Science.gov

Sample records for electrical brain stimulation

  1. Deep Brain Electrical Stimulation in Epilepsy

    NASA Astrophysics Data System (ADS)

    Rocha, Luisa L.

    2008-11-01

    The deep brain electrical stimulation has been used for the treatment of neurological disorders such as Parkinson's disease, chronic pain, depression and epilepsy. Studies carried out in human brain indicate that the application of high frequency electrical stimulation (HFS) at 130 Hz in limbic structures of patients with intractable temporal lobe epilepsy abolished clinical seizures and significantly decreased the number of interictal spikes at focus. The anticonvulsant effects of HFS seem to be more effective in patients with less severe epilepsy, an effect associated with a high GABA tissue content and a low rate of cell loss. In addition, experiments using models of epilepsy indicate that HFS (pulses of 60 μs width at 130 Hz at subthreshold current intensity) of specific brain areas avoids the acquisition of generalized seizures and enhances the postictal seizure suppression. HFS is also able to modify the status epilepticus. It is concluded that the effects of HFS may be a good strategy to reduce or avoid the epileptic activity.

  2. Electrical stimulation of a small brain area reversibly disrupts consciousness.

    PubMed

    Koubeissi, Mohamad Z; Bartolomei, Fabrice; Beltagy, Abdelrahman; Picard, Fabienne

    2014-08-01

    The neural mechanisms that underlie consciousness are not fully understood. We describe a region in the human brain where electrical stimulation reproducibly disrupted consciousness. A 54-year-old woman with intractable epilepsy underwent depth electrode implantation and electrical stimulation mapping. The electrode whose stimulation disrupted consciousness was between the left claustrum and anterior-dorsal insula. Stimulation of electrodes within 5mm did not affect consciousness. We studied the interdependencies among depth recording signals as a function of time by nonlinear regression analysis (h(2) coefficient) during stimulations that altered consciousness and stimulations of the same electrode at lower current intensities that were asymptomatic. Stimulation of the claustral electrode reproducibly resulted in a complete arrest of volitional behavior, unresponsiveness, and amnesia without negative motor symptoms or mere aphasia. The disruption of consciousness did not outlast the stimulation and occurred without any epileptiform discharges. We found a significant increase in correlation for interactions affecting medial parietal and posterior frontal channels during stimulations that disrupted consciousness compared with those that did not. Our findings suggest that the left claustrum/anterior insula is an important part of a network that subserves consciousness and that disruption of consciousness is related to increased EEG signal synchrony within frontal-parietal networks.

  3. Electrical stimulation of a small brain area reversibly disrupts consciousness.

    PubMed

    Koubeissi, Mohamad Z; Bartolomei, Fabrice; Beltagy, Abdelrahman; Picard, Fabienne

    2014-08-01

    The neural mechanisms that underlie consciousness are not fully understood. We describe a region in the human brain where electrical stimulation reproducibly disrupted consciousness. A 54-year-old woman with intractable epilepsy underwent depth electrode implantation and electrical stimulation mapping. The electrode whose stimulation disrupted consciousness was between the left claustrum and anterior-dorsal insula. Stimulation of electrodes within 5mm did not affect consciousness. We studied the interdependencies among depth recording signals as a function of time by nonlinear regression analysis (h(2) coefficient) during stimulations that altered consciousness and stimulations of the same electrode at lower current intensities that were asymptomatic. Stimulation of the claustral electrode reproducibly resulted in a complete arrest of volitional behavior, unresponsiveness, and amnesia without negative motor symptoms or mere aphasia. The disruption of consciousness did not outlast the stimulation and occurred without any epileptiform discharges. We found a significant increase in correlation for interactions affecting medial parietal and posterior frontal channels during stimulations that disrupted consciousness compared with those that did not. Our findings suggest that the left claustrum/anterior insula is an important part of a network that subserves consciousness and that disruption of consciousness is related to increased EEG signal synchrony within frontal-parietal networks. PMID:24967698

  4. Giovanni Aldini: from animal electricity to human brain stimulation.

    PubMed

    Parent, André

    2004-11-01

    Two hundred years ago, Giovanni Aldini published a highly influential book that reported experiments in which the principles of Luigi Galvani (animal electricity) and Alessandro Volta (bimetallic electricity) were used together for the first time. Aldini was born in Bologna in 1762 and graduated in physics at the University of his native town in 1782. As nephew and assistant of Galvani, he actively participated in a series of crucial experiments with frog's muscles that led to the idea that electricity was the long-sought vital force coursing from brain to muscles. Aldini became professor of experimental physics at the University of Bologna in 1798. He traveled extensively throughout Europe, spending much time defending the concept of his discreet uncle against the incessant attacks of Volta, who did not believe in animal electricity. Aldini used Volta's bimetallic pile to apply electric current to dismembered bodies of animals and humans; these spectacular galvanic reanimation experiments made a strong and enduring impression on his contemporaries. Aldini also treated patients with personality disorders and reported complete rehabilitation following transcranial administration of electric current. Aldini's work laid the ground for the development of various forms of electrotherapy that were heavily used later in the 19th century. Even today, deep brain stimulation, a procedure currently employed to relieve patients with motor or behavioral disorders, owes much to Aldini and galvanism. In recognition of his merits, Aldini was made a knight of the Iron Crown and a councillor of state at Milan, where he died in 1834.

  5. Giovanni Aldini: from animal electricity to human brain stimulation.

    PubMed

    Parent, André

    2004-11-01

    Two hundred years ago, Giovanni Aldini published a highly influential book that reported experiments in which the principles of Luigi Galvani (animal electricity) and Alessandro Volta (bimetallic electricity) were used together for the first time. Aldini was born in Bologna in 1762 and graduated in physics at the University of his native town in 1782. As nephew and assistant of Galvani, he actively participated in a series of crucial experiments with frog's muscles that led to the idea that electricity was the long-sought vital force coursing from brain to muscles. Aldini became professor of experimental physics at the University of Bologna in 1798. He traveled extensively throughout Europe, spending much time defending the concept of his discreet uncle against the incessant attacks of Volta, who did not believe in animal electricity. Aldini used Volta's bimetallic pile to apply electric current to dismembered bodies of animals and humans; these spectacular galvanic reanimation experiments made a strong and enduring impression on his contemporaries. Aldini also treated patients with personality disorders and reported complete rehabilitation following transcranial administration of electric current. Aldini's work laid the ground for the development of various forms of electrotherapy that were heavily used later in the 19th century. Even today, deep brain stimulation, a procedure currently employed to relieve patients with motor or behavioral disorders, owes much to Aldini and galvanism. In recognition of his merits, Aldini was made a knight of the Iron Crown and a councillor of state at Milan, where he died in 1834. PMID:15595271

  6. Visualizing Simulated Electrical Fields from Electroencephalography and Transcranial Electric Brain Stimulation: A Comparative Evaluation

    PubMed Central

    Eichelbaum, Sebastian; Dannhauer, Moritz; Hlawitschka, Mario; Brooks, Dana; Knösche, Thomas R.; Scheuermann, Gerik

    2014-01-01

    Electrical activity of neuronal populations is a crucial aspect of brain activity. This activity is not measured directly but recorded as electrical potential changes using head surface electrodes (electroencephalogram - EEG). Head surface electrodes can also be deployed to inject electrical currents in order to modulate brain activity (transcranial electric stimulation techniques) for therapeutic and neuroscientific purposes. In electroencephalography and noninvasive electric brain stimulation, electrical fields mediate between electrical signal sources and regions of interest (ROI). These fields can be very complicated in structure, and are influenced in a complex way by the conductivity profile of the human head. Visualization techniques play a central role to grasp the nature of those fields because such techniques allow for an effective conveyance of complex data and enable quick qualitative and quantitative assessments. The examination of volume conduction effects of particular head model parameterizations (e.g., skull thickness and layering), of brain anomalies (e.g., holes in the skull, tumors), location and extent of active brain areas (e.g., high concentrations of current densities) and around current injecting electrodes can be investigated using visualization. Here, we evaluate a number of widely used visualization techniques, based on either the potential distribution or on the current-flow. In particular, we focus on the extractability of quantitative and qualitative information from the obtained images, their effective integration of anatomical context information, and their interaction. We present illustrative examples from clinically and neuroscientifically relevant cases and discuss the pros and cons of the various visualization techniques. PMID:24821532

  7. [Changes in the brain spontaneous bioelectrical activity during transcranial electrical and electromagnetic stimulation].

