Science.gov

Sample records for electrical brain stimulation

  1. Electrical brain stimulation for epilepsy.

    PubMed

    Fisher, Robert S; Velasco, Ana Luisa

    2014-05-01

    Neurostimulation enables adjustable and reversible modulation of disease symptoms, including those of epilepsy. Two types of brain neuromodulation, comprising anterior thalamic deep brain stimulation and responsive neurostimulation at seizure foci, are supported by Class I evidence of effectiveness, and many other sites in the brain have been targeted in small trials of neurostimulation therapy for seizures. Animal studies have mainly assisted in the identification of potential neurostimulation sites and parameters, but much of the clinical work is only loosely based on fundamental principles derived from the laboratory, and the mechanisms by which brain neurostimulation reduces seizures remain poorly understood. The benefits of stimulation tend to increase over time, with maximal effect seen typically 1-2 years after implantation. Typical reductions of seizure frequency are approximately 40% acutely, and 50-69% after several years. Seizure intensity might also be reduced. Complications from brain neurostimulation are mainly associated with the implantation procedure and hardware, including stimulation-related paraesthesias, stimulation-site infections, electrode mistargeting and, in some patients, triggered seizures or even status epilepticus. Further preclinical and clinical experience with brain stimulation surgery should lead to improved outcomes by increasing our understanding of the optimal surgical candidates, sites and parameters.

  2. Deep Brain Electrical Stimulation in Epilepsy

    NASA Astrophysics Data System (ADS)

    Rocha, Luisa L.

    2008-11-01

    The deep brain electrical stimulation has been used for the treatment of neurological disorders such as Parkinson's disease, chronic pain, depression and epilepsy. Studies carried out in human brain indicate that the application of high frequency electrical stimulation (HFS) at 130 Hz in limbic structures of patients with intractable temporal lobe epilepsy abolished clinical seizures and significantly decreased the number of interictal spikes at focus. The anticonvulsant effects of HFS seem to be more effective in patients with less severe epilepsy, an effect associated with a high GABA tissue content and a low rate of cell loss. In addition, experiments using models of epilepsy indicate that HFS (pulses of 60 μs width at 130 Hz at subthreshold current intensity) of specific brain areas avoids the acquisition of generalized seizures and enhances the postictal seizure suppression. HFS is also able to modify the status epilepticus. It is concluded that the effects of HFS may be a good strategy to reduce or avoid the epileptic activity.

  3. Electrical stimulation of a small brain area reversibly disrupts consciousness.

    PubMed

    Koubeissi, Mohamad Z; Bartolomei, Fabrice; Beltagy, Abdelrahman; Picard, Fabienne

    2014-08-01

    The neural mechanisms that underlie consciousness are not fully understood. We describe a region in the human brain where electrical stimulation reproducibly disrupted consciousness. A 54-year-old woman with intractable epilepsy underwent depth electrode implantation and electrical stimulation mapping. The electrode whose stimulation disrupted consciousness was between the left claustrum and anterior-dorsal insula. Stimulation of electrodes within 5mm did not affect consciousness. We studied the interdependencies among depth recording signals as a function of time by nonlinear regression analysis (h(2) coefficient) during stimulations that altered consciousness and stimulations of the same electrode at lower current intensities that were asymptomatic. Stimulation of the claustral electrode reproducibly resulted in a complete arrest of volitional behavior, unresponsiveness, and amnesia without negative motor symptoms or mere aphasia. The disruption of consciousness did not outlast the stimulation and occurred without any epileptiform discharges. We found a significant increase in correlation for interactions affecting medial parietal and posterior frontal channels during stimulations that disrupted consciousness compared with those that did not. Our findings suggest that the left claustrum/anterior insula is an important part of a network that subserves consciousness and that disruption of consciousness is related to increased EEG signal synchrony within frontal-parietal networks.

  4. Ownership of an artificial limb induced by electrical brain stimulation

    PubMed Central

    Collins, Kelly L.; Cronin, Jeneva; Olson, Jared D.; Ehrsson, H. Henrik; Ojemann, Jeffrey G.

    2017-01-01

    Replacing the function of a missing or paralyzed limb with a prosthetic device that acts and feels like one’s own limb is a major goal in applied neuroscience. Recent studies in nonhuman primates have shown that motor control and sensory feedback can be achieved by connecting sensors in a robotic arm to electrodes implanted in the brain. However, it remains unknown whether electrical brain stimulation can be used to create a sense of ownership of an artificial limb. In this study on two human subjects, we show that ownership of an artificial hand can be induced via the electrical stimulation of the hand section of the somatosensory (SI) cortex in synchrony with touches applied to a rubber hand. Importantly, the illusion was not elicited when the electrical stimulation was delivered asynchronously or to a portion of the SI cortex representing a body part other than the hand, suggesting that multisensory integration according to basic spatial and temporal congruence rules is the underlying mechanism of the illusion. These findings show that the brain is capable of integrating “natural” visual input and direct cortical-somatosensory stimulation to create the multisensory perception that an artificial limb belongs to one’s own body. Thus, they serve as a proof of concept that electrical brain stimulation can be used to “bypass” the peripheral nervous system to induce multisensory illusions and ownership of artificial body parts, which has important implications for patients who lack peripheral sensory input due to spinal cord or nerve lesions. PMID:27994147

  5. Giovanni Aldini: from animal electricity to human brain stimulation.

    PubMed

    Parent, André

    2004-11-01

    Two hundred years ago, Giovanni Aldini published a highly influential book that reported experiments in which the principles of Luigi Galvani (animal electricity) and Alessandro Volta (bimetallic electricity) were used together for the first time. Aldini was born in Bologna in 1762 and graduated in physics at the University of his native town in 1782. As nephew and assistant of Galvani, he actively participated in a series of crucial experiments with frog's muscles that led to the idea that electricity was the long-sought vital force coursing from brain to muscles. Aldini became professor of experimental physics at the University of Bologna in 1798. He traveled extensively throughout Europe, spending much time defending the concept of his discreet uncle against the incessant attacks of Volta, who did not believe in animal electricity. Aldini used Volta's bimetallic pile to apply electric current to dismembered bodies of animals and humans; these spectacular galvanic reanimation experiments made a strong and enduring impression on his contemporaries. Aldini also treated patients with personality disorders and reported complete rehabilitation following transcranial administration of electric current. Aldini's work laid the ground for the development of various forms of electrotherapy that were heavily used later in the 19th century. Even today, deep brain stimulation, a procedure currently employed to relieve patients with motor or behavioral disorders, owes much to Aldini and galvanism. In recognition of his merits, Aldini was made a knight of the Iron Crown and a councillor of state at Milan, where he died in 1834.

  6. Yawning induced by focal electrical stimulation in the human brain.

    PubMed

    Joshi, Sweta; Bayat, Arezou; Gagnon, Linda; Shields, Donald C; Koubeissi, Mohamad Z

    2017-01-01

    The primary function of yawning is not fully understood. We report a case in which electrical stimulation of the putamen in the human brain consistently elicited yawning. A 46-year-old woman with intractable epilepsy had invasive depth electrode monitoring and cortical stimulation mapping as part of her presurgical epilepsy evaluation. The first two contacts of a depth electrode that was intended to sample the left insula were in contact with the putamen. Stimulation of these contacts at 6mA and 8mA consistently elicited yawning on two separate days. Engagement in arithmetic and motor tasks during stimulation did not result in yawning. When considering the role of the putamen in motor control and its extensive connectivity to cortical and brainstem regions, our findings suggest that it plays a key role in the execution of motor movements necessitated by yawning. Furthermore, given the role of the anterior insula in attention and focused tasks, activation of this area while engaged in arithmetic and motor tasks could inhibit the putaminal processing necessary for yawning. Many have hypothesized the function of yawning; however, it remains debatable whether yawning serves a primarily physiological or communicative function or perhaps both.

  7. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation.

    PubMed

    Huang, Yu; Liu, Anli A; Lafon, Belen; Friedman, Daniel; Dayan, Michael; Wang, Xiuyuan; Bikson, Marom; Doyle, Werner K; Devinsky, Orrin; Parra, Lucas C

    2017-02-07

    Transcranial electric stimulation aims to stimulate the brain by applying weak electrical currents at the scalp. However, the magnitude and spatial distribution of electric fields in the human brain are unknown. We measured electric potentials intracranially in ten epilepsy patients and estimate electric fields across the entire brain by leveraging calibrated current-flow models. When stimulating at 2 mA, cortical electric fields reach 0.4 V/m, the lower limit of effectiveness in animal studies. When individual whole-head anatomy is considered, the predicted electric field magnitudes correlate with the recorded values in cortical (r=0.89) and depth (r=0.84) electrodes. Accurate models require adjustment of tissue conductivity values reported in the literature, but accuracy is not improved when incorporating white matter anisotropy or different skull compartments. This is the first study to validate and calibrate current-flow models with in vivo intracranial recordings in humans, providing a solid foundation to target stimulation and interpret clinical trials.

  8. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation

    PubMed Central

    Huang, Yu; Liu, Anli A; Lafon, Belen; Friedman, Daniel; Dayan, Michael; Wang, Xiuyuan; Bikson, Marom; Doyle, Werner K; Devinsky, Orrin; Parra, Lucas C

    2017-01-01

    Transcranial electric stimulation aims to stimulate the brain by applying weak electrical currents at the scalp. However, the magnitude and spatial distribution of electric fields in the human brain are unknown. We measured electric potentials intracranially in ten epilepsy patients and estimated electric fields across the entire brain by leveraging calibrated current-flow models. When stimulating at 2 mA, cortical electric fields reach 0.4 V/m, the lower limit of effectiveness in animal studies. When individual whole-head anatomy is considered, the predicted electric field magnitudes correlate with the recorded values in cortical (r = 0.89) and depth (r = 0.84) electrodes. Accurate models require adjustment of tissue conductivity values reported in the literature, but accuracy is not improved when incorporating white matter anisotropy or different skull compartments. This is the first study to validate and calibrate current-flow models with in vivo intracranial recordings in humans, providing a solid foundation to target stimulation and interpret clinical trials. DOI: http://dx.doi.org/10.7554/eLife.18834.001 PMID:28169833

  9. Visualizing simulated electrical fields from electroencephalography and transcranial electric brain stimulation: a comparative evaluation.

    PubMed

    Eichelbaum, Sebastian; Dannhauer, Moritz; Hlawitschka, Mario; Brooks, Dana; Knösche, Thomas R; Scheuermann, Gerik

    2014-11-01

    Electrical activity of neuronal populations is a crucial aspect of brain activity. This activity is not measured directly but recorded as electrical potential changes using head surface electrodes (electroencephalogram - EEG). Head surface electrodes can also be deployed to inject electrical currents in order to modulate brain activity (transcranial electric stimulation techniques) for therapeutic and neuroscientific purposes. In electroencephalography and noninvasive electric brain stimulation, electrical fields mediate between electrical signal sources and regions of interest (ROI). These fields can be very complicated in structure, and are influenced in a complex way by the conductivity profile of the human head. Visualization techniques play a central role to grasp the nature of those fields because such techniques allow for an effective conveyance of complex data and enable quick qualitative and quantitative assessments. The examination of volume conduction effects of particular head model parameterizations (e.g., skull thickness and layering), of brain anomalies (e.g., holes in the skull, tumors), location and extent of active brain areas (e.g., high concentrations of current densities) and around current injecting electrodes can be investigated using visualization. Here, we evaluate a number of widely used visualization techniques, based on either the potential distribution or on the current-flow. In particular, we focus on the extractability of quantitative and qualitative information from the obtained images, their effective integration of anatomical context information, and their interaction. We present illustrative examples from clinically and neuroscientifically relevant cases and discuss the pros and cons of the various visualization techniques.

  10. Visualizing Simulated Electrical Fields from Electroencephalography and Transcranial Electric Brain Stimulation: A Comparative Evaluation

    PubMed Central

    Eichelbaum, Sebastian; Dannhauer, Moritz; Hlawitschka, Mario; Brooks, Dana; Knösche, Thomas R.; Scheuermann, Gerik

    2014-01-01

    Electrical activity of neuronal populations is a crucial aspect of brain activity. This activity is not measured directly but recorded as electrical potential changes using head surface electrodes (electroencephalogram - EEG). Head surface electrodes can also be deployed to inject electrical currents in order to modulate brain activity (transcranial electric stimulation techniques) for therapeutic and neuroscientific purposes. In electroencephalography and noninvasive electric brain stimulation, electrical fields mediate between electrical signal sources and regions of interest (ROI). These fields can be very complicated in structure, and are influenced in a complex way by the conductivity profile of the human head. Visualization techniques play a central role to grasp the nature of those fields because such techniques allow for an effective conveyance of complex data and enable quick qualitative and quantitative assessments. The examination of volume conduction effects of particular head model parameterizations (e.g., skull thickness and layering), of brain anomalies (e.g., holes in the skull, tumors), location and extent of active brain areas (e.g., high concentrations of current densities) and around current injecting electrodes can be investigated using visualization. Here, we evaluate a number of widely used visualization techniques, based on either the potential distribution or on the current-flow. In particular, we focus on the extractability of quantitative and qualitative information from the obtained images, their effective integration of anatomical context information, and their interaction. We present illustrative examples from clinically and neuroscientifically relevant cases and discuss the pros and cons of the various visualization techniques. PMID:24821532

  11. Direct cortical stimulation but not transcranial electrical stimulation motor evoked potentials detect brain ischemia during brain tumor resection.

    PubMed

    Li, Fenghua; Deshaies, Eric M; Allott, Geoffrey; Canute, Gregory; Gorji, Reza

    2011-09-01

    Motor evoked potentials (MEPs) elicited by both direct cortical stimulation (DCS) and transcranial electrical stimulation are used during brain tumor resection. Parallel use of direct cortical stimulation motor evoked potentials (DCS-MEPs) and transcranial electrical stimulation motor evoked potentials (TCeMEPs) has been practiced during brain tumor resection. We report that DCS-MEPs elicited by direct subdural grid stimulation, but not TCeMEPs, detected brain ischemia during brain tumor resection. Following resection of a brainstem high-grade glioma in a 21-year-old, the threshold of cortical motor-evoked-potentials (cMEPs) increased from 13 mA to 20 mA while amplitudes decreased. No changes were noted in transcranial motor evoked potentials (TCMEPs), somatosensory evoked potentials (SSEPs), auditory evoked potentials (AEPs), anesthetics, or hemodynamic parameters. Our case showed the loss of cMEPs and SSEPs, but not TCeMEPs. Permanent loss of DCS-MEPs and SSEPs was correlated with permanent left hemiplegia in our patient even when appropriate action was taken. Parallel use of DCS- and TCeMEPs with SSEPs improves sensitivity of intraoperative detection of motor impairment. DCS may be superior to TCeMEPs during brain tumor resection.

  12. Study Explores Electrical Brain Stimulation to Treat Bulimia

    MedlinePlus

    ... the brain involved with reward processing and self-regulation. There was also one sham session where the electrode stimulation lasted only 30 seconds. Participants then reported their desire to binge eat, fear of weight gain, general mood and frequency of bulimic behaviors in the 24 hours following ...

  13. [Interest of EEG recording during direct electrical stimulation for brain mapping function in surgery].

    PubMed

    Trebuchon, A; Guye, M; Tcherniack, V; Tramoni, E; Bruder, N; Metellus, P

    2012-06-01

    Brain tumor surgery is at risk when lesions are located in eloquent areas. The interindividual anatomo-functional variability of the central nervous system implies that brain surgery within eloquent regions may induce neurological sequelae. Brain mapping using intraoperative direct electrical stimulation in awake patients has been for long validated as the standard for functional brain mapping. Direct electrical stimulation inducing a local transient electrical and functional disorganization is considered positive if the task performed by the patient is disturbed. The brain area stimulated is then considered as essential for the function tested. However, the exactitude of the information provided by this technique is cautious because the actual impact of cortical direct electrical stimulation is not known. Indeed, the possibility of false negative (insufficient intensity of the stimulation due to the heterogeneity of excitability threshold of different cortical areas) or false positive (current spread, interregional signal propagation responsible for remote effects, which make difficult the interpretation of positive or negative behavioural effects) constitute a limitation of this technique. To improve the sensitivity and specificity of this technique, we used an electrocorticographic recording system allowing a real time visualization of the local. We provide here evidence that direct cortical stimulation combined with electrocorticographic recording could be useful to detect remote after discharge and to adjust stimulation parameters. In addition this technique offers new perspective to better assess connectivity of cerebral networks.

  14. Emerging subspecialties in neurology: deep brain stimulation and electrical neuro-network modulation.

    PubMed

    Hassan, Anhar; Okun, Michael S

    2013-01-29

    Deep brain stimulation (DBS) is a surgical therapy that involves the delivery of an electrical current to one or more brain targets. This technology has been rapidly expanding to address movement, neuropsychiatric, and other disorders. The evolution of DBS has created a niche for neurologists, both in the operating room and in the clinic. Since DBS is not always deep, not always brain, and not always simply stimulation, a more accurate term for this field may be electrical neuro-network modulation (ENM). Fellowships will likely in future years evolve their scope to include other technologies, and other nervous system regions beyond typical DBS therapy.

  15. Brain responses to cardiac electrical stimulation: a new EEG method for evaluating cardiac sensation.

    PubMed

    Suzuki, Hideaki; Hirose, Masanori; Watanabe, Satoshi; Fukuda, Koji; Fukudo, Shin; Shimokawa, Hiroaki

    2012-01-01

    Although cardiac sensation, such as palpitation or chest pain, is common and is sometimes a malignant sign of heart diseases, the mechanism by which the human brain responds to afferent signals from the heart remains unclear. In this study, we investigated whether electrical stimulation of the heart provokes brain responses in humans. We examined 15 patients (age: 65.4 ± 3.1 years old, 11 males and 4 females) implanted with either a cardiac pacemaker or cardiac resynchronization therapy (CRT) device. Electroencephalogram (EEG) was simultaneously recorded from the vertex during right ventricular pacing at 70-100 beats/min at baseline (1.5 V) and intense (6-8 V) stimulation sessions. We evaluated brain responses to cardiac electrical stimulation by measuring cerebral potentials that were obtained by subtracting the average of 100 EEG waves triggered by cardiac pacing during baseline stimulation from those during the intense stimulation. Intense stimulation of the cardiac pacemaker or CRT device reproducibly induced cardiac sensation in 6 out of the 15 patients; namely, the remaining 9 patients showed no reproducible response. Brain responses were evident by averaging cerebral potentials from all of the 15 patients and those from 6 patients with reproducible cardiac sensation. To the best our knowledge, this is the first report that demonstrates the brain responses to cardiac electrical stimulation in humans. This new method should be useful for examining pathophysiology of cardiac diseases with pathological cardiac sensation, including cardiac anxiety and silent myocardial ischemia.

  16. The Tulane Electrical Brain Stimulation Program a historical case study in medical ethics.

    PubMed

    Baumeister, A A

    2000-12-01

    In 1950 physicians at Tulane University School of Medicine began a program of research on the use of electrical brain stimulation that would span three decades and involve approximately 100 patients. Initially, electrical brain stimulation was used to treat of schizophrenia, but later it was applied to a variety of other conditions. Throughout its history the Tulane research was well publicized in both the professional and lay literature, and for almost twenty years, with rare exception, these accounts were laudatory. However, in the early 1970s this work began to draw sharp public criticism. Despite its public and controversial nature, the Tulane electrical brain stimulation program has received relatively little attention from historians. This review recounts the history of the Tulane program with particular emphasis on the ethical propriety of the work. Factors that shaped the historical context in which the Tulane experiments were conducted are discussed.

  17. Influence of air ions on brain activity induced by electrical stimulation in the rat

    NASA Astrophysics Data System (ADS)

    Olivereau, J. M.; Lambert, J. F.; Truong-Ngoc, A.

    1981-03-01

    The brain induced activity was studied in 18 rats wearing chronically skull implanted electrodes. The stimulating factor was various electrical stimulations of the mesencephalic reticular activating formation, given during the slow wave state of sleep. The results of 300 stimulations were measured by amplitude and frequency changes in the EEG simultaneously recorded. Animals previously exposed to positive air ions (3 weeks 80,000 ions/ml) exhibited lowered excitability of the reticulocortical system. Significantly higher stimulations were necessary to induce arousal. Negative air ions induced more intricate effects: brain excitability was lowered when tested with weak stimulations, but normal when evaluated with medium high level stimilations. Sleep seems first more stable but as stimulation increases, arousal is soon as effective as in controls. These results are in agreement with others findings in behavioral fields and partly explains them.

  18. The Effect of Electric Cortical Stimulation after Focal Traumatic Brain Injury in Rats

    PubMed Central

    Yoon, Yong-Soon; Yu, Ki Pi; Kim, Hyojoon; Kim, Hyoung-ihl; Kim, Bong Ok

    2012-01-01

    Objective To evaluate the effects of electric cortical stimulation in the experimentally induced focal traumatic brain injury (TBI) rat model on motor recovery and plasticity of the injured brain. Method Twenty male Sprague-Dawley rats were pre-trained on a single pellet reaching task (SPRT) and on a Rotarod task (RRT) for 14 days. Then, the TBI model was induced by a weight drop device (40 g in weight, 25 cm in height) on the dominant motor cortex, and the electrode was implanted over the perilesional cortical surface. All rats were divided into two groups as follows: Electrical stimulation (ES) group with anodal continuous stimulation (50 Hz and 194 µs duration) or Sham-operated control (SOC) group with no electrical stimulation. The rats were trained SPRT and RRT for 14 days for rehabilitation and measured Garcia's neurologic examination. Histopathological and immunostaining evaluations were performed after the experiment. Results There were no differences in the slice number in the histological analysis. Garcia's neurologic scores & SPRT were significantly increased in the ES group (p<0.05), yet, there was no difference in RRT in both groups. The ES group showed more expression of c-Fos around the brain injured area than the SOC group. Conclusion Electric cortical stimulation with rehabilitation is considered to be one of the trial methods for motor recovery in TBI. However, more studies should be conducted for the TBI model in order to establish better stimulation methods. PMID:23185723

  19. Brain Stimulation Therapies

    MedlinePlus

    ... Magnetic Seizure Therapy Deep Brain Stimulation Additional Resources Brain Stimulation Therapies Overview Brain stimulation therapies can play ... for a shorter recovery time than ECT Deep Brain Stimulation Deep brain stimulation (DBS) was first developed ...

  20. A Closed Loop Brain-machine Interface for Epilepsy Control Using Dorsal Column Electrical Stimulation

    PubMed Central

    Pais-Vieira, Miguel; Yadav, Amol P.; Moreira, Derek; Guggenmos, David; Santos, Amílcar; Lebedev, Mikhail; Nicolelis, Miguel A. L.

    2016-01-01

    Although electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closed-loop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders. PMID:27605389

  1. Magneto-Electric Nano-Particles for Non-Invasive Brain Stimulation

    PubMed Central

    Yue, Kun; Guduru, Rakesh; Hong, Jeongmin; Liang, Ping; Nair, Madhavan; Khizroev, Sakhrat

    2012-01-01

    This paper for the first time discusses a computational study of using magneto-electric (ME) nanoparticles to artificially stimulate the neural activity deep in the brain. The new technology provides a unique way to couple electric signals in the neural network to the magnetic dipoles in the nanoparticles with the purpose to enable a non-invasive approach. Simulations of the effect of ME nanoparticles for non-invasively stimulating the brain of a patient with Parkinson's Disease to bring the pulsed sequences of the electric field to the levels comparable to those of healthy people show that the optimized values for the concentration of the 20-nm nanoparticles (with the magneto-electric (ME) coefficient of 100 V cm−1 Oe−1 in the aqueous solution) is 3×106 particles/cc, and the frequency of the externally applied 300-Oe magnetic field is 80 Hz. PMID:22957042

  2. Predicting the effects of deep brain stimulation with diffusion tensor based electric field models.

    PubMed

    Butson, Christopher R; Cooper, Scott E; Henderson, Jaimie M; McIntyre, Cameron C

    2006-01-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of movement disorders, and has shown promising results for the treatment of a wide range of other neurological disorders. However, little is known about the mechanism of action of DBS or the volume of brain tissue affected by stimulation. We have developed methods that use anatomical and diffusion tensor MRI (DTI) data to predict the volume of tissue activated (VTA) during DBS. We co-register the imaging data with detailed finite element models of the brain and stimulating electrode to enable anatomically and electrically accurate predictions of the spread of stimulation. One critical component of the model is the DTI tensor field that is used to represent the 3-dimensionally anisotropic and inhomogeneous tissue conductivity. With this system we are able to fuse structural and functional information to study a relevant clinical problem: DBS of the subthalamic nucleus for the treatment of Parkinsons disease (PD). Our results show that inclusion of the tensor field in our model caused significant differences in the size and shape of the VTA when compared to a homogeneous, isotropic tissue volume. The magnitude of these differences was proportional to the stimulation voltage. Our model predictions are validated by comparing spread of predicted activation to observed effects of oculomotor nerve stimulation in a PD patient. In turn, the 3D tissue electrical properties of the brain play an important role in regulating the spread of neural activation generated by DBS.

  3. [Mechanism of action for deep brain stimulation and electrical neuro-network modulation (ENM)].

    PubMed

    Okun, Michael S; Oyama, Genko

    2013-01-01

    Deep brain stimulation (DBS) has become an important treatment option for carefully screened medication resistant neurological and neuropsychiatric disorders. DBS therapy is not always applied deep to the brain; does not have to be applied exclusively to the brain; and the mechanism for DBS is not simply stimulation of structures. The applications and target locations for DBS devices are rapidly expanding, with many new regions of the brain, spinal cord, peripheral nerves, and muscles now possibly accessed through this technology. We will review the idea of "electrical neuro-network modulation (ENM)"; discuss the importance of the complex neural networks underpinning the effects of DBS; discuss the expansion of brain targets; discuss the use of fiber based targets; and discuss the importance of tailoring DBS therapy to the symptom, rather than the disease.

  4. Non-Invasive Electrical Brain Stimulation Montages for Modulation of Human Motor Function.

    PubMed

    Curado, Marco; Fritsch, Brita; Reis, Janine

    2016-02-04

    Non-invasive electrical brain stimulation (NEBS) is used to modulate brain function and behavior, both for research and clinical purposes. In particular, NEBS can be applied transcranially either as direct current stimulation (tDCS) or alternating current stimulation (tACS). These stimulation types exert time-, dose- and in the case of tDCS polarity-specific effects on motor function and skill learning in healthy subjects. Lately, tDCS has been used to augment the therapy of motor disabilities in patients with stroke or movement disorders. This article provides a step-by-step protocol for targeting the primary motor cortex with tDCS and transcranial random noise stimulation (tRNS), a specific form of tACS using an electrical current applied randomly within a pre-defined frequency range. The setup of two different stimulation montages is explained. In both montages the emitting electrode (the anode for tDCS) is placed on the primary motor cortex of interest. For unilateral motor cortex stimulation the receiving electrode is placed on the contralateral forehead while for bilateral motor cortex stimulation the receiving electrode is placed on the opposite primary motor cortex. The advantages and disadvantages of each montage for the modulation of cortical excitability and motor function including learning are discussed, as well as safety, tolerability and blinding aspects.

  5. Repeated electrical stimulation of reward-related brain regions affects cocaine but not "natural" reinforcement.

    PubMed

    Levy, Dino; Shabat-Simon, Maytal; Shalev, Uri; Barnea-Ygael, Noam; Cooper, Ayelet; Zangen, Abraham

    2007-12-19

    Drug addiction is associated with long-lasting neuronal adaptations including alterations in dopamine and glutamate receptors in the brain reward system. Treatment strategies for cocaine addiction and especially the prevention of craving and relapse are limited, and their effectiveness is still questionable. We hypothesized that repeated stimulation of the brain reward system can induce localized neuronal adaptations that may either potentiate or reduce addictive behaviors. The present study was designed to test how repeated interference with the brain reward system using localized electrical stimulation of the medial forebrain bundle at the lateral hypothalamus (LH) or the prefrontal cortex (PFC) affects cocaine addiction-associated behaviors and some of the neuronal adaptations induced by repeated exposure to cocaine. Repeated high-frequency stimulation in either site influenced cocaine, but not sucrose reward-related behaviors. Stimulation of the LH reduced cue-induced seeking behavior, whereas stimulation of the PFC reduced both cocaine-seeking behavior and the motivation for its consumption. The behavioral findings were accompanied by glutamate receptor subtype alterations in the nucleus accumbens and the ventral tegmental area, both key structures of the reward system. It is therefore suggested that repeated electrical stimulation of the PFC can become a novel strategy for treating addiction.

  6. Endogenous and exogenous electric fields as modifiers of brain activity: rational design of noninvasive brain stimulation with transcranial alternating current stimulation.

    PubMed

    Fröhlich, Flavio

    2014-03-01

    Synchronized neuronal activity in the cortex generates weak electric fields that are routinely measured in humans and animal models by electroencephalography and local field potential recordings. Traditionally, these endogenous electric fields have been considered to be an epiphenomenon of brain activity. Recent work has demonstrated that active cortical networks are surprisingly susceptible to weak perturbations of the membrane voltage of a large number of neurons by electric fields. Simultaneously, noninvasive brain stimulation with weak, exogenous electric fields (transcranial current stimulation, TCS) has undergone a renaissance due to the broad scope of its possible applications in modulating brain activity for cognitive enhancement and treatment of brain disorders. This review aims to interface the recent developments in the study of both endogenous and exogenous electric fields, with a particular focus on rhythmic stimulation for the modulation of cortical oscillations. The main goal is to provide a starting point for the use of rational design for the development of novel mechanism-based TCS therapeutics based on transcranial alternating current stimulation, for the treatment of psychiatric illnesses.

  7. Endogenous and exogenous electric fields as modifiers of brain activity: rational design of noninvasive brain stimulation with transcranial alternating current stimulation

    PubMed Central

    Fröhlich, Flavio

    2014-01-01

    Synchronized neuronal activity in the cortex generates weak electric fields that are routinely measured in humans and animal models by electroencephalography and local field potential recordings. Traditionally, these endogenous electric fields have been considered to be an epiphenomenon of brain activity. Recent work has demonstrated that active cortical networks are surprisingly susceptible to weak perturbations of the membrane voltage of a large number of neurons by electric fields. Simultaneously, noninvasive brain stimulation with weak, exogenous electric fields (transcranial current stimulation, TCS) has undergone a renaissance due to the broad scope of its possible applications in modulating brain activity for cognitive enhancement and treatment of brain disorders. This review aims to interface the recent developments in the study of both endogenous and exogenous electric fields, with a particular focus on rhythmic stimulation for the modulation of cortical oscillations. The main goal is to provide a starting point for the use of rational design for the development of novel mechanism-based TCS therapeutics based on transcranial alternating current stimulation, for the treatment of psychiatric illnesses. PMID:24733974

  8. Effect of Epidural Electrical Stimulation and Repetitive Transcranial Magnetic Stimulation in Rats With Diffuse Traumatic Brain Injury

    PubMed Central

    Yoon, Yong-Soon; Cho, Kang Hee; Kim, Eun-Sil; Lee, Mi-Sook

    2015-01-01

    Objective To evaluate the effects of epidural electrical stimulation (EES) and repetitive transcranial magnetic stimulation (rTMS) on motor recovery and brain activity in a rat model of diffuse traumatic brain injury (TBI) compared to the control group. Methods Thirty rats weighing 270-285 g with diffuse TBI with 45 kg/cm2 using a weight-drop model were assigned to one of three groups: the EES group (ES) (anodal electrical stimulation at 50 Hz), the rTMS group (MS) (magnetic stimulation at 10 Hz, 3-second stimulation with 6-second intervals, 4,000 total stimulations per day), and the sham-treated control group (sham) (no stimulation). They were pre-trained to perform a single-pellet reaching task (SPRT) and a rotarod test (RRT) for 14 days. Diffuse TBI was then induced and an electrode was implanted over the dominant motor cortex. The changes in SPRT success rate, RRT performance time rate and the expression of c-Fos after two weeks of EES or rTMS were tracked. Results SPRT improved significantly from day 8 to day 12 in the ES group and from day 4 to day 14 in the MS group (p<0.05) compared to the sham group. RRT improved significantly from day 6 to day 11 in ES and from day 4 to day 9 in MS compared to the sham group. The ES and MS groups showed increased expression of c-Fos in the cerebral cortex compared to the sham group. Conclusion ES or MS in a rat model of diffuse TBI can be used to enhance motor recovery and brain activity. PMID:26161348

  9. Methodological Dimensions of Transcranial Brain Stimulation with the Electrical Current in Human

    PubMed Central

    Rostami, Maryam; Golesorkhi, Mehrshad; Ekhtiari, Hamed

    2013-01-01

    Transcranial current stimulation (TCS) is a neuromodulation method in which the patient is exposed to a mild electric current (direct or alternating) at 1-2 mA, resulting in an increase or a decrease in the brain excitability. This modification in neural activities can be used as a method for functional human brain mapping with causal inferences. This method might also facilitate the treatments of many neuropsychiatric disorders based on its inexpensive, simple, safe, noninvasive, painless, semi-focal excitatory and inhibitory effects. Given this, a comparison amongst different brain stimulation modalities has been made to determine the potential advantages of the TCS method. In addition, considerable methodological details on using TCS in basic and clinical neuroscience studies in human subjects have been introduced. Technical characteristics of TCS devices and their related accessories with regard to safety concerns have also been well articulated. Finally, some TCS application opportunities have been emphasized, including its potential use in the near future. PMID:25337348

  10. Relationship between neural activation and electric field distribution during deep brain stimulation.

    PubMed

    Åström, Mattias; Diczfalusy, Elin; Martens, Hubert; Wårdell, Karin

    2015-02-01

    Models and simulations are commonly used to study deep brain stimulation (DBS). Simulated stimulation fields are often defined and visualized by electric field isolevels or volumes of tissue activated (VTA). The aim of the present study was to evaluate the relationship between stimulation field strength as defined by the electric potential V, the electric field E, and the divergence of the electric field ∇(2) V, and neural activation. Axon cable models were developed and coupled to finite-element DBS models in three-dimensional (3-D). Field thresholds ( VT , ET, and ∇(2) VT ) were derived at the location of activation for various stimulation amplitudes (1 to 5 V), pulse widths (30 to 120 μs), and axon diameters (2.0 to 7.5 μm). Results showed that thresholds for VT and ∇(2) VT were highly dependent on the stimulation amplitude while ET were approximately independent of the amplitude for large axons. The activation field strength thresholds presented in this study may be used in future studies to approximate the VTA during model-based investigations of DBS without the need of computational axon models.

  11. The Electrical Stimulation Modifies the Cerebral Function

    NASA Astrophysics Data System (ADS)

    Rocha, Luisa Lilia; López-Meraz, María Leonor; Cuéllar-Herrera, Manola; Neri-Bazán., Leticia

    2002-08-01

    Electrical stimulation has been used for therapeuthic purposes. In this review, we present the clinical and scientific bases for using electrical stimulation as a treatment for pharmacological refractory epilepsy. We also describe results in receptors of inhibitory neurotransmitters obtained in rat brain with or without epilepsy, undergoing brain stimulation. Brain electrical stimulation may improve our understanding of brain function and neuroplasticity.

  12. [Methods of brain stimulation based on weak electric current--future tool for the clinician?].

    PubMed

    Kotilainen, Tuukka; Lehto, Soili M

    2016-01-01

    Methods of brain stimulation based on a weak electric current are non-invasive neuromodulation techniques. They include transcranial direct current, alternating current and random noise stimulation. These methods modify the membrane potential of neurons without triggering the action potential, and have been successfully utilized to influence cognition and regulation of emotions in healthy experimental subjects. In clinical studies, indications of the efficacy of these techniques have been obtained in the treatment of depression, schizophrenia, memory disorders and pain as well as in stroke rehabilitation. It is hoped that these techniques will become established as part of the care and rehabilitation of psychiatric and neurologic patients in the future.

  13. Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain.

    PubMed

    Antal, Andrea; Bikson, Marom; Datta, Abhishek; Lafon, Belen; Dechent, Peter; Parra, Lucas C; Paulus, Walter

    2014-01-15

    Functional magnetic resonance imaging (fMRI) of brain activation during transcranial electrical stimulation is used to provide insight into the mechanisms of neuromodulation and targeting of particular brain structures. However, the passage of current through the body may interfere with the concurrent detection of blood oxygen level-dependent (BOLD) signal, which is sensitive to local magnetic fields. To test whether these currents can affect concurrent fMRI recordings we performed conventional gradient echo-planar imaging (EPI) during transcranial direct current (tDCS) and alternating current stimulation (tACS) on two post-mortem subjects. tDCS induced signals in both superficial and deep structures. The signal was specific to the electrode montage, with the strongest signal near cerebrospinal fluid (CSF) and scalp. The direction of change relative to non-stimulation reversed with tDCS stimulation polarity. For tACS there was no net effect of the MRI signal. High-resolution individualized modeling of current flow and induced static magnetic fields suggested a strong coincidence of the change EPI signal with regions of large current density and magnetic fields. These initial results indicate that (1) fMRI studies of tDCS must consider this potentially confounding interference from current flow and (2) conventional MRI imaging protocols can be potentially used to measure current flow during transcranial electrical stimulation. The optimization of current measurement and artifact correction techniques, including consideration of the underlying physics, remains to be addressed.

  14. In vivo functional photoacoustic micro-imaging of the electrically stimulated rat brain with multiwavelengths

    NASA Astrophysics Data System (ADS)

    Liao, Lun-De; Li, Meng-Lin; Lai, Hsin-Yi; Chen, You-Yin; Chao, Paul C.-P.; Wang, Po-Hsun

    2010-02-01

    In this study, we report on using multi-wavelength photoacoustic microscopy to image hemodynamic changes of total hemoglobin concentration (HbT) (i.e., blood volume) and oxygenation (SO2) in rat brain cortex vessels with electrical stimulation. Electrical stimulation of the rat left forelimb was applied to evoke changes in vascular dynamics of the rat somatosensory cortex. The applied current pulses were with a pulse frequency of 3 Hz, pulse duration of 0.2 ms, and pulse amplitude of 5 mA, respectively. The imaging target of rat brains was demarcated at AP 0 - -2.5 mm and ML +/- 6 mm with respect to bregma. HbT changes were probed by images acquired at 570 nm, a hemoglobin isosbestic point while SO2 changes were imaged by those acquired at 560 nm or 600 nm and their derivatives, which were normalized to those with 570 nm wavelengths. Correlation between the electrical stimulation paradigm and images acquired at 570, 560, and 600 nm in contralateral and ipsilateral vasculature was statistically analyzed, showing that the HbT and SO2 changes revealed by multi-wavelength photoacoustic images spatially correlated with contralateral vasculature.

  15. Effect of Electrical Stimulation of the Suprahyoid Muscles in Brain-Injured Patients with Dysphagia.

    PubMed

    Beom, Jaewon; Oh, Byung-Mo; Choi, Kyoung Hyo; Kim, Won; Song, Young Jin; You, Dae Sang; Kim, Sang Jun; Han, Tai Ryoon

    2015-08-01

    The purpose of this study is to determine whether neuromuscular electrical stimulation of the suprahyoid muscle is effective compared to that of the infrahyoid muscle in brain-injured patients with dysphagia. A total of 132 patients with stroke, traumatic brain injury, or brain tumor in 2 university hospitals were allocated to 2 groups: those who received electrical stimulation therapy (EST) on the suprahyoid muscles (SM group, n = 66) and those who received EST with one pair of electrodes on the suprahyoid muscle and the other pair on the infrahyoid muscle (SI group, n = 66). Patients received 11.2 ± 3.4 sessions of electrical stimulation in the SM group and 11.9 ± 3.4 sessions in the SI group. The functional dysphagia scale (FDS), swallow function score (SFS), supraglottic penetration, and subglottic aspiration were measured using videofluoroscopic swallowing study. FDS scores decreased from 42.0 ± 19.1 to 32.3 ± 17.8 in the SM group and from 44.8 ± 17.4 to 32.9 ± 18.8 in the SI group by per-protocol (PP) analysis, and those decreased from 41.2 ± 20.9 to 34.5 ± 20.3 in the SM group and from 44.3 ± 19.1 to 35.7 ± 20.5 in the SI group by intention-to-treat (ITT) analysis, after electrical stimulation (p < 0.001 for each). SFSs increased from 3.3 ± 1.8 to 4.2 ± 1.6 in the SM group and from 2.8 ± 1.8 to 4.0 ± 1.8 in the SI group by PP analysis, and those increased from 3.3 ± 1.6 to 3.9 ± 1.6 in the SM group and from 2.8 ± 1.9 to 3.6 ± 2.0 in the SI group by ITT analysis, after electrical stimulation (p < 0.001, respectively). However, changes in FDS scores, SFSs, penetration, and aspiration were comparable between the SM and the SI groups. The results suggest that both SM and SI therapies induced similar improvements in swallowing function in brain-injured patients.

  16. [Extinction of brain activation responses to direct electrical stimulation of its structures in normal awake cats].

    PubMed

    Kratin, Iu G; Andreeva, V N; Iragashev, M S

    1975-03-01

    In unrestrained cats, repeated electric stimulation of the mesencephalic reticular formation (MRF), center median (CM) of the thalamus, and different cortical areas: both the low--and the high--threshold points (in regard to the brain activation), with the threshold strength current evoked similar EEG reactions of activation which diminished and disappeared after 3--5 repetitions of the stimuli. The moderate strength current evoked, apart from the EEG activation, pseudoviolent movements (turning of the head, etc.) and changes in the breathing rate. All these reactions could be extinguidhed by sufficient number of repetitions of stimuli, the effector reactions disappearing first, the EEG changes--last. The essential difference of the stimulation effects emerged when the strong current stimulation was used. In this case, when stimulating the high-threshold cortical points, the EEG and effector reactions could be abolished during long enough repetition of the stimuli, but it was impossible when stimulating the low-threshold cortical points, the MRF or CM: all the reactions stayed intense and stable, the animals became highly irritated. The data obtained are discussed from the point of view of the authors' concept of the interaction between the activating and integrative analysing mechanisms of the brain.

  17. Electrical Stimulation of the Suprahyoid Muscles in Brain-injured Patients with Dysphagia: A Pilot Study

    PubMed Central

    Beom, Jaewon; Kim, Sang Jun

    2011-01-01

    Objective To investigate the therapeutic effects of repetitive electrical stimulation of the suprahyoid muscles in brain-injured patients with dysphagia. Method Twenty-eight brain-injured patients who showed reduced laryngeal elevation and supraglottic penetration or subglottic aspiration during a videofluoroscopic swallowing study (VFSS) were selected. The patients received either conventional dysphagia management (CDM) or CDM with repetitive electrical stimulation of the suprahyoid muscles (ESSM) for 4 weeks. The videofluoroscopic dysphagia scale (VDS) using the VFSS and American Speech-Language-Hearing Association National Outcome Measurement System (ASHA NOMS) swallowing scale (ASHA level) was used to determine swallowing function before and after treatment. Results VDS scores decreased from 29.8 to 17.9 in the ESSM group, and from 29.2 to 16.6 in the CDM group. However, there was no significant difference between the groups (p=0.796). Six patients (85.7%) in the ESSM group and 14 patients (66.7%) in the CDM group showed improvement according to the ASHA level with no significant difference between the ESSM and CDM groups (p=0.633). Conclusion Although repetitive neuromuscular electrical stimulation of the suprahyoid muscles did not further improve the swallowing function of dysphagia patients with reduced laryngeal elevation, more patients in the ESSM group showed improvement in the ASHA level than those in the CDM group. Further studies with concurrent controls and a larger sample group are required to fully establish the effects of repetitive neuromuscular electrical stimulation of the suprahyoid muscles in dysphagia patients. PMID:22506140

  18. Noninvasive mapping of the electrically stimulated mouse brain using photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Stein, Erich W.; Maslov, Konstantin; Wang, Lihong V.

    2008-02-01

    Photoacoustic imaging techniques possess high optical contrast with ultrasonic resolution while exceeding imaging depths of pure optical techniques, affording high resolution images deep within scattering biological tissues. In this work, we employ reflection-mode photoacoustic microscopy to non-invasively monitor hemodynamic contrasts and map brain activity. Changes in vascular dynamics of the mouse somatosensory cortex were evoked through electrical stimulation of the hindpaw, resulting in increased photoacoustic intensities spatially correlated with contra-lateral vasculature. Results demonstrate the ability to map brain activation with vascular resolution in three-dimensions, as well as monitor single-vessel hemodynamics with millisecond temporal resolution. Furthermore, these results implicate the feasibility of photoacoustic microscopy to probe intra-cortical single-vessel hemodynamics and pave the way for more extensive functional brain imaging studies.

  19. The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation

    PubMed Central

    Pelletier, Simon J.; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin

    2015-01-01

    Background: The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Methods: Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. Results: In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. Conclusion: We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. PMID:25522422

  20. Influence of heterogeneous and anisotropic tissue conductivity on electric field distribution in deep brain stimulation.

    PubMed

    Aström, Mattias; Lemaire, Jean-Jacques; Wårdell, Karin

    2012-01-01

    The aim was to quantify the influence of heterogeneous isotropic and heterogeneous anisotropic tissue on the spatial distribution of the electric field during deep brain stimulation (DBS). Three finite element tissue models were created of one patient treated with DBS. Tissue conductivity was modelled as (I) homogeneous isotropic, (II) heterogeneous isotropic based on MRI, and (III) heterogeneous anisotropic based on diffusion tensor MRI. Modelled DBS electrodes were positioned in the subthalamic area, the pallidum, and the internal capsule in each tissue model. Electric fields generated during DBS were simulated for each model and target-combination and visualized with isolevels at 0.20 (inner), and 0.05 V mm(-1) (outer). Statistical and vector analysis was used for evaluation of the distribution of the electric field. Heterogeneous isotropic tissue altered the spatial distribution of the electric field by up to 4% at inner, and up to 10% at outer isolevel. Heterogeneous anisotropic tissue influenced the distribution of the electric field by up to 18 and 15% at each isolevel, respectively. The influence of heterogeneous and anisotropic tissue on the electric field may be clinically relevant in anatomic regions that are functionally subdivided and surrounded by multiple fibres of passage.

  1. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens

    PubMed Central

    Albaugh, Daniel L.; Salzwedel, Andrew; Van Den Berge, Nathalie; Gao, Wei; Stuber, Garret D.; Shih, Yen-Yu Ian

    2016-01-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action. PMID:27601003

  2. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation

    PubMed Central

    Feng, Zhen; Zhong, Ying-jun; Wang, Liang; Wei, Tian-qi

    2015-01-01

    In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually increased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our findings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the prefrontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation. PMID:26170820

  3. Electrical Stimulation of the Human Brain: Perceptual and Behavioral Phenomena Reported in the Old and New Literature

    PubMed Central

    Selimbeyoglu, Aslihan; Parvizi, Josef

    2010-01-01

    In this review, we summarize the subjective experiential phenomena and behavioral changes that are caused by electrical stimulation of the cerebral cortex or subcortical nuclei in awake and conscious human subjects. Our comprehensive review contains a detailed summary of the data obtained from electrical brain stimulation (EBS) in humans in the last 100 years. Findings from the EBS studies may provide an additional layer of information about the neural correlates of cognition and behavior in healthy human subjects, or the neuroanatomy of illusions and hallucinations in patients with psychosis and the brain symptomatogenic zones in patients with epilepsy. We discuss some fundamental concepts, issues, and remaining questions that have defined the field of EBS, and review the current state of knowledge about the mechanism of action of EBS suggesting that the modulation of activity within a localized, but distributed, neuroanatomical network might explain the perceptual and behavioral phenomena that are reported during focal electrical stimulation of the human brain. PMID:20577584

  4. Evaluation method for in situ electric field in standardized human brain for different transcranial magnetic stimulation coils.

    PubMed

    Iwahashi, Masahiro; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa

    2017-03-21

    This study proposes a method to evaluate the electric field induced in the brain by transcranial magnetic stimulation (TMS) to realize focal stimulation in the target area considering the inter-subject difference of the brain anatomy. The TMS is a non-invasive technique used for treatment/diagnosis, and it works by inducing an electric field in a specific area of the brain via a coil-induced magnetic field. Recent studies that report on the electric field distribution in the brain induced by TMS coils have been limited to simplified human brain models or a small number of detailed human brain models. Until now, no method has been developed that appropriately evaluates the coil performance for a group of subjects. In this study, we first compare the magnetic field and the magnetic vector potential distributions to determine if they can be used as predictors of the TMS focality derived from the electric field distribution. Next, the hotspots of the electric field on the brain surface of ten subjects using six coils are compared. Further, decisive physical factors affecting the focality of the induced electric field by different coils are discussed by registering the computed electric field in a standard brain space for the first time, so as to evaluate coil characteristics for a large population of subjects. The computational results suggest that the induced electric field in the target area cannot be generalized without considering the morphological variability of the human brain. Moreover, there was no remarkable difference between the various coils, although focality could be improved to a certain extent by modifying the coil design (e.g., coil radius). Finally, the focality estimated by the electric field was more correlated with the magnetic vector potential than the magnetic field in a homogeneous sphere.

  5. Evaluation method for in situ electric field in standardized human brain for different transcranial magnetic stimulation coils

    NASA Astrophysics Data System (ADS)

    Iwahashi, Masahiro; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa

    2017-03-01

    This study proposes a method to evaluate the electric field induced in the brain by transcranial magnetic stimulation (TMS) to realize focal stimulation in the target area considering the inter-subject difference of the brain anatomy. The TMS is a non-invasive technique used for treatment/diagnosis, and it works by inducing an electric field in a specific area of the brain via a coil-induced magnetic field. Recent studies that report on the electric field distribution in the brain induced by TMS coils have been limited to simplified human brain models or a small number of detailed human brain models. Until now, no method has been developed that appropriately evaluates the coil performance for a group of subjects. In this study, we first compare the magnetic field and the magnetic vector potential distributions to determine if they can be used as predictors of the TMS focality derived from the electric field distribution. Next, the hotspots of the electric field on the brain surface of ten subjects using six coils are compared. Further, decisive physical factors affecting the focality of the induced electric field by different coils are discussed by registering the computed electric field in a standard brain space for the first time, so as to evaluate coil characteristics for a large population of subjects. The computational results suggest that the induced electric field in the target area cannot be generalized without considering the morphological variability of the human brain. Moreover, there was no remarkable difference between the various coils, although focality could be improved to a certain extent by modifying the coil design (e.g., coil radius). Finally, the focality estimated by the electric field was more correlated with the magnetic vector potential than the magnetic field in a homogeneous sphere.

  6. Imaging brain hemodynamic changes during rat forepaw electrical stimulation using functional photoacoustic microscopy.

    PubMed

    Liao, Lun-De; Li, Meng-Lin; Lai, Hsin-Yi; Shih, Yen-Yu I; Lo, Yu-Chun; Tsang, Siny; Chao, Paul Chang-Po; Lin, Chin-Teng; Jaw, Fu-Shan; Chen, You-Yin

    2010-08-15

    The present study reported the development of a novel functional photoacoustic microscopy (fPAM) system for investigating hemodynamic changes in rat cortical vessels associated with electrical forepaw stimulation. Imaging of blood optical absorption by fPAM at multiple appropriately-selected and distinct wavelengths can be used to probe changes in total hemoglobin concentration (HbT, i.e., cerebral blood volume [CBV]) and hemoglobin oxygen saturation (SO(2)). Changes in CBV were measured by images acquired at a wavelength of 570nm (lambda(570)), an isosbestic point of the molar extinction spectra of oxy- and deoxy-hemoglobin, whereas SO(2) changes were sensed by pixel-wise normalization of images acquired at lambda(560) or lambda(600) to those at lambda(570). We demonstrated the capacity of the fPAM system to image and quantify significant contralateral changes in both SO(2) and CBV driven by electrical forepaw stimulation. The fPAM system complements existing imaging techniques, with the potential to serve as a favorable tool for explicitly studying brain hemodynamics in animal models.

  7. Functional asymmetry between the left and right human fusiform gyrus explored through electrical brain stimulation.

    PubMed

    Rangarajan, Vinitha; Parvizi, Josef

    2016-03-01

    The ventral temporal cortex (VTC) contains several areas with selective responses to words, numbers, faces, and objects as demonstrated by numerous human and primate imaging and electrophysiological studies. Our recent work using electrocorticography (ECoG) confirmed the presence of face-selective neuronal populations in the human fusiform gyrus (FG) in patients implanted with intracranial electrodes in either the left or right hemisphere. Electrical brain stimulation (EBS) disrupted the conscious perception of faces only when it was delivered in the right, but not left, FG. In contrast to our previous findings, here we report both negative and positive EBS effects in right and left FG, respectively. The presence of right hemisphere language dominance in the first, and strong left-handedness and poor language processing performance in the second case, provide indirect clues about the functional architecture of the human VTC in relation to hemispheric asymmetries in language processing and handedness.

  8. Inhibition of stimulated dopamine release and hemodynamic response in the brain through electrical stimulation of rat forepaw.

    PubMed Central

    Chen, Y Iris; Ren, Jiaqian; Wang, Fu-Nien; Xu, Haibo; Mandeville, Joseph B; Kim, Young; Rosen, Bruce R; Jenkins, Bruce G; Hui, Kathleen KS; Kwong, Kenneth K

    2008-01-01

    The subcortical response to peripheral somatosensory stimulation is not well studied. Prior literature suggests that somatosensory stimulation can affect dopaminergic tone. We studied the effects of electrical stimulation near the median nerve on the response to an amphetamine induced increase in synaptic dopamine. We applied the electrical stimulation close to the median nerve 20 minutes after administration of 3mg/kg amphetamine. We used fMRI and microdialysis to measure markers of DA release, together with the release of associated neurotransmitters of striatal Glutamate (Glu) and GABA. Result 1) Changes in cerebral blood volume (CBV), a marker used in fMRI, indicate that electrical stimulation significantly attenuated increased DA release (due to AMPH) in the striatum, thalamus, medial prefrontal and cingulate cortices. 2) Microdialysis showed that electrical stimulation increased Glu and GABA release and attenuated the AMPH-enhanced DA release. The striatal DA dynamics correlated with the CBV response. Conclusion These results demonstrate that electrical stimulation near the median nerve activates Glu/GABA release which subsequently attenuate excess striatal DA release. These data provide evidence for physiologic modulation caused by electroacupuncture at points near the median nerve. PMID:18178315

  9. Functional electrical stimulation-facilitated proliferation and regeneration of neural precursor cells in the brains of rats with cerebral infarction

    PubMed Central

    Xiang, Yun; Liu, Huihua; Yan, Tiebin; Zhuang, Zhiqiang; Jin, Dongmei; Peng, Yuan

    2014-01-01

    Previous studies have shown that proliferation of endogenous neural precursor cells cannot alone compensate for the damage to neurons and axons. From the perspective of neural plasticity, we observed the effects of functional electrical stimulation treatment on endogenous neural precursor cell proliferation and expression of basic fibroblast growth factor and epidermal growth factor in the rat brain on the infarct side. Functional electrical stimulation was performed in rat models of acute middle cerebral artery occlusion. Simultaneously, we set up a placebo stimulation group and a sham-operated group. Immunohistochemical staining showed that, at 7 and 14 days, compared with the placebo group, the numbers of nestin (a neural precursor cell marker)-positive cells in the subgranular zone and subventricular zone were increased in the functional electrical stimulation treatment group. Western blot assays and reverse-transcription PCR showed that total protein levels and gene expression of epidermal growth factor and basic fibroblast growth factor were also upregulated on the infarct side. Prehensile traction test results showed that, at 14 days, prehension function of rats in the functional electrical stimulation group was significantly better than in the placebo group. These results suggest that functional electrical stimulation can promote endogenous neural precursor cell proliferation in the brains of acute cerebral infarction rats, enhance expression of basic fibroblast growth factor and epidermal growth factor, and improve the motor function of rats. PMID:25206808

  10. Social anxiety disorder: radio electric asymmetric conveyor brain stimulation versus sertraline

    PubMed Central

    Fontani, Vania; Mannu, Piero; Castagna, Alessandro; Rinaldi, Salvatore

    2011-01-01

    Purpose Social anxiety disorder (SAD) is a disabling condition that affects almost 5% of the general population. Many types of drugs have shown their efficacy in the treatment of SAD. There are also some data regarding psychotherapies, but no data are available today about the efficacy of brain stimulation techniques. The aim of the study is to compare the efficacy of noninvasive brain stimulation neuro psycho physical optimization (NPPO) protocol performed by radio electric asymmetric conveyor (REAC) with that of sertraline in adults with SAD. Patients and methods Twenty SAD patients on sertraline were compared with 23 SAD patients who refused any drug treatment and who chose to be treated with NPPO-REAC brain stimulation. This was a 6-month, open-label, naturalistic study. Patients on sertraline received flexible doses, whereas NPPO-REAC patients received two 18-session cycles of treatment. Clinical Global Improvement scale items “much improved” or “very much improved” and Liebowitz Social Anxiety Scale total score variation on fear and avoidance components were used to detect the results. The statistical analysis was performed with t-test. All measures <0.05 have been considered statistically significant. Results Ten of 23 subjects on NPPO-REAC and six of the 20 taking sertraline were much improved or very much improved 1 month after the first NPPO-REAC cycle (t1). Sixteen of the subjects on NPPO-REAC and ten of the subjects taking sertraline were much improved or very much improved 1 month after the second NPPO-REAC cycle (t2). In respect of the Liebowitz Social Anxiety Scale, at t1 NPPO-REAC resulted in statistically more efficacy for sertraline on both fear and avoidance total scores. At t2, NPPO-REAC resulted in statistically more efficacy for sertraline on fear but not on avoidance. Conclusion NPPO-REAC is an effective treatment for SAD, allowing substantial and clinically meaningful reductions in symptoms and disability in comparison with

  11. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Howell, Bryan; McIntyre, Cameron C.

    2016-06-01

    Objective. Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. Approach. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Main results. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. Significance. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.

  12. Radio electric asymmetric brain stimulation in the treatment of behavioral and psychiatric symptoms in Alzheimer disease

    PubMed Central

    Mannu, Piero; Rinaldi, Salvatore; Fontani, Vania; Castagna, Alessandro

    2011-01-01

    Purpose: Behavioral and psychiatric symptoms of dementia (BPSD) are common in Alzheimer’s disease (AD) and disrupt the effective management of AD patients. The present study explores the use of radio electric asymmetric brain stimulation (REAC) in patients who have had a poor response to pharmacological treatment. Patients and methods: Eight patients (five females and three males; mean [±standard deviation] age at study baseline: 69.9 ± 3.0 years) diagnosed with AD according to the DSM-IV-TR criteria (mean onset age of AD: 65.4 ± 3.5 years) were cognitively and psychometrically assessed with the Mini-Mental State Examination (MMSE), the Activity of Daily Living (ADL), the Instrumental Activity of Daily Living (IADL), and the Neuropsychiatric Inventory (NPI), prior to and after each of 2 REAC treatment cycles. Results: Scores on the MMSE and all subscales of the NPI (frequency, severity, and distress), the ADL, and the IADL were significantly improved following the initial REAC treatment. There was further significant improvement in all measurements (with a tendency for improvement in the IADL) after the second REAC treatment cycle. Conclusion: The improvement of cognitive and behavioral/psychiatric functioning following REAC treatment suggests that this innovative approach may be an effective, safe, and tolerable alternative to pharmacological treatment of AD patients, especially in the area of BPSD. Elderly patients suffering from other types of dementia may also benefit from REAC treatment. PMID:21822377

  13. Brain-computer interface controlled functional electrical stimulation device for foot drop due to stroke.

    PubMed

    Do, An H; Wang, Po T; King, Christine E; Schombs, Andrew; Cramer, Steven C; Nenadic, Zoran

    2012-01-01

    Gait impairment due to foot drop is a common outcome of stroke, and current physiotherapy provides only limited restoration of gait function. Gait function can also be aided by orthoses, but these devices may be cumbersome and their benefits disappear upon removal. Hence, new neuro-rehabilitative therapies are being sought to generate permanent improvements in motor function beyond those of conventional physiotherapies through positive neural plasticity processes. Here, the authors describe an electroencephalogram (EEG) based brain-computer interface (BCI) controlled functional electrical stimulation (FES) system that enabled a stroke subject with foot drop to re-establish foot dorsiflexion. To this end, a prediction model was generated from EEG data collected as the subject alternated between periods of idling and attempted foot dorsiflexion. This prediction model was then used to classify online EEG data into either "idling" or "dorsiflexion" states, and this information was subsequently used to control an FES device to elicit effective foot dorsiflexion. The performance of the system was assessed in online sessions, where the subject was prompted by a computer to alternate between periods of idling and dorsiflexion. The subject demonstrated purposeful operation of the BCI-FES system, with an average cross-correlation between instructional cues and BCI-FES response of 0.60 over 3 sessions. In addition, analysis of the prediction model indicated that non-classical brain areas were activated in the process, suggesting post-stroke cortical re-organization. In the future, these systems may be explored as a potential therapeutic tool that can help promote positive plasticity and neural repair in chronic stroke patients.

  14. Dense arrays of micro-needles for recording and electrical stimulation of neural activity in acute brain slices

    NASA Astrophysics Data System (ADS)

    Gunning, D. E.; Beggs, J. M.; Dabrowski, W.; Hottowy, P.; Kenney, C. J.; Sher, A.; Litke, A. M.; Mathieson, K.

    2013-02-01

    Objective. This paper describes the design, microfabrication, electrical characterization and biological evaluation of a high-density micro-needle array. The array records from and electrically stimulates individual neurons simultaneously in acute slices of brain tissue. Approach. Acute slices, arguably the closest in-vitro model of the brain, have a damaged surface layer. Since electrophysiological recording methods rely heavily on electrode-cell proximity, this layer significantly attenuates the signal amplitude making the use of traditional planar electrodes unsuitable. To penetrate into the tissue, bypassing the tissue surface, and to record and stimulate neural activity in the healthy interior volume of the slice, an array of 61 micro-needles was fabricated. Main results. This device is shown to record extracellular action potentials from individual neurons in acute cortical slices with a signal to noise ratio of up to ˜15:1. Electrical stimulation of individual neurons is achieved with stimulation thresholds of 1.1-2.9 µA. Significance. The novelty of this system is the combination of close needle spacing (60 µm), needle heights of up to 250 µm and small (5-10 µm diameter) electrodes allowing the recording of single unit activity. The array is coupled to a custom-designed readout system forming a powerful electrophysiological tool that permits two-way electrode-cell communication with populations of neurons in acute brain slices.

