduction of electric and hybrid vehicles. This work aims at the development of a lifetime prediction approach based on an aging model for lithium-ion batteries. A multivariable analysis of a detailed series of accelerated lifetime experiments representing typical operating conditions in hybrid electric vehicle is presented. The impact of temperature and state of charge on impedance rise and capacity loss is quantified. The investigations are based on a high-power NMC/graphite lithium-ion battery with good cycle lifetime. The resulting mathematical functions are physically motivated by the occurring aging effects and are used for the parameterization of a semi-empirical aging model. An impedance-based electric-thermal model is coupled to the aging model to simulate the dynamic interaction between aging of the battery and the thermal as well as electric behavior. Based on these models different drive cycles and management strategies can be analyzed with regard to their impact on lifetime. It is an important tool for vehicle designers and for the implementation of business models. A key contribution of the paper is the parameterization of the aging model by experimental data, while aging simulation in the literature usually lacks a robust empirical foundation.
Charge It! Translating Electric Vehicle Research Results to Engage 7th and 8th Grade Girls
NASA Astrophysics Data System (ADS)
Egbue, Ona; Long, Suzanna; Ng, Ean-Harn
2015-10-01
Despite attempts to generate interest in science and technology careers, US students continue to show reduced interest in science, technology, engineering and mathematics (STEM) majors at the collegiate level. If girls are not engaged in STEM learning by the middle school level, studies show that they are even less likely to choose a science- or engineering-related major. This article presents results from a workshop for 7th and 8th grade girls designed to promote knowledge building in the area of sustainability and alternative energy use in transportation and to stimulate greater interest in STEM subjects. The workshop based on research conducted at University X focused on basic concepts of electric vehicles and electric vehicles' batteries. Tests were conducted to evaluate the students' knowledge and perceptions of electric vehicles and to determine the impact of the workshop. Early exposure to meaningful engineering experiences for these young girls may boost interest and the eventual pursuit of engineering and technology education paths.
Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Smart; Stephen Schey
2012-04-01
As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on themore » electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.« less
Laakso, Ilkka; Hirata, Akimasa
2013-11-07
In this study, an induced electric field in a human body is evaluated for the magnetic field leaked from a wireless power transfer system for charging an electrical vehicle. The magnetic field from the wireless power transfer system is modelled computationally, and its effectiveness is confirmed by comparison with the field measured in a previous study. The induced electric field in a human standing around the vehicle is smaller than the allowable limit prescribed in international guidelines, although the magnetic field strength in the human body is locally higher than the allowable external field strength. Correlation between the external magnetic field and the induced electric field is confirmed to be reasonable at least in the standing posture, which is the case discussed in the international standard. Based on this finding, we discussed and confirmed the applicability of a three-point magnetic field measurement at heights of 0.5, 1.0, and 1.5 m for safety compliance.
Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks
NASA Astrophysics Data System (ADS)
Magnetto, D.; Vidiella, G.
2012-06-01
The main objective of the EC funded HEATRECAR project is to reduce the energy consumption and curb CO2 emissions of vehicles by massively harvesting electrical energy from the exhaust system and re-use this energy to supply electrical components within the vehicle or to feed the power train of hybrid electrical vehicles. HEATRECAR is targeting light duty trucks and focuses on the development and the optimization of a Thermo Electric Generator (TEG) including heat exchanger, thermoelectric modules and DC/DC converter. The main objective of the project is to design, optimize and produce a prototype system to be tested on a 2.3l diesel truck. The base case is a Thermo Electric Generator (TEG) producing 1 KWel at 130 km/h. We present the system design and estimated output power from benchmark Bi2Te3 modules. We discuss key drivers for the optimization of the thermal-to-electric efficiency, such as materials, thermo-mechanical aspects and integration.
0-6763 : accounting for electric vehicles in air quality conformity.
DOT National Transportation Integrated Search
2014-08-01
Electric vehicles (EVs) are broadly defined as : vehicles that obtain at least a part of the energy : required for their propulsion from electricity. This : research focused on the three main types of EVs: : Hybrid electric vehicles. : Plug-i...
Electric vehicle chassis dynamometer test methods at JPL and their correlation to track tests
NASA Technical Reports Server (NTRS)
Marte, J.; Bryant, J.
1983-01-01
Early in its electric vehicle (EV) test program, JPL recognized that EV test procedures were too vague and too loosely defined to permit much meaningful data to be obtained from the testing. Therefore, JPL adopted more stringent test procedures and chose the chassis dynamometer rather than the track as its principal test technique. Through the years, test procedures continued to evolve towards a methodology based on chassis dynamometers which would exhibit good correlation with track testing. Based on comparative dynamometer and track test results on the ETV-1 vehicle, the test methods discussed in this report demonstrate a means by which excellent track-to-dynamometer correlation can be obtained.
Long-Duration Low-to Medium-Altitude Solar Electric Airship Concept
NASA Technical Reports Server (NTRS)
Bents, David J.
2011-01-01
This report presents the conceptual design for a solar electric lighter-than-air, unmanned aerial vehicle, based on existing technology already reduced to practice, that could carry a 600-kg (1322-lbm) payload to altitudes up to 30 kft (9000 m), continuously maintain an airspeed up to 40 kt (21 m/sec), and remain in flight for up to 100 days. The design is based on modern nonrigid airship technology, high-strength polymer fabrics and barrier films, and previously demonstrated aerospace electrical power technology, including lightweight photovoltaics and hydrogen-air polymer electrolyte membrane (PEM) fuel cells. The vehicle concept exploits the inherent synergy between the use of hydrogen as a lifting gas and the use of hydrogen-air PEM fuel-cell technology for onboard solar energy storage. In this report, the air vehicle concept is physically characterized and its estimated performance envelope is defined
A fuzzy logic sliding mode controlled electronic differential for a direct wheel drive EV
NASA Astrophysics Data System (ADS)
Ozkop, Emre; Altas, Ismail H.; Okumus, H. Ibrahim; Sharaf, Adel M.
2015-11-01
In this study, a direct wheel drive electric vehicle based on an electronic differential system with a fuzzy logic sliding mode controller (FLSMC) is studied. The conventional sliding surface is modified using a fuzzy rule base to obtain fuzzy dynamic sliding surfaces by changing its slopes using the global error and its derivative in a fuzzy logic inference system. The controller is compared with proportional-integral-derivative (PID) and sliding mode controllers (SMCs), which are usually preferred to be used in industry. The proposed controller provides robustness and flexibility to direct wheel drive electric vehicles. The fuzzy logic sliding mode controller, electronic differential system and the overall electrical vehicle mechanism are modelled and digitally simulated by using the Matlab software. Simulation results show that the system with FLSMC has better efficiency and performance compared to those of PID and SMCs.
Huang, Wei-Dong; Zhang, Y-H Percival
2011-01-01
Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.
Huang, Wei-Dong; Zhang, Y-H Percival
2011-01-01
Background Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). Methodology/Principal Findings We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements -- biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case – corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. Significance In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens. PMID:21765941
Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges
2017-02-03
particularly for power electronics applications in hybrid and electric vehicles, power supplies, and photovoltaic ( PV ) inverters. Ultrawide-Bandgap...the one hand, Ga2O3-based optoelectronic devices such as solar -blind DUV photodetectors are expected to be useful for a variety of applications (e.g...system, and which are core components in aircraft, spacecraft, solar photovoltaic installations, electric vehicles, and military systems such as all
Simulating the value of electric-vehicle-grid integration using a behaviourally realistic model
NASA Astrophysics Data System (ADS)
Wolinetz, Michael; Axsen, Jonn; Peters, Jotham; Crawford, Curran
2018-02-01
Vehicle-grid integration (VGI) uses the interaction between electric vehicles and the electrical grid to provide benefits that may include reducing the cost of using intermittent renwable electricity or providing a financial incentive for electric vehicle ownerhip. However, studies that estimate the value of VGI benefits have largely ignored how consumer behaviour will affect the magnitude of the impact. Here, we simulate the long-term impact of VGI using behaviourally realistic and empirically derived models of vehicle adoption and charging combined with an electricity system model. We focus on the case where a central entity manages the charging rate and timing for participating electric vehicles. VGI is found not to increase the adoption of electric vehicles, but does have a a small beneficial impact on electricity prices. By 2050, VGI reduces wholesale electricity prices by 0.6-0.7% (0.7 MWh-1, 2010 CAD) relative to an equivalent scenario without VGI. Excluding consumer behaviour from the analysis inflates the value of VGI.
Plug-In Hybrid Electric Vehicle Basics | NREL
Plug-In Hybrid Electric Vehicle Basics Plug-In Hybrid Electric Vehicle Basics Imagine being able to one that's in a standard hybrid electric vehicle. The larger battery pack allows plug-in hybrids to fuel from its onboard tank, and this provides a driving range (the distance a vehicle can travel
NASA Technical Reports Server (NTRS)
1979-01-01
Report characterizes state-of-the-art electric and hybrid (combined electric and heat engine) vehicles. Performance data for representative number of these vehicles were obtained from track and dynamometer tests. User experience information was obtained from fleet operators and individual owners of electric vehicles. Data on performance and physical characteristics of large number of vehicles were obtained from manufacturers and available literature.
Cai, Hua; Xu, Ming
2013-08-20
Environmental implications of fleet electrification highly depend on the adoption and utilization of electric vehicles at the individual level. Past research has been constrained by using aggregated data to assume all vehicles with the same travel pattern as the aggregated average. This neglects the inherent heterogeneity of individual travel behaviors and may lead to unrealistic estimation of environmental impacts of fleet electrification. Using "big data" mining techniques, this research examines real-time vehicle trajectory data for 10,375 taxis in Beijing in one week to characterize the travel patterns of individual taxis. We then evaluate the impact of adopting plug-in hybrid electric vehicles (PHEV) in the taxi fleet on life cycle greenhouse gas emissions based on the characterized individual travel patterns. The results indicate that 1) the largest gasoline displacement (1.1 million gallons per year) can be achieved by adopting PHEVs with modest electric range (approximately 80 miles) with current battery cost, limited public charging infrastructure, and no government subsidy; 2) reducing battery cost has the largest impact on increasing the electrification rate of vehicle mileage traveled (VMT), thus increasing gasoline displacement, followed by diversified charging opportunities; 3) government subsidies can be more effective to increase the VMT electrification rate and gasoline displacement if targeted to PHEVs with modest electric ranges (80 to 120 miles); and 4) while taxi fleet electrification can increase greenhouse gas emissions by up to 115 kiloton CO2-eq per year with the current grid in Beijing, emission reduction of up to 36.5 kiloton CO2-eq per year can be achieved if the fuel cycle emission factor of electricity can be reduced to 168.7 g/km. Although the results are based on a specific public fleet, this study demonstrates the benefit of using large-scale individual-based trajectory data (big data) to better understand environmental implications of fleet electrification and inform better decision making.
Study and review of permanent magnets for electric vehicle propulsion motors
NASA Technical Reports Server (NTRS)
Strnat, K. J.
1983-01-01
A study of permanent magnets (PM) was performed in support of the DOE/NASA electric and hybrid vehicle program. PM requirements for electric propulsion motors are analyzed, design principles and relevant properties of magnets are discussed. Available PM types are reviewed. For the needed high-grade magnets, design data, commercial varieties and sources are tabulated, based on a survey of vendors. Economic factors such as raw material availability, production capability and cost are analyzed, especially for cobalt and the rare earths. Extruded Mn-Al-C magnets from Japan were experimentally characterized. Dynamic magnetic data for the range -50 deg to +150 deg C and some mechanical properties are reported. The state of development of the important PM material families is reviewed. Feasible improvements or new developments of magnets for electric vehicle motors are identified.
Effects of plug-in hybrid electric vehicles on ozone concentrations in Colorado.
Brinkman, Gregory L; Denholm, Paul; Hannigan, Michael P; Milford, Jana B
2010-08-15
This study explores how ozone concentrations in the Denver, CO area might have been different if plug-in hybrid electric vehicles (PHEVs) had replaced light duty gasoline vehicles in summer 2006. A unit commitment and dispatch model was used to estimate the charging patterns of PHEVs and dispatch power plants to meet electricity demand. Emission changes were estimated based on gasoline displacement and the emission characteristics of the power plants providing additional electricity. The Comprehensive Air Quality Model with extensions (CAMx) was used to simulate the effects of these emissions changes on ozone concentrations. Natural gas units provided most of the electricity used for charging PHEVs in the scenarios considered. With 100% PHEV penetration, nitrogen oxide (NO(x)) emissions were reduced by 27 tons per day (tpd) from a fleet of 1.7 million vehicles and were increased by 3 tpd from power plants; VOC emissions were reduced by 57 tpd. These emission changes reduced modeled peak 8-h average ozone concentrations by approximately 2-3 ppb on most days. Ozone concentration increases were modeled for small areas near central Denver. Future research is needed to forecast when significant PHEV penetration may occur and to anticipate characteristics of the corresponding power plant and vehicle fleets.
Vehicle test report: Electric Vehicle Associates electric conversion of an AMC Pacer
NASA Technical Reports Server (NTRS)
Price, T. W.; Wirth, V. A., Jr.; Pampa, M. F.
1981-01-01
The change of pace, an electric vehicle was tested. These tests were performed to characterize certain parameters of the electric vehicle pacer and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem, the batteries, controller and motor. Coastdowns to characterize the road load, and range evaluations for both cyclic and constant speed conditions were performed. The vehicle's performance was evaluated by comparing its constant speed range performance with described vehicles. It is found that the pacer performance is approximately equal to the majority of the vehicles tested in the 1977 assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-09-14
ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10more » times smaller than existing chargers.« less
Research on the Applicable Method of Valuation of Pure Electric Used vehicles
NASA Astrophysics Data System (ADS)
Cai, yun; Tan, zhengping; Wang, yidong; Mao, pan
2018-03-01
With the rapid growth in the ownership of pure electric vehicles, the research on the valuation of used electric vehicles has become the key to the development of the pure electric used vehicle market. The paper analyzed the application of the three value assessment methods, current market price method, capitalized earning method and replacement cost method, in pure electric used vehicles, and draws a conclusion that the replacement cost method is more suitable for pure electric used car. At the same time, the article also conducted a parametric correction exploration research, aiming at the characteristics of pure electric vehicles and replacement cost of the constituent factors. Through the analysis of the applicability parameters of physical devaluation, functional devaluation and economic devaluation, the revised replacement cost method can be used for the valuation of purely used electric vehicles for private use.
DOT National Transportation Integrated Search
2018-02-02
This research project explores the plug-in electric vehicle (PEV) market, including both Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs), and the sociodemographic characteristics of purchasing households. We use detailed...
Wu, Xing; Aviquzzaman, Md.; Lin, Zhenhong
2015-05-29
The benefit of using a PHEV comes from its ability to substitute gasoline with electricity in operation. Defined as the proportion of distance traveled in the electric mode, the utility factor (UF) depends mostly on the battery capacity, but also on many other factors, such as travel pattern and recharging pattern. Conventionally, the UFs are calculated based on the daily vehicle miles traveled (DVMT) by assuming motorists leave home in the morning with a full battery, and no charge occurs before returning home in the evening. Such an assumption, however, ignores the impact of the heterogeneity in both travel andmore » charging behavior, such as going back home more than once in a day, the impact of available charging time, and the price of gasoline. In addition, the conventional UFs are based on the National Household Travel Survey (NHTS) data, which are one-day travel data of each sample vehicle. A motorist's daily distance variation is ignored. This paper employs the GPS-based longitudinal travel data (covering 3-18 months) collected from 403 vehicles in the Seattle metropolitan area to investigate how such travel and charging behavior affects UFs. To do this, for each vehicle, we organized trips to a series of home and work related tours. The UFs based on the DVMT are found close to those based on home-to-home tours. However, it is seen that the workplace charge opportunities significantly increase UFs if the CD range is no more than 40 miles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xing; Aviquzzaman, Md.; Lin, Zhenhong
The benefit of using a PHEV comes from its ability to substitute gasoline with electricity in operation. Defined as the proportion of distance traveled in the electric mode, the utility factor (UF) depends mostly on the battery capacity, but also on many other factors, such as travel pattern and recharging pattern. Conventionally, the UFs are calculated based on the daily vehicle miles traveled (DVMT) by assuming motorists leave home in the morning with a full battery, and no charge occurs before returning home in the evening. Such an assumption, however, ignores the impact of the heterogeneity in both travel andmore » charging behavior, such as going back home more than once in a day, the impact of available charging time, and the price of gasoline. In addition, the conventional UFs are based on the National Household Travel Survey (NHTS) data, which are one-day travel data of each sample vehicle. A motorist's daily distance variation is ignored. This paper employs the GPS-based longitudinal travel data (covering 3-18 months) collected from 403 vehicles in the Seattle metropolitan area to investigate how such travel and charging behavior affects UFs. To do this, for each vehicle, we organized trips to a series of home and work related tours. The UFs based on the DVMT are found close to those based on home-to-home tours. However, it is seen that the workplace charge opportunities significantly increase UFs if the CD range is no more than 40 miles.« less
Aircraft measurements of electrified clouds at Kennedy Space Center, part 3
NASA Technical Reports Server (NTRS)
Jones, J. J.; Winn, W. P.; Hunyady, S. J.; Moore, C. B.; Bullock, J. W.; Fleischhacker, P.
1990-01-01
Flights made by the Special Purpose Test Vehicle for Atmospheric Research (SPTVAR) airplane during a second deployment to Florida during the summer of 1989 are discussed. The findings based on the data gathered are presented. The progress made during the second year of the project is discussed. The summer 1989 study was carried out with the support and guidance of Col. John Madura, Commander of Detachment 11, 2nd Weather Squadron, USAF, at Patrick Air Force Base (PAFB) and Cape Canaveral Air Force Station. The project goals were to develop and demonstrate techniques for measuring the electric field aloft and locating regions of charge during flight within and near clouds; to characterize the electric conditions that are presently identified as a threat to space launch vehicles; and to study the correlation between the electric field aloft and that at Kennedy Space Center's ground-based electric field mill array for a variety of electrified clouds.
Site operator program final report for fiscal years 1992 through 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francfort, J.E.; Bassett, R.R.; Birasco, S.
The Site Operator Program was an electric vehicle testing and evaluation program sponsored by US Department of Energy and managed at the Idaho National Engineering and Environmental Laboratory. The Program`s goals included the field evaluation of electric vehicles in real-world applications and environments; the support of electric vehicle technology advancement; the development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of electric vehicles. This report covers Program activities from 1992 to 1996. The Site Operator Program ended in September 1996, when it was superseded by the Field Operations Program. Electric vehicle testingmore » included baseline performance testing, which was performed in conjunction with EV America. The baseline performance parameters included acceleration, braking, range, energy efficiency, and charging time. The Program collected fleet operations data on electric vehicles operated by the Program`s thirteen partners, comprising electric utilities, universities, and federal agencies. The Program`s partners had over 250 electric vehicles, from vehicle converters and original equipment manufacturers, in their operating fleets. Test results are available via the World Wide Web site at http://ev.inel.gov/sop.« less
Integrating plug-in electric vehicles into the electric power system
NASA Astrophysics Data System (ADS)
Wu, Di
This dissertation contributes to our understanding of how plug-in hybrid electric vehicles (PHEVs) and plug-in battery-only electric vehicles (EVs)---collectively termed plug-in electric vehicles (PEVs)---could be successfully integrated with the electric power system. The research addresses issues at a diverse range of levels pertaining to light-duty vehicles, which account for the majority of highway vehicle miles traveled, energy consumed by highway travel modes, and carbon dioxide emissions from on-road sources. Specifically, the following topics are investigated: (i) On-board power electronics topologies for bidirectional vehicle-to-grid and grid-to-vehicle power transfer; (ii) The estimation of the electric energy and power consumption by fleets of light-duty PEVs; (iii) An operating framework for the scheduling and dispatch of electric power by PEV aggregators; (iv) The pricing of electricity by PHEV aggregators and how it affects the decision-making process of a cost-conscious PHEV owner; (v) The impacts on distribution systems from PEVs under aggregator control; (vi) The modeling of light-duty PEVs for long-term energy and transportation planning at a national scale.
Electric Vehicles at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Chesson, Bruce E.
2007-01-01
The story of how the transportation office began by introducing low speed electric cars (LSEV) to the fleet managers and employees. This sparked and interest in purchasing some of these LSEV and the usage on KSC. Transportation was approached by a vender of High Speed Electric Vehicle (HSEV) we decided to test the HSEV to see if they would meet our fleet vehicle needs. Transportation wrote a Space Act Agreement (SAA) for the loan of three Lithium Powered Electric vehicles for a one year test. The vehicles have worked very well and we have extended the test for another year. The use of HSEV has pushed for an independent Electric Vehicle Study to be performed to consider ways to effectively optimize the use of electric vehicles in replacement of gasoline vehicles in the KSC vehicle fleet. This will help the center to move closer to meeting the Executive Order 13423.
NASA Astrophysics Data System (ADS)
Balogh, Stephen B.