    PubMed

    Sharova, E V; Mel'nikov, A V; Novikova, M R; Kulikov, M A; Grechenko, T N; Shekhter, E D; Zaslavskiĭ, A Iu

    2006-01-01

    In order to study systemic brain reactions on transcranial electrical or electromagnetic medical stimulation and specify the neurophysiological criteria of its efficiency, comparative clinical and experimental examination was performed with the analysis of spontaneous bioelectric activity and behavioral or clinical parameters. We examined 6 patients with prolonged posttraumatic unconsciousness states treated with electrical stimulation and 17 intact Wistar rats subjected to electromagnetic stimulation of the brain. The effect of the transcranial stimulation was shown to depend on the initial level of the intercentral interactions of brain bioelectrical activity, estimated by the EEG coherence. Hypersynchronization of biopotentials as the main element of the brain reactivity can be the most useful for the rehabilitation of patients with cerebral pathology in cases of initially lowered level of the intercentral interactions in the absence of pathologically strengthened functional connections.

  8. Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions.

    PubMed

    Opitz, Alexander; Zafar, Noman; Bockermann, Volker; Rohde, Veit; Paulus, Walter

    2014-01-01

    The spatial extent of transcranial magnetic stimulation (TMS) is of paramount interest for all studies employing this method. It is generally assumed that the induced electric field is the crucial parameter to determine which cortical regions are excited. While it is difficult to directly measure the electric field, one usually relies on computational models to estimate the electric field distribution. Direct electrical stimulation (DES) is a local brain stimulation method generally considered the gold standard to map structure-function relationships in the brain. Its application is typically limited to patients undergoing brain surgery. In this study we compare the computationally predicted stimulation area in TMS with the DES area in six patients with tumors near precentral regions. We combine a motor evoked potential (MEP) mapping experiment for both TMS and DES with realistic individual finite element method (FEM) simulations of the electric field distribution during TMS and DES. On average, stimulation areas in TMS and DES show an overlap of up to 80%, thus validating our computational physiology approach to estimate TMS excitation volumes. Our results can help in understanding the spatial spread of TMS effects and in optimizing stimulation protocols to more specifically target certain cortical regions based on computational modeling.

  9. Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions.

    PubMed

    Opitz, Alexander; Zafar, Noman; Bockermann, Volker; Rohde, Veit; Paulus, Walter

    2014-01-01

    The spatial extent of transcranial magnetic stimulation (TMS) is of paramount interest for all studies employing this method. It is generally assumed that the induced electric field is the crucial parameter to determine which cortical regions are excited. While it is difficult to directly measure the electric field, one usually relies on computational models to estimate the electric field distribution. Direct electrical stimulation (DES) is a local brain stimulation method generally considered the gold standard to map structure-function relationships in the brain. Its application is typically limited to patients undergoing brain surgery. In this study we compare the computationally predicted stimulation area in TMS with the DES area in six patients with tumors near precentral regions. We combine a motor evoked potential (MEP) mapping experiment for both TMS and DES with realistic individual finite element method (FEM) simulations of the electric field distribution during TMS and DES. On average, stimulation areas in TMS and DES show an overlap of up to 80%, thus validating our computational physiology approach to estimate TMS excitation volumes. Our results can help in understanding the spatial spread of TMS effects and in optimizing stimulation protocols to more specifically target certain cortical regions based on computational modeling. PMID:24818076

  10. Manganese-enhanced MR imaging of brain activation evoked by noxious peripheral electrical stimulation.

    PubMed

    Cha, Myeounghoon; Lee, Kyuhong; Lee, Chulhyun; Cho, Jee-Hyun; Cheong, Chaejoon; Sohn, Jin-Hun; Lee, Bae Hwan

    2016-02-01

    As imaging technology develops, magnetic resonance imaging (MRI) has furthered our understanding of brain function by clarifying the anatomical structure and generating functional imaging data related to information processing in pain conditions. Recent studies have reported that manganese (Mn(2+))-enhanced MRI (MEMRI) provides valuable information about the functions of the central nervous system. The aim of this study was to identify specific brain regions activated during noxious electric stimulation using high-resolution MEMRI. Male Sprague Dawley rats were divided into three groups: naïve, sham electrical stimulation, and noxious electric stimulation. Under urethane with α-chloralose mixture anesthesia, a catheter was placed in the external carotid artery to administrate 20% mannitol and manganese chloride (25mM MnCl2). Noxious electric stimulation (2Hz, 10V) was applied to the hind paw with a needle electrode. Stimulation-induced neuronal activation was detected using 4.7-T MRI. In response to noxious electrical stimulation, remarkable Mn(2+)-enhanced signals were observed in the agranular insular cortex, auditory cortex, primary somatosensory cortex of the hind limb, and granular and dysgranular insular cortex, which correspond to sensory tactile electric stimulus to the hindpaws. These results indicate that the combination of MEMRI with activity-induced Mn(2+)-dependent contrast can delineate functional areas in the rat brain.

  11. Manganese-enhanced MR imaging of brain activation evoked by noxious peripheral electrical stimulation.

    PubMed

    Cha, Myeounghoon; Lee, Kyuhong; Lee, Chulhyun; Cho, Jee-Hyun; Cheong, Chaejoon; Sohn, Jin-Hun; Lee, Bae Hwan

    2016-02-01

    As imaging technology develops, magnetic resonance imaging (MRI) has furthered our understanding of brain function by clarifying the anatomical structure and generating functional imaging data related to information processing in pain conditions. Recent studies have reported that manganese (Mn(2+))-enhanced MRI (MEMRI) provides valuable information about the functions of the central nervous system. The aim of this study was to identify specific brain regions activated during noxious electric stimulation using high-resolution MEMRI. Male Sprague Dawley rats were divided into three groups: naïve, sham electrical stimulation, and noxious electric stimulation. Under urethane with α-chloralose mixture anesthesia, a catheter was placed in the external carotid artery to administrate 20% mannitol and manganese chloride (25mM MnCl2). Noxious electric stimulation (2Hz, 10V) was applied to the hind paw with a needle electrode. Stimulation-induced neuronal activation was detected using 4.7-T MRI. In response to noxious electrical stimulation, remarkable Mn(2+)-enhanced signals were observed in the agranular insular cortex, auditory cortex, primary somatosensory cortex of the hind limb, and granular and dysgranular insular cortex, which correspond to sensory tactile electric stimulus to the hindpaws. These results indicate that the combination of MEMRI with activity-induced Mn(2+)-dependent contrast can delineate functional areas in the rat brain. PMID:26733299

  12. Invasive and transcranial photoacoustic imaging of the vascular response to brain electrical stimulation

    NASA Astrophysics Data System (ADS)

    Tsytsarev, Vassiliy; Yao, Junjie; Hu, Song; Li, Li; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.

    2010-02-01

    Advances in the brain functional imaging greatly facilitated the understanding of neurovascular coupling. For monitoring of the microvascular response to the brain electrical stimulation in vivo we used optical-resolution photoacoustic microscopy (OR-PAM) through the cranial openings as well as transcranially. Both types of the vascular response, vasoconstriction and vasodilatation, were clearly observed with good spatial and temporal resolution. Obtained results confirm one of the primary points of the neurovascular coupling theory that blood vessels could present vasoconstriction or vasodilatation in response to electrical stimulation, depending on the balance between inhibition and excitation of the different parts of the elements of the neurovascular coupling system.