  15. Transcranial electrical brain stimulation modulates neuronal tuning curves in perception of numerosity and duration

    PubMed Central

    Javadi, Amir Homayoun; Brunec, Iva K.; Walsh, Vincent; Penny, Will D.; Spiers, Hugo J.

    2014-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method with many putative applications and reported to effectively modulate behaviour. However, its effects have yet to be considered at a computational level. To address this we modelled the tuning curves underlying the behavioural effects of stimulation in a perceptual task. Participants judged which of the two serially presented images contained more items (numerosity judgement task) or was presented longer (duration judgement task). During presentation of the second image their posterior parietal cortices (PPCs) were stimulated bilaterally with opposite polarities for 1.6 s. We also examined the impact of three stimulation conditions on behaviour: anodal right-PPC and cathodal left-PPC (rA-lC), reverse order (lA-rC) and no-stimulation condition. Behavioural results showed that participants were more accurate in numerosity and duration judgement tasks when they were stimulated with lA-rC and rA-lC stimulation conditions respectively. Simultaneously, a decrease in performance on numerosity and duration judgement tasks was observed when the stimulation condition favoured the other task. Thus, our results revealed a double-dissociation of laterality and task. Importantly, we were able to model the effects of stimulation on behaviour. Our computational modelling showed that participants' superior performance was attributable to a narrower tuning curve — smaller standard deviation of detection noise. We believe that this approach may prove useful in understanding the impact of brain stimulation on other cognitive domains. PMID:25130301

  16. Brain-Computer Interface Controlled Functional Electrical Stimulation System for Ankle Movement

    PubMed Central

    2011-01-01

    Background Many neurological conditions, such as stroke, spinal cord injury, and traumatic brain injury, can cause chronic gait function impairment due to foot-drop. Current physiotherapy techniques provide only a limited degree of motor function recovery in these individuals, and therefore novel therapies are needed. Brain-computer interface (BCI) is a relatively novel technology with a potential to restore, substitute, or augment lost motor behaviors in patients with neurological injuries. Here, we describe the first successful integration of a noninvasive electroencephalogram (EEG)-based BCI with a noninvasive functional electrical stimulation (FES) system that enables the direct brain control of foot dorsiflexion in able-bodied individuals. Methods A noninvasive EEG-based BCI system was integrated with a noninvasive FES system for foot dorsiflexion. Subjects underwent computer-cued epochs of repetitive foot dorsiflexion and idling while their EEG signals were recorded and stored for offline analysis. The analysis generated a prediction model that allowed EEG data to be analyzed and classified in real time during online BCI operation. The real-time online performance of the integrated BCI-FES system was tested in a group of five able-bodied subjects who used repetitive foot dorsiflexion to elicit BCI-FES mediated dorsiflexion of the contralateral foot. Results Five able-bodied subjects performed 10 alternations of idling and repetitive foot dorsifiexion to trigger BCI-FES mediated dorsifiexion of the contralateral foot. The epochs of BCI-FES mediated foot dorsifiexion were highly correlated with the epochs of voluntary foot dorsifiexion (correlation coefficient ranged between 0.59 and 0.77) with latencies ranging from 1.4 sec to 3.1 sec. In addition, all subjects achieved a 100% BCI-FES response (no omissions), and one subject had a single false alarm. Conclusions This study suggests that the integration of a noninvasive BCI with a lower-extremity FES system is

  17. High resolution functional photoacoustic computed tomography of the mouse brain during electrical stimulation

    NASA Astrophysics Data System (ADS)

    Avanaki, Mohammad R. N.; Xia, Jun; Wang, Lihong V.

    2013-03-01

    Photoacoustic computed tomography (PACT) is an emerging imaging technique which is based on the acoustic detection of optical absorption from tissue chromophores, such as oxy-hemoglobin and deoxy-hemoglobin. An important application of PACT is functional brain imaging of small animals. The conversion of light to acoustic waves allows PACT to provide high resolution images of cortical vasculatures through the intact scalp. Here, PACT was utilized to study the activated areas of the mouse brain during forepaw and hindpaw stimulations. Temporal PACT images were acquired enabling computation of hemodynamic changes during stimulation. The stimulations were performed by trains of pulses at different stimulation currents (between 0.1 to 2 mA) and pulse repetition rates (between 0.05 Hz to 0.01Hz). The response at somatosensory cortex-forelimb, and somatosensory cortex-hindlimb, were investigated. The Paxinos mouse brain atlas was used to confirm the activated regions. The study shows that PACT is a promising new technology that can be used to study brain functionality with high spatial resolution.

  18. Brain Stimulation in Addiction.

    PubMed

    Salling, Michael C; Martinez, Diana

    2016-11-01

    Localized stimulation of the human brain to treat neuropsychiatric disorders has been in place for over 20 years. Although these methods have been used to a greater extent for mood and movement disorders, recent work has explored brain stimulation methods as potential treatments for addiction. The rationale behind stimulation therapy in addiction involves reestablishing normal brain function in target regions in an effort to dampen addictive behaviors. In this review, we present the rationale and studies investigating brain stimulation in addiction, including transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation. Overall, these studies indicate that brain stimulation has an acute effect on craving for drugs and alcohol, but few studies have investigated the effect of brain stimulation on actual drug and alcohol use or relapse. Stimulation therapies may achieve their effect through direct or indirect modulation of brain regions involved in addiction, either acutely or through plastic changes in neuronal transmission. Although these mechanisms are not well understood, further identification of the underlying neurobiology of addiction and rigorous evaluation of brain stimulation methods has the potential for unlocking an effective, long-term treatment of addiction.

  19. Electrical stimulation alleviates depressive-like behaviors of rats: investigation of brain targets and potential mechanisms

    PubMed Central

    Lim, L W; Prickaerts, J; Huguet, G; Kadar, E; Hartung, H; Sharp, T; Temel, Y

    2015-01-01

    Deep brain stimulation (DBS) is a promising therapy for patients with refractory depression. However, key questions remain with regard to which brain target(s) should be used for stimulation, and which mechanisms underlie the therapeutic effects. Here, we investigated the effect of DBS, with low- and high-frequency stimulation (LFS, HFS), in different brain regions (ventromedial prefrontal cortex, vmPFC; cingulate cortex, Cg; nucleus accumbens (NAc) core or shell; lateral habenula, LHb; and ventral tegmental area) on a variety of depressive-like behaviors using rat models. In the naive animal study, we found that HFS of the Cg, vmPFC, NAc core and LHb reduced anxiety levels and increased motivation for food. In the chronic unpredictable stress model, there was a robust depressive-like behavioral phenotype. Moreover, vmPFC HFS, in a comparison of all stimulated targets, produced the most profound antidepressant effects with enhanced hedonia, reduced anxiety and decreased forced-swim immobility. In the following set of electrophysiological and histochemical experiments designed to unravel some of the underlying mechanisms, we found that vmPFC HFS evoked a specific modulation of the serotonergic neurons in the dorsal raphe nucleus (DRN), which have long been linked to mood. Finally, using a neuronal mapping approach by means of c-Fos expression, we found that vmPFC HFS modulated a brain circuit linked to the DRN and known to be involved in affect. In conclusion, HFS of the vmPFC produced the most potent antidepressant effects in naive rats and rats subjected to stress by mechanisms also including the DRN. PMID:25826110

  20. Electrical resistance increases at the tissue-electrode interface as an early response to nucleus accumbens deep brain stimulation.

    PubMed

    Kale, Rajas P; Kouzani, Abbas Z; Berk, Julian; Walder, Ken; Berk, Michael; Tye, Susannah J

    2016-08-01

    The therapeutic actions of deep brain stimulation are not fully understood. The early inflammatory response of electrode implantation is associated with symptom relief without electrical stimulation, but is negated by anti-inflammatory drugs. Early excitotoxic necrosis and subsequent glial scarring modulate the conductivity of the tissue-electrode interface, which can provide some detail into the inflammatory response of individual patients. The feasibility of this was demonstrated by measuring resistance values across a bipolar electrode which was unilaterally implanted into the nucleus accumbens of a rat while receiving continuous deep brain stimulation with a portable back-mounted device using clinical parameters (130Hz, 200μA, 90μs) for 3 days. Daily resistance values rose significantly (p<;0.0001), while hourly resistance analysis demonstrated a plateau after an initial spike in resistance, which was then followed by a steady increase (p<;0.05; p<;0.0001). We discuss that the biphasic nature of the inflammatory response may contribute to these observations and conclude that this method may translate to a safe predictive screening for more effective clinical deep brain stimulation.

  1. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding.

    PubMed

    Kirov, Roumen; Weiss, Carsten; Siebner, Hartwig R; Born, Jan; Marshall, Lisa

    2009-09-08

    The application of transcranial slow oscillation stimulation (tSOS; 0.75 Hz) was previously shown to enhance widespread endogenous EEG slow oscillatory activity when applied during a sleep period characterized by emerging endogenous slow oscillatory activity. Processes of memory consolidation typically occurring during this state of sleep were also enhanced. Here, we show that the same tSOS applied in the waking brain also induced an increase in endogenous EEG slow oscillations (0.4-1.2 Hz), although in a topographically restricted fashion. Applied during wakefulness tSOS, additionally, resulted in a marked and widespread increase in EEG theta (4-8 Hz) activity. During wake, tSOS did not enhance consolidation of memories when applied after learning, but improved encoding of hippocampus-dependent memories when applied during learning. We conclude that the EEG frequency and related memory processes induced by tSOS critically depend on brain state. In response to tSOS during wakefulness the brain transposes stimulation by responding preferentially with theta oscillations and facilitated encoding.

  2. Effects of brain-computer interface-based functional electrical stimulation on brain activation in stroke patients: a pilot randomized controlled trial

    PubMed Central

    Chung, EunJung; Kim, Jung-Hee; Park, Dae-Sung; Lee, Byoung-Hee

    2015-01-01

    [Purpose] This study sought to determine the effects of brain-computer interface-based functional electrical stimulation (BCI-FES) on brain activation in patients with stroke. [Subjects] The subjects were randomized to in a BCI-FES group (n=5) and a functional electrical stimulation (FES) group (n=5). [Methods] Patients in the BCI-FES group received ankle dorsiflexion training with FES for 30 minutes per day, 5 times under the brain-computer interface-based program. The FES group received ankle dorsiflexion training with FES for the same amount of time. [Results] The BCI-FES group demonstrated significant differences in the frontopolar regions 1 and 2 attention indexes, and frontopolar 1 activation index. The FES group demonstrated no significant differences. There were significant differences in the frontopolar 1 region activation index between the two groups after the interventions. [Conclusion] The results of this study suggest that BCI-FES training may be more effective in stimulating brain activation than only FES training in patients recovering from stroke. PMID:25931680

  3. The Effect of Variation in Permittivity of Different Tissues on Induced Electric Field in the Brain during Transcranial Magnetic Stimulation

    NASA Astrophysics Data System (ADS)

    Hadimani, Ravi; Porzig, Konstantin; Crowther, Lawrence; Brauer, Hartmut; Toepfer, Hannes; Jiles, David; Department of Electrical and Computer Engineering, Iowa State University Team; Department of Advanced Electromagnetics, Ilmenau University of Technology Team

    2013-03-01

    Estimation of electric field in the brain during Transcranial Magnetic Stimulation (TMS) requires knowledge of the electric property of brain tissue. Grey and white matters have unusually high relative permittivities of ~ 106 at low frequencies. However, relative permittivity of cerebrospinal fluid is ~ 102. With such a variation it is necessary to consider the effect of boundaries. A model consisting of 2 hemispheres was used in the model with the properties of one hemisphere kept constant at σ1 = 0.1Sm-1 and ɛr 1 = 10 while the properties of the second hemisphere were changed kept at σ2 = 0.1Sm-1 to 2Sm-1 and ɛr 2 = 102 to 105. A 70 mm diameter double coil was used as the source of the magnetic field. The amplitude of the current in the coil was 5488 A at a frequency of 2.9 kHz. The results show that the electric field, E induced during magnetic stimulation is independent of the relative permittivity, ɛr and varies with the conductivity. Thus the variation in E, calculated with homogeneous and heterogeneous head models was due to variation in conductivity of the tissues and not due to variation in permittivities.

  4. TMS-EEG: A window into the neurophysiological effects of transcranial electrical stimulation in non-motor brain regions.

    PubMed

    Hill, Aron T; Rogasch, Nigel C; Fitzgerald, Paul B; Hoy, Kate E

    2016-05-01

    Transcranial electrical stimulation (tES) techniques are able to induce changes in cortical excitability and plasticity through the administration of weak currents to the brain and are currently being used to manipulate a vast array of cognitive processes. Despite the widespread use of tES technologies within both research and remedial settings, their precise neurophysiological mechanisms of action are not well established outside of the motor cortex. The expanding use of tES within non-motor brain regions highlights the growing need for a more comprehensive understanding of the effects of stimulation across a diversity of cortical locations. The combination of transcranial magnetic stimulation with electroencephalography (TMS-EEG) provides a method of directly probing both local and widespread changes in brain neurophysiology, through the recording of TMS-evoked potentials and cortical oscillations. In this review we explore TMS-EEG as a tool for examining the impact of tES on cortical function and argue that multimodal approaches which combine tES with TMS-EEG could lead to a deeper understanding of the mechanisms which underlie tES-induced cognitive modulation.

  5. The influence of electrical stimulation of vagus nerve on elemental composition of dopamine related brain structures in rats.

    PubMed

    Szczerbowska-Boruchowska, Magdalena; Krygowska-Wajs, Anna; Ziomber, Agata; Thor, Piotr; Wrobel, Pawel; Bukowczan, Mateusz; Zizak, Ivo

    2012-07-01

    Recent studies of Parkinson's disease indicate that dorsal motor nucleus of nerve vagus is one of the earliest brain areas affected by alpha-synuclein and Lewy bodies pathology. The influence of electrical stimulation of vagus nerve on elemental composition of dopamine related brain structures in rats is investigated. Synchrotron radiation based X-ray fluorescence was applied to the elemental micro-imaging and quantification in thin tissue sections. It was found that elements such as P, S, Cl, K, Ca, Fe, Cu, Zn, Se, Br and Rb are present in motor cortex, corpus striatum, nucleus accumbens, substantia nigra, ventral tectal area, and dorsal motor nucleus of vagus. The topographic analysis shows that macro-elements like P, S, Cl and K are highly concentrated within the fiber bundles of corpus striatum. In contrast the levels of trace elements like Fe and Zn are the lowest in these structures. It was found that statistically significant differences between the animals with electrical stimulation of vagus nerve and the control are observed in the left side of corpus striatum for P (p = 0.04), S (p = 0.02), Cl (p = 0.05), K (p = 0.02), Fe (p = 0.04) and Zn (p = 0.02). The mass fractions of these elements are increased in the group for which the electrical stimulation of vagus nerve was performed. Moreover, the contents of Ca (p = 0.02), Zn (p = 0.07) and Rb (p = 0.04) in substantia nigra of right hemisphere are found to be significantly lower in the group with stimulation of vagus nerve than in the control rats.

  6. Orientation selective deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Lehto, Lauri J.; Slopsema, Julia P.; Johnson, Matthew D.; Shatillo, Artem; Teplitzky, Benjamin A.; Utecht, Lynn; Adriany, Gregor; Mangia, Silvia; Sierra, Alejandra; Low, Walter C.; Gröhn, Olli; Michaeli, Shalom

    2017-02-01

    Objective. Target selectivity of deep brain stimulation (DBS) therapy is critical, as the precise locus and pattern of the stimulation dictates the degree to which desired treatment responses are achieved and adverse side effects are avoided. There is a clear clinical need to improve DBS technology beyond currently available stimulation steering and shaping approaches. We introduce orientation selective neural stimulation as a concept to increase the specificity of target selection in DBS. Approach. This concept, which involves orienting the electric field along an axonal pathway, was tested in the corpus callosum of the rat brain by freely controlling the direction of the electric field on a plane using a three-electrode bundle, and monitoring the response of the neurons using functional magnetic resonance imaging (fMRI). Computational models were developed to further analyze axonal excitability for varied electric field orientation. Main results. Our results demonstrated that the strongest fMRI response was observed when the electric field was oriented parallel to the axons, while almost no response was detected with the perpendicular orientation of the electric field relative to the primary fiber tract. These results were confirmed by computational models of the experimental paradigm quantifying the activation of radially distributed axons while varying the primary direction of the electric field. Significance. The described strategies identify a new course for selective neuromodulation paradigms in DBS based on axonal fiber orientation.

  7. Electrical Stimulation Therapies for CNS Disorders and Pain are Mediated by Competition Between Different Neuronal Networks in the Brain

    PubMed Central

    Faingold, Carl L.

    2008-01-01

    indicate that treatment of unanesthetized animals with antagonists (bicuculline and strychnine) of inhibitory neurotransmitter (GABA or glycine) receptors can cause CMR neurons to become consistently responsive to external inputs (e.g. peripheral nerve, sensory, or electrical stimuli in the brain) to which these neurons did not previously respond. Conversely, agents that enhance GABA-mediated inhibition (e.g. barbiturates and benzodiazepines) or antagonize glutamate-mediated excitation (e.g. ketamine) can cause CMR neurons to become unresponsive to inputs to which they responded previously. The responses of CMR neurons exhibit extensive short-term and long-term plasticity, which permits them to participate to a variable degree in many networks. Short-term plasticity subserves termination of disease symptoms, while long-term plasticity in CMR regions subserves symptom prevention. This network interaction hypothesis has value for future research in CNS disease mechanisms and also for identifying therapeutic targets in specific brain networks for more selective stimulation and pharmacological therapies. PMID:18762389

  8. Electrical stimulation therapies for CNS disorders and pain are mediated by competition between different neuronal networks in the brain.

    PubMed

    Faingold, Carl L

    2008-11-01

    treatment of unanesthetized animals with antagonists (bicuculline or strychnine) of inhibitory neurotransmitter (GABA or glycine) receptors can cause CMR neurons to become consistently responsive to external inputs (e.g., peripheral nerve, sensory, or electrical stimuli in the brain) to which these neurons did not previously respond. Conversely, agents that enhance GABA-mediated inhibition (e.g., barbiturates and benzodiazepines) or antagonize glutamate-mediated excitation (e.g., ketamine) can cause CMR neurons to become unresponsive to inputs to which they responded previously. The responses of CMR neurons exhibit extensive short-term and long-term plasticity, which permits them to participate to a variable degree in many networks. Short-term plasticity subserves termination of disease symptoms, while long-term plasticity in CMR regions subserves symptom prevention. This network interaction hypothesis has value for future research in CNS disease mechanisms and also for identifying therapeutic targets in specific brain networks for more selective stimulation and pharmacological therapies.

  9. Evaluation of the electric field in the brain during transcranial direct current stimulation: A sensitivity analysis.

    PubMed

    Santos, Laura; Martinho, Miguel; Salvador, Ricardo; Wenger, Cornelia; Fernandes, Sofia R; Ripolles, Oscar; Ruffini, Giulio; Miranda, Pedro C; Santos, Laura; Martinho, Miguel; Salvador, Ricardo; Wenger, Cornelia; Fernandes, Sofia R; Ripolles, Oscar; Ruffini, Giulio; Miranda, Pedro C; Santos, Laura; Martinho, Miguel; Wenger, Cornelia; Salvador, Ricardo; Ripolles, Oscar; Ruffini, Giulio; Fernandes, Sofia R; Miranda, Pedro C

    2016-08-01

    The use of computational modeling studies accounts currently for the best approach to predict the electric field (E-field) distribution in transcranial direct current stimulation. As with any model, the values attributed to the physical properties, namely the electrical conductivity of the tissues, affect the predicted E-field distribution. A wide range of values for the conductivity of most tissues is reported in the literature. In this work, we used the finite element method to compute the E-field induced in a realistic human head model for two electrode montages targeting the left dorso-lateral prefrontal cortex (DLPFC). A systematic analysis of the effect of different isotropic conductivity profiles on the E-field distribution was performed for the standard bipolar 7×5 cm(2) electrodes configuration and also for an optimized multielectrode montage. Average values of the E-field's magnitude, normal and tangential components were calculated in the target region in the left DLPFC. Results show that the field decreases with increasing scalp, cerebrospinal fluid (CSF) and grey matter (GM) conductivities, while the opposite is observed for the skull and white matter conductivities. The tissues whose conductivity most affects the E-field in the cortex are the scalp and the CSF, followed by the GM and the skull. Uncertainties in the conductivity of individual tissues may affect electric field values by up to about 80%.

  10. Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue

    PubMed Central

    Zhang, Jiayi; Laiwalla, Farah; Kim, Jennifer A; Urabe, Hayato; Van Wagenen, Rick; Song, Yoon-Kyu; Connors, Barry W; Zhang, Feng; Deisseroth, Karl; Nurmikko, Arto V

    2010-01-01

    Neural stimulation with high spatial and temporal precision is desirable both for studying the real-time dynamics of neural networks and for prospective clinical treatment of neurological diseases. Optical stimulation of genetically targeted neurons expressing the light sensitive channel protein Channelrhodopsin (ChR2) has recently been reported as a means for millisecond temporal control of neuronal spiking activities with cell-type selectivity. This offers the prospect of enabling local delivery of optical stimulation and the simultaneous monitoring of the neural activity by electrophysiological means, both in the vicinity of and distant to the stimulation site. We report here a novel dual-modality hybrid device, which consists of a tapered coaxial optical waveguide (‘optrode’) integrated into a 100 element intra-cortical multi-electrode recording array. We first demonstrate the dual optical delivery and electrical recording capability of the single optrode in in vitro preparations of mouse retina, photo-stimulating the native retinal photoreceptors while recording light-responsive activities from ganglion cells. The dual-modality array device was then used in ChR2 transfected mouse brain slices. Specifically, epileptiform events were reliably optically triggered by the optrode and their spatiotemporal patterns were simultaneously recorded by the multi-electrode array. PMID:19721185

  11. Learned EEG-based brain self-regulation of motor-related oscillations during application of transcranial electric brain stimulation: feasibility and limitations

    PubMed Central

    Soekadar, Surjo R.; Witkowski, Matthias; Cossio, Eliana G.; Birbaumer, Niels; Cohen, Leonardo G.

    2014-01-01

    Objective: Transcranial direct current stimulation (tDCS) improves motor learning and can affect emotional processing and attention. However, it is unclear whether learned electroencephalography (EEG)-based brain-machine interface (BMI) control during tDCS is feasible, how application of transcranial electric currents during BMI control would interfere with feature-extraction of physiological brain signals and how it affects brain control performance. Here we tested this combination and evaluated stimulation-dependent artifacts across different EEG frequencies and stability of motor imagery-based BMI control. Approach: Ten healthy volunteers were invited to two BMI-sessions, each comprising two 60-trial blocks. During the trials, learned desynchronization of mu-rhythms (8–15 Hz) associated with motor imagery (MI) recorded over C4 was translated into online cursor movements on a computer screen. During block 2, either sham (session A) or anodal tDCS (session B) was applied at 1 mA with the stimulation electrode placed 1 cm anterior of C4. Main results: tDCS was associated with a significant signal power increase in the lower frequencies most evident in the signal spectrum of the EEG channel closest to the stimulation electrode. Stimulation-dependent signal power increase exhibited a decay of 12 dB per decade, leaving frequencies above 9 Hz unaffected. Analysis of BMI control performance did not indicate a difference between blocks and tDCS conditions. Conclusion: Application of tDCS during learned EEG-based self-regulation of brain oscillations above 9 Hz is feasible and safe, and might improve applicability of BMI systems. PMID:24672456

  12. Comparison of two treatments for coxarthrosis: local hyperthermia versus radio electric asymmetrical brain stimulation

    PubMed Central

    Castagna, Alessandro; Rinaldi, Salvatore; Fontani, Vania; Mannu, Piero; Margotti, Matteo Lotti

    2011-01-01

    Background: It is well known that psychological components are very important in the aging process and may also manifest in psychogenic movement disorders, such as coxarthrosis. This study analyzed the medical records of two similar groups of patients with coxarthrosis (n = 15 in each) who were treated in two different clinics for rehabilitation therapy. Methods: Patients in Group A were treated with a course of traditional physiotherapy, including sessions of local hyperthermia. Group B patients were treated with only a course of radioelectric asymmetrical brain stimulation (REAC) to improve their motor behavior. Results: Group A showed a significant decrease in symptoms of pain and stiffness, and an insignificant improvement in range of motion and muscle bulk. A single patient in this group developed worsened symptoms, and pain did not resolve completely in any patient. The patients in Group B had significantly decreased levels of pain and stiffness, and a significant improvement in range of motion and muscle bulk. No patients worsened in Group B, and the pain resolved completely in one patient. Conclusion: Both treatments were shown to be tolerable and safe. Patients who underwent REAC treatment appeared to have slightly better outcomes, with an appreciable improvement in both their physical and mental states. These aspects are particularly important in the elderly, in whom functional limitation is often associated with or exacerbated by a psychogenic component. PMID:21822376

  13. Clinical usefulness of brain-computer interface-controlled functional electrical stimulation for improving brain activity in children with spastic cerebral palsy: a pilot randomized controlled trial

    PubMed Central

    Kim, Tae-Woo; Lee, Byoung-Hee

    2016-01-01

    [Purpose] Evaluating the effect of brain-computer interface (BCI)-based functional electrical stimulation (FES) training on brain activity in children with spastic cerebral palsy (CP) was the aim of this study. [Subjects and Methods] Subjects were randomized into a BCI-FES group (n=9) and a functional electrical stimulation (FES) control group (n=9). Subjects in the BCI-FES group received wrist and hand extension training with FES for 30 minutes per day, 5 times per week for 6 weeks under the BCI-based program. The FES group received wrist and hand extension training with FES for the same amount of time. Sensorimotor rhythms (SMR) and middle beta waves (M-beta) were measured in frontopolar regions 1 and 2 (Fp1, Fp2) to determine the effects of BCI-FES training. [Results] Significant improvements in the SMR and M-beta of Fp1 and Fp2 were seen in the BCI-FES group. In contrast, significant improvement was only seen in the SMR and M-beta of Fp2 in the control group. [Conclusion] The results of the present study suggest that BCI-controlled FES training may be helpful in improving brain activity in patients with cerebral palsy and may be applied as effectively as traditional FES training. PMID:27799677

  14. Clinical usefulness of brain-computer interface-controlled functional electrical stimulation for improving brain activity in children with spastic cerebral palsy: a pilot randomized controlled trial.

    PubMed

    Kim, Tae-Woo; Lee, Byoung-Hee

    2016-09-01

    [Purpose] Evaluating the effect of brain-computer interface (BCI)-based functional electrical stimulation (FES) training on brain activity in children with spastic cerebral palsy (CP) was the aim of this study. [Subjects and Methods] Subjects were randomized into a BCI-FES group (n=9) and a functional electrical stimulation (FES) control group (n=9). Subjects in the BCI-FES group received wrist and hand extension training with FES for 30 minutes per day, 5 times per week for 6 weeks under the BCI-based program. The FES group received wrist and hand extension training with FES for the same amount of time. Sensorimotor rhythms (SMR) and middle beta waves (M-beta) were measured in frontopolar regions 1 and 2 (Fp1, Fp2) to determine the effects of BCI-FES training. [Results] Significant improvements in the SMR and M-beta of Fp1 and Fp2 were seen in the BCI-FES group. In contrast, significant improvement was only seen in the SMR and M-beta of Fp2 in the control group. [Conclusion] The results of the present study suggest that BCI-controlled FES training may be helpful in improving brain activity in patients with cerebral palsy and may be applied as effectively as traditional FES training.

  15. Age-related deficits in voluntary control over saccadic eye movements: consideration of electrical brain stimulation as a therapeutic strategy.

    PubMed

    Chen, Po Ling; Machado, Liana

    2016-05-01

    Sudden changes in our visual environment trigger reflexive eye movements, so automatically they often go unnoticed. Consequently, voluntary control over reflexive eye movements entails considerable effort. In relation to frontal-lobe deterioration, adult aging adversely impacts voluntary saccadic eye movement control in particular, which compromises effective performance of daily activities. Here, we review the nature of age-related changes in saccadic control, focusing primarily on the antisaccade task because of its assessment of 2 key age-sensitive control functions: reflexive saccade inhibition and voluntary saccade generation. With an ultimate view toward facilitating development of therapeutic strategies, we systematically review the neuroanatomy underpinning voluntary control over saccadic eye movements and natural mechanisms that kick in to compensate for age-related declines. We then explore the potential of noninvasive electrical brain stimulation to counteract aging deficits. Based on evidence that anodal transcranial direct current stimulation can confer a range of benefits specifically relevant to aging brains, we put forward this neuromodulation technique as a therapeutic strategy for improving voluntary saccadic eye movement control in older adults.

  16. Transcranial brain stimulation: closing the loop between brain and stimulation

    PubMed Central

    Karabanov, Anke; Thielscher, Axel; Siebner, Hartwig Roman

    2016-01-01

    Purpose of review To discuss recent strategies for boosting the efficacy of noninvasive transcranial brain stimulation to improve human brain function. Recent findings Recent research exposed substantial intra- and inter-individual variability in response to plasticity-inducing transcranial brain stimulation. Trait-related and state-related determinants contribute to this variability, challenging the standard approach to apply stimulation in a rigid, one-size-fits-all fashion. Several strategies have been identified to reduce variability and maximize the plasticity-inducing effects of noninvasive transcranial brain stimulation. Priming interventions or paired associative stimulation can be used to ‘standardize’ the brain-state and hereby, homogenize the group response to stimulation. Neuroanatomical and neurochemical profiling based on magnetic resonance imaging and spectroscopy can capture trait-related and state-related variability. Fluctuations in brain-states can be traced online with functional brain imaging and inform the timing or other settings of transcranial brain stimulation. State-informed open-loop stimulation is aligned to the expression of a predefined brain state, according to prespecified rules. In contrast, adaptive closed-loop stimulation dynamically adjusts stimulation settings based on the occurrence of stimulation-induced state changes. Summary Approaches that take into account trait-related and state-related determinants of stimulation-induced plasticity bear considerable potential to establish noninvasive transcranial brain stimulation as interventional therapeutic tool. PMID:27224087

  17. Current Status of Research on Providing Sight to the Blind by Electrical Stimulation of the Brain

    ERIC Educational Resources Information Center

    Dobelle, William H.

    1977-01-01

    Described is a prosthesis that connects a television camera and associated circuitry to the visual centers of the brain to restore a limited amount of visual sensation to totally blind persons. (Author/MH)

  18. Can transcranial electrical stimulation improve learning difficulties in atypical brain development? A future possibility for cognitive training☆

    PubMed Central

    Krause, Beatrix; Cohen Kadosh, Roi

    2013-01-01

    Learning difficulties in atypical brain development represent serious obstacles to an individual's future achievements and can have broad societal consequences. Cognitive training can improve learning impairments only to a certain degree. Recent evidence from normal and clinical adult populations suggests that transcranial electrical stimulation (TES), a portable, painless, inexpensive, and relatively safe neuroenhancement tool, applied in conjunction with cognitive training can enhance cognitive intervention outcomes. This includes, for instance, numerical processing, language skills and response inhibition deficits commonly associated with profound learning difficulties and attention-deficit hyperactivity disorder (ADHD). The current review introduces the functional principles, current applications and promising results, and potential pitfalls of TES. Unfortunately, research in child populations is limited at present. We suggest that TES has considerable promise as a tool for increasing neuroplasticity in atypically developing children and may be an effective adjunct to cognitive training in clinical settings if it proves safe. The efficacy and both short- and long-term effects of TES on the developing brain need to be critically assessed before it can be recommended for clinical settings. PMID:23770059

  19. Can transcranial electrical stimulation improve learning difficulties in atypical brain development? A future possibility for cognitive training.

    PubMed

    Krause, Beatrix; Cohen Kadosh, Roi

    2013-10-01

    Learning difficulties in atypical brain development represent serious obstacles to an individual's future achievements and can have broad societal consequences. Cognitive training can improve learning impairments only to a certain degree. Recent evidence from normal and clinical adult populations suggests that transcranial electrical stimulation (TES), a portable, painless, inexpensive, and relatively safe neuroenhancement tool, applied in conjunction with cognitive training can enhance cognitive intervention outcomes. This includes, for instance, numerical processing, language skills and response inhibition deficits commonly associated with profound learning difficulties and attention-deficit hyperactivity disorder (ADHD). The current review introduces the functional principles, current applications and promising results, and potential pitfalls of TES. Unfortunately, research in child populations is limited at present. We suggest that TES has considerable promise as a tool for increasing neuroplasticity in atypically developing children and may be an effective adjunct to cognitive training in clinical settings if it proves safe. The efficacy and both short- and long-term effects of TES on the developing brain need to be critically assessed before it can be recommended for clinical settings.

  20. Deep Brain Stimulation

    PubMed Central

    Chen, X.L.; Xiong, Y.Y.; Xu, G.L.; Liu, X.F.

    2013-01-01

    Deep brain stimulation (DBS) has provided remarkable therapeutic benefits for people with a variety of neurological disorders. Despite the uncertainty of the precise mechanisms underlying its efficacy, DBS is clinically effective in improving motor function of essential tremor, Parkinson's disease and primary dystonia and in relieving obsessive-compulsive disorder. Recently, this surgical technique has continued to expand to other numerous neurological diseases with encouraging results. This review highlighted the current and potential future clinical applications of DBS. PMID:25187779

  1. Mechanisms of deep brain stimulation

    PubMed Central

    Cheng, Jennifer J.; Eskandar, Emad N.

    2015-01-01

    Deep brain stimulation (DBS) is widely used for the treatment of movement disorders including Parkinson's disease, essential tremor, and dystonia and, to a lesser extent, certain treatment-resistant neuropsychiatric disorders including obsessive-compulsive disorder. Rather than a single unifying mechanism, DBS likely acts via several, nonexclusive mechanisms including local and network-wide electrical and neurochemical effects of stimulation, modulation of oscillatory activity, synaptic plasticity, and, potentially, neuroprotection and neurogenesis. These different mechanisms vary in importance depending on the condition being treated and the target being stimulated. Here we review each of these in turn and illustrate how an understanding of these mechanisms is inspiring next-generation approaches to DBS. PMID:26510756

  2. The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy.

    PubMed

    Miranda, Pedro C; Hallett, Mark; Basser, Peter J

    2003-09-01

    We investigate the effect of tissue heterogeneity and anisotropy on the electric field and current density distribution induced in the brain during magnetic stimulation. Validation of the finite-element (FE) calculations in a homogeneous isotropic sphere showed that the magnitude of the total electric field can be calculated to within an error of approximately 5% in the region of interest, even in the presence of a significant surface charge contribution. We used a high conductivity inclusion within a sphere of lower conductivity to simulate a lesion due to an infarct. Its effect is to increase the electric field induced in the surrounding low conductivity region. This boost is greatest in the vicinity of interfaces that lie perpendicular to the current flow. For physiological values of the conductivity distribution, it can reach a factor of 1.6 and extend many millimeters from the interface. We also show that anisotropy can significantly alter the electric field and current density distributions. Either heterogeneity or anisotropy can introduce a radial electric field component, not present in a homogeneous isotropic conductor. Heterogeneity and anisotropy are predicted to significantly affect the distribution of the electric field induced in the brain. It is, therefore, expected that anatomically faithful FE models of individual brains which incorporate conductivity tensor data derived from diffusion tensor measurements, will provide a better understanding of the location of possible stimulation sites in the brain.

  3. Rehabilitation of hand in subacute tetraplegic patients based on brain computer interface and functional electrical stimulation: a randomised pilot study

    NASA Astrophysics Data System (ADS)

    Osuagwu, Bethel C. A.; Wallace, Leslie; Fraser, Mathew; Vuckovic, Aleksandra

    2016-12-01

    Objective. To compare neurological and functional outcomes between two groups of hospitalised patients with subacute tetraplegia. Approach. Seven patients received 20 sessions of brain computer interface (BCI) controlled functional electrical stimulation (FES) while five patients received the same number of sessions of passive FES for both hands. The neurological assessment measures were event related desynchronization (ERD) during movement attempt, Somatosensory evoked potential (SSEP) of the ulnar and median nerve; assessment of hand function involved the range of motion (ROM) of wrist and manual muscle test. Main results. Patients in both groups initially had intense ERD during movement attempt that was not restricted to the sensory-motor cortex. Following the treatment, ERD cortical activity restored towards the activity in able-bodied people in BCI-FES group only, remaining wide-spread in FES group. Likewise, SSEP returned in 3 patients in BCI-FES group, having no changes in FES group. The ROM of the wrist improved in both groups. Muscle strength significantly improved for both hands in BCI-FES group. For FES group, a significant improvement was noticed for right hand flexor muscles only. Significance. Combined BCI-FES therapy results in better neurological recovery and better improvement of muscle strength than FES alone. For spinal cord injured patients, BCI-FES should be considered as a therapeutic tool rather than solely a long-term assistive device for the restoration of a lost function.

  4. Brain stimulation in Huntington's disease.

    PubMed

    Hartmann, Christian Johannes; Groiss, Stefan Jun; Vesper, Jan; Schnitzler, Alfons; Wojtecki, Lars

    2016-06-01

    Huntington's disease (HD) is a hereditary neurodegenerative disorder which is associated with severe disturbances of motor function, especially choreatic movements, cognitive decline and psychiatric symptoms. Various brain stimulation methods have been used to study brain function in patients with HD. Moreover, brain stimulation has evolved as an alternative or additive treatment option, besides current symptomatic medical treatment. This article summarizes the results of brain stimulation to better understand the characteristics of cortical excitability and plasticity in HD and gives a perspective on the therapeutic role for noninvasive and invasive neuromodulatory brain stimulation methods.

  5. NONINVASIVE BRAIN STIMULATION IN TRAUMATIC BRAIN INJURY

    PubMed Central

    Demirtas-Tatlidede, Asli; Vahabzadeh-Hagh, Andrew M.; Bernabeu, Montserrat; Tormos, Jose M.; Pascual-Leone, Alvaro

    2012-01-01

    Brain stimulation techniques have evolved in the last few decades with more novel methods capable of painless, noninvasive brain stimulation. While the number of clinical trials employing noninvasive brain stimulation continues to increase in a variety of medication-resistant neurological and psychiatric diseases, studies evaluating their diagnostic and therapeutic potential in traumatic brain injury (TBI) are largely lacking. This review introduces different techniques of noninvasive brain stimulation, which may find potential use in TBI. We cover transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), low-level laser therapy (LLLT) and transcranial doppler sonography (TCD) techniques. We provide a brief overview of studies to date, discuss possible mechanisms of action, and raise a number of considerations when thinking about translating these methods to clinical use. PMID:21691215

  6. Mirth and laughter elicited during brain stimulation.

    PubMed

    Fernández-Baca Vaca, Guadalupe; Lüders, Hans O; Basha, Maysaa Merhi; Miller, Jonathan P

    2011-12-01

    There are few reports of laughter and/or mirth evoked by electrical stimulation of the brain. In this study, we present a patient with intractable epilepsy in whom mirth and laughter was consistently produced during stimulation of the left inferior frontal gyrus (opercular part) using stereotactically placed depth electrodes. A review of the literature shows that cortical sites that produce mirth when stimulated are located in the dominant hemisphere close to language areas or cortical negative motor areas.

  7. Deep Brain Stimulation for Obesity

    PubMed Central

    Sussman, Eric S; Zhang, Michael; Pendharkar, Arjun V; Azagury, Dan E; Bohon, Cara; Halpern, Casey H

    2015-01-01

    Obesity is now the third leading cause of preventable death in the US, accounting for 216,000 deaths annually and nearly 100 billion dollars in health care costs. Despite advancements in bariatric surgery, substantial weight regain and recurrence of the associated metabolic syndrome still occurs in almost 20-35% of patients over the long-term, necessitating the development of novel therapies. Our continually expanding knowledge of the neuroanatomic and neuropsychiatric underpinnings of obesity has led to increased interest in neuromodulation as a new treatment for obesity refractory to current medical, behavioral, and surgical therapies. Recent clinical trials of deep brain stimulation (DBS) in chronic cluster headache, Alzheimer’s disease, and depression and obsessive-compulsive disorder have demonstrated the safety and efficacy of targeting the hypothalamus and reward circuitry of the brain with electrical stimulation, and thus provide the basis for a neuromodulatory approach to treatment-refractory obesity. In this study, we review the literature implicating these targets for DBS in the neural circuitry of obesity. We will also briefly review ethical considerations for such an intervention, and discuss genetic secondary-obesity syndromes that may also benefit from DBS. In short, we hope to provide the scientific foundation to justify trials of DBS for the treatment of obesity targeting these specific regions of the brain. PMID:26180683

  8. Influences of Interpolation Error, Electrode Geometry, and the Electrode-Tissue Interface on Models of Electric Fields Produced by Deep Brain Stimulation

    PubMed Central

    Howell, Bryan; Naik, Sagar; Grill, Warren M.

    2014-01-01

    Deep brain stimulation (DBS) is an established therapy for movement disorders, but the fundamental mechanisms by which DBS has its effects remain unknown. Computational models can provide insights into the mechanisms of DBS, but to be useful, the models must have sufficient detail to predict accurately the electric fields produced by DBS. We used a finite element method model of the Medtronic 3387 electrode array, coupled to cable models of myelinated axons, to quantify how interpolation errors, electrode geometry, and the electrode-tissue interface affect calculation of electrical potentials and stimulation thresholds for populations of model nerve fibers. Convergence of the potentials was not a sufficient criterion for ensuring the same degree of accuracy in subsequent determination of stimulation thresholds, because the accuracy of the stimulation thresholds depended on the order of the elements. Simplifying the 3387 electrode array by ignoring the inactive contacts and extending the terminated end of the shaft had position dependent effects on the potentials and excitation thresholds, and these simplifications may impact correlations between DBS parameters and clinical outcomes. When the current density in the bulk tissue is uniform, the effect of the electrode-tissue interface impedance could be approximated by filtering the potentials calculated with a static lumped electrical equivalent circuit. Further, for typical DBS parameters during voltage-regulated stimulation, it was valid to approximate the electrode as an ideal polarized electrode with a nonlinear capacitance. Validation of these computational considerations enables accurate modeling of the electric field produced by DBS. PMID:24448594

  9. A Study on the Effect of Electrical Stimulation as a User Stimuli for Motor Imagery Classification in Brain-Machine Interface

    PubMed Central

    Bhattacharyya, Saugat; Clerc, Maureen; Hayashibe, Mitsuhiro

    2016-01-01

    Functional Electrical Stimulation (FES) provides a neuroprosthetic interface to non-recovered muscle groups by stimulating the affected region of the human body. FES in combination with Brain-machine interfacing (BMI) has a wide scope in rehabilitation because this system directly links the cerebral motor intention of the users with its corresponding peripheral muscle activations. In this paper, we examine the effect of FES on the electroencephalography (EEG) during motor imagery (left- and right-hand movement) training of the users. Results suggest a significant improvement in the classification accuracy when the subject was induced with FES stimuli as compared to the standard visual one. PMID:27478573

  10. A Study on the Effect of Electrical Stimulation as a User Stimuli for Motor Imagery Classification in Brain-Machine Interface.

    PubMed

    Bhattacharyya, Saugat; Clerc, Maureen; Hayashibe, Mitsuhiro

    2016-06-13

    Functional Electrical Stimulation (FES) provides a neuroprosthetic interface to non-recovered muscle groups by stimulating the affected region of the human body. FES in combination with Brain-machine interfacing (BMI) has a wide scope in rehabilitation because this system directly links the cerebral motor intention of the users with its corresponding peripheral muscle activations. In this paper, we examine the effect of FES on the electroencephalography (EEG) during motor imagery (left- and right-hand movement) training of the users. Results suggest a significant improvement in the classification accuracy when the subject was induced with FES stimuli as compared to the standard visual one.

  11. Multivariate autoregressive models with exogenous inputs for intracerebral responses to direct electrical stimulation of the human brain

    PubMed Central

    Chang, Jui-Yang; Pigorini, Andrea; Massimini, Marcello; Tononi, Giulio; Nobili, Lino; Van Veen, Barry D.

    2012-01-01

    A multivariate autoregressive (MVAR) model with exogenous inputs (MVARX) is developed for describing the cortical interactions excited by direct electrical current stimulation of the cortex. Current stimulation is challenging to model because it excites neurons in multiple locations both near and distant to the stimulation site. The approach presented here models these effects using an exogenous input that is passed through a bank of filters, one for each channel. The filtered input and a random input excite a MVAR system describing the interactions between cortical activity at the recording sites. The exogenous input filter coefficients, the autoregressive coefficients, and random input characteristics are estimated from the measured activity due to current stimulation. The effectiveness of the approach is demonstrated using intracranial recordings from three surgical epilepsy patients. We evaluate models for wakefulness and NREM sleep in these patients with two stimulation levels in one patient and two stimulation sites in another resulting in a total of 10 datasets. Excellent agreement between measured and model-predicted evoked responses is obtained across all datasets. Furthermore, one-step prediction is used to show that the model also describes dynamics in pre-stimulus and evoked recordings. We also compare integrated information—a measure of intracortical communication thought to reflect the capacity for consciousness—associated with the network model in wakefulness and sleep. As predicted, higher information integration is found in wakefulness than in sleep for all five cases. PMID:23226122

  12. Brain stimulation in posttraumatic stress disorder.

    PubMed

    Novakovic, Vladan; Sher, Leo; Lapidus, Kyle A B; Mindes, Janet; A Golier, Julia; Yehuda, Rachel

    2011-01-01

    Posttraumatic stress disorder (PTSD) is a complex, heterogeneous disorder that develops following trauma and often includes perceptual, cognitive, affective, physiological, and psychological features. PTSD is characterized by hyperarousal, intrusive thoughts, exaggerated startle response, flashbacks, nightmares, sleep disturbances, emotional numbness, and persistent avoidance of trauma-associated stimuli. The efficacy of available treatments for PTSD may result in part from relief of associated depressive and anxiety-related symptoms in addition to treatment of core symptoms that derive from reexperiencing, numbing, and hyperarousal. Diverse, heterogeneous mechanisms of action and the ability to act broadly or very locally may enable brain stimulation devices to address PTSD core symptoms in more targeted ways. To achieve this goal, specific theoretical bases derived from novel, well-designed research protocols will be necessary. Brain stimulation devices include both long-used and new electrical and magnetic devices. Electroconvulsive therapy (ECT) and Cranial electrotherapy stimulation (CES) have both been in use for decades; transcranial magnetic stimulation (TMS), magnetic seizure therapy (MST), deep brain stimulation (DBS), transcranial Direct Current Stimulation (tDCS), and vagus nerve stimulation (VNS) have been developed recently, over approximately the past twenty years. The efficacy of brain stimulation has been demonstrated as a treatment for psychiatric and neurological disorders such as anxiety (CES), depression (ECT, CES, rTMS, VNS, DBS), obsessive-compulsive disorder (OCD) (DBS), essential tremor, dystonia (DBS), epilepsy (DBS, VNS), Parkinson Disease (DBS), pain (CES), and insomnia (CES). To date, limited data on brain stimulation for PTSD offer only modest guidance. ECT has shown some efficacy in reducing comorbid depression in PTSD patients but has not been demonstrated to improve most core PTSD symptoms. CES and VNS have shown some efficacy in

  13. Electrical stimulation in exercise training

    NASA Technical Reports Server (NTRS)

    Kroll, Walter

    1994-01-01

    Electrical stimulation has a long history of use in medicine dating back to 46 A.D. when the Roman physician Largus found the electrical discharge of torpedo fishes useful in the treatment of pain produced by headache and gout. A rival Greek physician, Dioscorides, discounted the value of the torpedo fish for headache relief but did recommend its use in the treatment of hemorrhoids. In 1745, the Leyden jar and various sized electrostatic generators were used to treat angina pectoris, epilepsy, hemiplegia, kidney stones, and sciatica. Benjamin Franklin used an electrical device to treat successfully a young woman suffering from convulsive fits. In the late 1800's battery powered hydroelectric baths were used to treat chronic inflammation of the uterus while electrified athletic supporters were advertised for the treatment of male problems. Fortunately, such an amusing early history of the simple beginnings of electrical stimulation did not prevent eventual development of a variety of useful therapeutic and rehabilitative applications of electrical stimulation. Over the centuries electrical stimulation has survived as a modality in the treatment of various medical disorders with its primary application being in the rehabilitation area. Recently, a surge of new interest in electrical stimulation has been kindled by the work of a Russian sport scientist who reported remarkable muscle strength and endurance improvements in elite athletes. Yakov Kots reported his research on electric stimulation and strength improvements in 1977 at a Canadian-Soviet Exchange Symposium held at Concordia University in Montreal. Since then an explosion of new studies has been seen in both sport science and in medicine. Based upon the reported works of Kots and the present surge of new investigations, one could be misled as to the origin of electrical stimulation as a technique to increase muscle strength. As a matter of fact, electric stimulation has been used as a technique to improve

  14. Deep brain light stimulation effects on glutamate and dopamine concentration.

    PubMed

    Kuo, Jinn-Rung; Lin, Shih-Shian; Liu, Janelle; Chen, Shih-How; Chio, Chung-Chin; Wang, Jhi-Joung; Liu, Jia-Ming

    2015-01-01

    Compared to deep brain electrical stimulation, which has been applied to treating pathological brain diseases, little work has been done on the effect of deep brain light stimulation. A fiber-coupled laser stimulator at 840 nm wavelength and 130 Hz pulse repetition rate is developed in this work for deep brain light stimulation in a rat model. Concentration changes in glutamate and dopamine in the striatum are observed using a microdialysis probe when the subthalamic nucleus (STN) is stimulated at various optical power levels. Experimental results show that light stimulation causes the concentration of glutamate to decrease while that of dopamine is increased. This suggests that deep brain light stimulation of the STN is a promising therapeutic strategy for dopamine-related diseases such as Parkinson's disease. The stimulator developed for this work is useful for deep brain light stimulation in biomedical research.

  15. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.

    2003-01-01

    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  16. Lower Extremity Functional Electrical Stimulation During Inpatient Rehabilitation: A Pilot Study Investigating Gait and Muscle Activity in Persons With Stroke or Brain Injury

    PubMed Central

    Lairamore, Chad I.; Garrison, Mark K.; Bourgeon, Laetitia; Mennemeier, Mark

    2015-01-01

    The purpose of this study was to investigate the therapeutic effect of functional electrical stimulation for improving gait and tibialis anterior (TA) muscle activity in individuals with stroke or brain injury who were enrolled in an inpatient rehabilitation program. Twenty-six individuals, 2-33 days post injury, were randomly assigned to an experimental group or control group. No significant differences were observed between groups at the conclusion of the study as both groups achieved similar improvements in gait speed, TA muscle activity, and FIM™ locomotion scores. This single site study found a low dose of gait training sessions with single channel FES did not augment gait nor EMG activity beyond gait training with sham stimulation. PMID:25153616

  17. Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models.

    PubMed

    Windhoff, Mirko; Opitz, Alexander; Thielscher, Axel

    2013-04-01

    The need for realistic electric field calculations in human noninvasive brain stimulation is undisputed to more accurately determine the affected brain areas. However, using numerical techniques such as the finite element method (FEM) is methodologically complex, starting with the creation of accurate head models to the integration of the models in the numerical calculations. These problems substantially limit a more widespread application of numerical methods in brain stimulation up to now. We introduce an optimized processing pipeline allowing for the automatic generation of individualized high-quality head models from magnetic resonance images and their usage in subsequent field calculations based on the FEM. The pipeline starts by extracting the borders between skin, skull, cerebrospinal fluid, gray and white matter. The quality of the resulting surfaces is subsequently improved, allowing for the creation of tetrahedral volume head meshes that can finally be used in the numerical calculations. The pipeline integrates and extends established (and mainly free) software for neuroimaging, computer graphics, and FEM calculations into one easy-to-use solution. We demonstrate the successful usage of the pipeline in six subjects, including field calculations for transcranial magnetic stimulation and transcranial direct current stimulation. The quality of the head volume meshes is validated both in terms of capturing the underlying anatomy and of the well-shapedness of the mesh elements. The latter is crucial to guarantee the numerical robustness of the FEM calculations. The pipeline will be released as open-source, allowing for the first time to perform realistic field calculations at an acceptable methodological complexity and moderate costs.

  18. Electrical stimulation to restore respiration.

    PubMed

    Creasey, G; Elefteriades, J; DiMarco, A; Talonen, P; Bijak, M; Girsch, W; Kantor, C

    1996-04-01

    Electrical stimulation has been used for over 25 years to restore breathing to patients with high quadriplegia causing respiratory paralysis and patients with central alveolar hypoventilation. Three groups have developed electrical pacing systems for long-term support of respiration in humans. These systems consist of electrodes implanted on the phrenic nerves, connected by leads to a stimulator implanted under the skin, and powered and controlled from a battery-powered transmitter outside the body. The systems differ principally in the electrode design and stimulation waveform. Approximately 1,000 people worldwide have received one of the three phrenic pacing devices, most with strongly positive results: reduced risk of tracheal problems and chronic infection, the ability to speak and smell more normally, reduced risk of accidental interruption of respiration, greater independence, and reduced costs and time for ventilatory care. For patients with partial lesions of the phrenic nerves, intercostal muscle stimulation may supplement respiration.

  19. Evoked Electromyographically Controlled Electrical Stimulation

    PubMed Central

    Hayashibe, Mitsuhiro

    2016-01-01

    Time-variant muscle responses under electrical stimulation (ES) are often problematic for all the applications of neuroprosthetic muscle control. This situation limits the range of ES usage in relevant areas, mainly due to muscle fatigue and also to changes in stimulation electrode contact conditions, especially in transcutaneous ES. Surface electrodes are still the most widely used in noninvasive applications. Electrical field variations caused by changes in the stimulation contact condition markedly affect the resulting total muscle activation levels. Fatigue phenomena under functional electrical stimulation (FES) are also well known source of time-varying characteristics coming from muscle response under ES. Therefore, it is essential to monitor the actual muscle state and assess the expected muscle response by ES so as to improve the current ES system in favor of adaptive muscle-response-aware FES control. To deal with this issue, we have been studying a novel control technique using evoked electromyography (eEMG) signals to compensate for these muscle time-variances under ES for stable neuroprosthetic muscle control. In this perspective article, I overview the background of this topic and highlight important points to be aware of when using ES to induce the desired muscle activation regardless of the time-variance. I also demonstrate how to deal with the common critical problem of ES to move toward robust neuroprosthetic muscle control with the Evoked Electromyographically Controlled Electrical Stimulation paradigm. PMID:27471448

  20. Electrical stimulation of mechanoreceptors

    NASA Astrophysics Data System (ADS)

    Echenique, A. M.; Graffigna, J. P.

    2011-12-01

    Within the field of Rehabilitation Engineering, this work is aimed at identifying the optimal parameters of electric current stimulus which activate the nervous axons of mecanoreceptors found in the fingertip, allowing, this way, to resemble tactile senses. These sensorial feelings can be used by aiding technological means, namely, the sensorial substitution technology, in an attempt to render information to blind people through the tactile sense. The physical pressure on sensorial areas (fingertips) used for reading activities through the Braille System is the main effect that is imitated and studied in this research work. An experimental aiding prototype for Braille reading research has been developed and tested with blinds and reduced vision people, with highly satisfactory results.

  1. Deep brain stimulation for movement disorders.

    PubMed

    Larson, Paul S

    2014-07-01

    Deep brain stimulation (DBS) is an implanted electrical device that modulates specific targets in the brain resulting in symptomatic improvement in a particular neurologic disease, most commonly a movement disorder. It is preferred over previously used lesioning procedures due to its reversibility, adjustability, and ability to be used bilaterally with a good safety profile. Risks of DBS include intracranial bleeding, infection, malposition, and hardware issues, such migration, disconnection, or malfunction, but the risk of each of these complications is low--generally ≤ 5% at experienced, large-volume centers. It has been used widely in essential tremor, Parkinson's disease, and dystonia when medical treatment becomes ineffective, intolerable owing to side effects, or causes motor complications. Brain targets implanted include the thalamus (most commonly for essential tremor), subthalamic nucleus (most commonly for Parkinson's disease), and globus pallidus (Parkinson's disease and dystonia), although new targets are currently being explored. Future developments include brain electrodes that can steer current directionally and systems capable of "closed loop" stimulation, with systems that can record and interpret regional brain activity and modify stimulation parameters in a clinically meaningful way. New, image-guided implantation techniques may have advantages over traditional DBS surgery.

  2. Brain stimulation using electromagnetic sources: theoretical aspects.

    PubMed

    Heller, L; van Hulsteyn, D B

    1992-07-01

    We prove that, at the frequencies generally proposed for extracranial stimulation of the brain, it is not possible, using any superposition of external current sources, to produce a three-dimensional local maximum of the electric field strength inside the brain. The maximum always occurs on a boundary where the conductivity jumps in value. Nevertheless, it may be possible to achieve greater two-dimensional focusing and shaping of the electric field than is currently available. Towards this goal we have used the reciprocity theorem to present a uniform treatment of the electric field inside a conducting medium produced by a variety of sources: an external magnetic dipole (current loop), an external electric dipole (linear antenna), and surface and depth electrodes. This formulation makes use of the lead fields from magneto- and electroencephalography. For the special case of a system with spherically symmetric conductivity, we derive a simple analytic formula for the electric field due to an external magnetic dipole. This formula is independent of the conductivity profile and therefore embraces spherical models with any number of shells. This explains the "insensitivity" to the skull's conductivity that has been described in numerical studies. We also present analytic formulas for the electric field due to an electric dipole, and also surface and depth electrodes, for the case of a sphere of constant conductivity.

  3. Efficacy and Safety of Transcutaneous Electrical Acupoint Stimulation to Treat Muscle Spasticity following Brain Injury: A Double-Blinded, Multicenter, Randomized Controlled Trial

    PubMed Central

    Zhao, Wenli; Wang, Chao; Li, Zhongzheng; Chen, Lei; Li, Jianbo; Cui, Weidong; Ding, Shasha; Xi, Qiang; Wang, Fan; Jia, Fei; Xiao, Shuhua; Guo, Yi; Zhao, Ye

    2015-01-01

    Objective This study was aimed at evaluating the clinical efficacy and safety of transcutaneous electrical acupoint stimulation (TEAS) to treat muscle spasticity after brain injury (Chinese Clinical Trial Registry: ChiCTR-TRC-11001310). Methods A total of 60 patients with muscle spasticity after brain injury were randomized to the following 3 groups: 100, 2, and 0 Hz (sham) TEAS. The acupoints Hegu (LI4)—Yuji (LU10) and Zusanli (ST36)—Chengshan (BL57) on the injured side were stimulated at 0, 2, or 100 Hz, 5 times per week for 4 weeks. The patients were followed up for 1 and 2 months after the treatments. The effects of the treatments on muscle spasticity at the wrist, thumb, the other 4 fingers, elbow, shoulder, knee, and ankle were evaluated by the Modified Ashworth Scale, and the effects on disability were assessed by the Disability Assessment Scale. The walking capability was evaluated by the Holden functional ambulation classification score. The overall performance was assessed by the Global Assessment Scale score and the improved Barthel Index. The safety of the treatments administered was also monitored. Results The wrist spasticity was significantly reduced from baseline at weeks 2, 3, and 4 of treatment and at the 1- and 2-month follow-up visits in the 100 Hz group (P < 0.01). Compared with 2 Hz or sham TEAS, 100 Hz TEAS decreased wrist spasticity at weeks 2, 3, and 4 of treatment and 1 month after treatment (P < 0.001). The other endpoints were not affected by the treatments. No treatment-emergent adverse events were reported during treatments and follow-up visits. Conclusions TEAS appears to be a safe and effective therapy to relieve muscle spasticity after brain injury, although large-scale studies are required to further verify the findings. Trial Registration Chinese Clinical Trial Registry ChiCTR-TRC-11001310 http://www.chictr.org PMID:25643051

  4. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee.

    PubMed

    Rossini, P M; Burke, D; Chen, R; Cohen, L G; Daskalakis, Z; Di Iorio, R; Di Lazzaro, V; Ferreri, F; Fitzgerald, P B; George, M S; Hallett, M; Lefaucheur, J P; Langguth, B; Matsumoto, H; Miniussi, C; Nitsche, M A; Pascual-Leone, A; Paulus, W; Rossi, S; Rothwell, J C; Siebner, H R; Ugawa, Y; Walsh, V; Ziemann, U

    2015-06-01

    These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.

  5. Computational analysis of deep brain stimulation.

    PubMed

    McIntyre, Cameron C; Miocinovic, Svjetlana; Butson, Christopher R

    2007-09-01

    Chronic, high-frequency electrical stimulation of subcortical brain structures (deep brain stimulation [DBS]) is an effective clinical treatment for several medically refractory neurological disorders. However, the clinical successes of DBS are tempered by the limited understanding of the response of neurons to applied electric fields and scientific definition of the therapeutic mechanisms of DBS remains elusive. In addition, it is presently unclear which electrode designs and stimulation parameters are optimal for maximum therapeutic benefit and minimal side effects. Detailed computer modeling of DBS has recently emerged as a powerful technique to enhance our understanding of the effects of DBS and to create a virtual testing ground for new stimulation paradigms. This review summarizes the fundamentals of neurostimulation modeling and provides an overview of some of the scientific contributions of computer models to the field of DBS. We then provide a prospective view on the application of DBS-modeling tools to augment the clinical utility of DBS and to design the next generation of DBS technology.

  6. Electrical stimulation and motor recovery.

    PubMed

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  7. Single well electric oil stimulation

    SciTech Connect

    Perkins, Th. K.