My objectives were to predict the energetic effects of a large increase in plug-in hybrid electric vehicles (PHEV) and their implications on fuel tax collections in Onondaga County. I examined two alternative taxation policies. To do so, I built a model of county energy consumption based on prorated state-level energy consumption data and census data. I used two scenarios to estimate energy consumption trends over the next 30 years and the effects of PHEV on energy use and fuel tax revenues. I found that PHEV can reduce county gasoline consumption, but they would curtail fuel tax revenues and increase residential electricity demand. A one-cent per VMT tax on PHEV users provides insufficient revenue to replace reduced fuel tax collection. A sales tax on electricity consumption generates sufficient replacement revenue at low PHEV market shares. However, at higher shares, the tax on electricity use would exceed the current county tax rate. Keywords: electricity, energy, gasoline, New York State, Onondaga County, plug-in hybrid electric vehicles, transportation model, tax policy
Alternative Fuels Data Center: Massachusetts Sees Significant Growth in
Electric Vehicles and Infrastructure Massachusetts Sees Significant Growth in Electric Vehicles Significant Growth in Electric Vehicles and Infrastructure on Facebook Tweet about Alternative Fuels Data Center: Massachusetts Sees Significant Growth in Electric Vehicles and Infrastructure on Twitter Bookmark
Hydrogen Fuel Cell Electric Vehicle Learning Demonstration | Hydrogen and
Fuel Cells | NREL Fuel Cell Electric Vehicle Learning Demonstration Hydrogen Fuel Cell Electric Vehicle Learning Demonstration Initiated in 2004, DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project-later dubbed the Fuel Cell Electric Vehicle (FCEV) Learning Demonstration
NASA Technical Reports Server (NTRS)
Nolan, Sean; Neubek, Deb; Baxmann, C. J.
1988-01-01
The Manned Mars Explorer (MME) project responds to the fundamental problems of sending human beings to Mars in a mission scenario and schematic vehicle designs. The mission scenario targets an opposition class Venus inbound swingby for its trajectory with concentration on Phobos and/or Deimos as a staging base for initial and future Mars vicinity operations. Optional vehicles are presented as a comparison using nuclear electric power/propulsion technology. A Manned Planetary Vehicle and Crew Command Vehicle are used to accomplish the targeted mission. The Manned Planetary Vehicle utilizes the mature technology of chemical propulsion combined with an advanced aerobrake, tether and pressurized environment system. The Crew Command Vehicle is the workhorse of the mission performing many different functions including a manned Mars landing, and Phobos rendezvous.
Collision safety of a hard-shell low-mass vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaeser, R.; Walz, F.H.; Brunner, A.
1994-06-01
Low-mass vehicles and in particular low-mass electric vehicles as produced today in very small quantities are in general not designed for crashworthiness in collisions. Particular problems of compact low-mass cars are: reduced length of the car front, low mass compared to other vehicles, and heavy batteries in the case of an electric car. With the intention of studying design improvements, three frontal crash tests were run last year: the first one with a commercial, lightweight electric car; the second with a reinforced version of the same car; and the last one with a car based on a different structural designmore » with a `hard-shell` car body. Crash tests showed that the latter solution made better use of the small zone available for continuous energy absorption. The paper discusses further the problem of frontal collisions between vehicles of different weight and, in particular, the side collision. A side-collision test was run with the hard-shell vehicle following the ECE lateral-impact test procedure at 50 km/h and led to results for the EuroSIDI-dummy well below current injury tolerance criteria.« less
Collision safety of a hard-shell low-mass vehicle.
Kaeser, R; Walz, F H; Brunner, A
1994-06-01
Low-mass vehicles and in particular low-mass electric vehicles as produced today in very small quantities are in general not designed for crashworthiness in collisions. Particular problems of compact low-mass cars are: reduced length of the car front, low mass compared to other vehicles, and heavy batteries in the case of an electric car. With the intention of studying design improvements, three frontal crash tests were run last year: the first one with a commercial, lightweight electric car; the second with a reinforced version of the same car; and the last one with a car based on a different structural design with a "hard-shell" car body. Crash tests showed that the latter solution made better use of the small zone available for continuous energy absorption. The paper discusses further the problem of frontal collisions between vehicles of different weight and, in particular, the side collision. A side-collision test was run with the hard-shell vehicle following the ECE lateral-impact test procedure at 50 km/h and led to results for the EuroSID1-dummy well below current injury tolerance criteria.
The Legal Status of Low Speed, Electric, Automated Vehicles in Texas : Policy Brief
DOT National Transportation Integrated Search
2018-01-01
This report explores whether vehicles that are both Neighborhood Electric Vehicles (NEVs) and Automated Vehicles (AVs) may operate legally on public roads in Texas. First is an examination of Neighborhood Electric Vehicles and how they are governed i...
NASA Astrophysics Data System (ADS)
Kong, Lingyu; Han, Jiming; Xiong, Wenting; Wang, Hao; Shen, Yaqi; Li, Ying
2017-05-01
Large scale access of electric vehicles will bring huge challenges to the safe operation of the power grid, and it’s important to control the charging and discharging of the electric vehicle. First of all, from the electric quality and network loss, this paper points out the influence on the grid caused by electric vehicle charging behaviour. Besides, control strategy of electric vehicle charging and discharging has carried on the induction and the summary from the direct and indirect control. Direct control strategy means control the electric charging behaviour by controlling its electric vehicle charging and discharging power while the indirect control strategy by means of controlling the price of charging and discharging. Finally, for the convenience of the reader, this paper also proposed a complete idea of the research methods about how to study the control strategy, taking the adaptability and possibility of failure of electric vehicle control strategy into consideration. Finally, suggestions on the key areas for future research are put up.
Air-Conditioning for Electric Vehicles
NASA Technical Reports Server (NTRS)
Popinski, Z.
1984-01-01
Combination of ammonia-absorption refrigerator, roof-mounted solar collectors, and 200 degrees C service electric-vehicle motor provides evaporative space-heating/space cooling system for electric-powered and hybrid fuel/electric vehicles.
Crash simulation of UNS electric vehicle under frontal front impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susilo, D. D., E-mail: djoksus-2010@yahoo.com; Lukamana, N. I., E-mail: n.indra.lukmana@gmail.com; Budiana, E. P., E-mail: budiana.e@gmail.com
Sebelas Maret University has been developing an Electric Vehicle namely SmarT-EV UNS. The main structure of the car are chasis and body. The chasis is made from steel and the body is made from fiberglass composite. To ensure the safety of the car, both static and dynamic tests were carried out to these structures, including their materials, like: tensile test, bending test, and impact test. Another test needed by this vehicle is crashworthiness test. To perform the test, it is needed complex equipments and it is quite expensive. Another way to obtain vehicle crashworthiness behaviour is by simulate it. Themore » purpose of this study was to simulate the response of the Smart-EV UNS electric vehicle main structure when crashing rigid barrier from the front. The crash simulation was done in according to the NHTSA (National Highway Traffic Safety Administration) within the speed of the vehicle of 35 mph. The UNS Electric Vehicle was modelled using SolidWorks software, and the simulation process was done by finite element method using ANSYS software. The simulation result showed that the most internal impact energy was absorbed by chassis part. It absorbed 76.2% of impact energy, then the base absorbed 11.3 %, while the front body absorbed 2.5 %, and the rest was absorbed by fender, hood, and other parts.« less
1982-08-01
brakes , belts, and carburetors; servicing air cleaners, oil systems , and drive belts; and lubricating vehicles. Although the six distinct jobs...vehicle systems . General Repair Mechanics repaired, inspected, serviced, and maintained electrical, brake , suspension, and other vehicle systems . This...installing intake or exhaust manifolds removing or installing parking- brake cables removing or’installing head assemblies inspecting gasoline fuel system
Metro Electric Vehicle Evaluation at the Lewis Research Center
1976-05-21
The National Aeronautics and Space Administration (NASA) Lewis Research Center tested 16 commercially-manufactured electric vehicles, including this Metro, during the mid-1970s. Lewis and the Energy Research and Development Administration (ERDA) engaged in several energy-related programs in the mid-1970s, including the Electric Vehicle Project. NASA and ERDA undertook the program in 1976 to determine the state of the current electric vehicle technology. As part of the project, Lewis and ERDA tested every commercially available electric car model. Electric Vehicle Associates, located in a Cleveland suburb, modified a Renault 12 vehicle to create this Metro. Its 1040-pound golfcart-type battery provided approximately 106 minutes of operation. The tests analyzed the vehicle’s range, acceleration, coast-down, braking, and energy consumption. Some of the vehicles had analog data recording systems to measure the battery during operation and sensors to determine speed and distance. The researchers found the performance of the different vehicles varied significantly. In general, the range, acceleration, and speed were lower than that found on conventional vehicles. They also found that traditional gasoline-powered vehicles were as efficient as the electric vehicles. The researchers concluded, however, that advances in battery technology and electric drive systems would significantly improve efficiency and performance.
Change-of-Pace Electric Vehicle at the Lewis Research Center
1977-04-21
The National Aeronautics and Space Administration (NASA) Lewis Research Center tested 16 commercially-manufactured electric vehicles, including this modified Pacer, during the mid-1970s. The Electric Vehicle Project was just one of several energy-related programs that Lewis and the Energy Research and Development Administration (ERDA) undertook in the mid-1970s. NASA and ERDA embarked on this program in 1976 to determine the state of the current electric vehicle technology. As part of the project, Lewis tested a fleet composed of every commercially available electric car. The Cleveland-area Electric Vehicle Associates modified an American Motors Pacer vehicle to create this Change-of-Pace Coupe. It was powered by twenty 6-volt batteries whose voltage could be varied by a foot control. The tests analyzed the vehicle’s range, acceleration, coast-down, braking, and energy consumption. Some of the vehicles had analog data recording systems to measure the battery during operation and sensors to determine speed and distance. Lewis researchers found that the vehicle performance varied significantly from model to model. In general, the range, acceleration, and speed were lower than conventional vehicles. They also found that traditional gasoline-powered vehicles were as efficient as the electric vehicles. The researchers concluded, however, that advances in battery technology and electric drive systems would significantly improve the performance and efficiency.
The development of a new type of rechargeable batteries based on hybrid electrolytes.
Zhou, Haoshen; Wang, Yonggang; Li, Huiqiao; He, Ping
2010-09-24
Lithium ion batteries (LIBs), which have the highest energy density among all currently available rechargeable batteries, have recently been considered for use in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and pure electric vehicles (PEV). A major challenge in this effort is to increase the energy density of LIBs to satisfy the industrial needs of HEVs, PHEVs, and PEVs. Recently, new types of lithium-air and lithium-copper batteries that employ hybrid electrolytes have attracted significant attention; these batteries are expected to succeed lithium ion batteries as next-generation power sources. Herein, we review the concept of hybrid electrolytes, as well as their advantages and disadvantages. In addition, we examine new battery types that use hybrid electrolytes.
40 CFR 86.1702-99 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... shall apply to this subpart: Advanced technology vehicle (ATV) means any light-duty vehicle or light... this subpart. All-electric range test means a test sequence used to determine the range of an electric vehicle or of a hybrid electric vehicle without the use of its auxiliary power unit. The All-Electric...
ERIC Educational Resources Information Center
Moore, Pam
2011-01-01
With President Obama's goal to have one million electric vehicles (EV) on the road by 2015, the electric vehicle technician should have a promising and busy future. "The job force in the car industry is ramping up for a revitalized green car industry," according to Greencareersguide.com. An electric vehicle technician will safely troubleshoot and…
Alternative Fuels Data Center: Hydrogen Fuel Cell Electric Vehicle
Data Center: Hydrogen Fuel Cell Electric Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Electric Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Electric Vehicle Availability on Twitter Bookmark Alternative
Alternative Fuels Data Center: Electric Vehicle Infrastructure Projection
Tool (EVI-Pro) Lite Electric Vehicle Infrastructure Projection Tool (EVI-Pro) Lite to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Infrastructure Projection Tool (EVI -Pro) Lite on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Infrastructure
16 CFR 309.10 - Alternative vehicle fuel rating.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Electricity) and of Manufacturers of Electric Vehicle Fuel Dispensing Systems § 309.10 Alternative vehicle... (other than electricity), you must determine the fuel rating of all non-liquid alternative vehicle fuel (other than electricity) before you transfer it. You can do that yourself or through a testing lab. To...
16 CFR 309.13 - Certification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Distributors of Non-Liquid Alternative Vehicle Fuels (other Than Electricity) and of Electric Vehicle Fuel... outlined in § 309.11(a)(2). (b) If you are a distributor of electric vehicle fuel dispensing systems, you...), or an electric vehicle fuel dispensing system, to a common carrier, you must certify the fuel rating...
16 CFR 309.13 - Certification.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Distributors of Non-Liquid Alternative Vehicle Fuels (other Than Electricity) and of Electric Vehicle Fuel... outlined in § 309.11(a)(2). (b) If you are a distributor of electric vehicle fuel dispensing systems, you...), or an electric vehicle fuel dispensing system, to a common carrier, you must certify the fuel rating...
16 CFR 309.13 - Certification.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Distributors of Non-Liquid Alternative Vehicle Fuels (other Than Electricity) and of Electric Vehicle Fuel... outlined in § 309.11(a)(2). (b) If you are a distributor of electric vehicle fuel dispensing systems, you...), or an electric vehicle fuel dispensing system, to a common carrier, you must certify the fuel rating...
16 CFR 309.13 - Certification.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Distributors of Non-Liquid Alternative Vehicle Fuels (other Than Electricity) and of Electric Vehicle Fuel... outlined in § 309.11(a)(2). (b) If you are a distributor of electric vehicle fuel dispensing systems, you...), or an electric vehicle fuel dispensing system, to a common carrier, you must certify the fuel rating...
NASA Technical Reports Server (NTRS)
Harvey, Jason; Moore, Michael
2013-01-01
The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.
An Analysis of Fuel Cell Options for an All-electric Unmanned Aerial Vehicle
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.; Schmitz, Paul C.
2007-01-01
A study was conducted to assess the performance characteristics of both PEM and SOFC-based fuel cell systems for an all-electric high altitude, long endurance Unmanned Aerial Vehicle (UAV). Primary and hybrid systems were considered. Fuel options include methane, hydrogen, and jet fuel. Excel-based models were used to calculate component mass as a function of power level and mission duration. Total system mass and stored volume as a function of mission duration for an aircraft operating at 65 kft altitude were determined and compared.
Electric/Hybrid Vehicle Simulation
NASA Technical Reports Server (NTRS)
Slusser, R. A.; Chapman, C. P.; Brennand, J. P.
1985-01-01
ELVEC computer program provides vehicle designer with simulation tool for detailed studies of electric and hybrid vehicle performance and cost. ELVEC simulates performance of user-specified electric or hybrid vehicle under user specified driving schedule profile or operating schedule. ELVEC performs vehicle design and life cycle cost analysis.
2009-12-01
vehicles so do some electric vehicle braking systems (MIT, 2008). e. Brakes Regenerative braking on electric vehicles recoups some of the energy lost...engine is required to replace the energy lost by braking . Regenerative braking takes some of the lost energy during braking and turns it into...Motors and Tesla Motors offer regenerative breaking in their respective electric vehicles. Tesla explains regenerative braking as “engine braking
NASA Astrophysics Data System (ADS)
Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.
2017-09-01
A thermal management system is necessary to control the operating temperature of the lithium ion batteries in battery packs for electrical and hybrid electrical vehicles. This paper proposes a new battery thermal management system based on one type of phase change material for the battery packs in hybrid electrical vehicles and develops a three dimensional electrochemical thermal model. The temperature distributions of the batteries are investigated under various operating conditions for comparative evaluations. The proposed system boils liquid propane to remove the heat generated by the batteries, and the propane vapor is used to cool the part of the battery that is not covered with liquid propane. The effect on the thermal behavior of the battery pack of the height of the liquid propane inside the battery pack, relative to the height of the battery, is analyzed. The results show that the propane based thermal management system provides good cooling control of the temperature of the batteries under high and continuous charge and discharge cycles at 7.5C.
Baseline tests of the EVA contractor electric passenger vehicle
NASA Technical Reports Server (NTRS)
Bozek, J. M.; Tryon, H. B.; Slavick, R. J.
1977-01-01
The EVA Contactor four door sedan, an electric passenger vehicle, was tested to characterize the state-of-the-art of electric vehicles. It is a four passenger sedan that was converted to an electric vehicle. It is powered by 16 series connected 6 volt electric vehicle batteries through a four step contactor controller actuated by a foot accelerator pedal. The controller changes the voltage applied to the separately excited DC motor. The braking system is a vacuum assisted hydraulic braking system. Regenerative braking was also provided.
Socially optimal replacement of conventional with electric vehicles for the US household fleet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong
In this study, a framework is proposed for minimizing the societal cost of replacing gas-powered household passenger cars with battery electric ones (BEVs). The societal cost consists of operational costs of heterogeneous driving patterns' cars, the government investments for charging deployment, and monetized environmental externalities. The optimization framework determines the timeframe needed for conventional vehicles to be replaced with BEVs. It also determines the BEVs driving range during the planning timeframe, as well as the density of public chargers deployed on a linear transportation network over time. We leverage datasets that represent U.S. household driving patterns, as well as themore » automobile and the energy markets, to apply the model. Results indicate that it takes 8 years for 80% of our conventional vehicle sample to be replaced with electric vehicles, under the base case scenario. The socially optimal all-electric driving range is 204 miles, with chargers placed every 172 miles on a linear corridor. All of the public chargers should be deployed at the beginning of the planning horizon to achieve greater savings over the years. Sensitivity analysis reveals that the timeframe for the socially optimal conversion of 80% of the sample varies from 6 to 12 years. The optimal decision variables are sensitive to battery pack and vehicle body cost, gasoline cost, the discount rate, and conventional vehicles' fuel economy. In conclusion, faster conventional vehicle replacement is achieved when the gasoline cost increases, electricity cost decreases, and battery packs become cheaper over the years.« less
Socially optimal replacement of conventional with electric vehicles for the US household fleet
Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong; ...
2017-04-05
In this study, a framework is proposed for minimizing the societal cost of replacing gas-powered household passenger cars with battery electric ones (BEVs). The societal cost consists of operational costs of heterogeneous driving patterns' cars, the government investments for charging deployment, and monetized environmental externalities. The optimization framework determines the timeframe needed for conventional vehicles to be replaced with BEVs. It also determines the BEVs driving range during the planning timeframe, as well as the density of public chargers deployed on a linear transportation network over time. We leverage datasets that represent U.S. household driving patterns, as well as themore » automobile and the energy markets, to apply the model. Results indicate that it takes 8 years for 80% of our conventional vehicle sample to be replaced with electric vehicles, under the base case scenario. The socially optimal all-electric driving range is 204 miles, with chargers placed every 172 miles on a linear corridor. All of the public chargers should be deployed at the beginning of the planning horizon to achieve greater savings over the years. Sensitivity analysis reveals that the timeframe for the socially optimal conversion of 80% of the sample varies from 6 to 12 years. The optimal decision variables are sensitive to battery pack and vehicle body cost, gasoline cost, the discount rate, and conventional vehicles' fuel economy. In conclusion, faster conventional vehicle replacement is achieved when the gasoline cost increases, electricity cost decreases, and battery packs become cheaper over the years.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen Schey; Jim Francfort
2014-10-01
This report focuses on the Department of Veterans Affairs, VA Manhattan Campus (VA- Manhattan) fleet to identify the daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support successful introduction of plug-in electric vehicles (PEVs) into the agency’s fleet. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively called PEVs) can fulfill the mission requirements.
NASA Astrophysics Data System (ADS)
Zhang, Min; Yang, Feng; Zhang, Dongqing; Tang, Pengcheng
2018-02-01
A large number of electric vehicles are connected to the family micro grid will affect the operation safety of the power grid and the quality of power. Considering the factors of family micro grid price and electric vehicle as a distributed energy storage device, a two stage optimization model is established, and the improved discrete binary particle swarm optimization algorithm is used to optimize the parameters in the model. The proposed control strategy of electric vehicle charging and discharging is of practical significance for the rational control of electric vehicle as a distributed energy storage device and electric vehicle participating in the peak load regulation of power consumption.