  13. Deep brain stimulation

    MedlinePlus

    ... the brain The neurostimulator, which puts out the electric current. The stimulator is similar to a heart pacemaker . It is usually placed under the skin near the collarbone, but may be ... pulses travel from the neurostimulator, along the extension ...

  14. Influence of air ions on brain activity induced by electrical stimulation in the rat

    NASA Astrophysics Data System (ADS)

    Olivereau, J. M.; Lambert, J. F.; Truong-Ngoc, A.

    1981-03-01

    The brain induced activity was studied in 18 rats wearing chronically skull implanted electrodes. The stimulating factor was various electrical stimulations of the mesencephalic reticular activating formation, given during the slow wave state of sleep. The results of 300 stimulations were measured by amplitude and frequency changes in the EEG simultaneously recorded. Animals previously exposed to positive air ions (3 weeks 80,000 ions/ml) exhibited lowered excitability of the reticulocortical system. Significantly higher stimulations were necessary to induce arousal. Negative air ions induced more intricate effects: brain excitability was lowered when tested with weak stimulations, but normal when evaluated with medium high level stimilations. Sleep seems first more stable but as stimulation increases, arousal is soon as effective as in controls. These results are in agreement with others findings in behavioral fields and partly explains them.

  15. A Closed Loop Brain-machine Interface for Epilepsy Control Using Dorsal Column Electrical Stimulation.

    PubMed

    Pais-Vieira, Miguel; Yadav, Amol P; Moreira, Derek; Guggenmos, David; Santos, Amílcar; Lebedev, Mikhail; Nicolelis, Miguel A L

    2016-01-01

    Although electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closed-loop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders. PMID:27605389

  16. A Closed Loop Brain-machine Interface for Epilepsy Control Using Dorsal Column Electrical Stimulation

    PubMed Central

    Pais-Vieira, Miguel; Yadav, Amol P.; Moreira, Derek; Guggenmos, David; Santos, Amílcar; Lebedev, Mikhail; Nicolelis, Miguel A. L.

    2016-01-01

    Although electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closed-loop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders. PMID:27605389

  17. A Closed Loop Brain-machine Interface for Epilepsy Control Using Dorsal Column Electrical Stimulation.

    PubMed

    Pais-Vieira, Miguel; Yadav, Amol P; Moreira, Derek; Guggenmos, David; Santos, Amílcar; Lebedev, Mikhail; Nicolelis, Miguel A L

    2016-09-08

    Although electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closed-loop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders.

  18. Repeated electrical stimulation of reward-related brain regions affects cocaine but not "natural" reinforcement.

    PubMed

    Levy, Dino; Shabat-Simon, Maytal; Shalev, Uri; Barnea-Ygael, Noam; Cooper, Ayelet; Zangen, Abraham

    2007-12-19

    Drug addiction is associated with long-lasting neuronal adaptations including alterations in dopamine and glutamate receptors in the brain reward system. Treatment strategies for cocaine addiction and especially the prevention of craving and relapse are limited, and their effectiveness is still questionable. We hypothesized that repeated stimulation of the brain reward system can induce localized neuronal adaptations that may either potentiate or reduce addictive behaviors. The present study was designed to test how repeated interference with the brain reward system using localized electrical stimulation of the medial forebrain bundle at the lateral hypothalamus (LH) or the prefrontal cortex (PFC) affects cocaine addiction-associated behaviors and some of the neuronal adaptations induced by repeated exposure to cocaine. Repeated high-frequency stimulation in either site influenced cocaine, but not sucrose reward-related behaviors. Stimulation of the LH reduced cue-induced seeking behavior, whereas stimulation of the PFC reduced both cocaine-seeking behavior and the motivation for its consumption. The behavioral findings were accompanied by glutamate receptor subtype alterations in the nucleus accumbens and the ventral tegmental area, both key structures of the reward system. It is therefore suggested that repeated electrical stimulation of the PFC can become a novel strategy for treating addiction. PMID:18094257

  19. Endogenous and exogenous electric fields as modifiers of brain activity: rational design of noninvasive brain stimulation with transcranial alternating current stimulation.

    PubMed

    Fröhlich, Flavio

    2014-03-01

    Synchronized neuronal activity in the cortex generates weak electric fields that are routinely measured in humans and animal models by electroencephalography and local field potential recordings. Traditionally, these endogenous electric fields have been considered to be an epiphenomenon of brain activity. Recent work has demonstrated that active cortical networks are surprisingly susceptible to weak perturbations of the membrane voltage of a large number of neurons by electric fields. Simultaneously, noninvasive brain stimulation with weak, exogenous electric fields (transcranial current stimulation, TCS) has undergone a renaissance due to the broad scope of its possible applications in modulating brain activity for cognitive enhancement and treatment of brain disorders. This review aims to interface the recent developments in the study of both endogenous and exogenous electric fields, with a particular focus on rhythmic stimulation for the modulation of cortical oscillations. The main goal is to provide a starting point for the use of rational design for the development of novel mechanism-based TCS therapeutics based on transcranial alternating current stimulation, for the treatment of psychiatric illnesses.

  20. Methodological Dimensions of Transcranial Brain Stimulation with the Electrical Current in Human

    PubMed Central

    Rostami, Maryam; Golesorkhi, Mehrshad; Ekhtiari, Hamed

    2013-01-01

    Transcranial current stimulation (TCS) is a neuromodulation method in which the patient is exposed to a mild electric current (direct or alternating) at 1-2 mA, resulting in an increase or a decrease in the brain excitability. This modification in neural activities can be used as a method for functional human brain mapping with causal inferences. This method might also facilitate the treatments of many neuropsychiatric disorders based on its inexpensive, simple, safe, noninvasive, painless, semi-focal excitatory and inhibitory effects. Given this, a comparison amongst different brain stimulation modalities has been made to determine the potential advantages of the TCS method. In addition, considerable methodological details on using TCS in basic and clinical neuroscience studies in human subjects have been introduced. Technical characteristics of TCS devices and their related accessories with regard to safety concerns have also been well articulated. Finally, some TCS application opportunities have been emphasized, including its potential use in the near future. PMID:25337348

  1. [Methods of brain stimulation based on weak electric current--future tool for the clinician?].

    PubMed

    Kotilainen, Tuukka; Lehto, Soili M

    2016-01-01

    Methods of brain stimulation based on a weak electric current are non-invasive neuromodulation techniques. They include transcranial direct current, alternating current and random noise stimulation. These methods modify the membrane potential of neurons without triggering the action potential, and have been successfully utilized to influence cognition and regulation of emotions in healthy experimental subjects. In clinical studies, indications of the efficacy of these techniques have been obtained in the treatment of depression, schizophrenia, memory disorders and pain as well as in stroke rehabilitation. It is hoped that these techniques will become established as part of the care and rehabilitation of psychiatric and neurologic patients in the future.

  2. Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain

    PubMed Central

    Antal, Andrea; Bikson, Marom; Datta, Abhishek; Lafon, Belen; Dechent, Peter; Parra, Lucas C.; Paulus, Walter

    2013-01-01

    Functional magnetic resonance imaging (fMRI) of brain activation during transcranial electrical stimulation is used to provide insight into the mechanisms of neuromodulation and targeting of particular brain structures. However, the passage of current through the body may interfere with the concurrent detection of blood oxygen level dependent (BOLD) signal, which is sensitive to local magnetic fields. To test whether these currents can affect concurrent fMRI recordings we performed conventional gradient echo-planar imaging (EPI) during transcranial direct current (tDCS) and alternating current stimulation (tACS) on two post-mortem subjects. TDCS induced signals in both superficial and deep structures. The signal was specific to the electrode montage, with the strongest signal near cerebrospinal fluid (CSF) and scalp. The direction of change relative to non-stimulation reversed with tDCS stimulation polarity. For tACS there was no net effect of the MRI signal. High-resolution individualized modeling of current flow and induced static magnetic fields suggested a strong coincidence of the change EPI signal with regions of large current density and magnetic fields. These initial results indicate that: 1) fMRI studies of tDCS must consider this potentially confounding interference from current flow and 2) conventional MRI imaging protocols can be potentially used to measure current flow during transcranial electrical stimulation. The optimization of current measurement and artifact correction techniques, including consideration of the underlying physics, remains to be addressed. PMID:23099102

  3. The Electrical Stimulation Modifies the Cerebral Function

    NASA Astrophysics Data System (ADS)

    Rocha, Luisa Lilia; López-Meraz, María Leonor; Cuéllar-Herrera, Manola; Neri-Bazán., Leticia

    2002-08-01

    Electrical stimulation has been used for therapeuthic purposes. In this review, we present the clinical and scientific bases for using electrical stimulation as a treatment for pharmacological refractory epilepsy. We also describe results in receptors of inhibitory neurotransmitters obtained in rat brain with or without epilepsy, undergoing brain stimulation. Brain electrical stimulation may improve our understanding of brain function and neuroplasticity.