    1985-06-11

    A single well method and apparatus for electrically applying heat and stimulating is comprised of a relatively lower surface area formation electrode and relatively high surface area overburden electrode extending downward into the borehole past low resistivity water zones. This long overburden electrode may be formed of nonmagnetic metal to reduce hysteresis losses in the electrode. This improved single well system causes most of power to be dissipated in the oil pay zone and thereby renders single well production economical.

  8. Deep Brain Stimulation: Expanding Applications

    PubMed Central

    TEKRIWAL, Anand; BALTUCH, Gordon

    2015-01-01

    For over two decades, deep brain stimulation (DBS) has shown significant efficacy in treatment for refractory cases of dyskinesia, specifically in cases of Parkinson's disease and dystonia. DBS offers potential alleviation from symptoms through a well-tolerated procedure that allows personalized modulation of targeted neuroanatomical regions and related circuitries. For clinicians contending with how to provide patients with meaningful alleviation from often debilitating intractable disorders, DBSs titratability and reversibility make it an attractive treatment option for indications ranging from traumatic brain injury to progressive epileptic supra-synchrony. The expansion of our collective knowledge of pathologic brain circuitries, as well as advances in imaging capabilities, electrophysiology techniques, and material sciences have contributed to the expanding application of DBS. This review will examine the potential efficacy of DBS for neurologic and psychiatric disorders currently under clinical investigation and will summarize findings from recent animal models. PMID:26466888

  9. Deep brain stimulation: postoperative issues.

    PubMed

    Deuschl, Günther; Herzog, Jan; Kleiner-Fisman, Galit; Kubu, Cynthia; Lozano, Andres M; Lyons, Kelly E; Rodriguez-Oroz, Maria C; Tamma, Filippo; Tröster, Alexander I; Vitek, Jerrold L; Volkmann, Jens; Voon, Valerie

    2006-06-01

    Numerous factors need to be taken into account when managing a patient with Parkinson's disease (PD) after deep brain stimulation (DBS). Questions such as when to begin programming, how to conduct a programming screen, how to assess the effects of programming, and how to titrate stimulation and medication for each of the targeted sites need to be addressed. Follow-up care should be determined, including patient adjustments of stimulation, timing of follow-up visits and telephone contact with the patient, and stimulation and medication conditions during the follow-up assessments. A management plan for problems that can arise after DBS such as weight gain, dyskinesia, axial symptoms, speech dysfunction, muscle contractions, paresthesia, eyelid, ocular and visual disturbances, and behavioral and cognitive problems should be developed. Long-term complications such as infection or erosion, loss of effect, intermittent stimulation, tolerance, and pain or discomfort can develop and need to be managed. Other factors that need consideration are social and job-related factors, development of dementia, general medical issues, and lifestyle changes. This report from the Consensus on Deep Brain Stimulation for Parkinson's Disease, a project commissioned by the Congress of Neurological Surgeons and the Movement Disorder Society, outlines answers to a series of questions developed to address all aspects of DBS postoperative management and decision-making with a systematic overview of the literature (until mid-2004) and by the expert opinion of the authors. The report has been endorsed by the Scientific Issues Committee of the Movement Disorder Society and the American Society of Stereotactic and Functional Neurosurgery.

  10. Neuromuscular Electrical Stimulation for Skeletal Muscle Function

    PubMed Central

    Doucet, Barbara M.; Lam, Amy; Griffin, Lisa

    2012-01-01

    Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle. PMID:22737049

  11. Effects of brain-derived neurotrophic factor (BDNF) and electrical stimulation on survival and function of cochlear spiral ganglion neurons in deafened, developing cats.

    PubMed

    Leake, Patricia A; Stakhovskaya, Olga; Hetherington, Alexander; Rebscher, Stephen J; Bonham, Ben

    2013-04-01

    Both neurotrophic support and neural activity are required for normal postnatal development and survival of cochlear spiral ganglion (SG) neurons. Previous studies in neonatally deafened cats demonstrated that electrical stimulation (ES) from a cochlear implant can promote improved SG survival but does not completely prevent progressive neural degeneration. Neurotrophic agents combined with an implant may further improve neural survival. Short-term studies in rodents have shown that brain-derived neurotrophic factor (BDNF) promotes SG survival after deafness and may be additive to trophic effects of stimulation. Our recent study in neonatally deafened cats provided the first evidence of BDNF neurotrophic effects in the developing auditory system over a prolonged duration Leake et al. (J Comp Neurol 519:1526-1545, 2011). Ten weeks of intracochlear BDNF infusion starting at 4 weeks of age elicited significant improvement in SG survival and larger soma size compared to contralateral. In the present study, the same deafening and BDNF infusion procedures were combined with several months of ES from an implant. After combined BDNF + ES, a highly significant increase in SG numerical density (>50 % improvement re: contralateral) was observed, which was significantly greater than the neurotrophic effect seen with ES-only over comparable durations. Combined BDNF + ES also resulted in a higher density of myelinated radial nerve fibers within the osseous spiral lamina. However, substantial ectopic and disorganized sprouting of these fibers into the scala tympani also occurred, which may be deleterious to implant function. EABR thresholds improved (re: initial thresholds at time of implantation) on the chronically stimulated channels of the implant. Terminal electrophysiological studies recording in the inferior colliculus (IC) revealed that the basic cochleotopic organization was intact in the midbrain in all studied groups. In deafened controls or after ES-only, lower IC

  12. Localization of the central rhythm generator involved in spontaneous consummatory licking in rats: functional ablation and electrical brain stimulation studies.

    PubMed Central

    Brozek, G; Zhuravin, I A; Megirian, D; Bures, J

    1996-01-01

    Localization of the central rhythm generator (CRG) of spontaneous consummatory licking was studied in freely moving rats by microinjection of tetrodotoxin (TTX) into the pontine reticular formation. Maximum suppression of spontaneous water consumption was elicited by TTX (1 ng) blockade of the oral part of the nucleus reticularis gigantocellularis (NRG), whereas TTX injections into more caudal or rostral locations caused significantly weaker disruption of drinking. To verify the assumption that TTX blocked the proper CRG of licking rather than some relay in its output, spontaneously drinking thirsty rats were intracranially stimulated via electrodes chronically implanted into the oral part of the NRG. Lick-synchronized stimulation (a 100-ms train of 0.1-ms-wide rectangular pulses at 100 Hz and 25-150 microA) applied during continuous licking (after eight regular consecutive licks) caused a phase shift of licks emitted after stimulus delivery. The results suggest that the stimulation has reset the CRG of licking without changing its frequency. The reset-inducing threshold current was lowest during the tongue retraction and highest during the tongue protrusion period of the lick cycle. It is concluded that the CRG of licking is located in the oral part of NRG. PMID:8622936

  13. Calibration of clinical cerebellar and deep brain stimulation systems.

    PubMed Central

    McLellan, D L; Wright, G D; Renouf, F

    1981-01-01

    The increasing use of electrical stimulation of the brain for relief of pain, spasticity and epilepsy has introduced unfamiliar techniques into clinical neurological and neurosurgical practice. In view of the evidence that excessive levels of stimulation can damage brain tissue, it is of great importance to monitor the dose of stimulation. A review of recent clinical papers suggests that many centres do not measure the dose accurately, relying on arbitrary dial settings on external transmitters. This paper reviews that factors that affect the dose received by the patient and suggests methods of measuring them, at operation and subsequently, which should routinely be employed by clinicians implanting stimulators. Images PMID:6973614

  14. Theory of feedback controlled brain stimulations for Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Sanzeni, A.; Celani, A.; Tiana, G.; Vergassola, M.

    2016-01-01

    Limb tremor and other debilitating symptoms caused by the neurodegenerative Parkinson's disease are currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. While deep brain stimulation has shown therapeutic benefits in many instances, its mechanism is still unclear. Since its understanding could lead to improved protocols of stimulation and feedback control, we have studied a mathematical model of the many-body neural network dynamics controlling the dynamics of the basal ganglia. On the basis of the results obtained from the model, we propose a new procedure of active stimulation, that depends on the feedback of the network and that respects the constraints imposed by existing technology. We show by numerical simulations that the new protocol outperforms the standard ones for deep brain stimulation and we suggest future experiments that could further improve the feedback procedure.

  15. Deep brain stimulation for dystonia.

    PubMed

    Vidailhet, Marie; Jutras, Marie-France; Grabli, David; Roze, Emmanuel

    2013-09-01

    The few controlled studies that have been carried out have shown that bilateral internal globus pallidum stimulation is a safe and long-term effective treatment for hyperkinetic disorders. However, most recent published data on deep brain stimulation (DBS) for dystonia, applied to different targets and patients, are still mainly from uncontrolled case reports (especially for secondary dystonia). This precludes clear determination of the efficacy of this procedure and the choice of the 'good' target for the 'good' patient. We performed a literature analysis on DBS for dystonia according to the expected outcome. We separated those with good evidence of favourable outcome from those with less predictable outcome. In the former group, we review the main results for primary dystonia (generalised/focal) and highlight recent data on myoclonus-dystonia and tardive dystonia (as they share, with primary dystonia, a marked beneficial effect from pallidal stimulation with good risk/benefit ratio). In the latter group, poor or variable results have been obtained for secondary dystonia (with a focus on heredodegenerative and metabolic disorders). From this overview, the main results and limits for each subgroup of patients that may help in the selection of dystonic patients who will benefit from DBS are discussed.

  16. Effects of different electrical parameter settings on the intelligibility of speech in patients with Parkinson's disease treated with subthalamic deep brain stimulation.

    PubMed

    Törnqvist, Anna Lena; Schalén, Lucyna; Rehncrona, Stig

    2005-04-01

    We evaluated the effects of different electrical parameter settings on the intelligibility of speech in patients with Parkinson's disease (PD) bilaterally treated with deep brain stimulation (DBS) in the subthalamic nucleus (STN). Ten patients treated with DBS for 15 +/- 5 months (mean, SD) with significant (P < 0.01) symptom reduction (Unified Parkinson's Disease Rating Scale III) were included. In the medication off condition, video laryngostroboscopy was performed and then, in random order, 11 DBS parameter settings were tested. Amplitude was increased and decreased by 25%, frequency was varied in the range 70 to 185 pps, and each of the contacts was tested separately as a cathode. The patients read a standard running text and five nonsense sentences per setting. A listener panel transcribed the nonsense sentences as perceived and valued the quality of speech on a visual analogue scale. With the patients' normally used settings, there was no significant (P = 0.058) group difference between DBS OFF and ON, but in four patients the intelligibility deteriorated with DBS ON. The higher frequencies or increased amplitude caused significant (P < 0.02) impairments of intelligibility, whereas changing the polarity between the separate contacts did not. The settings of amplitude and frequency have a major influence on the intelligibility of speech, emphasizing the importance of meticulous parameter adjustments when programming DBS to minimize side effects related to speech.

  17. Effect of Laryngopharyngeal Neuromuscular Electrical Stimulation on Dysphonia Accompanied by Dysphagia in Post-stroke and Traumatic Brain Injury Patients: A Pilot Study

    PubMed Central

    2016-01-01

    Objective To investigate the effect of laryngopharyngeal neuromuscular electrical stimulation (NMES) on dysphonia in patients with dysphagia caused by stroke or traumatic brain injury (TBI). Methods Eighteen patients participated in this study. The subjects were divided into NMES (n=12) and conventional swallowing training only (CST, n=6) groups. The NMES group received NMES combined with CST for 2 weeks, followed by CST without NMES for the next 2 weeks. The CST group received only CST for 4 weeks. All of the patients were evaluated before and at 2 and 4 weeks into the study. The outcome measurements included perceptual, acoustic and aerodynamic analyses. The correlation between dysphonia and swallowing function was also investigated. Results There were significant differences in the GRBAS (grade, roughness, breathiness, asthenia and strain scale) total score and sound pressure level (SPL) between the two groups over time. The NMES relative to the CST group showed significant improvements in total GRBAS score and SPL at 2 weeks, though no inter-group differences were evident at 4 weeks. The improvement of the total GRBAS scores at 2 weeks was positively correlated with the improved pharyngeal phase scores on the functional dysphagia scale at 2 weeks. Conclusion The results demonstrate that laryngopharyngeal NMES in post-stroke or TBI patients with dysphonia can have promising effects on phonation. Therefore, laryngopharyngeal NMES may be considered as an additional treatment option for dysphonia accompanied by dysphagia after stroke or TBI. PMID:27606266

  18. Origin and Evolution of Deep Brain Stimulation

    PubMed Central

    Sironi, Vittorio A.

    2011-01-01

    This paper briefly describes how the electrical stimulation, used since antiquity to modulate the nervous system, has been a fundamental tool of neurophysiologic investigation in the second half of the eighteenth century and was subsequently used by the early twentieth century, even for therapeutic purposes. In mid-twentieth century the advent of stereotactic procedures has allowed the drift from lesional to stimulating technique of deep nuclei of the brain for therapeutic purposes. In this way, deep brain stimulation (DBS) was born, that, over the last two decades, has led to positive results for the treatment of medically refractory Parkinson’s disease, essential tremor, and dystonia. In recent years, the indications for therapeutic use of DBS have been extended to epilepsy, Tourette’s syndrome, psychiatric diseases (depression, obsessive–compulsive disorder), some kinds of headache, eating disorders, and the minimally conscious state. The potentials of the DBS for therapeutic use are fascinating, but there are still many unresolved technical and ethical problems, concerning the identification of the targets for each disease, the selection of the patients and the evaluation of the results. PMID:21887135

  19. Braille line using electrical stimulation

    NASA Astrophysics Data System (ADS)

    Puertas, A.; Purés, P.; Echenique, A. M.; Ensinck, J. P. Graffigna y. G.

    2007-11-01

    Conceived within the field of Rehabilitation Technologies for visually impaired persons, the present work aims at enabling the blind user to read written material by means of a tactile display. Once he is familiarized to operate this system, the user will be able to achieve greater performance in study, academic and job activities, thus achieving a rapid and easier social inclusion. The devise accepts any kind of text that is computer-loadable (documents, books, Internet information, and the like) which, through digital means, can be read as Braille text on the pad. This tactile display is composed of an electrodes platform that simulate, through stimulation the writing/reading Braille characters. In order to perceive said characters in similar way to the tactile feeling from paper material, the skin receptor of fingers are stimulated electrically so as to simulate the same pressure and depressions as those of the paper-based counterpart information. Once designed and developed, the display was tested with blind subjects, with relatively satisfactory results. As a continuing project, this prototype is currently being improved as regards.

  20. Electrical Stimulation Enhances Reinnervation After Nerve Injury

    PubMed Central

    2015-01-01

    Electrical muscle stimulation following peripheral nerve injury has been a controversial method of treatment due primarily to the inconsistent literature surrounding it. In this presentation transcript I outline ongoing experiments investigating a clinically translatable daily muscle stimulation paradigm in rats following nerve injury. Results show that reinnervation of muscle and functional behavioural metrics are enhanced with daily stimulation with upregulation of intramuscular neurotrophic factors as a potential mechanism. In addition, the impact of stimulation on terminal sprouting, a mentioned negative aspect of electrical muscle stimulation, was a minor contributor to long term functional reinnervation of stimulated muscles in our studies. PMID:26913163

  1. Electrical carotid sinus stimulation in treatment resistant arterial hypertension.

    PubMed

    Jordan, Jens; Heusser, Karsten; Brinkmann, Julia; Tank, Jens

    2012-12-24

    Treatment resistant arterial hypertension is commonly defined as blood pressure that remains above goal in spite of the concurrent use of three antihypertensive agents of different classes. The sympathetic nervous system promotes arterial hypertension and cardiovascular as well as renal damage, thus, providing a logical treatment target in these patients. Recent physiological studies suggest that baroreflex mechanisms contribute to long-term control of sympathetic activity and blood pressure providing an impetus for the development of electrical carotid sinus stimulators. The concept behind electrical stimulation of baroreceptors or baroreflex afferent nerves is that the stimulus is sensed by the brain as blood pressure increase. Then, baroreflex efferent structures are adjusted to counteract the perceived blood pressure increase. Electrical stimulators directly activating afferent baroreflex nerves were developed years earlier but failed for technical reasons. Recently, a novel implantable device was developed that produces an electrical field stimulation of the carotid sinus wall. Carefully conducted experiments in dogs provided important insight in mechanisms mediating the depressor response to electrical carotid sinus stimulation. Moreover, these studies showed that the treatment success may depend on the underlying pathophysiology of the hypertension. Clinical studies suggest that electrical carotid sinus stimulation attenuates sympathetic activation of vasculature, heart, and kidney while augmenting cardiac vagal regulation, thus lowering blood pressure. Yet, not all patients respond to treatment. Additional clinical trials are required. Patients equipped with an electrical carotid sinus stimulator provide a unique opportunity gaining insight in human baroreflex physiology.

  2. Effects of Action Observational Training Plus Brain-Computer Interface-Based Functional Electrical Stimulation on Paretic Arm Motor Recovery in Patient with Stroke: A Randomized Controlled Trial.

    PubMed

    Kim, TaeHoon; Kim, SeongSik; Lee, ByoungHee

    2016-03-01

    The purpose of this study was to investigate whether action observational training (AOT) plus brain-computer interface-based functional electrical stimulation (BCI-FES) has a positive influence on motor recovery of paretic upper extremity in patients with stroke. This was a hospital-based, randomized controlled trial with a blinded assessor. Thirty patients with a first-time stroke were randomly allocated to one of two groups: the BCI-FES group (n = 15) and the control group (n = 15). The BCI-FES group administered to AOT plus BCI-FES on the paretic upper extremity five times per week during 4 weeks while both groups received conventional therapy. The primary outcomes were the Fugl-Meyer Assessment of the Upper Extremity, Motor Activity Log (MAL), Modified Barthel Index and range of motion of paretic arm. A blinded assessor evaluated the outcomes at baseline and 4 weeks. All baseline outcomes did not differ significantly between the two groups. After 4 weeks, the Fugl-Meyer Assessment of the Upper Extremity sub-items (total, shoulder and wrist), MAL (MAL-Activity of Use and Quality of Movement), Modified Barthel Index and wrist flexion range of motion were significantly higher in the BCI-FES group (p < 0.05). AOT plus BCI-based FES is effective in paretic arm rehabilitation by improving the upper extremity performance. The motor improvements suggest that AOT plus BCI-based FES can be used as a therapeutic tool for stroke rehabilitation. The limitations of the study are that subjects had a certain limited level of upper arm function, and the sample size was comparatively small; hence, it is recommended that future large-scale trials should consider stratified and lager populations according to upper arm function.

  3. Transcranial magnetic stimulation and the human brain

    NASA Astrophysics Data System (ADS)

    Hallett, Mark

    2000-07-01

    Transcranial magnetic stimulation (TMS) is rapidly developing as a powerful, non-invasive tool for studying the human brain. A pulsed magnetic field creates current flow in the brain and can temporarily excite or inhibit specific areas. TMS of motor cortex can produce a muscle twitch or block movement; TMS of occipital cortex can produce visual phosphenes or scotomas. TMS can also alter the functioning of the brain beyond the time of stimulation, offering potential for therapy.

  4. Functional Electrical Stimulation and Spinal Cord Injury

    PubMed Central

    Ho, Chester H.; Triolo, Ronald J.; Elias, Anastasia L.; Kilgore, Kevin L.; DiMarco, Anthony F.; Bogie, Kath; Vette, Albert H.; Audu, Musa; Kobetic, Rudi; Chang, Sarah R.; Chan, K. Ming; Dukelow, Sean; Bourbeau, Dennis J.; Brose, Steven W.; Gustafson, Kenneth J.; Kiss, Zelma; Mushahwar, Vivian K.

    2015-01-01

    Synopsis Spinal cord injuries (SCI) can disrupt communications between the brain and the body, leading to a loss of control over otherwise intact neuromuscular systems. The use of electrical stimulation (ES) of the central and peripheral nervous system can take advantage of these intact neuromuscular systems to provide therapeutic exercise options, to allow functional restoration, and even to manage or prevent many medical complications following SCI. The use of ES for the restoration of upper extremity, lower extremity and truncal functions can make many activities of daily living a potential reality for individuals with SCI. Restoring bladder and respiratory functions and preventing pressure ulcers may significantly decrease the morbidity and mortality following SCI. Many of the ES devices are already commercially available and should be considered by all SCI clinicians routinely as part of the lifelong rehabilitation care plan for all eligible individuals with SCI. PMID:25064792

  5. [Deep brain stimulation and neuroethics].

    PubMed

    Katayama, Yoichi; Fukaya, Chikashi

    2009-01-01

    The use of deep brain stimulation (DBS) for mental disorders has been discussed in Japan from the viewpoint of ethical problems. Trials of experimental therapies require a basis of sound scientific rationale. New standard therapy emerges from such trials through detailed analysis of the outcome and side effects. Long-suffering patients with intractable symptoms may desperately seek an experimental therapy even though it has not yet been accepted as standard therapy. The ethical committee of each institution evaluates the level of scientific rationale and the expected level of benefits on the bias of the reported data, and decides whether the patients can receive the experimental therapy. However, the use of DBS for mental disorders is not based on sound scientific rational, since the disease mechanisms involved are far from understood. The data reported from the previous trials are insufficient for assuring the satisfactory results for mental disoder patients. Most institutions in Japan do not accept such levels of scientific rationale and expected benefits. Furthermore, from the cultural perspective, strong skepticism exists in Japan with regard to surgical interventions for mental disorders. Such an attitude is unexpectedly in harmony with many of the subjects currently discussed in the field of neuroethics. For example, who has the right to control DBS? How does someone decide the level of control of mental function by DBS? These questions are related to the discussion on how human society is formed and how the ethics are decided by considering both scientific rationale and human society.

  6. External trial deep brain stimulation device for the application of desynchronizing stimulation techniques

    NASA Astrophysics Data System (ADS)

    Hauptmann, C.; Roulet, J.-C.; Niederhauser, J. J.; Döll, W.; Kirlangic, M. E.; Lysyansky, B.; Krachkovskyi, V.; Bhatti, M. A.; Barnikol, U. B.; Sasse, L.; Bührle, C. P.; Speckmann, E.-J.; Götz, M.; Sturm, V.; Freund, H.-J.; Schnell, U.; Tass, P. A.

    2009-12-01

    In the past decade deep brain stimulation (DBS)—the application of electrical stimulation to specific target structures via implanted depth electrodes—has become the standard treatment for medically refractory Parkinson's disease and essential tremor. These diseases are characterized by pathological synchronized neuronal activity in particular brain areas. We present an external trial DBS device capable of administering effectively desynchronizing stimulation techniques developed with methods from nonlinear dynamics and statistical physics according to a model-based approach. These techniques exploit either stochastic phase resetting principles or complex delayed-feedback mechanisms. We explain how these methods are implemented into a safe and user-friendly device.

  7. Vomiting Center reanalyzed: An electrical stimulation study

    NASA Technical Reports Server (NTRS)

    Miller, A. D.; Wilson, V. J.

    1982-01-01

    Electrical stimulation of the brainstem of 15 decerebrate cats produced stimulus-bound vomiting in only 4 animals. Vomiting was reproducible in only one cat. Effective stimulating sites were located in the solitary tract and reticular formation. Restricted localization of a vomiting center, stimulation of which evoked readily reproducible results, could not be obtained.

  8. Movement disorders induced by deep brain stimulation.

    PubMed

    Baizabal-Carvallo, José Fidel; Jankovic, Joseph

    2016-04-01

    Deep brain stimulation represents a major advance in the treatment of several types of movement disorders. However, during stimulation new movement disorders may emerge, thus limiting the positive effects of this therapy. These movement disorders may be induced by: 1) stimulation of the targeted nucleus, 2) stimulation of surrounding tracts and nuclei, and 3) as a result of dose adjustment of accompanying medications, such as reduction of dopaminergic drugs in patients with Parkinson's disease. Various dyskinesias, blepharospasm, and apraxia of eyelid opening have been described mainly with subthalamic nucleus stimulation, whereas hypokinesia and freezing of gait have been observed with stimulation of the globus pallidus internus. Other deep brain stimulation-related movement disorders include dyskinesias associated with stimulation of the globus pallidus externus and ataxic gait as a side effect of chronic bilateral stimulation of the ventral intermediate nucleus of thalamus. These movement disorders are generally reversible and usually resolved once the stimulation is reduced or turned off. This, however, typically leads to loss of benefit of the underlying movement disorder which can be re-gained by using different contacts, changing targets or stimulation parameters, and adjusting pharmacological therapy. New and innovative emerging technologies and stimulation techniques may help to prevent or overcome the various deep brain stimulation-induced movement disorders. In this review we aim to describe the clinical features, frequency, pathophysiology, and strategies for treatment of these iatrogenic movement disorders.

  9. Transcranial current brain stimulation (tCS): models and technologies.

    PubMed

    Ruffini, Giulio; Wendling, Fabrice; Merlet, Isabelle; Molaee-Ardekani, Behnam; Mekonnen, Abeye; Salvador, Ricardo; Soria-Frisch, Aureli; Grau, Carles; Dunne, Stephen; Miranda, Pedro C

    2013-05-01

    In this paper, we provide a broad overview of models and technologies pertaining to transcranial current brain stimulation (tCS), a family of related noninvasive techniques including direct current (tDCS), alternating current (tACS), and random noise current stimulation (tRNS). These techniques are based on the delivery of weak currents through the scalp (with electrode current intensity to area ratios of about 0.3-5 A/m2) at low frequencies (typically < 1 kHz) resulting in weak electric fields in the brain (with amplitudes of about 0.2-2 V/m). Here we review the biophysics and simulation of noninvasive, current-controlled generation of electric fields in the human brain and the models for the interaction of these electric fields with neurons, including a survey of in vitro and in vivo related studies. Finally, we outline directions for future fundamental and technological research.

  10. Possible Roles of the Dominant Uncinate Fasciculus in Naming Objects: A Case Report of Intraoperative Electrical Stimulation on a Patient with a Brain Tumour

    PubMed Central

    Nomura, Keiko; Kazui, Hiroaki; Tokunaga, Hiromasa; Hirata, Masayuki; Goto, Tetsu; Goto, Yuko; Hashimoto, Naoya; Yoshimine, Toshiki; Takeda, Masatoshi

    2013-01-01

    How the dominant uncinate fasciculus (UF) contributes to naming performance is uncertain. In this case report, a patient with an astrocytoma near the dominant UF was given a picture-naming task during intraoperative electrical stimulation in order to resect as much tumourous tissues as possible without impairing the dominant UF function. Here we report that the stimulations with the picture-naming task also provided some insights into how the dominant UF contributes to naming performance. The stimulation induced naming difficulty, verbal paraphasia, and recurrent and continuous perseveration. Moreover, just after producing the incorrect responses, the patient displayed continuous perseveration even though the stimulation had ended. The left UF connects to the inferior frontal lobe, which is necessary for word production, so that the naming difficulty appears to be the result of disrupted word production caused by electrical stimulation of the dominant UF. The verbal paraphasia appears to be due to the failure to select the correct word from semantic memory and the failure to suppress the incorrect word. The left UF is associated with working memory, which plays an important role in recurrent perseveration. The continuous perseveration appears to be due to disturbances in word production and a failure to inhibit an appropriate response. These findings in this case suggest that the dominant UF has multiple roles in the naming of objects. PMID:23242348

  11. Developments in deep brain stimulation using time dependent magnetic fields

    SciTech Connect

    Crowther, L.J.; Nlebedim, I.C.; Jiles, D.C.

    2012-03-07

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  12. Developments in deep brain stimulation using time dependent magnetic fields

    NASA Astrophysics Data System (ADS)

    Crowther, L. J.; Nlebedim, I. C.; Jiles, D. C.

    2012-04-01

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  13. Electrical stimulation to accelerate wound healing

    PubMed Central

    Thakral, Gaurav; LaFontaine, Javier; Najafi, Bijan; Talal, Talal K.; Kim, Paul; Lavery, Lawrence A.

    2013-01-01

    Background There are several applications of electrical stimulation described in medical literature to accelerate wound healing and improve cutaneous perfusion. This is a simple technique that could be incorporated as an adjunctive therapy in plastic surgery. The objective of this review was to evaluate the results of randomized clinical trials that use electrical stimulation for wound healing. Method We identified 21 randomized clinical trials that used electrical stimulation for wound healing. We did not include five studies with treatment groups with less than eight subjects. Results Electrical stimulation was associated with faster wound area reduction or a higher proportion of wounds that healed in 14 out of 16 wound randomized clinical trials. The type of electrical stimulation, waveform, and duration of therapy vary in the literature. Conclusion Electrical stimulation has been shown to accelerate wound healing and increase cutaneous perfusion in human studies. Electrical stimulation is an adjunctive therapy that is underutilized in plastic surgery and could improve flap and graft survival, accelerate postoperative recovery, and decrease necrosis following foot reconstruction. PMID:24049559

  14. Modulation of fear extinction processes using transcranial electrical stimulation

    PubMed Central

    Abend, R; Jalon, I; Gurevitch, G; Sar-el, R; Shechner, T; Pine, D S; Hendler, T; Bar-Haim, Y

    2016-01-01

    Research associates processes of fear conditioning and extinction with treatment of anxiety and stress-related disorders. Manipulation of these processes may therefore be beneficial for such treatment. The current study examines the effects of electrical brain stimulation on fear extinction processes in healthy humans in order to assess its potential relevance for treatment enhancement. Forty-five participants underwent a 3-day fear conditioning and extinction paradigm. Electrical stimulation targeting the medial prefrontal cortex was applied during the extinction-learning phase (Day 2). Participants were randomly assigned to three stimulation conditions: direct-current (DC) stimulation, aimed at enhancing extinction-learning; low-frequency alternating-current (AC) stimulation, aimed at interfering with reconsolidation of the activated fear memory; and sham stimulation. The effect of stimulation on these processes was assessed in the subsequent extinction recall phase (Day 3), using skin conductance response and self-reports. Results indicate that AC stimulation potentiated the expression of fear response, whereas DC stimulation led to overgeneralization of fear response to non-reinforced stimuli. The current study demonstrates the capability of electrical stimulation targeting the medial prefrontal cortex to modulate fear extinction processes. However, the stimulation parameters tested here yielded effects opposite to those anticipated and could be clinically detrimental. These results highlight the potential capacity of stimulation to manipulate processes relevant for treatment of anxiety and stress-related disorders, but also emphasize the need for additional research to identify delivery parameters to enable its translation into clinical practice. Clinical trial identifiers: Modulation of Fear Extinction Processes Using Transcranial Electrical Stimulation; https://clinicaltrials.gov/show/NCT02723188; NCT02723188 NCT02723188. PMID:27727241

  15. Penfield’s Prediction: A Mechanism for Deep Brain Stimulation

    PubMed Central

    Murrow, Richard W.

    2014-01-01

    Context: Despite its widespread use, the precise mechanism of action of Deep Brain Stimulation (DBS) therapy remains unknown. The modern urgency to publish more and new data can obscure previously learned lessons by the giants who have preceded us and whose shoulders we now stand upon. Wilder Penfield extensively studied the effects of artificial electrical brain stimulation and his comments on the subject are still very relevant today. In particular, he noted two very different (and seemingly opposite) effects of stimulation within the human brain. In some structures, artificial electrical stimulation has an effect, which mimics ablation, while, in other structures, it produces a stimulatory effect on that tissue. Hypothesis: The hypothesis of this paper is fourfold. First, it proposes that some neural circuits are widely synchronized with other neural circuits, while some neural circuits are unsynchronized and operate independently. Second, it proposes that artificial high-frequency electrical stimulation of a synchronized neural circuit results in an ablative effect, but artificial high-frequency electrical stimulation of an unsynchronized neural circuit results in a stimulatory effect. Third, it suggests a part of the mechanism by which large-scale physiologic synchronization of widely distributed independently processed information streams may occur. This may be the neural mechanism underlying Penfield’s “centrencephalic system,” which he emphasized so many years ago. Fourth, it outlines the specific anatomic distribution of this physiologic synchronization, which Penfield has already clearly delineated as the distribution of his centrencephalic system. Evidence: This paper draws on a brief overview of previous theory regarding the mechanism of action of DBS and on historical, as well as widely known modern clinical data regarding the observed effects of stimulation delivered to various targets within the brain. Basic science investigations, which

  16. Brain imaging correlates of peripheral nerve stimulation

    PubMed Central

    Bari, Ausaf A.; Pouratian, Nader

    2012-01-01

    Direct peripheral nerve stimulation is an effective treatment for a number of disorders including epilepsy, depression, neuropathic pain, cluster headache, and urological dysfunction. The efficacy of this stimulation is ultimately due to modulation of activity in the central nervous system. However, the exact brain regions involved in each disorder and how they are modulated by peripheral nerve stimulation is not fully understood. The use of functional neuroimaging such as SPECT, PET and fMRI in patients undergoing peripheral nerve stimulation can help us to understand these mechanisms. We review the literature for functional neuroimaging performed in patients implanted with peripheral nerve stimulators for the above-mentioned disorders. These studies suggest that brain activity in response to peripheral nerve stimulation is a complex interaction between the stimulation parameters, disease type and severity, chronicity of stimulation, as well as nonspecific effects. From this information we may be able to understand which brain structures are involved in the mechanism of peripheral nerve stimulation as well as define the neural substrates underlying these disorders. PMID:23230531

  17. Pallidotomy after chronic deep brain stimulation.

    PubMed

    Bulluss, Kristian J; Pereira, Erlick A; Joint, Carole; Aziz, Tipu Z

    2013-11-01

    Recent publications have demonstrated that deep brain stimulation for Parkinson's disease still exerts beneficial effects on tremor, rigidity, and bradykinesia for up to 10 years after implantation of the stimulator. However with the progression of Parkinson's disease, features such as cognitive decline or "freezing" become prominent, and the presence of an implanted and functioning deep brain stimulator can impose a profound burden of care on the clinical team and family. The authors describe their experience in treating 4 patients who underwent removal of the implanted device due to either progressive dementia requiring full-time nursing or due to infection, and who subsequently underwent a unilateral pallidotomy.

  18. MRI-induced heating of deep brain stimulation leads.

    PubMed

    Mohsin, Syed A; Sheikh, Noor M; Saeed, Usman

    2008-10-21

    The radiofrequency (RF) field used in magnetic resonance imaging is scattered by medical implants. The scattered field of a deep brain stimulation lead can be very intense near the electrodes stimulating the brain. The effect is more pronounced if the lead behaves as a resonant antenna. In this paper, we examine the resonant length effect. We also use the finite element method to compute the near field for (i) the lead immersed in inhomogeneous tissue (fat, muscle, and brain tissues) and (ii) the lead connected to an implantable pulse generator. Electric field, specific absorption rate and induced temperature rise distributions have been obtained in the brain tissue surrounding the electrodes. The worst-case scenario has been evaluated by neglecting the effect of blood perfusion. The computed values are in good agreement with in vitro measurements made in the laboratory.

  19. Modulating Hippocampal Plasticity with In Vivo Brain Stimulation

    PubMed Central

    Carhuatanta, Kim A.; McInturf, Shawn M.; Miklasevich, Molly K.; Jankord, Ryan

    2015-01-01

    Investigations into the use of transcranial direct current stimulation (tDCS) in relieving symptoms of neurological disorders and enhancing cognitive or motor performance have exhibited promising results. However, the mechanisms by which tDCS effects brain function remain under scrutiny. We have demonstrated that in vivo tDCS in rats produced a lasting effect on hippocampal synaptic plasticity, as measured using extracellular recordings. Ex vivo preparations of hippocampal slices from rats that have been subjected to tDCS of 0.10 or 0.25 mA for 30 min followed by 30 min of recovery time displayed a robust twofold enhancement in long-term potentiation (LTP) induction accompanied by a 30% increase in paired-pulse facilitation (PPF). The magnitude of the LTP effect was greater with 0.25 mA compared with 0.10 mA stimulations, suggesting a dose-dependent relationship between tDCS intensity and its effect on synaptic plasticity. To test the persistence of these observed effects, animals were stimulated in vivo for 30 min at 0.25 mA and then allowed to return to their home cage for 24 h. Observation of the enhanced LTP induction, but not the enhanced PPF, continued 24 h after completion of 0.25 mA of tDCS. Addition of the NMDA blocker AP-5 abolished LTP in both control and stimulated rats but maintained the PPF enhancement in stimulated rats. The observation of enhanced LTP and PPF after tDCS demonstrates that non-invasive electrical stimulation is capable of modifying synaptic plasticity. SIGNIFICANCE STATEMENT Researchers have used brain stimulation such as transcranial direct current stimulation on human subjects to alleviate symptoms of neurological disorders and enhance their performance. Here, using rats, we have investigated the potential mechanisms of how in vivo brain stimulation can produce such effect. We recorded directly on viable brain slices from rats after brain stimulation to detect lasting changes in pattern of neuronal activity. Our results showed that

  20. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.

    PubMed

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R

    2009-01-01

    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  1. Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain

    NASA Astrophysics Data System (ADS)

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-12-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

  2. Electrical stimulation of upper airway musculature.

    PubMed

    Smith, P L; Eisele, D W; Podszus, T; Penzel, T; Grote, L; Peter, J H; Schwartz, A R

    1996-12-01

    Investigators have postulated that pharyngeal collapse during sleep in patients with obstructive sleep apnea (OSA) may be alleviated by stimulating the genioglossus. The effect of electrical stimulation (ES) of the genioglossus on pharyngeal patency was examined in an isolated feline upper airway preparation and in apneic humans during sleep. We found that stimulation of the genioglossus (n = 8) and of the hypoglossal nerve (n = 1) increased maximum airflow through the isolated feline upper airway in humans during sleep. Additional findings in the isolated feline upper airway suggest that such increases in airflow were due to decreases in pharyngeal collapsibility. The evidence suggests that improvements in airflow dynamics with electrical stimulation are due to selective recruitment of the genioglossus, rather than due to nonspecific activation of the pharyngeal musculature or arousal from sleep. The implications of these results for future therapy with ES are discussed.

  3. Prediction and control of neural responses to pulsatile electrical stimulation.

    PubMed

    Campbell, Luke J; Sly, David James; O'Leary, Stephen John

    2012-04-01

    This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s(-1). A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s(-1). Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.

  4. Prediction and control of neural responses to pulsatile electrical stimulation

    NASA Astrophysics Data System (ADS)

    Campbell, Luke J.; Sly, David James; O'Leary, Stephen John

    2012-04-01

    This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s-1. A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s-1. Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.

  5. Target coverage and selectivity in field steering brain stimulation.

    PubMed

    Cubo, Ruben; Åstrom, Mattias; Medvedev, Alexander

    2014-01-01

    Deep Brain Stimulation (DBS) is an established treatment in Parkinson's Disease. The target area is defined based on the state and brain anatomy of the patient. The stimulation delivered via state-of-the-art DBS leads that are currently in clinical use is difficult to individualize to the patient particularities. Furthermore, the electric field generated by such a lead has a limited selectivity, resulting in stimulation of areas adjacent to the target and thus causing undesirable side effects. The goal of this study is, using actual clinical data, to compare in silico the stimulation performance of a symmetrical generic lead to a more versatile and adaptable one allowing, in particular, for asymmetric stimulation. The fraction of the volume of activated tissue in the target area and the fraction of the stimulation field that spreads beyond it are computed for a clinical data set of patients in order to quantify the lead performance. The obtained results suggest that using more versatile DBS leads might reduce the stimulation area beyond the target and thus lessen side effects for the same achieved therapeutical effect.

  6. Dynamics of Parkinsonian tremor during deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Titcombe, Michèle S.; Glass, Leon; Guehl, Dominique; Beuter, Anne

    2001-12-01

    The mechanism by which chronic, high frequency, electrical deep brain stimulation (HF-DBS) suppresses tremor in Parkinson's disease is unknown. Rest tremor in subjects with Parkinson's disease receiving HF-DBS was recorded continuously throughout switching the deep brain stimulator on (at an effective frequency) and off. These data suggest that the stimulation induces a qualitative change in the dynamics, called a Hopf bifurcation, so that the stable oscillations are destabilized. We hypothesize that the periodic stimulation modifies a parameter affecting the oscillation in a time dependent way and thereby induces a Hopf bifurcation. We explore this hypothesis using a schematic network model of an oscillator interacting with periodic stimulation. The mechanism of time-dependent change of a control parameter in the model captures two aspects of the dynamics observed in the data: (1) a gradual increase in tremor amplitude when the stimulation is switched off and a gradual decrease in tremor amplitude when the stimulation is switched on and (2) a time delay in the onset and offset of the oscillations. This mechanism is consistent with these rest tremor transition data and with the idea that HF-DBS acts via the gradual change of a network property.

  7. Transcutaneous Electrical Nerve Stimulation: Research Update.

    ERIC Educational Resources Information Center

    Johns, Florene Carnicelli

    Currently, research is being performed in the area of nonsurgical and nonchemical means for influencing the body's threshold for pain. Today, transcutaneous electrical nerve stimulation (TENS) is being widely used for this purpose. Application of this treatment can be confusing, however, because determining such things as selection of the proper…

  8. Electrical Stimulation as an Aid to Speechreading.

    ERIC Educational Resources Information Center

    Tyler, Richard S.; And Others

    1988-01-01

    This paper, discussing use of electrical stimulation by postlingually deafened adults to supplement speechreading, focuses on: information conveyed by vision, acoustic information needed to resolve visual confusions, basic psychophysical abilities of cochlear implant patients, auditory-alone and audiovisual perception by cochlear-implant patients,…

  9. Noninvasive brain stimulation for addiction medicine: From monitoring to modulation.

    PubMed

    Yavari, Fatemeh; Shahbabaie, Alireza; Leite, Jorge; Carvalho, Sandra; Ekhtiari, Hamed; Fregni, Felipe

    2016-01-01

    Addiction is a chronic relapsing brain disease with significant economical and medical burden on the societies but with limited effectiveness in the available treatment options. Better understanding of the chemical, neuronal, regional, and network alterations of the brain due to drug abuse can ultimately lead to tailoring individualized and more effective interventions. To this end, employing new assessment and intervention procedures seems crucial. Noninvasive brain stimulation (NIBS) techniques including transcranial electrical and magnetic stimulations (tES and TMS) have provided promising opportunities for the addiction medicine in two main domains: (1) providing new insights into neurochemical and neural circuit changes in the human brain cortex and (2) understanding the role of different brain regions by using NIBS and modulating cognitive functions, such as drug craving, risky decision making, inhibitory control and executive functions to obtain specific treatment outcomes. In spite of preliminary positive results, there are several open questions, which need to be addressed before routine clinical utilization of NIBS techniques in addiction to medicine, such as how to account for interindividual differences, define optimal cognitive and neural targets, optimize stimulation protocols, and integrate NIBS with other therapeutic methods. Therefore, in this chapter we revise the available literature on the use of NIBS (TMS and tES) in the diagnostic, prognostic, and therapeutic aspects of the addiction medicine.

  10. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates.

    PubMed

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan; Yeagle, Erin M; Linn, Gary S; Megevand, Pierre; Thielscher, Axel; Deborah A, Ross; Milham, Michael P; Mehta, Ashesh D; Schroeder, Charles E

    2016-08-18

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reaches the brain, and how it distributes across the brain. Lack of this basic information precludes a firm mechanistic understanding of TES effects. In this study we directly measure the spatial and temporal characteristics of the electric field generated by TES using stereotactic EEG (s-EEG) electrode arrays implanted in cebus monkeys and surgical epilepsy patients. We found a small frequency dependent decrease (10%) in magnitudes of TES induced potentials and negligible phase shifts over space. Electric field strengths were strongest in superficial brain regions with maximum values of about 0.5 mV/mm. Our results provide crucial information of the underlying biophysics in TES applications in humans and the optimization and design of TES stimulation protocols. In addition, our findings have broad implications concerning electric field propagation in non-invasive recording techniques such as EEG/MEG.

  11. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates

    PubMed Central

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan; Yeagle, Erin M.; Linn, Gary S.; Megevand, Pierre; Thielscher, Axel; Deborah A., Ross; Milham, Michael P.; Mehta, Ashesh D.; Schroeder, Charles E.

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reaches the brain, and how it distributes across the brain. Lack of this basic information precludes a firm mechanistic understanding of TES effects. In this study we directly measure the spatial and temporal characteristics of the electric field generated by TES using stereotactic EEG (s-EEG) electrode arrays implanted in cebus monkeys and surgical epilepsy patients. We found a small frequency dependent decrease (10%) in magnitudes of TES induced potentials and negligible phase shifts over space. Electric field strengths were strongest in superficial brain regions with maximum values of about 0.5 mV/mm. Our results provide crucial information of the underlying biophysics in TES applications in humans and the optimization and design of TES stimulation protocols. In addition, our findings have broad implications concerning electric field propagation in non-invasive recording techniques such as EEG/MEG. PMID:27535462

  12. Determinants of the electric field during transcranial direct current stimulation.

    PubMed

    Opitz, Alexander; Paulus, Walter; Will, Susanne; Antunes, Andre; Thielscher, Axel

    2015-04-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field distribution in the brain during tDCS. We constructed anatomically realistic finite element (FEM) models of two individual heads including conductivity anisotropy and different skull layers. We simulated a widely employed electrode montage to induce motor cortex plasticity and moved the stimulating electrode over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect is counteracted by a larger proportion of higher conducting spongy bone in thicker regions leading to a more homogenous current over the skull. Using a multiple regression model we could identify key factors that determine the field distribution to a significant extent, namely the thicknesses of the cerebrospinal fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant to electrode positioning. Our results give valuable novel insights in the biophysical foundation of tDCS and highlight the importance to account for individual anatomical factors when choosing an electrode montage.

  13. A Programmable High-Voltage Compliance Neural Stimulator for Deep Brain Stimulation in Vivo

    PubMed Central

    Gong, Cihun-Siyong Alex; Lai, Hsin-Yi; Huang, Sy-Han; Lo, Yu-Chun; Lee, Nicole; Chen, Pin-Yuan; Tu, Po-Hsun; Yang, Chia-Yen; Lin, James Chang-Chieh; Chen, You-Yin

    2015-01-01

    Deep brain stimulation (DBS) is one of the most effective therapies for movement and other disorders. The DBS neurosurgical procedure involves the implantation of a DBS device and a battery-operated neurotransmitter, which delivers electrical impulses to treatment targets through implanted electrodes. The DBS modulates the neuronal activities in the brain nucleus for improving physiological responses as long as an electric discharge above the stimulation threshold can be achieved. In an effort to improve the performance of an implanted DBS device, the device size, implementation cost, and power efficiency are among the most important DBS device design aspects. This study aims to present preliminary research results of an efficient stimulator, with emphasis on conversion efficiency. The prototype stimulator features high-voltage compliance, implemented with only a standard semiconductor process, without the use of extra masks in the foundry through our proposed circuit structure. The results of animal experiments, including evaluation of evoked responses induced by thalamic electrical stimuli with our fabricated chip, were shown to demonstrate the proof of concept of our design. PMID:26029954

  14. A programmable high-voltage compliance neural stimulator for deep brain stimulation in vivo.

    PubMed

    Gong, Cihun-Siyong Alex; Lai, Hsin-Yi; Huang, Sy-Han; Lo, Yu-Chun; Lee, Nicole; Chen, Pin-Yuan; Tu, Po-Hsun; Yang, Chia-Yen; Lin, James Chang-Chieh; Chen, You-Yin

    2015-05-28

    Deep brain stimulation (DBS) is one of the most effective therapies for movement and other disorders. The DBS neurosurgical procedure involves the implantation of a DBS device and a battery-operated neurotransmitter, which delivers electrical impulses to treatment targets through implanted electrodes. The DBS modulates the neuronal activities in the brain nucleus for improving physiological responses as long as an electric discharge above the stimulation threshold can be achieved. In an effort to improve the performance of an implanted DBS device, the device size, implementation cost, and power efficiency are among the most important DBS device design aspects. This study aims to present preliminary research results of an efficient stimulator, with emphasis on conversion efficiency. The prototype stimulator features high-voltage compliance, implemented with only a standard semiconductor process, without the use of extra masks in the foundry through our proposed circuit structure. The results of animal experiments, including evaluation of evoked responses induced by thalamic electrical stimuli with our fabricated chip, were shown to demonstrate the proof of concept of our design.

  15. Closing the loop of deep brain stimulation

    PubMed Central

    Carron, Romain; Chaillet, Antoine; Filipchuk, Anton; Pasillas-Lépine, William; Hammond, Constance

    2013-01-01

    High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment. PMID:24391555

  16. Treatment of Pain and Autonomic Dysreflexia in Spinal Cord Injury with Deep Brain Stimulation

    DTIC Science & Technology

    2013-10-01

    Dysreflexia in Spinal Cord Injury with Deep Brain Stimulation PRINCIPAL INVESTIGATOR: Jonathan R. Jagid, M.D. CONTRACTING ORGANIZATION...in Spinal Cord Injury with Deep Brain Stimulation 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0559 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT This project aims to study electrical deep brain

  17. In vivo impedance spectroscopy of deep brain stimulation electrodes.

    PubMed

    Lempka, Scott F; Miocinovic, Svjetlana; Johnson, Matthew D; Vitek, Jerrold L; McIntyre, Cameron C

    2009-08-01

    Deep brain stimulation (DBS) represents a powerful clinical technology, but a systematic characterization of the electrical interactions between the electrode and the brain is lacking. The goal of this study was to examine the in vivo changes in the DBS electrode impedance that occur after implantation and during clinically relevant stimulation. Clinical DBS devices typically apply high-frequency voltage-controlled stimulation, and as a result, the injected current is directly regulated by the impedance of the electrode-tissue interface. We monitored the impedance of scaled-down clinical DBS electrodes implanted in the thalamus and subthalamic nucleus of a rhesus macaque using electrode impedance spectroscopy (EIS) measurements ranging from 0.5 Hz to 10 kHz. To further characterize our measurements, equivalent circuit models of the electrode-tissue interface were used to quantify the role of various interface components in producing the observed electrode impedance. Following implantation, the DBS electrode impedance increased and a semicircular arc was observed in the high-frequency range of the EIS measurements, commonly referred to as the tissue component of the impedance. Clinically relevant stimulation produced a rapid decrease in electrode impedance with extensive changes in the tissue component. These post-operative and stimulation-induced changes in impedance could play an important role in the observed functional effects of voltage-controlled DBS and should be considered during clinical stimulation parameter selection and chronic animal research studies.

  18. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring...

  19. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring...

  20. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring...

  1. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring...

  2. Early Brain Stimulation May Help Stroke Survivors Recover Language Function

    MedlinePlus

    ... Making News on Heart.org Learn More Early brain stimulation may help stroke survivors recover language function ... org and strokeassociation.org Related Images Infographic - Thiel-Brain Stimulation copyright American Heart Association Download (311.8 ...

  3. A new brain stimulation method: Noninvasive transcranial magneto-acoustical stimulation

    NASA Astrophysics Data System (ADS)

    Yuan, Yi; Chen, Yu-Dong; Li, Xiao-Li

    2016-08-01

    We investigate transcranial magneto-acoustical stimulation (TMAS) for noninvasive brain neuromodulation in vivo. TMAS as a novel technique uses an ultrasound wave to induce an electric current in the brain tissue in the static magnetic field. It has the advantage of high spatial resolution and penetration depth. The mechanism of TMAS onto a neuron is analyzed by combining the TMAS principle and Hodgkin-Huxley neuron model. The anesthetized rats are stimulated by TMAS, resulting in the local field potentials which are recorded and analyzed. The simulation results show that TMAS can induce neuronal action potential. The experimental results indicate that TMAS can not only increase the amplitude of local field potentials but also enhance the effect of focused ultrasound stimulation on the neuromodulation. In summary, TMAS can accomplish brain neuromodulation, suggesting a potentially powerful noninvasive stimulation method to interfere with brain rhythms for diagnostic and therapeutic purposes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503321 and 61273063) and the Natural Science Foundation of Hebei Province, China (Grant No. F2014203161).

  4. Neuroethics of deep brain stimulation for mental disorders: brain stimulation reward in humans.

    PubMed

    Oshima, Hideki; Katayama, Yoichi

    2010-01-01

    The theoretical basis of some deep brain stimulation (DBS) trials undertaken in the early years was the phenomenon of "brain stimulation reward (BSR)," which was first identified in rats. The animals appeared to be rewarded by pleasure caused by the stimulation of certain brain regions (reward system), such as the septal area. "Self-stimulation" experiments, in which rats were allowed to stimulate their own brain by pressing a freely accessible lever, they quickly learned lever pressing and sometimes continued to stimulate until they exhausted themselves. BSR was also observed with DBS of the septal area in humans. DBS trials in later years were undertaken on other theoretical bases, but unexpected BSR was sometimes induced by stimulation of some areas, such as the locus coeruleus complex. When BSR was induced, the subjects experienced feelings that were described as "cheerful," "alert," "good," "well-being," "comfort," "relaxation," "joy," or "satisfaction." Since the DBS procedure is equivalent to a "self-stimulation" experiment, they could become "addicted to the stimulation itself" or "compulsive about the stimulation," and stimulate themselves "for the entire day," "at maximum amplitude" and, in some instances, "into convulsions." DBS of the reward system has recently been applied to alleviate anhedonia in patients with refractory major depression. Although this approach appears promising, there remains a difficult problem: who can adjust their feelings and reward-oriented behavior within the normal range? With a self-stimulation procedure, the BSR may become uncontrollable. To develop DBS to the level of a standard therapy for mental disorders, we need to discuss "Who has the right to control the mental condition?" and "Who makes decisions" on "How much control is appropriate?" in daily life.

  5. Network effects of deep brain stimulation

    PubMed Central

    Alhourani, Ahmad; McDowell, Michael M.; Randazzo, Michael J.; Wozny, Thomas A.; Kondylis, Efstathios D.; Lipski, Witold J.; Beck, Sarah; Karp, Jordan F.; Ghuman, Avniel S.

    2015-01-01

    The ability to differentially alter specific brain functions via deep brain stimulation (DBS) represents a monumental advance in clinical neuroscience, as well as within medicine as a whole. Despite the efficacy of DBS in the treatment of movement disorders, for which it is often the gold-standard therapy when medical management becomes inadequate, the mechanisms through which DBS in various brain targets produces therapeutic effects is still not well understood. This limited knowledge is a barrier to improving efficacy and reducing side effects in clinical brain stimulation. A field of study related to assessing the network effects of DBS is gradually emerging that promises to reveal aspects of the underlying pathophysiology of various brain disorders and their response to DBS that will be critical to advancing the field. This review summarizes the nascent literature related to network effects of DBS measured by cerebral blood flow and metabolic imaging, functional imaging, and electrophysiology (scalp and intracranial electroencephalography and magnetoencephalography) in order to establish a framework for future studies. PMID:26269552

  6. Deep brain stimulation for movement disorders.

    PubMed

    Thevathasan, Wesley; Gregory, Ralph

    2010-02-01

    Deep brain stimulation is now considered a routine treatment option for selected patients with advanced Parkinson's disease, primary segmental and generalised dystonia, and essential tremor. The neurosurgeon is responsible for the accurate and safe placement of the electrodes and the neurologist for the careful selection of patients and titration of medication against the effects of stimulation. A multidisciplinary team approach involving specialist nurses, neuropsychologists and neurophysiologists is required for a successful outcome. In this article we will summarise the key points in patient selection, provide an overview of the surgical technique, and discuss the beneficial and adverse outcomes that can occur.

  7. Mechanisms of electrical stimulation with neural prostheses.

    PubMed

    Rattay, F; Resatz, S; Lutter, P; Minassian, K; Jilge, B; Dimitrijevic, M R

    2003-01-01

    Individual electric and geometric characteristics of neural substructures can have surprising effects on artificially controlled neural signaling. A rule of thumb approved for the stimulation of long peripheral axons may not hold when the central nervous system is involved. This is demonstrated here with a comparison of results from the electrically stimulated cochlea, retina, and spinal cord. A generalized form of the activating function together with accurate modeling of the neural membrane dynamics are the tools to analyze the excitation mechanisms initiated by neural prostheses. Analysis is sometimes possible with a linear theory, in other cases, simulation of internal calcium concentration or ion channel current fluctuations is needed to see irregularities in spike trains. Spike initiation site can easily change within a single target neuron under constant stimulation conditions of a cochlear implant. Poor myelinization in the soma region of the human cochlear neurons causes firing characteristics different from any animal data. Retinal ganglion cells also generate propagating spikes within the dendritic tree. Bipolar cells in the retina are expected to respond with neurotransmitter release before a spike is generated in the ganglion cell, even when they are far away from the electrode. Epidural stimulation of the lumbar spinal cord predominantly stimulates large sensory axons in the dorsal roots which induce muscle reflex responses. Analysis with the generalized activating function, computer simulations of the nonlinear neural membrane behavior together with experimental and clinical data analysis enlighten our understanding of artificial firing patterns influenced by neural prostheses.

  8. Optogenetics and deep brain stimulation neurotechnologies.

    PubMed

    Kondabolu, Krishnakanth; Kowalski, Marek Mateusz; Roberts, Erik Andrew; Han, Xue

    2015-01-01

    Brain neural network is composed of densely packed, intricately wired neurons whose activity patterns ultimately give rise to every behavior, thought, or emotion that we experience. Over the past decade, a novel neurotechnique, optogenetics that combines light and genetic methods to control or monitor neural activity patterns, has proven to be revolutionary in understanding the functional role of specific neural circuits. We here briefly describe recent advance in optogenetics and compare optogenetics with deep brain stimulation technology that holds the promise for treating many neurological and psychiatric disorders.

  9. Deep Brain Stimulation for Parkinson Disease

    PubMed Central

    Bronstein, Jeff M.; Tagliati, Michele; Alterman, Ron L.; Lozano, Andres M.; Volkmann, Jens; Stefani, Alessandro; Horak, Fay B.; Okun, Michael S.; Foote, Kelly D.; Krack, Paul; Pahwa, Rajesh; Henderson, Jaimie M.; Hariz, Marwan I.; Bakay, Roy A.; Rezai, Ali; Marks, William J.; Moro, Elena; Vitek, Jerrold L.; Weaver, Frances M.; Gross, Robert E.; DeLong, Mahlon R.

    2015-01-01

    Objective To provide recommendations to patients, physicians, and other health care providers on several issues involving deep brain stimulation (DBS) for Parkinson disease (PD). Data Sources and Study Selection An international consortium of experts organized, reviewed the literature, and attended the workshop. Topics were introduced at the workshop, followed by group discussion. Data Extraction and Synthesis A draft of a consensus statement was presented and further edited after plenary debate. The final statements were agreed on by all members. Conclusions (1) Patients with PD without significant active cognitive or psychiatric problems who have medically intractable motor fluctuations, intractable tremor, or intolerance of medication adverse effects are good candidates for DBS. (2) Deep brain stimulation surgery is best performed by an experienced neurosurgeon with expertise in stereotactic neurosurgery who is working as part of a interprofessional team. (3) Surgical complication rates are extremely variable, with infection being the most commonly reported complication of DBS. (4) Deep brain stimulation programming is best accomplished by a highly trained clinician and can take 3 to 6 months to obtain optimal results. (5) Deep brain stimulation improves levodopa-responsive symptoms, dyskinesia, and tremor; benefits seem to be long-lasting in many motor domains. (6) Subthalamic nuclei DBS may be complicated by increased depression, apathy, impulsivity, worsened verbal fluency, and executive dysfunction in a subset of patients. (7) Both globus pallidus pars interna and subthalamic nuclei DBS have been shown to be effective in addressing the motor symptoms of PD. (8) Ablative therapy is still an effective alternative and should be considered in a select group of appropriate patients. PMID:20937936

  10. Balancing the Brain: Resting State Networks and Deep Brain Stimulation

    PubMed Central

    Kringelbach, Morten L.; Green, Alexander L.; Aziz, Tipu Z.

    2011-01-01

    Over the last three decades, large numbers of patients with otherwise treatment-resistant disorders have been helped by deep brain stimulation (DBS), yet a full scientific understanding of the underlying neural mechanisms is still missing. We have previously proposed that efficacious DBS works by restoring the balance of the brain's resting state networks. Here, we extend this proposal by reviewing how detailed investigations of the highly coherent functional and structural brain networks in health and disease (such as Parkinson's) have the potential not only to increase our understanding of fundamental brain function but of how best to modulate the balance. In particular, some of the newly identified hubs and connectors within and between resting state networks could become important new targets for DBS, including potentially in neuropsychiatric disorders. At the same time, it is of essence to consider the ethical implications of this perspective. PMID:21577250

  11. Magnetic fields in noninvasive brain stimulation.

    PubMed

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985.