Alternative Fuels Data Center: Lee's Summit R-7 School District Delivers
was the next step. In 2010, the district purchased four all-electric Smith Newton delivery trucks with -based Smith Electric Vehicles educated local fleet operators about the capabilities of its all-electric conventional trucks do, maintenance expenses were drastically reduced. With close proximity to Smith Electric
None
2018-01-16
Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consumption. Previously worrisome traffic delays now provide longer periods of charge while passing over in-motion chargers. Inclement weather such as rain and snow do not affect the charging capability. At ORNL, we are working to develop the robust nature of wireless power technology to provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-07-22
Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forgetmore » to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consumption. Previously worrisome traffic delays now provide longer periods of charge while passing over in-motion chargers. Inclement weather such as rain and snow do not affect the charging capability. At ORNL, we are working to develop the robust nature of wireless power technology to provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions.« less
Electric Vehicle Careers: On the Road to Change
ERIC Educational Resources Information Center
Hamilton, James
2012-01-01
Many occupations related to electric vehicles are similar to those that help to make and maintain all types of automobiles. But the industry is also adding some nontraditional jobs, and workers' skill sets must evolve to keep up. This article describes careers related to electric vehicles. The first section is about the electric vehicle industry…
Alternative Fuels Data Center: Electric Vehicle Charging Network Expands at
National Parks Electric Vehicle Charging Network Expands at National Parks to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Network Expands at National Parks on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Network Expands at National
Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit
Dwellings Electric Vehicle Charging for Multi-Unit Dwellings to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Twitter Bookmark
Alternative Fuels Data Center: Idaho Surges Ahead with Electric Vehicle
Charging Idaho Surges Ahead with Electric Vehicle Charging to someone by E-mail Share Alternative Fuels Data Center: Idaho Surges Ahead with Electric Vehicle Charging on Facebook Tweet about Alternative Fuels Data Center: Idaho Surges Ahead with Electric Vehicle Charging on Twitter Bookmark
40 CFR 86.1726-99 - Mileage and service accumulation; emission measurements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of hybrid electric vehicles shall be conducted with the battery pack at the manufacturer's indicated... Type A hybrid electric vehicle, 75,000 miles for a Type B hybrid electric vehicle, and 100,000 miles for a Type C hybrid electric vehicle. (iv) Alternative durability plans may also be used if the...
40 CFR 600.116-12 - Special procedures related to electric vehicles and hybrid electric vehicles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Special procedures related to electric vehicles and hybrid electric vehicles. 600.116-12 Section 600.116-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF...
Electric Vehicles in Colorado: Anticipating Consumer Demand for Direct Current Fast Charging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Eric W.; Rames, Clement L.
To support the State of Colorado in planning for growth in direct current fast charging (DCFC) for electric vehicles, the National Renewable Energy Laboratory (NREL) has partnered with the Regional Air Quality Council (RAQC) and the Colorado Department of Transportation (CDOT) to analyze a number of DCFC investment scenarios. NREL analyzed existing electric vehicle registration data from IHS Markit (IHS) to highlight early trends in the electric vehicle market, which were compared with sales forecasts predicting large growth in the Colorado electric vehicle market. Electric vehicle forecasts were then used to develop future DCFC scenarios to be evaluated in amore » simulation environment to estimate consumer benefits of the hypothetical DCFC networks in terms of increased driving range and electric vehicle miles traveled (eVMT). Simulated utilization of the hypothetical DCFC networks was analyzed for geographic trends, particularly for correlations with vehicle electric range. Finally, a subset of simulations is presented for consumers with potentially inconsistent access to charging at their home location and presumably greater reliance on public DCFC infrastructure.« less
Economic impacts of electric vehicle adoption.
DOT National Transportation Integrated Search
2017-02-01
The objective of the Economic Impacts of Electric Vehicle Adoption research project was to : examine the predicted levels of electric vehicle (EV) adoption, to analyze the life cycle costs of : EVs compared to internal combustion engine vehicles and ...
Tessum, Christopher W; Hill, Jason D; Marshall, Julian D
2014-12-30
Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration-response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or "grid average" electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.
Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazzi, Abdullah; Barnhart, Steven
2014-12-31
FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development ofmore » a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.« less
Using fleets of electric-drive vehicles for grid support
NASA Astrophysics Data System (ADS)
Tomić, Jasna; Kempton, Willett
Electric-drive vehicles can provide power to the electric grid when they are parked (vehicle-to-grid power). We evaluated the economic potential of two utility-owned fleets of battery-electric vehicles to provide power for a specific electricity market, regulation, in four US regional regulation services markets. The two battery-electric fleet cases are: (a) 100 Th!nk City vehicle and (b) 252 Toyota RAV4. Important variables are: (a) the market value of regulation services, (b) the power capacity (kW) of the electrical connections and wiring, and (c) the energy capacity (kWh) of the vehicle's battery. With a few exceptions when the annual market value of regulation was low, we find that vehicle-to-grid power for regulation services is profitable across all four markets analyzed. Assuming now more than current Level 2 charging infrastructure (6.6 kW) the annual net profit for the Th!nk City fleet is from US 7000 to 70,000 providing regulation down only. For the RAV4 fleet the annual net profit ranges from US 24,000 to 260,000 providing regulation down and up. Vehicle-to-grid power could provide a significant revenue stream that would improve the economics of grid-connected electric-drive vehicles and further encourage their adoption. It would also improve the stability of the electrical grid.
Research and development of electric vehicles for clean transportation.
Wada, Masayoshi
2009-01-01
This article presents the research and development of an electric vehicle (EV) in Department of Human-Robotics Saitama Institute of Technology, Japan. Electric mobile systems developed in our laboratory include a converted electric automobile, electric wheelchair and personal mobile robot. These mobile systems contribute to realize clean transportation since energy sources and devices from all vehicles, i.e., batteries and electric motors, does not deteriorate the environment. To drive motors for vehicle traveling, robotic technologies were applied.
Electric vehicle utilization for ancillary grid services
NASA Astrophysics Data System (ADS)
Aziz, Muhammad
2018-02-01
Electric vehicle has been developed through several decades as transportation mean, without paying sufficient attention of its utilization for other purposes. Recently, the utilization of electric vehicle to support the grid electricity has been proposed and studied intensively. This utilization covers several possible services including electricity storage, spinning reserve, frequency and voltage regulation, and emergency energy supply. This study focuses on theoretical and experimental analysis of utilization of electric vehicles and their used batteries to support a small-scale energy management system. Charging rate of electric vehicle under different ambient temperature (seasonal condition) is initially analyzed to measure the correlation of charging rate, charging time, and state-of-charge. It is confirmed that charging under warmer condition (such as in summer or warmer region) shows higher charging rate than one in colder condition, therefore, shorter charging time can be achieved. In addition, in the demonstration test, each five electric vehicles and used batteries from the same electric vehicles are employed and controlled to support the electricity of the office building. The performance of the system is evaluated throughout a year to measure the load leveling effect during peak-load time. The results show that the targeted peak-load can be shaved well under certain calculated peak-shaving threshold. The finding confirms that the utilization of electric vehicle for supporting the electricity of grid or certain energy management system is feasible and deployable in the future.
Assessment and preliminary design of an energy buffer for regenerative braking in electric vehicles
NASA Technical Reports Server (NTRS)
Buchholz, R.; Mathur, A. K.
1979-01-01
Energy buffer systems, capable of storing the vehicle energy during braking and reusing this stored energy during acceleration, were examined. Some of these buffer systems when incorporated in an electric vehicle would result in an improvement in the performance and range under stop and go driving conditions. Buffer systems considered included flywheels, hydropneumatic, pneumatic, spring, and regenerative braking. Buffer ranking and rating criteria were established. Buffer systems were rated based on predicted range improvements, consumer acceptance, driveability, safety, reliability and durability, and initial and life cycle costs. A hydropneumatic buffer system was selected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corbus, D; Hammel, C J; Mark, J
1993-08-01
This report identifies important environment, health, and safety issues associated with nickel metal-hydride (Ni-MH) batteries and assesses the need for further testing and analysis. Among the issues discussed are cell and battery safety, workplace health and safety, shipping requirements, and in-vehicle safety. The manufacture and recycling of Ni-MH batteries are also examined. This report also overviews the ``FH&S`` issues associated with other nickel-based electric vehicle batteries; it examines venting characteristics, toxicity of battery materials, and the status of spent batteries as a hazardous waste.
Wu, Zhihong; Lu, Ke; Zhu, Yuan
2015-01-01
The torque output accuracy of the IPMSM in electric vehicles using a state of the art MTPA strategy highly depends on the accuracy of machine parameters, thus, a torque estimation method is necessary for the safety of the vehicle. In this paper, a torque estimation method based on flux estimator with a modified low pass filter is presented. Moreover, by taking into account the non-ideal characteristic of the inverter, the torque estimation accuracy is improved significantly. The effectiveness of the proposed method is demonstrated through MATLAB/Simulink simulation and experiment.
Zhu, Yuan
2015-01-01
The torque output accuracy of the IPMSM in electric vehicles using a state of the art MTPA strategy highly depends on the accuracy of machine parameters, thus, a torque estimation method is necessary for the safety of the vehicle. In this paper, a torque estimation method based on flux estimator with a modified low pass filter is presented. Moreover, by taking into account the non-ideal characteristic of the inverter, the torque estimation accuracy is improved significantly. The effectiveness of the proposed method is demonstrated through MATLAB/Simulink simulation and experiment. PMID:26114557
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-02-01
This report describes the second phase of the EPRI-SCE Electric Vehicle Project, in which four additional electric vehicles (EVs) were tested and evaluated: the Jet Industries Model 007 passenger car, Model 750 pickup truck, and Model 1400 passenger van; and the Lucas-Bedford Model CFE cargo van. During the first phase of this project, four EVs were also tested: Jet 500, Volkswagen Type 2, DAUG Type GM2, and Battronic Minivan. The project emphasizes road-testing of vehicles to acquire data on their useful driving range, performance, reliability, and driver acceptance in utility-fleet use. Each vehicle was driven more than 100 miles alongmore » SCE-selected test routes to determine the effects of different terrains (level, slight grades, and steep grades), traffic conditions (one-, two-, three-, and four-stops/mile and freeway), and payload. The vehicle component failures that occurred during testing are itemized and described briefly, and assessments are made of expected field reliability. Other vehicle characteristics and measurements of interest are presented. The data base on these test vehicles is intended to provide the reader an overview of the real world performance that can be expected from present-day state-of-the-art EVs.« less
NASA Astrophysics Data System (ADS)
Guo, Jinghua; Luo, Yugong; Li, Keqiang; Dai, Yifan
2018-05-01
This paper presents a novel coordinated path following system (PFS) and direct yaw-moment control (DYC) of autonomous electric vehicles via hierarchical control technique. In the high-level control law design, a new fuzzy factor is introduced based on the magnitude of longitudinal velocity of vehicle, a linear time varying (LTV)-based model predictive controller (MPC) is proposed to acquire the wheel steering angle and external yaw moment. Then, a pseudo inverse (PI) low-level control allocation law is designed to realize the tracking of desired external moment torque and management of the redundant tire actuators. Furthermore, the vehicle sideslip angle is estimated by the data fusion of low-cost GPS and INS, which can be obtained by the integral of modified INS signals with GPS signals as initial value. Finally, the effectiveness of the proposed control system is validated by the simulation and experimental tests.
Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, Stanton W; Tsvetkova, Alexandra A
2008-01-01
Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient,more » rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.« less
A Hybrid Power Management (HPM) Based Vehicle Architecture
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2011-01-01
Society desires vehicles with reduced fuel consumption and reduced emissions. This presents a challenge and an opportunity for industry and the government. The NASA John H. Glenn Research Center (GRC) has developed a Hybrid Power Management (HPM) based vehicle architecture for space and terrestrial vehicles. GRC's Electrical and Electromagnetics Branch of the Avionics and Electrical Systems Division initiated the HPM Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, providing all power to a common energy storage system, which is used to power the drive motors and vehicle accessory systems, as well as provide power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. This flexible vehicle architecture can be applied to all vehicles to considerably improve system efficiency, reliability, safety, security, and performance. This unique vehicle architecture has the potential to alleviate global energy concerns, improve the environment, stimulate the economy, and enable new missions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 6 2013-10-01 2013-10-01 false Standard No. 305; Electric-powered vehicles: electrolyte spillage and electrical shock protection. 571.305 Section 571.305 Transportation Other Regulations... No. 305; Electric-powered vehicles: electrolyte spillage and electrical shock protection. S1. Scope...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 6 2012-10-01 2012-10-01 false Standard No. 305; Electric-powered vehicles: electrolyte spillage and electrical shock protection. 571.305 Section 571.305 Transportation Other Regulations... No. 305; Electric-powered vehicles: electrolyte spillage and electrical shock protection. S1. Scope...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 6 2014-10-01 2014-10-01 false Standard No. 305; Electric-powered vehicles: electrolyte spillage and electrical shock protection. 571.305 Section 571.305 Transportation Other Regulations... No. 305; Electric-powered vehicles: electrolyte spillage and electrical shock protection. S1. Scope...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 6 2011-10-01 2011-10-01 false Standard No. 305; Electric-powered vehicles: electrolyte spillage and electrical shock protection. 571.305 Section 571.305 Transportation Other Regulations... No. 305; Electric-powered vehicles: electrolyte spillage and electrical shock protection. S1. Scope...
NASA Astrophysics Data System (ADS)
Kollmeyer, Phillip J.
This dissertation addresses two major related research topics: 1) the design, fabrication, modeling, and experimental testing of a battery-electric light-duty Class 2a truck; and 2) the design and evaluation of a hybrid energy storage system (HESS) for this and other vehicles. The work begins with the determination of the truck's peak power and wheel torque requirements (135kW/4900Nm). An electric traction system is then designed that consists of an interior permanent magnet synchronous machine, two-speed gearbox, three-phase motor drive, and LiFePO4 battery pack. The battery pack capacity is selected to achieve a driving range similar to the 2011 Nissan Leaf electric vehicle (73 miles). Next, the demonstrator electric traction system is built and installed in the vehicle, a Ford F150 pickup truck, and an extensive set of sensors and data acquisition equipment is installed. Detailed loss models of the battery pack, electric traction machine, and motor drive are developed and experimentally verified using the driving data. Many aspects of the truck's performance are investigated, including efficiency differences between the two-gear configuration and the optimal gear selection. The remainder focuses on the application of battery/ultracapacitor hybrid energy storage systems (HESS) to electric vehicles. First, the electric truck is modeled with the addition of an ultracapacitor pack and a dc/dc converter. Rule-based and optimal battery/ultracapacitor power-split control algorithms are then developed, and the performance improvements achieved for both algorithms are evaluated for operation at 25°C. The HESS modeling is then extended to low temperatures, where battery resistance increases substantially. To verify the accuracy of the model-predicted results, a scaled hybrid energy storage system is built and the system is tested for several drive cycles and for two temperatures. The HESS performance is then modeled for three variants of the vehicle design, including the prototype electric truck with a different battery pack, the prototype electric truck with a higher power drivetrain and higher towing capability, and an electric city transit bus. Performance advantages provided by the HESS are demonstrated and verified for these vehicles in several areas including: longer vehicle range, improved low-temperature operation with lithium-ion batteries, and reduced battery losses and cycling stresses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-01-01
Clean Cities Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.
Advanced Cell-Level Control for Extending Electric Vehicle Battery Pack Lifetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehman, M. Muneeb Ur; Zhang, Fan; Evzelman, Michael
A cell-level control approach for electric vehicle battery packs is presented that enhances traditional battery balancing goals to not only provide cell balancing but also achieve significant pack lifetime extension. These goals are achieved by applying a new life-prognostic based control algorithm that biases individual cells differently based on their state of charge, capacity and internal resistance. The proposed life control approach reduces growth in capacity mismatch typically seen in large battery packs over life while optimizing usable energy of the pack. The result is a longer lifetime of the overall pack and a more homogeneous distribution of cell capacitiesmore » at the end of the first life for vehicle applications. Active cell balancing circuits and associated algorithms are used to accomplish the cell-level life extension objectives. This paper presents details of the cell-level control approach, selection and design of the active balancing system, and low-complexity state-of-charge, capacity, and series-resistance estimation algorithms. A laboratory prototype is used to demonstrate the proposed control approach. The prototype consists of twenty-one 25 Ah Panasonic lithium-Ion NMC battery cells from a commercial electric vehicle and an integrated BMS/DC-DC system that provides 750 W to the vehicle low voltage auxiliary loads.« less
Advanced Cell-Level Control for Extending Electric Vehicle Battery Pack Lifetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehman, M. Muneeb Ur; Zhang, Fan; Evzelman, Michael
2017-02-16
A cell-level control approach for electric vehicle battery packs is presented that enhances traditional battery balancing goals to not only provide cell balancing but also achieve significant pack lifetime extension. These goals are achieved by applying a new life-prognostic based control algorithm that biases individual cells differently based on their state of charge, capacity and internal resistance. The proposed life control approach reduces growth in capacity mismatch typically seen in large battery packs over life while optimizing usable energy of the pack. The result is a longer lifetime of the overall pack and a more homogeneous distribution of cell capacitiesmore » at the end of the first life for vehicle applications. Active cell balancing circuits and associated algorithms are used to accomplish the cell-level life extension objectives. This paper presents details of the cell-level control approach, selection and design of the active balancing system, and low-complexity state-of-charge, capacity, and series-resistance estimation algorithms. A laboratory prototype is used to demonstrate the proposed control approach. The prototype consists of twenty-one 25 Ah Panasonic lithium-Ion NMC battery cells from a commercial electric vehicle and an integrated BMS/DC-DC system that provides 750 W to the vehicle low voltage auxiliary loads.« less
NASA Astrophysics Data System (ADS)
Kolbasov, A.; Karpukhin, K.; Terenchenko, A.; Kavalchuk, I.
2018-02-01
Electric vehicles have become the most common solution to improve sustainability of the transportation systems all around the world. Despite all benefits, wide adaptation of electric vehicles requires major changes in the infrastructure, including grid adaptation to the rapidly increased power demand and development of the Connected Car concept. This paper discusses the approaches to improve usability of electric vehicles, by creating suitable web-services, with possible connections vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-grid. Developed concept combines information about electrical loads on the grid in specific direction, navigation information from the on-board system, existing and empty charging slots and power availability. In addition, this paper presents the universal concept of the photovoltaic integrated charging stations, which are connected to the developed information systems. It helps to achieve rapid adaptation of the overall infrastructure to the needs of the electric vehicles users with minor changes in the existing grid and loads.
Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamai, Goro; Zhou, Jing; Weslati, Feisel
An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating costmore » for the hybrid electric vehicle.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-14
... vehicles when 4.1% of the fleet is HV and EV would be 2790 fewer pedestrian and pedalcyclist injuries. We... Engine Vehicles to Hybrid and Electric Vehicles B. Need for Independent Mobility of People Who Are... requirements for hybrid and electric vehicles when operating under 30 kilometers per hour (km/h) (18 mph), when...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
The Advanced Vehicle Testing Activity’s study seeks to collect and evaluate data to validate the utilization of advanced plug-in electric vehicle (PEV) transportation. This report focuses on the NASA Glenn Research Center (GRC) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.
Cost Performance Estimating Relationships for Hybrid Electric Vehicle Components
2003-07-31
Permanent magnet motors are more likely to be used as generators, while AC induction motors are more efficiently used as motors. Inverters/controllers can...than permanent magnet motors . Switched Reluctance motors are also used on hybrid electric vehicles, but are not used as widely as either AC...induction or permanent magnet motors , and are not analyzed here. Methodology The motor estimates are based on power, with kilowatts being the unit of
16 CFR 309.12 - Recordkeeping.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Importers, Producers, and Refiners of Non-Liquid Alternative Vehicle Fuels (other Than Electricity) and of... Vehicle Fuels (Other Than Electricity) and of Electric Vehicle Fuel Dispensing Systems ...
Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public
in Public to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in
Alternative Fuels Data Center: New York Broadens Network for Electric
Vehicle Charging New York Broadens Network for Electric Vehicle Charging to someone by E-mail Share Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on Facebook Tweet about Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on
Alternative Fuels Data Center: Research and Development of Electricity as a
Vehicle Fuel Research and Development of Electricity as a Vehicle Fuel to someone by E-mail Share Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Facebook Tweet about Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle
Enabling fast charging - Introduction and overview
NASA Astrophysics Data System (ADS)
Michelbacher, Christopher; Ahmed, Shabbir; Bloom, Ira; Burnham, Andrew; Carlson, Barney; Dias, Fernando; Dufek, Eric J.; Jansen, Andrew N.; Keyser, Matthew; Markel, Anthony; Meintz, Andrew; Mohanpurkar, Manish; Pesaran, Ahmad; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Tanim, Tanvir; Vijayagopal, Ram; Zhang, Jiucai
2017-11-01
The pursuit of U.S. energy security and independence has taken many different forms throughout the many production and consumption sectors. For consumer transportation, a greater reliance on power train electrification has gained traction due to the inherent efficiencies of these platforms, particularly through the use of electric motors and batteries. Vehicle electrification can be generalized into three primary categories-hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs); the latter two, PHEVs and BEVs, are often referred to as plug-in electric vehicles (PEVs).
Overview of hybrid electric vehicle trend
NASA Astrophysics Data System (ADS)
Wang, Haomiao; Yang, Weidong; Chen, Yingshu; Wang, Yun
2018-04-01
With the increase of per capita energy consumption, environmental pollution is worsening. Using new alternative sources of energy, reducing the use of conventional fuel-powered engines is imperative. Due to the short period, pure electric vehicles cannot be mass-produced and there are many problems such as imperfect charging facilities. Therefore, the development of hybrid electric vehicles is particularly important in a certain period. In this paper, the classification of hybrid vehicle, research status of hybrid vehicle and future development trends of hybrid vehicles is introduced. It is conducive to the public understanding of hybrid electric vehicles, which has a certain theoretical significance.