  4. Differential responsiveness of the right parahippocampal region to electrical stimulation in fixed human brains: Implications for historical surgical stimulation studies?

    PubMed

    Rouleau, Nicolas; Persinger, Michael A

    2016-07-01

    If structure dictates function within the living human brain, then the persistence of specific responses to weak electric currents in fixed, deceased brains could reflect "hardwired" properties. Different key structures from the left and right hemispheres of brains that had been fixed for over 20years with ethanol-formalin-acetic acid were stimulated with either 1-Hz, 7-Hz, 10-Hz, 20-Hz, or 30-Hz, sine-wave, square-wave, or pulsed currents while needle-recorded quantitative electroencephalographic responses were obtained. Differential responses occurred only within the right hippocampus and parahippocampal gyrus. The right hippocampus displayed frequency-independent increases in gamma power relative to the left hemispheric homologue. The parahippocampal region responded exclusively to 7-Hz pulsed currents with wideband (8-30Hz) power. These profiles are consistent with dynamic connections associated with memory and consciousness and may partially explain the interactions resultant of pulse type and hemisphere for experiential elicitations during the golden age of surgical stimulations. The results also indicate that there may be an essential "hardwiring" within the human brain that is maintained for decades when it is fixed appropriately.

  5. Effect of Electrical Stimulation of the Suprahyoid Muscles in Brain-Injured Patients with Dysphagia.

    PubMed

    Beom, Jaewon; Oh, Byung-Mo; Choi, Kyoung Hyo; Kim, Won; Song, Young Jin; You, Dae Sang; Kim, Sang Jun; Han, Tai Ryoon

    2015-08-01

    The purpose of this study is to determine whether neuromuscular electrical stimulation of the suprahyoid muscle is effective compared to that of the infrahyoid muscle in brain-injured patients with dysphagia. A total of 132 patients with stroke, traumatic brain injury, or brain tumor in 2 university hospitals were allocated to 2 groups: those who received electrical stimulation therapy (EST) on the suprahyoid muscles (SM group, n = 66) and those who received EST with one pair of electrodes on the suprahyoid muscle and the other pair on the infrahyoid muscle (SI group, n = 66). Patients received 11.2 ± 3.4 sessions of electrical stimulation in the SM group and 11.9 ± 3.4 sessions in the SI group. The functional dysphagia scale (FDS), swallow function score (SFS), supraglottic penetration, and subglottic aspiration were measured using videofluoroscopic swallowing study. FDS scores decreased from 42.0 ± 19.1 to 32.3 ± 17.8 in the SM group and from 44.8 ± 17.4 to 32.9 ± 18.8 in the SI group by per-protocol (PP) analysis, and those decreased from 41.2 ± 20.9 to 34.5 ± 20.3 in the SM group and from 44.3 ± 19.1 to 35.7 ± 20.5 in the SI group by intention-to-treat (ITT) analysis, after electrical stimulation (p < 0.001 for each). SFSs increased from 3.3 ± 1.8 to 4.2 ± 1.6 in the SM group and from 2.8 ± 1.8 to 4.0 ± 1.8 in the SI group by PP analysis, and those increased from 3.3 ± 1.6 to 3.9 ± 1.6 in the SM group and from 2.8 ± 1.9 to 3.6 ± 2.0 in the SI group by ITT analysis, after electrical stimulation (p < 0.001, respectively). However, changes in FDS scores, SFSs, penetration, and aspiration were comparable between the SM and the SI groups. The results suggest that both SM and SI therapies induced similar improvements in swallowing function in brain-injured patients.

  6. The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation

    PubMed Central

    Pelletier, Simon J.; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin

    2015-01-01

    Background: The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Methods: Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. Results: In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. Conclusion: We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. PMID:25522422

  7. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens

    NASA Astrophysics Data System (ADS)

    Albaugh, Daniel L.; Salzwedel, Andrew; van den Berge, Nathalie; Gao, Wei; Stuber, Garret D.; Shih, Yen-Yu Ian

    2016-09-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action.

  8. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens

    PubMed Central

    Albaugh, Daniel L.; Salzwedel, Andrew; Van Den Berge, Nathalie; Gao, Wei; Stuber, Garret D.; Shih, Yen-Yu Ian

    2016-01-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action. PMID:27601003

  9. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens.

    PubMed

    Albaugh, Daniel L; Salzwedel, Andrew; Van Den Berge, Nathalie; Gao, Wei; Stuber, Garret D; Shih, Yen-Yu Ian

    2016-01-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action.

  10. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens.

    PubMed

    Albaugh, Daniel L; Salzwedel, Andrew; Van Den Berge, Nathalie; Gao, Wei; Stuber, Garret D; Shih, Yen-Yu Ian

    2016-01-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action. PMID:27601003

  11. Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature.

    PubMed

    Selimbeyoglu, Aslihan; Parvizi, Josef

    2010-01-01

    In this review, we summarize the subjective experiential phenomena and behavioral changes that are caused by electrical stimulation of the cerebral cortex or subcortical nuclei in awake and conscious human subjects. Our comprehensive review contains a detailed summary of the data obtained from electrical brain stimulation (EBS) in humans in the last 100 years. Findings from the EBS studies may provide an additional layer of information about the neural correlates of cognition and behavior in healthy human subjects, or the neuroanatomy of illusions and hallucinations in patients with psychosis and the brain symptomatogenic zones in patients with epilepsy. We discuss some fundamental concepts, issues, and remaining questions that have defined the field of EBS, and review the current state of knowledge about the mechanism of action of EBS suggesting that the modulation of activity within a localized, but distributed, neuroanatomical network might explain the perceptual and behavioral phenomena that are reported during focal electrical stimulation of the human brain. PMID:20577584

  12. Electrical stimulation of the brain and the development of cortical visual prostheses: An historical perspective.

    PubMed

    Lewis, Philip M; Rosenfeld, Jeffrey V

    2016-01-01

    Rapid advances are occurring in neural engineering, bionics and the brain-computer interface. These milestones have been underpinned by staggering advances in micro-electronics, computing, and wireless technology in the last three decades. Several cortically-based visual prosthetic devices are currently being developed, but pioneering advances with early implants were achieved by Brindley followed by Dobelle in the 1960s and 1970s. We have reviewed these discoveries within the historical context of the medical uses of electricity including attempts to cure blindness, the discovery of the visual cortex, and opportunities for cortex stimulation experiments during neurosurgery. Further advances were made possible with improvements in electrode design, greater understanding of cortical electrophysiology and miniaturisation of electronic components. Human trials of a new generation of prototype cortical visual prostheses for the blind are imminent. This article is part of a Special Issue entitled Hold Item.