  12. Tissue damage thresholds during therapeutic electrical stimulation

    NASA Astrophysics Data System (ADS)

    Cogan, Stuart F.; Ludwig, Kip A.; Welle, Cristin G.; Takmakov, Pavel

    2016-04-01

    Objective. Recent initiatives in bioelectronic modulation of the nervous system by the NIH (SPARC), DARPA (ElectRx, SUBNETS) and the GlaxoSmithKline Bioelectronic Medicines effort are ushering in a new era of therapeutic electrical stimulation. These novel therapies are prompting a re-evaluation of established electrical thresholds for stimulation-induced tissue damage. Approach. In this review, we explore what is known and unknown in published literature regarding tissue damage from electrical stimulation. Main results. For macroelectrodes, the potential for tissue damage is often assessed by comparing the intensity of stimulation, characterized by the charge density and charge per phase of a stimulus pulse, with a damage threshold identified through histological evidence from in vivo experiments as described by the Shannon equation. While the Shannon equation has proved useful in assessing the likely occurrence of tissue damage, the analysis is limited by the experimental parameters of the original studies. Tissue damage is influenced by factors not explicitly incorporated into the Shannon equation, including pulse frequency, duty cycle, current density, and electrode size. Microelectrodes in particular do not follow the charge per phase and charge density co-dependence reflected in the Shannon equation. The relevance of these factors to tissue damage is framed in the context of available reports from modeling and in vivo studies. Significance. It is apparent that emerging applications, especially with microelectrodes, will require clinical charge densities that exceed traditional damage thresholds. Experimental data show that stimulation at higher charge densities can be achieved without causing tissue damage, suggesting that safety parameters for microelectrodes might be distinct from those defined for macroelectrodes. However, these increased charge densities may need to be justified by bench, non-clinical or clinical testing to provide evidence of device

  13. Tissue damage thresholds during therapeutic electrical stimulation

    PubMed Central

    Cogan, Stuart F; Ludwig, Kip A; Welle, Cristin G; Takmakov, Pavel

    2017-01-01

    Objective Recent initiatives in bioelectronic modulation of the nervous system by the NIH (SPARC), DARPA (ElectRx, SUBNETS) and the GlaxoSmithKline Bioelectronic Medicines effort are ushering in a new era of therapeutic electrical stimulation. These novel therapies are prompting a re-evaluation of established electrical thresholds for stimulation-induced tissue damage. Approach In this review, we explore what is known and unknown in published literature regarding tissue damage from electrical stimulation. Main results For macroelectrodes, the potential for tissue damage is often assessed by comparing the intensity of stimulation, characterized by the charge density and charge per phase of a stimulus pulse, with a damage threshold identified through histological evidence from in vivo experiments as described by the Shannon equation. While the Shannon equation has proved useful in assessing the likely occurrence of tissue damage, the analysis is limited by the experimental parameters of the original studies. Tissue damage is influenced by factors not explicitly incorporated into the Shannon equation, including pulse frequency, duty cycle, current density, and electrode size. Microelectrodes in particular do not follow the charge per phase and charge density co-dependence reflected in the Shannon equation. The relevance of these factors to tissue damage is framed in the context of available reports from modeling and in vivo studies. Significance It is apparent that emerging applications, especially with microelectrodes, will require clinical charge densities that exceed traditional damage thresholds. Experimental data show that stimulation at higher charge densities can be achieved without causing tissue damage, suggesting that safety parameters for microelectrodes might be distinct from those defined for macroelectrodes. However, these increased charge densities may need to be justified by bench, non-clinical or clinical testing to provide evidence of device safety

  14. Neurosurgery of the future: Deep brain stimulations and manipulations.

    PubMed

    Nicolaidis, Stylianos

    2017-04-01

    Important advances are afoot in the field of neurosurgery-particularly in the realms of deep brain stimulation (DBS), deep brain manipulation (DBM), and the newly introduced refinement "closed-loop" deep brain stimulation (CLDBS). Use of closed-loop technology will make both DBS and DBM more precise as procedures and will broaden their indications. CLDBS utilizes as feedback a variety of sources of electrophysiological and neurochemical afferent information about the function of the brain structures to be treated or studied. The efferent actions will be either electric, i.e. the classic excitatory or inhibitory ones, or micro-injection of such things as neural proteins and transmitters, neural grafts, implants of pluripotent stem cells or mesenchymal stem cells, and some variants of gene therapy. The pathologies to be treated, beside Parkinson's disease and movement disorders, include repair of neural tissues, neurodegenerative pathologies, psychiatric and behavioral dysfunctions, i.e. schizophrenia in its various guises, bipolar disorders, obesity, anorexia, drug addiction, and alcoholism. The possibility of using these new modalities to treat a number of cognitive dysfunctions is also under consideration. Because the DBS-CLDBS technology brings about a cross-fertilization between scientific investigation and surgical practice, it will also contribute to an enhanced understanding of brain function.

  15. Electrical stimulation systems for cardiac tissue engineering.

    PubMed

    Tandon, Nina; Cannizzaro, Christopher; Chao, Pen-Hsiu Grace; Maidhof, Robert; Marsano, Anna; Au, Hoi Ting Heidi; Radisic, Milica; Vunjak-Novakovic, Gordana

    2009-01-01

    We describe a protocol for tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cells with the application of pulsatile electrical fields designed to mimic those present in the native heart. Tissue culture is conducted in a customized chamber built to allow for cultivation of (i) engineered three-dimensional (3D) cardiac tissue constructs, (ii) cell monolayers on flat substrates or (iii) cells on patterned substrates. This also allows for analysis of the individual and interactive effects of pulsatile electrical field stimulation and substrate topography on cell differentiation and assembly. The protocol is designed to allow for delivery of predictable electrical field stimuli to cells, monitoring environmental parameters, and assessment of cell and tissue responses. The duration of the protocol is 5 d for two-dimensional cultures and 10 d for 3D cultures.

  16. Electrical stimulation systems for cardiac tissue engineering

    PubMed Central

    Tandon, Nina; Cannizzaro, Christopher; Chao, Pen-Hsiu Grace; Maidhof, Robert; Marsano, Anna; Au, Hoi Ting Heidi; Radisic, Milica; Vunjak-Novakovic, Gordana

    2009-01-01

    We describe a protocol for tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cells with the application of pulsatile electrical fields designed to mimic those present in the native heart. Tissue culture is conducted in a customized chamber built to allow for cultivation of (i) engineered three-dimensional (3D) cardiac tissue constructs, (ii) cell monolayers on flat substrates or (iii) cells on patterned substrates. This also allows for analysis of the individual and interactive effects of pulsatile electrical field stimulation and substrate topography on cell differentiation and assembly. The protocol is designed to allow for delivery of predictable electrical field stimuli to cells, monitoring environmental parameters, and assessment of cell and tissue responses. The duration of the protocol is 5 d for two-dimensional cultures and 10 d for 3D cultures. PMID:19180087

  17. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain

    PubMed Central

    Van Den Berge, Nathalie; Vanhove, Christian; Descamps, Benedicte; Dauwe, Ine; van Mierlo, Pieter; Vonck, Kristl; Keereman, Vincent; Raedt, Robrecht; Boon, Paul; Van Holen, Roel

    2015-01-01

    Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS. PMID:26193653

  18. Functional Electrical Stimulation in Children and Adolescents with Cerebral Palsy

    ERIC Educational Resources Information Center

    van der Linden, Marietta

    2012-01-01

    In this article, the author talks about functional electrical stimulation in children and adolescents with cerebral palsy. Functional electrical stimulation (FES) is defined as the electrical stimulation of muscles that have impaired motor control, in order to produce a contraction to obtain functionally useful movement. It was first proposed in…

  19. A microprocessor-based multichannel subsensory stochastic resonance electrical stimulator.

    PubMed

    Chang, Gwo-Ching

    2013-01-01

    Stochastic resonance electrical stimulation is a novel intervention which provides potential benefits for improving postural control ability in the elderly, those with diabetic neuropathy, and stroke patients. In this paper, a microprocessor-based subsensory white noise electrical stimulator for the applications of stochastic resonance stimulation is developed. The proposed stimulator provides four independent programmable stimulation channels with constant-current output, possesses linear voltage-to-current relationship, and has two types of stimulation modes, pulse amplitude and width modulation.

  20. Use of brain MRI after deep brain stimulation hardware implantation.

    PubMed

    Nazzaro, Jules M; Lyons, Kelly E; Wetzel, Louis H; Pahwa, Rajesh

    2010-03-01

    The objective of this study was to examine the experience with and safety of brain 1.5 Tesla (T) magnetic resonance imaging (MRI) in deep brain stimulation (DBS) patients. This was a retrospective review of brain MRI scanning performed on DBS patients at the University of Kansas Medical Center between January 1995 and December 2007. A total of 249 DBS patients underwent 445 brain 1.5 T MRI scan sessions encompassing 1,092 individual scans using a transmit-receive head coil, representing the cumulative scanning of 1,649 DBS leads. Patients with complete implanted DBS systems as well as those with externalized leads underwent brain imaging. For the majority of scans, specific absorption rates localized to the head (SAR(H)) were estimated and in all cases SAR(H) were higher than that specified in the present product labeling. There were no clinical or hardware related adverse events secondary to brain MRI scanning. Our data should not be extrapolated to encourage MRI scanning beyond the present labeling. Rather, our data may contribute to further defining safe MRI scanning parameters that might ultimately be adopted in future product labeling as more centers report in detail their experiences.

  1. Fundamentals of Transcranial Electric and Magnetic Stimulation Dose: Definition, Selection, and Reporting Practices

    PubMed Central

    Peterchev, Angel V.; Wagner, Timothy A.; Miranda, Pedro C.; Nitsche, Michael A.; Paulus, Walter; Lisanby, Sarah H.; Pascual-Leone, Alvaro; Bikson, Marom

    2011-01-01

    The growing use of transcranial electric and magnetic (EM) brain stimulation in basic research and in clinical applications necessitates a clear understanding of what constitutes the dose of EM stimulation and how it should be reported. The biological effects of EM stimulation are mediated through an electromagnetic field injected (via electric stimulation) or induced (via magnetic stimulation) in the body. Therefore, transcranial EM stimulation dose ought to be defined by all parameters of the stimulation device that affect the electromagnetic field generated in the body, including the stimulation electrode or coil configuration parameters: shape, size, position, and electrical properties, as well as the electrode or coil current (or voltage) waveform parameters: pulse shape, amplitude, width, polarity, and repetition frequency; duration of and interval between bursts or trains of pulses; total number of pulses; and interval between stimulation sessions and total number of sessions. Knowledge of the electromagnetic field generated in the body may not be sufficient but is necessary to understand the biological effects of EM stimulation. We believe that reporting of EM stimulation dose should be guided by the principle of reproducibility: sufficient information about the stimulation parameters should be provided so that the dose can be replicated. This paper provides fundamental definition and principles for reporting of dose that encompass any transcranial EM brain stimulation protocol. PMID:22305345

  2. Modulation of brain dead induced inflammation by vagus nerve stimulation.

    PubMed

    Hoeger, S; Bergstraesser, C; Selhorst, J; Fontana, J; Birck, R; Waldherr, R; Beck, G; Sticht, C; Seelen, M A; van Son, W J; Leuvenink, H; Ploeg, R; Schnuelle, P; Yard, B A

    2010-03-01

    Because the vagus nerve is implicated in control of inflammation, we investigated if brain death (BD) causes impairment of the parasympathetic nervous system, thereby contributing to inflammation. BD was induced in rats. Anaesthetised ventilated rats (NBD) served as control. Heart rate variability (HRV) was assessed by ECG. The vagus nerve was electrically stimulated (BD + STIM) during BD. Intestine, kidney, heart and liver were recovered after 6 hours. Affymetrix chip-analysis was performed on intestinal RNA. Quantitative PCR was performed on all organs. Serum was collected to assess TNFalpha concentrations. Renal transplantations were performed to address the influence of vagus nerve stimulation on graft outcome. HRV was significantly lower in BD animals. Vagus nerve stimulation inhibited the increase in serum TNFalpha concentrations and resulted in down-regulation of a multiplicity of pro-inflammatory genes in intestinal tissue. In renal tissue vagal stimulation significantly decreased the expression of E-selectin, IL1beta and ITGA6. Renal function was significantly better in recipients that received a graft from a BD + STIM donor. Our study demonstrates impairment of the parasympathetic nervous system during BD and inhibition of serum TNFalpha through vagal stimulation. Vagus nerve stimulation variably affected gene expression in donor organs and improved renal function in recipients.

  3. Deep brain stimulation for refractory epilepsy

    PubMed Central

    Mandat, Tomasz; Kornakiewicz, Anna; Koziara, Henryk; Nauman, Paweł

    2012-01-01

    Deep brain stimulation (DBS) is a method of treatment utilized to control medically refractory epilepsy (RE). Patients with medically refractory epilepsy who do not achieve satisfactory control of seizures with pharmacological treatment or surgical resection of the epileptic focus and those who do not qualify for surgery could benefit from DBS. The most frequently used stereotactic targets for DBS are the anterior thalamic nucleus, subthalamic nucleus, central-medial thalamic nucleus, hippocampus, amygdala and cerebellum. The DBS is believed to be an effective method of treatment for various types of epilepsy among adults and adolescents. Side effects may be associated with implantation of electrodes and with the stimulation itself. An increasing number of publications and growing interest in DBS application for RE may result in standardization of the qualification and treatment protocol for RE with DBS. PMID:23185188

  4. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens

    PubMed Central

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-01-01

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse. PMID:27327255

  5. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens.

    PubMed

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-06-21

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse.

  6. Acupuncture stimulation induces neurogenesis in adult brain.

    PubMed

    Nam, Min-Ho; Ahn, Kwang Seok; Choi, Seung-Hoon

    2013-01-01

    The discovery of adult neurogenesis was a turning point in the field of neuroscience. Adult neurogenesis offers an enormous possibility to open a new therapeutic paradigm of neurodegenerative diseases and stroke. Recently, several studies suggested that acupuncture may enhance adult neurogenesis. Acupuncture has long been an important treatment for brain diseases in the East Asia. The scientific mechanisms of acupuncture treatment for the diseases, such as Alzheimer's disease, Parkinson's disease, and stroke, have not been clarified yet; however, the neurogenic effect of acupuncture can be a possible reason. Here, we have reviewed the studies on the effect of stimulation at various acupoints for neurogenesis, such as ST36 and GV20. The suggested mechanisms are also discussed including upregulation of brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, basic fibroblast growth factor and neuropeptide Y, and activation of the function of primo vascular system.

  7. [Deep brain stimulation in psychiatry: ethical aspects].

    PubMed

    Müller, Ulf J; Bogerts, Bernhard; Voges, Jürgen; Galazky, Imke; Kohl, Sina; Heinze, Hans-Jochen; Kuhn, Jens; Steiner, Johann

    2014-07-01

    Deep brain stimulation (DBS) has been shown to be an efficacious treatment for many neurological conditions and has thus been expanded to psychiatric diseases as well. Following an introduction on the history of DBS in psychiatry, this review summarizes commonly raised ethical concerns and questions on clinical trial design, selection of patients, informed consent and concerns about the possible impact of DBS on an individual's personality. Finally, it highlights the fact that critique on DBS in psychiatry is probably not selectively based on scientific concerns about potential risks; instead, the neurobiological origin of specific psychiatric disorders has been questioned.

  8. Deep Brain Stimulation for Movement Disorders.

    PubMed

    Revell, Maria A

    2015-12-01

    Disruption in the interaction between the central nervous system, nerves, and muscles cause movement disorders. These disorders can negatively affect quality of life. Deep brain stimulation (DBS) has been identified as a therapy for Parkinson disease and essential tremor that has significant advantages compared with medicinal therapies. Surgical intervention for these disorders before DBS included ablative therapies such as thalamotomy and pallidotomy. These procedures were not reversible and did not allow for treatment adjustments. The advent of DBS progressed therapies for significant movement disorders into the realm of being reversible and adjustable based on patient symptoms.

  9. Electric Field Model of Transcranial Electric Stimulation in Nonhuman Primates: Correspondence to Individual Motor Threshold

    PubMed Central

    Lee, Won Hee; Lisanby, Sarah H.; Laine, Andrew F.

    2015-01-01

    Objective To develop a pipeline for realistic head models of nonhuman primates (NHPs) for simulations of noninvasive brain stimulation, and use these models together with empirical threshold measurements to demonstrate that the models capture individual anatomical variability. Methods Based on structural MRI data, we created models of the electric field (E-field) induced by right unilateral (RUL) electroconvulsive therapy (ECT) in four rhesus macaques. Individual motor threshold (MT) was measured with transcranial electric stimulation (TES) administered through the RUL electrodes in the same subjects. Results The interindividual anatomical differences resulted in 57% variation in median E-field strength in the brain at fixed stimulus current amplitude. Individualization of the stimulus current by MT reduced the E-field variation in the target motor area by 27%. There was significant correlation between the measured MT and the ratio of simulated electrode current and E-field strength (r2 = 0.95, p = 0.026). Exploratory analysis revealed significant correlations of this ratio with anatomical parameters including of the superior electrode-to-cortex distance, vertex-to-cortex distance, and brain volume (r2 > 0.96, p < 0.02). The neural activation threshold was estimated to be 0.45 ± 0.07 V/cm for 0.2 ms stimulus pulse width. Conclusion These results suggest that our individual-specific NHP E-field models appropriately capture individual anatomical variability relevant to the dosing of TES/ECT. These findings are exploratory due to the small number of subjects. Significance This work can contribute insight in NHP studies of ECT and other brain stimulation interventions, help link the results to clinical studies, and ultimately lead to more rational brain stimulation dosing paradigms. PMID:25910001

  10. Brain stimulation and reward: "pleasure centers" after twenty-five years.

    PubMed

    Jacques, S

    1979-08-01

    "Self-stimulation" is a phenomenon whereby an animal (including a human being) will repeatedly stimulate its brain electrically, sometimes to the point of exhaustion. This phenomenon is robust and readily reproducible in many areas of the brain, particularly in nuclei and fiber tracts known to be monoaminergic, and it has been the basis for the study of reinforcement and learning mechanisms in the brain. The last 25 years of work on intracranial self-stimulation is reviewed with an emphasis on mechanisms, primarily catecholaminergic. Implications for learning and pain mechanisms are discussed.

  11. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury.

    PubMed

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-09-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue.

  12. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury

    PubMed Central

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-01-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue. PMID:25368644

  13. Transcranial electric stimulation entrains cortical neuronal populations in rats

    PubMed Central

    Ozen, Simal; Sirota, Anton; Belluscio, Mariano A.; Anastassiou, Costas A.; Stark, Eran; Koch, Christof; Buzsáki, György

    2010-01-01

    Low intensity electric fields have been suggested to affect the ongoing neuronal activity in vitro and in human studies. However, the physiological mechanism of how weak electrical fields affect and interact with intact brain activity is not well understood. We performed in vivo extracellular and intracellular recordings from the neocortex and hippocampus of anaesthetized rats and extracellular recordings in behaving rats. Electric fields were generated by sinusoid patterns at slow frequency (0.8, 1.25 or 1.7 Hz) via electrodes placed on the surface of the skull or the dura. Transcranial electric stimulation (TES) reliably entrained neurons in widespread cortical areas, including the hippocampus. The percentage of TES phase-locked neurons increased with stimulus intensity and depended on the behavioral state of the animal. TES-induced voltage gradient, as low as 1 mV/mm at the recording sites, was sufficient to phase-bias neuronal spiking. Intracellular recordings showed that both spiking and subthreshold activity were under the combined influence of TES forced fields and network activity. We suggest that TES in chronic preparations may be used for experimental and therapeutic control of brain activity. PMID:20739569

  14. Bio-robots automatic navigation with electrical reward stimulation.

    PubMed

    Sun, Chao; Zhang, Xinlu; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2012-01-01

    Bio-robots that controlled by outer stimulation through brain computer interface (BCI) suffer from the dependence on realtime guidance of human operators. Current automatic navigation methods for bio-robots focus on the controlling rules to force animals to obey man-made commands, with animals' intelligence ignored. This paper proposes a new method to realize the automatic navigation for bio-robots with electrical micro-stimulation as real-time rewards. Due to the reward-seeking instinct and trial-and-error capability, bio-robot can be steered to keep walking along the right route with rewards and correct its direction spontaneously when rewards are deprived. In navigation experiments, rat-robots learn the controlling methods in short time. The results show that our method simplifies the controlling logic and realizes the automatic navigation for rat-robots successfully. Our work might have significant implication for the further development of bio-robots with hybrid intelligence.

  15. An investigation into the induced electric fields from transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Hadimani, Ravi; Lee, Erik; Duffy, Walter; Waris, Mohammed; Siddiqui, Waquar; Islam, Faisal; Rajamani, Mahesh; Nathan, Ryan; Jiles, David; David C Jiles Team; Walter Duffy Collaboration

    Transcranial magnetic stimulation (TMS) is a promising tool for noninvasive brain stimulation that has been approved by the FDA for the treatment of major depressive disorder. To stimulate the brain, TMS uses large, transient pulses of magnetic field to induce an electric field in the head. This transient magnetic field is large enough to cause the depolarization of cortical neurons and initiate a synaptic signal transmission. For this study, 50 unique head models were created from MRI images. Previous simulation studies have primarily used a single head model, and thus give a limited image of the induced electric field from TMS. This study uses finite element analysis simulations on 50 unique, heterogeneous head models to better investigate the relationship between TMS and the electric field induced in brain tissues. Results showed a significant variation in the strength of the induced electric field in the brain, which can be reasonably predicted by the distance from the TMS coil to the stimulated brain. Further, it was seen that some models had high electric field intensities in over five times as much brain volume as other models.

  16. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release

    PubMed Central

    Melchior, James R.; Ferris, Mark J.; Stuber, Garret D.; Riddle, David R.; Jones, Sara R.

    2015-01-01

    The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. PMID:26011081

  17. Deep brain stimulation for chronic pain.

    PubMed

    Boccard, Sandra G J; Pereira, Erlick A C; Aziz, Tipu Z

    2015-10-01

    Deep brain stimulation (DBS) is a neurosurgical intervention popularised in movement disorders such as Parkinson's disease, and also reported to improve symptoms of epilepsy, Tourette's syndrome, obsessive compulsive disorders and cluster headache. Since the 1950s, DBS has been used as a treatment to relieve intractable pain of several aetiologies including post stroke pain, phantom limb pain, facial pain and brachial plexus avulsion. Several patient series have shown benefits in stimulating various brain areas, including the sensory thalamus (ventral posterior lateral and medial), the periaqueductal and periventricular grey, or, more recently, the anterior cingulate cortex. However, this technique remains "off label" in the USA as it does not have Federal Drug Administration approval. Consequently, only a small number of surgeons report DBS for pain using current technology and techniques and few regions approve it. Randomised, blinded and controlled clinical trials that may use novel trial methodologies are desirable to evaluate the efficacy of DBS in patients who are refractory to other therapies. New imaging techniques, including tractography, may help optimise electrode placement and clinical outcome.

  18. BCI-Triggered Functional Electrical Stimulation Therapy for Upper Limb

    PubMed Central

    Marquez-Chin, Cesar; Marquis, Aaron; Popovic, Milos R.

    2016-01-01

    We present here the integration of brain-computer interfacing (BCI) technology with functional electrical stimulation therapy to restore voluntary function. The system was tested with a single man with chronic (6 years) severe left hemiplegia resulting from a stroke. The BCI, implemented as a simple “brain-switch” activated by power decreases in the 18 Hz – 28 Hz frequency range of the participant’s electroencephalograpic signals, triggered a neuroprosthesis designed to facilitate forward reaching, reaching to the mouth, and lateral reaching movements. After 40 90-minute sessions in which the participant attempted the reaching tasks repeatedly, with the movements assisted by the BCI-triggered neuroprosthesis, the participant’s arm function showed a clinically significant six point increase in the Fugl-Meyer Asessment Upper Extermity Sub-Score. These initial results suggest that the combined use of BCI and functional electrical stimulation therapy may restore voluntary reaching function in individuals with chronic severe hemiplegia for whom the rehabilitation alternatives are very limited. PMID:27990247

  19. A Systematic Review of Electric-Acoustic Stimulation

    PubMed Central

    Ching, Teresa Y. C.; Cowan, Robert

    2013-01-01

    Cochlear implant systems that combine electric and acoustic stimulation in the same ear are now commercially available and the number of patients using these devices is steadily increasing. In particular, electric-acoustic stimulation is an option for patients with severe, high frequency sensorineural hearing impairment. There have been a range of approaches to combining electric stimulation and acoustic hearing in the same ear. To develop a better understanding of fitting practices for devices that combine electric and acoustic stimulation, we conducted a systematic review addressing three clinical questions: what is the range of acoustic hearing in the implanted ear that can be effectively preserved for an electric-acoustic fitting?; what benefits are provided by combining acoustic stimulation with electric stimulation?; and what clinical fitting practices have been developed for devices that combine electric and acoustic stimulation? A search of the literature was conducted and 27 articles that met the strict evaluation criteria adopted for the review were identified for detailed analysis. The range of auditory thresholds in the implanted ear that can be successfully used for an electric-acoustic application is quite broad. The effectiveness of combined electric and acoustic stimulation as compared with electric stimulation alone was consistently demonstrated, highlighting the potential value of preservation and utilization of low frequency hearing in the implanted ear. However, clinical procedures for best fitting of electric-acoustic devices were varied. This clearly identified a need for further investigation of fitting procedures aimed at maximizing outcomes for recipients of electric-acoustic devices. PMID:23539259

  20. Therapeutic Noninvasive Brain Stimulation in Alzheimer's Disease.

    PubMed

    Gonsalvez, Irene; Baror, Roey; Fried, Peter; Santarnecchi, Emiliano; Pascual-Leone, Alvaro

    2017-01-01

    Alzheimer's disease (AD) is a looming public health crisis that currently lacks an effective treatment. Noninvasive Brain Stimulation (NBS), particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), offers a promising alternative approach to pharmacological interventions for an increasing number of neurological and psychiatric conditions. The aim of this review is summarize data from therapeutic trials of NBS in AD and other dementing illnesses. Despite the potential of NBS, there is limited theoretical framework and a lack of guidelines for its applications to AD. Several published clinical trials failed to report key parameters of the interventions thus limiting the utility of the study to assess efficacy and safety. Our review concludes with some suggestions for future studies aimed to advance research into NBS as a potential treatment for the symptoms and disabilities caused by AD and to enable comparison of results across trials. Ultimately, appropriately powered, and controlled, multi-site randomized clinical trials will be needed to evaluate the therapeutic potential of NBS in AD.

  1. Updates on the use of non-invasive brain stimulation in physical and rehabilitation medicine.

    PubMed

    Williams, Julie A; Imamura, Marta; Fregni, Felipe

    2009-04-01

    Brain stimulation for the treatment of neuropsychiatric diseases has been used for more than 50 years. Although its development has been slow, current advances in the techniques of brain stimulation have improved its clinical efficacy. The use of non-invasive brain stimulation has significant advantages, such as not involving surgical procedures and having relatively mild adverse effects. In this paper we briefly review the use of 2 non-invasive brain stimulation techniques, repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), as therapeutic approaches in physical and rehabilitation medicine. We also compare the effects of non-invasive central nervous system stimulation with techniques of non-invasive peripheral electrical stimulation, in order to provide new insights for future developments. Although the outcomes of these initial trials include some conflicting results, the evidence supports that rTMS and tDCS might have a therapeutic value in different neurological conditions. Studies published within the last year have examined new approaches of stimulation, such as longer intensities of stimulation, new electrode sizes for tDCS, novel coils for stimulation of deeper areas, and new frequencies of stimulation for rTMS. These new approaches need to be tested in larger clinical trials in order to determine whether they offer significant clinical effects.

  2. A continuum model of retinal electrical stimulation

    NASA Astrophysics Data System (ADS)

    Joarder, Saiful A.; Abramian, Miganoosh; Suaning, Gregg J.; Lovell, Nigel H.; Dokos, Socrates

    2011-10-01

    A continuum mathematical model of retinal electrical stimulation is described. The model is represented by a passive vitreous domain, a thin layer of active retinal ganglion cell (RGC) tissue adjacent to deeper passive neural layers of the retina, the retinal pigmented epithelium (RPE) and choroid thus ending at the sclera. To validate the model, in vitro epiretinal responses to stimuli from 50 µm disk electrodes, arranged in a hexagonal mosaic, were recorded from rabbit retinas. 100 µs/phase anodic-first biphasic current pulses were delivered to the retinal surface in both the mathematical model and experiments. RGC responses were simulated and recorded using extracellular microelectrodes. The model's epiretinal thresholds compared favorably with the in vitro data. In addition, simulations showed that single-return bipolar electrodes recruited a larger area of the retina than twin-return or six-return electrodes arranged in a hexagonal layout in which a central stimulating electrode is surrounded by six, eqi-spaced returns. Simulations were also undertaken to investigate the patterns of RGC activation in an anatomically-accurate model of the retina, as well as RGC activation patterns for subretinal and suprachoroidal bipolar stimulation. This paper was originally submitted for the special issue containing contributions from the Sixth Biennial Research Congress of The Eye and the Chip.

  3. Individual differences in transcranial electrical stimulation current density

    PubMed Central

    Russell, Michael J; Goodman, Theodore; Pierson, Ronald; Shepherd, Shane; Wang, Qiang; Groshong, Bennett; Wiley, David F

    2013-01-01

    Transcranial electrical stimulation (TCES) is effective in treating many conditions, but it has not been possible to accurately forecast current density within the complex anatomy of a given subject's head. We sought to predict and verify TCES current densities and determine the variability of these current distributions in patient-specific models based on magnetic resonance imaging (MRI) data. Two experiments were performed. The first experiment estimated conductivity from MRIs and compared the current density results against actual measurements from the scalp surface of 3 subjects. In the second experiment, virtual electrodes were placed on the scalps of 18 subjects to model simulated current densities with 2 mA of virtually applied stimulation. This procedure was repeated for 4 electrode locations. Current densities were then calculated for 75 brain regions. Comparison of modeled and measured external current in experiment 1 yielded a correlation of r = .93. In experiment 2, modeled individual differences were greatest near the electrodes (ten-fold differences were common), but simulated current was found in all regions of the brain. Sites that were distant from the electrodes (e.g. hypothalamus) typically showed two-fold individual differences. MRI-based modeling can effectively predict current densities in individual brains. Significant variation occurs between subjects with the same applied electrode configuration. Individualized MRI-based modeling should be considered in place of the 10-20 system when accurate TCES is needed. PMID:24285948

  4. SOME BEHAVIORAL CORRELATES OF BRAIN-STIMULATION REWARD. PART A.

    DTIC Science & Technology

    This work has dealt primarily with some of the behavioral effects of brain - stimulation reward, in contrast with the more usual emphasis on...first lever, free of the side effects of brain stimulation per se,reflect the behavioral reward value of the second chain member. It was found that...The report presents results with regard to those variables and describes findings in experiments designed to make a direct comparison between food and brain - stimulation reward. (Author)

  5. BRAIN STEM STIMULATION AND ETHOLOGICAL STUDIES ON BIRDS.

    DTIC Science & Technology

    BIRDS, BEHAVIOR, BRAIN , STIMULATION (PHYSIOLOGY), PHYSIOLOGY, ADAPTATION(PHYSIOLOGY), ECOLOGY, THRESHOLDS(PHYSIOLOGY), REPRODUCTION(PHYSIOLOGY), RELAXATION(PHYSIOLOGY), POSTURE(PHYSIOLOGY), MOTION, FOOD.

  6. MULTI-CHANNEL TRANSDERMAL STIMULATION OF THE BRAIN

    DTIC Science & Technology

    channels are available and in each, repetition rate, pulse durations, and intensity are remotely controlled, allowing the adjustment of parameters of brain stimulation in completely unrestricted subjects.

  7. Deep brain stimulation for obesity: past, present, and future targets.

    PubMed

    Dupré, Derrick A; Tomycz, Nestor; Oh, Michael Y; Whiting, Donald

    2015-06-01

    The authors review the history of deep brain stimulation (DBS) in patients for treating obesity, describe current DBS targets in the brain, and discuss potential DBS targets and nontraditional stimulation parameters that may improve the effectiveness of DBS for ameliorating obesity. Deep brain stimulation for treating obesity has been performed both in animals and in humans with intriguing preliminary results. The brain is an attractive target for addressing obesity because modulating brain activity may permit influencing both sides of the energy equation--caloric intake and energy expenditure.

  8. [Magneto-electrical stimulation (MES)--compared with percutaneous electrical stimulation (PES)].

    PubMed

    Ugawa, Y; Kohara, N; Shimpo, T; Mannen, T

    1989-01-01

    The central motor conduction was studied in 30 normal volunteers using a recently developed magneto-electrical stimulation technique (MES). The results were compared with those obtained by percutaneous electrical stimulation technique (PES) described previously. We made a magnetic stimulator similar to that of Barker et al. To stimulate the motor cortex, the magnetic coil was placed over the head. It was placed over the seventh cervical spinous process (C7) for cervical stimulation, and the first lumbar spinous process (L1) for lumbar stimulation. Cortical stimulation was performed when the subjects were at rest, and also at during weak voluntary contraction in some of them. Recordings were made from the deltoid (Del), biceps brachii (Bi), extensor carpi radialis (ECR), thenar, quadriceps femoris (Quad), tibialis anterior (TA) and flexor hallucis brevis (FHB) muscles with a pair of surface electrodes. The cortical and spinal latent periods (Lcor and Lsp, respectively) were measured. The central conduction time (CCT) was obtained by subtracting Lsp from Lcor for each muscle. In all subjects, responses were readily obtained by cortical, cervical and lumbar stimulations without discomfort in all the muscles examined. The cortical responses with amplitudes of more than 1mV could be recorded even in the lower limb muscles. There were no significant differences in Lsp and CCT between MES and PES, in all the upper limb muscles examined. The Lcors of the lower limb muscles obtained by MES were not different from those obtained by PES. However, the Lsps obtained by MES were significantly shorter than those by PES in the Quad and TA muscles.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Deep brain stimulation to reduce sexual drive

    PubMed Central

    Fuss, Johannes; Auer, Matthias K.; Biedermann, Sarah V.; Briken, Peer; Hacke, Werner

    2015-01-01

    To date there are few treatment options to reduce high sexual drive or sexual urges in paraphilic patients with a risk for sexual offending. Pharmacological therapy aims to reduce sexual drive by lowering testosterone at the cost of severe side effects. We hypothesize that high sexual drive could also be reduced with deep brain stimulation (DBS) of circuits that generate sexual drive. This approach would help to avoid systemic side effects of antiandrogenic drug therapies. So far the best investigated target to reduce sexual drive is the ventromedial hypothalamus, which was lesioned unilaterally and bilaterally by stereotaxic interventions in paraphilic patients in the 1970s. Here, we discuss DBS as a treatment strategy in patients with severe paraphilic disorders with a serious risk of sexual offending. There are profound ethical and practical issues associated with DBS treatment of paraphilic patients that must be solved before considering such a treatment approach. PMID:26057198

  10. Deep Brain Stimulation for Psychiatric Disorders

    PubMed Central

    Holtzheimer, Paul E.; Mayberg, Helen S.

    2015-01-01

    Medications, psychotherapy, and other treatments are effective for many patients with psychiatric disorders. However, with currently available interventions, a substantial number of patients experience incomplete resolution of symptoms, and relapse rates are high. In the search for better treatments, increasing interest has focused on focal neuromodulation. This focus has been driven by improved neuroanatomical models of mood, thought, and behavior regulation, as well as by more advanced strategies for directly and focally altering neural activity. Deep brain stimulation (DBS) is one of the most invasive focal neuromodulation techniques available; data have supported its safety and efficacy in a number of movement disorders. Investigators have produced preliminary data on the safety and efficacy of DBS for several psychiatric disorders, as well. In this review, we describe the development and justification for testing DBS for various psychiatric disorders, carefully consider the available clinical data, and briefly discuss potential mechanisms of action. PMID:21692660

  11. Neuromechanism Study of Insect–Machine Interface: Flight Control by Neural Electrical Stimulation

    PubMed Central

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A.; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect–machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee–machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control. PMID:25409523

  12. Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression.

    PubMed

    Geremia, Nicole M; Gordon, Tessa; Brushart, Thomas M; Al-Majed, Abdulhakeem A; Verge, Valerie M K

    2007-06-01

    Brief electrical stimulation enhances the regenerative ability of axotomized motor [Nix, W.A., Hopf, H.C., 1983. Electrical stimulation of regenerating nerve and its effect on motor recovery. Brain Res. 272, 21-25; Al-Majed, A.A., Neumann, C.M., Brushart, T.M., Gordon, T., 2000. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J. Neurosci. 20, 2602-2608] and sensory [Brushart, T.M., Jari, R., Verge, V., Rohde, C., Gordon, T., 2005. Electrical stimulation restores the specificity of sensory axon regeneration. Exp. Neurol. 194, 221-229] neurons. Here we examined the parameter of duration of stimulation on regenerative capacity, including the intrinsic growth programs, of sensory neurons. The effect of 20 Hz continuous electrical stimulation on the number of DRG sensory neurons that regenerate their axons was evaluated following transection and surgical repair of the femoral nerve trunk. Stimulation was applied proximal to the repair site for 1 h, 3 h, 1 day, 7 days or 14 days at the time of nerve repair. Following a 21-day regeneration period, DRG neurons that regenerated axons into the muscle and cutaneous sensory nerve branches were retrogradely identified. Stimulation of 1 h led to a significant increase in DRG neurons regenerating into cutaneous and muscle branches when compared to 0 h (sham) stimulation or longer periods of stimulation. Stimulation for 1 h also significantly increased the numbers of neurons that regenerated axons beyond the repair site 4 days after lesion and was correlated with a significant increase in expression of growth-associated protein 43 (GAP-43) mRNA in the regenerating neurons at 2 days post-repair. An additional indicator of heightened plasticity following 1 h stimulation was elevated expression of brain-derived neurotrophic factor (BDNF). The effect of brief stimulation on enhancing sensory and motoneuron regeneration holds promise for inducing improved peripheral nerve repair in the

  13. Deep Brain Stimulation in Parkinson's Disease

    PubMed Central

    Groiss, S. J.; Wojtecki, L.; Südmeyer, M.

    2009-01-01

    During the last 15 years deep brain stimulation (DBS) has been established as a highly-effective therapy for advanced Parkinson's disease (PD). Patient selection, stereotactic implantation, postoperative stimulator programming and patient care requires a multi-disciplinary team including movement disorders specialists in neurology and functional neurosurgery. To treat medically refractory levodopa-induced motor complications or resistant tremor the preferred target for high-frequency DBS is the subthalamic nucleus (STN). STN-DBS results in significant reduction of dyskinesias and dopaminergic medication, improvement of all cardinal motor symptoms with sustained long-term benefits, and significant improvement of quality of life when compared with best medical treatment. These benefits have to be weighed against potential surgery-related adverse events, device-related complications, and stimulus-induced side effects. The mean disease duration before initiating DBS in PD is currently about 13 years. It is presently investigated whether the optimal timing for implantation may be at an earlier disease-stage to prevent psychosocial decline and to maintain quality of life for a longer period of time. PMID:21180627

  14. Surface electrical stimulation to evoke referred sensation.

    PubMed

    Forst, Johanna C; Blok, Derek C; Slopsema, Julia P; Boss, John M; Heyboer, Lane A; Tobias, Carson M; Polasek, Katharine H

    2015-01-01

    Surface electrical stimulation (SES) is being investigated as a noninvasive method to evoke natural sensations distal to electrode location. This may improve treatment for phantom limb pain as well as provide an alternative method to deliver sensory feedback. The median and/or ulnar nerves of 35 subjects were stimulated at the elbow using surface electrodes. Strength-duration curves of hand sensation were found for each subject. All subjects experienced sensation in their hand, which was mostly described as a paresthesia-like sensation. The rheobase and chronaxie values were found to be lower for the median nerve than the ulnar nerve, with no significant difference between sexes. Repeated sessions with the same subject resulted in sufficient variability to suggest that recalculating the strength-duration curve for each electrode placement is necessary. Most of the recruitment curves in this study were generated with 28 to 36 data points. To quickly reproduce these curves with limited increase in error, we recommend 10 data points. Future studies will focus on obtaining different sensations using SES with the strength-duration curve defining the threshold of the effective parameter space.

  15. Tractography patterns of subthalamic nucleus deep brain stimulation.

    PubMed

    Vanegas-Arroyave, Nora; Lauro, Peter M; Huang, Ling; Hallett, Mark; Horovitz, Silvina G; Zaghloul, Kareem A; Lungu, Codrin

    2016-04-01

    Deep brain stimulation therapy is an effective symptomatic treatment for Parkinson's disease, yet the precise mechanisms responsible for its therapeutic effects remain unclear. Although the targets of deep brain stimulation are grey matter structures, axonal modulation is known to play an important role in deep brain stimulation's therapeutic mechanism. Several white matter structures in proximity to the subthalamic nucleus have been implicated in the clinical benefits of deep brain stimulation for Parkinson's disease. We assessed the connectivity patterns that characterize clinically beneficial electrodes in Parkinson's disease patients, after deep brain stimulation of the subthalamic nucleus. We evaluated 22 patients with Parkinson's disease (11 females, age 57 ± 9.1 years, disease duration 13.3 ± 6.3 years) who received bilateral deep brain stimulation of the subthalamic nucleus at the National Institutes of Health. During an initial electrode screening session, one month after deep brain stimulation implantation, the clinical benefits of each contact were determined. The electrode was localized by coregistering preoperative magnetic resonance imaging and postoperative computer tomography images and the volume of tissue activated was estimated from stimulation voltage and impedance. Brain connectivity for the volume of tissue activated of deep brain stimulation contacts was assessed using probabilistic tractography with diffusion-tensor data. Areas most frequently connected to clinically effective contacts included the thalamus, substantia nigra, brainstem and superior frontal gyrus. A series of discriminant analyses demonstrated that the strength of connectivity to the superior frontal gyrus and the thalamus were positively associated with clinical effectiveness. The connectivity patterns observed in our study suggest that the modulation of white matter tracts directed to the superior frontal gyrus and the thalamus is associated with favourable clinical

  16. "Asleep" deep brain stimulation for essential tremor.

    PubMed

    Chen, Tsinsue; Mirzadeh, Zaman; Chapple, Kristina; Lambert, Margaret; Dhall, Rohit; Ponce, Francisco A

    2016-06-01

    OBJECT Deep brain stimulation (DBS) performed under general anesthesia ("asleep" DBS) has not been previously reported for essential tremor. This is in part due to the inability to visualize the target (the ventral intermediate nucleus [VIM]) on MRI. The authors evaluate the efficacy of this asleep technique in treating essential tremor by indirect VIM targeting. METHODS The authors retrospectively reviewed consecutive cases of initial DBS for essential tremor performed by a single surgeon. DBS was performed with patients awake (n = 40, intraoperative test stimulation without microelectrode recording) or asleep (n = 17, under general anesthesia). Targeting proceeded with standardized anatomical coordinates on preoperative MRI. Intraoperative CT was used for stereotactic registration and lead position confirmation. Functional outcomes were evaluated with pre- and postoperative Bain and Findley Tremor Activities of Daily Living scores. RESULTS A total of 29 leads were placed in asleep patients, and 60 were placed in awake patients. Bain and Findley Tremor Activities of Daily Living Questionnaire scores were not significantly different preoperatively for awake versus asleep cohorts (p = 0.2). The percentage of postoperative improvement was not significantly different between asleep (48.6%) and awake (45.5%) cohorts (p = 0.35). Euclidean error (mm) was higher for awake versus asleep patients (1.7 ± 0.8 vs 1.2 ± 0.4, p = 0.01), and radial error (mm) trended higherfor awake versus asleep patients (1.3 ± 0.8 vs 0.9 ± 0.5, p = 0.06). There were no perioperative complications. CONCLUSIONS In the authors' initial experience, asleep VIM DBS for essential tremor without intraoperative test stimulation can be performed safely and effectively.

  17. Colon emptying induced by sequential electrical stimulation in rats.

    PubMed

    Sevcencu, Cristian; Rijkhoff, Nico J M; Sinkjaer, Thomas

    2005-12-01

    Electrical stimulation could be used to induce colon emptying. The present experiments were performed to establish a stimulation pattern to optimize the stimulation parameters and to test neural involvement in propulsion induced by electrical stimulation. Colon segments were sequentially stimulated using rectangular pulses. The resulting propulsive activity displaced intraluminal content in consecutive propulsion steps. The propulsion steps differed in displacement latency, distance, and velocity along the stimulated colon. Increasing the pulse duration or amplitude resulted in a decrease of the latency. Increasing the stimulation amplitude doubled the displacement distance. The frequencies tested in the present study did not affect propulsion. Inhibition of cholinergic and nitrergic pathways inhibited propulsion. Electrical stimulation can induce colonic propulsion. Motor differences are present along the descending colon. The most suitable combination of pulse parameters regarding colon stimulation is 0.3 ms, 5 mA, 10 Hz. Neural circuits are involved in propulsion when using these values.

  18. Bio-heat transfer model of deep brain stimulation-induced temperature changes

    NASA Astrophysics Data System (ADS)

    Elwassif, Maged M.; Kong, Qingjun; Vazquez, Maribel; Bikson, Marom

    2006-12-01

    There is a growing interest in the use of chronic deep brain stimulation (DBS) for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. Fundamental questions remain about the physiologic effects of DBS. Previous basic research studies have focused on the direct polarization of neuronal membranes by electrical stimulation. The goal of this paper is to provide information on the thermal effects of DBS using finite element models to investigate the magnitude and spatial distribution of DBS-induced temperature changes. The parameters investigated include stimulation waveform, lead selection, brain tissue electrical and thermal conductivities, blood perfusion, metabolic heat generation during the stimulation and lead thermal conductivity/heat dissipation through the electrode. Our results show that clinical DBS protocols will increase the temperature of surrounding tissue by up to 0.8 °C depending on stimulation/tissue parameters.

  19. Technical aspects of neurostimulation: Focus on equipment, electric field modeling, and stimulation protocols.

    PubMed

    Klooster, D C W; de Louw, A J A; Aldenkamp, A P; Besseling, R M H; Mestrom, R M C; Carrette, S; Zinger, S; Bergmans, J W M; Mess, W H; Vonck, K; Carrette, E; Breuer, L E M; Bernas, A; Tijhuis, A G; Boon, P

    2016-06-01

    Neuromodulation is a field of science, medicine, and bioengineering that encompasses implantable and non-implantable technologies for the purpose of improving quality of life and functioning of humans. Brain neuromodulation involves different neurostimulation techniques: transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS), which are being used both to study their effects on cognitive brain functions and to treat neuropsychiatric disorders. The mechanisms of action of neurostimulation remain incompletely understood. Insight into the technical basis of neurostimulation might be a first step towards a more profound understanding of these mechanisms, which might lead to improved clinical outcome and therapeutic potential. This review provides an overview of the technical basis of neurostimulation focusing on the equipment, the present understanding of induced electric fields, and the stimulation protocols. The review is written from a technical perspective aimed at supporting the use of neurostimulation in clinical practice.

  20. [Generalization of activation reaction extinction during consecutive stimulation of different parts of the brain].

    PubMed

    Kratin, Iu G; Andreeva, V N

    1978-01-01

    The process of extinction of the brain activation reactions ("arousal") was studied in chronic experiments on cats with implanted electrodes during repeated electrical stimulation of alternated points in the cortex and in the brain stem reticular formation. Extinction of the reactions achieved by stimulation of one point resulted in the loss of excitability both at this point and in other activating structures at different levels of the brain. The sequence of stimulated structures was of no importance. A possibility is suggested of development of a generalized inhibition in the neural net of the non-specific reticular system of the brain which may be inciated in any point of this system: in the brain stem, in the thalamus or in the cortex.

  1. Deep brain stimulation for the treatment of severe, medically refractory obsessive-compulsive disorder.

    PubMed

    Sedrak, Mark; Wong, William; Wilson, Paul; Bruce, Diana; Bernstein, Ivan; Khandhar, Suketu; Pappas, Conrad; Heit, Gary; Sabelman, Eric

    2013-01-01

    Deep brain stimulation is a rapidly expanding therapy initially designed for the treatment of movement disorders and pain syndromes. The therapy includes implantation of electrodes in specific targets of the brain, delivering programmable small and safe electric impulses, like a pacemaker, that modulates both local and broad neurologic networks. The effects are thought to primarily involve a focus in the brain, probably inhibitory, which then restores a network of neural circuitry. Psychiatric diseases can be refractory and severe, leading to high medical costs, significant morbidity, and even death. Whereas surgery for psychiatric disease used to include destructive procedures, deep brain stimulation allows safe, reversible, and adjustable treatment that can be tailored for each patient. Deep brain stimulation offers new hope for these unfortunate patients, and the preliminary results are promising.

  2. Interaction between electrical modulation of the brain and pharmacotherapy to control pharmacoresistant epilepsy.

    PubMed

    Rocha, Luisa

    2013-05-01

    In spite of the high success rate of many surgical procedures for pharmacoresistant epilepsy, a substantial number of patients do not become seizure-free. Different strategies for electrical modulation of the brain such as Deep Brain Stimulation, Vagal Nerve Stimulation and Transcraneal Magnetic Stimulation have gained considerable interest in the last decade as alternative therapies for patients with medically refractory epilepsy. Research into the mechanism of action of the strategies for electrical modulation of the brain suggests a crucial role of different molecules and channels such as glutamate, γ-aminobutyric acid, adenosine, brain-derived neurotrophic factor, calcium channels, sodium channels as well as extracellular potassium. Electrical modulation of the brain may reduce the overexpression of P-glycoprotein, a drug efflux transporter that reduces the absorption of antiepileptic drugs. Electrical modulation of the brain induces long-term effects associated with beneficial consequences on clinical symptoms observed during the postictal state. In addition, electrical modulation of the brain might also promote the neurogenesis in subjects with pharmacoresistant epilepsy in whom this process is decreased. Targeting the regulatory pathways in charge of the effects of electrical modulation of the brain is discussed as a means to improve its efficacy. Electrical modulation of the brain combined with pharmacotherapy may represent an innovative approach to avoid epileptogenesis, reduce seizure activity, induce beneficial effects during the postictal state, diminish the amount of antiepileptic drugs, and improve alertness, memory and mood in pharmacoresistant epilepsy.

  3. Intrusive Thoughts Elicited by Direct Electrical Stimulation during Stereo-Electroencephalography

    PubMed Central

    Popa, Irina; Donos, Cristian; Barborica, Andrei; Opris, Ioan; Mălîia, Mihai Dragoş; Ene, Mirela; Ciurea, Jean; Mîndruţă, Ioana

    2016-01-01

    Cortical direct electrical stimulation (DES) is a method of brain mapping used during invasive presurgical evaluation of patients with intractable epilepsy. Intellectual auras like intrusive thoughts, also known as forced thinking (FT), have been reported during frontal seizures. However, there are few reports on FT obtained during DES in frontal cortex. We report three cases in which we obtained intrusive thoughts while stimulating the dorsolateral prefrontal cortex and the white matter in the prefrontal region. In order to highlight the effective connectivity that might explain this clinical response, we have analyzed cortico-cortical potentials evoked by single pulse electrical stimulation. PMID:27486431

  4. Stochastic Phase Resetting: a Theory for Deep Brain Stimulation

    NASA Astrophysics Data System (ADS)

    Tass, Peter A.

    2000-03-01

    A stochastic approach to phase resetting in clusters of interacting oscillators is presented. This theory explains how a stimulus, especially a single pulse, induces synchronization and desynchronization processes. The theory is used to design a new technique for deep brain stimulation in patients suffering from Parkinson's disease or essential tremor that do no longer respond to drug therapy. This stimulation mode is a feedback controlled single pulse stimulation. The feedback signal is registered with the deep brain electrode, and the desynchronizing pulses are administered via the same electrode. The stochastic phase resetting theory is used as a starting point of a model based design of intelligent and gentle deep brain stimulation techniques.

  5. [Description of conditioned reflex elaboration in cats in response to electric stimulation of the hippocampal formation].

    PubMed

    Fomin, B A

    1981-01-01

    In six cats with chronically implanted brain electrodes conditioned running to the feeding trough was elaborated in response to electrical stimulation of the ventral hippocampal formation (VHF), which at first produced inhibition of running. The stages of conditioning were as follows: 1) inhibition of conditioned activity; 2) replacement of inhibition by more frequent runnings--generalization of the conditioned reflex; 3) enhancement of signal significance of VHF electrical stimulation and subsequent decrease of intersignal reactions. Conditioned reflex to electrical stimulation of CA1 field was elaborated slower than that to electrical stimulation of other VHF points. At the beginning of conditioning a periodic decrease of probability of conditioned reactions manifestation was observed, which is estimated as an additional characteristic of the hippocampus activity.

  6. Stimulation-Based Control of Dynamic Brain Networks.

    PubMed

    Muldoon, Sarah Feldt; Pasqualetti, Fabio; Gu, Shi; Cieslak, Matthew; Grafton, Scott T; Vettel, Jean M; Bassett, Danielle S

    2016-09-01

    The ability to modulate brain states using targeted stimulation is increasingly being employed to treat neurological disorders and to enhance human performance. Despite the growing interest in brain stimulation as a form of neuromodulation, much remains unknown about the network-level impact of these focal perturbations. To study the system wide impact of regional stimulation, we employ a data-driven computational model of nonlinear brain dynamics to systematically explore the effects of targeted stimulation. Validating predictions from network control theory, we uncover the relationship between regional controllability and the focal versus global impact of stimulation, and we relate these findings to differences in the underlying network architecture. Finally, by mapping brain regions to cognitive systems, we observe that the default mode system imparts large global change despite being highly constrained by structural connectivity. This work forms an important step towards the development of personalized stimulation protocols for medical treatment or performance enhancement.

  7. Stimulation-Based Control of Dynamic Brain Networks

    PubMed Central

    Pasqualetti, Fabio; Gu, Shi; Cieslak, Matthew

    2016-01-01

    The ability to modulate brain states using targeted stimulation is increasingly being employed to treat neurological disorders and to enhance human performance. Despite the growing interest in brain stimulation as a form of neuromodulation, much remains unknown about the network-level impact of these focal perturbations. To study the system wide impact of regional stimulation, we employ a data-driven computational model of nonlinear brain dynamics to systematically explore the effects of targeted stimulation. Validating predictions from network control theory, we uncover the relationship between regional controllability and the focal versus global impact of stimulation, and we relate these findings to differences in the underlying network architecture. Finally, by mapping brain regions to cognitive systems, we observe that the default mode system imparts large global change despite being highly constrained by structural connectivity. This work forms an important step towards the development of personalized stimulation protocols for medical treatment or performance enhancement. PMID:27611328

  8. Suppression and facilitation of auditory neurons through coordinated acoustic and midbrain stimulation: investigating a deep brain stimulator for tinnitus

    NASA Astrophysics Data System (ADS)

    Offutt, Sarah J.; Ryan, Kellie J.; Konop, Alexander E.; Lim, Hubert H.

    2014-12-01

    Objective. The inferior colliculus (IC) is the primary processing center of auditory information in the midbrain and is one site of tinnitus-related activity. One potential option for suppressing the tinnitus percept is through deep brain stimulation via the auditory midbrain implant (AMI), which is designed for hearing restoration and is already being implanted in deaf patients who also have tinnitus. However, to assess the feasibility of AMI stimulation for tinnitus treatment we first need to characterize the functional connectivity within the IC. Previous studies have suggested modulatory projections from the dorsal cortex of the IC (ICD) to the central nucleus of the IC (ICC), though the functional properties of these projections need to be determined. Approach. In this study, we investigated the effects of electrical stimulation of the ICD on acoustic-driven activity within the ICC in ketamine-anesthetized guinea pigs. Main Results. We observed ICD stimulation induces both suppressive and facilitatory changes across ICC that can occur immediately during stimulation and remain after stimulation. Additionally, ICD stimulation paired with broadband noise stimulation at a specific delay can induce greater suppressive than facilitatory effects, especially when stimulating in more rostral and medial ICD locations. Significance. These findings demonstrate that ICD stimulation can induce specific types of plastic changes in ICC activity, which may be relevant for treating tinnitus. By using the AMI with electrode sites positioned with the ICD and the ICC, the modulatory effects of ICD stimulation can be tested directly in tinnitus patients.

  9. A Novel Brain Stimulation Technology Provides Compatibility with MRI

    PubMed Central

    Serano, Peter; Angelone, Leonardo M.; Katnani, Husam; Eskandar, Emad; Bonmassar, Giorgio

    2015-01-01

    Clinical electrical stimulation systems — such as pacemakers and deep brain stimulators (DBS) — are an increasingly common therapeutic option to treat a large range of medical conditions. Despite their remarkable success, one of the significant limitations of these medical devices is the limited compatibility with magnetic resonance imaging (MRI), a standard diagnostic tool in medicine. During an MRI exam, the leads used with these devices, implanted in the body of the patient, act as an electric antenna potentially causing a large amount of energy to be absorbed in the tissue, which can lead to serious heat-related injury. This study presents a novel lead design that reduces the antenna effect and allows for decreased tissue heating during MRI. The optimal parameters of the wire design were determined by a combination of computational modeling and experimental measurements. The results of these simulations were used to build a prototype, which was tested in a gel phantom during an MRI scan. Measurement results showed a three-fold decrease in heating when compared to a commercially available DBS lead. Accordingly, the proposed design may allow a significantly increased number of patients with medical implants to have safe access to the diagnostic benefits of MRI. PMID:25924189

  10. Bioreactor for modulation of cardiac microtissue phenotype by combined static stretch and electrical stimulation

    PubMed Central

    Miklas, Jason W; Nunes, Sara S; Sofla, Aarash; Reis, Lewis A; Pahnke, Aric; Xiao, Yun; Laschinger, Carol; Radisic, Milica

    2014-01-01

    We describe here a bioreactor capable of simultaneously applying mechanical and electrical field stimulation in conjunction with static strain and on-line force of contraction measurements. It consisted of a polydimethylsiloxane (PDMS) tissue chamber and a pneumatically driven stretch platform. The chamber contained eight tissue microwells (8.05 mm in length and 2.5 mm in width) with a pair of posts (2.78 mm in height and 0.8 mm in diameter) in each well to serve as fixation points and for measurements of contraction force. Carbon rods, stimulating electrodes, were placed into the PDMS chamber such that one pair stimulated four microwells. For feasibility studies, neonatal rat cardiomyocytes were seeded in collagen gels into the microwells. Following three days of gel compaction, electrical field stimulation at 3–4 V/cm and 1Hz, mechanical stimulation of 5% static strain or electromechanical stimulation (field stimulation at 3–4 V/cm, 1Hz and 5% static strain) were applied for 3 days. Cardiac microtissues subjected to electromechanical stimulation exhibited elevated amplitude of contraction and improved sarcomere structure as evidenced by sarcomeric α-actinin, actin and troponin T staining compared to microtissues subjected to electrical or mechanical stimulation alone or non-stimulated controls. The expression of atrial natriuretic factor and brain natriuretic peptide was also elevated in the electromechanically stimulated group. PMID:24876342

  11. A Review on Brain Stimulation Using Low Intensity Focused Ultrasound

    PubMed Central

    Rezayat, Ehsan; Toostani, Iman Ghodrati

    2016-01-01

    Brain stimulation techniques are important in both basic and clinical studies. Majority of well-known brain stimulating techniques have low spatial resolution or entail invasive processes. Low intensity focused ultrasound (LIFU) seems to be a proper candidate for dealing with such deficiencies. This review recapitulates studies which explored the effects of LIFU on brain structures and its function, in both research and clinical areas. Although the mechanism of LIFU action is still unclear, its different effects from molecular level up to behavioral level can be explored in animal and human brain. It can also be coupled with brain imaging assessments in future research. PMID:27563411

  12. Knee Osteoarthritis: Does Transcutaneous Electrical Nerve Stimulation Work?

    PubMed

    Cherian, Jeffrey J; Kapadia, Bhaveen H; McElroy, Mark J; Johnson, Aaron J; Bhave, Anil; Harwin, Steven F; Mont, Michael A

    2016-01-01

    Transcutaneous electrical nerve stimulation has been proposed as a nonoperative treatment for osteoarthritis. The purpose of this study was to evaluate the outcomes of a novel transcutaneous electrical nerve stimulation device compared with those of other standard nonoperative modalities for the treatment of osteoarthritis of the knee.

  13. Entorhinal Principal Neurons Mediate Brain-stimulation Treatments for Epilepsy.

    PubMed

    Xu, Zhenghao; Wang, Yi; Chen, Bin; Xu, Cenglin; Wu, Xiaohua; Wang, Ying; Zhang, Shihong; Hu, Weiwei; Wang, Shuang; Guo, Yi; Zhang, Xiangnan; Luo, Jianhong; Duan, Shumin; Chen, Zhong

    2016-12-01

    Brain stimulation is an alternative treatment for epilepsy. However, the neuronal circuits underlying its mechanisms remain obscure. We found that optogenetic activation (1Hz) of entorhinal calcium/calmodulin-dependent protein kinase II α (CaMKIIα)-positive neurons, but not GABAergic neurons, retarded hippocampal epileptogenesis and reduced hippocampal seizure severity, similar to that of entorhinal low-frequency electrical stimulation (LFES). Optogenetic inhibition of entorhinal CaMKIIα-positive neurons blocked the antiepileptic effect of LFES. The channelrhodopsin-2-eYFP labeled entorhinal CaMKIIα-positive neurons primarily targeted the hippocampus, and the activation of these fibers reduced hippocampal seizure severity. By combining extracellular recording and pharmacological methods, we found that activating entorhinal CaMKIIα-positive neurons induced the GABA-mediated inhibition of hippocampal neurons. Optogenetic activation of focal hippocampal GABAergic neurons mimicked this neuronal modulatory effect and reduced hippocampal seizure severity, but the anti-epileptic effect is weaker than that of entorhinal LFES, which may be due to the limited spatial neuronal modulatory effect of focal photo-stimulation. Our results demonstrate a glutamatergic-GABAergic neuronal circuit for LFES treatment of epilepsy, which is mediated by entorhinal principal neurons.

  14. Direct Electrical Stimulation of the Human Entorhinal Region and Hippocampus Impairs Memory.

    PubMed

    Jacobs, Joshua; Miller, Jonathan; Lee, Sang Ah; Coffey, Tom; Watrous, Andrew J; Sperling, Michael R; Sharan, Ashwini; Worrell, Gregory; Berry, Brent; Lega, Bradley; Jobst, Barbara C; Davis, Kathryn; Gross, Robert E; Sheth, Sameer A; Ezzyat, Youssef; Das, Sandhitsu R; Stein, Joel; Gorniak, Richard; Kahana, Michael J; Rizzuto, Daniel S

    2016-12-07

    Deep brain stimulation (DBS) has shown promise for treating a range of brain disorders and neurological conditions. One recent study showed that DBS in the entorhinal region improved the accuracy of human spatial memory. Based on this line of work, we performed a series of experiments to more fully characterize the effects of DBS in the medial temporal lobe on human memory. Neurosurgical patients with implanted electrodes performed spatial and verbal-episodic memory tasks. During the encoding periods of both tasks, subjects received electrical stimulation at 50 Hz. In contrast to earlier work, electrical stimulation impaired memory performance significantly in both spatial and verbal tasks. Stimulation in both the entorhinal region and hippocampus caused decreased memory performance. These findings indicate that the entorhinal region and hippocampus are causally involved in human memory and suggest that refined methods are needed to use DBS in these regions to improve memory.