Research on the impacts of large-scale electric vehicles integration into power grid
NASA Astrophysics Data System (ADS)
Su, Chuankun; Zhang, Jian
2018-06-01
Because of its special energy driving mode, electric vehicles can improve the efficiency of energy utilization and reduce the pollution to the environment, which is being paid more and more attention. But the charging behavior of electric vehicles is random and intermittent. If the electric vehicle is disordered charging in a large scale, it causes great pressure on the structure and operation of the power grid and affects the safety and economic operation of the power grid. With the development of V2G technology in electric vehicle, the study of the charging and discharging characteristics of electric vehicles is of great significance for improving the safe operation of the power grid and the efficiency of energy utilization.
Kim, Yong Jung; Yang, Cheol-Min; Park, Ki Chul; Kaneko, Katsumi; Kim, Yoong Ahm; Noguchi, Minoru; Fujino, Takeshi; Oyama, Shigeki; Endo, Morinobu
2012-03-12
Supercapacitors can store and deliver energy by a simple charge separation, and thus they could be an attractive option to meet transient high energy density in operating fuel cells and in electric and hybrid electric vehicles. To achieve such requirements, intensive studies have been carried out to improve the volumetric capacitance in supercapacitors using various types and forms of carbons including carbon nanotubes and graphenes. However, conventional porous carbons are not suitable for use as electrode material in supercapacitors for such high energy density applications. Here, we show that edge-enriched porous carbons are the best electrode material for high energy density supercapacitors to be used in vehicles as an auxiliary powertrain. Molten potassium hydroxide penetrates well-aligned graphene layers vertically and consequently generates both suitable pores that are easily accessible to the electrolyte and a large fraction of electrochemically active edge sites. We expect that our findings will motivate further research related to energy storage devices and also environmentally friendly electric vehicles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electric vehicle energy management system
NASA Astrophysics Data System (ADS)
Alaoui, Chakib
This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.
Decision Models for Conducting an Economic Analysis of Alternative Fuels for the Ice Engine.
1983-03-01
p.cduc.d ICE vehicles. This analysis focusqs on electric vehicles d=.signed for commercial use. Electric hybrid vehicles which combine electric...ccntain -:he minimum gross veicle weight, engine size, and other characterist-ca of vehicles generally procured by the Federal governmen. The ir...Electric and Hybrid Vehicles, Energy Technology Review Nc. 44 published by Noyes Data Corpora’-ion. It summarizes data cn characteristics, cost, maints
Performance of conventionally powered vehicles tested to an electric vehicle test procedure
NASA Technical Reports Server (NTRS)
Slavik, R. J.; Dustin, M. O.; Lumannick, S.
1977-01-01
A conventional Volkswagen transporter, a Renault 5, a Pacer, and a U. S. Postal Service general DJ-5 delivery van were treated to an electric vehicle test procedure in order to allow direct comparison of conventional and electric vehicles. Performance test results for the four vehicles are presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-08
... all technologies. Nearly every OEM stressed that the agencies' costs estimates for lithium-ion batteries for HEVs/ PHEVs/EVs and mass reduction in particular were significantly too low compared to their... vehicles, hybrid-electric vehicles, plug-in hybrid electric vehicles, and battery-electric vehicles, during...
16 CFR 309.12 - Recordkeeping.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Manufacturers of Electric Vehicle Fuel Dispensing Systems § 309.12 Recordkeeping. You must keep for one year... Vehicle Fuels (Other Than Electricity) and of Electric Vehicle Fuel Dispensing Systems ... REQUIREMENTS FOR ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for Alternative Fuels Duties of...
16 CFR 309.12 - Recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Manufacturers of Electric Vehicle Fuel Dispensing Systems § 309.12 Recordkeeping. You must keep for one year... Vehicle Fuels (Other Than Electricity) and of Electric Vehicle Fuel Dispensing Systems ... REQUIREMENTS FOR ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for Alternative Fuels Duties of...
16 CFR 309.12 - Recordkeeping.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Manufacturers of Electric Vehicle Fuel Dispensing Systems § 309.12 Recordkeeping. You must keep for one year... Vehicle Fuels (Other Than Electricity) and of Electric Vehicle Fuel Dispensing Systems ... REQUIREMENTS FOR ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for Alternative Fuels Duties of...
16 CFR 309.12 - Recordkeeping.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Manufacturers of Electric Vehicle Fuel Dispensing Systems § 309.12 Recordkeeping. You must keep for one year... Vehicle Fuels (Other Than Electricity) and of Electric Vehicle Fuel Dispensing Systems ... REQUIREMENTS FOR ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for Alternative Fuels Duties of...
NASA Astrophysics Data System (ADS)
Shen, Yanqing
2018-04-01
LiFePO4 battery is developed rapidly in electric vehicle, whose safety and functional capabilities are influenced greatly by the evaluation of available cell capacity. Added with adaptive switch mechanism, this paper advances a supervised chaos genetic algorithm based state of charge determination method, where a combined state space model is employed to simulate battery dynamics. The method is validated by the experiment data collected from battery test system. Results indicate that the supervised chaos genetic algorithm based state of charge determination method shows great performance with less computation complexity and is little influenced by the unknown initial cell state.
Load forecast method of electric vehicle charging station using SVR based on GA-PSO
NASA Astrophysics Data System (ADS)
Lu, Kuan; Sun, Wenxue; Ma, Changhui; Yang, Shenquan; Zhu, Zijian; Zhao, Pengfei; Zhao, Xin; Xu, Nan
2017-06-01
This paper presents a Support Vector Regression (SVR) method for electric vehicle (EV) charging station load forecast based on genetic algorithm (GA) and particle swarm optimization (PSO). Fuzzy C-Means (FCM) clustering is used to establish similar day samples. GA is used for global parameter searching and PSO is used for a more accurately local searching. Load forecast is then regressed using SVR. The practical load data of an EV charging station were taken to illustrate the proposed method. The result indicates an obvious improvement in the forecasting accuracy compared with SVRs based on PSO and GA exclusively.
Plug-in hybrid electric vehicles in smart grid
NASA Astrophysics Data System (ADS)
Yao, Yin
In this thesis, in order to investigate the impact of charging load from plug-in hybrid electric vehicles (PHEVs), a stochastic model is developed in Matlab. In this model, two main types of PHEVs are defined: public transportation vehicles and private vehicles. Different charging time schedule, charging speed and battery capacity are considered for each type of vehicles. The simulation results reveal that there will be two load peaks (at noon and in evening) when the penetration level of PHEVs increases continuously to 30% in 2030. Therefore, optimization tool is utilized to shift load peaks. This optimization process is based on real time pricing and wind power output data. With the help of smart grid, power allocated to each vehicle could be controlled. As a result, this optimization could fulfill the goal of shifting load peaks to valley areas where real time price is low or wind output is high.
NASA Astrophysics Data System (ADS)
Chen, Xi; Zeng, Shuang; Liu, Xiulan; Jin, Yuan; Li, Xianglong; Wang, Xiaochen
2018-02-01
The electric vehicles (EV) have become accepted by increasing numbers of people for the environmental-friendly advantages. A novel way to charge the electric vehicles is through wireless power transfer (WPT). The wireless power transfer is a high power transfer system. The high currents flowing through the transmitter and receiver coils increasing temperature affects the safety of person and charging equipment. As a result, temperature measurement for wireless power transfer is needed. In this paper, a temperature measurement system based on optical fiber temperature sensors for electric vehicle wireless power transfer is proposed. Initially, the thermal characteristics of the wireless power transfer system are studied and the advantages of optical fiber sensors are analyzed. Then the temperature measurement system based on optical fiber temperature sensor is designed. The system consists of optical subsystem, data acquisition subsystem and data processing subsystem. Finally, the system is tested and the experiment result shows that the system can realize 1°C precision and can acquire real-time temperature distribution of the coils, which can meet the requirement of the temperature measuring for wireless power transfer.
Highway vehicle electric drive in the United States : 2009 status and issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santini, D. J.; Energy Systems
2011-02-16
The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drivemore » are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.« less
Design of digital load torque observer in hybrid electric vehicle
NASA Astrophysics Data System (ADS)
Sun, Yukun; Zhang, Haoming; Wang, Yinghai
2008-12-01
In hybrid electric vehicle, engine begain to work only when motor was in high speed in order to decrease tail gas emission. However, permanent magnet motor was sensitive to its load, adding engine to the system always made its speed drop sharply, which caused engine to work in low efficiency again and produced much more environment pollution. Dynamic load torque model of permanent magnet synchronous motor is established on the basic of motor mechanical equation and permanent magnet synchronous motor vector control theory, Full- digital load torque observer and compensation control system is made based on TMS320F2407A. Experiment results prove load torque observer and compensation control system can detect and compensate torque disturbing effectively, which can solve load torque disturbing and decrease gas pollution of hybrid electric vehicle.
Slot Optimization Design of Induction Motor for Electric Vehicle
NASA Astrophysics Data System (ADS)
Shen, Yiming; Zhu, Changqing; Wang, Xiuhe
2018-01-01
Slot design of induction motor has a great influence on its performance. The RMxprt module based on magnetic circuit method can be used to analyze the influence of rotor slot type on motor characteristics and optimize slot parameters. In this paper, the authors take an induction motor of electric vehicle for a typical example. The first step of the design is to optimize the rotor slot by RMxprt, and then compare the main performance of the motor before and after the optimization through Ansoft Maxwell 2D. After that, the combination of optimum slot type and the optimum parameters are obtained. The results show that the power factor and the starting torque of the optimized motor have been improved significantly. Furthermore, the electric vehicle works at a better running status after the optimization.
Electric and Hybrid Vehicle Technology: TOPTEC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-01
Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance ofmore » today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.« less
Electric and Hybrid Vehicle Technology: TOPTEC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance ofmore » today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.« less
Electric and hybrid vehicle technology: TOPTEC
NASA Astrophysics Data System (ADS)
Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between 'refueling' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of 'Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.
Physics-of-Failure Approach to Prognostics
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan S.
2017-01-01
As more and more electric vehicles emerge in our daily operation progressively, a very critical challenge lies in accurate prediction of the electrical components present in the system. In case of electric vehicles, computing remaining battery charge is safety-critical. In order to tackle and solve the prediction problem, it is essential to have awareness of the current state and health of the system, especially since it is necessary to perform condition-based predictions. To be able to predict the future state of the system, it is also required to possess knowledge of the current and future operations of the vehicle. In this presentation our approach to develop a system level health monitoring safety indicator for different electronic components is presented which runs estimation and prediction algorithms to determine state-of-charge and estimate remaining useful life of respective components. Given models of the current and future system behavior, the general approach of model-based prognostics can be employed as a solution to the prediction problem and further for decision making.
Cost-effective electric vehicle charging infrastructure siting for Delhi
NASA Astrophysics Data System (ADS)
Sheppard, Colin J. R.; Gopal, Anand R.; Harris, Andrew; Jacobson, Arne
2016-06-01
Plug-in electric vehicles (PEVs) represent a substantial opportunity for governments to reduce emissions of both air pollutants and greenhouse gases. The Government of India has set a goal of deploying 6-7 million hybrid and PEVs on Indian roads by the year 2020. The uptake of PEVs will depend on, among other factors like high cost, how effectively range anxiety is mitigated through the deployment of adequate electric vehicle charging stations (EVCS) throughout a region. The Indian Government therefore views EVCS deployment as a central part of their electric mobility mission. The plug-in electric vehicle infrastructure (PEVI) model—an agent-based simulation modeling platform—was used to explore the cost-effective siting of EVCS throughout the National Capital Territory (NCT) of Delhi, India. At 1% penetration in the passenger car fleet, or ˜10 000 battery electric vehicles (BEVs), charging services can be provided to drivers for an investment of 4.4 M (or 440/BEV) by siting 2764 chargers throughout the NCT of Delhi with an emphasis on the more densely populated and frequented regions of the city. The majority of chargers sited by this analysis were low power, Level 1 chargers, which have the added benefit of being simpler to deploy than higher power alternatives. The amount of public infrastructure needed depends on the access that drivers have to EVCS at home, with 83% more charging capacity required to provide the same level of service to a population of drivers without home chargers compared to a scenario with home chargers. Results also depend on the battery capacity of the BEVs adopted, with approximately 60% more charging capacity needed to achieve the same level of service when vehicles are assumed to have 57 km versus 96 km of range.
Muratori, Matteo (ORCID:0000000316886742)
2017-06-15
This data set is provided in support of a forthcoming paper: "Impact of uncoordinated plug-in electric vehicle charging on residential power demand," [1]. These files include electricity demand profiles for 200 households randomly selected among the ones available in the 2009 RECS data set for the Midwest region of the United States. The profiles have been generated using the modeling proposed by Muratori et al. [2], [3], that produces realistic patterns of residential power consumption, validated using metered data, with a resolution of 10 minutes. Households vary in size and number of occupants and the profiles represent total electricity use, in watts. The files also include in-home plug-in electric vehicle recharging profiles for 348 vehicles associated with the 200 households assuming both Level 1 (1920 W) and Level 2 (6600 W) residential charging infrastructure. The vehicle recharging profiles have been generated using the modeling proposed by Muratori et al. [4], that produces real-world recharging demand profiles, with a resolution of 10 minutes. [1] M. Muratori, "Impact of uncoordinated plug-in electric vehicle charging on residential power demand." Forthcoming. [2] M. Muratori, M. C. Roberts, R. Sioshansi, V. Marano, and G. Rizzoni, "A highly resolved modeling technique to simulate residential power demand," Applied Energy, vol. 107, no. 0, pp. 465 - 473, 2013. [3] M. Muratori, V. Marano, R. Sioshansi, and G. Rizzoni, "Energy consumption of residential HVAC systems: a simple physically-based model," in 2012 IEEE Power and Energy Society General Meeting. San Diego, CA, USA: IEEE, 22-26 July 2012. [4] M. Muratori, M. J. Moran, E. Serra, and G. Rizzoni, "Highly-resolved modeling of personal transportation energy consumption in the United States," Energy, vol. 58, no. 0, pp. 168-177, 2013.
AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
2015-06-01
Collect and evaluate data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization Study. The Advanced Vehicle Testing Activity study seeks to collect and evaluate data to validate the utilization of advanced plug-in electric vehicle (PEV) transportation. This report summarizes the fleets studied to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a batterymore » electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.« less
Alternative Fuels Data Center: Lamoille Valley Ford Is #1 for Electric
Vehicle Sales in Vermont Lamoille Valley Ford Is #1 for Electric Vehicle Sales in Vermont to someone by E-mail Share Alternative Fuels Data Center: Lamoille Valley Ford Is #1 for Electric Vehicle Electric Vehicle Sales in Vermont on Twitter Bookmark Alternative Fuels Data Center: Lamoille Valley Ford
Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin
2013-01-01
Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles in low-carbon transport.
ELECTRIC AND MAGNETIC FIELDS <100 KHZ IN ELECTRIC AND GASOLINE-POWERED VEHICLES.
Tell, Richard A; Kavet, Robert
2016-12-01
Measurements were conducted to investigate electric and magnetic fields (EMFs) from 120 Hz to 10 kHz and 1.2 to 100 kHz in 9 electric or hybrid vehicles and 4 gasoline vehicles, all while being driven. The range of fields in the electric vehicles enclosed the range observed in the gasoline vehicles. Mean magnetic fields ranged from nominally 0.6 to 3.5 µT for electric/hybrids depending on the measurement band compared with nominally 0.4 to 0.6 µT for gasoline vehicles. Mean values of electric fields ranged from nominally 2 to 3 V m -1 for electric/hybrid vehicles depending on the band, compared with 0.9 to 3 V m -1 for gasoline vehicles. In all cases, the fields were well within published exposure limits for the general population. The measurements were performed with Narda model EHP-50C/EHP-50D EMF analysers that revealed the presence of spurious signals in the EHP-50C unit, which were resolved with the EHP-50D model. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Pan, Chaofeng; Dai, Wei; Chen, Liao; Chen, Long; Wang, Limei
2017-10-01
With the impact of serious environmental pollution in our cities combined with the ongoing depletion of oil resources, electric vehicles are becoming highly favored as means of transport. Not only for the advantage of low noise, but for their high energy efficiency and zero pollution. The Power battery is used as the energy source of electric vehicles. However, it does currently still have a few shortcomings, noticeably the low energy density, with high costs and short cycle life results in limited mileage compared with conventional passenger vehicles. There is great difference in vehicle energy consumption rate under different environment and driving conditions. Estimation error of current driving range is relatively large due to without considering the effects of environmental temperature and driving conditions. The development of a driving range estimation method will have a great impact on the electric vehicles. A new driving range estimation model based on the combination of driving cycle identification and prediction is proposed and investigated. This model can effectively eliminate mileage errors and has good convergence with added robustness. Initially the identification of the driving cycle is based on Kernel Principal Component feature parameters and fuzzy C referring to clustering algorithm. Secondly, a fuzzy rule between the characteristic parameters and energy consumption is established under MATLAB/Simulink environment. Furthermore the Markov algorithm and BP(Back Propagation) neural network method is utilized to predict the future driving conditions to improve the accuracy of the remaining range estimation. Finally, driving range estimation method is carried out under the ECE 15 condition by using the rotary drum test bench, and the experimental results are compared with the estimation results. Results now show that the proposed driving range estimation method can not only estimate the remaining mileage, but also eliminate the fluctuation of the residual range under different driving conditions.
Alternative Fuels Data Center: Electric Vehicles Charge up at State Parks
with free electric vehicle charging. For information about this project, contact State of West Virginia Vehicle Charging Aug. 4, 2017 Photo of a car Johnson Space Center Explores Alternative Fuel Vehicles May 19, 2017 Photo of a car. Electric Vehicle Charging Network Expands at National Parks May 11, 2017
US Department of Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing
NASA Astrophysics Data System (ADS)
Karner, Donald; Francfort, James
The advanced vehicle testing activity (AVTA), part of the US Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modelling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full-size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and internal combustion engine vehicles powered by hydrogen. Currently, the AVTA is conducting a significant evaluation of hybrid electric vehicles (HEVs) produced by major automotive manufacturers. The results are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the 'real world' performance of their hybrid energy systems, particularly the battery. The initial fuel economy of these vehicles has typically been less than that determined by the manufacturer and also varies significantly with environmental conditions. Nevertheless, the fuel economy and, therefore, battery performance, has remained stable over the life of a given vehicle (160 000 miles).
Exploring Propulsion System Requirements for More and All-Electric Helicopters
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2015-01-01
Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as vehicles, missions and systems identified that are best suited to take advantage of their unique characteristics.
Exploring Propulsion System Requirements for More and All-Electric Helicopters
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2015-01-01
Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as identify vehicles, missions and systems that are best suited to take advantage of their unique characteristics.
None
2018-03-02
This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/
Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric
AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles electricity to improve fuel efficiency. Pre-Owned Vehicles Learn about buying and selling pre-owned and plug-in electric vehicles. Learn more about the benefits and considerations of electricity as a
Assessment of the Electrification of the Road Transport Sector on Net System Emissions
NASA Astrophysics Data System (ADS)
Miller, James
As worldwide environmental consciousness grows, electric vehicles (EVs) are becoming more common and despite the incredible potential for emissions reduction, the net emissions of the power system supply side plus the transportation system are dependent on the generation matrix. Current EV charging patterns tend to correspond directly with the peak consumption hours and have the potential to increase demand sharply allowing for only a small penetration of Electric Vehicles. Using the National Household Travel Survey (NHTS) data a model is created for vehicle travel patterns using trip chaining. Charging schemes are modeled to include uncontrolled residential, uncontrolled residential/industrial charging, optimized charging and optimized charging with vehicle to grid discharging. A charging profile is then determined based upon the assumption that electric vehicles would directly replace a percentage of standard petroleum-fueled vehicles in a known system. Using the generation profile for the specified region, a unit commitment model is created to establish not only the generation dispatch, but also the net CO2 profile for variable EV penetrations and charging profiles. This model is then used to assess the impact of the electrification of the road transport sector on the system net emissions.
Evolution of Automotive Chopper Circuits Towards Ultra High Efficiency and Power Density
NASA Astrophysics Data System (ADS)
Pavlovsky, Martin; Tsuruta, Yukinori; Kawamura, Atsuo
Automotive industry is considered to be one of the main contributors to environmental pollution and global warming. Therefore, many car manufacturers are in near future planning to introduce hybrid electric vehicles (HEV), fuel cell electric vehicles (FCEV) and pure electric vehicles (EV) to make our cars more environmentally friendly. These new vehicles require highly efficient and small power converters. In recent years, considerable improvements were made in designing such converters. In this paper, an approach based on so called Snubber Assisted Zero Voltage and Zero Current Switching topology otherwise also known as SAZZ is presented. This topology has evolved to be one of the leaders in the field of highly efficient converters with high power densities. Evolution and main features of this topology are briefly discussed. Capabilities of the topology are demonstrated on two case study prototypes based on different design approaches. The prototypes are designed to be fully bi-directional for peak power output of 30kW. Both designs reached efficiencies close to 99% in wide load range. Power densities over 40kW/litre are attainable in the same time. Combination of MOSFET technology and SAZZ topology is shown to be very beneficial to converters designed for EV applications.