  13. Functional asymmetry between the left and right human fusiform gyrus explored through electrical brain stimulation.

    PubMed

    Rangarajan, Vinitha; Parvizi, Josef

    2016-03-01

    The ventral temporal cortex (VTC) contains several areas with selective responses to words, numbers, faces, and objects as demonstrated by numerous human and primate imaging and electrophysiological studies. Our recent work using electrocorticography (ECoG) confirmed the presence of face-selective neuronal populations in the human fusiform gyrus (FG) in patients implanted with intracranial electrodes in either the left or right hemisphere. Electrical brain stimulation (EBS) disrupted the conscious perception of faces only when it was delivered in the right, but not left, FG. In contrast to our previous findings, here we report both negative and positive EBS effects in right and left FG, respectively. The presence of right hemisphere language dominance in the first, and strong left-handedness and poor language processing performance in the second case, provide indirect clues about the functional architecture of the human VTC in relation to hemispheric asymmetries in language processing and handedness.

  14. Electrical stimulation of the brain and the development of cortical visual prostheses: An historical perspective.

    PubMed

    Lewis, Philip M; Rosenfeld, Jeffrey V

    2016-01-01

    Rapid advances are occurring in neural engineering, bionics and the brain-computer interface. These milestones have been underpinned by staggering advances in micro-electronics, computing, and wireless technology in the last three decades. Several cortically-based visual prosthetic devices are currently being developed, but pioneering advances with early implants were achieved by Brindley followed by Dobelle in the 1960s and 1970s. We have reviewed these discoveries within the historical context of the medical uses of electricity including attempts to cure blindness, the discovery of the visual cortex, and opportunities for cortex stimulation experiments during neurosurgery. Further advances were made possible with improvements in electrode design, greater understanding of cortical electrophysiology and miniaturisation of electronic components. Human trials of a new generation of prototype cortical visual prostheses for the blind are imminent. This article is part of a Special Issue entitled Hold Item. PMID:26348986

  15. Novel neuromuscular electrical stimulation system for treatment of dysphagia after brain injury.

    PubMed

    Toyama, Keiichi; Matsumoto, Shuji; Kurasawa, Miho; Setoguchi, Haruka; Noma, Tomokazu; Takenaka, Keita; Soeda, Akina; Shimodozono, Megumi; Kawahira, Kazumi

    2014-01-01

    The purpose of this study was to compare the effects of a novel neuromuscular electrical stimulation (NMES) to the effects of conventional treatment in patients with dysphagia after brain injury. In total, 26 patients were non-randomly divided into an experimental group (n = 12) and a control group (n = 14). The experimental group received NMES intervention followed by conventional treatment, including thermaltactile stimulation with intensive repetition of a dry-swallow task. The control group received conventional treatment without NMES. NMES at a fixed pulse duration of 50 μs and a frequency of 50 Hz was delivered over the skin areas above the motor point of the target muscles, i.e., the bilateral geniohyoid, mylohyoid/anterior belly of the digastric, and thyrohyoid muscles, using a high-voltage pulsed-current device. The two groups received 40-min treatments once a day, 5 days per week, for 8 weeks. Outcome, assessed before and 8 weeks after treatment, was evaluated with regard to the videofluoroscopic dysphagia scale (VDS), the anterior and superior displacement of the hyoid bone and larynx, and the functional oral intake scale. Both groups exhibited improvement, but the experimental group exhibited more significant improvement in the displacement of the hyoid bone and larynx, VDS-total score, and VDS-pharyngeal score than the control group did. The results suggest that NMES combined with conventional treatment is superior to conventional treatment alone in patients with dysphagia following treatment for brain injury. Further investigations are necessary to examine the effects of NMES in patients with more varied types of diseases. PMID:24670314

  16. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Howell, Bryan; McIntyre, Cameron C.

    2016-06-01

    Objective. Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. Approach. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Main results. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. Significance. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.

  17. Dense arrays of micro-needles for recording and electrical stimulation of neural activity in acute brain slices

    NASA Astrophysics Data System (ADS)

    Gunning, D. E.; Beggs, J. M.; Dabrowski, W.; Hottowy, P.; Kenney, C. J.; Sher, A.; Litke, A. M.; Mathieson, K.

    2013-02-01

    Objective. This paper describes the design, microfabrication, electrical characterization and biological evaluation of a high-density micro-needle array. The array records from and electrically stimulates individual neurons simultaneously in acute slices of brain tissue. Approach. Acute slices, arguably the closest in-vitro model of the brain, have a damaged surface layer. Since electrophysiological recording methods rely heavily on electrode-cell proximity, this layer significantly attenuates the signal amplitude making the use of traditional planar electrodes unsuitable. To penetrate into the tissue, bypassing the tissue surface, and to record and stimulate neural activity in the healthy interior volume of the slice, an array of 61 micro-needles was fabricated. Main results. This device is shown to record extracellular action potentials from individual neurons in acute cortical slices with a signal to noise ratio of up to ˜15:1. Electrical stimulation of individual neurons is achieved with stimulation thresholds of 1.1-2.9 µA. Significance. The novelty of this system is the combination of close needle spacing (60 µm), needle heights of up to 250 µm and small (5-10 µm diameter) electrodes allowing the recording of single unit activity. The array is coupled to a custom-designed readout system forming a powerful electrophysiological tool that permits two-way electrode-cell communication with populations of neurons in acute brain slices.

  18. Current directions in non-invasive low intensity electric brain stimulation for depressive disorder.

    PubMed

    Schutter, Dennis J L G; Sack, Alexander T

    2014-01-01

    Non-invasive stimulation of the human brain to improve depressive symptoms is increasingly finding its way in clinical settings as a viable form of somatic treatment. Following successful modulation of neural excitability with subsequent antidepressant effects, neural polarization by administrating weak direct currents to the scalp has gained renewed interest. A new wave of basic and clinical studies seems to underscore the potential therapeutic value of direct current stimulation in the treatment of depression. Issues concerning the lack of mechanistic insights into the workings of modifying brain function through neural polarization and how this process translates to its antidepressant properties calls for additional research. The range of its clinical applicability has yet to be established.

  19. Electrical stimulation alleviates depressive-like behaviors of rats: investigation of brain targets and potential mechanisms.

    PubMed

    Lim, L W; Prickaerts, J; Huguet, G; Kadar, E; Hartung, H; Sharp, T; Temel, Y

    2015-03-31

    Deep brain stimulation (DBS) is a promising therapy for patients with refractory depression. However, key questions remain with regard to which brain target(s) should be used for stimulation, and which mechanisms underlie the therapeutic effects. Here, we investigated the effect of DBS, with low- and high-frequency stimulation (LFS, HFS), in different brain regions (ventromedial prefrontal cortex, vmPFC; cingulate cortex, Cg; nucleus accumbens (NAc) core or shell; lateral habenula, LHb; and ventral tegmental area) on a variety of depressive-like behaviors using rat models. In the naive animal study, we found that HFS of the Cg, vmPFC, NAc core and LHb reduced anxiety levels and increased motivation for food. In the chronic unpredictable stress model, there was a robust depressive-like behavioral phenotype. Moreover, vmPFC HFS, in a comparison of all stimulated targets, produced the most profound antidepressant effects with enhanced hedonia, reduced anxiety and decreased forced-swim immobility. In the following set of electrophysiological and histochemical experiments designed to unravel some of the underlying mechanisms, we found that vmPFC HFS evoked a specific modulation of the serotonergic neurons in the dorsal raphe nucleus (DRN), which have long been linked to mood. Finally, using a neuronal mapping approach by means of c-Fos expression, we found that vmPFC HFS modulated a brain circuit linked to the DRN and known to be involved in affect. In conclusion, HFS of the vmPFC produced the most potent antidepressant effects in naive rats and rats subjected to stress by mechanisms also including the DRN.