  15. Body weight gain and deep brain stimulation.

    PubMed

    Rieu, Isabelle; Derost, Philippe; Ulla, Miguel; Marques, Ana; Debilly, Bérangère; De Chazeron, Ingrid; Chéreau, Isabelle; Lemaire, Jean Jacques; Boirie, Yves; Llorca, Pierre Michel; Durif, Franck

    2011-11-15

    Deep brain stimulation (DBS) is a neurosurgical technique that has now been available for some 25 years. It is used in the treatment of various motor disorders, e.g. Parkinson's disease (PD), essential tremor and dystonia, and neuropsychiatric illnesses, e.g. obsessive-compulsive disorder and Tourette syndrome. The surgical targets of DBS include the thalamic ventralis intermedius nucleus (Vim), the globus pallidus internus (GPi) and more recently the subthalamic nucleus (STN), currently considered as the reference target in the treatment of PD. In the last ten years, most studies in PD patients have described a rapid and marked weight gain in the months following DBS of the STN. This weight gain sometimes induces obesity and can have metabolic repercussions. The physiopathological mechanisms responsible for the weight gain are multifactorial (changes in energy metabolism and eating behaviour, reduction of motor complications, etc.). This review reports current knowledge concerning weight changes in patients treated by DBS with different surgical targets. It also describes the mechanisms responsible for weight gain and the health outcome for the patients.

  16. Neural adaptations to electrical stimulation strength training.

    PubMed

    Hortobágyi, Tibor; Maffiuletti, Nicola A

    2011-10-01

    This review provides evidence for the hypothesis that electrostimulation strength training (EST) increases the force of a maximal voluntary contraction (MVC) through neural adaptations in healthy skeletal muscle. Although electrical stimulation and voluntary effort activate muscle differently, there is substantial evidence to suggest that EST modifies the excitability of specific neural paths and such adaptations contribute to the increases in MVC force. Similar to strength training with voluntary contractions, EST increases MVC force after only a few sessions with some changes in muscle biochemistry but without overt muscle hypertrophy. There is some mixed evidence for spinal neural adaptations in the form of an increase in the amplitude of the interpolated twitch and in the amplitude of the volitional wave, with less evidence for changes in spinal excitability. Cross-sectional and exercise studies also suggest that the barrage of sensory and nociceptive inputs acts at the cortical level and can modify the motor cortical output and interhemispheric paths. The data suggest that neural adaptations mediate initial increases in MVC force after short-term EST.

  17. Carbon nanotube yarns for deep brain stimulation electrode.

    PubMed

    Jiang, Changqing; Li, Luming; Hao, Hongwei

    2011-12-01

    A new form of deep brain stimulation (DBS) electrode was proposed that was made of carbon nanotube yarns (CNTYs). Electrode interface properties were examined using cyclic voltammetry (CV) and electrochemical impedance spectrum (EIS). The CNTY electrode interface exhibited large charge storage capacity (CSC) of 12.3 mC/cm(2) which increased to 98.6 mC/cm(2) after acid treatment, compared with 5.0 mC/cm(2) of Pt-Ir. Impedance spectrum of both untreated and treated CNTY electrodes showed that finite diffusion process occurred at the interface due to their porous structure and charge was delivered through capacitive mechanism. To evaluate stability electrical stimulus was exerted for up to 72 h and CV and EIS results of CNTY electrodes revealed little alteration. Therefore CNTY could make a good electrode material for DBS.

  18. Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation

    PubMed Central

    Lysyansky, Borys; Rosenblum, Michael; Pikovsky, Arkady; Tass, Peter A.

    2017-01-01

    High-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson’s disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS. PMID:28273176

  19. Patient-Specific Model-Based Investigation of Speech Intelligibility and Movement during Deep Brain Stimulation

    PubMed Central

    Åström, Mattias; Tripoliti, Elina; Hariz, Marwan I.; Zrinzo, Ludvic U.; Martinez-Torres, Irene; Limousin, Patricia; Wårdell, Karin

    2010-01-01

    Background/Aims Deep brain stimulation (DBS) is widely used to treat motor symptoms in patients with advanced Parkinson's disease. The aim of this study was to investigate the anatomical aspects of the electric field in relation to effects on speech and movement during DBS in the subthalamic nucleus. Methods Patient-specific finite element models of DBS were developed for simulation of the electric field in 10 patients. In each patient, speech intelligibility and movement were assessed during 2 electrical settings, i.e. 4 V (high) and 2 V (low). The electric field was simulated for each electrical setting. Results Movement was improved in all patients for both high and low electrical settings. In general, high-amplitude stimulation was more consistent in improving the motor scores than low-amplitude stimulation. In 6 cases, speech intelligibility was impaired during high-amplitude electrical settings. Stimulation of part of the fasciculus cerebellothalamicus from electrodes positioned medial and/or posterior to the center of the subthalamic nucleus was recognized as a possible cause of the stimulation-induced dysarthria. Conclusion Special attention to stimulation-induced speech impairments should be taken in cases when active electrodes are positioned medial and/or posterior to the center of the subthalamic nucleus. PMID:20460952

  20. A technical guide to tDCS, and related non-invasive brain stimulation tools

    PubMed Central

    Woods, AJ; Antal, A; Bikson, M; Boggio, PS; Brunoni, AR; Celnik, P; Cohen, LG; Fregni, F; Herrmann, CS; Kappenman, ES; Knotkova, H; Liebetanz, D; Miniussi, C; Miranda, PC; Paulus, W; Priori, A; Reato, D; Stagg, C; Wenderoth, N; Nitsche, MA

    2015-01-01

    Transcranial electrical stimulation (tES), including transcranial direct and alternating current stimulation (tDCS, tACS) are non-invasive brain stimulation techniques increasingly used for modulation of central nervous system excitability in humans. Here we address methodological issues required for tES application. This review covers technical aspects of tES, as well as applications like exploration of brain physiology, modelling approaches, tES in cognitive neurosciences, and interventional approaches. It aims to help the reader to appropriately design and conduct studies involving these brain stimulation techniques, understand limitations and avoid shortcomings, which might hamper the scientific rigor and potential applications in the clinical domain. PMID:26652115

  1. Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS).

    PubMed

    Witkowski, Matthias; Garcia-Cossio, Eliana; Chander, Bankim S; Braun, Christoph; Birbaumer, Niels; Robinson, Stephen E; Soekadar, Surjo R

    2016-10-15

    Transcranial alternating current stimulation (tACS), a non-invasive and well-tolerated form of electric brain stimulation, can influence perception, memory, as well as motor and cognitive function. While the exact underlying neurophysiological mechanisms are unknown, the effects of tACS are mainly attributed to frequency-specific entrainment of endogenous brain oscillations in brain areas close to the stimulation electrodes, and modulation of spike timing dependent plasticity reflected in gamma band oscillatory responses. tACS-related electromagnetic stimulator artifacts, however, impede investigation of these neurophysiological mechanisms. Here we introduce a novel approach combining amplitude-modulated tACS during whole-head magnetoencephalography (MEG) allowing for artifact-free source reconstruction and precise mapping of entrained brain oscillations underneath the stimulator electrodes. Using this approach, we show that reliable reconstruction of neuromagnetic low- and high-frequency oscillations including high gamma band activity in stimulated cortical areas is feasible opening a new window to unveil the mechanisms underlying the effects of stimulation protocols that entrain brain oscillatory activity.

  2. Non-invasive brain stimulation in early rehabilitation after stroke.

    PubMed

    Blesneag, A V; Popa, L; Stan, A D

    2015-01-01

    The new tendency in rehabilitation involves non-invasive tools that, if applied early after stroke, promote neurorecovery. Repetitive transcranial magnetic stimulation and transcranial direct current stimulation may correct the disruption of cortical excitability and effectively contribute to the restoration of movement and speech. The present paper analyses the results of non-invasive brain stimulation (NIBS) trials, highlighting different aspects related to the repetitive transcranial magnetic stimulation frequency, transcranial direct current stimulation polarity, the period and stimulation places in acute and subacute ischemic strokes. The risk of adverse events, the association with motor or language recovery specific training, and the cumulative positive effect evaluation are also discussed.

  3. Electrical Stimulation to Enhance Spinal Fusion: A Systematic Review

    PubMed Central

    Park, Paul; Lau, Darryl; Brodt, Erika D.; Dettori, Joseph R.

    2014-01-01

    Study Design Systematic review. Clinical Questions Compared with no stimulation, does electrical stimulation promote bone fusion after lumbar spinal fusion procedures? Does the effect differ based on the type of electrical stimulation used? Methods Electronic databases and reference lists of key articles were searched up to October 15, 2013, to identify randomized controlled trials (RCTs) comparing the effect of electrical stimulation to no electrical stimulation on fusion rates after lumbar spinal fusion for the treatment of degenerative disease. Two independent reviewers assessed the strength of evidence using the Grades of Recommendation Assessment, Development and Evaluation (GRADE) criteria. Results Six RCTs met the inclusion criteria. The following types of electrical stimulation were investigated: direct current (three studies), pulsed electromagnetic field (three studies), and capacitive coupling (one study). The control groups consisted of no stimulation (two studies) or placebo (four studies). Marked heterogeneity in study populations, characteristics, and design prevented a meta-analysis. Regardless of the type of electrical stimulation used, cumulative incidences of fusion varied widely across the RCTs, ranging from 35.4 to 90.6% in the intervention groups and from 33.3 to 81.9% in the control groups across 9 to 24 months of follow-up. Similarly, when stratified by the type of electrical stimulation used, fusion outcomes from individual studies varied, leading to inconsistent and conflicting results. Conclusion Given the inconsistency in study results, possibly due to heterogeneity in study populations/characteristics and quality, we are unable to conclude that electrical stimulation results in better fusion outcomes compared with no stimulation. The overall strength of evidence for the conclusions is low. PMID:25278882

  4. A figure of merit for neural electrical stimulation circuits.

    PubMed

    Kolbl, Florian; Demosthenous, Andreas

    2015-01-01

    Electrical stimulators are widely used in neuro-prostheses. Many different implementations exist. However, no quantitative ranking criterion is available to allow meaningful comparison of the various stimulation circuits and systems to aid the designer. This paper presents a novel Figure of Merit (FOM) dedicated to stimulation circuits and systems. The proposed optimization performance metric takes into account tissue safety conditions and energy efficiency which can be evaluated by measurement. The FOM is used to rank several stimulator circuits and systems.

  5. Deep brain stimulation mechanisms: the control of network activity via neurochemistry modulation.

    PubMed

    McIntyre, Cameron C; Anderson, Ross W

    2016-10-01

    Deep brain stimulation (DBS) has revolutionized the clinical care of late-stage Parkinson's disease and shows promise for improving the treatment of intractable neuropsychiatric disorders. However, after over 25 years of clinical experience, numerous questions still remain on the neurophysiological basis for the therapeutic mechanisms of action. At their fundamental core, the general purpose of electrical stimulation therapies in the nervous system are to use the applied electric field to manipulate the opening and closing of voltage-gated sodium channels on neurons, generate stimulation induced action potentials, and subsequently, control the release of neurotransmitters in targeted pathways. Historically, DBS mechanisms research has focused on characterizing the effects of stimulation on neurons and the resulting impact on neuronal network activity. However, when electrodes are placed within the central nervous system, glia are also being directly (and indirectly) influenced by the stimulation. Mounting evidence shows that non-neuronal tissue can play an important role in modulating the neurochemistry changes induced by DBS. The goal of this review is to evaluate how DBS effects on both neuronal and non-neuronal tissue can potentially work together to suppress oscillatory activity (and/or information transfer) between brain regions. These resulting effects of ~ 100 Hz electrical stimulation help explain how DBS can disrupt pathological network activity in the brain and generate therapeutic effects in patients. Deep brain stimulation is an effective clinical technology, but detailed therapeutic mechanisms remain undefined. This review provides an overview of the leading hypotheses, which focus on stimulation-induced disruption of network oscillations and integrates possible roles for non-neuronal tissue in explaining the clinical response to therapeutic stimulation. This article is part of a special issue on Parkinson disease.

  6. A novel numerical meshless approach for electric potential estimation in transcranial stimulation

    NASA Astrophysics Data System (ADS)

    Ala, Guido; Fasshauer, Gregory E.; Francomano, Elisa; Ganci, Salvatore; McCourt, Michael J.; Vitabile, Salvatore

    2015-12-01

    In this paper, a first application of the method of fundamental solutions in estimating the electric potential and the spatial current density distribution in the brain due to transcranial stimulation, is presented. The coupled boundary value p roblems for the electric potential are solved in a meshless way, so avoiding the use of grid based numerical methods. A multi-spherical geometry is considered and numerical results are discussed.

  7. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral...

  8. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral...

  9. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral...

  10. Toward rational design of electrical stimulation strategies for epilepsy control

    PubMed Central

    Sunderam, Sridhar; Gluckman, Bruce; Reato, Davide; Bikson, Marom

    2009-01-01

    Electrical stimulation is emerging as a viable alternative for epilepsy patients whose seizures are not alleviated by drugs or surgery. Its attractions are temporal and spatial specificity of action, flexibility of waveform parameters and timing, and the perception that its effects are reversible unlike resective surgery. However, despite significant advances in our understanding of mechanisms of neural electrical stimulation, clinical electrotherapy for seizures relies heavily on empirical tuning of parameters and protocols. We highlight concurrent treatment goals with potentially conflicting design constraints that must be resolved when formulating rational strategies for epilepsy electrotherapy: namely seizure reduction versus cognitive impairment, stimulation efficacy versus tissue safety, and mechanistic insight versus clinical pragmatism. First, treatment markers, objectives, and metrics relevant to electrical stimulation for epilepsy are discussed from a clinical perspective. Then the experimental perspective is presented, with the biophysical mechanisms and modalities of open-loop electrical stimulation, and the potential benefits of closed-loop control for epilepsy. PMID:19926525

  11. Non-invasive electric current stimulation for restoration of vision after unilateral occipital stroke.

    PubMed

    Gall, Carolin; Silvennoinen, Katri; Granata, Giuseppe; de Rossi, Francesca; Vecchio, Fabrizio; Brösel, Doreen; Bola, Michał; Sailer, Michael; Waleszczyk, Wioletta J; Rossini, Paolo M; Tatlisumak, Turgut; Sabel, Bernhard A

    2015-07-01

    Occipital stroke often leads to visual field loss, for which no effective treatment exists. Little is known about the potential of non-invasive electric current stimulation to ameliorate visual functions in patients suffering from unilateral occipital stroke. One reason is the traditional thinking that visual field loss after brain lesions is permanent. Since evidence is available documenting vision restoration by means of vision training or non-invasive electric current stimulation future studies should also consider investigating recovery processes after visual cortical strokes. Here, protocols of repetitive transorbital alternating current stimulation (rtACS) and transcranial direct current stimulation (tDCS) are presented and the European consortium for restoration of vision (REVIS) is introduced. Within the consortium different stimulation approaches will be applied to patients with unilateral occipital strokes resulting in homonymous hemianopic visual field defects. The aim of the study is to evaluate effects of current stimulation of the brain on vision parameters, vision-related quality of life, and physiological parameters that allow concluding about the mechanisms of vision restoration. These include EEG-spectra and coherence measures, and visual evoked potentials. The design of stimulation protocols involves an appropriate sham-stimulation condition and sufficient follow-up periods to test whether the effects are stable. This is the first application of non-invasive current stimulation for vision rehabilitation in stroke-related visual field deficits. Positive results of the trials could have far-reaching implications for clinical practice. The ability of non-invasive electrical current brain stimulation to modulate the activity of neuronal networks may have implications for stroke rehabilitation also in the visual domain.

  12. Visual memory improved by non-invasive brain stimulation.

    PubMed

    Chi, Richard P; Fregni, Felipe; Snyder, Allan W

    2010-09-24

    Our visual memories are susceptible to errors, but less so in people who have a more literal cognitive style. This inspired us to attempt to improve visual memory with non-invasive brain stimulation. We applied 13 min of bilateral transcranial direct current stimulation (tDCS) to the anterior temporal lobes. Our stimulation protocol included 3 conditions, each with 12 neurotypical participants: (i) left cathodal stimulation together with right anodal stimulation, (ii) left anodal stimulation together with right cathodal stimulation, and (iii) sham (control) stimulation. Only participants who received left cathodal stimulation (decrease in excitability) together with right anodal stimulation (increase in excitability) showed an improvement in visual memory. This 110% improvement in visual memory was similar to the advantage people with autism, who are known to be more literal, show over normal people in the identical visual task. Importantly, participants receiving stimulation of the opposite polarity (left anodal together with right cathodal stimulation) failed to show any change in memory performance. This is the first demonstration that visual memory can be enhanced in healthy people using non-invasive brain stimulation.

  13. Revealing humans’ sensorimotor functions with electrical cortical stimulation

    PubMed Central

    Desmurget, Michel; Sirigu, Angela

    2015-01-01

    Direct electrical stimulation (DES) of the human brain has been used by neurosurgeons for almost a century. Although this procedure serves only clinical purposes, it generates data that have a great scientific interest. Had DES not been employed, our comprehension of the organization of the sensorimotor systems involved in movement execution, language production, the emergence of action intentionality or the subjective feeling of movement awareness would have been greatly undermined. This does not mean, of course, that DES is a gold standard devoid of limitations and that other approaches are not of primary importance, including electrophysiology, modelling, neuroimaging or psychophysics in patients and healthy subjects. Rather, this indicates that the contribution of DES cannot be restricted, in humans, to the ubiquitous concepts of homunculus and somatotopy. DES is a fundamental tool in our attempt to understand the human brain because it represents a unique method for mapping sensorimotor pathways and interfering with the functioning of localized neural populations during the performance of well-defined behavioural tasks. PMID:26240422

  14. Vascular effects of free radicals generated by electrical stimulation

    SciTech Connect

    Lamb, F.S.; Webb, R.C.

    1984-11-01

    Electrical field stimulation (9 V, 1.0 ms, 4 Hz) of isolated segments of rat tail arteries and dog coronary arteries inhibits contractile response to exogenous norephinephrine and elevated potassium concentration. This inhibitory effect of electrical stimulation is blocked by various agents that alter oxygen metabolism: superoxide dismutase, catalase, glutathione, ascorbate, and dimethyl sulfoxide. The observations suggest that the inhibitory effect is due to an action of oxygen free radical metabolites that are generated by the electrical stimulation of the oxygen-rich buffer. These free radical metabolites have two actions: 1) they oxidize drugs in the experimental system, and 2) they exert a direct inhbitory action on vascular smooth muscle.

  15. Design of electrical stimulation bioreactors for cardiac tissue engineering.

    PubMed

    Tandon, N; Marsano, A; Cannizzaro, C; Voldman, J; Vunjak-Novakovic, G

    2008-01-01

    Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. Carbon electrodes were found in past studies to have the best current injection characteristics. The goal of this study was to develop rational experimental design principles for the electrodes and stimulation regime, in particular electrode configuration, electrode ageing, and stimulation amplitude. Carbon rod electrodes were compared via electrochemical impedance spectroscopy (EIS) and we identified a safety range of 0 to 8 V/cm by comparing excitation thresholds and maximum capture rates for neonatal rat cardiomyocytes cultured with electrical stimulation. We conclude with recommendations for studies involving carbon electrodes for cardiac tissue engineering.

  16. Design of Electrical Stimulation Bioreactors for Cardiac Tissue Engineering

    PubMed Central

    Tandon, N.; Marsano, A.; Cannizzaro, C.; Voldman, J.; Vunjak-Novakovic, G.

    2009-01-01

    Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. Carbon electrodes were found in past studies to have the best current injection characteristics. The goal of this study was to develop rational experimental design principles for the electrodes and stimulation regime, in particular electrode configuration, electrode ageing, and stimulation amplitude. Carbon rod electrodes were compared via electrochemical impedance spectroscopy (EIS) and we identified a safety range of 0 to 8 V/cm by comparing excitation thresholds and maximum capture rates for neonatal rat cardiomyocytes cultured with electrical stimulation. We conclude with recommendations for studies involving carbon electrodes for cardiac tissue engineering. PMID:19163486

  17. Modulating Hippocampal Plasticity with In Vivo Brain Stimulation

    DTIC Science & Technology

    2015-09-16

    and memory . Understanding such molecular effects will lead to a better understanding of the mechanisms by which brain stimulation produces its effects...al., 2015). In addition to these clinical benefits, tDCS use in healthy subjects has been observed to improve declarative and working memory (Marshall...critical for learning and memory . Understanding such molecular effects will lead to a better understanding of the mechanisms by which brain stimulation

  18. Frequency overlap between electric and acoustic stimulation and speech-perception benefit in patients with combined electric and acoustic stimulation

    PubMed Central

    Zhang, Ting; Spahr, Anthony J.; Dorman, Michael F.

    2010-01-01

    Objectives Our aim was to assess, for patients with a cochlear implant in one ear and low-frequency acoustic hearing in the contralateral ear, whether reducing the overlap in frequencies conveyed in the acoustic signal and those analyzed by the cochlear implant speech processor would improve speech recognition. Design The recognition of monosyllabic words in quiet and sentences in noise was evaluated in three listening configurations: electric stimulation alone, acoustic stimulation alone, and combined electric and acoustic stimulation. The acoustic stimuli were either unfiltered or low-pass (LP) filtered at 250 Hz, 500 Hz, or 750 Hz. The electric stimuli were either unfiltered or high-pass (HP) filtered at 250 Hz, 500 Hz or 750 Hz. In the combined condition the unfiltered acoustic signal was paired with the unfiltered electric signal, the 250 LP acoustic signal was paired with the 250 Hz HP electric signal, the 500 Hz LP acoustic signal was paired with the 500 Hz HP electric signal and the 750 Hz LP acoustic signal was paired with the 750 Hz HP electric signal. Results For both acoustic and electric signals performance increased as the bandwith increased. The highest level of performance in the combined condition was observed in the unfiltered acoustic plus unfiltered electric condition. Conclusions Reducing the overlap in frequency representation between acoustic and electric stimulation does not increase speech understanding scores for patients who have residual hearing in the ear contralateral to the implant. We find that acoustic information below 250 Hz significantly improves performance for patients who combine electric and acoustic stimulation and accounts for the majority of the speech-perception benefit when acoustic stimulation is combined with electric stimulation. PMID:19915474

  19. Brain responses to acupuncture stimulation in the prosthetic hand of an amputee patient.

    PubMed

    Lee, In-Seon; Jung, Won-Mo; Lee, Ye-Seul; Wallraven, Christian; Chae, Younbyoung

    2015-10-01

    This report describes the brain responses to acupuncture in an upper limb amputee patient. A 62-year-old male had previously undergone a lower left arm amputation following an electrical accident. Using functional MRI, we investigated brain responses to acupuncture stimulation in the aforementioned amputee under three conditions: (a) intact hand, (b) prosthetic hand (used by the patient), and (c) fake fabric hand. The patient described greater de qi sensation when he received acupuncture stimulation in his prosthetic hand compared to a fake hand, with both stimulations performed in a similar manner. We found enhanced brain activation in the insula and sensorimotor cortex in response to acupuncture stimulation in the amputee's prosthetic hand, while there was only minimal activation in the visual cortex in response to acupuncture stimulation in a fake hand. The enhanced brain responses to acupuncture stimulation of the patient's prosthetic hand might be derived from cortical reorganisation, as he has been using his prosthetic hand for over 40 years. Our findings suggest the possible use of acupuncture stimulation in a prosthetic hand as an enhanced sensory feedback mechanism, which may represent a new treatment approach for phantom limb pain.

  20. Tuning face perception with electrical stimulation of the fusiform gyrus.

    PubMed

    Keller, Corey J; Davidesco, Ido; Megevand, Pierre; Lado, Fred A; Malach, Rafael; Mehta, Ashesh D

    2017-03-27

    The fusiform gyrus (FG) is an important node in the face processing network, but knowledge of its causal role in face perception is currently limited. Recent work demonstrated that high frequency stimulation applied to the FG distorts the perception of faces in human subjects (Parvizi et al. []: J Neurosci 32:14915-14920). However, the timing of this process in the FG relative to stimulus onset and the spatial extent of FG's role in face perception are unknown. Here, we investigate the causal role of the FG in face perception by applying precise, event-related electrical stimulation (ES) to higher order visual areas including the FG in six human subjects undergoing intracranial monitoring for epilepsy. We compared the effects of single brief (100 μs) electrical pulses to the FG and non-face-selective visual areas on the speed and accuracy of detecting distorted faces. Brief ES applied to face-selective sites did not affect accuracy but significantly increased the reaction time (RT) of detecting face distortions. Importantly, RT was altered only when ES was applied 100ms after visual onset and in face-selective but not place-selective sites. Furthermore, ES applied to face-selective areas decreased the amplitude of visual evoked potentials and high gamma power over this time window. Together, these results suggest that ES of face-selective regions within a critical time window induces a delay in face perception. These findings support a temporally and spatially specific causal role of face-selective areas and signify an important link between electrophysiology and behavior in face perception. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc.

  1. Chronic Stress Decreases Cerebrovascular Responses During Rat Hindlimb Electrical Stimulation

    PubMed Central

    Lee, Sohee; Kang, Bok-Man; Shin, Min-Kyoo; Min, Jiwoong; Heo, Chaejeong; Lee, Yubu; Baeg, Eunha; Suh, Minah

    2015-01-01

    Repeated stress is one of the major risk factors for cerebrovascular disease, including stroke, and vascular dementia. However, the functional alterations in the cerebral hemodynamic response induced by chronic stress have not been clarified. Here, we investigated the in vivo cerebral hemodynamic changes and accompanying cellular and molecular changes in chronically stressed rats. After 3 weeks of restraint stress, the elicitation of stress was verified by behavioral despair in the forced swimming test and by physical indicators of stress. The evoked changes in the cerebral blood volume and pial artery responses following hindpaw electrical stimulation were measured using optical intrinsic signal imaging. We observed that, compared to the control group, animals under chronic restraint stress exhibited a decreased hemodynamic response, with a smaller pial arterial dilation in the somatosensory cortex during hindpaw electrical stimulation. The effect of chronic restraint stress on vasomodulator enzymes, including neuronal nitric oxide synthase (nNOS) and heme oxygenase-2 (HO-2), was assessed in the somatosensory cortex. Chronic restraint stress downregulated nNOS and HO-2 compared to the control group. In addition, we examined the subtypes of cells that can explain the environmental changes due to the decreased vasomodulators. The expression of parvalbumin in GABAergic interneurons and glutamate receptor-1 in neurons were decreased, whereas the microglial activation was increased. Our results suggest that the chronic stress-induced alterations in cerebral vascular function and the modulations of the cellular expression in the neuro-vasomodulatory system may be crucial contributing factors in the development of various vascular-induced conditions in the brain. PMID:26778944

  2. The Present Indication and Future of Deep Brain Stimulation

    PubMed Central

    SUGIYAMA, Kenji; NOZAKI, Takao; ASAKAWA, Tetsuya; KOIZUMI, Shinichiro; SAITOH, Osamu; NAMBA, Hiroki

    2015-01-01

    The use of electrical stimulation to treat pain in human disease dates back to ancient Rome or Greece. Modern deep brain stimulation (DBS) was initially applied for pain treatment in the 1960s, and was later used to treat movement disorders in the 1990s. After recognition of DBS as a therapy for central nervous system (CNS) circuit disorders, DBS use showed drastic increase in terms of adaptability to disease and the patient’s population. More than 100,000 patients have received DBS therapy worldwide. The established indications for DBS are Parkinson’s disease, tremor, and dystonia, whereas global indications of DBS expanded to other neuronal diseases or disorders such as neuropathic pain, epilepsy, and tinnitus. DBS is also experimentally used to manage cognitive disorders and psychiatric diseases such as major depression, obsessive-compulsive disorder (OCD), Tourette’s syndrome, and eating disorders. The importance of ethics and conflicts surrounding the regulation and freedom of choice associated with the application of DBS therapy for new diseases or disorders is increasing. These debates are centered on the use of DBS to treat new diseases and disorders as well as its potential to enhance ability in normal healthy individuals. Here we present three issues that need to be addressed in the future: (1) elucidation of the mechanisms of DBS, (2) development of new DBS methods, and (3) miniaturization of the DBS system. With the use of DBS, functional neurosurgery entered into the new era that man can manage and control the brain circuit to treat intractable neuronal diseases and disorders. PMID:25925757

  3. Optimization of electrical stimulation parameters for cardiac tissue engineering.

    PubMed

    Tandon, Nina; Marsano, Anna; Maidhof, Robert; Wan, Leo; Park, Hyoungshin; Vunjak-Novakovic, Gordana

    2011-06-01

    In vitro application of pulsatile electrical stimulation to neonatal rat cardiomyocytes cultured on polymer scaffolds has been shown to improve the functional assembly of cells into contractile engineered cardiac tissues. However, to date, the conditions of electrical stimulation have not been optimized. We have systematically varied the electrode material, amplitude and frequency of stimulation to determine the conditions that are optimal for cardiac tissue engineering. Carbon electrodes, exhibiting the highest charge-injection capacity and producing cardiac tissues with the best structural and contractile properties, were thus used in tissue engineering studies. Engineered cardiac tissues stimulated at 3 V/cm amplitude and 3 Hz frequency had the highest tissue density, the highest concentrations of cardiac troponin-I and connexin-43 and the best-developed contractile behaviour. These findings contribute to defining bioreactor design specifications and electrical stimulation regime for cardiac tissue engineering.

  4. Optimization of Electrical Stimulation Parameters for Cardiac Tissue Engineering

    PubMed Central

    Tandon, Nina; Marsano, Anna; Maidhof, Robert; Wan, Leo; Park, Hyoungshin; Vunjak-Novakovic, Gordana

    2010-01-01

    In vitro application of pulsatile electrical stimulation to neonatal rat cardiomyocytes cultured on polymer scaffolds has been shown to improve the functional assembly of cells into contractile cardiac tissue constrcuts. However, to date, the conditions of electrical stimulation have not been optimized. We have systematically varied the electrode material, amplitude and frequency of stimulation, to determine the conditions that are optimal for cardiac tissue engineering. Carbon electrodes, exhibiting the highest charge-injection capacity and producing cardiac tissues with the best structural and contractile properties, and were thus used in tissue engineering studies. Cardiac tissues stimulated at 3V/cm amplitude and 3Hz frequency had the highest tissue density, the highest concentrations of cardiac troponin-I and connexin-43, and the best developed contractile behavior. These findings contribute to defining bioreactor design specifications and electrical stimulation regime for cardiac tissue engineering. PMID:21604379

  5. Study of Driving Fatigue Alleviation by Transcutaneous Acupoints Electrical Stimulations

    PubMed Central

    Wang, Fuwang; Wang, Hong

    2014-01-01

    Driving fatigue is more likely to bring serious safety trouble to traffic. Therefore, accurately and rapidly detecting driving fatigue state and alleviating fatigue are particularly important. In the present work, the electrical stimulation method stimulating the Láogóng point (劳宫PC8) of human body is proposed, which is used to alleviate the mental fatigue of drivers. The wavelet packet decomposition (WPD) is used to extract θ, α, and β subbands of drivers' electroencephalogram (EEG) signals. Performances of the two algorithms (θ + α)/(α + β) and θ/β are also assessed as possible indicators for fatigue detection. Finally, the differences between the drivers with electrical stimulation and normal driving are discussed. It is shown that stimulating the Láogóng point (劳宫PC8) using electrical stimulation method can alleviate driver fatigue effectively during longtime driving. PMID:25254242

  6. A CONTINUED INVESTIGATION OF ELECTRICALLY STIMULATED FABRIC FILTRATION

    EPA Science Inventory

    The report summarizes three experiments performed by Southern Research Institute under a cooperative agreement with EPA. First was a demonstration of electrostatically stimulated fabric filtration (ESFF) used to collect particulate matter (PM) from fossil fuel electrical power pl...

  7. Differential stimulation of the retina with subretinally injected exogenous neurotransmitter: A biomimetic alternative to electrical stimulation

    NASA Astrophysics Data System (ADS)

    Rountree, Corey M.; Inayat, Samsoon; Troy, John B.; Saggere, Laxman

    2016-12-01

    Subretinal stimulation of the retina with neurotransmitters, the normal means of conveying visual information, is a potentially better alternative to electrical stimulation widely used in current retinal prostheses for treating blindness from photoreceptor degenerative diseases. Yet, no subretinal electrical or chemical stimulation study has stimulated the OFF and ON pathways differentially through inner retinal activation. Here, we demonstrate the feasibility of differentially stimulating retinal ganglion cells (RGCs) through the inner nuclear layer of the retina with glutamate, a primary neurotransmitter chemical, in a biomimetic way. We show that controlled pulsatile delivery of glutamate into the subsurface of explanted wild-type rat retinas elicits highly localized simultaneous inhibitory and excitatory spike rate responses in OFF and ON RGCs. We also present the spatiotemporal characteristics of RGC responses to subretinally injected glutamate and the therapeutic stimulation parameters. Our findings could pave the way for future development of a neurotransmitter-based subretinal prosthesis offering more naturalistic vision and better visual acuity than electrical prostheses.

  8. Short time effect of Delta oscillation under microcurrent transcutaneous electrical nerve stimulation at ST36.

    PubMed

    Li, Shunan; Li, Donghui; Li, Huiyan; Wang, Jiang

    2014-01-01

    This paper was to study the short time effect of Delta brain oscillation under microcurrent transcutaneous electrical nerve stimulation (MTENS) at ST36 (Zusanli). The 64-channal electroencephalograph (EEG) signals from 12 healthy volunteers were recorded including baseline stage, during stimulation and after stimulation. Autoregressive (AR) Burg method was used to estimate the power spectrum. Then power variation rate (PVR) was calculated to quantify the effects compared with the baseline in Delta band. The results showed that MTENS at ST36 on right side led to increased Delta band power in left frontal.

  9. Selective Activation of Neuronal Targets With Sinusoidal Electric Stimulation

    PubMed Central

    Freeman, Daniel K.; Eddington, Donald K.; Rizzo, Joseph F.

    2010-01-01

    Electric stimulation of the CNS is being evaluated as a treatment modality for a variety of neurological, psychiatric, and sensory disorders. Despite considerable success in some applications, existing stimulation techniques offer little control over which cell types or neuronal substructures are activated by stimulation. The ability to more precisely control neuronal activation would likely improve the clinical outcomes associated with these applications. Here, we show that specific frequencies of sinusoidal stimulation can be used to preferentially activate certain retinal cell types: photoreceptors are activated at 5 Hz, bipolar cells at 25 Hz, and ganglion cells at 100 Hz. In addition, low-frequency stimulation (≤25 Hz) did not activate passing axons but still elicited robust synaptically mediated responses in ganglion cells; therefore, elicited neural activity is confined to within a focal region around the stimulating electrode. Our results suggest that sinusoidal stimulation provides significantly improved control over elicited neural activity relative to conventional pulsatile stimulation. PMID:20810683

  10. Brain mapping with transcranial magnetic stimulation using a refined correlation ratio and Kendall's tau.

    PubMed

    Matthäus, L; Trillenberg, P; Fadini, T; Finke, M; Schweikard, A

    2008-11-10

    Transcranial magnetic stimulation provides a mean to stimulate the brain non-invasively and painlessly. The effect of the stimulation hereby depends on the stimulation coil used and on its placement. This paper presents a mapping algorithm based on the assumption of a monotonous functional relationship between the applied electric field strength at the representation point of a muscle and the evoked motor potential. We combine data from coil characteristics, coil placement, and stimulation outcome to calculate a likelihood map for the representation of stimulated muscles in the brain. Hereby, correlation ratio (CR) and Kendall's rank coefficient tau are used to find areas in the brain where there is most likely a functional or monotonous relationship between electric field strength applied to this area and the muscle response. First results show a good accordance of our method with mapping from functional magnetic resonance imaging. In our case, classical evaluation of CR with binning is impossible, because sample data sets are too small and data are continuous. We therefore introduce a refined CR formula based on a Parzen windowing of the X-data to solve the problem. In contrast to usual windowing approaches, which require numeric integration, it can be evaluated directly in O(n2) time. Hence, its advantage lies in fast evaluation while maintaining robust applicability to small sample sets. We suggest that the presented formula can generally be used in CR-related problems where sample size is small and data range is continuous.

  11. Assessment of nerve morphology in nerve activation during electrical stimulation

    NASA Astrophysics Data System (ADS)

    Gomez-Tames, Jose; Yu, Wenwei

    2013-10-01

    The distance between nerve and stimulation electrode is fundamental for nerve activation in Transcutaneous Electrical Stimulation (TES). However, it is not clear the need to have an approximate representation of the morphology of peripheral nerves in simulation models and its influence in the nerve activation. In this work, depth and curvature of a nerve are investigated around the middle thigh. As preliminary result, the curvature of the nerve helps to reduce the simulation amplitude necessary for nerve activation from far field stimulation.

  12. [Functional imaging of deep brain stimulation in idiopathic Parkinson's disease].

    PubMed

    Hilker, R

    2010-10-01

    Functional brain imaging allows the effects of deep brain stimulation (DBS) on the living human brain to be investigated. In patients with advanced Parkinson's disease (PD), positron emission tomography (PET) studies were undertaken at rest as well as under motor, cognitive or behavioral activation. DBS leads to a reduction of abnormal PD-related network activity in the motor system, which partly correlates with the improvement of motor symptoms. The local increase of energy consumption within the direct target area suggests a predominant excitatory influence of the stimulation current on neuronal tissue. Remote effects of DBS of the subthalamic nucleus (STN) on frontal association cortices indicate an interference of stimulation energy with associative and limbic basal ganglia loops. Taken together, functional brain imaging provides very valuable data for advancement of the DBS technique in PD therapy.

  13. Cortical effects of deep brain stimulation: implications for pathogenesis and treatment of Parkinson disease.

    PubMed

    Li, Qian; Qian, Zhong-Ming; Arbuthnott, Gordon W; Ke, Ya; Yung, Wing-Ho

    2014-01-01

    High-frequency electrical stimulation that targets the subthalamic nucleus has proved to be beneficial in alleviating the motor symptoms in many patients with Parkinson disease. The mechanism of action for this paradigm of deep brain stimulation is still not fully understood, and this is, in part, attributed to the fact that there are diverse cellular elements at the stimulation site that could bring about local and distal effects. Recent studies in both human and animal models strongly suggest that the activity in the cortex, especially in the motor cortical areas, is directly altered by deep brain stimulation by signals traveling in an antidromic fashion from the subthalamic nucleus. Herein, we discuss the evidence for this proposition, as well as the mechanism by which antidromic activation desynchronizes motor cortical activity. The implications of these new findings for the pathogenesis and treatment of Parkinson disease are highlighted.

  14. A history of deep brain stimulation: Technological innovation and the role of clinical assessment tools

    PubMed Central

    2013-01-01

    Deep brain stimulation involves using a pacemaker-like device to deliver constant electrical stimulation to problematic areas within the brain. It has been used to treat over 40,000 people with Parkinson’s disease and essential tremor worldwide and is currently undergoing clinical trials as a treatment for depression and obsessive–compulsive disorder. This article will provide an historical account of deep brain stimulation in order to illustrate the plurality of interests involved in the development and stabilization of deep brain stimulation technology. Using Latour’s notion of immutable mobiles, this article will illustrate the importance of clinical assessment tools in shaping technological development in the era of medical device regulation. Given that such tools can serve commercial and professional interests, this article suggests that it is necessary to scrutinise their application in research contexts to ensure that they capture clinical changes that are meaningful for patients and their families. This is particularly important in relation to potentially ethically problematic therapies such as deep brain stimulation for psychiatric disorders.

  15. Friends, not foes: Magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation

    PubMed Central

    Neuling, Toralf; Ruhnau, Philipp; Fuscà, Marco; Demarchi, Gianpaolo; Herrmann, Christoph S.; Weisz, Nathan

    2015-01-01

    Brain oscillations are supposedly crucial for normal cognitive functioning and alterations are associated with cognitive dysfunctions. To demonstrate their causal role on behavior, entrainment approaches in particular aim at driving endogenous oscillations via rhythmic stimulation. Within this context, transcranial electrical stimulation, especially transcranial alternating current stimulation (tACS), has received renewed attention. This is likely due to the possibility of defining oscillatory stimulation properties precisely. Also, measurements comparing pre-tACS with post-tACS electroencephalography (EEG) have shown impressive modulations. However, the period during tACS has remained a blackbox until now, due to the enormous stimulation artifact. By means of application of beamforming to magnetoencephalography (MEG) data, we successfully recovered modulations of the amplitude of brain oscillations during weak and strong tACS. Additionally, we demonstrate that also evoked responses to visual and auditory stimuli can be recovered during tACS. The main contribution of the present study is to provide critical evidence that during ongoing tACS, subtle modulations of oscillatory brain activity can be reconstructed even at the stimulation frequency. Future tACS experiments will be able to deliver direct physiological insights in order to further the understanding of the contribution of brain oscillations to cognition and behavior. PMID:26080310

  16. [Impact of the Overlap Region Between Acoustic and Electric Stimulation].

    PubMed

    Baumann, Uwe; Mocka, Moritz

    2017-02-08

    Patients with residual hearing in the low frequencies and ski-slope hearing loss with partial deafness at medium and high frequencies receive a cochlear implant treatment with electric-acoustic stimulation (EAS, "hybrid" stimulation). In the border region between electric and acoustic stimulation a superposition of the 2 types of stimulation is expected. The area of overlap is determined by the insertion depth of the stimulating electrode and the lower starting point of signal transmission provided by the CI speech processor. The study examined the influence of the variation of the electric-acoustic overlap area on speech perception in noise, whereby the width of the "transmission gap" between the 2 different stimulus modalities was varied by 2 different methods. The results derived from 9 experienced users of the MED-EL Duet 2 speech processor show that the electric-acoustic overlapping area and with it the crossover frequency between the acoustic part and the CI should be adjusted individually. Overall, speech reception thresholds (SRT) showed a wide variation of results in between subjects. Further studies shall investigate whether generalized procedures about the setting of the overlap between electric and acoustic stimulation are reasonable, whereby an increased number of subjects and a longer period of acclimatization prior to the conduction of hearing tests deemed necessary.

  17. Therapeutic electrical stimulation for spasticity: quantitative gait analysis.

    PubMed

    Pease, W S

    1998-01-01

    Improvement in motor function following electrical stimulation is related to strengthening of the stimulated spastic muscle and inhibition of the antagonist. A 26-year-old man with familial spastic paraparesis presented with gait dysfunction and bilateral lower limb spastic muscle tone. Clinically, muscle strength and sensation were normal. He was considered appropriate for a trial of therapeutic electrical stimulation following failed trials of physical therapy and baclofen. No other treatment was used concurrent with the electrical stimulation. Before treatment, quantitative gait analysis revealed 63% of normal velocity and a crouched gait pattern, associated with excessive electromyographic activity in the hamstrings and gastrocnemius muscles. Based on these findings, bilateral stimulation of the quadriceps and anterior compartment musculature was performed two to three times per week for three months. Repeat gait analysis was conducted three weeks after the cessation of stimulation treatment. A 27% increase in velocity was noted associated with an increase in both cadence and right step length. Right hip and bilateral knee stance motion returned to normal (rather than "crouched"). No change in the timing of dynamic electromyographic activity was seen. These findings suggest a role for the use of electrical stimulation for rehabilitation of spasticity. The specific mechanism of this improvement remains uncertain.

  18. Electrical stimulation promotes regeneration of injured oculomotor nerves in dogs

    PubMed Central

    Du, Lei; Yang, Min; Wan, Liang; Wang, Xu-hui; Li, Shi-ting

    2016-01-01

    Functional recovery after oculomotor nerve injury is very poor. Electrical stimulation has been shown to promote regeneration of injured nerves. We hypothesized that electrical stimulation would improve the functional recovery of injured oculomotor nerves. Oculomotor nerve injury models were created by crushing the right oculomotor nerves of adult dogs. Stimulating electrodes were positioned in both proximal and distal locations of the lesion, and non-continuous rectangular, biphasic current pulses (0.7 V, 5 Hz) were administered 1 hour daily for 2 consecutive weeks. Analysis of the results showed that electrophysiological and morphological recovery of the injured oculomotor nerve was enhanced, indicating that electrical stimulation improved neural regeneration. Thus, this therapy has the potential to promote the recovery of oculomotor nerve dysfunction. PMID:27904500

  19. The Neural Correlates of Long-Term Carryover following Functional Electrical Stimulation for Stroke

    PubMed Central

    Gandolla, Marta; Ward, Nick S.; Molteni, Franco; Guanziroli, Eleonora; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2016-01-01

    Neurorehabilitation effective delivery for stroke is likely to be improved by establishing a mechanistic understanding of how to enhance adaptive plasticity. Functional electrical stimulation is effective at reducing poststroke foot drop; in some patients, the effect persists after therapy has finished with an unknown mechanism. We used fMRI to examine neural correlates of functional electrical stimulation key elements, volitional intent to move and concurrent stimulation, in a group of chronic stroke patients receiving functional electrical stimulation for foot-drop correction. Patients exhibited task-related activation in a complex network, sharing bilateral sensorimotor and supplementary motor activation with age-matched controls. We observed consistent separation of patients with and without carryover effect on the basis of brain responses. Patients who experienced the carryover effect had responses in supplementary motor area that correspond to healthy controls; the interaction between experimental factors in contralateral angular gyrus was seen only in those without carryover. We suggest that the functional electrical stimulation carryover mechanism of action is based on movement prediction and sense of agency/body ownership—the ability of a patient to plan the movement and to perceive the stimulation as a part of his/her own control loop is important for carryover effect to take place. PMID:27073701

  20. Electrical stimulation and tinnitus: neuroplasticity, neuromodulation, neuroprotection.

    PubMed

    Abraham, Shulman; Barbara, Goldstein; Arnold, Strashun

    2013-01-01

    Neuroplasticity (NPL), neuromodulation (NM), and neuroprotection (NPT) are ongoing biophysiological processes that are linked together in sensory systems, the goal being the maintenance of a homeostasis of normal sensory function in the central nervous system. It is hypothesized that when the balance between excitatory - inhibitory action is broken in sensory systems, predominantly due to neuromodulatory activity with reduced induced inhibition and excitation predominates, sensory circuits become plastic with adaptation at synaptic levels to environmental inputs(1). Tinnitus an aberrant auditory sensation, for all clinical types, is clinically considered to reflect a failure of NPL, NM, and NPT to maintain normal auditory function at synaptic levels in sensory cortex and projected to downstream levels in the central auditory system in brain and sensorineural elements in ear. Clinically, the tinnitus sensation becomes behaviorally manifest with varying degrees of annoyance, reflecting a principle of sensory physiology that each sensation has components, i.e. sensory, affect/behavior, psychomotor and memory. Modalities of tinnitus therapies, eg instrumentation, pharmacology, surgery, target a particular component of tinnitus, with resultant activation of neuromodulators at multiple neuromodulatory centers in brain and ear. Effective neuromodulation at sensory neuronal synaptic levels results in NPL in sensory cortex, NPT and tinnitus relief. Functional brain imaging, metabolic (PET brain) and electrophysiology quantitative electroencephalography (QEEG) data in a cochlear implant soft failure patient demonstrates what is clinically considered to reflect NPL, NM, NPT. The reader is provided with a rationale for tinnitus diagnosis and treatment, with a focus on ES, reflecting the biology underlying NPL, NM, NPT.

  1. Stimulating at the right time: phase-specific deep brain stimulation.

    PubMed

    Cagnan, Hayriye; Pedrosa, David; Little, Simon; Pogosyan, Alek; Cheeran, Binith; Aziz, Tipu; Green, Alexander; Fitzgerald, James; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Friston, Karl J; Denison, Timothy; Brown, Peter

    2017-01-01

    SEE MOLL AND ENGEL DOI101093/AWW308 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson's disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient's tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects.

  2. Stimulating at the right time: phase-specific deep brain stimulation

    PubMed Central

    Pedrosa, David; Little, Simon; Pogosyan, Alek; Cheeran, Binith; Aziz, Tipu; Green, Alexander; Fitzgerald, James; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Friston, Karl J.; Denison, Timothy; Brown, Peter

    2017-01-01

    Abstract See Moll and Engel (doi:10.1093/aww308) for a scientific commentary on this article. Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson’s disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient’s tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects. PMID:28007997

  3. Best of both worlds: promise of combining brain stimulation and brain connectome

    PubMed Central

    Luft, Caroline Di Bernardi; Pereda, Ernesto; Banissy, Michael J.; Bhattacharya, Joydeep

    2014-01-01

    Transcranial current brain stimulation (tCS) is becoming increasingly popular as a non-pharmacological non-invasive neuromodulatory method that alters cortical excitability by applying weak electrical currents to the scalp via a pair of electrodes. Most applications of this technique have focused on enhancing motor and learning skills, as well as a therapeutic agent in neurological and psychiatric disorders. In these applications, similarly to lesion studies, tCS was used to provide a causal link between a function or behavior and a specific brain region (e.g., primary motor cortex). Nonetheless, complex cognitive functions are known to rely on functionally connected multitude of brain regions with dynamically changing patterns of information flow rather than on isolated areas, which are most commonly targeted in typical tCS experiments. In this review article, we argue in favor of combining tCS method with other neuroimaging techniques (e.g., fMRI, EEG) and by employing state-of-the-art connectivity data analysis techniques (e.g., graph theory) to obtain a deeper understanding of the underlying spatiotemporal dynamics of functional connectivity patterns and cognitive performance. Finally, we discuss the possibilities of using these combined techniques to investigate the neural correlates of human creativity and to enhance creativity. PMID:25126060

  4. Comparative Evaluation of Tactile Sensation by Electrical and Mechanical Stimulation.

    PubMed

    Yem, Vibol; Kajimoto, Hiroyuki

    2017-01-01

    An electrotactile display is a tactile interface that provides tactile perception by passing electrical current through the surface of the skin. It is actively used instead of mechanical tactile displays for tactile feedback because of several advantages such as its small and thin size, light weight, and high responsiveness. However, the similarities and differences between these sensations is still not clear. This study directly compares the intensity sensation of electrotactile stimulation to that of mechanical stimulation, and investigates the characteristic sensation of anodic and cathodic stimulation. In the experiment, participants underwent a 30 pps electrotactile stimulus every one second to their middle finger, and were asked to match this intensity by adjusting the intensity of a mechanical tactile stimulus to an index finger. The results showed that anodic stimulation mainly produced vibration sensation, whereas cathodic sensation produced both vibration and pressure sensations. Relatively low pressure sensation was also observed for anodic stimulation but it remains low, regardless of the increasing of electrical intensity.

  5. Modeling extracellular electrical stimulation: II. Computational validation and numerical results.

    PubMed

    Tahayori, Bahman; Meffin, Hamish; Dokos, Socrates; Burkitt, Anthony N; Grayden, David B

    2012-12-01

    The validity of approximate equations describing the membrane potential under extracellular electrical stimulation (Meffin et al 2012 J. Neural Eng. 9 065005) is investigated through finite element analysis in this paper. To this end, the finite element method is used to simulate a cylindrical neurite under extracellular stimulation. Laplace's equations with appropriate boundary conditions are solved numerically in three dimensions and the results are compared to the approximate analytic solutions. Simulation results are in agreement with the approximate analytic expressions for longitudinal and transverse modes of stimulation. The range of validity of the equations describing the membrane potential for different values of stimulation and neurite parameters are presented as well. The results indicate that the analytic approach can be used to model extracellular electrical stimulation for realistic physiological parameters with a high level of accuracy.

  6. Uncovering the mechanism(s) of deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Gang, Li; Chao, Yu; Ling, Lin; C-Y Lu, Stephen

    2005-01-01

    Deep brain stimulators, often called `pacemakers for the brain', are implantable devices which continuously deliver impulse stimulation to specific targeted nuclei of deep brain structure, namely deep brain stimulation (DBS). To date, deep brain stimulation (DBS) is the most effective clinical technique for the treatment of several medically refractory movement disorders (e.g., Parkinson's disease, essential tremor, and dystonia). In addition, new clinical applications of DBS for other neurologic and psychiatric disorders (e.g., epilepsy and obsessive-compulsive disorder) have been put forward. Although DBS has been effective in the treatment of movement disorders and is rapidly being explored for the treatment of other neurologic disorders, the scientific understanding of its mechanisms of action remains unclear and continues to be debated in the scientific community. Optimization of DBS technology for present and future therapeutic applications will depend on identification of the therapeutic mechanism(s) of action. The goal of this review is to address our present knowledge of the effects of high-frequency stimulation within the central nervous system and comment on the functional implications of this knowledge for uncovering the mechanism(s) of DBS.

  7. Interphase gap decreases electrical stimulation threshold of retinal ganglion cells.

    PubMed

    Weitz, A C; Behrend, M R; Humayun, M S; Chow, R H; Weiland, J D

    2011-01-01

    The most common electrical stimulation pulse used in retinal implants is a symmetric biphasic current pulse. Prior electrophysiological studies in peripheral nerve have shown that adding an interphase gap (IPG) between the two phases makes stimulation more efficient. We investigated the effect of IPG duration on retinal ganglion cell (RGC) electrical threshold. We used calcium imaging to measure the activity of RGCs in isolated retina in response to electrical stimulation. By varying IPG duration, we were able to examine the effect of duration on threshold. We further studied this effect by simulating RGC behavior with a Hodgkin-Huxley-type model. Our results indicate that the threshold for electrical activation of RGCs can be reduced by increasing the length of the IPG.

  8. MK-801 protects against neuronal injury induced by electrical stimulation.

    PubMed

    Agnew, W F; McCreery, D B; Yuen, T G; Bullara, L A

    1993-01-01

    The ability of MK-801, a non-competitive N-methyl-D-aspartate receptor antagonist, to protect neurons in the cerebral cortex from injury induced by prolonged electrical stimulation was assessed in cats. Platinum disc electrodes 8.0 mm in diameter and with a surface area of 0.5 cm2 were implanted in the subdural space over the parietal cortex. Ten days after implantation of the electrodes, all animals received continuous stimulation for 7 h using charge-balanced, cathodic-first, controlled current pulses with a charge density of 20 microC/cm2 and a charge/phase of 10 microC/phase. They received either no MK-801, or 0.33 or 5.0 mg/kg (i.v.) administered intravenously, just before the start of the stimulation. Immediately following the stimulation, the animals were perfused and the cerebral cortex examined by light microscopy at eight sites beneath the electrodes. Neuronal damage in the form of shrunken, hyperchromic neurons and perineuronal halos was present only beneath the stimulating electrodes; damage was moderate to severe in stimulated animals that had not received MK-801, slight in animals receiving 0.33 mg/kg, and none to slight in animals receiving 5.0 mg/kg. These results indicate that MK-801, in an apparently dose-dependent fashion, provides substantial but not complete protection against neuronal injury induced by prolonged electrical stimulation. Thus prolonged electrical stimulation can be added to the list of neuropathologic conditions which involve glutamate-induced excitotoxic damage via the N-methyl-D-aspartate receptor. The results also support the hypothesis of neuronal hyperactivity as a principal cause of electrically-induced injury in the central nervous system. The implications for design of protocols for functional electrical stimulation are discussed.

  9. Conditioning of brain stimulation-induced presleep behavior.

    PubMed

    Wyrwicka, W; Chase, M H

    1994-11-01

    Experiments were conducted on three chronic unanesthetized, undrugged cats. Electrical stimulation of the basal forebrain area (BFA) resulted in presleep behavior (i.e., the cats would sit or lie down, and EEG spindles would arise). After several sessions (conducted twice a week), two of these cats began to exhibit presleep behavior almost immediately after entering the experimental compartment, even before the application of BFA stimulation. The third cat often ate some food (which was always present in the compartment) before showing presleep behavior. When stimulation was withheld during an extinction procedure, the cats still exhibited presleep behavior in the absence of stimulation during several sessions. We conclude that repeated BFA stimulation led to conditioning of the stimulation effects, that is, the presleep behavior that was evoked by the environmental situation alone, without BFA stimulation or any other intermittent stimulus.

  10. From Nose to Brain: Un-Sensed Electrical Currents Applied in the Nose Alter Activity in Deep Brain Structures

    PubMed Central

    Weiss, Tali; Shushan, Sagit; Ravia, Aharon; Hahamy, Avital; Secundo, Lavi; Weissbrod, Aharon; Ben-Yakov, Aya; Holtzman, Yael; Cohen-Atsmoni, Smadar; Roth, Yehudah; Sobel, Noam

    2016-01-01

    Rules linking patterns of olfactory receptor neuron activation in the nose to activity patterns in the brain and ensuing odor perception remain poorly understood. Artificially stimulating olfactory neurons with electrical currents and measuring ensuing perception may uncover these rules. We therefore inserted an electrode into the nose of 50 human volunteers and applied various currents for about an hour in each case. This induced assorted non-olfactory sensations but never once the perception of odor. To validate contact with the olfactory path, we used functional magnetic resonance imaging to measure resting-state brain activity in 18 subjects before and after un-sensed stimulation. We observed stimulation-induced neural decorrelation specifically in primary olfactory cortex, implying contact with the olfactory path. These results suggest that indiscriminate olfactory activation does not equate with odor perception. Moreover, this effort serendipitously uncovered a novel path for minimally invasive brain stimulation through the nose. PMID:27591145

  11. From Nose to Brain: Un-Sensed Electrical Currents Applied in the Nose Alter Activity in Deep Brain Structures.

    PubMed

    Weiss, Tali; Shushan, Sagit; Ravia, Aharon; Hahamy, Avital; Secundo, Lavi; Weissbrod, Aharon; Ben-Yakov, Aya; Holtzman, Yael; Cohen-Atsmoni, Smadar; Roth, Yehudah; Sobel, Noam

    2016-09-02

    Rules linking patterns of olfactory receptor neuron activation in the nose to activity patterns in the brain and ensuing odor perception remain poorly understood. Artificially stimulating olfactory neurons with electrical currents and measuring ensuing perception may uncover these rules. We therefore inserted an electrode into the nose of 50 human volunteers and applied various currents for about an hour in each case. This induced assorted non-olfactory sensations but never once the perception of odor. To validate contact with the olfactory path, we used functional magnetic resonance imaging to measure resting-state brain activity in 18 subjects before and after un-sensed stimulation. We observed stimulation-induced neural decorrelation specifically in primary olfactory cortex, implying contact with the olfactory path. These results suggest that indiscriminate olfactory activation does not equate with odor perception. Moreover, this effort serendipitously uncovered a novel path for minimally invasive brain stimulation through the nose.

  12. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation

    PubMed Central

    Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin

    2015-01-01

    Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes. PMID:26193273

  13. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation.

    PubMed

    Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin

    2015-07-16

    Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes.

  14. [Repetitive transcranial magnetic stimulation in depression; stimulation of the brain in order to cure the psyche].

    PubMed

    Helmich, R C; Snijders, A H; Verkes, R J; Bloem, B R

    2004-02-28

    Transcranial magnetic stimulation (TMS) is a non-invasive approach to briefly stimulate or inhibit cortical brain areas. A novel approach entails the delivery of repetitive TMS pulses (rTMS) at a fixed frequency. In rTMS cortical activity is altered beyond the period of actual stimulation. The changes occur locally as well as at a distance in functionally connected brain areas. These features render rTMS a suitable tool to study normal brain functions and the pathophysiology of brain diseases. Furthermore, it is expected that rTMS could be used as a novel therapy for neurological or psychiatric diseases characterised by abnormal cortical activation. This possibility has been studied mostly in patients suffering from depression, where rTMS has been used to restore normal activity in the hypoactive prefrontal cortex. Despite statistically significant therapeutic effects in small sized trials, the clinical implications are still limited.

  15. Electric field stimulated growth of Zn whiskers

    NASA Astrophysics Data System (ADS)

    Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana

    2016-07-01

    We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  16. The effects of subthalamic deep brain stimulation on metaphor comprehension and language abilities in Parkinson's disease.

    PubMed

    Tremblay, Christina; Macoir, Joël; Langlois, Mélanie; Cantin, Léo; Prud'homme, Michel; Monetta, Laura

    2015-02-01

    The effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) on different language abilities are still controversial and its impact on high-level language abilities such as metaphor comprehension has been overlooked. The aim of this study was to determine the effects of STN electrical stimulation on metaphor comprehension and language abilities such as lexical and semantic capacities. Eight PD individuals with bilateral STN-DBS were first evaluated OFF-DBS and, at least seven weeks later, ON-DBS. Performance on metaphor comprehension, lexical decision, word association and verbal fluency tasks were compared ON and OFF-DBS in addition to motor symptoms evaluation. STN stimulation had a significant beneficial effect on motor symptoms in PD. However, this stimulation did not have any effect on metaphor comprehension or any other cognitive ability evaluated in this study. These outcomes suggest that STN stimulation may have dissociable effects on motor and language functions.

  17. Mechanism of orientation of stimulating currents in magnetic brain stimulation (abstract)

    NASA Astrophysics Data System (ADS)

    Ueno, S.; Matsuda, T.

    1991-04-01

    We made a functional map of the human motor cortex related to the hand and foot areas by stimulating the human brain with a focused magnetic pulse. We observed that each functional area in the cortex has an optimum direction for which stimulating currents can produce neural excitation. The present report focuses on the mechanism which is responsible for producing this anisotropic response to brain stimulation. We first obtained a functional map of the brain related to the left ADM (abductor digiti minimi muscles). When the stimulating currents were aligned in the direction from the left to the right hemisphere, clear EMG (electromyographic) responses were obtained only from the left ADM to magnetic stimulation of both hemisphere. When the stimulating currents were aligned in the direction from the right to the left hemisphere, clear EMG signals were obtained only from the right ADM to magnetic stimulation of both hemisphere. The functional maps of the brain were sensitive to changes in the direction of the stimulating currents. To explain the phenomena obtained in the experiments, we developed a model of neural excitation elicited by magnetic stimulation. When eddy currents which are induced by pulsed magnetic fields flow in the direction from soma to the distal part of neural fiber, depolarized area in the distal part are excited, and the membrane excitation propagates along the nerve fiber. In contrast, when the induced currents flow in the direction from the distal part to soma, hyperpolarized parts block or inhibit neural excitation even if the depolarized parts near the soma can be excited. The model explains our observation that the orientation of the induced current vectors reflect both the functional and anatomical organization of the neural fibers in the brain.