Fuel consumption optimization for smart hybrid electric vehicle during a car-following process
NASA Astrophysics Data System (ADS)
Li, Liang; Wang, Xiangyu; Song, Jian
2017-03-01
Hybrid electric vehicles (HEVs) provide large potential to save energy and reduce emission, and smart vehicles bring out great convenience and safety for drivers. By combining these two technologies, vehicles may achieve excellent performances in terms of dynamic, economy, environmental friendliness, safety, and comfort. Hence, a smart hybrid electric vehicle (s-HEV) is selected as a platform in this paper to study a car-following process with optimizing the fuel consumption. The whole process is a multi-objective optimal problem, whose optimal solution is not just adding an energy management strategy (EMS) to an adaptive cruise control (ACC), but a deep fusion of these two methods. The problem has more restricted conditions, optimal objectives, and system states, which may result in larger computing burden. Therefore, a novel fuel consumption optimization algorithm based on model predictive control (MPC) is proposed and some search skills are adopted in receding horizon optimization to reduce computing burden. Simulations are carried out and the results indicate that the fuel consumption of proposed method is lower than that of the ACC+EMS method on the condition of ensuring car-following performances.
Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission
NASA Technical Reports Server (NTRS)
Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.
2014-01-01
Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.
Active Removal of Large Debris: Electrical Propulsion Capabilities
NASA Astrophysics Data System (ADS)
Billot Soccodato, Carole; Lorand, Anthony; Perrin, Veronique; Couzin, Patrice; FontdecabaBaig, Jordi
2013-08-01
The risk for current operational spacecraft or future market induced by large space debris, dead satellites or rocket bodies, in Low Earth Orbit has been identified several years ago. Many potential solutions and architectures are traded with a main objective of reducing cost per debris. Based on cost consideration, specially driven by launch cost, solutions constructed on multi debris capture capacities seem to be much affordable The recent technologic evolutions in electric propulsion and solar power generation can be used to combine high potential vehicles for debris removal. The present paper reports the first results of a study funded by CNES that addresses full electric solutions for large debris removal. Some analysis are currently in progress as the study will end in August. It compares the efficiency of in-orbit Active Removal of typical debris using electric propulsion The electric engine performances used in this analysis are demonstrated through a 2012/2013 PPS 5000 on-ground tests campaign. The traded missions are based on a launch in LEO, the possible vehicle architectures with capture means or contact less, the selection of deorbiting or reorbiting strategy. For contact less strategy, the ion-beam shepherd effect towards the debris problematic will be addressed. Vehicle architecture and performance of the overall system will be stated, showing the adequacy and the limits of each solution.
20. Photocopy of drawing (1961 mechanical drawing by Kaiser Engineers) ...
20. Photocopy of drawing (1961 mechanical drawing by Kaiser Engineers) ELECTRICAL LAYOUTS FOR VEHICLE SUPPORT BUILDING, SHEET E-2 - Vandenberg Air Force Base, Space Launch Complex 3, Vehicle Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Response of lead-acid batteries to chopper-controlled discharge. [for electric vehicles
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1978-01-01
The results of tests on an electric vehicle battery, using a simulated electric vehicle chopper-speed controller, show energy output losses up to 25 percent compared to constant current discharges at the same average current of 100 A. However, an energy output increase of 22 percent is noticed at the 200 A average level and 44 percent increase at the 300 A level using pulse discharging. Because of these complex results, electric vehicle battery/speed controller interactions must be considered in vehicle design.
A PEMFC hybrid electric vehicle real time control system
NASA Astrophysics Data System (ADS)
Sun, Hongqiao
In recent years, environmental friendly technologies and alternative energy solutions have drawn a lot of public attentions due to global energy crisis and pollution issues. Fuel cell (FC), a technology invented almost at the same time as the internal combustion (IC) engine, is now the focus of the automotive industry again. The fuel cell vehicle (FCV) has zero emission and its efficiency is significantly higher than the conventional IC engine power vehicles. Among a variety of FCV technologies, proton exchange membrane (PEM) FC vehicle appears to be far more attractive and mature. The prototype PEMFC vehicle has been developed and demonstrated to the public by nearly all the major automotive manufacturers in recent years. However, to the interest of the public research, publications and documentations on the PEMFC vehicle technology are rarely available due to its proprietary nature, which essentially makes it a secured technology. This dissertation demonstrates a real world application of a PEMFC hybrid electric vehicle. Through presenting the vehicle design concept, developing the real time control system and generating generic operation principles, this dissertation targets at establishing the public knowledge base on this new technology. A complete PEMFC hybrid electric vehicle design, including vehicle components layout, process flow diagram, real time control system architecture, subsystem structures and control algorithms, is presented in order to help understand the whole vehicle system. The design concept is validated through the vehicle demonstration. Generic operating principles are established along with the validation process, which helps populate this emerging technology. Thereafter, further improvements and future research directions are discussed.
40 CFR 1037.150 - Interim provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... earlier model years for electric vehicles) to the greenhouse gas standards of this part. (1) This... for any vehicles other than electric vehicles, you must certify your entire U.S.-directed production... electric vehicles, you must certify your entire U.S.-directed production volume within the regulatory sub...
40 CFR 1037.150 - Interim provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... earlier model years for electric vehicles) to the greenhouse gas standards of this part. (1) This... for any vehicles other than electric vehicles, you must certify your entire U.S.-directed production... electric vehicles, you must certify your entire U.S.-directed production volume within the regulatory sub...
77 FR 64379 - Proposed Collection; Comment Request for Notice 2009-58
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-19
... Notice 2009-58, Manufacturers' Certification of Specified Plug-in Electric Vehicles. DATES: Written... Electric Vehicles. OMB Number: 1545-2150. Notice Number: Notice 2009-58. Abstract: The American Recovery... certain new specified plug-in electric drive vehicles. This notice provides procedures for a vehicle...
EMI Measurement and Mitigation Testing for the ARPA Hybrid Electric Vehicle Program
1996-08-27
communication range is reduced, computers malfunction, or monitoring systems fail. Various electric vehicles ( EVs ) were measured to evaluate their...electric vehicles ( EVs ) were measured to evaluate their potential EMI emissions when used in today’s hostile commercial electromagnetic environment...monitoring systems fail. Various electric vehicles ( EVs ) were measured to evaluate their potential EMI emissions when used in today’s hostile commercial
Lv, Chen; Liu, Yahui; Hu, Xiaosong; Guo, Hongyan; Cao, Dongpu; Wang, Fei-Yue
2017-08-22
As a typical cyber-physical system (CPS), electrified vehicle becomes a hot research topic due to its high efficiency and low emissions. In order to develop advanced electric powertrains, accurate estimations of the unmeasurable hybrid states, including discrete backlash nonlinearity and continuous half-shaft torque, are of great importance. In this paper, a novel estimation algorithm for simultaneously identifying the backlash position and half-shaft torque of an electric powertrain is proposed using a hybrid system approach. System models, including the electric powertrain and vehicle dynamics models, are established considering the drivetrain backlash and flexibility, and also calibrated and validated using vehicle road testing data. Based on the developed system models, the powertrain behavior is represented using hybrid automata according to the piecewise affine property of the backlash dynamics. A hybrid-state observer, which is comprised of a discrete-state observer and a continuous-state observer, is designed for the simultaneous estimation of the backlash position and half-shaft torque. In order to guarantee the stability and reachability, the convergence property of the proposed observer is investigated. The proposed observer are validated under highly dynamical transitions of vehicle states. The validation results demonstrates the feasibility and effectiveness of the proposed hybrid-state observer.
Accounting for electric vehicles in air quality conformity \\0x2012 final report.
DOT National Transportation Integrated Search
2014-12-01
Electric vehicles (EVs) obtain at least a part of the energy required for their propulsion from electricity. The : market for EVs, including hybrid, plug-in hybrid, and battery electric vehicles continues to grow, as many : new and affordable models ...
Solar-electric-propulsion cargo vehicles for split/sprint Mars mission
NASA Technical Reports Server (NTRS)
Callaghan, Christopher E.; Crowe, Michael D.; Swis, Matthew J.; Mickney, Marcus R.; Montgomery, C. Keith; Walters, Robert; Thoden, Scott
1991-01-01
In support of the proposed exploration of Mars, an unmanned cargo ferry SEMM1 (Solar Electric Mars Mission) was designed. The vehicle is based on solar electric propulsion, and required to transport a cargo of 61,000 kg. The trajectory is a combination of spirals; first, out from LEO, then around the sun, then spiral down to low Mars orbit. The spacecraft produces 3.03 MWe power using photovoltaic flexible blanket arrays. Ion thrusters using argon as a propellant were selected to drive the ship, providing about 60 Newtons of thrust in low Earth orbit. The configuration is based on two long truss beams to which the 24 individual, self-deployable, solar arrays are attached. The main body module supports the two beams and houses the computers, electrical, and control equipment. The thruster module is attached to the rear of the main body, and the cargo to the front.
NASA Astrophysics Data System (ADS)
Hamilton, J. A.; Rand, D. A. J.
1983-03-01
A test rig has been designed and constructed to examine the performance of batteries under laboratory conditions that simulate the power characteristics of electric vehicles. Each station in the rig subjects a battery to continuous charge/discharge cycles, with an equalising charge every eighth cycle. The battery discharge follows the current-verse-time profile of a given vehicle operating under a driving schedule normal to road service. The test rig allows both smooth- and pulsed-current discharge to be investigated. Data collection is accomplished either with multi-pen recorders or with a computer-based information logger.
Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles
Data Center: Plug-In Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity other propulsion source. Using electricity from the grid to run the vehicle some or all of the time levels of emissions, depending on the electricity source. There are several light-duty PHEVs commercially
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-31
... infrastructure, nonroad equipment, and emerging technologies related to those electric drive vehicles. As... for investment in an emerging technology relating to any'' of the enumerated electric drive vehicles... Fuel Transportation Program (AFTP or Program), by including EISA-specified electric drive vehicles and...
40 CFR 86.1816-18 - Emission standards for heavy-duty vehicles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... as specified in this section. (4) Measure emissions from hybrid electric vehicles (including plug-in hybrid electric vehicles) as described in 40 CFR part 1066, subpart F, except that these procedures do not apply for plug-in hybrid electric vehicles during charge-depleting operation. (b) Tier 3 exhaust...
40 CFR 1037.150 - Interim provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... earlier model years for electric vehicles) to the greenhouse gas standards of this part. (1) This... for any vehicles other than electric vehicles, you must certify your entire U.S.-directed production... electric vehicles, you must certify your entire U.S.-directed fleet to these standards. If you calculate a...
Battery Test Manual For Plug-In Hybrid Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey R. Belt
2010-09-01
This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the proceduresmore » and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.« less
Battery Test Manual For Plug-In Hybrid Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey R. Belt
2010-12-01
This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the proceduresmore » and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, Gene; Lustbader, Jason Aaron
The National Renewable Energy Laboratory's (NREL's) CoolSim MATLAB/Simulink modeling framework was used to explore control strategies for an electric vehicle combined loop system. Three system variants of increased complexity and efficiency were explored: a glycol-based positive temperature coefficient heater (PTC), PTC with power electronics and electric motor (PEEM) waste heat recovery, and PTC with PEEM waste heat recovery plus heat pump versions. Additionally, the benefit of electric motor preheating was considered. A two-level control strategy was developed where the mode selection and component control were treated separately. Only the parameters typically available by vehicle sensors were used to control themore » system. The control approach included a mode selection algorithm and controllers for the compressor speed, cabin blower flow rate, coolant flow rate, and the front-end heat exchanger coolant bypass rate. The electric motor was bypassed by the cooling circuit until its temperature exceeded the coolant inlet temperature. The impact of these thermal systems on electric vehicle range during warmup was simulated for the Urban Dynamometer Driving Schedule (UDDS) and Highway Fuel Economy Test (HWFET2X) drive cycles weighted 45%/55% respectively. A range of ambient temperatures from -20 degrees C to +20 degrees C was considered. NREL's Future Automotive Systems Technology Simulator (FASTSim) vehicle modeling tool showed up to a 10.9% improvement in range for the full system over the baseline during warmup from cold soak. The full system with preheat showed up to 17% improvement in range.« less
Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.
2014-12-30
Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozonemore » (O 3) and fine particulate matter (PM 2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.« less
Hill, Jason D.; Marshall, Julian D.
2014-01-01
Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles. PMID:25512510
User experience with on-road electric vehicles in the U.S.A. and Canada
NASA Technical Reports Server (NTRS)
Sandberg, J. J.; Leschly, K.
1978-01-01
Approximately 3000 on-road electric passenger cars and delivery vans are now in use in the U.S.A. and Canada. The owners and operators of almost one-third of these vehicles have been surveyed directly in an attempt to determine the suitability of commercially sold electric vehicles for real on-road jobs. This paper is primarily concerned with the analysis of the engineering aspects of the user experience with electric vehicles, i.e., mileage and application, failure modes and rates, energy economy, maintenance requirements, life cycle costs, and vehicle performance characteristics. It is concluded that existing electric vehicles can perform satisfactorily in applications that have limited performance requirements, particularly in terms of range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castello, Charles C
This research presents a comparison of two control systems for peak load shaving using local solar power generation (i.e., photovoltaic array) and local energy storage (i.e., battery bank). The purpose is to minimize load demand of electric vehicle supply equipment (EVSE) on the electric grid. A static and dynamic control system is compared to decrease demand from EVSE. Static control of the battery bank is based on charging and discharging to the electric grid at fixed times. Dynamic control, with 15-minute resolution, forecasts EVSE load based on data analysis of collected data. In the proposed dynamic control system, the sigmoidmore » function is used to shave peak loads while limiting scenarios that can quickly drain the battery bank. These control systems are applied to Oak Ridge National Laboratory s (ORNL) solar-assisted electric vehicle (EV) charging stations. This installation is composed of three independently grid-tied sub-systems: (1) 25 EVSE; (2) 47 kW photovoltaic (PV) array; and (3) 60 kWh battery bank. The dynamic control system achieved the greatest peak load shaving, up to 34% on a cloudy day and 38% on a sunny day. The static control system was not ideal; peak load shaving was 14.6% on a cloudy day and 12.7% on a sunny day. Simulations based on ORNL data shows solar-assisted EV charging stations combined with the proposed dynamic battery control system can negate up to 89% of EVSE load demand on sunny days.« less
Vehicle test report: Electric Vehicle Associates electric conversion of an AMC Pacer
NASA Technical Reports Server (NTRS)
Price, T. W.; Wirth, V. A., Jr.; Pompa, M. F.
1981-01-01
Tests were performed to characterize certain parameters of the EVA Pacer and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem; i.e., the batteries, controller and motor. The tests included coastdowns to characterize the road load, and range evaluations for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle's performance was made by comparing its constant speed range performance with other electric and hybrid vehicles. The Pacer performance was approximately equal to the majority of those vehicles assessed in 1977.
NASA Technical Reports Server (NTRS)
1979-01-01
The relative attractiveness of various hybrid/electric power train configurations and electrical and mechanical drive-line components was studied. The initial screening was concerned primarily with total vehicle weight and economic factors and identified the hybrid power train combinations which warranted detailed evaluation over various driving cycles. This was done using a second-by-second vehicle simulation program which permitted the calculations of fuel economy, electricity usage, and emissions as a function of distance traveled in urban and highway driving. Power train arrangement possibilities were examined in terms of their effect on vehicle handling, safety, serviceability, and passenger comfort. A dc electric drive system utilizing a separately excited motor with field control and battery switching was selected for the near term hybrid vehicle. Hybrid vehicle simulations showed that for the first 30 mi (the electric range of the vehicle) in urban driving, the fuel economy was 80 mpg using a gasoline engine and 100 mpg using a diesel engine. In urban driving the hybrid would save about 75% of the fuel used by the conventional vehicle and in combined urban/highway driving the fuel saving is about 50%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sears, Edward B; Daley, Ryan; Helm, Matthew
The University of Connecticut (UCONN) is exploring the possibility of adding electric vehicles (EVs) - including battery electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), or both - to its vehicle fleet. This report presents results of the UCONN fleet EV Suitability pilot program and offers recommendations for transitioning fleet vehicles to EVs as well as implementing adequate charging infrastructure.
Going Green with Electric Vehicles
ERIC Educational Resources Information Center
Deal, Walter F., III
2010-01-01
There is considerable interest in electric and hybrid cars because of environmental and climate change concerns, tougher fuel efficiency standards, and increasing dependence on imported oil. In this article, the author describes the history of electric vehicles in the automotive world and discusses the components of a hybrid electric vehicle.…
Alternative Fuels Data Center: Electricity
efficiency. Using electricity to power vehicles can have significant energy security and emissions benefits . Icon of an information sign. Basics Find information about using electricity as a vehicle fuel Considerations Explore the benefits and considerations of using electricity as a vehicle fuel. Icon of a fueling
Electric and Plug-In Hybrid Electric Vehicle Publications | Transportation
, Kandler Smith, and Kevin Walkowicz. (2016) Medium-Duty Plug-in Electric Delivery Truck Fleet Evaluation . (2014) Smith Newton Electric Delivery Trucks Smith Newton Vehicle Performance Evaluation (Gen 1 ), Cumulative Report: November 2011-June 2014. Adam Ragatz. (2014) Smith Newton Vehicle Performance Evaluation
10 CFR 474.4 - Test procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.4 Test procedures. (a) The electric vehicle energy... required for testing the energy consumption of electric vehicles. ...
10 CFR 474.4 - Test procedures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.4 Test procedures. (a) The electric vehicle energy... required for testing the energy consumption of electric vehicles. ...
10 CFR 474.4 - Test procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.4 Test procedures. (a) The electric vehicle energy... required for testing the energy consumption of electric vehicles. ...
10 CFR 474.4 - Test procedures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.4 Test procedures. (a) The electric vehicle energy... required for testing the energy consumption of electric vehicles. ...
Electrically heated particulate filter regeneration methods and systems for hybrid vehicles
Gonze, Eugene V.; Paratore, Jr., Michael J.
2010-10-12
A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.
1997-02-01
each battery module. Certain aspects of the effort were successful, however an overriding material compatibility problem caused SETC to halt use of...training program was approved by personnel responsible for safety on base. The main problems with the City-el were the three wheeled design, low...speed of the vehicle was perceived as a significantly bigger problem than its 20 mile range. The need for two seats was mentioned mostly by people who
Combined braking system for hybrid vehicle
NASA Astrophysics Data System (ADS)
Kulekina, A. V.; Bakholdin, P. A.; Shchurov, N. I.
2017-10-01
The paper presents an analysis of surface vehicle’s existing braking systems. The technical solution and brake-system design were developed for use of regenerative braking energy. A technical parameters comparison of energy storage devices of various types was made. Based on the comparative analysis, it was decided to use supercapacitor because of its applicability for an electric drive intermittent operation. The calculation methods of retarder key components were proposed. Therefrom, it was made a conclusion that rebuild gasoline-electric vehicles are more efficient than gasoline ones.
Modeling of Thermoelectric Generator Power Characteristics for Motorcycle-Type Engines
NASA Astrophysics Data System (ADS)
Osipkov, Alexey; Poshekhonov, Roman; Arutyunyan, Georgy; Basov, Andrey; Safonov, Roman
2017-10-01
Thermoelectric generation in vehicles such as motorcycles, all-terrain vehicles, and snowmobiles opens the possibility of additional electrical energy generation by means of exhaust heat utilization. This is beneficial because replacing the mechanical generator used in such vehicles with a more powerful one in cases of electrical power deficiency is impossible. This paper proposes a calculation model for the thermoelectric generator (TEG) operational characteristics of the low-capacity internal combustion engines used in these vehicles. Two TEG structures are considered: (1) TEG with air cooling and (2) TEG with water cooling. Modeling consists of two calculation stages. In the first stage, the heat exchange coefficients of the hot and cold exchangers are determined using computational fluid dynamics. In the second stage, the TEG operational characteristics are modeled based on the nonlinear equations of the heat transfer and power balance. On the basis of the modeling results, the dependence of the TEG's major operating characteristics (such as the electrical power generated by the TEG and its efficiency and mass) on operating conditions or design parameters is determined. For example, the electrical power generated by a TEG for a Yamaha WR450F motorcycle engine with a volume of 0.449 × 10-3 m3 was calculated to be as much as 100 W. Use of the TEG arrangements proposed is justified by the additional electrical power generation for small capacity vehicles, without the need for internal combustion engine redesign.
NASA Astrophysics Data System (ADS)
Sakti, Apurba; Michalek, Jeremy J.; Fuchs, Erica R. H.; Whitacre, Jay F.
2015-01-01
We conduct a techno-economic analysis of Li-ion NMC-G prismatic pouch battery and pack designs for electric vehicle applications. We develop models of power capability and manufacturing operations to identify the minimum cost cell and pack designs for a variety of plug-in hybrid electric vehicle (PHEV) and battery electric vehicle (BEV) requirements. We find that economies of scale in battery manufacturing are reached quickly at a production volume of ∼200-300 MWh annually. Increased volume does little to reduce unit costs, except potentially indirectly through factors such as experience, learning, and innovation. We also find that vehicle applications with larger energy requirements are able to utilize cheaper cells due in part to the use of thicker electrodes. The effect on cost can be substantial. In our base case, we estimate pack-level battery production costs of ∼545 kWh-1 for a PHEV with a 10 mile (16 km) all-electric range (PHEV10) and ∼230 kWh-1 for a BEV with a 200 mile (320 km) all-electric range (BEV200). This 58% reduction, from 545 kWh-1 to 230 kWh-1, is a larger effect than the uncertainty represented by our optimistic and pessimistic scenarios. Electrodes thicker than about 100 or 125 microns are not currently used in practice due to manufacturing and durability concerns, but relaxing this constraint could further lower the cost of larger capacity BEV200 packs by up to an additional 8%.