  20. Electrical stimulation alleviates depressive-like behaviors of rats: investigation of brain targets and potential mechanisms

    PubMed Central

    Lim, L W; Prickaerts, J; Huguet, G; Kadar, E; Hartung, H; Sharp, T; Temel, Y

    2015-01-01

    Deep brain stimulation (DBS) is a promising therapy for patients with refractory depression. However, key questions remain with regard to which brain target(s) should be used for stimulation, and which mechanisms underlie the therapeutic effects. Here, we investigated the effect of DBS, with low- and high-frequency stimulation (LFS, HFS), in different brain regions (ventromedial prefrontal cortex, vmPFC; cingulate cortex, Cg; nucleus accumbens (NAc) core or shell; lateral habenula, LHb; and ventral tegmental area) on a variety of depressive-like behaviors using rat models. In the naive animal study, we found that HFS of the Cg, vmPFC, NAc core and LHb reduced anxiety levels and increased motivation for food. In the chronic unpredictable stress model, there was a robust depressive-like behavioral phenotype. Moreover, vmPFC HFS, in a comparison of all stimulated targets, produced the most profound antidepressant effects with enhanced hedonia, reduced anxiety and decreased forced-swim immobility. In the following set of electrophysiological and histochemical experiments designed to unravel some of the underlying mechanisms, we found that vmPFC HFS evoked a specific modulation of the serotonergic neurons in the dorsal raphe nucleus (DRN), which have long been linked to mood. Finally, using a neuronal mapping approach by means of c-Fos expression, we found that vmPFC HFS modulated a brain circuit linked to the DRN and known to be involved in affect. In conclusion, HFS of the vmPFC produced the most potent antidepressant effects in naive rats and rats subjected to stress by mechanisms also including the DRN. PMID:25826110

  1. Deep brain stimulation: new techniques.

    PubMed

    Hariz, Marwan

    2014-01-01

    The technology of the hardware used in deep brain stimulation (DBS), and the mode of delivering the stimulation have not significantly evolved since the start of the modern era of DBS 25 years ago. However, new technology is now being developed along several avenues. New features of the implantable pulse generator (IPG) allow fractionation of the electric current into variable proportions between different contacts of the multi-polar lead. Another design consists in leads that allow selective current steering from directionally placed electrode contacts that would deliver the stimulation in a specific direction or even create a directional shaped electric field that would conform to the anatomy of the brain target aimed at, avoiding adjacent structures, and thus avoiding side effects. Closed loop adaptive stimulation technologies are being developed, allowing a tracking of the pathological local field potential of the brain target, and delivering automatically the stimulation to suppress the pathological activity as soon as it is detected and for as long as needed. This feature may contribute to a DBS therapy "on demand", instead of continuously. Finally, advances in imaging technology are providing "new" brain targets, and increasingly allowing DBS to be performed accurately while avoiding the risks of microelectrode recording. PMID:24262179

  2. Regional differences in the electrically stimulated release of endogenous and radioactive adenosine and purine derivatives from rat brain slices.

    PubMed

    Pedata, F; Pazzagli, M; Tilli, S; Pepeu, G

    1990-10-01

    The release of both radioactive and endogenous purines was investigated in rat brain cortical, hippocampal and striatal slices at rest and following stimulation with electrical fields. Purines were labelled by incubating the slices with 3H-adenine. The purine efflux at rest and that evoked by electrical stimulation (10 Hz. 5 min) was analyzed by HPLC with ultraviolet absorbance detection. Both radioactive and endogenous purines in the effluent consisted mainly of hypoxanthine, xanthine, inosine and adenosine. No qualitative differences in the composition of the released purines were found in the three areas investigated. Electrical stimulation evoked a net increase in both radioactive and endogenous purine release. However the increase in 3H-adenosine following electrical stimulation was twice as large as that of endogenous adenosine. The electrically evoked release of both radioactive and endogenous purines was greatest in hippocampal slices and progressively smaller in cortical and striatal slices. In the three areas the addition of 0.5 microM tetrodotoxin to the superfusing Krebs solution brought about a similar (83-100%) reduction in evoked 3H-purine and endogenous purine release. Superfusion of the slices with calcium-free Krebs solution containing 0.5 mM EGTA reduced evoked release of 3H-purines by 58-60% and that of endogenous purine components by 54-89%. The results demonstrate similar characteristics for both radioactive and endogenous purine release but indicate that the most recently synthetized adenosine is the most readily available for release. The features of the electrically evoked purine release support a neuronal origin of adenosine and derivatives and are consistent with the hypothesis of discrete regional differences in adenosine neuromodulation. PMID:2255336

  3. Effects of brain-computer interface-based functional electrical stimulation on brain activation in stroke patients: a pilot randomized controlled trial

    PubMed Central

    Chung, EunJung; Kim, Jung-Hee; Park, Dae-Sung; Lee, Byoung-Hee

    2015-01-01

    [Purpose] This study sought to determine the effects of brain-computer interface-based functional electrical stimulation (BCI-FES) on brain activation in patients with stroke. [Subjects] The subjects were randomized to in a BCI-FES group (n=5) and a functional electrical stimulation (FES) group (n=5). [Methods] Patients in the BCI-FES group received ankle dorsiflexion training with FES for 30 minutes per day, 5 times under the brain-computer interface-based program. The FES group received ankle dorsiflexion training with FES for the same amount of time. [Results] The BCI-FES group demonstrated significant differences in the frontopolar regions 1 and 2 attention indexes, and frontopolar 1 activation index. The FES group demonstrated no significant differences. There were significant differences in the frontopolar 1 region activation index between the two groups after the interventions. [Conclusion] The results of this study suggest that BCI-FES training may be more effective in stimulating brain activation than only FES training in patients recovering from stroke. PMID:25931680

  4. TMS-EEG: A window into the neurophysiological effects of transcranial electrical stimulation in non-motor brain regions.

    PubMed

    Hill, Aron T; Rogasch, Nigel C; Fitzgerald, Paul B; Hoy, Kate E

    2016-05-01

    Transcranial electrical stimulation (tES) techniques are able to induce changes in cortical excitability and plasticity through the administration of weak currents to the brain and are currently being used to manipulate a vast array of cognitive processes. Despite the widespread use of tES technologies within both research and remedial settings, their precise neurophysiological mechanisms of action are not well established outside of the motor cortex. The expanding use of tES within non-motor brain regions highlights the growing need for a more comprehensive understanding of the effects of stimulation across a diversity of cortical locations. The combination of transcranial magnetic stimulation with electroencephalography (TMS-EEG) provides a method of directly probing both local and widespread changes in brain neurophysiology, through the recording of TMS-evoked potentials and cortical oscillations. In this review we explore TMS-EEG as a tool for examining the impact of tES on cortical function and argue that multimodal approaches which combine tES with TMS-EEG could lead to a deeper understanding of the mechanisms which underlie tES-induced cognitive modulation.

  5. The Effect of Variation in Permittivity of Different Tissues on Induced Electric Field in the Brain during Transcranial Magnetic Stimulation

    NASA Astrophysics Data System (ADS)

    Hadimani, Ravi; Porzig, Konstantin; Crowther, Lawrence; Brauer, Hartmut; Toepfer, Hannes; Jiles, David; Department of Electrical and Computer Engineering, Iowa State University Team; Department of Advanced Electromagnetics, Ilmenau University of Technology Team

    2013-03-01

    Estimation of electric field in the brain during Transcranial Magnetic Stimulation (TMS) requires knowledge of the electric property of brain tissue. Grey and white matters have unusually high relative permittivities of ~ 106 at low frequencies. However, relative permittivity of cerebrospinal fluid is ~ 102. With such a variation it is necessary to consider the effect of boundaries. A model consisting of 2 hemispheres was used in the model with the properties of one hemisphere kept constant at σ1 = 0.1Sm-1 and ɛr 1 = 10 while the properties of the second hemisphere were changed kept at σ2 = 0.1Sm-1 to 2Sm-1 and ɛr 2 = 102 to 105. A 70 mm diameter double coil was used as the source of the magnetic field. The amplitude of the current in the coil was 5488 A at a frequency of 2.9 kHz. The results show that the electric field, E induced during magnetic stimulation is independent of the relative permittivity, ɛr and varies with the conductivity. Thus the variation in E, calculated with homogeneous and heterogeneous head models was due to variation in conductivity of the tissues and not due to variation in permittivities.