  18. Electrical stimulation therapy for dysphagia: descriptive results of two surveys.

    PubMed

    Crary, Michael A; Carnaby-Mann, Giselle D; Faunce, Allison

    2007-07-01

    Given the paucity of objective information on neuromuscular electrical stimulation approaches to dysphagia therapy, and the expanding utilization of this clinical approach, we designed and conducted two surveys to gather large-scale information regarding reported practice patterns, outcomes, complications, and professional perceptions associated with electrical stimulation approaches to dysphagia therapy. Self-administered questionnaires were mailed to 1000 randomly selected speech-language pathologists in each of two groups: (1) clinicians who had completed a formal electrical stimulation training course and were actively using these techniques, and (2) clinicians who were members of Special Interest Division 13 of the American Speech-Language and Hearing Association. Survey responses were anonymous and no incentive to respond was included. Acceptable response rates were achieved for both surveys (47% and 48%). Both groups of respondents were demographically similar and reported similar practice patterns. Stroke was the most common etiology of dysphagia treated with this approach. The majority of respondents identified no specific dysphagia criteria for application of electrical stimulation, used varied behavioral treatment methods, and did not follow patients beyond therapy. Clinicians reported positive outcomes with no treatment-related complications. Satisfaction with this approach was reported to be high among patients and professionals. Clinicians who did not report using these techniques indicated that they were waiting for more objective information on clinical outcomes and safety. Results of these surveys form an initial description of practice patterns and outcomes associated with electrical stimulation approaches to dysphagia therapy.

  19. Non-invasive Brain Stimulation for Essential Tremor

    PubMed Central

    Shih, Ludy C.; Pascual-Leone, Alvaro

    2017-01-01

    Background There is increasing interest in the use of non-invasive brain stimulation to characterize and potentially treat essential tremor (ET). Studies have used a variety of stimulation coils, paradigms, and target locations to make these observations. We reviewed the literature to compare prior studies and to evaluate the rationale and the methods used in these studies. Methods We performed a systematic literature search of the PubMed database using the terms “transcranial,” “noninvasive,” “brain stimulation,” “transcranial magnetic stimulation (TMS),” “transcranial direct current stimulation (tDCS),” “transcranial alternating current stimulation (tACS),” and “essential tremor.” Results Single pulses of TMS to the primary motor cortex have long been known to reset tremor. Although there are relatively few studies showing alterations in motor cortical physiology, such as motor threshold, short and long intracortical inhibition, and cortical silent period, there may be some evidence of altered intracortical facilitation and cerebello-brain inhibition in ET. Repetitive TMS, theta burst stimulation, tDCS, and tACS have been applied to human subjects with tremor with some preliminary signs of tremor reduction, particularly in those studies that employed consecutive daily sessions. Discussion A variety of stimulation paradigms and targets have been explored, with the increasing rationale an interest in targeting the cerebellum. Rigorous assessment of coil geometry, stimulation paradigm, rationale for selection of the specific anatomic target, and careful phenotypic and physiologic characterization of the subjects with ET undergoing these interventions may be critical in extending these preliminary findings into effective stimulation therapies. PMID:28373927

  20. Investigating the depth electrode-brain interface in deep brain stimulation using finite element models with graded complexity in structure and solution.

    PubMed

    Yousif, Nada; Liu, Xuguang

    2009-10-30

    Deep brain stimulation (DBS) is an increasingly used surgical therapy for a range of neurological disorders involving the long-term electrical stimulation of various regions of the human brain in a disorder specific manner. Despite being used for the last 20 years, the underlying mechanisms are still not known, and disputed. In particular, when the electrodes are implanted into the human brain, an interface is created with changing biophysical properties which may impact on stimulation. We previously defined the electrode-brain interface (EBI) as consisting of three structural elements: the quadripolar DBS electrode, the peri-electrode space and the surrounding brain tissue. In order to understand more about the nature of this EBI, we used structural computational models of this interface, and estimated the effects of stimulation using coupled axon models. These finite element models differ in complexity, each highlighting a different feature of the EBI's effect on the DBS-induced electric field. We show that the quasi-static models are sufficient to demonstrate the difference between the acute and chronic clinical stages post-implantation. However, the frequency-dependent models are necessary as the waveform shaping has a major influence on the activation of neuronal fibres. We also investigate anatomical effects on the electric field, by taking specific account of the ventricular system in the human brain. Taken together, these models allow us to visualise the static, dynamic and target specific properties of the DBS-induced field in the surrounding brain regions.

  1. Stochastic Phase Resetting: A Theory for Deep Brain Stimulation

    NASA Astrophysics Data System (ADS)

    Tass, P. A.

    The basic principles of a stochastic approach to phase resetting in populations of interacting phase oscillators are presented in this article. This theory explains how synchronization and desynchronization processes are caused by a pulsatile stimulus. It is a central goal of this approach to establish a theoretical basis for the design of efficient and intelligent new deep brain stimulation techniques. Accordingly, the theory is used to design a new deep brain stimulation technique with feedback control in patients suffering from Parkinson's disease or essential tremor.

  2. Transcranial brain stimulation: clinical applications and future directions.

    PubMed

    Najib, Umer; Bashir, Shahid; Edwards, Dylan; Rotenberg, Alexander; Pascual-Leone, Alvaro

    2011-04-01

    Noninvasive brain stimulation is a valuable investigative tool and has potential therapeutic applications in cognitive neuroscience, neurophysiology, psychiatry, and neurology. Transcranial magnetic stimulation (TMS) is particularly useful to establish and map causal brain-behavior relations in motor and nonmotor cortical areas. Neuronavigated TMS is able to provide precise information related to the individual's functional anatomy that can be visualized and used during surgical interventions and critically aid in presurgical planning, reducing the need for riskier and more cumbersome intraoperative or invasive mapping procedures. This article reviews methodological aspects, clinical applications, and future directions of TMS-based mapping.

  3. Pedunculopontine arousal system physiology - Deep brain stimulation (DBS).

    PubMed

    Garcia-Rill, Edgar; Luster, Brennon; D'Onofrio, Stasia; Mahaffey, Susan; Bisagno, Veronica; Urbano, Francisco J

    2015-11-01

    This review describes the wake/sleep symptoms present in Parkinson׳s disease, and the role of the pedunculopontine nucleus in these symptoms. The physiology of PPN cells is important not only because it is a major element of the reticular activating system, but also because it is a novel target for deep brain stimulation in the treatment of gait and postural deficits in Parkinson׳s disease. A greater understanding of the physiology of the target nuclei within the brainstem and basal ganglia, amassed over the past decades, has enabled increasingly better patient outcomes from deep brain stimulation for movement disorders.

  4. Deep Brain Stimulation for Essential Vocal Tremor: A Technical Report.

    PubMed

    Ho, Allen L; Choudhri, Omar; Sung, C Kwang; DiRenzo, Elizabeth E; Halpern, Casey H

    2015-03-01

    Essential vocal tremor (EVT) is the presence of a tremulous voice that is commonly associated with essential tremor. Patients with EVT often report a necessary increase in vocal effort that significantly worsens with stress and anxiety and can significantly impact quality of life despite optimal medical and behavioral treatment options. Deep brain stimulation (DBS) has been proposed as an effective therapy for vocal tremor, but very few studies exist in the literature that comprehensively evaluate the efficacy of DBS for specifically addressing EVT. We present a technical report on our multidisciplinary, comprehensive operative methodology for treatment of EVT with frameless, awake deep brain stimulation (DBS).

  5. Pedunculopontine arousal system physiology – Deep brain stimulation (DBS)

    PubMed Central

    Garcia-Rill, Edgar; Luster, Brennon; D’Onofrio, Stasia; Mahaffey, Susan; Bisagno, Veronica; Urbano, Francisco J.

    2015-01-01

    This review describes the wake/sleep symptoms present in Parkinson׳s disease, and the role of the pedunculopontine nucleus in these symptoms. The physiology of PPN cells is important not only because it is a major element of the reticular activating system, but also because it is a novel target for deep brain stimulation in the treatment of gait and postural deficits in Parkinson׳s disease. A greater understanding of the physiology of the target nuclei within the brainstem and basal ganglia, amassed over the past decades, has enabled increasingly better patient outcomes from deep brain stimulation for movement disorders. PMID:26779322

  6. Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain.

    PubMed

    Thut, Gregor; Schyns, Philippe G; Gross, Joachim

    2011-01-01

    The notion of driving brain oscillations by directly stimulating neuronal elements with rhythmic stimulation protocols has become increasingly popular in research on brain rhythms. Induction of brain oscillations in a controlled and functionally meaningful way would likely prove highly beneficial for the study of brain oscillations, and their therapeutic control. We here review conventional and new non-invasive brain stimulation protocols as to their suitability for controlled intervention into human brain oscillations. We focus on one such type of intervention, the direct entrainment of brain oscillations by a periodic external drive. We review highlights of the literature on entraining brain rhythms linked to perception and attention, and point out controversies. Behaviourally, such entrainment seems to alter specific aspects of perception depending on the frequency of stimulation, informing models on the functional role of oscillatory activity. This indicates that human brain oscillations and function may be promoted in a controlled way by focal entrainment, with great potential for probing into brain oscillations and their causal role.

  7. Abnormal brain structure implicated in stimulant drug addiction.

    PubMed

    Ersche, Karen D; Jones, P Simon; Williams, Guy B; Turton, Abigail J; Robbins, Trevor W; Bullmore, Edward T

    2012-02-03

    Addiction to drugs is a major contemporary public health issue, characterized by maladaptive behavior to obtain and consume an increasing amount of drugs at the expense of the individual's health and social and personal life. We discovered abnormalities in fronto-striatal brain systems implicated in self-control in both stimulant-dependent individuals and their biological siblings who have no history of chronic drug abuse; these findings support the idea of an underlying neurocognitive endophenotype for stimulant drug addiction.

  8. The neuroethics of non-invasive brain stimulation.

    PubMed

    Cohen Kadosh, Roi; Levy, Neil; O'Shea, Jacinta; Shea, Nicholas; Savulescu, Julian

    2012-02-21

    Transcranial direct current stimulation (TDCS) is a brain stimulation tool that is portable, painless, inexpensive, apparently safe, and with potential long-term efficacy. Recent results obtained from TDCS experiments offer exciting possibilities for the enhancement and treatment of normal or impaired abilities, respectively. We discuss new neuroethical problems that have emerged from the usage of TDCS, and also focus on one of the most likely future applications of TDCS: enhancing learning and cognition in children with typical and atypical development.

  9. Ethical brain stimulation - neuroethics of deep brain stimulation in research and clinical practice.

    PubMed

    Clausen, Jens

    2010-10-01

    Deep brain stimulation (DBS) is a clinically established procedure for treating severe motor symptoms in patients suffering from end-stage Parkinson's disease, dystonia and essential tremor. Currently, it is tested for further indications including psychiatric disorders like major depression and a variety of other diseases. However, ethical issues of DBS demand continuing discussion. Analysing neuroethical and clinical literature, five major topics concerning the ethics of DBS in clinical practice were identified: thorough examination and weighing of risks and benefits; selecting patients fairly; protecting the health of children in paediatric DBS; special issues concerning patients' autonomy; and the normative impact of quality of life measurements. In exploring DBS for further applications, additionally, issues of research ethics have to be considered. Of special importance in this context are questions such as what additional value is generated by the research, how to realise scientific validity, which patients should be included, and how to achieve an acceptable risk-benefit ratio. Patients' benefit is central for ethical evaluation. This criterion can outweigh very serious side-effects, and can make DBS appropriate even in paediatrics. Because standard test procedures evade central aspects of patients' benefits, measuring quality of life should be supplemented by open in-depth interviews to provide a more adequate picture of patients' post-surgical situation. To examine its entire therapeutic potential, further research in DBS is needed. Studies should be based on solid scientific hypotheses and proceed cautiously to benefit severely suffering patients without putting them to undue risks.

  10. Non-invasive neuromuscular electrical stimulation in patients with central nervous system lesions: an educational review.

    PubMed

    Schuhfried, Othmar; Crevenna, Richard; Fialka-Moser, Veronika; Paternostro-Sluga, Tatjana

    2012-02-01

    The aim of this educational review is to provide an overview of the clinical application of transcutaneous electrical stimulation of the extremities in patients with upper motor neurone lesions. In general two methods of electrical stimulation can be distinguished: (i) therapeutic electrical stimulation, and (ii) functional electrical stimulation. Therapeutic electrical stimulation improves neuromuscular functional condition by strengthening muscles, increasing motor control, reducing spasticity, decreasing pain and increasing range of motion. Transcutaneous electrical stimulation may be used for neuromuscular electrical stimulation inducing repetitive muscle contraction, electromyography-triggered neuromuscular electrical stimulation, position-triggered electrical stimulation and subsensory or sensory transcutaneous electric stimulation. Functional electrical stimulation provokes muscle contraction and thereby produces a functionally useful movement during stimulation. In patients with spinal cord injuries or stroke, electrical upper limb neuroprostheses are applied to enhance upper limb and hand function, and electrical lower limb neuroprostheses are applied for restoration of standing and walking. For example, a dropped foot stimulator is used to trigger ankle dorsiflexion to restore gait function. A review of the literature and clinical experience of the use of therapeutic electrical stimulation as well as of functional electrical stimulation in combination with botulinum toxin, exercise therapy and/or splinting are presented. Although the evidence is limited we conclude that neuromuscular electrical stimulation in patients with central nervous system lesions can be an effective modality to improve function, and that combination with other treatments has an additive therapeutic effect.

  11. Why intra-epidermal electrical stimulation achieves stimulation of small fibres selectively: a simulation study

    NASA Astrophysics Data System (ADS)

    Motogi, Jun; Sugiyama, Yukiya; Laakso, Ilkka; Hirata, Akimasa; Inui, Koji; Tamura, Manabu; Muragaki, Yoshihiro

    2016-06-01

    The in situ electric field in the peripheral nerve of the skin is investigated to discuss the selective stimulation of nerve fibres. Coaxial planar electrodes with and without intra-epidermal needle tip were considered as electrodes of a stimulator. From electromagnetic analysis, the tip depth of the intra-epidermal electrode should be larger than the thickness of the stratum corneum, the electrical conductivity of which is much lower than the remaining tissue. The effect of different radii of the outer ring electrode on the in situ electric field is marginal. The minimum threshold in situ electric field (rheobase) for free nerve endings is estimated to be 6.3 kV m-1. The possible volume for electrostimulation, which can be obtained from the in situ electric field distribution, becomes deeper and narrower with increasing needle depth, suggesting that possible stimulation sites may be controlled by changing the needle depth. The injection current amplitude should be adjusted when changing the needle depth because the peak field strength also changes. This study shows that intra-epidermal electrical stimulation can achieve stimulation of small fibres selectively, because Aβ-, Aδ-, and C-fibre terminals are located at different depths in the skin.

  12. Clinical utility of brain stimulation modalities following traumatic brain injury: current evidence

    PubMed Central

    Li, Shasha; Zaninotto, Ana Luiza; Neville, Iuri Santana; Paiva, Wellingson Silva; Nunn, Danuza; Fregni, Felipe

    2015-01-01

    Traumatic brain injury (TBI) remains the main cause of disability and a major public health problem worldwide. This review focuses on the neurophysiology of TBI, and the rationale and current state of evidence of clinical application of brain stimulation to promote TBI recovery, particularly on consciousness, cognitive function, motor impairments, and psychiatric conditions. We discuss the mechanisms of different brain stimulation techniques including major noninvasive and invasive stimulations. Thus far, most noninvasive brain stimulation interventions have been nontargeted and focused on the chronic phase of recovery after TBI. In the acute stages, there is limited available evidence of the efficacy and safety of brain stimulation to improve functional outcomes. Comparing the studies across different techniques, transcranial direct current stimulation is the intervention that currently has the higher number of properly designed clinical trials, though total number is still small. We recognize the need for larger studies with target neuroplasticity modulation to fully explore the benefits of brain stimulation to effect TBI recovery during different stages of recovery. PMID:26170670

  13. Trimodal nanoelectrode array for precise deep brain stimulation: prospects of a new technology based on carbon nanofiber arrays.

    PubMed

    Li, J; Andrews, R J

    2007-01-01

    Although deep brain stimulation (DBS) has recently been shown to be effective for neurological disorders such as Parkinson's disease, there are many limitations of the current technology: the large size of current microelectrodes (approximately 1 mm diameter); the lack of monitoring of local brain electrical activity and neurotransmitters (e.g. dopamine in Parkinson's disease); the open-loop nature of the stimulation (i.e. not guided by brain electrochemical activity). Reducing the size of the monitoring and stimulating electrodes by orders of magnitude (to the size of neural elements) allows remarkable improvements in both monitoring (spatial resolution, temporal resolution, and sensitivity) and stimulation. Carbon nanofiber nanoelectrode technology offers the possibility of trimodal arrays (monitoring electrical activity, monitoring neurotransmitter levels, precise stimulation). DBS can then be guided by changes in brain electrical activity and/or neurotransmitter levels (i.e. closed-loop DBS). Here, we describe the basic manufacture and electrical characteristics of a prototype nanoelectrode array for DBS, as well as preliminary studies with electroconductive polymers necessary to optimize DBS in vivo. An approach such as the nanoelectrode array described here may offer a generic electrical-neural interface for use in various neural prostheses.

  14. Edema and pain reduction using transcutaneous electrical nerve stimulation treatment

    PubMed Central

    Choi, Yeong-Deok; Lee, Jung-Ho

    2016-01-01

    [Purpose] The purpose of this study was to investigate the impact on the edema and pain when applying transcutaneous electrical nerve stimulation. [Subjects and Methods] Eleven patients who were diagnosed with lymphedema were selected as the subjects of the study. The experimental group received transcutaneous electrical nerve stimulation treatment on edema regions three times per week for four weeks. Surface tape measurement was used to measure changes in lower extremity edema. Pain intensity was measured using the visual analog scale. [Results] The edema decrements in the experimental group were significantly larger than those in the control group. The pain decrements in the experimental group were significantly larger than those in the control group. [Conclusion] In conclusion, application of transcutaneous electrical nerve stimulation was confirmed to be effective in reducing edema and pain. PMID:27942125

  15. Uncovering Multisensory Processing through Non-Invasive Brain Stimulation.

    PubMed

    Bolognini, Nadia; Maravita, Angelo

    2011-01-01

    Most of current knowledge about the mechanisms of multisensory integration of environmental stimuli by the human brain derives from neuroimaging experiments. However, neuroimaging studies do not always provide conclusive evidence about the causal role of a given area for multisensory interactions, since these techniques can mainly derive correlations between brain activations and behavior. Conversely, techniques of non-invasive brain stimulation (NIBS) represent a unique and powerful approach to inform models of causal relations between specific brain regions and individual cognitive and perceptual functions. Although NIBS has been widely used in cognitive neuroscience, its use in the study of multisensory processing in the human brain appears a quite novel field of research. In this paper, we review and discuss recent studies that have used two techniques of NIBS, namely transcranial magnetic stimulation and transcranial direct current stimulation, for investigating the causal involvement of unisensory and heteromodal cortical areas in multisensory processing, the effects of multisensory cues on cortical excitability in unisensory areas, and the putative functional connections among different cortical areas subserving multisensory interactions. The emerging view is that NIBS is an essential tool available to neuroscientists seeking for causal relationships between a given area or network and multisensory processes. With its already large and fast increasing usage, future work using NIBS in isolation, as well as in conjunction with different neuroimaging techniques, could substantially improve our understanding of multisensory processing in the human brain.

  16. Affective Brain-Computer Interfaces As Enabling Technology for Responsive Psychiatric Stimulation

    PubMed Central

    Widge, Alik S.; Dougherty, Darin D.; Moritz, Chet T.

    2014-01-01

    There is a pressing clinical need for responsive neurostimulators, which sense a patient’s brain activity and deliver targeted electrical stimulation to suppress unwanted symptoms. This is particularly true in psychiatric illness, where symptoms can fluctuate throughout the day. Affective BCIs, which decode emotional experience from neural activity, are a candidate control signal for responsive stimulators targeting the limbic circuit. Present affective decoders, however, cannot yet distinguish pathologic from healthy emotional extremes. Indiscriminate stimulus delivery would reduce quality of life and may be actively harmful. We argue that the key to overcoming this limitation is to specifically decode volition, in particular the patient’s intention to experience emotional regulation. Those emotion-regulation signals already exist in prefrontal cortex (PFC), and could be extracted with relatively simple BCI algorithms. We describe preliminary data from an animal model of PFC-controlled limbic brain stimulation and discuss next steps for pre-clinical testing and possible translation. PMID:25580443

  17. Affective Brain-Computer Interfaces As Enabling Technology for Responsive Psychiatric Stimulation.

    PubMed

    Widge, Alik S; Dougherty, Darin D; Moritz, Chet T

    2014-04-01

    There is a pressing clinical need for responsive neurostimulators, which sense a patient's brain activity and deliver targeted electrical stimulation to suppress unwanted symptoms. This is particularly true in psychiatric illness, where symptoms can fluctuate throughout the day. Affective BCIs, which decode emotional experience from neural activity, are a candidate control signal for responsive stimulators targeting the limbic circuit. Present affective decoders, however, cannot yet distinguish pathologic from healthy emotional extremes. Indiscriminate stimulus delivery would reduce quality of life and may be actively harmful. We argue that the key to overcoming this limitation is to specifically decode volition, in particular the patient's intention to experience emotional regulation. Those emotion-regulation signals already exist in prefrontal cortex (PFC), and could be extracted with relatively simple BCI algorithms. We describe preliminary data from an animal model of PFC-controlled limbic brain stimulation and discuss next steps for pre-clinical testing and possible translation.

  18. Limbic, associative, and motor territories within the targets for deep brain stimulation: potential clinical implications.

    PubMed

    Sudhyadhom, Atchar; Bova, Frank J; Foote, Kelly D; Rosado, Christian A; Kirsch-Darrow, Lindsey; Okun, Michael S

    2007-07-01

    The use of deep brain stimulation (DBS) has recently been expanding for the treatment of many neurologic disorders such as Parkinson disease, dystonia, essential tremor, Tourette's syndrome, cluster headache, epilepsy, depression, and obsessive compulsive disorder. The target structures for DBS include specific segregated territories within limbic, associative, or motor regions of very small subnuclei. In this review, we summarize current clinical techniques for DBS, the cognitive/mood/motor outcomes, and the relevant neuroanatomy with respect to functional territories within specific brain targets. Future development of new techniques and technology that may include a more direct visualization of "motor" territories within target structures may prove useful for avoiding side effects that may result from stimulation of associative and limbic regions. Alternatively, newer procedures may choose and specifically target non-motor territories for chronic electrical stimulation.

  19. Mapping of electrical muscle stimulation using MRI

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Harris, Robert T.; Woodard, Daniel; Dudley, Gary A.

    1993-01-01

    The pattern of muscle contractile activity elicited by electromyostimulation (EMS) was mapped and compared to the contractile-activity pattern produced by voluntary effort. This was done by examining the patterns and the extent of contrast shift, as indicated by T2 values, im magnetic resonance (MR) images after isometric activity of the left m. quadriceps of human subjects was elicited by EMS (1-sec train of 500-microsec sine wave pulses at 50 Hz) or voluntary effort. The results suggest that, whereas EMS stimulates the same fibers repeatedly, thereby increasing the metabolic demand and T2 values, the voluntary efforts are performed by more diffuse asynchronous activation of skeletal muscle even at forces up to 75 percent of maximal to maintain performance.

  20. Repeated BOLD-fMRI Imaging of Deep Brain Stimulation Responses in Rats

    PubMed Central

    Chao, Tzu-Hao Harry; Chen, Jyh-Horng; Yen, Chen-Tung

    2014-01-01

    Functional magnetic resonance imaging (fMRI) provides a picture of the global spatial activation pattern of the brain. Interest is growing regarding the application of fMRI to rodent models to investigate adult brain plasticity. To date, most rodent studies used an electrical forepaw stimulation model to acquire fMRI data, with α-chloralose as the anesthetic. However, α-chloralose is harmful to animals, and not suitable for longitudinal studies. Moreover, peripheral stimulation models enable only a limited number of brain regions to be studied. Processing between peripheral regions and the brain is multisynaptic, and renders interpretation difficult and uncertain. In the present study, we combined the medetomidine-based fMRI protocol (a noninvasive rodent fMRI protocol) with chronic implantation of an MRI-compatible stimulation electrode in the ventroposterior (VP) thalamus to repetitively sample thalamocortical responses in the rat brain. Using this model, we scanned the forebrain responses evoked by the VP stimulation repeatedly of individual rats over 1 week. Cortical BOLD responses were compared between the 2 profiles obtained at day1 and day8. We discovered reproducible frequency- and amplitude-dependent BOLD responses in the ipsilateral somatosensory cortex (S1). The S1 BOLD responses during the 2 sessions were conserved in maximal response amplitude, area size (size ratio from 0.88 to 0.91), and location (overlap ratio from 0.61 to 0.67). The present study provides a long-term chronic brain stimulation protocol for studying the plasticity of specific neural circuits in the rodent brain by BOLD-fMRI. PMID:24825464

  1. Soft Encapsulation of Flexible Electrical Stimulation Implant: Challenges and Innovations

    PubMed Central

    Debelle, Adrien; Hermans, Laura; Bosquet, Maxime; Dehaeck, Sam; Lonys, Laurent; Scheid, Benoit; Nonclercq, Antoine; Vanhoestenberghe, Anne

    2016-01-01

    In this document we discuss the main challenges encountered when producing flexible electrical stimulation implants, and present our approach to solving them for prototype production. We include a study of the optimization of the flexible PCB design, the selection of additive manufacturing materials for the mold, and the chemical compatibility of the different materials. Our approach was tested on a flexible gastro-stimulator as part of the ENDOGES research program. PMID:28078073

  2. Electrically stimulated contractions of Vorticella convallaria

    NASA Astrophysics Data System (ADS)

    Kantha, Deependra; van Winkle, David

    2009-03-01

    The contraction of Vorticella convallaria was triggered by applying a voltage pulse in its host culturing medium. The 50V, 1ms wide pulse was applied across platinum wires separated by 0.7 cm on a microscope slide. The contractions were recorded as cines (image sequences) by a Phantom V5 camera (Vision Research) on a bright field microscope with 20X objective, with the image size of 256 pixels x 128 pixels at 7352 pictures per second. The starting time of the cines was synchronized with the starting of the electrical pulse. We recorded five contractions of each of 12 organisms. The cines were analyzed to obtain the initiation time, defined as the difference in time between the leading edge of the electrical pulse and the first frame showing zooid movement. From multiple contractions of same organism, we found the initiation time is reproducible. In comparing different organisms, we found the average initiation time of 1.73 ms with a standard deviation of 0.63 ms. This research is supported by the state of Florida (MARTECH) and Research Corporation.

  3. Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses.

    PubMed

    Sperdin, Holger F; Spierer, Lucas; Becker, Robert; Michel, Christoph M; Landis, Theodor

    2015-04-01

    Subliminal perception is strongly associated to the processing of meaningful or emotional information and has mostly been studied using visual masking. In this study, we used high density 256-channel EEG coupled with an liquid crystal display (LCD) tachistoscope to characterize the spatio-temporal dynamics of the brain response to visual checkerboard stimuli (Experiment 1) or blank stimuli (Experiment 2) presented without a mask for 1 ms (visible), 500 µs (partially visible), and 250 µs (subliminal) by applying time-wise, assumption-free nonparametric randomization statistics on the strength and on the topography of high-density scalp-recorded electric field. Stimulus visibility was assessed in a third separate behavioral experiment. Results revealed that unmasked checkerboards presented subliminally for 250 µs evoked weak but detectable visual evoked potential (VEP) responses. When the checkerboards were replaced by blank stimuli, there was no evidence for the presence of an evoked response anymore. Furthermore, the checkerboard VEPs were modulated topographically between 243 and 296 ms post-stimulus onset as a function of stimulus duration, indicative of the engagement of distinct configuration of active brain networks. A distributed electrical source analysis localized this modulation within the right superior parietal lobule near the precuneus. These results show the presence of a brain response to submillisecond unmasked subliminal visual stimuli independently of their emotional saliency or meaningfulness and opens an avenue for new investigations of subliminal stimulation without using visual masking.

  4. Abnormal hemodynamic response to forepaw stimulation in rat brain after cocaine injection

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Park, Kicheon; Choi, Jeonghun; Pan, Yingtian; Du, Congwu

    2015-03-01

    Simultaneous measurement of hemodynamics is of great importance to evaluate the brain functional changes induced by brain diseases such as drug addiction. Previously, we developed a multimodal-imaging platform (OFI) which combined laser speckle contrast imaging with multi-wavelength imaging to simultaneously characterize the changes in cerebral blood flow (CBF), oxygenated- and deoxygenated- hemoglobin (HbO and HbR) from animal brain. Recently, we upgraded our OFI system that enables detection of hemodynamic changes in response to forepaw electrical stimulation to study potential brain activity changes elicited by cocaine. The improvement includes 1) high sensitivity to detect the cortical response to single forepaw electrical stimulation; 2) high temporal resolution (i.e., 16Hz/channel) to resolve dynamic variations in drug-delivery study; 3) high spatial resolution to separate the stimulation-evoked hemodynamic changes in vascular compartments from those in tissue. The system was validated by imaging the hemodynamic responses to the forepaw-stimulations in the somatosensory cortex of cocaine-treated rats. The stimulations and acquisitions were conducted every 2min over 40min, i.e., from 10min before (baseline) to 30min after cocaine challenge. Our results show that the HbO response decreased first (at ~4min) followed by the decrease of HbR response (at ~6min) after cocaine, and both did not fully recovered for over 30min. Interestingly, while CBF decreased at 4min, it partially recovered at 18min after cocaine administration. The results indicate the heterogeneity of cocaine's effects on vasculature and tissue metabolism, demonstrating the unique capability of optical imaging for brain functional studies.

  5. Probabilistic Analysis of Activation Volumes Generated During Deep Brain Stimulation

    PubMed Central

    Butson, Christopher R.; Cooper, Scott E.; Henderson, Jaimie M.; Wolgamuth, Barbara; McIntyre, Cameron C.

    2010-01-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson’s disease (PD) and shows great promise for the treatment of several other disorders. However, while the clinical analysis of DBS has received great attention, a relative paucity of quantitative techniques exists to define the optimal surgical target and most effective stimulation protocol for a given disorder. In this study we describe a methodology that represents an evolutionary addition to the concept of a probabilistic brain atlas, which we call a probabilistic stimulation atlas (PSA). We outline steps to combine quantitative clinical outcome measures with advanced computational models of DBS to identify regions where stimulation-induced activation could provide the best therapeutic improvement on a per-symptom basis. While this methodology is relevant to any form of DBS, we present example results from subthalamic nucleus (STN) DBS for PD. We constructed patient-specific computer models of the volume of tissue activated (VTA) for 163 different stimulation parameter settings which were tested in six patients. We then assigned clinical outcome scores to each VTA and compiled all of the VTAs into a PSA to identify stimulation-induced activation targets that maximized therapeutic response with minimal side effects. The results suggest that selection of both electrode placement and clinical stimulation parameter settings could be tailored to the patient’s primary symptoms using patient-specific models and PSAs. PMID:20974269

  6. Probabilistic analysis of activation volumes generated during deep brain stimulation.

    PubMed

    Butson, Christopher R; Cooper, Scott E; Henderson, Jaimie M; Wolgamuth, Barbara; McIntyre, Cameron C

    2011-02-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson's disease (PD) and shows great promise for the treatment of several other disorders. However, while the clinical analysis of DBS has received great attention, a relative paucity of quantitative techniques exists to define the optimal surgical target and most effective stimulation protocol for a given disorder. In this study we describe a methodology that represents an evolutionary addition to the concept of a probabilistic brain atlas, which we call a probabilistic stimulation atlas (PSA). We outline steps to combine quantitative clinical outcome measures with advanced computational models of DBS to identify regions where stimulation-induced activation could provide the best therapeutic improvement on a per-symptom basis. While this methodology is relevant to any form of DBS, we present example results from subthalamic nucleus (STN) DBS for PD. We constructed patient-specific computer models of the volume of tissue activated (VTA) for 163 different stimulation parameter settings which were tested in six patients. We then assigned clinical outcome scores to each VTA and compiled all of the VTAs into a PSA to identify stimulation-induced activation targets that maximized therapeutic response with minimal side effects. The results suggest that selection of both electrode placement and clinical stimulation parameter settings could be tailored to the patient's primary symptoms using patient-specific models and PSAs.

  7. Deep brain stimulation modulates effects of motivation in Parkinson's disease.

    PubMed

    Sauleau, Paul; Eusebio, Alexandre; Vandenberghe, Wim; Nuttin, Bart; Brown, Peter

    2009-04-22

    It is unclear how motivation leads to improved motor performance. Here we test the hypothesis that motivation interacts with behavioural performance in the basal ganglia. We recorded trial-to-trial performance in a bimanual motor task in 10 patients with Parkinson's disease with electrodes chronically implanted in the subthalamic nucleus for deep brain stimulation. Motivation-associated improvements in trial-to-trial performance were contrasted with and without stimulation at high frequency. Motivation and stimulation improved trial-to-trial performance, but the effect of motivation was halved during stimulation. We conclude that the subthalamic area is mechanistically important in those processes linking motivation to improvement in motor performance. This finding may be relevant to some of the cognitive and emotional changes associated with bilateral subthalamic stimulation.

  8. Non-Invasive Brain Stimulation in Neglect Rehabilitation: An Update

    PubMed Central

    Müri, René Martin; Cazzoli, Dario; Nef, Tobias; Mosimann, Urs P.; Hopfner, Simone; Nyffeler, Thomas

    2013-01-01

    Here, we review the effects of non-invasive brain stimulation such as transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) in the rehabilitation of neglect. We found 12 studies including 172 patients (10 TMS studies and 2 tDCS studies) fulfilling our search criteria. Activity of daily living measures such as the Barthel Index or, more specifically for neglect, the Catherine Bergego Scale were the outcome measure in three studies. Five studies were randomized controlled trials with a follow-up time after intervention of up to 6 weeks. One TMS study fulfilled criteria for Class I and one for Class III evidence. The studies are heterogeneous concerning their methodology, outcome measures, and stimulation parameters making firm comparisons and conclusions difficult. Overall, there are however promising results for theta-burst stimulation, suggesting that TMS is a powerful add-on therapy in the rehabilitation of neglect patients. PMID:23772209

  9. Computational modeling of chemotactic signaling and aggregation of microglia around implantation site during deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Silchenko, A. N.; Tass, P. A.

    2013-10-01

    It is well established that prolonged electrical stimulation of brain tissue causes massive release of ATP in the extracellular space. The released ATP and the products of its hydrolysis, such as ADP and adenosine, become the main elements mediating chemotactic sensitivity and motility of microglial cells via subsequent activation of P2Y2,12 as well as A3A and A2A adenosine receptors. The size of the sheath around the electrode formed by the microglial cells is an important criterion for the optimization of the parameters of electrical current delivered to brain tissue. Here, we study a purinergic signaling pathway underlying the chemotactic motion of microglia towards the implanted electrode during deep brain stimulation. We present a computational model describing formation of a stable aggregate around the implantation site due to the joint chemo-attractive action of ATP and ADP together with a mixed influence of extracellular adenosine. The model was built in accordance with the classical Keller-Segel approach and includes an equation for the cells' density as well as equations describing the hydrolysis of extracellular ATP via successive reaction steps ATP →ADP →AMP →adenosine. The results of our modeling allowed us to reveal the dependence of the width of the encapsulating layer around the electrode on the amount of ATP released due to permanent electrical stimulation. The dependences of the aggregates' size on the parameter governing the nonlinearity of interaction between extracellular adenosine and adenosine receptors are also analyzed.

  10. Deep brain stimulation mechanisms: beyond the concept of local functional inhibition.

    PubMed

    Deniau, Jean-Michel; Degos, Bertrand; Bosch, Clémentine; Maurice, Nicolas

    2010-10-01

    Deep brain electrical stimulation has become a recognized therapy in the treatment of a variety of motor disorders and has potentially promising applications in a wide range of neurological diseases including neuropsychiatry. Behavioural observation that electrical high-frequency stimulation of a given brain area induces an effect similar to a lesion suggested a mechanism of functional inhibition. In vitro and in vivo experiments as well as per operative recordings in patients have revealed a variety of effects involving local changes of neuronal excitability as well as widespread effects throughout the connected network resulting from activation of axons, including antidromic activation. Here we review current data regarding the local and network activity changes induced by high-frequency stimulation of the subthalamic nucleus and discuss this in the context of motor restoration in Parkinson's disease. Stressing the important functional consequences of axonal activation in deep brain stimulation mechanisms, we highlight the importance of developing anatomical knowledge concerning the fibre connections of the putative therapeutic targets.

  11. Exploring Selective Neural Electrical Stimulation for Upper Limb Function Restoration

    PubMed Central

    Tigra, Wafa; Guiraud, David; Andreu, David; Coulet, Bertrand; Gelis, Anthony; Fattal, Charles; Maciejasz, Pawel; Picq, Chloé; Rossel, Olivier; Teissier, Jacques; Coste, Christine Azevedo

    2016-01-01

    This article introduces a new approach of selective neural electrical stimulation of the upper limb nerves. Median and radial nerves of individuals with tetraplegia are stimulated via a multipolar cuff electrode to elicit movements of wrist and hand in acute conditions during a surgical intervention. Various configurations corresponding to various combinations of a 12-poles cuff electrode contacts are tested. Video recording and electromyographic (EMG) signals recorded via sterile surface electrodes are used to evaluate the selectivity of each stimulation configuration in terms of activated muscles. In this abstract we introduce the protocol and preliminary results will be presented during the conference. PMID:27478571

  12. Electrical stimulation of the motor cortex: theoretical considerations.

    PubMed

    Grandori, F; Rossini, P

    1988-01-01

    The aim of this paper is to present the results of a theoretical analysis of the intracranial fields produced by electrical stimulation of the unexposed motor cortex with surface electrodes in humans. Simulations of a first approximation model of the head indicate that the intensity and the spatial configuration of the intracranial fields can be controlled, to a great extent, by proper choice of the location and of the number of the stimulating electrodes. Fields are shown to be reasonably insensitive to changes of some crucial parameters, like the number of the stimulating electrodes and the ratio between the conductivity of the skull and that of the other tissues.

  13. Transcranial magnetic stimulation of mouse brain using high-resolution anatomical models

    NASA Astrophysics Data System (ADS)

    Crowther, L. J.; Hadimani, R. L.; Kanthasamy, A. G.; Jiles, D. C.

    2014-05-01

    Transcranial magnetic stimulation (TMS) offers the possibility of non-invasive treatment of brain disorders in humans. Studies on animals can allow rapid progress of the research including exploring a variety of different treatment conditions. Numerical calculations using animal models are needed to help design suitable TMS coils for use in animal experiments, in particular, to estimate the electric field induced in animal brains. In this paper, we have implemented a high-resolution anatomical MRI-derived mouse model consisting of 50 tissue types to accurately calculate induced electric field in the mouse brain. Magnetic field measurements have been performed on the surface of the coil and compared with the calculations in order to validate the calculated magnetic and induced electric fields in the brain. Results show how the induced electric field is distributed in a mouse brain and allow investigation of how this could be improved for TMS studies using mice. The findings have important implications in further preclinical development of TMS for treatment of human diseases.

  14. Using Brain Electrical Activity Mapping to Diagnose Learning Disabilities.

    ERIC Educational Resources Information Center

    Torello, Michael, W.; Duffy, Frank H.

    1985-01-01

    Cognitive neuroscience assumes that measurement of brain electrical activity should relate to cognition. Brain Electrical Activity Mapping (BEAM), a non-invasive technique, is used to record changes in activity from one brain area to another and is 80 to 90 percent successful in classifying subjects as dyslexic or normal. (MT)

  15. Why do some promising brain-stimulation devices fail the next steps of clinical development?

    PubMed

    Edelmuth, Rodrigo C L; Nitsche, Michael A; Battistella, Linamara; Fregni, Felipe

    2010-01-01

    Interest in techniques of noninvasive brain stimulation (NIBS) has been growing exponentially in the last decade. Recent studies have shown that some of these techniques induce significant neurophysiological and clinical effects. Although recent results are promising, there are several techniques that have been abandoned despite positive initial results. In this study, we performed a systematic review to identify NIBS methods with promising preliminary clinical results that were not fully developed and adopted into clinical practice, and discuss its clinical, research and device characteristics. We identified five devices (transmeatal cochlear laser stimulation, transcranial micropolarization, transcranial electrostimulation, cranial electric stimulation and stimulation with weak electromagnetic fields) and compared them with two established NIBS devices (transcranial magnetic stimulation and transcranial direct current stimulation) and with well-known drugs used in neuropsychiatry (pramipexole and escitalopram) in order to understand the reasons why they failed to reach clinical practice and further steps of research development. Finally, we also discuss novel NIBS devices that have recently showed promising results: brain ultrasound and transcranial high-frequency random noise stimulation. Our results show that some of the reasons for the failure of NIBS devices with promising clinical findings are the difficulty to disseminate results, lack of controlled studies, duration of research development, mixed results and lack of standardization.

  16. The usefulness of electrical stimulation for assessing pedicle screw placements.

    PubMed

    Toleikis, J R; Skelly, J P; Carlvin, A O; Toleikis, S C; Bernard, T N; Burkus, J K; Burr, M E; Dorchak, J D; Goldman, M S; Walsh, T R

    2000-08-01

    The purpose of this study was to further establish the efficacy of pedicle screw stimulation as a monitoring technique to avoid nerve root injury during screw placement. The study population consisted of 662 patients in whom 3,409 pedicle screws were placed and tested by electrical stimulation. If stimulation resulted in a myogenic response at a stimulation intensity of 10 mA or less, the placement of the screw was inspected. Inspection was necessary for 3.9% of the screw placements in 15.4% of the study population. None of the patients in the study experienced any new postoperative neurologic deficits. These findings provide guidelines for the interpretation of stimulation data and support the use of this technique as an easy, inexpensive, and quick method to reliably assess screw placements and protecting neurological function.

  17. Protecting brains, not simply stimulating minds.

    PubMed

    Shonkoff, Jack P

    2011-08-19

    Curricular enhancements in early childhood education that are guided by the science of learning must be augmented by protective interventions informed by the biology of adversity. The same neuroplasticity that leaves emotional regulation, behavioral adaptation, and executive functioning skills vulnerable to early disruption by stressful environments also enables their successful development through focused interventions during sensitive periods in their maturation. The early childhood field should therefore combine cognitive-linguistic enrichment with greater attention to preventing, reducing, or mitigating the consequences of significant adversity on the developing brain. Guided by this enhanced theory of change, scientists, practitioners, and policy-makers must work together to design, implement, and evaluate innovative strategies to produce substantially greater impacts than those achieved by existing programs.

  18. Models to Tailor Brain Stimulation Therapies in Stroke.

    PubMed

    Plow, E B; Sankarasubramanian, V; Cunningham, D A; Potter-Baker, K; Varnerin, N; Cohen, L G; Sterr, A; Conforto, A B; Machado, A G

    2016-01-01

    A great challenge facing stroke rehabilitation is the lack of information on how to derive targeted therapies. As such, techniques once considered promising, such as brain stimulation, have demonstrated mixed efficacy across heterogeneous samples in clinical studies. Here, we explain reasons, citing its one-type-suits-all approach as the primary cause of variable efficacy. We present evidence supporting the role of alternate substrates, which can be targeted instead in patients with greater damage and deficit. Building on this groundwork, this review will also discuss different frameworks on how to tailor brain stimulation therapies. To the best of our knowledge, our report is the first instance that enumerates and compares across theoretical models from upper limb recovery and conditions like aphasia and depression. Here, we explain how different models capture heterogeneity across patients and how they can be used to predict which patients would best respond to what treatments to develop targeted, individualized brain stimulation therapies. Our intent is to weigh pros and cons of testing each type of model so brain stimulation is successfully tailored to maximize upper limb recovery in stroke.

  19. Method for patient-specific finite element modeling and simulation of deep brain stimulation.

    PubMed

    Aström, Mattias; Zrinzo, Ludvic U; Tisch, Stephen; Tripoliti, Elina; Hariz, Marwan I; Wårdell, Karin

    2009-01-01

    Deep brain stimulation (DBS) is an established treatment for Parkinson's disease. Success of DBS is highly dependent on electrode location and electrical parameter settings. The aim of this study was to develop a general method for setting up patient-specific 3D computer models of DBS, based on magnetic resonance images, and to demonstrate the use of such models for assessing the position of the electrode contacts and the distribution of the electric field in relation to individual patient anatomy. A software tool was developed for creating finite element DBS-models. The electric field generated by DBS was simulated in one patient and the result was visualized with isolevels and glyphs. The result was evaluated and it corresponded well with reported effects and side effects of stimulation. It was demonstrated that patient-specific finite element models and simulations of DBS can be useful for increasing the understanding of the clinical outcome of DBS.

  20. Electrical stimulation of transplanted motoneurons improves motor unit formation.

    PubMed

    Liu, Yang; Grumbles, Robert M; Thomas, Christine K

    2014-08-01

    Motoneurons die following spinal cord trauma and with neurological disease. Intact axons reinnervate nearby muscle fibers to compensate for the death of motoneurons, but when an entire motoneuron pool dies, there is complete denervation. To reduce denervation atrophy, we have reinnervated muscles in Fisher rats from local transplants of embryonic motoneurons in peripheral nerve. Since growth of axons from embryonic neurons is activity dependent, our aim was to test whether brief electrical stimulation of the neurons immediately after transplantation altered motor unit numbers and muscle properties 10 wk later. All surgical procedures and recordings were done in anesthetized animals. The muscle consequences of motoneuron death were mimicked by unilateral sciatic nerve section. One week later, 200,000 embryonic day 14 and 15 ventral spinal cord cells, purified for motoneurons, were injected into the tibial nerve 10-15 mm from the gastrocnemii muscles as the only neuron source for muscle reinnervation. The cells were stimulated immediately after transplantation for up to 1 h using protocols designed to examine differential effects due to pulse number, stimulation frequency, pattern, and duration. Electrical stimulation that included short rests and lasted for 1 h resulted in higher motor unit counts. Muscles with higher motor unit counts had more reinnervated fibers and were stronger. Denervated muscles had to be stimulated directly to evoke contractions. These results show that brief electrical stimulation of embryonic neurons, in vivo, has long-term effects on motor unit formation and muscle force. This muscle reinnervation provides the opportunity to use patterned electrical stimulation to produce functional movements.

  1. Electrical stimulation of transplanted motoneurons improves motor unit formation

    PubMed Central

    Liu, Yang; Grumbles, Robert M.

    2014-01-01

    Motoneurons die following spinal cord trauma and with neurological disease. Intact axons reinnervate nearby muscle fibers to compensate for the death of motoneurons, but when an entire motoneuron pool dies, there is complete denervation. To reduce denervation atrophy, we have reinnervated muscles in Fisher rats from local transplants of embryonic motoneurons in peripheral nerve. Since growth of axons from embryonic neurons is activity dependent, our aim was to test whether brief electrical stimulation of the neurons immediately after transplantation altered motor unit numbers and muscle properties 10 wk later. All surgical procedures and recordings were done in anesthetized animals. The muscle consequences of motoneuron death were mimicked by unilateral sciatic nerve section. One week later, 200,000 embryonic day 14 and 15 ventral spinal cord cells, purified for motoneurons, were injected into the tibial nerve 10–15 mm from the gastrocnemii muscles as the only neuron source for muscle reinnervation. The cells were stimulated immediately after transplantation for up to 1 h using protocols designed to examine differential effects due to pulse number, stimulation frequency, pattern, and duration. Electrical stimulation that included short rests and lasted for 1 h resulted in higher motor unit counts. Muscles with higher motor unit counts had more reinnervated fibers and were stronger. Denervated muscles had to be stimulated directly to evoke contractions. These results show that brief electrical stimulation of embryonic neurons, in vivo, has long-term effects on motor unit formation and muscle force. This muscle reinnervation provides the opportunity to use patterned electrical stimulation to produce functional movements. PMID:24848463

  2. [Non-invasive brain stimulation for Parkinson's disease].

    PubMed

    Gajo, Gianandrea; Pollak, Pierre; Lüscher, Christian; Benninger, David

    2015-04-29

    Parkinson's disease (PD) is a major socio-economic burden increasing with the aging population. In advanced PD, the emergence of symptoms refractory to conventional therapy poses a therapeutic challenge. The success of deep brain stimulation (DBS) and advances in the understanding of the pathophysiology of PD have raised interest in non-invasive brain stimulation (NIBS) as an alternative therapeutic tool. NIBS could offer an alternative approach for patients at risk who are excluded from surgery and/or to treat refractory symptoms. The treatment of the freezing of gait, a major cause of disability and falls in PD patients, could be enhanced by transcranial direct current stimulation (tDCS). A therapeutic study is currently performed at the Department of Neurology at the CHUV.

  3. Brain stimulation as a reinforcer: intermittent schedules1

    PubMed Central

    Pliskoff, Stanley S.; Wright, James E.; Hawkins, T. Daryl

    1965-01-01

    Rats with chronically implanted, bipolar electrodes in the septal and medial forebrain bundle areas, in addition to the region of the mammillary bodies of the posterior hypothalamus, were trained to press a permanently mounted lever in order to produce a second, retractable lever. Rewarding brain stimulation was programmed on the retractable lever; following completion of the programmed number of CRF response-stimulations, that lever was retracted from the box. Responding on the permanent lever could reintroduce the retractable lever. Fixed interval, fixed ratio, DRL, and variable interval schedules were programmed on the permanent lever in the range of schedule parameters often used with conventional reinforcers. Typical effects are described, and it is concluded that there are no striking differences between brain-stimulation reinforcement and the conventional reinforcers. ImagesFig. 1. PMID:14271317

  4. Towards a Switched-Capacitor Based Stimulator for Efficient Deep-Brain Stimulation

    PubMed Central

    Vidal, Jose; Ghovanloo, Maysam

    2013-01-01

    We have developed a novel 4-channel prototype stimulation circuit for implantable neurological stimulators (INS). This Switched-Capacitor based Stimulator (SCS) aims to utilize charge storage and charge injection techniques to take advantage of both the efficiency of conventional voltage-controlled stimulators (VCS) and the safety and controllability of current-controlled stimulators (CCS). The discrete SCS prototype offers fine control over stimulation parameters such as voltage, current, pulse width, frequency, and active electrode channel via a LabVIEW graphical user interface (GUI) when connected to a PC through USB. Furthermore, the prototype utilizes a floating current sensor to provide charge-balanced biphasic stimulation and ensure safety. The stimulator was analyzed using an electrode-electrolyte interface (EEI) model as well as with a pair of pacing electrodes in saline. The primary motivation of this research is to test the feasibility and functionality of a safe, effective, and power-efficient switched-capacitor based stimulator for use in Deep Brain Stimulation. PMID:21095987

  5. Moral Enhancement Using Non-invasive Brain Stimulation

    PubMed Central

    Darby, R. Ryan; Pascual-Leone, Alvaro

    2017-01-01

    Biomedical enhancement refers to the use of biomedical interventions to improve capacities beyond normal, rather than to treat deficiencies due to diseases. Enhancement can target physical or cognitive capacities, but also complex human behaviors such as morality. However, the complexity of normal moral behavior makes it unlikely that morality is a single capacity that can be deficient or enhanced. Instead, our central hypothesis will be that moral behavior results from multiple, interacting cognitive-affective networks in the brain. First, we will test this hypothesis by reviewing evidence for modulation of moral behavior using non-invasive brain stimulation. Next, we will discuss how this evidence affects ethical issues related to the use of moral enhancement. We end with the conclusion that while brain stimulation has the potential to alter moral behavior, such alteration is unlikely to improve moral behavior in all situations, and may even lead to less morally desirable behavior in some instances. PMID:28275345

  6. Moral Enhancement Using Non-invasive Brain Stimulation.

    PubMed

    Darby, R Ryan; Pascual-Leone, Alvaro

    2017-01-01

    Biomedical enhancement refers to the use of biomedical interventions to improve capacities beyond normal, rather than to treat deficiencies due to diseases. Enhancement can target physical or cognitive capacities, but also complex human behaviors such as morality. However, the complexity of normal moral behavior makes it unlikely that morality is a single capacity that can be deficient or enhanced. Instead, our central hypothesis will be that moral behavior results from multiple, interacting cognitive-affective networks in the brain. First, we will test this hypothesis by reviewing evidence for modulation of moral behavior using non-invasive brain stimulation. Next, we will discuss how this evidence affects ethical issues related to the use of moral enhancement. We end with the conclusion that while brain stimulation has the potential to alter moral behavior, such alteration is unlikely to improve moral behavior in all situations, and may even lead to less morally desirable behavior in some instances.

  7. Using non-invasive brain stimulation to augment motor training-induced plasticity

    PubMed Central

    Bolognini, Nadia; Pascual-Leone, Alvaro; Fregni, Felipe

    2009-01-01

    Therapies for motor recovery after stroke or traumatic brain injury are still not satisfactory. To date the best approach seems to be the intensive physical therapy. However the results are limited and functional gains are often minimal. The goal of motor training is to minimize functional disability and optimize functional motor recovery. This is thought to be achieved by modulation of plastic changes in the brain. Therefore, adjunct interventions that can augment the response of the motor system to the behavioural training might be useful to enhance the therapy-induced recovery in neurological populations. In this context, noninvasive brain stimulation appears to be an interesting option as an add-on intervention to standard physical therapies. Two non-invasive methods of inducing electrical currents into the brain have proved to be promising for inducing long-lasting plastic changes in motor systems: transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). These techniques represent powerful methods for priming cortical excitability for a subsequent motor task, demand, or stimulation. Thus, their mutual use can optimize the plastic changes induced by motor practice, leading to more remarkable and outlasting clinical gains in rehabilitation. In this review we discuss how these techniques can enhance the effects of a behavioural intervention and the clinical evidence to date. PMID:19292910

  8. Pallidal deep brain stimulation relieves camptocormia in primary dystonia.

    PubMed

    Hagenacker, Tim; Gerwig, Marcus; Gasser, Thomas; Miller, Dorothea; Kastrup, Oliver; Jokisch, Daniel; Sure, Ulrich; Frings, Markus

    2013-07-01

    Camptocormia, characterised by a forward flexion of the thoracolumbar spine may occur in various movement disorders, mainly in Parkinson's disease or in primary dystonia. In severe cases, patients with camptocormia are unable to walk. While treatment options are limited, deep brain stimulation (DBS) with bilateral stimulation of the subthalamic nucleus or globus pallidus internus (GPi) has been proposed as a therapeutic option in refractory cases of Parkinson's disease. Here we present two patients with severe camptocormia as an isolated form of dystonia and as part of generalised dystonia, respectively, which were both treated with bilateral stimulation of the GPi. Symptoms of dystonia were assessed using the Burke-Fahn-Marsden dystonia rating scale (BFM) before and during deep brain stimulation. In both patients there was a significant functional improvement following long-term bilateral GPi stimulation and both patients gained ability to walk. In the first patient with an isolated dystonic camptocormia the BFM motor subscore for the truncal flexion improved by 75 %. The total BFM motor score in the second patient with a camptocormia in generalised dystonia improved by 45 %, while the BFM score for truncal flexion improved by 87 %. In both patients the effect of the bilateral GPi stimulation on camptocormia was substantial, independent of generalisation of dystonia. Therefore, GPi DBS is a possible treatment option for this rare disease.

  9. Chaotic Desynchronization as the Therapeutic Mechanism of Deep Brain Stimulation

    PubMed Central

    Wilson, Charles J.; Beverlin, Bryce; Netoff, Theoden

    2011-01-01

    High frequency deep-brain stimulation of the subthalamic nucleus (deep brain stimulation, DBS) relieves many of the symptoms of Parkinson's disease in humans and animal models. Although the treatment has seen widespread use, its therapeutic mechanism remains paradoxical. The subthalamic nucleus is excitatory, so its stimulation at rates higher than its normal firing rate should worsen the disease by increasing subthalamic excitation of the globus pallidus. The therapeutic effectiveness of DBS is also frequency and intensity sensitive, and the stimulation must be periodic; aperiodic stimulation at the same mean rate is ineffective. These requirements are not adequately explained by existing models, whether based on firing rate changes or on reduced bursting. Here we report modeling studies suggesting that high frequency periodic excitation of the subthalamic nucleus may act by desynchronizing the firing of neurons in the globus pallidus, rather than by changing the firing rate or pattern of individual cells. Globus pallidus neurons are normally desynchronized, but their activity becomes correlated in Parkinson's disease. Periodic stimulation may induce chaotic desynchronization by interacting with the intrinsic oscillatory mechanism of globus pallidus neurons. Our modeling results suggest a mechanism of action of DBS and a pathophysiology of Parkinsonism in which synchrony, rather than firing rate, is the critical pathological feature. PMID:21734868

  10. Electrical and mechanical stimulation of cardiac cells and tissue constructs.

    PubMed

    Stoppel, Whitney L; Kaplan, David L; Black, Lauren D

    2016-01-15

    The field of cardiac tissue engineering has made significant strides over the last few decades, highlighted by the development of human cell derived constructs that have shown increasing functional maturity over time, particularly using bioreactor systems to stimulate the constructs. However, the functionality of these tissues is still unable to match that of native cardiac tissue and many of the stem-cell derived cardiomyocytes display an immature, fetal like phenotype. In this review, we seek to elucidate the biological underpinnings of both mechanical and electrical signaling, as identified via studies related to cardiac development and those related to an evaluation of cardiac disease progression. Next, we review the different types of bioreactors developed to individually deliver electrical and mechanical stimulation to cardiomyocytes in vitro in both two and three-dimensional tissue platforms. Reactors and culture conditions that promote functional cardiomyogenesis in vitro are also highlighted. We then cover the more recent work in the development of bioreactors that combine electrical and mechanical stimulation in order to mimic the complex signaling environment present in vivo. We conclude by offering our impressions on the important next steps for physiologically relevant mechanical and electrical stimulation of cardiac cells and engineered tissue in vitro.

  11. Neuromuscular Electrical Stimulation for Motor Restoration in Hemiplegia

    PubMed Central

    Knutson, Jayme S.; Fu, Michael J.; Sheffler, Lynne R.; Chae, John

    2015-01-01

    Synopsis This article reviews the most common therapeutic and neuroprosthetic applications of neuromuscular electrical stimulation (NMES) for upper and lower extremity stroke rehabilitation. Fundamental NMES principles and purposes in stroke rehabilitation are explained. NMES modalities used for upper and lower limb rehabilitation are described and efficacy studies are summarized. The evidence for peripheral and central mechanisms of action is also summarized. PMID:26522909

  12. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal.

    PubMed

    Bickel, C Scott; Gregory, Chris M; Dean, Jesse C

    2011-10-01

    Neuromuscular electrical stimulation (NMES) is commonly used in clinical settings to activate skeletal muscle in an effort to mimic voluntary contractions and enhance the rehabilitation of human skeletal muscles. It is also used as a tool in research to assess muscle performance and/or neuromuscular activation levels. However, there are fundamental differences between voluntary- and artificial-activation of motor units that need to be appreciated before NMES protocol design can be most effective. The unique effects of NMES have been attributed to several mechanisms, most notably, a reversal of the voluntary recruitment pattern that is known to occur during voluntary muscle contractions. This review outlines the assertion that electrical stimulation recruits motor units in a nonselective, spatially fixed, and temporally synchronous pattern. Additionally, it synthesizes the evidence that supports the contention that this recruitment pattern contributes to increased muscle fatigue when compared with voluntary actions and provides some commentary on the parameters of electrical stimulation as well as emerging technologies being developed to facilitate NMES implementation. A greater understanding of how electrical stimulation recruits motor units, as well as the benefits and limitations of its use, is highly relevant when using this tool for testing and training in rehabilitation, exercise, and/or research.

  13. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Evoked response electrical stimulator. 882.1870 Section 882.1870 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1870 Evoked...

  14. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... effect of anesthetic drugs and gases. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrical peripheral nerve stimulator. 868.2775 Section 868.2775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  15. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... effect of anesthetic drugs and gases. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrical peripheral nerve stimulator. 868.2775 Section 868.2775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  16. Neuromuscular Electrical Stimulation for Motor Restoration in Hemiplegia.

    PubMed

    Knutson, Jayme S; Fu, Michael J; Sheffler, Lynne R; Chae, John

    2015-11-01

    This article reviews the most common therapeutic and neuroprosthetic applications of neuromuscular electrical stimulation (NMES) for upper and lower extremity stroke rehabilitation. Fundamental NMES principles and purposes in stroke rehabilitation are explained. NMES modalities used for upper and lower limb rehabilitation are described, and efficacy studies are summarized. The evidence for peripheral and central mechanisms of action is also summarized.

  17. Feedback control of electrode offset voltage during functional electrical stimulation.

    PubMed

    Chu, Jun-Uk; Song, Kang-Il; Shon, Ahnsei; Han, Sungmin; Lee, Soo Hyun; Kang, Ji Yoon; Hwang, Dosik; Suh, Jun-Kyo Francis; Choi, Kuiwon; Youn, Inchan

    2013-08-15

    Control of the electrode offset voltage is an important issue related to the processes of functional electrical stimulation because excess charge accumulation over time damages both the tissue and the electrodes. This paper proposes a new feedback control scheme to regulate the electrode offset voltage to a predetermined reference value. The electrode offset voltage was continuously monitored using a sample-and-hold (S/H) circuit during stimulation and non-stimulation periods. The stimulation current was subsequently adjusted using a proportional-integral (PI) controller to minimise the error between the reference value and the electrode offset voltage. During the stimulation period, the electrode offset voltage was maintained through the S/H circuit, and the PI controller did not affect the amplitude of the stimulation current. In contrast, during the non-stimulation period, the electrode offset voltage was sampled through the S/H circuit and rapidly regulated through the PI controller. The experimental results obtained using a nerve cuff electrode showed that the electrode offset voltage was successfully controlled in terms of the performance specifications, such as the steady- and transient-state responses and the constraint of the controller output. Therefore, the proposed control scheme can potentially be used in various nerve stimulation devices and applications requiring control of the electrode offset voltage.