Goonan, Thomas G.
2012-01-01
Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.
Alternative Fuels Data Center: Innovations Improve Electric Vehicle
Charging InfrastructureA> Innovations Improve Electric Vehicle Charging Infrastructure to someone Magazine Provided by Maryland Public Television Related Videos Photo of a car Electric Vehicles Charge up at State Parks in West Virginia Dec. 9, 2017 Photo of a car Hydrogen Powers Fuel Cell Vehicles in
Delucchi, M A; Yang, C; Burke, A F; Ogden, J M; Kurani, K; Kessler, J; Sperling, D
2014-01-13
Concerns about climate change, urban air pollution and dependence on unstable and expensive supplies of foreign oil have led policy-makers and researchers to investigate alternatives to conventional petroleum-fuelled internal-combustion-engine vehicles in transportation. Because vehicles that get some or all of their power from an electric drivetrain can have low or even zero emissions of greenhouse gases (GHGs) and urban air pollutants, and can consume little or no petroleum, there is considerable interest in developing and evaluating advanced electric vehicles (EVs), including pure battery-electric vehicles, plug-in hybrid electric vehicles and hydrogen fuel-cell electric vehicles. To help researchers and policy-makers assess the potential of EVs to mitigate climate change and reduce petroleum use, this paper discusses the technology of EVs, the infrastructure needed for their development, impacts on emissions of GHGs, petroleum use, materials use, lifetime costs, consumer acceptance and policy considerations.
Control system and method for a hybrid electric vehicle
Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava
2001-01-01
A vehicle system controller (20) is presented for a LSR parallel hybrid electric vehicle having an engine (10), a motor (12), wheels (14), a transmission (16) and a battery (18). The vehicle system controller (20) has a state machine having a plurality of predefined states (22-32) that represent operating modes for the vehicle. A set of rules is defined for controlling the transition between any two states in the state machine. The states (22-32) are prioritized according to driver demands, energy management concerns and system fault occurrences. The vehicle system controller (20) controls the transitions from a lower priority state to a higher priority state based on the set of rules. In addition, the vehicle system controller (20) will control a transition to a lower state from a higher state when the conditions no longer warrant staying in the current state. A unique set of output commands is defined for each state for the purpose of controlling lower level subsystem controllers. These commands serve to achieve the desire vehicle functionality within each state and insure smooth transitions between states.
INL Fleet Vehicle Characterization Study for the U.S. Department of Navy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Brion Dale; Francfort, James Edward; Smart, John Galloway
Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC collected and evaluated data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization Study. The Advanced Vehicle Testing Activity’s study seeks to collect and evaluate data to validate use of advanced plug-in electric vehicle (PEV) transportation. This report focuses on US Department of Navy's fleet to identify daily operational characteristics of select vehicles and report findings onmore » vehicle and mission characterizations to support the successful introduction of PEVs into the agency’s fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.« less
NASA Astrophysics Data System (ADS)
Varnhagen, Scott; Same, Adam; Remillard, Jesse; Park, Jae Wan
2011-03-01
Series plug-in hybrid electric vehicles of varying engine configuration and battery capacity are modeled using Advanced Vehicle Simulator (ADVISOR). The performance of these vehicles is analyzed on the bases of energy consumption and greenhouse gas emissions on the tank-to-wheel and well-to-wheel paths. Both city and highway driving conditions are considered during the simulation. When simulated on the well-to-wheel path, it is shown that the range extender with a Wankel rotary engine consumes less energy and emits fewer greenhouse gases compared to the other systems with reciprocating engines during many driving cycles. The rotary engine has a higher power-to-weight ratio and lower noise, vibration and harshness compared to conventional reciprocating engines, although performs less efficiently. The benefits of a Wankel engine make it an attractive option for use as a range extender in a plug-in hybrid electric vehicle.
Material Damage System and Method for Determining Same
NASA Technical Reports Server (NTRS)
Okojie, Robert (Inventor)
2017-01-01
A system and method for determining a change in a thickness and temperature of a surface of a material are disclosed herein. The system and the method are usable in a thermal protection system of a space vehicle, such as an aeroshell of a space vehicle. The system and method may incorporate micro electric sensors arranged in a ladder network and capacitor strip sensors. Corrosion or ablation causes a change in an electrical property of the sensors. An amount of or rate of the corrosion or the ablation and a temperature of the material is determined based on the change of the electrical property of the sensors.
Encouraging vehicle-to-grid (V2G) participation through premium tariff rates
NASA Astrophysics Data System (ADS)
Richardson, David B.
2013-12-01
The provision of vehicle-to-grid (V2G) services to an electric grid by electric vehicles (EVs) can potentially reduce the cost of vehicle ownership through revenue generation. Recent studies indicate that yearly vehicle profit from V2G may not be sufficient to induce widespread participation. This paper investigates the feasibility of a premium tariff rate for V2G power, similar to current feed-in-tariff (FIT) programs for renewable energy. Using Ontario, Canada as a case study, an hourly time-series model for a fleet of commuter EVs is created. Tariff rates for V2G peak power are calculated based on the same return on investment as the current FIT for renewable energy in Ontario. The tariff rates are competitive with the renewable energy tariffs, especially when EVs are allowed to provide ancillary services to the grid in addition to peak power. Despite the guaranteed rate of return, yearly vehicle profit is low. Two variations are considered to increase vehicle profit, thereby enhancing the attractiveness of V2G. A higher return on investment is favored over direct benefits offered to EV owners. A higher return on investment may be justifiable based on the higher level of risk inherent in V2G when compared to renewable energy.
Preliminary power train design for a state-of-the-art electric vehicle
NASA Technical Reports Server (NTRS)
Ross, J. A.; Wooldridge, G. A.
1978-01-01
The state-of-the-art (SOTA) of electric vehicles built since 1965 was reviewed to establish a base for the preliminary design of a power train for a SOTA electric vehicle. The performance of existing electric vehicles were evaluated to establish preliminary specifications for a power train design using state-of-the-art technology and commercially available components. Power train components were evaluated and selected using a computer simulation of the SAE J227a Schedule D driving cycle. Predicted range was determined for a number of motor and controller combinations in conjunction with the mechanical elements of power trains and a battery pack of sixteen lead-acid batteries - 471.7 kg at 0.093 MJ/Kg (1040 lbs. at 11.7 Whr/lb). On the basis of maximum range and overall system efficiency using the Schedule D cycle, an induction motor and 3 phase inverter/controller was selected as the optimum combination when used with a two-speed transaxle and steel belted radial tires. The predicted Schedule D range is 90.4 km (56.2 mi). Four near term improvements to the SOTA were identified, evaluated, and predicted to increase range approximately 7%.
Supercapacitors for the energy management of electric vehicles
NASA Astrophysics Data System (ADS)
Faggioli, Eugenio; Rena, Piergeorgio; Danel, Veronique; Andrieu, X.; Mallant, Ronald; Kahlen, Hans
The integration of the on-board energy source of an electrically propelled vehicle with a supercapacitor bank (SB) as a peak power unit, can lead to substantial benefits in terms of electric vehicle performances, battery life and energy economy. Different architectures may be envisaged, to be chosen according to technical-economical trade-off. A research activity, supported by the European Community in the frame of the Joule III program and titled `Development of Supercapacitors for Electric Vehicles' (contract JOE3-CT95-0001), has been in progress since the beginning of 1996. The partners involved are SAFT (project leader), Alcatel Alsthom Research (France), Centro Ricerche Fiat (Italy), University of Kaiserslautern (Germany), Danionics (DK) and ECN (Netherlands). Its objective is to develop a SB and its electronic control and to integrate them in two different full-scale traction systems, supplied, respectively, by sealed lead traction batteries and by a fuel cell system. Through the bench tests, it will be possible to evaluate the impact of the SB on both traction systems. In this paper, a project overview will be given; the power management strategy principles, the supercapacitor's control electronic devices, the system's architecture and the supercapacitor's requirements on the base of the simulation results, will be examined.
Chen, Te; Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang
2018-04-20
Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified.
Field Evaluation of Medium-Duty Plug-in Electric Delivery Trucks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prohaska, Robert; Simpson, Mike; Ragatz, Adam
2016-12-01
This report focuses on medium-duty electric delivery vehicles operated by Frito-Lay North America (FLNA) at its Federal Way, Washington, distribution center. The 100% electric drive system is an alternative to conventional diesel delivery trucks and reduces both energy consumption and carbon dioxide (CO2) emissions. The vehicles' drive cycles and operation are analyzed and compared to demonstrate the importance of matching specific electric vehicle (EV) technologies to the appropriate operational duty cycle. The results of this analysis show that the Smith Newton EVs demonstrated a 68% reduction in energy consumption over the data reporting period compared to the conventional diesel vehicles,more » as well as a 46.4% reduction in CO 2 equivalent emissions based on the local energy generation source. In addition to characterizing the in-use performance of the EVs compared to the conventional diesels, detailed facility load data were collected at the main building power feed as well as from each of the 10 EV chargers to better understand the broader implications associated with commercial EV deployment. These facility loads were incorporated into several modeling scenarios to demonstrate the potential benefits of integrating onsite renewables.« less
Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang
2018-01-01
Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified. PMID:29677124
A new smart traffic monitoring method using embedded cement-based piezoelectric sensors
NASA Astrophysics Data System (ADS)
Zhang, Jinrui; Lu, Youyuan; Lu, Zeyu; Liu, Chao; Sun, Guoxing; Li, Zongjin
2015-02-01
Cement-based piezoelectric composites are employed as the sensing elements of a new smart traffic monitoring system. The piezoelectricity of the cement-based piezoelectric sensors enables powerful and accurate real-time detection of the pressure induced by the traffic flow. To describe the mechanical-electrical conversion mechanism between traffic flow and the electrical output of the embedded piezoelectric sensors, a mathematical model is established based on Duhamel’s integral, the constitutive law and the charge-leakage characteristics of the piezoelectric composite. Laboratory tests show that the voltage magnitude of the sensor is linearly proportional to the applied pressure, which ensures the reliability of the cement-based piezoelectric sensors for traffic monitoring. A series of on-site road tests by a 10 tonne truck and a 6.8 tonne van show that vehicle weight-in-motion can be predicted based on the mechanical-electrical model by taking into account the vehicle speed and the charge-leakage property of the piezoelectric sensor. In the speed range from 20 km h-1 to 70 km h-1, the error of the repeated weigh-in-motion measurements of the 6.8 tonne van is less than 1 tonne. The results indicate that the embedded cement-based piezoelectric sensors and associated measurement setup have good capability of smart traffic monitoring, such as traffic flow detection, vehicle speed detection and weigh-in-motion measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim; Nienhueser, Ian
This report focuses on the Grand Canyon National Park (GCNP) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively PEVs) can fulfill the mission requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, R.A.; Downing, B.R.; Pearce, T.C.
The consumption of primary energy by diesel, petrol and electric versions of a light van was compared under high-density urban traffic conditions. The vehicles were driven repeatedly round a 10km route in Central London and measurements of fuel consumption, distance travelled and time were made for each route section. Multiple regression analysis established vehicle sensitivities to variations in average speed, payload, road type, regenerated energy (electric vehicle), kinetic energy, weather and driver. The diesel vehicle used primary energy more efficiently than either the petrol or the electric vehicle over the entire speed range observed, the ratio of energy consumption (diesel:petrol:electric)more » being 100:185:198 at the average speed during the experiment (17.58km/h). The petrol vehicle was more efficient than the electric over most of the speed range, but was less efficient at speeds below about 14km/h. It is concluded that the diesel vehicle is the most efficient for urban delivery duties.« less
Power And Propulsion Systems For Mobile Robotic Applications
NASA Astrophysics Data System (ADS)
Layuan, Li; Haiming, Zou
1987-02-01
Choosing the best power and propulsion systems for mobile robotic land vehicle applications requires consideration of technologies. The electric power requirements for onboard electronic and auxiliary equipment include 110/220 volt 60 Hz ac power as well as low voltage dc power. Weight and power are saved by either direct dc power distribution, or high frequency (20 kHz) ac power distribution. Vehicle control functions are performed electronically but steering, braking and traction power may be distributed electrically, mechanically or by fluid (hydraulic) means. Electric drive is practical, even for small vehicles, provided that advanced electric motors are used. Such electric motors have demonstrated power densities of 3.1 kilowatts per kilogram with devices in the 15 kilowatt range. Electric motors have a lower torque, but higher power density as compared to hydraulic or mechanical transmission systems. Power density being comparable, electric drives were selected to best meet the other requirements for robotic vehicles. Two robotic vehicle propulsion system designs are described to illustrate the implementation of electric drive over a vehicle size range of 250-7500 kilograms.
Project Fever - Fostering Electric Vehicle Expansion in the Rockies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swalnick, Natalia
2013-06-30
Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unificationmore » and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.« less
Luk, Jason M; Kim, Hyung Chul; De Kleine, Robert; Wallington, Timothy J; MacLean, Heather L
2017-08-01
The literature analyzing the fuel saving, life cycle greenhouse gas (GHG) emission, and ownership cost impacts of lightweighting vehicles with different powertrains is reviewed. Vehicles with lower powertrain efficiencies have higher fuel consumption. Thus, fuel savings from lightweighting internal combustion engine vehicles can be higher than those of hybrid electric and battery electric vehicles. However, the impact of fuel savings on life cycle costs and GHG emissions depends on fuel prices, fuel carbon intensities and fuel storage requirements. Battery electric vehicle fuel savings enable reduction of battery size without sacrificing driving range. This reduces the battery production cost and mass, the latter results in further fuel savings. The carbon intensity of electricity varies widely and is a major source of uncertainty when evaluating the benefits of fuel savings. Hybrid electric vehicles use gasoline more efficiently than internal combustion engine vehicles and do not require large plug-in batteries. Therefore, the benefits of lightweighting depend on the vehicle powertrain. We discuss the value proposition of the use of lightweight materials and alternative powertrains. Future assessments of the benefits of vehicle lightweighting should capture the unique characteristics of emerging vehicle powertrains.
Energy by the Numbers: Fuel Cell Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Energy by the Numbers presents fuel cell electric vehicles. Fuel cell electric vehicles (FCEVs) debuted in the U.S. in 2015. Three models are available in the United States. FCEVs run on hydrogen and only emit H2O.
Electric vehicle charging technologies analysis and standards : final research project report.
DOT National Transportation Integrated Search
2017-02-01
This project has evaluated the technologies and standards associated with Electric : Vehicle Service Equipment (EVSE) and the related infrastructure, and the major cost : issue related to electric vehicle (EV) charging -- the cost of utility power. T...
How Do The EV Project Participants Feel About Charging Their EV Away From Home?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francfort, James E.
2015-02-01
The EV Project is an infrastructure study that enrolled over 8,000 residential participants. These participants purchased or leased a Nissan Leaf battery electric vehicle or Chevrolet Volt extended-range electric vehicle and were among the first to explore this new electric drive technology. Collectively, battery electric vehicles, extended-range electric vehicles, and plug-in hybrid electric vehicles are called PEVs. The EV Project participants were very cooperative and enthusiastic about their participation in the project and very supportive in providing feedback and information. The information and attitudes of these participants concerning their experience with their PEVs were solicited using a survey in Junemore » 2013. At that time, some had up to 3 years of experience with their PEVs.« less
40 CFR 600.006 - Data and information requirements for fuel economy data vehicles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for electric vehicles, plug-in hybrid electric vehicles, and fuel cell vehicles to allow for properly... fuel economy data vehicles. 600.006 Section 600.006 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES...
40 CFR 600.006 - Data and information requirements for fuel economy data vehicles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for electric vehicles, plug-in hybrid electric vehicles, and fuel cell vehicles to allow for properly... fuel economy data vehicles. 600.006 Section 600.006 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES...
40 CFR 600.006 - Data and information requirements for fuel economy data vehicles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for electric vehicles, plug-in hybrid electric vehicles, and fuel cell vehicles to allow for properly... fuel economy data vehicles. 600.006 Section 600.006 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES...
40 CFR 86.1866-12 - CO2 credits for advanced technology vehicles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false CO2 credits for advanced technology vehicles. 86.1866-12 Section 86.1866-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... technology vehicles. (a) Electric vehicles, plug-in hybrid electric vehicles, and fuel cell vehicles, as...
Method of electric powertrain matching for battery-powered electric cars
NASA Astrophysics Data System (ADS)
Ning, Guobao; Xiong, Lu; Zhang, Lijun; Yu, Zhuoping
2013-05-01
The current match method of electric powertrain still makes use of longitudinal dynamics, which can't realize maximum capacity for on-board energy storage unit and can't reach lowest equivalent fuel consumption as well. Another match method focuses on improving available space considering reasonable layout of vehicle to enlarge rated energy capacity for on-board energy storage unit, which can keep the longitudinal dynamics performance almost unchanged but can't reach lowest fuel consumption. Considering the characteristics of driving motor, method of electric powertrain matching utilizing conventional longitudinal dynamics for driving system and cut-and-try method for energy storage system is proposed for passenger cars converted from traditional ones. Through combining the utilization of vehicle space which contributes to the on-board energy amount, vehicle longitudinal performance requirements, vehicle equivalent fuel consumption level, passive safety requirements and maximum driving range requirement together, a comprehensive optimal match method of electric powertrain for battery-powered electric vehicle is raised. In simulation, the vehicle model and match method is built in Matlab/simulink, and the Environmental Protection Agency (EPA) Urban Dynamometer Driving Schedule (UDDS) is chosen as a test condition. The simulation results show that 2.62% of regenerative energy and 2% of energy storage efficiency are increased relative to the traditional method. The research conclusions provide theoretical and practical solutions for electric powertrain matching for modern battery-powered electric vehicles especially for those converted from traditional ones, and further enhance dynamics of electric vehicles.
NASA Astrophysics Data System (ADS)
Li, Boyuan; Du, Haiping; Li, Weihua
2016-05-01
Although electric vehicles with in-wheel motors have been regarded as one of the promising vehicle architectures in recent years, the probability of in-wheel motor fault is still a crucial issue due to the system complexity and large number of control actuators. In this study, a modified sliding mode control (SMC) is applied to achieve fault-tolerant control of electric vehicles with four-wheel-independent-steering (4WIS) and four-wheel-independent-driving (4WID). Unlike in traditional SMC, in this approach the steering geometry is re-arranged according to the location of faulty wheels in the modified SMC. Three SMC control laws for longitudinal velocity control, lateral velocity control and yaw rate control are designed based on specific vehicle motion scenarios. In addition the actuator-grouping SMC method is proposed so that driving actuators are grouped and each group of actuators can be used to achieve the specific control target, which avoids the strong coupling effect between each control target. Simulation results prove that the proposed modified SMC can achieve good vehicle dynamics control performance in normal driving and large steering angle turning scenarios. In addition, the proposed actuator-grouping SMC can solve the coupling effect of different control targets and the control performance is improved.
Future orbital transfer vehicle technology study. Volume 2: Technical report
NASA Technical Reports Server (NTRS)
Davis, E. E.
1982-01-01
Missions for future orbit transfer vehicles (1995-2010) are identified and the technology, operations and vehicle concepts that satisfy the transportation requirements are defined. Comparison of reusable space and ground based LO2/LH2 OTV's was made. Both vehicles used advanced space engines and aero assist capability. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. Comparison of an all LO2/LH2 OTV fleet with a fleet of LO2/LH2 OTVs and electric OTV's was also made. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. This provided a 23% advantage in total transportation cost. The impact of accelerated technology was considered in terms of improvements in performance and cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on-orbit propellant storage and transfer and on-orbit maintenance capability.
Advanced lead acid battery development project. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-02-01
This project involved laboratory and road testing of the Horizon (registered) advanced lead acid batteries produced by Electrosource, Inc. A variety of electric vehicles in the fleet operated by the Sacramento Municipal Utility District and McClellan Air Force Base were used for road tests. The project was sponsored by the Defense Advanced Research Projects Agency under RA 93-23 entitled Electric Vehicle Technology and Infrastructure. The Horizon battery is a valve regulated, or sealed, lead acid battery produced in a variety of sizes and performance levels. During the project, several design and process improvements on the Horizon battery resulted in amore » production battery with a specific energy approaching 45 watt-hours per kilogram (Whr/kg) capable of delivering a peak current of 450 amps. The 12 volt, 95 amp-hour (Ahr) Horizon battery, model number 12N95, was placed into service in seven (7) test vehicles, including sedans, prototype lightweight electric vehicles, and passenger vans. Over 20,000 miles have been driven to date on vehicles powered by the Horizon battery. Road test results indicate that when the battery pack is used with a compatible charger and charge management system, noticeably improved acceleration characteristics are evident, and the vehicles provide a useful range almost 20% greater than with conventional lead-acid batteries.« less
DOT National Transportation Integrated Search
2017-06-01
This project developed a methodology to simulate and analyze roadway traffic patterns : and expected penetration and timing of electric vehicles (EVs) with application directed : toward the requirements for electric vehicle supply equipment (EVSE) si...