  6. Electrical stimulation therapies for CNS disorders and pain are mediated by competition between different neuronal networks in the brain.

    PubMed

    Faingold, Carl L

    2008-11-01

    treatment of unanesthetized animals with antagonists (bicuculline or strychnine) of inhibitory neurotransmitter (GABA or glycine) receptors can cause CMR neurons to become consistently responsive to external inputs (e.g., peripheral nerve, sensory, or electrical stimuli in the brain) to which these neurons did not previously respond. Conversely, agents that enhance GABA-mediated inhibition (e.g., barbiturates and benzodiazepines) or antagonize glutamate-mediated excitation (e.g., ketamine) can cause CMR neurons to become unresponsive to inputs to which they responded previously. The responses of CMR neurons exhibit extensive short-term and long-term plasticity, which permits them to participate to a variable degree in many networks. Short-term plasticity subserves termination of disease symptoms, while long-term plasticity in CMR regions subserves symptom prevention. This network interaction hypothesis has value for future research in CNS disease mechanisms and also for identifying therapeutic targets in specific brain networks for more selective stimulation and pharmacological therapies.

  7. Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue

    PubMed Central

    Zhang, Jiayi; Laiwalla, Farah; Kim, Jennifer A; Urabe, Hayato; Van Wagenen, Rick; Song, Yoon-Kyu; Connors, Barry W; Zhang, Feng; Deisseroth, Karl; Nurmikko, Arto V

    2010-01-01

    Neural stimulation with high spatial and temporal precision is desirable both for studying the real-time dynamics of neural networks and for prospective clinical treatment of neurological diseases. Optical stimulation of genetically targeted neurons expressing the light sensitive channel protein Channelrhodopsin (ChR2) has recently been reported as a means for millisecond temporal control of neuronal spiking activities with cell-type selectivity. This offers the prospect of enabling local delivery of optical stimulation and the simultaneous monitoring of the neural activity by electrophysiological means, both in the vicinity of and distant to the stimulation site. We report here a novel dual-modality hybrid device, which consists of a tapered coaxial optical waveguide (‘optrode’) integrated into a 100 element intra-cortical multi-electrode recording array. We first demonstrate the dual optical delivery and electrical recording capability of the single optrode in in vitro preparations of mouse retina, photo-stimulating the native retinal photoreceptors while recording light-responsive activities from ganglion cells. The dual-modality array device was then used in ChR2 transfected mouse brain slices. Specifically, epileptiform events were reliably optically triggered by the optrode and their spatiotemporal patterns were simultaneously recorded by the multi-electrode array. PMID:19721185

  8. Clinical usefulness of brain-computer interface-controlled functional electrical stimulation for improving brain activity in children with spastic cerebral palsy: a pilot randomized controlled trial

    PubMed Central

    Kim, Tae-Woo; Lee, Byoung-Hee

    2016-01-01

    [Purpose] Evaluating the effect of brain-computer interface (BCI)-based functional electrical stimulation (FES) training on brain activity in children with spastic cerebral palsy (CP) was the aim of this study. [Subjects and Methods] Subjects were randomized into a BCI-FES group (n=9) and a functional electrical stimulation (FES) control group (n=9). Subjects in the BCI-FES group received wrist and hand extension training with FES for 30 minutes per day, 5 times per week for 6 weeks under the BCI-based program. The FES group received wrist and hand extension training with FES for the same amount of time. Sensorimotor rhythms (SMR) and middle beta waves (M-beta) were measured in frontopolar regions 1 and 2 (Fp1, Fp2) to determine the effects of BCI-FES training. [Results] Significant improvements in the SMR and M-beta of Fp1 and Fp2 were seen in the BCI-FES group. In contrast, significant improvement was only seen in the SMR and M-beta of Fp2 in the control group. [Conclusion] The results of the present study suggest that BCI-controlled FES training may be helpful in improving brain activity in patients with cerebral palsy and may be applied as effectively as traditional FES training. PMID:27799677

  9. Transcranial brain stimulation: closing the loop between brain and stimulation

    PubMed Central

    Karabanov, Anke; Thielscher, Axel; Siebner, Hartwig Roman

    2016-01-01

    Purpose of review To discuss recent strategies for boosting the efficacy of noninvasive transcranial brain stimulation to improve human brain function. Recent findings Recent research exposed substantial intra- and inter-individual variability in response to plasticity-inducing transcranial brain stimulation. Trait-related and state-related determinants contribute to this variability, challenging the standard approach to apply stimulation in a rigid, one-size-fits-all fashion. Several strategies have been identified to reduce variability and maximize the plasticity-inducing effects of noninvasive transcranial brain stimulation. Priming interventions or paired associative stimulation can be used to ‘standardize’ the brain-state and hereby, homogenize the group response to stimulation. Neuroanatomical and neurochemical profiling based on magnetic resonance imaging and spectroscopy can capture trait-related and state-related variability. Fluctuations in brain-states can be traced online with functional brain imaging and inform the timing or other settings of transcranial brain stimulation. State-informed open-loop stimulation is aligned to the expression of a predefined brain state, according to prespecified rules. In contrast, adaptive closed-loop stimulation dynamically adjusts stimulation settings based on the occurrence of stimulation-induced state changes. Summary Approaches that take into account trait-related and state-related determinants of stimulation-induced plasticity bear considerable potential to establish noninvasive transcranial brain stimulation as interventional therapeutic tool. PMID:27224087

  10. Brain-computer interface driven functional electrical stimulation system for overground walking in spinal cord injury participant.

    PubMed

    King, Christine E; Wang, Po T; McCrimmon, Colin M; Chou, Cathy C Y; Do, An H; Nenadic, Zoran

    2014-01-01

    The current treatment for ambulation after spinal cord injury (SCI) is to substitute the lost behavior with a wheelchair; however, this can result in many co-morbidities. Thus, novel solutions for the restoration of walking, such as brain-computer interfaces (BCI) and functional electrical stimulation (FES) devices, have been sought. This study reports on the first electroencephalogram (EEG) based BCI-FES system for overground walking, and its performance assessment in an individual with paraplegia due to SCI. The results revealed that the participant was able to purposefully operate the system continuously in real time. If tested in a larger population of SCI individuals, this system may pave the way for the restoration of overground walking after SCI.

  11. Current Status of Research on Providing Sight to the Blind by Electrical Stimulation of the Brain

    ERIC Educational Resources Information Center

    Dobelle, William H.

    1977-01-01

    Described is a prosthesis that connects a television camera and associated circuitry to the visual centers of the brain to restore a limited amount of visual sensation to totally blind persons. (Author/MH)

  12. Use of negatively reinforcing electrical brain stimulation to detect conventional and nonconventional anxiolytics as well as an anxiogenic drug.

    PubMed

    Jung, M E; Depoortere, R; Oglesby, M W

    2001-01-01

    The present study determined whether anxiolytics such as diazepam (DZP), the benzodiazepine (BZD) receptor-selective agonist abecarnil (ABC), or the 5-HT1(A) agent buspirone (BUS) would increase the response latency of rats to switch-off electrical brain stimulation (EBS) of the periaqueductal gray (PAG). We also investigated the effects of pentylenetetrazole (PTZ), a purported anxiogenic. Given acutely, DZP (2.5 and 5 mg/kg, ip) and ABC (0.5 and 1 mg/kg, ip) increased response latency. The BZD receptor antagonist flumazenil (10.0 mg/kg, ip) blocked these effects. Increasing the frequency of EBS reversed the effects of DZP and ABC, suggesting that motor disruption did not account for the increase in latency seen with these drugs. Given acutely, BUS (10.0 mg/kg, ip) also increased response latency, which was likely due to motor disruption because it was not reversed by increasing the frequency of EBS. When BUS (2.5 mg/kg, ip) was given every 8 h for 3 days, an increase in latency was also obtained, which was reversible by increasing the frequency of EBS. Finally, PTZ (10 and 20 mg/kg, ip) shortened the latency to respond. These results (1) suggest that DZP, ABC, and chronic BUS attenuate, whereas PTZ potentiates, the negative reinforcing stimulus (NRS) induced by PAG stimulation, and (2) support the hypothesis that the switch-off procedure accurately detects anxiolytic and anxiogenic drugs.