  18. Electric Stimulation with Sinusoids and White Noise for Neural Prostheses

    PubMed Central

    Freeman, Daniel K.; Rizzo, Joseph F.; Fried, Shelley I.

    2010-01-01

    We are investigating the use of novel stimulus waveforms in neural prostheses to determine whether they can provide more precise control over the temporal and spatial pattern of elicited activity as compared to conventional pulsatile stimulation. To study this, we measured the response of retinal ganglion cells to both sinusoidal and white noise waveforms. The use of cell-attached and whole cell patch clamp recordings allowed the responses to be observed without significant obstruction from the stimulus artifact. Electric stimulation with sinusoids elicited robust responses. White noise analysis was used to derive the linear kernel for the ganglion cell's spiking response as well as for the underlying excitatory currents. These results suggest that in response to electric stimulation, presynaptic retinal neurons exhibit bandpass filtering characteristics with a peak response that occurs 25 ms after onset. The experimental approach demonstrated here may be useful for studying the temporal response properties of other neurons in the CNS. PMID:20582268

  19. Order/disorder in brain electrical activity

    NASA Astrophysics Data System (ADS)

    Rosso, O. A.; Figliola, Y. A.

    2004-04-01

    The processing of information by the brain is reflected in dynamical changes of the electrical activity in time, frequency, and space. Therefore, the concomitant studies require methods capable of describing the quantitative variation of the signal in both time and frequency. Here we present a quantitative EEG (qEEG) analysis, based on the Orthogonal Discrete Wavelet Transform (ODWT), of generalized epileptic tonic-clonic EEG signals. Two quantifiers: the Relative Wavelet Energy (RWE) and the Normalized Total Wavelet Entropy (NTWS) have been used. The RWE gives information about the relative energy associated with the different frequency bands present in the EEG and their corresponding degree of importance. The NTWS is a measure of the order/disorder degree in the EEG signal. These two quantifiers were computing in EEG signals as provided by scalp electrodes of epileptic patients. We showed that the epileptic recruitment rhythm observed for generalized epileptic tonic-clonic seizures is accurately described by the RWE quantifier. In addition, a significant decrease in the NTWS was observed in the recruitment epoch, indicating a more rhythmic and ordered behavior in the brain electrical activity.

  20. Differential stimulation of the retina with subretinally injected exogenous neurotransmitter: A biomimetic alternative to electrical stimulation

    PubMed Central

    Rountree, Corey M.; Inayat, Samsoon; Troy, John B.; Saggere, Laxman

    2016-01-01

    Subretinal stimulation of the retina with neurotransmitters, the normal means of conveying visual information, is a potentially better alternative to electrical stimulation widely used in current retinal prostheses for treating blindness from photoreceptor degenerative diseases. Yet, no subretinal electrical or chemical stimulation study has stimulated the OFF and ON pathways differentially through inner retinal activation. Here, we demonstrate the feasibility of differentially stimulating retinal ganglion cells (RGCs) through the inner nuclear layer of the retina with glutamate, a primary neurotransmitter chemical, in a biomimetic way. We show that controlled pulsatile delivery of glutamate into the subsurface of explanted wild-type rat retinas elicits highly localized simultaneous inhibitory and excitatory spike rate responses in OFF and ON RGCs. We also present the spatiotemporal characteristics of RGC responses to subretinally injected glutamate and the therapeutic stimulation parameters. Our findings could pave the way for future development of a neurotransmitter-based subretinal prosthesis offering more naturalistic vision and better visual acuity than electrical prostheses. PMID:27929043

  1. Closing of venus flytrap by electrical stimulation of motor cells.

    PubMed

    Volkov, Alexander G; Adesina, Tejumade; Jovanov, Emil

    2007-05-01

    Electrical signaling and rapid closure of the carnivorous plant Dionaea muscipula Ellis (Venus flytrap) have been attracting the attention of researchers since XIX century, but the exact mechanism of Venus flytrap closure is still unknown. We found that the electrical stimulus between a midrib and a lobe closes the Venus flytrap leaf by activating motor cells without mechanical stimulation of trigger hairs. The closing time of Venus flytrap by electrical stimulation of motor cells is 0.3 s, the same as mechanically induced closing. The mean electrical charge required for the closure of the Venus flytrap leaf is 13.6 microC. Ion channel blockers such as Ba(2+), TEACl as well as uncouplers such as FCCP, 2,4-dinitrophenol and pentachlorophenol dramatically decrease the speed of the trap closing. Using an ultra-fast data acquisition system with measurements in real time, we found that the action potential in the Venus flytrap has a duration time of about 1.5 ms. Our results demonstrate that electrical stimulation can be used to study mechanisms of fast activity in motor cells of the plant kingdom.

  2. Engineering the Next Generation of Clinical Deep Brain Stimulation Technology

    PubMed Central

    McIntyre, Cameron C.; Chaturvedi, Ashutosh; Shamir, Reuben R.; Lempka, Scott F.

    2014-01-01

    Deep brain stimulation (DBS) has evolved into a powerful clinical therapy for a range of neurological disorders, but even with impressive clinical growth, DBS technology has been relatively stagnant over its history. However, enhanced collaborations between neural engineers, neuroscientists, physicists, neurologists, and neurosurgeons are beginning to address some of the limitations of current DBS technology. These interactions have helped to develop novel ideas for the next generation of clinical DBS systems. This review attempts collate some of that progress and with two goals in mind. First, provide a general description of current clinical DBS practices, geared toward educating biomedical engineers and computer scientists on a field that needs their expertise and attention. Second, describe some of the technological developments that are currently underway in surgical targeting, stimulation parameter selection, stimulation protocols, and stimulation hardware that are being directly evaluated for near term clinical application. PMID:25161150

  3. Engineering the next generation of clinical deep brain stimulation technology.

    PubMed

    McIntyre, Cameron C; Chaturvedi, Ashutosh; Shamir, Reuben R; Lempka, Scott F

    2015-01-01

    Deep brain stimulation (DBS) has evolved into a powerful clinical therapy for a range of neurological disorders, but even with impressive clinical growth, DBS technology has been relatively stagnant over its history. However, enhanced collaborations between neural engineers, neuroscientists, physicists, neurologists, and neurosurgeons are beginning to address some of the limitations of current DBS technology. These interactions have helped to develop novel ideas for the next generation of clinical DBS systems. This review attempts collate some of that progress with two goals in mind. First, provide a general description of current clinical DBS practices, geared toward educating biomedical engineers and computer scientists on a field that needs their expertise and attention. Second, describe some of the technological developments that are currently underway in surgical targeting, stimulation parameter selection, stimulation protocols, and stimulation hardware that are being directly evaluated for near term clinical application.

  4. The neurophysiology of language: Insights from non-invasive brain stimulation in the healthy human brain.

    PubMed

    Hartwigsen, Gesa

    2015-09-01

    With the advent of non-invasive brain stimulation (NIBS), a new decade in the study of language has started. NIBS allows for testing the functional relevance of language-related brain activation and enables the researcher to investigate how neural activation changes in response to focal perturbations. This review focuses on the application of NIBS in the healthy brain. First, some basic mechanisms will be introduced and the prerequisites for carrying out NIBS studies of language are addressed. The next section outlines how NIBS can be used to characterize the contribution of the stimulated area to a task. In this context, novel approaches such as multifocal transcranial magnetic stimulation and the condition-and-perturb approach are discussed. The third part addresses the combination of NIBS and neuroimaging in the study of plasticity. These approaches are particularly suited to investigate short-term reorganization in the healthy brain and may inform models of language recovery in post-stroke aphasia.

  5. Deep brain stimulation for the treatment of uncommon tremor syndromes

    PubMed Central

    Ramirez-Zamora, Adolfo; Okun, Michael S.

    2016-01-01

    ABSTRACT Introduction: Deep brain stimulation (DBS) has become a standard therapy for the treatment of select cases of medication refractory essential tremor and Parkinson’s disease however the effectiveness and long-term outcomes of DBS in other uncommon and complex tremor syndromes has not been well established. Traditionally, the ventralis intermedius nucleus (VIM) of the thalamus has been considered the main target for medically intractable tremors; however alternative brain regions and improvements in stereotactic techniques and hardware may soon change the horizon for treatment of complex tremors. Areas covered: In this article, we conducted a PubMed search using different combinations between the terms ‘Uncommon tremors’, ‘Dystonic tremor’, ‘Holmes tremor’ ‘Midbrain tremor’, ‘Rubral tremor’, ‘Cerebellar tremor’, ‘outflow tremor’, ‘Multiple Sclerosis tremor’, ‘Post-traumatic tremor’, ‘Neuropathic tremor’, and ‘Deep Brain Stimulation/DBS’. Additionally, we examined and summarized the current state of evolving interventions for treatment of complex tremor syndromes. Expert c ommentary: Recently reported interventions for rare tremors include stimulation of the posterior subthalamic area, globus pallidus internus, ventralis oralis anterior/posterior thalamic subnuclei, and the use of dual lead stimulation in one or more of these targets. Treatment should be individualized and dictated by tremor phenomenology and associated clinical features. PMID:27228280

  6. A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region

    NASA Astrophysics Data System (ADS)

    van Dijk, Kees J.; Verhagen, Rens; Chaturvedi, Ashutosh; McIntyre, Cameron C.; Bour, Lo J.; Heida, Ciska; Veltink, Peter H.

    2015-08-01

    Objective. The clinical effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) as a treatment for Parkinson’s disease are sensitive to the location of the DBS lead within the STN. New high density (HD) lead designs have been created which are hypothesized to provide additional degrees of freedom in shaping the stimulating electric field. The objective of this study is to compare the performances of a new HD lead with a conventional cylindrical contact (CC) lead. Approach. A computational model, consisting of a finite element electric field model combined with multi-compartment neuron and axon models representing different neural populations in the subthalamic region, was used to evaluate the two leads. We compared ring-mode and steering-mode stimulation with the HD lead to single contact stimulation with the CC lead. These stimulation modes were tested for the lead: (1) positioned in the centroid of the STN, (2) shifted 1 mm towards the internal capsule (IC), and (3) shifted 2 mm towards the IC. Under these conditions, we quantified the number of STN neurons that were activated without activating IC fibers, which are known to cause side-effects. Main results. The modeling results show that the HD lead is able to mimic the stimulation effect of the CC lead. Additionally, in steering-mode stimulation there was a significant increase of activated STN neurons compared to the CC mode. Significance. From the model simulations we conclude that the HD lead in steering-mode with optimized stimulation parameter selection can stimulate more STN cells. Next, the clinical impact of the increased number of activated STN cells should be tested and balanced across the increased complexity of identifying the optimized stimulation parameter settings for the HD lead.

  7. Reducing proactive aggression through non-invasive brain stimulation.

    PubMed

    Dambacher, Franziska; Schuhmann, Teresa; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Sack, Alexander T

    2015-10-01

    Aggressive behavior poses a threat to human collaboration and social safety. It is of utmost importance to identify the functional mechanisms underlying aggression and to develop potential interventions capable of reducing dysfunctional aggressive behavior already at a brain level. We here experimentally shifted fronto-cortical asymmetry to manipulate the underlying motivational emotional states in both male and female participants while assessing the behavioral effects on proactive and reactive aggression. Thirty-two healthy volunteers received either anodal transcranial direct current stimulation to increase neural activity within right dorsolateral prefrontal cortex, or sham stimulation. Aggressive behavior was measured with the Taylor Aggression Paradigm. We revealed a general gender effect, showing that men displayed more behavioral aggression than women. After the induction of right fronto-hemispheric dominance, proactive aggression was reduced in men. This study demonstrates that non-invasive brain stimulation can reduce aggression in men. This is a relevant and promising step to better understand how cortical brain states connect to impulsive actions and to examine the causal role of the prefrontal cortex in aggression. Ultimately, such findings could help to examine whether the brain can be a direct target for potential supportive interventions in clinical settings dealing with overly aggressive patients and/or violent offenders.

  8. Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation.

    PubMed

    Chen, Chiun-Fan; Bikson, Marom; Chou, Li-Wei; Shan, Chunlei; Khadka, Niranjan; Chen, Wen-Shiang; Fregni, Felipe

    2017-03-03

    It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. In an exploratory analysis, different levels of correlation were observed between force enhancement and power harmonics of 20-80 Hz (r = 0.4247, p = 0.0243), 100-180 Hz (r = 0.5894, p = 0.0001), 200-280 Hz (r = 0.7002, p < 0.0001), 300-380 Hz (r = 0.7449, p < 0.0001), 400-480 Hz (r = 0.7906, p < 0.0001), 500-600 Hz (r = 0.7717, p < 0.0001), indicating a trend of increasing correlation, specifically at higher order frequency power harmonics. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis.

  9. Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation

    PubMed Central

    Chen, Chiun-Fan; Bikson, Marom; Chou, Li-Wei; Shan, Chunlei; Khadka, Niranjan; Chen, Wen-Shiang; Fregni, Felipe

    2017-01-01

    It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. In an exploratory analysis, different levels of correlation were observed between force enhancement and power harmonics of 20–80 Hz (r = 0.4247, p = 0.0243), 100–180 Hz (r = 0.5894, p = 0.0001), 200–280 Hz (r = 0.7002, p < 0.0001), 300–380 Hz (r = 0.7449, p < 0.0001), 400–480 Hz (r = 0.7906, p < 0.0001), 500–600 Hz (r = 0.7717, p < 0.0001), indicating a trend of increasing correlation, specifically at higher order frequency power harmonics. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis. PMID:28256638

  10. Coherent anti-Stokes Raman scattering under electric field stimulation

    NASA Astrophysics Data System (ADS)

    Capitaine, Erwan; Ould Moussa, Nawel; Louot, Christophe; Lefort, Claire; Pagnoux, Dominique; Duclère, Jean-René; Kaneyasu, Junya F.; Kano, Hideaki; Duponchel, Ludovic; Couderc, Vincent; Leproux, Philippe

    2016-12-01

    We introduce an experiment using electro-CARS, an electro-optical method based on the combination of ultrabroadband multiplex coherent anti-Stokes Raman scattering (M-CARS) spectroscopy and electric field stimulation. We demonstrate that this method can effectively discriminate the resonant CARS signal from the nonresonant background owing to a phenomenon of molecular orientation in the sample medium. Such molecular orientation is intrinsically related to the induction of an electric dipole moment by the applied static electric field. Evidence of the electro-CARS effect is obtained with a solution of n -alkanes (CnH2 n +2 , 15 ≤n ≤40 ), for which an enhancement of the CARS signal-to-noise ratio is achieved in the case of CH2 and CH3 symmetric/asymmetric stretching vibrations. Additionally, an electric-field-induced second-harmonic generation experiment is performed in order to corroborate the orientational organization of molecules due to the electric field excitation. Finally, we use a simple mathematical approach to compare the vibrational information extracted from electro-CARS measurements with spontaneous Raman data and to highlight the impact of electric stimulation on the vibrational signal.

  11. Electrical Stimulation of Coleopteran Muscle for Initiating Flight.

    PubMed

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots.

  12. Volume conductor model of transcutaneous electrical stimulation with kilohertz signals

    PubMed Central

    Medina, Leonel E.; Grill, Warren M.

    2014-01-01

    Objective Incorporating high-frequency components in transcutaneous electrical stimulation (TES) waveforms may make it possible to stimulate deeper nerve fibers since the impedance of tissue declines with increasing frequency. However, the mechanisms of high-frequency TES remain largely unexplored. We investigated the properties of TES with frequencies beyond those typically used in neural stimulation. Approach We implemented a multilayer volume conductor model including dispersion and capacitive effects, coupled to a cable model of a nerve fiber. We simulated voltage- and current-controlled transcutaneous stimulation, and quantified the effects of frequency on the distribution of potentials and fiber excitation. We also quantified the effects of a novel transdermal amplitude modulated signal (TAMS) consisting of a non-zero offset sinusoidal carrier modulated by a square-pulse train. Main results The model revealed that high-frequency signals generated larger potentials at depth than did low frequencies, but this did not translate into lower stimulation thresholds. Both TAMS and conventional rectangular pulses activated more superficial fibers in addition to the deeper, target fibers, and at no frequency did we observe an inversion of the strength-distance relationship. Current regulated stimulation was more strongly influenced by fiber depth, whereas voltage regulated stimulation was more strongly influenced by skin thickness. Finally, our model reproduced the threshold-frequency relationship of experimentally measured motor thresholds. Significance The model may be used for prediction of motor thresholds in TES, and contributes to the understanding of high-frequency TES. PMID:25380254

  13. Volume conductor model of transcutaneous electrical stimulation with kilohertz signals

    NASA Astrophysics Data System (ADS)

    Medina, Leonel E.; Grill, Warren M.

    2014-12-01

    Objective. Incorporating high-frequency components in transcutaneous electrical stimulation (TES) waveforms may make it possible to stimulate deeper nerve fibers since the impedance of tissue declines with increasing frequency. However, the mechanisms of high-frequency TES remain largely unexplored. We investigated the properties of TES with frequencies beyond those typically used in neural stimulation. Approach. We implemented a multilayer volume conductor model including dispersion and capacitive effects, coupled to a cable model of a nerve fiber. We simulated voltage- and current-controlled transcutaneous stimulation, and quantified the effects of frequency on the distribution of potentials and fiber excitation. We also quantified the effects of a novel transdermal amplitude modulated signal (TAMS) consisting of a non-zero offset sinusoidal carrier modulated by a square-pulse train. Main results. The model revealed that high-frequency signals generated larger potentials at depth than did low frequencies, but this did not translate into lower stimulation thresholds. Both TAMS and conventional rectangular pulses activated more superficial fibers in addition to the deeper, target fibers, and at no frequency did we observe an inversion of the strength-distance relationship. Current regulated stimulation was more strongly influenced by fiber depth, whereas voltage regulated stimulation was more strongly influenced by skin thickness. Finally, our model reproduced the threshold-frequency relationship of experimentally measured motor thresholds. Significance. The model may be used for prediction of motor thresholds in TES, and contributes to the understanding of high-frequency TES.

  14. Electrical Stimulation of Coleopteran Muscle for Initiating Flight

    PubMed Central

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots. PMID:27050093

  15. Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat

    PubMed Central

    Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart

    2015-01-01

    Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation. PMID:25897892

  16. Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat.

    PubMed

    Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart

    2015-04-21

    Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation.

  17. Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation.

    PubMed

    Laakso, Ilkka; Hirata, Akimasa

    2012-12-07

    In transcranial magnetic stimulation (TMS), the distribution of the induced electric field, and the affected brain areas, depends on the position of the stimulation coil and the individual geometry of the head and brain. The distribution of the induced electric field in realistic anatomies can be modelled using computational methods. However, existing computational methods for accurately determining the induced electric field in realistic anatomical models have suffered from long computation times, typically in the range of tens of minutes or longer. This paper presents a matrix-free implementation of the finite-element method with a geometric multigrid method that can potentially reduce the computation time to several seconds or less even when using an ordinary computer. The performance of the method is studied by computing the induced electric field in two anatomically realistic models. An idealized two-loop coil is used as the stimulating coil. Multiple computational grid resolutions ranging from 2 to 0.25 mm are used. The results show that, for macroscopic modelling of the electric field in an anatomically realistic model, computational grid resolutions of 1 mm or 2 mm appear to provide good numerical accuracy compared to higher resolutions. The multigrid iteration typically converges in less than ten iterations independent of the grid resolution. Even without parallelization, each iteration takes about 1.0 s or 0.1 s for the 1 and 2 mm resolutions, respectively. This suggests that calculating the electric field with sufficient accuracy in real time is feasible.

  18. Neural responses to electrical stimulation on patterned silk films.

    PubMed

    Hronik-Tupaj, Marie; Raja, Waseem Khan; Tang-Schomer, Min; Omenetto, Fiorenzo G; Kaplan, David L

    2013-09-01

    Peripheral nerve injury is a critical issue for patients with trauma. Following injury, incomplete axon regeneration or misguided axon innervation into tissue will result in loss of sensory and motor functions. The objective of this study was to examine axon outgrowth and axon alignment in response to surface patterning and electrical stimulation. To accomplish our objective, metal electrodes with dimensions of 1.5 mm × 4 cm, were sputter coated onto micropatterned silk protein films, with surface grooves 3.5 μm wide × 500 nm deep. P19 neurons were seeded on the patterned electronic silk films and stimulated at 120 mV, 1 kHz, for 45 min each day for 7 days. Responses were compared with neurons on flat electronic silk films, patterned silk films without stimulation, and flat silk films without stimulation. Significant alignment was found on the patterned film groups compared with the flat film groups. Axon outgrowth was greater (p < 0.05) on electronic films on days 5 and 7 compared with the unstimulated groups. In conclusion, electrical stimulation, at 120 mV, 1 kHz, for 45 min daily, in addition to surface patterning, of 3.5 μm wide × 500 nm deep grooves, offered control of nerve axon outgrowth and alignment.

  19. A General Method for Evaluating Deep Brain Stimulation Effects on Intravenous Methamphetamine Self-Administration

    PubMed Central

    Batra, Vinita; Guerin, Glenn F.; Goeders, Nicholas E.; Wilden, Jessica A.

    2016-01-01

    Substance use disorders, particularly to methamphetamine, are devastating, relapsing diseases that disproportionally affect young people. There is a need for novel, effective and practical treatment strategies that are validated in animal models. Neuromodulation, including deep brain stimulation (DBS) therapy, refers to the use of electricity to influence pathological neuronal activity and has shown promise for psychiatric disorders, including drug dependence. DBS in clinical practice involves the continuous delivery of stimulation into brain structures using an implantable pacemaker-like system that is programmed externally by a physician to alleviate symptoms. This treatment will be limited in methamphetamine users due to challenging psychosocial situations. Electrical treatments that can be delivered intermittently, non-invasively and remotely from the drug-use setting will be more realistic. This article describes the delivery of intracranial electrical stimulation that is temporally and spatially separate from the drug-use environment for the treatment of IV methamphetamine dependence. Methamphetamine dependence is rapidly developed in rodents using an operant paradigm of intravenous (IV) self-administration that incorporates a period of extended access to drug and demonstrates both escalation of use and high motivation to obtain drug. PMID:26863392

  20. A General Method for Evaluating Deep Brain Stimulation Effects on Intravenous Methamphetamine Self-Administration.

    PubMed

    Batra, Vinita; Guerin, Glenn F; Goeders, Nicholas E; Wilden, Jessica A

    2016-01-22

    Substance use disorders, particularly to methamphetamine, are devastating, relapsing diseases that disproportionally affect young people. There is a need for novel, effective and practical treatment strategies that are validated in animal models. Neuromodulation, including deep brain stimulation (DBS) therapy, refers to the use of electricity to influence pathological neuronal activity and has shown promise for psychiatric disorders, including drug dependence. DBS in clinical practice involves the continuous delivery of stimulation into brain structures using an implantable pacemaker-like system that is programmed externally by a physician to alleviate symptoms. This treatment will be limited in methamphetamine users due to challenging psychosocial situations. Electrical treatments that can be delivered intermittently, non-invasively and remotely from the drug-use setting will be more realistic. This article describes the delivery of intracranial electrical stimulation that is temporally and spatially separate from the drug-use environment for the treatment of IV methamphetamine dependence. Methamphetamine dependence is rapidly developed in rodents using an operant paradigm of intravenous (IV) self-administration that incorporates a period of extended access to drug and demonstrates both escalation of use and high motivation to obtain drug.

  1. Effects of Deep Brain Stimulation on Autonomic Function

    PubMed Central

    Basiago, Adam; Binder, Devin K.

    2016-01-01

    Over the course of the development of deep brain stimulation (DBS) into a well-established therapy for Parkinson’s disease, essential tremor, and dystonia, its utility as a potential treatment for autonomic dysfunction has emerged. Dysfunction of autonomic processes is common in neurological diseases. Depending on the specific target in the brain, DBS has been shown to raise or lower blood pressure, normalize the baroreflex, to alter the caliber of bronchioles, and eliminate hyperhidrosis, all through modulation of the sympathetic nervous system. It has also been shown to improve cortical control of the bladder, directly induce or inhibit the micturition reflex, and to improve deglutition and gastric emptying. In this review, we will attempt to summarize the relevant available studies describing these effects of DBS on autonomic function, which vary greatly in character and magnitude with respect to stimulation target. PMID:27537920

  2. Classification of methods in transcranial Electrical Stimulation (tES) and evolving strategy from historical approaches to contemporary innovations

    PubMed Central

    Guleyupoglu, Berkan; Schestatsky, Pedro; Edwards, Dylan; Fregni, Felipe; Bikson, Marom

    2013-01-01

    Transcranial Electrical Stimulation (tES) encompasses all methods of non-invasive current application to the brain used in research and clinical practice. We present the first comprehensive and technical review, explaining the evolution of tES in both terminology and dosage over the past 100 years of research to present day. Current transcranial Pulsed Current Stimulation (tPCS) approaches such as Cranial Electrotherapy Stimulation (CES) descended from Electrosleep (ES) through Cranial Electro-stimulation Therapy (CET), Transcerebral Electrotherapy (TCET), and NeuroElectric Therapy (NET) while others like Transcutaneous Cranial Electrical Stimulation (TCES) descended from Electroanesthesia (EA) through Limoge, and Interferential Stimulation. Prior to a contemporary resurgence in interest, variations of trans-cranial Direct Current Stimulation were explored intermittently, including Polarizing current, Galvanic Vestibular Stimulation (GVS), and Transcranial Micropolarization. The development of these approaches alongside Electroconvulsive Therapy (ECT) and pharmacological developments are considered. Both the roots and unique features of contemporary approaches such as transcranial Alternating Current Stimulation (tACS) and transcranial Random Noise Stimulation (tRNS) are discussed. Trends and incremental developments in electrode montage and waveform spanning decades are presented leading to the present day. Commercial devices, seminal conferences, and regulatory decisions are noted. We conclude with six rules on how increasing medical and technological sophistication may now be leveraged for broader success and adoption of tES. PMID:23954780

  3. Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations.

    PubMed

    Guleyupoglu, Berkan; Schestatsky, Pedro; Edwards, Dylan; Fregni, Felipe; Bikson, Marom

    2013-10-15

    Transcranial Electrical Stimulation (tES) encompasses all methods of non-invasive current application to the brain used in research and clinical practice. We present the first comprehensive and technical review, explaining the evolution of tES in both terminology and dosage over the past 100 years of research to present day. Current transcranial Pulsed Current Stimulation (tPCS) approaches such as Cranial Electrotherapy Stimulation (CES) descended from Electrosleep (ES) through Cranial Electro-stimulation Therapy (CET), Transcerebral Electrotherapy (TCET), and NeuroElectric Therapy (NET) while others like Transcutaneous Cranial Electrical Stimulation (TCES) descended from Electroanesthesia (EA) through Limoge, and Interferential Stimulation. Prior to a contemporary resurgence in interest, variations of transcranial Direct Current Stimulation were explored intermittently, including Polarizing current, Galvanic Vestibular Stimulation (GVS), and Transcranial Micropolarization. The development of these approaches alongside Electroconvulsive Therapy (ECT) and pharmacological developments are considered. Both the roots and unique features of contemporary approaches such as transcranial Alternating Current Stimulation (tACS) and transcranial Random Noise Stimulation (tRNS) are discussed. Trends and incremental developments in electrode montage and waveform spanning decades are presented leading to the present day. Commercial devices, seminal conferences, and regulatory decisions are noted. We conclude with six rules on how increasing medical and technological sophistication may now be leveraged for broader success and adoption of tES.

  4. The will to persevere induced by electrical stimulation of the human cingulate gyrus.

    PubMed

    Parvizi, Josef; Rangarajan, Vinitha; Shirer, William R; Desai, Nikita; Greicius, Michael D

    2013-12-18

    Anterior cingulate cortex (ACC) is known to be involved in functions such as emotion, pain, and cognitive control. While studies in humans and nonhuman mammals have advanced our understanding of ACC function, the subjective correlates of ACC activity have remained largely unexplored. In the current study, we show that electrical charge delivery in the anterior midcingulate cortex (aMCC) elicits autonomic changes and the expectation of an imminent challenge coupled with a determined attitude to overcome it. Seed-based, resting-state connectivity analysis revealed that the site of stimulation in both patients was at the core of a large-scale distributed network linking aMCC to the frontoinsular and frontopolar as well as some subcortical regions. This report provides compelling, first-person accounts of electrical stimulation of this brain network and suggests its possible involvement in psychopathological conditions that are characterized by a reduced capacity to endure psychological or physical distress.

  5. Electrical Stimulation Elicits Neural Stem Cells Activation: New Perspectives in CNS Repair

    PubMed Central

    Huang, Yanhua; Li, YeE; Chen, Jian; Zhou, Hongxing; Tan, Sheng

    2015-01-01

    Researchers are enthusiastically concerned about neural stem cell (NSC) therapy in a wide array of diseases, including stroke, neurodegenerative disease, spinal cord injury, and depression. Although enormous evidences have demonstrated that neurobehavioral improvement may benefit from NSC-supporting regeneration in animal models, approaches to endogenous and transplanted NSCs are blocked by hurdles of migration, proliferation, maturation, and integration of NSCs. Electrical stimulation (ES) may be a selective non-drug approach for mobilizing NSCs in the central nervous system. This technique is suitable for clinical application, because it is well established and its potential complications are manageable. Here, we provide a comprehensive review of the emerging positive role of different electrical cues in regulating NSC biology in vitro and in vivo, as well as biomaterial-based and chemical stimulation of NSCs. In the future, ES combined with stem cell therapy or other cues probably becomes an approach for promoting brain repair. PMID:26539102

  6. Analysis of electric field stimulation of single cardiac muscle cells.

    PubMed Central

    Tung, L; Borderies, J R

    1992-01-01

    Electrical stimulation of cardiac cells by imposed extracellular electric fields results in a transmembrane potential which is highly nonuniform, with one end of the cell depolarized and the other end hyperpolarized along the field direction. To date, the implications of the close proximity of oppositely polarized membranes on excitability have not been explored. In this work we compare the biophysical basis for field stimulation of cells at rest with that for intracellular current injection, using three Luo-Rudy type membrane patches coupled together as a lumped model to represent the cell membrane. Our model shows that cell excitation is a function of the temporal and spatial distribution of ionic currents and transmembrane potential. The extracellular and intracellular forms of stimulation were compared in greater detail for monophasic and symmetric biphasic rectangular pulses, with duration ranging from 0.5 to 10 ms. Strength-duration curves derived for field stimulation show that over a wide range of pulse durations, biphasic waveforms can recruit and activate membrane patches about as effectively as can monophasic waveforms having the same total pulse duration. We find that excitation with biphasic stimulation results from a synergistic, temporal summation of inward currents through the sodium channel in membrane patches at opposite ends of the cell. Furthermore, with both waveform types, a net inward current through the inwardly rectifying potassium channel contributes to initial membrane depolarization. In contrast, models of stimulation by intracellular current injection do not account for the nonuniformity of transmembrane potential and produce substantially different (even contradictory) results for the case of stimulation from rest. PMID:1420884

  7. Successful thalamic deep brain stimulation for orthostatic tremor.

    PubMed

    Guridi, Jorge; Rodriguez-Oroz, Maria C; Arbizu, Javier; Alegre, Manuel; Prieto, Elena; Landecho, Ignacio; Manrique, Miguel; Artieda, Julio; Obeso, Jose A

    2008-10-15

    We report a patient with severe orthostatic tremor (OT) unresponsive to pharmacological treatments that was successfully controlled with thalamic (Vim, ventralis intermedius nucleus) deep brain stimulation (DBS) over a 4-year period. Cortical activity associated with the OT revealed by EEG back-averaging and fluoro-deoxi-glucose PET were also suppressed in parallel with tremor arrest. This case suggests that Vim-DBS may be a useful therapeutic approach for patients highly disabled by OT.

  8. Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation.

    PubMed

    Noury, Nima; Hipp, Joerg F; Siegel, Markus

    2016-10-15

    Transcranial electric stimulation (tES) is a promising tool to non-invasively manipulate neuronal activity in the human brain. Several studies have shown behavioral effects of tES, but stimulation artifacts complicate the simultaneous investigation of neural activity with EEG or MEG. Here, we first show for EEG and MEG, that contrary to previous assumptions, artifacts do not simply reflect stimulation currents, but that heartbeat and respiration non-linearly modulate stimulation artifacts. These modulations occur irrespective of the stimulation frequency, i.e. during both transcranial alternating and direct current stimulations (tACS and tDCS). Second, we show that, although at first sight previously employed artifact rejection methods may seem to remove artifacts, data are still contaminated by non-linear stimulation artifacts. Because of their complex nature and dependence on the subjects' physiological state, these artifacts are prone to be mistaken as neural entrainment. In sum, our results uncover non-linear tES artifacts, show that current techniques fail to fully remove them, and pave the way for new artifact rejection methods.

  9. Midbrain Raphe Stimulation Improves Behavioral and Anatomical Recovery from Fluid-Percussion Brain Injury

    PubMed Central

    Carballosa Gonzalez, Melissa M.; Blaya, Meghan O.; Alonso, Ofelia F.; Bramlett, Helen M.

    2013-01-01

    Abstract The midbrain median raphe (MR) and dorsal raphe (DR) nuclei were tested for their capacity to regulate recovery from traumatic brain injury (TBI). An implanted, wireless self-powered stimulator delivered intermittent 8-Hz pulse trains for 7 days to the rat's MR or DR, beginning 4–6 h after a moderate parasagittal (right) fluid-percussion injury. MR stimulation was also examined with a higher frequency (24 Hz) or a delayed start (7 days after injury). Controls had sham injuries, inactive stimulators, or both. The stimulation caused no apparent acute responses or adverse long-term changes. In water-maze trials conducted 5 weeks post-injury, early 8-Hz MR and DR stimulation restored the rate of acquisition of reference memory for a hidden platform of fixed location. Short-term spatial working memory, for a variably located hidden platform, was restored only by early 8-Hz MR stimulation. All stimulation protocols reversed injury-induced asymmetry of spontaneous forelimb reaching movements tested 6 weeks post-injury. Post-mortem histological measurement at 8 weeks post-injury revealed volume losses in parietal-occipital cortex and decussating white matter (corpus callosum plus external capsule), but not hippocampus. The cortical losses were significantly reversed by early 8-Hz MR and DR stimulation, the white matter losses by all forms of MR stimulation. The generally most effective protocol, 8-Hz MR stimulation, was tested 3 days post-injury for its acute effect on forebrain cyclic adenosine monophosphate (cAMP), a key trophic signaling molecule. This procedure reversed injury-induced declines of cAMP levels in both cortex and hippocampus. In conclusion, midbrain raphe nuclei can enduringly enhance recovery from early disseminated TBI, possibly in part through increased signaling by cAMP in efferent targets. A neurosurgical treatment for TBI using interim electrical stimulation in raphe repair centers is suggested. PMID:22963112

  10. Midbrain raphe stimulation improves behavioral and anatomical recovery from fluid-percussion brain injury.

    PubMed

    Carballosa Gonzalez, Melissa M; Blaya, Meghan O; Alonso, Ofelia F; Bramlett, Helen M; Hentall, Ian D

    2013-01-15

    The midbrain median raphe (MR) and dorsal raphe (DR) nuclei were tested for their capacity to regulate recovery from traumatic brain injury (TBI). An implanted, wireless self-powered stimulator delivered intermittent 8-Hz pulse trains for 7 days to the rat's MR or DR, beginning 4-6 h after a moderate parasagittal (right) fluid-percussion injury. MR stimulation was also examined with a higher frequency (24 Hz) or a delayed start (7 days after injury). Controls had sham injuries, inactive stimulators, or both. The stimulation caused no apparent acute responses or adverse long-term changes. In water-maze trials conducted 5 weeks post-injury, early 8-Hz MR and DR stimulation restored the rate of acquisition of reference memory for a hidden platform of fixed location. Short-term spatial working memory, for a variably located hidden platform, was restored only by early 8-Hz MR stimulation. All stimulation protocols reversed injury-induced asymmetry of spontaneous forelimb reaching movements tested 6 weeks post-injury. Post-mortem histological measurement at 8 weeks post-injury revealed volume losses in parietal-occipital cortex and decussating white matter (corpus callosum plus external capsule), but not hippocampus. The cortical losses were significantly reversed by early 8-Hz MR and DR stimulation, the white matter losses by all forms of MR stimulation. The generally most effective protocol, 8-Hz MR stimulation, was tested 3 days post-injury for its acute effect on forebrain cyclic adenosine monophosphate (cAMP), a key trophic signaling molecule. This procedure reversed injury-induced declines of cAMP levels in both cortex and hippocampus. In conclusion, midbrain raphe nuclei can enduringly enhance recovery from early disseminated TBI, possibly in part through increased signaling by cAMP in efferent targets. A neurosurgical treatment for TBI using interim electrical stimulation in raphe repair centers is suggested.

  11. [ELECTRIC STIMULATION OF VAGUS NERVE MODULATES A PROPAGATION OF OXYGEN EPILEPSY IN RABBITS].

    PubMed

    Zhilyaev, S Yu; Moskvin, A N; Platonova, T F; Demchenko, I T

    2015-11-01

    The activation of autonomic afferents (achieved through the vagus nerve (VN) electrical stimulation) on CNS O2 toxicity and cardiovascular function was investigated. In conscious rabbits at 5 ATA 02, prodromal signs of CNS O2 toxicity and convulsion latency were determined with and without vagus nerve (VN) stimulation. EEG, ECG and respiration were also recorded. In rabbits at 5 ATA, sympathetic overdrive and specific patterns on the EEG (synchronization of slow-waves), ECG (tachycardia) and respiration (respiratory minute volume increase) preceded motor convulsions. Vagus nerve stimulation increased parasympathetic component of autonomic drive and significantly delayed prodromal signs of oxygen toxicity and convulsion latency. Autonomic afferent input to the brain is a novel target for preventing CNS toxicity in HBO2.

  12. Characterization of electrical stimulation electrodes for cardiac tissue engineering.

    PubMed

    Tandon, Nina; Cannizzaro, Chris; Figallo, Elisa; Voldman, Joel; Vunjak-Novakovic, Gordana

    2006-01-01

    Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. The goal of this study was to assess the conditions of electrical stimulation with respect to the electrode geometry, material properties and charge-transfer characteristics at the electrode-electrolyte interface. We compared various biocompatible materials, including nanoporous carbon, stainless steel, titanium and titanium nitride, for use in cardiac tissue engineering bioreactors. The faradaic and non-faradaic charge transfer mechanisms were assessed by electrochemical impedance spectroscopy (EIS), studying current injection characteristics, and examining surface properties of electrodes with scanning electron microscopy. Carbon electrodes were found to have the best current injection characteristics. However, these electrodes require careful handling because of their limited mechanical strength. The efficacy of various electrodes for use in 2-D and 3-D cardiac tissue engineering systems with neonatal rat cardiomyocytes is being determined by assessing cell viability, amplitude of contractions, excitation thresholds, maximum capture rate, and tissue morphology.

  13. Neuromuscular Electrical Stimulation for Mobility Support of Elderly

    PubMed Central

    2015-01-01

    The stimulator for neuromuscular electrical stimulation for mobility support of elderly is not very complicated, but for application within “MOBIL” we have some additional demands to fulfill. First we have specific safety issues for this user group. A powerful compliance management system is crucial not only to guide daily application, but for creating hard data for the scientific outcome. We also need to assure easy handling of the stimulator, because the subjects are generally not able to cope with too difficult and complex motor skills. So, we developed five generations of stimulators and optimizing solutions after field tests. We are already planning the sixth generation with wireless control of the stimulation units by the central main handheld control unit. In a prototype, we have implemented a newly available high capacity memory, a breakthrough in “compliance data storage” as they offer the necessary high storage capacity and fast data handling for an affordable prize. The circuit also contains a 3D accelerometer sensor which acts as a further important safety features: if the control unit drops, this event is detected automatically by the sensor and activates an emergency switch-off that disables the stimulation to avoid associated risks. Further, we have implemented a hardware emergence shutdown and other safety measures. Finally, in the last example muscle torque measurements are referenced with compliance data. In the study normalized maximum voluntary contraction (MVC) and maximum stimulation induced contraction (MSC) were assessed in regular check-ups along the training period. With additional consideration of adjusted stimulation intensity for training out of the compliance data records we are able to estimate the induced contraction strength, which turned out to amount in average 11% of MVC. This value may seem on a first sight rather low, and ought to be considered in relation to the results at the end of the training period. Therefore the

  14. Tractography-activation models applied to subcallosal cingulate deep brain stimulation.

    PubMed

    Lujan, J Luis; Chaturvedi, Ashutosh; Choi, Ki Sueng; Holtzheimer, Paul E; Gross, Robert E; Mayberg, Helen S; McIntyre, Cameron C

    2013-09-01

    Deep brain stimulation (DBS) of the subcallosal cingulate white matter (SCCWM) is an experimental therapy for major depressive disorder (MDD). The specific axonal pathways that mediate the anti-depressant effects of DBS remain unknown. Patient-specific tractography-activation models (TAMs) are a new tool to help identify pathways modulated by DBS. TAMs consist of four basic components: 1) anatomical and diffusion-weighted imaging data acquired on the patient; 2) probabilistic tractography from the brain region surrounding the implanted DBS electrode; 3) finite element models of the electric field generated by the patient-specific DBS parameter settings; and 4) application of the DBS electric field to multi-compartment cable models of axons, with trajectories defined by the tractography, to predict action potential generation in specific pathways. This study presents TAM predictions from DBS of the SCCWM in one MDD patient. Our findings suggest that small differences in electrode location can generate substantial differences in the directly activated pathways.

  15. Glia: A Neglected Player in Non-invasive Direct Current Brain Stimulation

    PubMed Central

    Gellner, Anne-Kathrin; Reis, Janine; Fritsch, Brita

    2016-01-01

    Non-invasive electrical brain stimulation by application of direct current (DCS) promotes plasticity in neuronal networks in vitro and in in vivo. This effect has been mainly attributed to the direct modulation of neurons. Glia represents approximately 50% of cells in the brain. Glial cells are electrically active and participate in synaptic plasticity. Despite of that, effects of DCS on glial structures and on interaction with neurons are only sparsely investigated. In this perspectives article we review the current literature, present own dose response data and provide a framework for future research from two points of view: first, the direct effects of DCS on glia and second, the contribution of glia to DCS related neuronal plasticity. PMID:27551261

  16. Brain sites mediating corticosteroid feedback inhibition of stimulated ACTH secretion

    SciTech Connect

    Jacobson, L.

    1989-01-01

    There is substantial evidence that the brain mediates stress-induced and circadian increases in ACTH secretion and that corticosteroid concentrations which normalize basal plasma ACTH are insufficient to normalize ACTH responses to circadian or stressful stimuli in adrenalectomized rats. To identify brain sites mediating corticosteroid inhibition of stimulated ACTH secretion, two approaches were used. The first compared brain ({sup 14}C)-2-deoxyglucose uptake in rats with differential ACTH responses to stress. Relative to sham-adrenalectomized (SHAM) rats, adrenalectomized rats replaced with low, constant corticosterone levels via a subcutaneous corticosterone pellet (B-PELLET) exhibited elevated and prolonged ACTH responses to a variety of stimuli. Adrenalectomized rate given a circadian corticosterone rhythm via corticosterone in their drinking water exhibited elevated ACTH levels immediately after stress, but unlike B-PELLET rats, terminated stress induced ACTH secretion normally relative to SHAMS. Therefore, the abnormal ACTH responses to stress in B-PELLET rats were due to the lack of both circadian variations and stress-induced increases in corticosterone. Hypoxia was selected as a standardized stimulus for correlating brain ({sup 14}C)-2-deoxyglucose uptake with ACTH secretion. In intact rats, increases in plasma ACTH and decreases in arterial PO{sub 2} correlated with the severity of hypoxia at arterial PCO{sub 2} below 60 mm Hg. Hypoxia PELLET vs. SHAM rats. However, in preliminary experiments, although hypoxia increased brain 2-deoxyglucose uptake in most brain regions, plasma ACTH correlated poorly with 2-deoxyglucose uptake at 12% and 10% O{sub 2}.

  17. Evaluation of high-perimeter electrode designs for deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Howell, Bryan; Grill, Warren M.

    2014-08-01

    Objective. Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, complications including infections and mis-programing following surgical replacement of the battery-powered implantable pulse generator adversely impact the safety profile of this therapy. We sought to decrease power consumption and extend battery life by modifying the electrode geometry to increase stimulation efficiency. The specific goal of this study was to determine whether electrode contact perimeter or area had a greater effect on increasing stimulation efficiency. Approach. Finite-element method (FEM) models of eight prototype electrode designs were used to calculate the electrode access resistance, and the FEM models were coupled with cable models of passing axons to quantify stimulation efficiency. We also measured in vitro the electrical properties of the prototype electrode designs and measured in vivo the stimulation efficiency following acute implantation in anesthetized cats. Main results. Area had a greater effect than perimeter on altering the electrode access resistance; electrode (access or dynamic) resistance alone did not predict stimulation efficiency because efficiency was dependent on the shape of the potential distribution in the tissue; and, quantitative assessment of stimulation efficiency required consideration of the effects of the electrode-tissue interface impedance. Significance. These results advance understanding of the features of electrode geometry that are important for designing the next generation of efficient DBS electrodes.

  18. Electrical stimulation of the parabrachial nucleus induces reanimation from isoflurane general anesthesia.

    PubMed

    Muindi, Fanuel; Kenny, Jonathan D; Taylor, Norman E; Solt, Ken; Wilson, Matthew A; Brown, Emery N; Van Dort, Christa J

    2016-06-01

    Clinically, emergence from general anesthesia is viewed as a passive process where anesthetics are discontinued at the end of surgery and anesthesiologists wait for the drugs to wear off. The mechanisms involved in emergence are not well understood and there are currently no drugs that can actively reverse the state of general anesthesia. An emerging hypothesis states that brain regions that control arousal become active during emergence and are a key part of the return to wakefulness. In this study, we tested the hypothesis that electrical activation of the glutamatergic parabrachial nucleus (PBN) in the brainstem is sufficient to induce reanimation (active emergence) during continuous isoflurane general anesthesia. Using c-Fos immunohistochemistry as a marker of neural activity, we first show a selective increase in active neurons in the PBN during passive emergence from isoflurane anesthesia. We then electrically stimulated the PBN to assess whether it is sufficient to induce reanimation from isoflurane general anesthesia. Stimulation induced behavioral arousal and restoration of the righting reflex during continuous isoflurane general anesthesia. In contrast, stimulation of the nearby central inferior colliculus (CIC) did not restore the righting reflex. Spectral analysis of the electroencephalogram (EEG) revealed that stimulation produced a significant decrease in EEG delta power during PBN stimulation. The results are consistent with the hypothesis that the PBN provides critical arousal input during emergence from isoflurane anesthesia.

  19. Current Steering to Control the Volume of Tissue Activated During Deep Brain Stimulation

    PubMed Central

    Butson, Christopher R.; McIntyre, Cameron C.

    2009-01-01

    Background Over the last two decades, deep brain stimulation (DBS) has become a recognized and effective clinical therapy for numerous neurological conditions. Since its inception, clinical DBS technology has progressed at a relatively slow rate; however, advances in neural engineering research have the potential to improve DBS systems. One such advance is the concept of current steering, or the use of multiple stimulation sources to direct current flow through targeted regions of brain tissue. Objective The goals of this study were to develop a theoretical understanding of the effects of current steering in the context of DBS, and use that information to evaluate the potential utility of current steering during stimulation of the subthalamic nucleus. Methods We used finite element electric field models, coupled to multi-compartment cable axon models, to predict the volume of tissue activated (VTA) by DBS as a function of the stimulation parameter settings. Results Balancing current flow through adjacent cathodes increased the VTA magnitude, relative to monopolar stimulation, and current steering enabled us to sculpt the shape of the VTA to fit a given anatomical target. Conclusions These results provide motivation for the integration of current steering technology into clinical DBS systems, thereby expanding opportunities to customize DBS to individual patients, and potentially enhancing therapeutic efficacy. PMID:19142235

  20. Deep brain stimulation for psychiatric disorders: where we are now.

    PubMed

    Cleary, Daniel R; Ozpinar, Alp; Raslan, Ahmed M; Ko, Andrew L

    2015-06-01

    Fossil records showing trephination in the Stone Age provide evidence that humans have sought to influence the mind through physical means since before the historical record. Attempts to treat psychiatric disease via neurosurgical means in the 20th century provided some intriguing initial results. However, the indiscriminate application of these treatments, lack of rigorous evaluation of the results, and the side effects of ablative, irreversible procedures resulted in a backlash against brain surgery for psychiatric disorders that continues to this day. With the advent of psychotropic medications, interest in invasive procedures for organic brain disease waned. Diagnosis and classification of psychiatric diseases has improved, due to a better understanding of psychiatric patho-physiology and the development of disease and treatment biomarkers. Meanwhile, a significant percentage of patients remain refractory to multiple modes of treatment, and psychiatric disease remains the number one cause of disability in the world. These data, along with the safe and efficacious application of deep brain stimulation (DBS) for movement disorders, in principle a reversible process, is rekindling interest in the surgical treatment of psychiatric disorders with stimulation of deep brain sites involved in emotional and behavioral circuitry. This review presents a brief history of psychosurgery and summarizes the development of DBS for psychiatric disease, reviewing the available evidence for the current application of DBS for disorders of the mind.

  1. Effects of chronic electrical stimulation on paralyzed expiratory muscles

    PubMed Central

    DiMarco, Anthony F.; Kowalski, Krzysztof E.

    2013-01-01

    Following spinal cord injury, the expiratory muscles develop significant disuse atrophy characterized by reductions in their weight, fiber cross-sectional area, and force-generating capacity. We determined the extent to which these physiological alterations can be prevented with electrical stimulation. Because a critical function of the expiratory muscles is cough generation, an important goal was the maintenance of maximal force production. In a cat model of spinal cord injury, short periods of high-frequency lower thoracic electrical spinal cord stimulation (SCS) at the T10 level (50 Hz, 15 min, twice/day, 5 days/wk) were initiated 2 wk following spinalization and continued for a 6-mo period. Airway pressure (P)-generating capacity was determined by SCS. Five acute, spinalized animals served as controls. Compared with controls, initial P fell from 43.9 ± 1.0 to 41.8 ± 0.7 cmH2O (not significant) in the chronic animals. There were small reductions in the weight of the external oblique, internal oblique, transverses abdominis, internal intercostal, and rectus abdominis muscles (not significant for each). There were no significant changes in the population of fast muscle fibers. Because prior studies (Kowalski KE, Romaniuk JR, DiMarco AF. J Appl Physiol 102: 1422-1428, 2007) have demonstrated significant atrophy following spinalization in this model, these results indicate that expiratory muscle atrophy can be prevented by the application of short periods of daily high-frequency stimulation. Because the frequency of stimulation is similar to the expected pattern of clinical use for cough generation, the daily application of electrical stimulation could potentially serve the dual purpose of maintenance of expiratory muscle function and airway clearance. PMID:18403449

  2. Clinical application of neuromuscular electrical stimulation induced cardiovascular exercise.

    PubMed

    Caulfield, Brian; Crowe, Louis; Coughlan, Garrett; Minogue, Conor

    2011-01-01

    We need to find novel ways of increasing exercise participation, particularly in those populations who find it difficult to participate in voluntary exercise. In recent years researchers have started to investigate the potential for using electrical stimulation to artificially stimulate a pattern of muscle activity that would induce a physiological response consistent with cardiovascular exercise. Work to date has indicated that this is best achieved by using a stimulation protocol that results in rapid rhythmical isometric contractions of the large leg muscle groups at sub tetanic frequencies. Studies completed by our group indicate that this technique can serve as a viable alternative to voluntary cardiovascular exercise. Apart from being able to induce a cardiovascular exercise effect in patient populations (e.g. heart failure, COPD, spinal cord injury, obesity), this approach may also have value in promotion of exercise activity in a microgravity environment.

  3. Spatially distributed sequential stimulation reduces muscle fatigue during neuromuscular electrical stimulation.

    PubMed

    Sayenko, Dimitry G; Popovic, Milos R; Masani, Kei

    2013-01-01

    A critical limitation with neuromuscular electrical stimulation (NMES) approach is the rapid onset of muscle fatigue during repeated contractions, which results in the muscle force decay and slowing of muscle contractile properties. In our previous study, we demonstrated that spatially distributed sequential stimulation (SDSS) show a drastically greater fatigue-reducing ability compared to a conventional, single active electrode stimulation (SES) with an individual with spinal cord injury when applied for plantar flexors. The purpose of the present study is to explore the fatigue-reducing ability of SDSS for major lower limb muscle groups in the able-bodied population as well as individuals with spinal cord injury (SCI). SDSS was delivered through four active electrodes applied to the muscle of interest, sending a stimulation pulse to each electrode one after another with 90° phase shift between successive electrodes. For comparison, SES was delivered through one active electrode. For both modes of stimulation, the resultant frequency to the muscle as a whole was 40 Hz. Using corresponding protocols for the fatiguing stimulation, we demonstrated the fatigue-reducing ability of SDSS by higher fatigue indices as compared with single active electrode setup for major leg muscles in both subject groups. The present work verifies and extends reported findings on the effectiveness of using spatially distributed sequential stimulation in the leg muscles to reduce muscle fatigue. Application of this technique can improve the usefulness of NMES during functional movements in the clinical setup.

  4. Possible modes of action of extradural electrical stimulation on the spinal cord.

    PubMed

    Phillips, C G

    1981-01-01

    Analysis of the actions of electric currents on excitable membranes has contributed greatly to our biophysical understanding of the initiation and transmission of impulses in nerve and muscle. The use of electrical stimulation in trying to unravel the complex structure and to understand the integrative properties of the central nervous system (CNS), however, raises problems of a different order. This is true of the application of electrical stimuli to mixed populations of axons in peripheral nerves in attempts to discover the central actions of inputs from the different receptive fields, from skin, for example, or muscle or joint. But the most complex problems of all are those raised by the application of electrical stimuli to the CNS itself, whether to try to find out how it works, or to try to relieve a patient's disabilities. We would like to be able to specify, for any particular configuration of external electrodes, which populations of neurones and axons will be excited by virtue of appropriate orientation with respect to lines of current flowing cathodally within the non-isotropic conducting medium of the CNS. We would also like to know the quantities and locations of the brief excitatory and inhibitory synaptic actions, and the longer-term 'modulating' actions, which they exert at nearby and remote areas of the brain and spinal cord. In man, much could be accomplished by attentive neurological examinations, comparing sensory, motor and autonomic functions in the presence and absence of chronic stimulation, and correlating particular physiological effects with alterations of particular symptoms. Such examination would invoke all the technical resources of clinical neurophysiology. Direct evidence of the stimulation of particular spinal pathways and neurones, and of the distribution of remote excitatory and inhibitory effects, could be obtained only by multiple electrical recordings from brain and cord in animal experiments.

  5. Blue Light Stimulates Cognitive Brain Activity in Visually Blind Individuals

    PubMed Central

    Vandewalle, Gilles; Collignon, Olivier; Hull, Joseph T.; Daneault, Véronique; Albouy, Geneviève; Lepore, Franco; Phillips, Christophe; Doyon, Julien; Czeisler, Charles A.; Dumont, Marie; Lockley, Steven W.; Carrier, Julie

    2015-01-01

    Light regulates multiple non-image-forming (or non-visual) circadian, neuroendocrine and neurobehavioral functions, via outputs from intrinsically-photosensitive retinal ganglion cells (ipRGCs). Exposure to light directly enhances alertness and performance, so that light is an important regulator of wakefulness and cognition. The roles of rods, cones and ipRGCs in the impact of light on cognitive brain functions remain unclear, however. A small percentage of blind individuals retain non-image-forming photoreception and offer a unique opportunity to investigate light impacts in the absence of conscious vision, presumably through ipRGCs. Here, we show that three such patients were able to choose non-randomly about the presence of light despite their complete lack of sight. Furthermore, 2s of blue light modified EEG activity when administered simultaneously to auditory stimulations. FMRI further showed that, during an auditory working memory task, less than a minute of blue light triggered the recruitment of supplemental prefrontal and thalamic brain regions involved in alertness and cognition regulation, as well as key areas of the default mode network. These results, which have to be considered as a proof of concept, show that non-image-forming photoreception triggers some awareness for light and can have a more rapid impact on human cognition than previously understood, if brain processing is actively engaged. Furthermore, light stimulates higher cognitive brain activity, independently of vision, and engages supplemental brain areas to perform an ongoing cognitive process. To our knowledge, our results constitute the first indication that ipRGC signaling may rapidly affect fundamental cerebral organization, so that it could potentially participate to the regulation of numerous aspects of human brain function. PMID:23859643

  6. Practical aspects of cardiac tissue engineering with electrical stimulation.

    PubMed

    Cannizzaro, Christopher; Tandon, Nina; Figallo, Elisa; Park, Hyoungshin; Gerecht, Sharon; Radisic, Milica; Elvassore, Nicola; Vunjak-Novakovic, Gordana

    2007-01-01

    Heart disease is a leading cause of death in western society. Despite the success of heart transplantation, a chronic shortage of donor organs, along with the associated immunological complications of this approach, demands that alternative treatments be found. One such option is to repair, rather than replace, the heart with engineered cardiac tissue. Multiple studies have shown that to attain functional tissue, assembly signaling cues must be recapitulated in vitro. In their native environment, cardiomyocytes are directed to beat in synchrony by propagation of pacing current through the tissue. Recently, we have shown that electrical stimulation directs neonatal cardiomyocytes to assemble into native-like tissue in vitro. This chapter provides detailed methods we have employed in taking this "biomimetic" approach. After an initial discussion on how electric field stimulation can influence cell behavior, we examine the practical aspects of cardiac tissue engineering with electrical stimulation, such as electrode selection and cell seeding protocols, and conclude with what we feel are the remaining challenges to be overcome.

  7. Neuromuscular electric stimulation in patellofemoral dysfunction: literature review

    PubMed Central

    dos Santos, Ricardo Lucas; Souza, Márcia Leal São Pedro; dos Santos, Fernanda Andrade

    2013-01-01

    Patellofemoral dysfunction is a fairly common deficiency among young individuals that primarily affects females and may be characterized by pain, swelling and retropatellar crepitation. The purpose of this review of literature from the period between 2005 and 2011 was to systematize knowledge in relation to the increase in quadriceps muscle strength and pain relief in patients with patellofemoral dysfunction, using neuromuscular electrical stimulation and resistance exercises. The inclusion criteria were intervention articles from the past six years, in English, Spanish and Portuguese, which used muscle strengthening and neuromuscular electrical stimulation for rehabilitation obtained through searches in the electronic databases Medline and Lilacs and in the Bireme library. The bibliographic search yielded 28 references, of which nine were excluded in accordance with the aims and inclusion criteria while 16 articles were selected for reading of the abstracts and subsequent analysis. Mediumfrequency Neuromuscular Electrical Stimulation (NMES) can be used in association with resistance exercises as an adjuvant in the treatment of patellofemoral dysfunction (PFD), both to achieve muscle rebalance and for pain relief. PMID:24453645

  8. Self-Triggered Functional Electrical Stimulation During Swallowing

    PubMed Central

    Burnett, Theresa A.; Mann, Eric A.; Stoklosa, Joseph B.; Ludlow, Christy L.

    2006-01-01

    Hyolaryngeal elevation is essential for airway protection during swallowing and is mainly a reflexive response to oropharyngeal sensory stimulation. Targeted intramuscular electrical stimulation can elevate the resting larynx and, if applied during swallowing, may improve airway protection in dysphagic patients with inadequate hyolaryngeal motion. To be beneficial, patients must synchronize functional electrical stimulation (FES) with their reflexive swallowing and not adapt to FES by reducing the amplitude or duration of their own muscle activity. We evaluated the ability of nine healthy adults to manually synchronize FES with hyolaryngeal muscle activity during discrete swallows, and tested for motor adaptation. Hooked-wire electrodes were placed into the mylo- and thyrohyoid muscles to record electromyographic activity from one side of the neck and deliver monopolar FES for hyolaryngeal elevation to the other side. After performing baseline swallows, volunteers were instructed to trigger FES with a thumb switch in synchrony with their swallows for a series of trials. An experimenter surreptitiously disabled the thumb switch during the final attempt, creating a foil. From the outset, volunteers synchronized FES with the onset of swallow-related thyrohyoid activity (~225 ms after mylohyoid activity onset), preserving the normal sequence of muscle activation. A comparison between average baseline and foil swallows failed to show significant adaptive changes in the amplitude, duration, or relative timing of activity for either muscle, indicating that the central pattern generator for hyolaryngeal elevation is immutable with short term stimulation that augments laryngeal elevation during the reflexive, pharyngeal phase of swallowing. PMID:16107520

  9. New algorithm to control a cycle ergometer using electrical stimulation.

    PubMed

    Petrofsky, J S

    2003-01-01

    Data were collected from four male subjects to determine the relationships between load, speed and muscle use during cycle ergometry. These data were then used to construct equations to govern the stimulation of muscle in paralysed individuals, during cycle ergometry induced by functional electrical stimulation (FES) of the quadriceps, gluteus maximus and hamstring muscles. The algorithm was tested on four subjects who were paralysed owing to a complete spinal cord injury between T4 and T11. Using the multivariate equation, the control of movement was improved, and work was accomplished that was double (2940 Nm min(-1) compared with 5880 Nm min(-1)) that of traditional FES cycle ergometry, when muscle stimulation was also controlled by electrical stimulation. Stress on the body, assessed by cardiac output, was increased almost two-fold during maximum work with the new algorithm (81 min(-1) compared with 15 l min(-1) with the new algorithm). These data support the concept that the limitation to workload that a person can achieve on FES cycle ergometry is in the control equations and not in the paralysed muscle.