Electric Vehicle Battery Challenge
ERIC Educational Resources Information Center
Roman, Harry T.
2014-01-01
A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.
DOT National Transportation Integrated Search
2000-06-22
This report documents the findings of a study undertaken to investigate batteries for use in electric vehicles. Batteries studied include lead-acid batteries, nickel-metal hydride batteries, lithium-ion electric vehicle batteries, and lithium-metal p...
40 CFR 600.001-86 - General applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (b)(1) Manufacturers that produce only electric vehicles are exempt from the requirement of this subpart, except with regard to the requirements in those sections pertaining specifically to electric vehicles. (2) Manufacturers with worldwide production (excluding electric vehicle production) of less than...
Tong, Fan; Jaramillo, Paulina; Azevedo, Inês M L
2015-06-16
The low-cost and abundant supply of shale gas in the United States has increased the interest in using natural gas for transportation. We compare the life cycle greenhouse gas (GHG) emissions from different natural gas pathways for medium and heavy-duty vehicles (MHDVs). For Class 8 tractor-trailers and refuse trucks, none of the natural gas pathways provide emissions reductions per unit of freight-distance moved compared to diesel trucks. When compared to the petroleum-based fuels currently used in these vehicles, CNG and centrally produced LNG increase emissions by 0-3% and 2-13%, respectively, for Class 8 trucks. Battery electric vehicles (BEVs) powered with natural gas-produced electricity are the only fuel-technology combination that achieves emission reductions for Class 8 transit buses (31% reduction compared to the petroleum-fueled vehicles). For non-Class 8 trucks (pick-up trucks, parcel delivery trucks, and box trucks), BEVs reduce emissions significantly (31-40%) compared to their diesel or gasoline counterparts. CNG and propane achieve relatively smaller emissions reductions (0-6% and 19%, respectively, compared to the petroleum-based fuels), while other natural gas pathways increase emissions for non-Class 8 MHDVs. While using natural gas to fuel electric vehicles could achieve large emission reductions for medium-duty trucks, the results suggest there are no great opportunities to achieve large emission reductions for Class 8 trucks through natural gas pathways with current technologies. There are strategies to reduce the carbon footprint of using natural gas for MHDVs, ranging from increasing vehicle fuel efficiency, reducing life cycle methane leakage rate, to achieving the same payloads and cargo volumes as conventional diesel trucks.
Transportation economics and energy
NASA Astrophysics Data System (ADS)
Soltani Sobh, Ali
The overall objective of this research is to study the impacts of technology improvement including fuel efficiency increment, extending the use of natural gas vehicle and electric vehicles on key parameters of transportation. In the first chapter, a simple economic analysis is used in order to demonstrate the adoption rate of natural gas vehicles as an alternative fuel vehicle. The effect of different factors on adoption rate of commuters is calculated in sensitivity analysis. In second chapter the VMT is modeled and forecasted under influence of CNG vehicles in different scenarios. The VMT modeling is based on the time series data for Washington State. In order to investigate the effect of population growth on VMT, the per capita model is also developed. In third chapter the effect of fuel efficiency improvement on fuel tax revenue and greenhouse emission is examined. The model is developed based on time series data of Washington State. The rebound effect resulted from fuel efficiency improvement is estimated and is considered in fuel consumption forecasting. The reduction in fuel tax revenue and greenhouse gas (GHG) emissions as two outcomes of lower fuel consumption are computed. In addition, the proper fuel tax rate to restitute the revenue is suggested. In the fourth chapter effective factors on electric vehicles (EV) adoption is discussed. The constructed model is aggregated binomial logit share model that estimates the modal split between EV and conventional vehicles for different states over time. Various factors are incorporated in the utility function as explanatory variables in order to quantify their effect on EV adoption choices. The explanatory variables include income, VMT, electricity price, gasoline price, urban area and number of EV stations.
Near-Term Electric Vehicle Program. Phase II: Mid-Term Summary Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1978-08-01
The Near Term Electric Vehicle (NTEV) Program is a constituent elements of the overall national Electric and Hybrid Vehicle Program that is being implemented by the Department of Energy in accordance with the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. Phase II of the NTEV Program is focused on the detailed design and development, of complete electric integrated test vehicles that incorporate current and near-term technology, and meet specified DOE objectives. The activities described in this Mid-Term Summary Report are being carried out by two contractor teams. The prime contractors for these contractormore » teams are the General Electric Company and the Garrett Corporation. This report is divided into two discrete parts. Part 1 describes the progress of the General Electric team and Part 2 describes the progress of the Garrett team.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podkaminer, Kara; Xie, Fei; Lin, Zhenhong
This analysis represents the biogas-to-electricity pathway under the Renewable Fuel Standard (RFS) as a point of purchase incentive and tests the impact of this incentive on EV deployment using a vehicle consumer choice model. The credit value generated under this policy was calculated in a number of scenarios based on electricity use of each power train choice on a yearly basis over the 15 year vehicle lifetime, accounting for the average electric vehicle miles travelled and vehicle efficiency, competition for biogas-derived electricity among electric vehicles (EVs), the RIN equivalence value and the time value of money. The credit value calculationmore » in each of these scenarios is offered upfront as a point of purchase incentive for EVs using the Market Acceptance of Advanced Automotive Technologies (MA3T) vehicle choice model, which tracks sales, fleet size and energy use over time. The majority of the scenarios use a proposed RIN equivalence value, which increases the credit value as a way to explore the analysis space. Additional model runs show the relative impact of the equivalence value on EV deployment. The MA3T model output shows that a consumer incentive accelerates the deployment of EVs for all scenarios relative to the baseline (no policy) case. In the scenario modeled to represent the current biogas-to-electricity generation capacity (15 TWh/year) with a 5.24kWh/RIN equivalence value, the policy leads to an additional 1.4 million plug-in hybrid electric vehicles (PHEVs) and 3.5 million battery electric vehicles (BEVs) in 2025 beyond the no-policy case of 1.3 million PHEVs and 2.1 million BEVs when the full value of the credit is passed on to the consumer. In 2030, this increases to 2.4 million PHEVs and 7.3 million BEVs beyond the baseline. This larger impact on BEVs relative to PHEVs is due in part to the larger credit that BEVs receive in the model based on the greater percentage of electric vehicle miles traveled by BEVs relative to PHEVs. In this scenario 2025 also represents the last year in which biogas-derived electricity is able to fully supply the transportation electricity demand in the model. After 2025, the credit value declines on a per vehicle basis. At the same time a larger fraction of the credit may shift towards biogas producers in order to incent additional biogas production. The expanded 41 TWh/year biogas availability scenarios represent an increase beyond today s generation capacity and allow greater eRIN generation. With a 5.24kWh/RIN equivalence value, when all of the credit is directed towards reducing vehicle purchase prices, the 41 TWh/year biogas scenario results in 4.1 million additional PHEVs and 12.2 million additional BEVs on the road in 2030 beyond the baseline of 2.5 million PHEVs and 6.1 million BEVs. Under this expanded biogas capacity, biogas-derived electricity generation is able to fully supply electricity for a fleet of over 21 million EVs (15.6 million BEVs and 5.8 million PHEVs) on a yearly basis. In addition to assessing the full value credit scenarios described above, multiple scenarios were analyzed to determine the impact if only a fraction of the credit value was passed on to the consumer. In all of these cases, the EV deployment was scaled back as the fraction of the credit that was passed on to the consumer was reduced. These scenarios can be used to estimate the impact if the credit value is reduced in other ways as well, as demonstrated by the scenarios where the current (22.6 kWh/RIN) equivalence value was used. The EV deployment that results from an equivalence value of 22.6 kWh/RIN equivalence value is roughly equivalent to the EV deployment observed in the 25% case using the 5.24 kWh/RIN equivalence value. A higher equivalence value means that a smaller number of credits, and therefore value, is created for each kWh, and therefore the impact on EV deployment is reduced. This analysis shows several of the drivers that will impact eRIN generation and credit value, and tests the impact of an eRIN point of purchase incentive on EV deployment. This additional incentive can accelerate the deployment of EVs when it is used to reduce vehicle purchase prices. However, the ultimate impact of this policy, as modeled here, will be determined by future RIN prices, the extent to which eRIN credit value can be passed on to the consumer as a point of purchase incentive and the equivalence value.« less
Master-slave control scheme in electric vehicle smart charging infrastructure.
Chung, Ching-Yen; Chynoweth, Joshua; Chu, Chi-Cheng; Gadh, Rajit
2014-01-01
WINSmartEV is a software based plug-in electric vehicle (PEV) monitoring, control, and management system. It not only incorporates intelligence at every level so that charge scheduling can avoid grid bottlenecks, but it also multiplies the number of PEVs that can be plugged into a single circuit. This paper proposes, designs, and executes many upgrades to WINSmartEV. These upgrades include new hardware that makes the level 1 and level 2 chargers faster, more robust, and more scalable. It includes algorithms that provide a more optimal charge scheduling for the level 2 (EVSE) and an enhanced vehicle monitoring/identification module (VMM) system that can automatically identify PEVs and authorize charging.
Master-Slave Control Scheme in Electric Vehicle Smart Charging Infrastructure
Chung, Ching-Yen; Chynoweth, Joshua; Chu, Chi-Cheng; Gadh, Rajit
2014-01-01
WINSmartEV is a software based plug-in electric vehicle (PEV) monitoring, control, and management system. It not only incorporates intelligence at every level so that charge scheduling can avoid grid bottlenecks, but it also multiplies the number of PEVs that can be plugged into a single circuit. This paper proposes, designs, and executes many upgrades to WINSmartEV. These upgrades include new hardware that makes the level 1 and level 2 chargers faster, more robust, and more scalable. It includes algorithms that provide a more optimal charge scheduling for the level 2 (EVSE) and an enhanced vehicle monitoring/identification module (VMM) system that can automatically identify PEVs and authorize charging. PMID:24982956
NASA Technical Reports Server (NTRS)
Rehder, J. J.; Wurster, K. E.
1978-01-01
Techniques for sizing electrically or chemically propelled orbit transfer vehicles and analyzing fleet requirements are used in a comparative analysis of the two concepts for various levels of traffic to geosynchronous orbit. The vehicle masses, fuel requirements, and fleet sizes are determined and translated into launch vehicle payload requirements. Technology projections beyond normal growth are made and their effect on the comparative advantages of the concepts is determined. A preliminary cost analysis indicates that although electric propulsion greatly reduces launch vehicle requirements substantial improvements in the cost and reusability of power systems must occur to make an electrically propelled vehicle competitive.
NASA Astrophysics Data System (ADS)
Slaski, G.; Ohde, B.
2016-09-01
The article presents the results of a statistical dispersion analysis of an energy and power demand for tractive purposes of a battery electric vehicle. The authors compare data distribution for different values of an average speed in two approaches, namely a short and long period of observation. The short period of observation (generally around several hundred meters) results from a previously proposed macroscopic energy consumption model based on an average speed per road section. This approach yielded high values of standard deviation and coefficient of variation (the ratio between standard deviation and the mean) around 0.7-1.2. The long period of observation (about several kilometers long) is similar in length to standardized speed cycles used in testing a vehicle energy consumption and available range. The data were analysed to determine the impact of observation length on the energy and power demand variation. The analysis was based on a simulation of electric power and energy consumption performed with speed profiles data recorded in Poznan agglomeration.
NASA Technical Reports Server (NTRS)
Marte, J. E.; Bryant, J. A.; Livingston, R.
1983-01-01
Dynamometer performance of a South Coast Technology electric conversion of a Volkswagen (VW) Rabbit designated SCT-8 was tested. The SCT-8 vehicle was fitted with a transistorized chopper in the motor armature circuit to supplement the standard motor speed control via field weakening. The armature chopper allowed speed control below the motor base speed. This low speed control was intended to reduce energy loss at idle during stop-and-go traffic; to eliminate the need for using the clutch below base motor speed; and to improve the drivability. Test results indicate an improvement of about 3.5% in battery energy economy for the SAE J227a-D driving cycle and 6% for the C-cycle with only a minor reduction in acceleration performance. A further reduction of about 6% would be possible if provision were made for shutting down field power during the idle phases of the driving cycles. Drivability of the vehicle equipped with the armature chopper was significantly improved compared with the standard SCT Electric Rabbit.
NASA Astrophysics Data System (ADS)
Zamel, Nada; Li, Xianguo
The objective of this study is to put forward a full analysis of the impact of the difference between the Canadian and American energy realities on the life cycle of fuel cell vehicles and internal combustion engine vehicles. Electricity is a major type of energy used in the transportation sector. Electricity is needed in the production of feedstock of fuel, the production of the fuel, the production of the vehicle material and the assembly of the vehicles. Therefore, it is necessary to investigate the impact of the electricity mix difference between Canada and the United States. In the analysis, the life cycle of the fuel consists of obtaining the raw material, extracting the fuel from the raw material, transporting and storing the fuel as well as using the fuel in the vehicle. Four different methods of obtaining hydrogen were analyzed; using coal and nuclear power to produce electricity and extract hydrogen through electrolysis and via steam reforming of natural gas in a natural gas plant and in a hydrogen refueling station. It is found that fuel cell vehicle fuelled by hydrogen has lower energy consumption and greenhouse gas emissions than internal combustion engine vehicle fuelled by conventional gasoline except for hydrogen production using coal as the primary energy source in Canada and the United States. Using the Canadian electricity mix will result in lower carbon dioxide emissions and energy consumption than using the American electricity mix. For the present vehicles, using the Canadian electricity mix will save up to 215.18 GJ of energy and 20.87 t of CO 2 on a per capita basis and 26.53 GJ of energy and 6.8 t of CO 2 on a per vehicle basis. Similarly, for the future vehicles, using the Canadian electricity mix will lower the total carbon dioxide emissions by 21.15 t and the energy consumed is reduced by 218.49 GJ on a per capita basis and 26.53 GJ of energy and 7.22 t of CO 2 on a per vehicle basis. The well-to-tank efficiencies are higher with the Canadian electricity mix.
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Pan, Ke; Fan, Guodong; Lu, Rengui; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello
2017-11-01
State of energy (SOE) is an important index for the electrochemical energy storage system in electric vehicles. In this paper, a robust state of energy estimation method in combination with a physical model parameter identification method is proposed to achieve accurate battery state estimation at different operating conditions and different aging stages. A physics-based fractional order model with variable solid-state diffusivity (FOM-VSSD) is used to characterize the dynamic performance of a LiFePO4/graphite battery. In order to update the model parameter automatically at different aging stages, a multi-step model parameter identification method based on the lexicographic optimization is especially designed for the electric vehicle operating conditions. As the battery available energy changes with different applied load current profiles, the relationship between the remaining energy loss and the state of charge, the average current as well as the average squared current is modeled. The SOE with different operating conditions and different aging stages are estimated based on an adaptive fractional order extended Kalman filter (AFEKF). Validation results show that the overall SOE estimation error is within ±5%. The proposed method is suitable for the electric vehicle online applications.
Generation and management of waste electric vehicle batteries in China.
Xu, ChengJian; Zhang, Wenxuan; He, Wenzhi; Li, Guangming; Huang, Juwen; Zhu, Haochen
2017-09-01
With the increasing adoption of EVs (electric vehicles), a large number of waste EV LIBs (electric vehicle lithium-ion batteries) were generated in China. Statistics showed generation of waste EV LIBs in 2016 reached approximately 10,000 tons, and the amount of them would be growing rapidly in the future. In view of the deleterious effects of waste EV LIBs on the environment and the valuable energy storage capacity or materials that can be reused in them, China has started emphasizing the management, reuse, and recycling of them. This paper presented the generation trend of waste EV LIBs and focused on interrelated management development and experience in China. Based on the situation of waste EV LIBs management in China, existing problems were analyzed and summarized. Some recommendations were made for decision-making organs to use as valuable references to improve the management of waste EV LIBs and promote the sustainable development of EVs.
Aerodynamic design of electric and hybrid vehicles: A guidebook
NASA Technical Reports Server (NTRS)
Kurtz, D. W.
1980-01-01
A typical present-day subcompact electric hybrid vehicle (EHV), operating on an SAE J227a D driving cycle, consumes up to 35% of its road energy requirement overcoming aerodynamic resistance. The application of an integrated system design approach, where drag reduction is an important design parameter, can increase the cycle range by more than 15%. This guidebook highlights a logic strategy for including aerodynamic drag reduction in the design of electric and hybrid vehicles to the degree appropriate to the mission requirements. Backup information and procedures are included in order to implement the strategy. Elements of the procedure are based on extensive wind tunnel tests involving generic subscale models and full-scale prototype EHVs. The user need not have any previous aerodynamic background. By necessity, the procedure utilizes many generic approximations and assumptions resulting in various levels of uncertainty. Dealing with these uncertainties, however, is a key feature of the strategy.
Research on motor rotational speed measurement in regenerative braking system of electric vehicle
NASA Astrophysics Data System (ADS)
Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua
2016-01-01
Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.
Advancing Transportation through Vehicle Electrification - PHEV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazzi, Abdullah; Barnhart, Steven
2014-12-31
FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the developmentmore » of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heimer, Brandon Walter; Levinson, Rebecca Sobel; West, Todd H.
Analysis with the ParaChoice model addresses three barriers from the VTO Multi-Year Program Plan: availability of alternative fuels and electric charging station infrastructure, availability of AFVs and electric drive vehicles, and consumer reluctance to purchase new technologies. In this fiscal year, we first examined the relationship between the availability of alternative fuels and station infrastructure. Specifically, we studied how electric vehicle charging infrastructure affects the ability of EVs to compete with vehicles that rely on mature, conventional petroleum-based fuels. Second, we studied how the availability of less costly AFVs promotes their representation in the LDV fleet. Third, we used ParaChoicemore » trade space analyses to help inform which consumers are reluctant to purchase new technologies. Last, we began analysis of impacts of alternative energy technologies on Class 8 trucks to isolate those that may most efficaciously advance HDV efficiency and petroleum use reduction goals.« less
Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to
CoastA> Hybrid and Electric Vehicles Boom Coast to Coast to someone by E-mail Share Alternative Provided by Maryland Public Television Related Videos Photo of a car Electric Vehicles Charge up at State Parks in West Virginia Dec. 9, 2017 Photo of a car Hydrogen Powers Fuel Cell Vehicles in California Nov
Electric vehicle drive train with rollback detection and compensation
Konrad, C.E.
1994-12-27
An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.
Electric vehicle drive train with rollback detection and compensation
Konrad, Charles E.
1994-01-01
An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.
40 CFR 600.301-86 - General applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Manufacturers that produce only electric vehicles are exempt from the requirement of this subpart, except with regard to the requirements in those sections pertaining specifically to electric vehicles. (2) Manufacturers with worldwide production (excluding electric vehicle production) of less than 10,000 gasoline...
40 CFR 600.301-08 - General applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sections pertaining specifically to electric vehicles. (2) Manufacturers with worldwide production (excluding electric vehicle production) of less than 10,000 gasoline-fueled and/or diesel powered passenger automobiles and light trucks may optionally comply with the electric vehicle requirements in this subpart. [71...
Evaluation of sounds for hybrid and electric vehicles operating at low speed
DOT National Transportation Integrated Search
2012-10-22
Electric vehicles (EV) and hybrid electric vehicles (HEVs), operated at low speeds may reduce auditory cues used by pedestrians to assess the state of nearby traffic creating a safety issue. This field study compares the auditory detectability of num...
The Federal electric and hybrid vehicle program
NASA Technical Reports Server (NTRS)
Schwartz, H. J.
1980-01-01
The commercial development and use of electric and hybrid vehicles is discussed with respect to its application as a possible alternative transportation system. A market demonstration is described that seeks to place 10,000 electric hybrid vehicles into public and private sector demonstrations.
40 CFR 600.301-86 - General applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Manufacturers that produce only electric vehicles are exempt from the requirement of this subpart, except with regard to the requirements in those sections pertaining specifically to electric vehicles. (2) Manufacturers with worldwide production (excluding electric vehicle production) of less than 10,000 gasoline...
40 CFR 600.001-93 - General applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Manufacturers that produce only electric vehicles are exempt from the requirement of this subpart, except with regard to the requirements in those sections pertaining specifically to electric vehicles. (2) Manufacturers with worldwide production (excluding electric vehicle production) of less than 10,000 gasoline...
Electrical and thermal modeling of a large-format lithium titanate oxide battery system.
DOT National Transportation Integrated Search
2015-04-01
The future of mass transportation is clearly moving towards the increased efficiency of hybrid and electric vehicles. Electrical : energy storage is a key component in most of these advanced vehicles, with the system complexity and vehicle cost shift...
Baseline tests of the battronic Minivan electric delivery van
NASA Technical Reports Server (NTRS)
Dustin, M. O.; Soltis, R. F.; Bozek, J. M.; Maslowski, E. A.
1977-01-01
An electric passenger vehicle was tested to develop data characterizing the state of the art of electric and hybrid vehicles. The test measured vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability and limit, road energy consumption, road power, indicated energy consumption, braking capability and battery charge efficiency. The data obtained are to serve as a baseline to compare improvements in electric and hybrid vehicle technologies and to assist in establishing performance standards.
Research procedure for buck-boost converter for small electric vehicles
NASA Astrophysics Data System (ADS)
Vacheva, Gergana; Hinov, Nikolay; Penev, Dimitar
2017-12-01
In the current paper is developed a mathematical model realized in Matlab for describing a buck-boost converter for control of small electric vehicle. The model is presented with differential equations which describes the processes in the converter. Through the research of this model it can be accomplished the optimal work mode of a small electric vehicles. The proposed converter can be used in a wide range of applications like small electric vehicles, smart grids and different systems for energy storage.
Advanced continuously variable transmissions for electric and hybrid vehicles
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.
1980-01-01
A brief survey of past and present continuously variable transmissions (CVT) which are potentially suitable for application with electric and hybrid vehicles is presented. Discussion of general transmission requirements and benefits attainable with a CVT for electric vehicle use is given. The arrangement and function of several specific CVT concepts are cited along with their current development status. Lastly, the results of preliminary design studies conducted under a NASA contract for DOE on four CVT concepts for use in advanced electric vehicles are reviewed.
Baseline Tests of the Electra Van Model 1000 Electric Vehicle.
1980-07-01
3RR ATALGNUMBER(. 21 0 IIACNTLING TFESSO NAME ND TR ADDRESS~eot MOrELe rDp o00 EERIy AEHICtan Srtr f, or Hybrd Veicle S. NC4"IXICtION NGRA DINGUMER...state-of-the-art with respect to electric and hybrid vehicles. The data so developed are to serve as a baseline to compare im- provements in electric and... hybrid vehicle technologies, to assist in establishing per- formance standards for electric and hybrid vehicles, and to guide future research and
An extended car-following model with consideration of the electric vehicle's driving range
NASA Astrophysics Data System (ADS)
Tang, Tie-Qiao; Chen, Liang; Yang, Shi-Chun; Shang, Hua-Yan
2015-07-01
In this paper, we propose a car-following model to explore the influences of the electric vehicle's driving range on the driving behavior under four traffic situations. The numerical results illustrate that the electric vehicle's behavior of exchanging battery at the charge station can destroy the stability of traffic flow and produce some prominent jams, and that the influences are related to the electric vehicle's driving range, i.e., the shorter the driving range is, the greater the effects are.
Strategic charging infrastructure deployment for electric vehicles.
DOT National Transportation Integrated Search
2016-05-01
Electric vehicles (EV) are promoted as a foreseeable future vehicle technology to reduce dependence on fossil fuels and greenhouse : gas emissions associated with conventional vehicles. This paper proposes a data-driven approach to improving the elec...
NASA Astrophysics Data System (ADS)
Lee, Dong-Yeon; Elgowainy, Amgad; Kotz, Andrew; Vijayagopal, Ram; Marcinkoski, Jason
2018-07-01
This study provides a comprehensive and up-to-date life-cycle comparison of hydrogen fuel cell electric trucks (FCETs) and their conventional diesel counterparts in terms of energy use and air emissions, based on the ensemble of well-established methods, high-fidelity vehicle dynamic simulations, and real-world vehicle test data. For the centralized steam methane reforming (SMR) pathway, hydrogen FCETs reduce life-cycle or well-to-wheel (WTW) petroleum energy use by more than 98% compared to their diesel counterparts. The reduction in WTW air emissions for gaseous hydrogen (G.H2) FCETs ranges from 20 to 45% for greenhouse gases, 37-65% for VOC, 49-77% for CO, 62-83% for NOx, 19-43% for PM10, and 27-44% for PM2.5, depending on vehicle weight classes and truck types. With the current U.S. average electricity generation mix, FCETs tend to create more WTW SOx emissions than their diesel counterparts, mainly because of the upstream emissions related to electricity use for hydrogen compression/liquefaction. Compared to G.H2, liquid hydrogen (L.H2) FCETs generally provide smaller WTW emissions reductions. For both G.H2 and L.H2 pathways for FCETs, because of electricity consumption for compression and liquefaction, spatio-temporal variations of electricity generation can affect the WTW results. FCETs retain the WTW emission reduction benefits, even when considering aggressive diesel engine efficiency improvement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotz, Andrew J; Le, Dong-Yeon; Elgowainy, Amgad
This study provides a comprehensive and up-to-date life-cycle comparison of hydrogen fuel cell electric trucks (FCETs) and their conventional diesel counterparts in terms of energy use and air emissions, based on the ensemble of well-established methods, high-fidelity vehicle dynamic simulations, and real-world vehicle test data. For the centralized steam methane reforming (SMR) pathway, hydrogen FCETs reduce life-cycle or well-to-wheel (WTW) petroleum energy use by more than 98% compared to their diesel counterparts. The reduction in WTW air emissions for gaseous hydrogen (G.H2) FCETs ranges from 20 to 45% for greenhouse gases, 37-65% for VOC, 49-77% for CO, 62-83% for NOx,more » 19-43% for PM10, and 27-44% for PM2.5, depending on vehicle weight classes and truck types. With the current U.S. average electricity generation mix, FCETs tend to create more WTW SOx emissions than their diesel counterparts, mainly because of the upstream emissions related to electricity use for hydrogen compression/liquefaction. Compared to G.H2, liquid hydrogen (L.H2) FCETs generally provide smaller WTW emissions reductions. For both G.H2 and L.H2 pathways for FCETs, because of electricity consumption for compression and liquefaction, spatio-temporal variations of electricity generation can affect the WTW results. FCETs retain the WTW emission reduction benefits, even when considering aggressive diesel engine efficiency improvement.« less
Optimization of batteries for plug-in hybrid electric vehicles
NASA Astrophysics Data System (ADS)
English, Jeffrey Robb
This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity. Three sample optimizations were performed: a compact car, a, truck, and a sports car. The compact car benefits from increased battery capacity despite the associated higher cost. The truck returned the smallest possible battery of each chemistry, indicating that electrification is not advisable. The sports car optimization resulted in the largest possible battery, indicating large performance from increased electrification. These results mirror the current state of the electric vehicle market.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob
This study provides a comprehensive lifecycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehiclesmore » (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob
This study provides a comprehensive life-cycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehiclesmore » (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Steve; Francfort, Jim
2015-06-01
This report focuses on the Department of Health and Human Services, Assistant Secretary for Preparedness and Response fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agency’s fleet. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.
Baseline test data for the EVA electric vehicle. [low energy consumption automobiles
NASA Technical Reports Server (NTRS)
Harhay, W. C.; Bozek, J.
1976-01-01
Two electric vehicles from Electric Vehicle Associates were evaluated for ERDA at the Transportation Research Center of Ohio. The vehicles, loaded to a gross vehicle weight of 3750 pounds, had a range of 56.3 miles at a steady speed of 25 mph and a 27.4 miles range during acceleration-deceleration tests to a top speed of 30 mph. Energy consumption varied from 0.48 kw-hr/mi. to 0.59 kw-hr/mi.
Onboard power line conditioning system for an electric or hybrid vehicle
Kajouke, Lateef A.; Perisic, Milun
2016-06-14
A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.
Research on the Value Evaluation of Used Pure Electric Car Based on the Replacement Cost Method
NASA Astrophysics Data System (ADS)
Tan, zhengping; Cai, yun; Wang, yidong; Mao, pan
2018-03-01
In this paper, the value evaluation of the used pure electric car is carried out by the replacement cost method, which fills the blank of the value evaluation of the electric vehicle. The basic principle of using the replacement cost method, combined with the actual cost of pure electric cars, puts forward the calculation method of second-hand electric car into a new rate based on the use of AHP method to construct the weight matrix comprehensive adjustment coefficient of related factors, the improved method of value evaluation system for second-hand car
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melaina, Marc; Helwig, Michael
The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and
Acoustic Data for Hybrid and Electric Heavy-Duty Vehicles and Electric Motorcycles
DOT National Transportation Integrated Search
2015-12-01
The Pedestrian Safety Enhancement Act (PSEA) of 2010 requires NHTSA to conduct a rulemaking to establish a Federal Motor Vehicle Safety Standard requiring an alert sound for pedestrians to be emitted by all types of motor vehicles that are electric o...
40 CFR 600.301-95 - General applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... produce only electric vehicles are exempt from the requirement of this subpart, except with regard to the requirements in those sections pertaining specifically to electric vehicles. (2) Manufacturers with worldwide production (excluding electric vehicle production) of less than 10,000 gasoline-fueled and/or diesel powered...
Auditory detectability of hybrid electric vehicles by pedestrians who are blind
DOT National Transportation Integrated Search
2010-11-15
Quieter cars such as electric vehicles (EVs) and hybrid electric vehicles (HEVs) may reduce auditory cues used by pedestrians to assess the state of nearby traffic and, as a result, their use may have an adverse impact on pedestrian safety. In order ...
40 CFR 600.301-95 - General applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... passenger automobiles and light trucks may optionally comply with the electric vehicle requirements in this... produce only electric vehicles are exempt from the requirement of this subpart, except with regard to the requirements in those sections pertaining specifically to electric vehicles. (2) Manufacturers with worldwide...
40 CFR 1066.1010 - Incorporation by reference.
Code of Federal Regulations, 2014 CFR
2014-07-01
....305, and 1066.310(b). (2) SAE J1634, Battery Electric Vehicle Energy Consumption and Range Test... Measuring the Exhaust Emissions and Fuel Economy of Hybrid-Electric Vehicles, Including Plug-In Hybrid... Measuring Fuel Economy and Emissions of Hybrid-Electric and Conventional Heavy-Duty Vehicles, issued...
DOT National Transportation Integrated Search
2013-07-01
This report seeks to reach conclusions over the role that electric vehicles (EVs) and public charging : infrastructure should play in the future U.S. transportation system As demonstrated in this report, electric : vehicles are neither new nor techno...
Batteries and fuel cells for emerging electric vehicle markets
NASA Astrophysics Data System (ADS)
Cano, Zachary P.; Banham, Dustin; Ye, Siyu; Hintennach, Andreas; Lu, Jun; Fowler, Michael; Chen, Zhongwei
2018-04-01
Today's electric vehicles are almost exclusively powered by lithium-ion batteries, but there is a long way to go before electric vehicles become dominant in the global automotive market. In addition to policy support, widespread deployment of electric vehicles requires high-performance and low-cost energy storage technologies, including not only batteries but also alternative electrochemical devices. Here, we provide a comprehensive evaluation of various batteries and hydrogen fuel cells that have the greatest potential to succeed in commercial applications. Three sectors that are not well served by current lithium-ion-powered electric vehicles, namely the long-range, low-cost and high-utilization transportation markets, are discussed. The technological properties that must be improved to fully enable these electric vehicle markets include specific energy, cost, safety and power grid compatibility. Six energy storage and conversion technologies that possess varying combinations of these improved characteristics are compared and separately evaluated for each market. The remainder of the Review briefly discusses the technological status of these clean energy technologies, emphasizing barriers that must be overcome.
Electric and hybrid vehicle site operators program: Thinking of the future
NASA Astrophysics Data System (ADS)
Kansas State University, with support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one electric or hybrid van and two electric cars during the first two years of this five-year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two Soleq 1993 Ford EVcort station wagons. The G-Van has been signed in order for the public to be aware that this is an electric drive vehicle. Financial participants' names have been stenciled on the back door of the van. This vehicle is available for short term loan to interested utilities and companies. When other vehicles are obtained, the G-Van will be maintained on K-State's campus.
Code of Federal Regulations, 2010 CFR
2010-04-01
... qualified electric vehicle—(1) In general—(i) Addition to tax. If a recapture event occurs with respect to a taxpayer's qualified electric vehicle, the taxpayer must add the recapture amount to the amount of tax due in the taxable year in which the recapture event occurs. The recapture amount is not treated as...
Code of Federal Regulations, 2011 CFR
2011-04-01
... qualified electric vehicle—(1) In general—(i) Addition to tax. If a recapture event occurs with respect to a taxpayer's qualified electric vehicle, the taxpayer must add the recapture amount to the amount of tax due in the taxable year in which the recapture event occurs. The recapture amount is not treated as...
Code of Federal Regulations, 2012 CFR
2012-04-01
... qualified electric vehicle—(1) In general—(i) Addition to tax. If a recapture event occurs with respect to a taxpayer's qualified electric vehicle, the taxpayer must add the recapture amount to the amount of tax due in the taxable year in which the recapture event occurs. The recapture amount is not treated as...
Code of Federal Regulations, 2013 CFR
2013-04-01
... qualified electric vehicle—(1) In general—(i) Addition to tax. If a recapture event occurs with respect to a taxpayer's qualified electric vehicle, the taxpayer must add the recapture amount to the amount of tax due in the taxable year in which the recapture event occurs. The recapture amount is not treated as...
Code of Federal Regulations, 2014 CFR
2014-04-01
... qualified electric vehicle—(1) In general—(i) Addition to tax. If a recapture event occurs with respect to a taxpayer's qualified electric vehicle, the taxpayer must add the recapture amount to the amount of tax due in the taxable year in which the recapture event occurs. The recapture amount is not treated as...
Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In
Electric Vehicles Los Angeles Sets the Stage for Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In Electric
Charging stations location model based on spatiotemporal electromobility use patterns
NASA Astrophysics Data System (ADS)
Pagany, Raphaela; Marquardt, Anna; Zink, Roland
2016-04-01
One of the major challenges for mainstream adoption of electric vehicles is the provision of infrastructure for charging the batteries of the vehicles. The charging stations must not only be located dense enough to allow users to complete their journeys, but the electric energy must also be provided from renewable sources in order to truly offer a transportation with less CO2 emissions. The examination of potential locations for the charging of electric vehicles can facilitate the adaption of electromobility and the integration of electronic vehicles in everyday life. A geographic information system (GIS) based model for optimal location of charging stations in a small and regional scale is presented. This considers parameters such as the forecast of electric vehicle use penetration, the relevant weight of diverse point of interests and the distance between parking area and destination for different vehicle users. In addition to the spatial scale the temporal modelling of the energy demand at the different charging locations has to be considerate. Depending on different user profiles (commuters, short haul drivers etc.) the frequency of charging vary during the day, the week and the year. In consequence, the spatiotemporal variability is a challenge for a reliable energy supply inside a decentralized renewable energy system. The presented model delivers on the one side the most adequate identified locations for charging stations and on the other side the interaction between energy supply and demand for electromobility under the consideration of temporal aspects. Using ESRI ArcGIS Desktop, first results for the case study region of Lower Bavaria are generated. The aim of the concept is to keep the model transferable to other regions and also open to integrate further and more detailed user profiles, derived from social studies about i.e. the daily behavior and the perception of electromobility in a next step.
NASA Astrophysics Data System (ADS)
Chen, Xinyu; Zhang, Hongcai; Xu, Zhiwei; Nielsen, Chris P.; McElroy, Michael B.; Lv, Jiajun
2018-05-01
Current Chinese policy promotes the development of both electricity-propelled vehicles and carbon-free sources of power. Concern has been expressed that electric vehicles on average may emit more CO2 and conventional pollutants in China. Here, we explore the environmental implications of investments in different types of electric vehicle (public buses, taxis and private light-duty vehicles) and different modes (fast or slow) for charging under a range of different wind penetration levels. To do this, we take Beijing in 2020 as a case study and employ hourly simulation of vehicle charging behaviour and power system operation. Assuming the slow-charging option, we find that investments in electric private light-duty vehicles can result in an effective reduction in the emission of CO2 at several levels of wind penetration. The fast-charging option, however, is counter-productive. Electrifying buses and taxis offers the most effective option to reduce emissions of NOx, a major precursor for air pollution.
NASA Astrophysics Data System (ADS)
Harris, Chioke B.; Webber, Michael E.
2012-09-01
With the emerging nationwide availability of battery electric vehicles (BEVs) at prices attainable for many consumers, electric utilities, system operators and researchers have been investigating the impact of this new source of energy demand. The presence of BEVs on the electric grid might offer benefits equivalent to dedicated utility-scale energy storage systems by leveraging vehicles’ grid-connected energy storage through vehicle-to-grid (V2G) enabled infrastructure. It is, however, unclear whether BEVs will be available to provide needed grid services when those services are in highest demand. In this work, a set of GPS vehicle travel data from the Puget Sound Regional Council (PSRC) is analyzed to assess temporal patterns in vehicle use. These results show that vehicle use does not vary significantly across months, but differs noticeably between weekdays and weekends, such that averaging the data together could lead to erroneous V2G modeling results. Combination of these trends with wind generation and electricity demand data from the Electric Reliability Council of Texas (ERCOT) indicates that BEV availability does not align well with electricity demand and wind generation during the summer months, limiting the quantity of ancillary services that could be provided with V2G. Vehicle availability aligns best between the hours of 9 pm and 8 am during cooler months of the year, when electricity demand is bimodal and brackets the hours of highest vehicle use.
NASA Astrophysics Data System (ADS)
Barré, Anthony; Suard, Frédéric; Gérard, Mathias; Montaru, Maxime; Riu, Delphine
2014-01-01
This paper describes the statistical analysis of recorded data parameters of electrical battery ageing during electric vehicle use. These data permit traditional battery ageing investigation based on the evolution of the capacity fade and resistance raise. The measured variables are examined in order to explain the correlation between battery ageing and operating conditions during experiments. Such study enables us to identify the main ageing factors. Then, detailed statistical dependency explorations present the responsible factors on battery ageing phenomena. Predictive battery ageing models are built from this approach. Thereby results demonstrate and quantify a relationship between variables and battery ageing global observations, and also allow accurate battery ageing diagnosis through predictive models.
A System to Integrate Unmanned Undersea Vehicles with a Submarine Host Platform
2011-06-06
Charging pad (while UUV stowed) High Conceptual High based on electric car battery recharging system Technology has not been demonstrated for......and Evaluation EB General Dynamics Corp. – Electric Boat Division EMP Electromagnetic Pulse FMECA Failure Mode Effects and Criticality Analysis
Estimating the HVAC energy consumption of plug-in electric vehicles
NASA Astrophysics Data System (ADS)
Kambly, Kiran R.; Bradley, Thomas H.
2014-08-01
Plug in electric vehicles are vehicles that use energy from the electric grid to provide tractive and accessory power to the vehicle. Due to the limited specific energy of energy storage systems, the energy requirements of heating, ventilation, and air conditioning (HVAC) systems for cabin conditioning can significantly reduce their range between charges. Factors such as local ambient temperature, local solar radiation, local humidity, length of the trip and thermal soak have been identified as primary drivers of cabin conditioning loads and therefore of vehicle range. The objective of this paper is to develop a detailed systems-level approach to connect HVAC technologies and usage conditions to consumer-centric metrics of vehicle performance including energy consumption and range. This includes consideration of stochastic and transient inputs to the HVAC energy consumption model including local weather, solar loads, driving behavior, charging behavior, and regional passenger fleet population. The resulting engineering toolset is used to determine the summation of and geographical distribution of energy consumption by HVAC systems in electric vehicles, and to identify regions of US where the distributions of electric vehicle range are particularly sensitive to climate.
Kong, Zehui; Liu, Teng
2017-01-01
To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL)-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM) of power-request is derived. The reinforcement learning (RL) is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM) generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control. PMID:28671967
Kong, Zehui; Zou, Yuan; Liu, Teng
2017-01-01
To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL)-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM) of power-request is derived. The reinforcement learning (RL) is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM) generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control.
Alternative Fuels Data Center: Biodiesel Vehicle Emissions
Petroleum Reduction Planning Tool AFLEET Tool All Tools Vehicle Cost Calculator Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Cost Calculator Vehicle 0 City 0 Hwy (mi/gal) 0 City 0 Hwy (kWh/100m) Gasoline Vehicle 0 City 0 Hwy (mi
49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... vehicle crashes. S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles... requirements. S5.1Vehicle requirements. S5.1.1Vehicles with GVWR of 10,000 pounds or less. Each passenger car... has an electrically driven fuel pump that normally runs when the vehicle's electrical system is...
49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... vehicle crashes. S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles... requirements. S5.1Vehicle requirements. S5.1.1Vehicles with GVWR of 10,000 pounds or less. Each passenger car... has an electrically driven fuel pump that normally runs when the vehicle's electrical system is...
49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.
Code of Federal Regulations, 2011 CFR
2011-10-01
... vehicle crashes. S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles... requirements. S5.1Vehicle requirements. S5.1.1Vehicles with GVWR of 10,000 pounds or less. Each passenger car... has an electrically driven fuel pump that normally runs when the vehicle's electrical system is...
Study on the frame body structure of micro-electric vehicle based on frontal crash safety
NASA Astrophysics Data System (ADS)
Lu, Yaoquan; Zhang, Sanchuan
2017-08-01
In order to research the safety of skeleton type body of micro-electric vehicles in the frontal collision, the method of finite element modeling and simulation are used to analyze frame body that is fitted with the energy absorption structure, the simulation results show that On the basis of absorbing the most energy and the least of body acceleration, the absorbent structure parameters can be optimized, the optimized parameters are length 180 mm, wall thickness 3 mm and materials Q460.