  10. Stimulation of Neurite Outgrowth Using an Electrically Conducting Polymer

    NASA Astrophysics Data System (ADS)

    Schmidt, Christine E.; Shastri, Venkatram R.; Vacanti, Joseph P.; Langer, Robert

    1997-08-01

    Damage to peripheral nerves often cannot be repaired by the juxtaposition of the severed nerve ends. Surgeons have typically used autologous nerve grafts, which have several drawbacks including the need for multiple surgical procedures and loss of function at the donor site. As an alternative, the use of nerve guidance channels to bridge the gap between severed nerve ends is being explored. In this paper, the electrically conductive polymer--oxidized polypyrrole (PP)--has been evaluated for use as a substrate to enhance nerve cell interactions in culture as a first step toward potentially using such polymers to stimulate in vivo nerve regeneration. Image analysis demonstrates that PC-12 cells and primary chicken sciatic nerve explants attached and extended neurites equally well on both PP films and tissue culture polystyrene in the absence of electrical stimulation. In contrast, PC-12 cells interacted poorly with indium tin oxide (ITO), poly(L-lactic acid) (PLA), and poly(lactic acid-coglycolic acid) surfaces. However, PC-12 cells cultured on PP films and subjected to an electrical stimulus through the film showed a significant increase in neurite lengths compared with ones that were not subjected to electrical stimulation through the film and tissue culture polystyrene controls. The median neurite length for PC-12 cells grown on PP and subjected to an electrical stimulus was 18.14 μ m (n = 5643) compared with 9.5 μ m (n = 4440) for controls. Furthermore, animal implantation studies reveal that PP invokes little adverse tissue response compared with poly(lactic acid-coglycolic acid).

  11. Stimulation of neurite outgrowth using an electrically conducting polymer

    PubMed Central

    Schmidt, Christine E.; Shastri, Venkatram R.; Vacanti, Joseph P.; Langer, Robert

    1997-01-01

    Damage to peripheral nerves often cannot be repaired by the juxtaposition of the severed nerve ends. Surgeons have typically used autologous nerve grafts, which have several drawbacks including the need for multiple surgical procedures and loss of function at the donor site. As an alternative, the use of nerve guidance channels to bridge the gap between severed nerve ends is being explored. In this paper, the electrically conductive polymer—oxidized polypyrrole (PP)—has been evaluated for use as a substrate to enhance nerve cell interactions in culture as a first step toward potentially using such polymers to stimulate in vivo nerve regeneration. Image analysis demonstrates that PC-12 cells and primary chicken sciatic nerve explants attached and extended neurites equally well on both PP films and tissue culture polystyrene in the absence of electrical stimulation. In contrast, PC-12 cells interacted poorly with indium tin oxide (ITO), poly(l-lactic acid) (PLA), and poly(lactic acid-co-glycolic acid) surfaces. However, PC-12 cells cultured on PP films and subjected to an electrical stimulus through the film showed a significant increase in neurite lengths compared with ones that were not subjected to electrical stimulation through the film and tissue culture polystyrene controls. The median neurite length for PC-12 cells grown on PP and subjected to an electrical stimulus was 18.14 μm (n = 5643) compared with 9.5 μm (n = 4440) for controls. Furthermore, animal implantation studies reveal that PP invokes little adverse tissue response compared with poly(lactic acid-co-glycolic acid). PMID:9256415

  12. Restoring cognitive functions using non-invasive brain stimulation techniques in patients with cerebellar disorders.

    PubMed

    Pope, Paul A; Miall, R Chris

    2014-01-01

    Numerous studies have highlighted the possibility of modulating the excitability of cerebro-cerebellar circuits bi-directionally using transcranial electrical brain stimulation, in a manner akin to that observed using magnetic stimulation protocols. It has been proposed that cerebellar stimulation activates Purkinje cells in the cerebellar cortex, leading to inhibition of the dentate nucleus, which exerts a tonic facilitatory drive onto motor and cognitive regions of cortex through a synaptic relay in the ventral-lateral thalamus. Some cerebellar deficits present with cognitive impairments if damage to non-motor regions of the cerebellum disrupts the coupling with cerebral cortical areas for thinking and reasoning. Indeed, white matter changes in the dentato-rubral tract correlate with cognitive assessments in patients with Friedreich ataxia, suggesting that this pathway is one component of the anatomical substrate supporting a cerebellar contribution to cognition. An understanding of the physiology of the cerebro-cerebellar pathway previously helped us to constrain our interpretation of results from two recent studies in which we showed cognitive enhancements in healthy participants during tests of arithmetic after electrical stimulation of the cerebellum, but only when task demands were high. Others studies have also shown how excitation of the prefrontal cortex can enhance performance in a variety of working memory tasks. Thus, future efforts might be guided toward neuro-enhancement in certain patient populations, using what is commonly termed "non-invasive brain stimulation" as a cognitive rehabilitation tool to modulate cerebro-cerebellar circuits, or for stimulation over the cerebral cortex to compensate for decreased cerebellar drive to this region. This article will address these possibilities with a review of the relevant literature covering ataxias and cerebellar cognitive affective disorders, which are characterized by thalamo-cortical disturbances.

  13. [Research progress in reanimation of peripheral facial paralysis by use of functional electrical stimulation].

    PubMed

    Deng, Simin; Shen, Guofang

    2010-08-01

    With the development of electronics and information technology, the application of functional electrical stimulation in the medical field has been expanding. However, the use of functional electrical stimulation to treat patients with peripheral facial paralysis is still in its infancy. The main problems include: (1) Finding in the signals which could fire the stimulator; (2) Exploring the parameters for the stimulator; (3) The effects on the muscle attributed to the electrical stimulation. A review on these problems is presented.

  14. Magnetoelectric ‘spin’ on stimulating the brain

    PubMed Central

    Guduru, Rakesh; Liang, Ping; Hong, J; Rodzinski, Alexandra; Hadjikhani, Ali; Horstmyer, Jeffrey; Levister, Ernest; Khizroev, Sakhrat

    2015-01-01

    Aim: The in vivo study on imprinting control region mice aims to show that magnetoelectric nanoparticles may directly couple the intrinsic neural activity-induced electric fields with external magnetic fields. Methods: Approximately 10 µg of CoFe2O4–BaTiO3 30-nm nanoparticles have been intravenously administrated through a tail vein and forced to cross the blood–brain barrier via a d.c. field gradient of 3000 Oe/cm. A surgically attached two-channel electroencephalography headmount has directly measured the modulation of intrinsic electric waveforms by an external a.c. 100-Oe magnetic field in a frequency range of 0–20 Hz. Results: The modulated signal has reached the strength comparable to that due the regular neural activity. Conclusion: The study opens a pathway to use multifunctional nanoparticles to control intrinsic fields deep in the brain. PMID:25953069

  15. The facilitation of motor actions by acoustic and electric stimulation.

    PubMed

    Marinovic, Welber; Milford, Magdalene; Carroll, Timothy; Riek, Stephan

    2015-12-01

    The presentation of a loud acoustic stimulus during the preparation of motor actions can both speed movement initiation and increase response vigor. Several recent studies have explored this phenomenon as a means to investigate the mechanisms and neural correlates of movement preparation. Here, we sought to determine the generality of this effect across sensory modalities, and in particular whether unexpected somatosensory stimulation can facilitate movements in a manner similar to loud sounds. We show that electric and acoustic stimuli can be similarly effective in inducing the early release of motor actions, in both reaction time and anticipatory timing tasks. Consistent with recent response activation models of motor preparation, we also demonstrate that increasing the intensity of electric stimuli induces both progressive decreases in reaction time and increases in response vigor. Additionally, we show that the early release of motor actions can be induced by electric stimuli targeting predominantly either muscle afferents or skin afferents. Finally, we show that simultaneous acoustic and electric stimulation leads to earlier releases of anticipatory actions than either unimodal stimulus. These findings may lead to new avenues for experimental and clinical exploitation of the effects of accessory sensory information on movement preparation and initiation.

  16. Modeling the effects of noninvasive transcranial brain stimulation at the biophysical, network, and cognitive level.

    PubMed

    Hartwigsen, Gesa; Bergmann, Til Ole; Herz, Damian Marc; Angstmann, Steffen; Karabanov, Anke; Raffin, Estelle; Thielscher, Axel; Siebner, Hartwig Roman

    2015-01-01

    Noninvasive transcranial brain stimulation (NTBS) is widely used to elucidate the contribution of different brain regions to various cognitive functions. Here we present three modeling approaches that are informed by functional or structural brain mapping or behavior profiling and discuss how these approaches advance the scientific potential of NTBS as an interventional tool in cognitive neuroscience. (i) Leveraging the anatomical information provided by structural imaging, the electric field distribution in the brain can be modeled and simulated. Biophysical modeling approaches generate testable predictions regarding the impact of interindividual variations in cortical anatomy on the injected electric fields or the influence of the orientation of current flow on the physiological stimulation effects. (ii) Functional brain mapping of the spatiotemporal neural dynamics during cognitive tasks can be used to construct causal network models. These models can identify spatiotemporal changes in effective connectivity during distinct cognitive states and allow for examining how effective connectivity is shaped by NTBS. (iii) Modeling the NTBS effects based on neuroimaging can be complemented by behavior-based cognitive models that exploit variations in task performance. For instance, NTBS-induced changes in response speed and accuracy can be explicitly modeled in a cognitive framework accounting for the speed-accuracy trade-off. This enables to dissociate between behavioral NTBS effects that emerge in the context of rapid automatic responses or in the context of slow deliberate responses. We argue that these complementary modeling approaches facilitate the use of NTBS as a means of dissecting the causal architecture of cognitive systems of the human brain.

  17. Evaluation of novel stimulus waveforms for deep brain stimulation

    PubMed Central

    Foutz, TJ; McIntyre, CC

    2010-01-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of a wide range of neurological disorders. Historically, DBS and other neurostimulation technologies have relied on rectangular stimulation waveforms to impose their effects on the nervous system. Recent work has suggested that non-rectangular waveforms may have advantages over the traditional rectangular pulse. Therefore, we used detailed computer models to compare a range of charge-balanced biphasic waveforms with rectangular, exponential, triangular, Gaussian, and sinusoidal stimulus pulse shapes. We explored the neural activation energy of these waveforms in both intracellular and extracellular stimulation. In the context of extracellular stimulation, we compared their effects on both axonal fibers of passage and projection neurons. Finally, we evaluated the impact of delivering the waveforms through a clinical DBS electrode, as opposed to a theoretical point source. Our results suggest that DBS with a 1 ms centered-triangular pulse can decrease energy consumption by 64 % when compared to the standard 100 μs rectangular pulse (energy cost of 48 nJ and 133 nJ, respectively, to stimulate 50 % of a distributed population of axons) and can decrease energy consumption by 10 % when compared to the most energy efficient rectangular pulse (1.25 ms duration). In turn, there may be measureable energy savings when using appropriately designed non-rectangular pulses in clinical DBS applications, thereby warranting further experimental investigation. PMID:21084732

  18. Evaluation of novel stimulus waveforms for deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Foutz, Thomas J.; McIntyre, Cameron C.

    2010-12-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of a wide range of neurological disorders. Historically, DBS and other neurostimulation technologies have relied on rectangular stimulation waveforms to impose their effects on the nervous system. Recent work has suggested that non-rectangular waveforms may have advantages over the traditional rectangular pulse. Therefore, we used detailed computer models to compare a range of charge-balanced biphasic waveforms with rectangular, exponential, triangular, Gaussian and sinusoidal stimulus pulse shapes. We explored the neural activation energy of these waveforms for both intracellular and extracellular current-controlled stimulation conditions. In the context of extracellular stimulation, we compared their effects on both axonal fibers of passage and projection neurons. Finally, we evaluated the impact of delivering the waveforms through a clinical DBS electrode, as opposed to a theoretical point source. Our results suggest that DBS with a 1 ms centered-triangular pulse can decrease energy consumption by 64% when compared with the standard 100 µs rectangular pulse (energy cost of 48 and 133 nJ, respectively, to stimulate 50% of a distributed population of axons) and can decrease energy consumption by 10% when compared with the most energy efficient rectangular pulse (1.25 ms duration). In turn, there may be measureable energy savings when using appropriately designed non-rectangular pulses in clinical DBS applications, thereby warranting further experimental investigation.

  19. Electrical Stimulation of Microbial PCB Degradation in Sediment

    PubMed Central

    Chun, Chan Lan; Payne, Rayford B.; Sowers, Kevin R.; May, Harold D.

    2012-01-01

    Bioremediation of polychlorinated biphenyls (PCBs) has been precluded in part by the lack of a cost-effective method to stimulate microbial degradation in situ. A common limitation is the lack of an effective method of providing electron donors and acceptors to promote in situ PCB biodegradation. Application of an electric potential to soil/sediment could be an effective means of providing electron-donors/-acceptors to PCB dechlorinating and degrading microorganisms. In this study, electrical stimulation of microbial PCB dechlorination/ degradation was examined in sediment maintained under simulated in situ conditions. Voltage was applied to open microcosms filled with PCB-impacted (Aroclor 1242) freshwater sediment from a Superfund site (Fox River, WI). The effect of applied low voltages (1.5 to 3.0V) on the microbial transformation of PCBs was determined with: 1) spiked PCBs, and 2) indigenous weathered PCBs. The results indicate that both oxidative and reductive microbial transformation of the spiked PCBs was stimulated but oxidation was dominant and most effective with higher voltage. Chlorobenzoates were produced as oxidation metabolites of the spiked PCBs, but increasing voltage enhanced chlorobenzoate consumption, indicating that overall degradation was enhanced. In the case of weathered PCBs, the total concentration decreased 40–60% in microcosms exposed to electric current while no significant decrease of PCB concentration was observed in control reactors (0 V or sterilized). Single congener analysis of the weathered PCBs showed significant loss of di- to penta-chlorinated congeners, indicating that microbial activity was not limited to anaerobic dechlorination of only higher chlorinated congeners. Degradation was most apparent with the application of only 1.5 V where anodic O2 was not generated, indicating a mechanism of degradation independent of electrolytic O2. Low voltage stimulation of the microbial degradation of weathered PCBs observed in this

  20. Electrical stimulation of microbial PCB degradation in sediment.

    PubMed

    Chun, Chan Lan; Payne, Rayford B; Sowers, Kevin R; May, Harold D

    2013-01-01

    Bioremediation of polychlorinated biphenyls (PCBs) has been precluded in part by the lack of a cost-effective method to stimulate microbial degradation in situ. A common limitation is the lack of an effective method of providing electron donors and acceptors to promote in situ PCB biodegradation. Application of an electric potential to soil/sediment could be an effective means of providing electron-donors/-acceptors to PCB dechlorinating and degrading microorganisms. In this study, electrical stimulation of microbial PCB dechlorination/degradation was examined in sediment maintained under simulated in situ conditions. Voltage was applied to open microcosms filled with PCB-impacted (Aroclor 1242) freshwater sediment from a Superfund site (Fox River, WI). The effect of applied low voltages (1.5-3.0 V) on the microbial transformation of PCBs was determined with: 1) spiked PCBs, and 2) indigenous weathered PCBs. The results indicate that both oxidative and reductive microbial transformation of the spiked PCBs was stimulated but oxidation was dominant and most effective with higher voltage. Chlorobenzoates were produced as oxidation metabolites of the spiked PCBs, but increasing voltage enhanced chlorobenzoate consumption, indicating that overall degradation was enhanced. In the case of weathered PCBs, the total concentration decreased 40-60% in microcosms exposed to electric current while no significant decrease of PCB concentration was observed in control reactors (0 V or sterilized). Single congener analysis of the weathered PCBs showed significant loss of di- to penta-chlorinated congeners, indicating that microbial activity was not limited to anaerobic dechlorination of only higher chlorinated congeners. Degradation was most apparent with the application of only 1.5 V where anodic O(2) was not generated, indicating a mechanism of degradation independent of electrolytic O(2). Low voltage stimulation of the microbial degradation of weathered PCBs observed in this

  1. A target-specific electrode and lead design for internal globus pallidus deep brain stimulation.

    PubMed

    Vasques, Xavier; Cif, Laura; Mennessier, Gérard; Coubes, Philippe

    2010-01-01

    In nearly all deep brain stimulation (DBS) applications, the same quadripolar electrode design is used for different anatomical targets even if shape and volume differences exist between nuclei. Taking into account the electrode location within the internal globus pallidus (GPi) and the size of the GPi, 2 electrodes were designed in order to improve the therapeutic benefit, to minimize side effects from DBS and to obtain a more homogeneous electric field distribution. The electrodes were evaluated numerically by using a stereotactic model measuring the correlation between the electric field and the GPi. The model was applied to 26 dystonodyskinetic patients who underwent surgery for a bilateral lead implantation into the posteroventral part of the GPi. The designed electrodes produced a more homogeneous distribution of the electric field than the quadripolar electrode.

  2. Fos immunoreactivity in the rat forebrain induced by electrical stimulation of the dorsolateral periaqueductal gray matter.

    PubMed

    Lim, Lee Wei; Temel, Yasin; Visser-Vandewalle, Veerle; Blokland, Arjan; Steinbusch, Harry

    2009-10-01

    Electrical stimulation of the dorsolateral periaqueductal gray (dlPAG) matter induces panic- or fear-like responses with intense emotional distress and severe anxiety. In this study, we evoked panic-like behaviour by dlPAG stimulation and evaluated the effect on neuronal activation in different brain regions. The number of c-Fos immunoreactive (c-Fos-ir) cells was measured semi-quantitatively through series of stained rat brain sections. Our results demonstrate strong neural activation in the medial prefrontal cortex, orbital cortex, anterior olfactory nuclei, secondary motor cortex, and the somatosensory cortex. Moderate increases in the number of c-Fos-ir cells were detected in various regions, including the hypothalamus, amygdala, and striatum. Additionally, there was mild expression of c-Fos-ir cells in the hippocampus, thalamus, and habenula regions. In conclusion, we have shown that deep brain stimulation of the dlPAG produced a distinctive pattern of neuronal activation across forebrain regions as compared to the sham and control animals.

  3. Dynamic range of safe electrical stimulation of the retina

    NASA Astrophysics Data System (ADS)

    Butterwick, Alexander F.; Vankov, Alexander; Huie, Phil; Palanker, Daniel V.

    2006-02-01

    Electronic retinal prostheses represent a potentially effective approach for restoring some degree of sight in blind patients with retinal degeneration. However, levels of safe electrical stimulation and the underlying mechanisms of cellular damage are largely unknown. We measured the threshold of cellular damage as a function of pulse duration, electrode size, and number of pulses to determine the safe range of stimulation. Measurements were performed in-vitro on embryonic chicken retina with saline-filled glass pipettes for stimulation electrodes. Cellular damage was detected using Propidium Iodide fluorescent staining. Electrode size varied from 115μm to 1mm, pulse duration from 6μs to 6ms, and number of pulses from 1 to 7,500. The threshold current density was independent of electrode sizes exceeding 400μm. With smaller electrodes the current density was scaling reciprocal to the square of the pipette diameter, i.e. acting as a point source so that the damage threshold was determined by the total current in this regime. The damage threshold current measured with large electrodes (1mm) scaled with pulse duration as t -0.5, which is characteristic of electroporation. For repeated electrical pulsed exposure on the retina the threshold current density varied between 0.059 A/cm2 at 6ms to 1.3 A/cm2 at 6μs. The dynamic range of safe stimulation, i.e. the ratio of damage threshold to stimulation threshold was found to be duration-dependent, and varied from 10 to 100 at pulse durations varying between 10μs to 10ms. Maximal dynamic range of 100 was observed near 1ms pulse durations.

  4. Electrical stimulation vs thermal effects in a complex electromagnetic environment.

    PubMed

    Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Sánchez, Miguel

    2009-08-01

    Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10(-4)) than that based on thermal considerations (exposure quotient 0.16 10(-4)). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects.

  5. Tinnitus suppression by electric stimulation of the auditory nerve

    PubMed Central

    Chang, Janice E.; Zeng, Fan-Gang

    2012-01-01

    Electric stimulation of the auditory nerve via a cochlear implant (CI) has been observed to suppress tinnitus, but parameters of an effective electric stimulus remain unexplored. Here we used CI research processors to systematically vary pulse rate, electrode place, and current amplitude of electric stimuli, and measure their effects on tinnitus loudness and stimulus loudness as a function of stimulus duration. Thirteen tinnitus subjects who used CIs were tested, with nine (70%) being “Responders” who achieved greater than 30% tinnitus loudness reduction in response to at least one stimulation condition and the remaining four (30%) being “Non-Responders” who had less than 30% tinnitus loudness reduction in response to any stimulus condition tested. Despite large individual variability, several interesting observations were made between stimulation parameters, tinnitus characteristics, and tinnitus suppression. If a subject's tinnitus was suppressed by one stimulus, then it was more likely to be suppressed by another stimulus. If the tinnitus contained a “pulsating” component, then it would be more likely suppressed by a given combination of stimulus parameters than tinnitus without these components. There was also a disassociation between the subjects' clinical speech processor and our research processor in terms of their effectiveness in tinnitus suppression. Finally, an interesting dichotomy was observed between loudness adaptation to electric stimuli and their effects on tinnitus loudness, with the Responders exhibiting higher degrees of loudness adaptation than the Non-Responders. Although the mechanisms underlying these observations remain to be resolved, their clinical implications are clear. When using a CI to manage tinnitus, the clinical processor that is optimized for speech perception needs to be customized for optimal tinnitus suppression. PMID:22479238

  6. Effects of functional electrical stimulation in rehabilitation with hemiparesis patients.

    PubMed

    Tanovic, Edina

    2009-02-01

    Cerebrovascular accident is a focal neurological deficiency occurring suddenly and lasting for more than 24 hours. The purpose of our work is to determine the role of the functional electrical simulation (FES) in the rehabilitation of patients with hemiparesis, which occurred as a consequence of a cerebrovascular accident. This study includes the analysis of two groups of 40 patients with hemiparesis (20 patients with deep hemiparesis and 20 patients with light hemiparesis), a control group which was only treated with kinesiotherapy and a tested group which was treated with kinesiotherapy and functional electrical stimulation. Both groups of patients were analyzed in respect to their sex and age. Additional analysis of the walking function was completed in accordance with the BI and RAP index. The analysis of the basic demographical data demonstrated that there is no significant difference between the control and tested group. The patients of both groups are equal in respect of age and sex. After 4 weeks of rehabilitation of patients with deep and light hemiparesis there were no statistically significant differences between the groups after evaluation by the BI index. However, a statistically significant difference was noted between the groups by the RAP index among patients with deep hemiparesis. After 8 weeks of rehabilitation the group of patients who were treated with kinesiotherapy and functional electrical stimulation showed better statistically significant results of rehabilitation in respect to the control group with both the BI index and the RAP index (p<0,001). In conclusion, we can state that the patients in rehabilitation after a cerebrovascular accident require rehabilitation longer than 4 weeks. Walking rehabilitation after stroke is faster and more successful if we used functional electrical stimulation, in combination with kinesiotherapy, in patients with disabled extremities.

  7. MRI magnetic field stimulates rotational sensors of the brain.

    PubMed

    Roberts, Dale C; Marcelli, Vincenzo; Gillen, Joseph S; Carey, John P; Della Santina, Charles C; Zee, David S

    2011-10-11

    Vertigo in and around magnetic resonance imaging (MRI) machines has been noted for years [1, 2]. Several mechanisms have been suggested to explain these sensations [3, 4], yet without direct, objective measures, the cause is unknown. We found that all of our healthy human subjects developed a robust nystagmus while simply lying in the static magnetic field of an MRI machine. Patients lacking labyrinthine function did not. We use the pattern of eye movements as a measure of vestibular stimulation to show that the stimulation is static (continuous, proportional to static magnetic field strength, requiring neither head movement nor dynamic change in magnetic field strength) and directional (sensitive to magnetic field polarity and head orientation). Our calculations and geometric model suggest that magnetic vestibular stimulation (MVS) derives from a Lorentz force resulting from interaction between the magnetic field and naturally occurring ionic currents in the labyrinthine endolymph fluid. This force pushes on the semicircular canal cupula, leading to nystagmus. We emphasize that the unique, dual role of endolymph in the delivery of both ionic current and fluid pressure, coupled with the cupula's function as a pressure sensor, makes magnetic-field-induced nystagmus and vertigo possible. Such effects could confound functional MRI studies of brain behavior, including resting-state brain activity.

  8. MRI Magnetic Field Stimulates Rotational Sensors of the Brain

    PubMed Central

    Roberts, Dale C.; Marcelli, Vincenzo; Gillen, Joseph S.; Carey, John P.; Santina, Charles C. Della; Zee, David S.

    2012-01-01

    SUMMARY Vertigo in and around MRI machines has been noted for years [1, 2]. Several mechanisms have been suggested to explain these sensations [3, 4], yet without direct, objective measures, the cause is unknown. We found that all healthy human subjects lying in the static magnetic field of an MRI machine develop a robust nystagmus. Patients lacking labyrinthine function do not. Here we use the pattern of eye movements as a measure of vestibular stimulation to show that the stimulation is static (continuous, proportional to static magnetic field strength, requiring neither head movement nor dynamic change in magnetic field strength) and directional (sensitive to magnetic field polarity and head orientation). Our calculations and geometric model suggest that magnetic vestibular stimulation derives from a Lorentz force due to interaction between the magnetic field and naturally-occurring ionic currents in the labyrinthine endolymph fluid. This force pushes on the semicircular canal cupula, leading to nystagmus. We emphasize that the unique, dual role of endolymph in the delivery of both ionic current and fluid pressure, coupled with the cupula’s function as a pressure sensor, makes magnetic field induced nystagmus and vertigo possible. Such effects could confound fMRI studies of brain behavior, including resting-state brain activity. PMID:21945276

  9. Deep brain stimulation for movement and other neurologic disorders.

    PubMed

    DeLong, Mahlon; Wichmann, Thomas

    2012-08-01

    Deep brain stimulation (DBS) was introduced as a treatment for patients with parkinsonism and other movement disorders in the early 1990s. The technique rapidly became the treatment of choice for these conditions, and is now also being explored for other diseases, including Tourette syndrome, gait disorders, epilepsy, obsessive-compulsive disorder, and depression. Although the mechanism of action of DBS remains unclear, it is recognized that DBS works through focal modulation of functionally specific circuits. The fact that the same DBS parameters and targets can be used in multiple diseases suggests that DBS does not counteract the pathophysiology of any specific disorder, but acts to replace pathologic activities in disease-affected brain circuits with activity that is more easily tolerated. Despite the progress made in the use of DBS, much remains to be done to fully realize the potential of this therapy. We describe some of the most active areas of research in this field, both in terms of exploration of new targets and stimulation parameters, and in terms of new electrode or stimulator designs.

  10. Deep Brain Stimulation: Current and Future Clinical Applications

    PubMed Central

    Lyons, Mark K.

    2011-01-01

    Deep brain stimulation (DBS) has developed during the past 20 years as a remarkable treatment option for several different disorders. Advances in technology and surgical techniques have essentially replaced ablative procedures for most of these conditions. Stimulation of the ventralis intermedius nucleus of the thalamus has clearly been shown to markedly improve tremor control in patients with essential tremor and tremor related to Parkinson disease. Symptoms of bradykinesia, tremor, gait disturbance, and rigidity can be significantly improved in patients with Parkinson disease. Because of these improvements, a decrease in medication can be instrumental in reducing the disabling features of dyskinesias in such patients. Primary dystonia has been shown to respond well to DBS of the globus pallidus internus. The success of these procedures has led to application of these techniques to multiple other debilitating conditions such as neuropsychiatric disorders, intractable pain, epilepsy, camptocormia, headache, restless legs syndrome, and Alzheimer disease. The literature analysis was performed using a MEDLINE search from 1980 through 2010 with the term deep brain stimulation, and several double-blind and larger case series were chosen for inclusion in this review. The exact mechanism of DBS is not fully understood. This review summarizes many of the current and potential future clinical applications of this technology. PMID:21646303

  11. Modulation of Untruthful Responses with Non-Invasive Brain Stimulation

    PubMed Central

    Fecteau, Shirley; Boggio, Paulo; Fregni, Felipe; Pascual-Leone, Alvaro

    2013-01-01

    Deceptive abilities have long been studied in relation to personality traits. More recently, studies explored the neural substrates associated with deceptive skills suggesting a critical role of the prefrontal cortex. Here we investigated whether non-invasive brain stimulation over the dorsolateral prefrontal cortex (DLPFC) could modulate generation of untruthful responses about subject’s personal life across contexts (i.e., deceiving on guilt-free questions on daily activities; generating previously memorized lies about past experience; and producing spontaneous lies about past experience), as well as across modality responses (verbal and motor responses). Results reveal that real, but not sham, transcranial direct current stimulation (tDCS) over the DLPFC can reduce response latency for untruthful over truthful answers across contexts and modality responses. Also, contexts of lies seem to incur a different hemispheric laterality. These findings add up to previous studies demonstrating that it is possible to modulate some processes involved in generation of untruthful answers by applying non-invasive brain stimulation over the DLPFC and extend these findings by showing a differential hemispheric contribution of DLPFCs according to contexts. PMID:23550273

  12. Transcutaneous Electrical Acupoint Stimulation in Children with Autism and Its Impact on Plasma Levels of Arginine-Vasopressin and Oxytocin: A Prospective Single-Blinded Controlled Study

    ERIC Educational Resources Information Center

    Zhang, Rong; Jia, Mei-Xiang; Zhang, Ji-Sui; Xu, Xin-Jie; Shou, Xiao-Jing; Zhang, Xiu-Ting; Li, Li; Li, Ning; Han, Song-Ping; Han, Ji-Sheng

    2012-01-01

    Acupuncture increases brain levels of arginine-vasopressin (AVP) and oxytocin (OXT), which are known to be involved in the modulation of mammalian social behavior. Transcutaneous electrical acupoint stimulation (TEAS) is often used clinically to produce a similar stimulation to that of acupuncture on the acupoints. In the present study, TEAS was…

  13. Deep brain stimulation modulates nonsense-mediated RNA decay in Parkinson’s patients leukocytes

    PubMed Central

    2013-01-01

    Background Nonsense-Mediated decay (NMD) selectively degrades mRNA transcripts that carry premature stop codons. NMD is often triggered by alternative splicing (AS) modifications introducing such codons. NMD plays an important regulatory role in brain neurons, but the in vivo dynamics of AS and NMD changes in neurological diseases and under treatment were scarcely explored. Results Here, we report exon arrays analysis of leukocyte mRNA AS events prior to and following Deep Brain Stimulation (DBS) neurosurgery, which efficiently improves the motor symptoms of Parkinson’s disease (PD), the leading movement disorder, and is increasingly applied to treat other diseases. We also analyzed publicly available exon array dataset of whole blood cells from mixed early and advanced PD patients. Our in-house exon array dataset of leukocyte transcripts was derived from advanced PD patients’ pre- and post-DBS stimulation and matched healthy control volunteers. The mixed cohort exhibited 146 AS changes in 136 transcripts compared to controls, including 9 NMD protein-level assessed events. In comparison, PD patients from our advanced cohort differed from healthy controls by 319 AS events in 280 transcripts, assessed as inducing 27 protein-level NMD events. DBS stimulation induced 254 AS events in 229 genes as compared to the pre-DBS state including 44 NMD inductions. A short, one hour electrical stimulus cessation caused 234 AS changes in 125 genes compared to ON-stimulus state, 22 of these were assessed for NMD. Functional analysis highlighted disease-induced DNA damage and inflammatory control and its reversal under ON and OFF stimulus as well as alternative splicing in all the tested states. Conclusions The study findings indicate a potential role for NMD both in PD and following electrical brain stimulation. Furthermore, our current observations entail future implications for developing therapies for PD, and for interfering with the impaired molecular mechanisms that

  14. Chronic Spinal Cord Electrical Stimulation Protects Against 6-hydroxydopamine Lesions

    NASA Astrophysics Data System (ADS)

    Yadav, Amol P.; Fuentes, Romulo; Zhang, Hao; Vinholo, Thais; Wang, Chi-Han; Freire, Marco Aurelio M.; Nicolelis, Miguel A. L.

    2014-01-01

    Although L-dopa continues to be the gold standard for treating motor symptoms of Parkinson's disease (PD), it presents long-term complications. Deep brain stimulation is effective, but only a small percentage of idiopathic PD patients are eligible. Based on results in animal models and a handful of patients, dorsal column stimulation (DCS) has been proposed as a potential therapy for PD. To date, the long-term effects of DCS in animal models have not been quantified. Here, we report that DCS applied twice a week in rats treated with bilateral 6-OHDA striatal infusions led to a significant improvement in symptoms. DCS-treated rats exhibited a higher density of dopaminergic innervation in the striatum and higher neuronal cell count in the substantia nigra pars compacta compared to a control group. These results suggest that DCS has a chronic therapeutical and neuroprotective effect, increasing its potential as a new clinical option for treating PD patients.

  15. Comparison of Three Non-Invasive Transcranial Electrical Stimulation Methods for Increasing Cortical Excitability

    PubMed Central

    Inukai, Yasuto; Saito, Kei; Sasaki, Ryoki; Tsuiki, Shota; Miyaguchi, Shota; Kojima, Sho; Masaki, Mitsuhiro; Otsuru, Naofumi; Onishi, Hideaki

    2016-01-01

    Transcranial direct current stimulation (tDCS) is a representative non-invasive brain stimulation method (NIBS). tDCS increases cortical excitability not only in healthy individuals, but also in stroke patients where it contributes to motor function improvement. Recently, two additional types of transcranial electrical stimulation (tES) methods have been introduced that may also prove beneficial for stimulating cortical excitability; these are transcranial random noise stimulation (tRNS) and transcranial alternating current stimulation (tACS). However, comparison of tDCS with tRNS and tACS, in terms of efficacy in cortical excitability alteration, has not been reported thus far. We compared the efficacy of the three different tES methods for increasing cortical excitability using the same subject population and same current intensity. Fifteen healthy subjects participated in this study. Similar stimulation patterns (1.0 mA and 10 min) were used for the three conditions of stimulation (tDCS, tRNS, and tACS). Cortical excitability was explored via single-pulse TMS elicited motor evoked potentials (MEPs). Compared with pre-measurements, MEPs significantly increased with tDCS, tACS, and tRNS (p < 0.05). Compared with sham measurements, significant increases in MEPs were also observed with tRNS and tACS (p < 0.05), but not with tDCS. In addition, a significant correlation of the mean stimulation effect was observed between tRNS and tACS (p = 0.019, r = 0.598). tRNS induced a significant increase in MEP compared with the Pre or Sham at all time points. tRNS resulted in the largest significant increase in MEPs. These findings suggest that tRNS is the most effective tES method and should be considered as part of a treatment plan for improving motor function in stroke patients. PMID:28082887

  16. Restoration of grasp following paralysis through brain-controlled stimulation of muscles.

    PubMed

    Ethier, C; Oby, E R; Bauman, M J; Miller, L E

    2012-05-17

    Patients with spinal cord injury lack the connections between brain and spinal cord circuits that are essential for voluntary movement. Clinical systems that achieve muscle contraction through functional electrical stimulation (FES) have proven to be effective in allowing patients with tetraplegia to regain control of hand movements and to achieve a greater measure of independence in daily activities. In existing clinical systems, the patient uses residual proximal limb movements to trigger pre-programmed stimulation that causes the paralysed muscles to contract, allowing use of one or two basic grasps. Instead, we have developed an FES system in primates that is controlled by recordings made from microelectrodes permanently implanted in the brain. We simulated some of the effects of the paralysis caused by C5 or C6 spinal cord injury by injecting rhesus monkeys with a local anaesthetic to block the median and ulnar nerves at the elbow. Then, using recordings from approximately 100 neurons in the motor cortex, we predicted the intended activity of several of the paralysed muscles, and used these predictions to control the intensity of stimulation of the same muscles. This process essentially bypassed the spinal cord, restoring to the monkeys voluntary control of their paralysed muscles. This achievement is a major advance towards similar restoration of hand function in human patients through brain-controlled FES. We anticipate that in human patients, this neuroprosthesis would allow much more flexible and dexterous use of the hand than is possible with existing FES systems.

  17. Anesthesia for deep brain stimulation in traumatic brain injury-induced hemidystonia.

    PubMed

    Jani, Jill M; Oluigbo, Chima O; Reddy, Srijaya K

    2015-06-01

    Deep brain stimulation in an awake patient presents several unique challenges to the anesthesiologist. It is important to understand the various stages of the procedure and the complexities of anesthetic management in order to have a successful surgical outcome and provide a safe environment for the patient.

  18. Preoperative transcutaneous electrical nerve stimulation for localizing superficial nerve paths.

    PubMed

    Natori, Yuhei; Yoshizawa, Hidekazu; Mizuno, Hiroshi; Hayashi, Ayato

    2015-12-01

    During surgery, peripheral nerves are often seen to follow unpredictable paths because of previous surgeries and/or compression caused by a tumor. Iatrogenic nerve injury is a serious complication that must be avoided, and preoperative evaluation of nerve paths is important for preventing it. In this study, transcutaneous electrical nerve stimulation (TENS) was used for an in-depth analysis of peripheral nerve paths. This study included 27 patients who underwent the TENS procedure to evaluate the peripheral nerve path (17 males and 10 females; mean age: 59.9 years, range: 18-83 years) of each patient preoperatively. An electrode pen coupled to an electrical nerve stimulator was used for superficial nerve mapping. The TENS procedure was performed on patients' major peripheral nerves that passed close to the surgical field of tumor resection or trauma surgery, and intraoperative damage to those nerves was apprehensive. The paths of the target nerve were detected in most patients preoperatively. The nerve paths of 26 patients were precisely under the markings drawn preoperatively. The nerve path of one patient substantially differed from the preoperative markings with numbness at the surgical region. During surgery, the nerve paths could be accurately mapped preoperatively using the TENS procedure as confirmed by direct visualization of the nerve. This stimulation device is easy to use and offers highly accurate mapping of nerves for surgical planning without major complications. The authors conclude that TENS is a useful tool for noninvasive nerve localization and makes tumor resection a safe and smooth procedure.

  19. Near-infrared signals associated with electrical stimulation of peripheral nerves

    PubMed Central

    Fantini, Sergio; Chen, Debbie K.; Martin, Jeffrey M.; Sassaroli, Angelo; Bergethon, Peter R.

    2011-01-01

    We report our studies on the optical signals measured non-invasively on electrically stimulated peripheral nerves. The stimulation consists of the delivery of 0.1 ms current pulses, below the threshold for triggering any visible motion, to a peripheral nerve in human subjects (we have studied the sural nerve and the median nerve). In response to electrical stimulation, we observe an optical signal that peaks at about 100 ms post-stimulus, on a much longer time scale than the few milliseconds duration of the electrical response, or sensory nerve action potential (SNAP). While the 100 ms optical signal we measured is not a direct optical signature of neural activation, it is nevertheless indicative of a mediated response to neural activation. We argue that this may provide information useful for understanding the origin of the fast optical signal (also on a 100 ms time scale) that has been measured non-invasively in the brain in response to cerebral activation. Furthermore, the optical response to peripheral nerve activation may be developed into a diagnostic tool for peripheral neuropathies, as suggested by the delayed optical signals (average peak time: 230 ms) measured in patients with diabetic neuropathy with respect to normal subjects (average peak time: 160 ms). PMID:22399834

  20. Near-infrared signals associated with electrical stimulation of peripheral nerves

    NASA Astrophysics Data System (ADS)

    Fantini, Sergio; Chen, Debbie K.; Martin, Jeffrey M.; Sassaroli, Angelo; Bergethon, Peter R.

    2009-02-01

    We report our studies on the optical signals measured non-invasively on electrically stimulated peripheral nerves. The stimulation consists of the delivery of 0.1 ms current pulses, below the threshold for triggering any visible motion, to a peripheral nerve in human subjects (we have studied the sural nerve and the median nerve). In response to electrical stimulation, we observe an optical signal that peaks at about 100 ms post-stimulus, on a much longer time scale than the few milliseconds duration of the electrical response, or sensory nerve action potential (SNAP). While the 100 ms optical signal we measured is not a direct optical signature of neural activation, it is nevertheless indicative of a mediated response to neural activation. We argue that this may provide information useful for understanding the origin of the fast optical signal (also on a 100 ms time scale) that has been measured non-invasively in the brain in response to cerebral activation. Furthermore, the optical response to peripheral nerve activation may be developed into a diagnostic tool for peripheral neuropathies, as suggested by the delayed optical signals (average peak time: 230 ms) measured in patients with diabetic neuropathy with respect to normal subjects (average peak time: 160 ms).

  1. Computational Modeling and Neuroimaging Techniques for Targeting during Deep Brain Stimulation

    PubMed Central

    Sweet, Jennifer A.; Pace, Jonathan; Girgis, Fady; Miller, Jonathan P.

    2016-01-01

    Accurate surgical localization of the varied targets for deep brain stimulation (DBS) is a process undergoing constant evolution, with increasingly sophisticated techniques to allow for highly precise targeting. However, despite the fastidious placement of electrodes into specific structures within the brain, there is increasing evidence to suggest that the clinical effects of DBS are likely due to the activation of widespread neuronal networks directly and indirectly influenced by the stimulation of a given target. Selective activation of these complex and inter-connected pathways may further improve the outcomes of currently treated diseases by targeting specific fiber tracts responsible for a particular symptom in a patient-specific manner. Moreover, the delivery of such focused stimulation may aid in the discovery of new targets for electrical stimulation to treat additional neurological, psychiatric, and even cognitive disorders. As such, advancements in surgical targeting, computational modeling, engineering designs, and neuroimaging techniques play a critical role in this process. This article reviews the progress of these applications, discussing the importance of target localization for DBS, and the role of computational modeling and novel neuroimaging in improving our understanding of the pathophysiology of diseases, and thus paving the way for improved selective target localization using DBS. PMID:27445709

  2. Deep Brain Stimulation Results in Local Glutamate and Adenosine Release: Investigation into the Role of Astrocytes

    PubMed Central

    Tawfik, Vivianne L.; Chang, Su-Youne; Hitti, Frederick L.; Roberts, David W.; Leiter, James C.; Jovanovic, Svetlana; Lee, Kendall H.

    2010-01-01

    Objective Several neurologic disorders are treated with deep brain stimulation; however, the mechanism underlying its ability to abolish oscillatory phenomena associated with diseases as diverse as Parkinson's and epilepsy remain largely unknown. In this study we sought to investigate the role of specific neurotransmitters in deep brain stimulation (DBS) and determine the role of non-neuronal cells in its mechanism of action. Methods We used the ferret thalamic slice preparation in vitro, which exhibits spontaneous spindle oscillations, in order to determine the effect of high-frequency stimulation on neurotransmitter release. We then performed experiments using an in vitro astrocyte culture to investigate the role of glial transmitter release in HFS-mediated abolishment of spindle oscillations. Results In this series of experiments we demonstrated that glutamate and adenosine release in ferret slices was able to abolish spontaneous spindle oscillations. The glutamate release was still evoked in the presence of the Na+ channel blocker tetrodotoxin (TTX), but was eliminated with the vesicular H+-ATPase inhibitor, bafilomycin, and the calcium chelator, BAPTA-AM. Furthermore, electrical stimulation of purified primary astrocytic cultures was able to evoke intracellular calcium transients and glutamate release, and bath application of BAPTA-AM inhibited glutamate release in this setting. Conclusion These results suggest that vesicular astrocytic neurotransmitter release may be an important mechanism by which DBS is able to achieve clinical benefits. PMID:20644423

  3. Generation of Electrical Power from Stimulated Muscle Contractions Evaluated

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David B.

    2004-01-01

    This project is a collaborative effort between NASA Glenn Research Center's Revolutionary Aeropropulsion Concepts (RAC) Project, part of the NASA Aerospace Propulsion and Power Program of the Aerospace Technology Enterprise, and Case Western Reserve University's Cleveland Functional Electrical Stimulation (FES) Center. The RAC Project foresees implantable power requirements for future applications such as organically based sensor platforms and robotics that can interface with the human senses. One of the goals of the FES Center is to develop a totally implantable neural prosthesis. This goal is based on feedback from patients who would prefer a system with an internal power source over the currently used system with an external power source. The conversion system under investigation would transform the energy produced from a stimulated muscle contraction into electrical energy. We hypothesize that the output power of the system will be greater than the input power necessary to initiate, sustain, and control the electrical conversion system because of the stored potential energy of the muscle. If the system can be made biocompatible, durable, and with the potential for sustained use, then the biological power source will be a viable solution.

  4. Electro-acoustic stimulation. Acoustic and electric pitch comparisons.

    PubMed

    McDermott, Hugh; Sucher, Catherine; Simpson, Andrea

    2009-01-01

    For simultaneous acoustic and electric stimulation to be perceived as complementary, it may be beneficial for hearing aids and cochlear implants (CI) to be adjusted to provide compatible pitch sensations. To this end, estimates of the pitch perceived for a set of acoustic and electric stimuli were obtained from 14 CI users who had usable low-frequency hearing, either in the non-implanted ear or in both ears. The subjects assigned numerical pitch estimates to each of 5 acoustic pure tones and 5 single-electrode electric pulse trains. On average, the acoustic frequency that corresponded in pitch to stimulation on the most apical electrode was approximately 480 Hz. This was about 1 octave lower than the frequency expected from Greenwood's frequency-place function applied to estimates of the electrode insertion angle based on X-ray images. Furthermore, evidence was found suggesting that pitch decreased with increasing duration of CI use. Pitch estimates from 5 subjects who completed the experiment before experiencing any other sounds through their CI were generally close to the values expected from a recently published frequency map for the cochlear spiral ganglion. Taken together, these findings suggest that some perceptual adaptation may occur that would compensate in part for the apparent mismatch between the intracochlear position of the electrodes and the acoustic frequencies assigned to them in the sound processor.

  5. Deep brain stimulation activation volumes and their association with neurophysiological mapping and therapeutic outcomes

    PubMed Central

    Maks, Christopher B.; Butson, Christopher R.; Walter, Benjamin L.; Vitek, Jerrold L.; McIntyre, Cameron C.

    2010-01-01

    Objective Despite the clinical success of deep brain stimulation (DBS) for the treatment of Parkinson’s disease (PD), little is known about the electrical spread of the stimulation. The primary goal of this study was to integrate neuroimaging, neurophysiology, and neurostimulation data sets from 10 PD patients, unilaterally implanted with subthalamic nucleus (STN) DBS electrodes, to identify the theoretical volume of tissue activated (VTA) by clinically defined therapeutic stimulation parameters. Methods Each patient-specific model was created with a series of five steps: 1) definition of the neurosurgical stereotactic coordinate system within the context of pre-operative imaging data; 2) entry of intra-operative microelectrode recording locations from neurophysiologically defined thalamic, subthalamic, and substantia nigra neurons into the context of the imaging data; 3) fitting a 3D brain atlas to the neuroanatomy and neurophysiology of the patient; 4) positioning the DBS electrode in the documented stereotactic location, verified by post-operative imaging data; and 5) calculation of the VTA using a diffusion tensor based finite element neurostimulation model. Results The patient-specific models show that therapeutic benefit was achieved with direct stimulation of a wide range of anatomical structures in the subthalamic region. Interestingly, of the 5 patients exhibiting a greater than 40% improvement in their unified PD rating scale (UPDRS), all but one had the majority of their VTA outside the atlas defined borders of the STN. Further, of the 5 patients with less than 40% UPDRS improvement all but one had the majority of their VTA inside the STN. Conclusions Our results are consistent with previous studies suggesting that therapeutic benefit is associated with electrode contacts near the dorsal border of the STN, and provide quantitative estimates of the electrical spread of the stimulation in a clinically relevant context. PMID:18403440

  6. Vocal Tremor: Novel Therapeutic Target for Deep Brain Stimulation

    PubMed Central

    Ravikumar, Vinod K.; Ho, Allen L.; Parker, Jonathon J.; Erickson-DiRenzo, Elizabeth; Halpern, Casey H.

    2016-01-01

    Tremulous voice is characteristically associated with essential tremor, and is referred to as essential vocal tremor (EVT). Current estimates suggest that up to 40% of individuals diagnosed with essential tremor also present with EVT, which is associated with an impaired quality of life. Traditional EVT treatments have demonstrated limited success in long-term management of symptoms. However, voice tremor has been noted to decrease in patients receiving deep brain stimulation (DBS) with the targeting of thalamic nuclei. In this study, we describe our multidisciplinary procedure for awake, frameless DBS with optimal stimulation targets as well as acoustic analysis and laryngoscopic assessment to quantify tremor reduction. Finally, we investigate the most recent clinical evidence regarding the procedure. PMID:27735866

  7. Patient specific Parkinson's disease detection for adaptive deep brain stimulation.

    PubMed

    Mohammed, Ameer; Zamani, Majid; Bayford, Richard; Demosthenous, Andreas

    2015-08-01

    Continuous deep brain stimulation for Parkinson's disease (PD) patients results in side effects and shortening of the pacemaker battery life. This can be remedied using adaptive stimulation. To achieve adaptive DBS, patient customized PD detection is required due to the inconsistency associated with biomarkers across patients and time. This paper proposes the use of patient specific feature extraction together with adaptive support vector machine (SVM) classifiers to create a patient customized detector for PD. The patient specific feature extraction is obtained using the extrema of the ratio between the PD and non-PD spectra bands of each patient as features, while the adaptive SVM classifier adjusts its decision boundary until a suitable model is obtained. This yields individualised features and classifier pairs for each patient. Datasets containing local field potentials of PD patients were used to validate the method. Six of the nine patient datasets tested achieved a classification accuracy greater than 98%. The adaptive detector is suitable for realization on chip.

  8. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease

    PubMed Central

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M.; Tan, Huiling

    2017-01-01

    Abstract Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson’s disease, elevations in beta activity (13–35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson’s disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this

  9. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease.

    PubMed

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M; Tan, Huiling; Brown, Peter

    2017-02-13

    Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson's disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could

  10. Weight change following deep brain stimulation for movement disorders.

    PubMed

    Strowd, Roy E; Cartwright, Michael S; Passmore, Leah V; Ellis, Thomas L; Tatter, Stephen B; Siddiqui, Mustafa S

    2010-08-01

    Patients with Parkinson's disease (PD) and essential tremor (ET) tend to lose weight progressively over years. Weight gain following deep brain stimulation (DBS) of the subthalamic nucleus (STN) for treatment of PD has been documented in several studies that were limited by small sample size and exclusive focus on PD patients with STN stimulation. The current study was undertaken to examine weight change in a large sample of movement disorder patients following DBS. A retrospective review was undertaken of 182 patient charts following DBS of the STN, ventralis intermedius nucleus of the thalamus (VIM), and globus pallidus internus (GPi). Weight was collected preoperatively and postoperatively up to 24 months following surgery. Data were adjusted for baseline weight and multivariate linear regression was performed with repeated measures to assess weight change. Statistically significant mean weight gain of 1.8 kg (2.8% increase from baseline, p = 0.0113) was observed at a rate of approximately 1 kg per year up to 24 months following surgery. This gain was not predicted by age, gender, diagnosis, or stimulation target in a multivariate model. Significant mean weight gain of 2.3 kg (p = 0.0124) or 4.2% was observed in our PD patients. Most patients with PD and ET gain weight following DBS, and this gain is not predicted by age, gender, diagnosis, or stimulation target.

  11. Current Topics in Deep Brain Stimulation for Parkinson Disease

    PubMed Central

    UMEMURA, Atsushi; OYAMA, Genko; SHIMO, Yasushi; NAKAJIMA, Madoka; NAKAJIMA, Asuka; JO, Takayuki; SEKIMOTO, Satoko; ITO, Masanobu; MITSUHASHI, Takumi; HATTORI, Nobutaka; ARAI, Hajime

    2016-01-01

    There is a long history of surgical treatment for Parkinson disease (PD). After pioneering trials and errors, the current primary surgical treatment for PD is deep brain stimulation (DBS). DBS is a promising treatment option for patients with medically refractory PD. However, there are still many problems and controversies associated with DBS. In this review, we discuss current issues in DBS for PD, including patient selection, clinical outcomes, complications, target selection, long-term outcomes, management of axial symptoms, timing of surgery, surgical procedures, cost-effectiveness, and new technology. PMID:27349658

  12. The Use of Deep Brain Stimulation in Tourette Syndrome

    PubMed Central

    Akbarian-Tefaghi, Ladan; Zrinzo, Ludvic; Foltynie, Thomas

    2016-01-01

    Tourette syndrome (TS) is a childhood neurobehavioural disorder, characterised by the presence of motor and vocal tics, typically starting in childhood but persisting in around 20% of patients into adulthood. In those patients who do not respond to pharmacological or behavioural therapy, deep brain stimulation (DBS) may be a suitable option for potential symptom improvement. This manuscript attempts to summarise the outcomes of DBS at different targets, explore the possible mechanisms of action of DBS in TS, as well as the potential of adaptive DBS. There will also be a focus on the future challenges faced in designing optimized trials. PMID:27548235

  13. Modulating Human Auditory Processing by Transcranial Electrical Stimulation

    PubMed Central

    Heimrath, Kai; Fiene, Marina; Rufener, Katharina S.; Zaehle, Tino

    2016-01-01

    Transcranial electrical stimulation (tES) has become a valuable research tool for the investigation of neurophysiological processes underlying human action and cognition. In recent years, striking evidence for the neuromodulatory effects of transcranial direct current stimulation, transcranial alternating current stimulation, and transcranial random noise stimulation has emerged. While the wealth of knowledge has been gained about tES in the motor domain and, to a lesser extent, about its ability to modulate human cognition, surprisingly little is known about its impact on perceptual processing, particularly in the auditory domain. Moreover, while only a few studies systematically investigated the impact of auditory tES, it has already been applied in a large number of clinical trials, leading to a remarkable imbalance between basic and clinical research on auditory tES. Here, we review the state of the art of tES application in the auditory domain focussing on the impact of neuromodulation on acoustic perception and its potential for clinical application in the treatment of auditory related disorders. PMID:27013969

  14. Carbon Nanofiber Nanoelectrodes for Neural Stimulation and Chemical Detection: The Era of "Smart" Deep Brain Stimulation

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica E.

    2016-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.

  15. Carbon Nanofiber Nanoelectrodes for Neural Stimulation and Chemical Detection: The Era of Smart Deep Brain Stimulation

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica E.

    2016-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable "smart" therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.

  16. Diffusion Tractography in Deep Brain Stimulation Surgery: A Review

    PubMed Central

    Calabrese, Evan

    2016-01-01

    Deep brain stimulation (DBS) is believed to exert its therapeutic effects through modulation of brain circuitry, yet conventional preoperative planning does not allow direct targeting or visualization of white matter pathways. Diffusion MRI tractography (DT) is virtually the only non-invasive method of visualizing structural connectivity in the brain, leading many to suggest its use to guide DBS targeting. DT-guided DBS not only has the potential to allow direct white matter targeting for established applications [e.g., Parkinson’s disease (PD), essential tremor (ET), dystonia], but may also aid in the discovery of new therapeutic targets for a variety of other neurologic and psychiatric diseases. Despite these exciting opportunities, DT lacks standardization and rigorous anatomic validation, raising significant concern for the use of such data in stereotactic brain surgery. This review covers the technical details, proposed methods, and initial clinical data for the use of DT in DBS surgery. Rather than focusing on specific disease applications, this review focuses on methods that can be applied to virtually any DBS target. PMID:27199677

  17. Computational modeling of an endovascular approach to deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Teplitzky, Benjamin A.; Connolly, Allison T.; Bajwa, Jawad A.; Johnson, Matthew D.

    2014-04-01

    Objective. Deep brain stimulation (DBS) therapy currently relies on a transcranial neurosurgical technique to implant one or more electrode leads into the brain parenchyma. In this study, we used computational modeling to investigate the feasibility of using an endovascular approach to target DBS therapy. Approach. Image-based anatomical reconstructions of the human brain and vasculature were used to identify 17 established and hypothesized anatomical targets of DBS, of which five were found adjacent to a vein or artery with intraluminal diameter ≥1 mm. Two of these targets, the fornix and subgenual cingulate white matter (SgCwm) tracts, were further investigated using a computational modeling framework that combined segmented volumes of the vascularized brain, finite element models of the tissue voltage during DBS, and multi-compartment axon models to predict the direct electrophysiological effects of endovascular DBS. Main results. The models showed that: (1) a ring-electrode conforming to the vessel wall was more efficient at neural activation than a guidewire design, (2) increasing the length of a ring-electrode had minimal effect on neural activation thresholds, (3) large variability in neural activation occurred with suboptimal placement of a ring-electrode along the targeted vessel, and (4) activation thresholds for the fornix and SgCwm tracts were comparable for endovascular and stereotactic DBS, though endovascular DBS was able to produce significantly larger contralateral activation for a unilateral implantation. Significance. Together, these results suggest that endovascular DBS can serve as a complementary approach to stereotactic DBS in select cases.

  18. Deep brain stimulation for the treatment of vegetative state.

    PubMed

    Yamamoto, Takamitsu; Katayama, Yoichi; Kobayashi, Kazutaka; Oshima, Hideki; Fukaya, Chikashi; Tsubokawa, Takashi

    2010-10-01

    One hundred and seven patients in vegetative state (VS) were evaluated neurologically and electrophysiologically over 3 months (90 days) after the onset of brain injury. Among these patients, 21 were treated with deep brain stimulation (DBS). The stimulation sites were the mesencephalic reticular formation (two patients) and centromedian-parafascicularis nucleus complex (19 cases). Eight of the patients recovered from VS and were able to obey verbal commands at 13 and 10 months in the case of head trauma and at 19, 14, 13, 12, 12 and 8 months in the case of vascular disease after comatose brain injury, and no patients without DBS recovered from VS spontaneously within 24 months after brain injury. The eight patients who recovered from VS showed desynchronization on continuous EEG frequency analysis. The Vth wave of the auditory brainstem response and N20 of the somatosensory evoked potential could be recorded, although with a prolonged latency, and the pain-related P250 was recorded with an amplitude of > 7 μV. Sixteen (14.9%) of the 107 VS patients satisfied these criteria in our electrophysiological evaluation, 10 of whom were treated with DBS and six of whom were not treated with DBS. In these 16 patients, the recovery rate from VS was different between the DBS therapy group and the no DBS therapy group (P < 0.01, Fisher's exact probability test) These findings indicate that DBS may be useful for the recovery of patients from VS if the candidates are selected on the basis of electrophysiological criteria.

  19. Photoacoustic microscopy of microvascular responses to cortical electrical stimulation

    NASA Astrophysics Data System (ADS)

    Tsytsarev, Vassiliy; Hu, Song; Yao, Junjie; Maslov, Konstantin; Barbour, Dennis L.; Wang, Lihong V.

    2011-07-01

    Advances in the functional imaging of cortical hemodynamics have greatly facilitated the understanding of neurovascular coupling. In this study, label-free optical-resolution photoacoustic microscopy (OR-PAM) was used to monitor microvascular responses to direct electrical stimulations of the mouse somatosensory cortex through a cranial opening. The responses appeared in two forms: vasoconstriction and vasodilatation. The transition between these two forms of response was observed in single vessels by varying the stimulation intensity. Marked correlation was found between the current-dependent responses of two daughter vessels bifurcating from the same parent vessel. Statistical analysis of twenty-seven vessels from three different animals further characterized the spatial-temporal features and the current dependence of the microvascular response. Our results demonstrate that OR-PAM is a valuable tool to study neurovascular coupling at the microscopic level.

  20. Nonparametric Model of Smooth Muscle Force Production During Electrical Stimulation.

    PubMed

    Cole, Marc; Eikenberry, Steffen; Kato, Takahide; Sandler, Roman A; Yamashiro, Stanley M; Marmarelis, Vasilis Z

    2017-03-01

    A nonparametric model of smooth muscle tension response to electrical stimulation was estimated using the Laguerre expansion technique of nonlinear system kernel estimation. The experimental data consisted of force responses of smooth muscle to energy-matched alternating single pulse and burst current stimuli. The burst stimuli led to at least a 10-fold increase in peak force in smooth muscle from Mytilus edulis, despite the constant energy constraint. A linear model did not fit the data. However, a second-order model fit the data accurately, so the higher-order models were not required to fit the data. Results showed that smooth muscle force response is not linearly related to the stimulation power.

  1. Restoration of movement using functional electrical stimulation and Bayes' theorem.

    PubMed

    Seifert, Heather M; Fuglevand, Andrew J

    2002-11-01

    Various computational approaches have been applied to predict aspects of animal behavior from the recorded activity of populations of neurons. Here we invert this process to predict the requisite neuromuscular activity associated with specified motor behaviors. A probabilistic method based on Bayes' theorem was used to predict the patterns of muscular activity needed to produce various types of desired finger movements. The profiles of predicted activity were then used to drive frequency-modulated muscle stimulators to evoke multijoint finger movements. Comparison of movements generated by electrical stimulation with desired movements yielded root mean squared errors between approximately 18 and 26%. This reasonable correspondence between desired and evoked movements suggests that this approach might serve as a useful strategy to control neuroprosthetic systems that aim to restore movement to paralyzed individuals.

  2. Calcium Activation Profile In Electrically Stimulated Intact Rat Heart Cells

    NASA Astrophysics Data System (ADS)

    Geerts, Hugo; Nuydens, Rony; Ver Donck, Luc; Nuyens, Roger; De Brabander, Marc; Borgers, Marcel

    1988-06-01

    Recent advances in fluorescent probe technology and image processing equipment have made available the measurement of calcium in living systems on a real-time basis. We present the use of the calcium indicator Fura-2 in intact normally stimulated rat heart cells for the spatial and dynamic measurement of the calcium excitation profile. After electric stimulation (1 Hz), the activation proceeds from the center of the myocyte toward the periphery. Within two frame times (80 ms), the whole cell is activated. The activation is slightly faster in the center of the cell than in the periphery. The mean recovery time is 200-400 ms. There is no difference along the cell's long axis. The effect of a beta-agonist and of a calcium antagonist is described.

  3. Technical Rebuilding of Movement Function Using Functional Electrical Stimulation