  13. Can transcranial electrical stimulation improve learning difficulties in atypical brain development? A future possibility for cognitive training.

    PubMed

    Krause, Beatrix; Cohen Kadosh, Roi

    2013-10-01

    Learning difficulties in atypical brain development represent serious obstacles to an individual's future achievements and can have broad societal consequences. Cognitive training can improve learning impairments only to a certain degree. Recent evidence from normal and clinical adult populations suggests that transcranial electrical stimulation (TES), a portable, painless, inexpensive, and relatively safe neuroenhancement tool, applied in conjunction with cognitive training can enhance cognitive intervention outcomes. This includes, for instance, numerical processing, language skills and response inhibition deficits commonly associated with profound learning difficulties and attention-deficit hyperactivity disorder (ADHD). The current review introduces the functional principles, current applications and promising results, and potential pitfalls of TES. Unfortunately, research in child populations is limited at present. We suggest that TES has considerable promise as a tool for increasing neuroplasticity in atypically developing children and may be an effective adjunct to cognitive training in clinical settings if it proves safe. The efficacy and both short- and long-term effects of TES on the developing brain need to be critically assessed before it can be recommended for clinical settings. PMID:23770059

  14. Deep Brain Stimulation for Obesity

    PubMed Central

    Sussman, Eric S; Zhang, Michael; Pendharkar, Arjun V; Azagury, Dan E; Bohon, Cara; Halpern, Casey H

    2015-01-01

    Obesity is now the third leading cause of preventable death in the US, accounting for 216,000 deaths annually and nearly 100 billion dollars in health care costs. Despite advancements in bariatric surgery, substantial weight regain and recurrence of the associated metabolic syndrome still occurs in almost 20-35% of patients over the long-term, necessitating the development of novel therapies. Our continually expanding knowledge of the neuroanatomic and neuropsychiatric underpinnings of obesity has led to increased interest in neuromodulation as a new treatment for obesity refractory to current medical, behavioral, and surgical therapies. Recent clinical trials of deep brain stimulation (DBS) in chronic cluster headache, Alzheimer’s disease, and depression and obsessive-compulsive disorder have demonstrated the safety and efficacy of targeting the hypothalamus and reward circuitry of the brain with electrical stimulation, and thus provide the basis for a neuromodulatory approach to treatment-refractory obesity. In this study, we review the literature implicating these targets for DBS in the neural circuitry of obesity. We will also briefly review ethical considerations for such an intervention, and discuss genetic secondary-obesity syndromes that may also benefit from DBS. In short, we hope to provide the scientific foundation to justify trials of DBS for the treatment of obesity targeting these specific regions of the brain. PMID:26180683

  15. Stimulant mechanisms of cathinones - effects of mephedrone and other cathinones on basal and electrically evoked dopamine efflux in rat accumbens brain slices.

    PubMed

    Opacka-Juffry, Jolanta; Pinnell, Thomas; Patel, Nisha; Bevan, Melissa; Meintel, Meghan; Davidson, Colin

    2014-10-01

    Mephedrone, an erstwhile "legal high", and some non-abused cathinones (ethcathinone, diethylpropion and bupropion) were tested for stimulant effects in vitro, through assessing their abilities to increase basal and electrically evoked dopamine efflux in rat accumbens brain slices, and compared with cocaine and amphetamine. We also tested mephedrone against cocaine in a dopamine transporter binding study. Dopamine efflux was electrically evoked and recorded using voltammetry in the rat accumbens core. We constructed concentration response curves for these cathinones for effects on basal dopamine levels; peak efflux after local electrical stimulation and the time-constant of the dopamine decay phase, an index of dopamine reuptake. We also examined competition between mephedrone or cocaine and [(125)I]RTI121 at the dopamine transporter. Mephedrone was less potent than cocaine at displacing [(125)I]RTI121. Mephedrone and amphetamine increased basal levels of dopamine in the absence of electrical stimulation. Cocaine, bupropion, diethylpropion and ethcathinone all increased the peak dopamine efflux after electrical stimulation and slowed dopamine reuptake. Cocaine was more potent than bupropion and ethcathinone, while diethylpropion was least potent. Notably, cocaine had the fastest onset of action. These data suggest that, with respect to dopamine efflux, mephedrone is more similar to amphetamine than cocaine. These findings also show that cocaine was more potent than bupropion and ethcathinone while diethylpropion was least potent. Mephedrone's binding to the dopamine transporter is consistent with stimulant effects but its potency was lower than that of cocaine. These findings confirm and further characterize stimulant properties of mephedrone and other cathinones in adolescent rat brain.

  16. Influences of Interpolation Error, Electrode Geometry, and the Electrode-Tissue Interface on Models of Electric Fields Produced by Deep Brain Stimulation

    PubMed Central

    Howell, Bryan; Naik, Sagar; Grill, Warren M.

    2014-01-01

    Deep brain stimulation (DBS) is an established therapy for movement disorders, but the fundamental mechanisms by which DBS has its effects remain unknown. Computational models can provide insights into the mechanisms of DBS, but to be useful, the models must have sufficient detail to predict accurately the electric fields produced by DBS. We used a finite element method model of the Medtronic 3387 electrode array, coupled to cable models of myelinated axons, to quantify how interpolation errors, electrode geometry, and the electrode-tissue interface affect calculation of electrical potentials and stimulation thresholds for populations of model nerve fibers. Convergence of the potentials was not a sufficient criterion for ensuring the same degree of accuracy in subsequent determination of stimulation thresholds, because the accuracy of the stimulation thresholds depended on the order of the elements. Simplifying the 3387 electrode array by ignoring the inactive contacts and extending the terminated end of the shaft had position dependent effects on the potentials and excitation thresholds, and these simplifications may impact correlations between DBS parameters and clinical outcomes. When the current density in the bulk tissue is uniform, the effect of the electrode-tissue interface impedance could be approximated by filtering the potentials calculated with a static lumped electrical equivalent circuit. Further, for typical DBS parameters during voltage-regulated stimulation, it was valid to approximate the electrode as an ideal polarized electrode with a nonlinear capacitance. Validation of these computational considerations enables accurate modeling of the electric field produced by DBS. PMID:24448594

  17. A Study on the Effect of Electrical Stimulation as a User Stimuli for Motor Imagery Classification in Brain-Machine Interface

    PubMed Central

    Bhattacharyya, Saugat; Clerc, Maureen; Hayashibe, Mitsuhiro

    2016-01-01

    Functional Electrical Stimulation (FES) provides a neuroprosthetic interface to non-recovered muscle groups by stimulating the affected region of the human body. FES in combination with Brain-machine interfacing (BMI) has a wide scope in rehabilitation because this system directly links the cerebral motor intention of the users with its corresponding peripheral muscle activations. In this paper, we examine the effect of FES on the electroencephalography (EEG) during motor imagery (left- and right-hand movement) training of the users. Results suggest a significant improvement in the classification accuracy when the subject was induced with FES stimuli as compared to the standard visual one. PMID:27478573

  18. Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS.

    PubMed

    Edwards, Dylan; Cortes, Mar; Datta, Abhishek; Minhas, Preet; Wassermann, Eric M; Bikson, Marom

    2013-07-01

    Transcranial Direct Current Stimulation (tDCS) is a non-invasive, low-cost, well-tolerated technique producing lasting modulation of cortical excitability. Behavioral and therapeutic outcomes of tDCS are linked to the targeted brain regions, but there is little evidence that current reaches the brain as intended. We aimed to: (1) validate a computational model for estimating cortical electric fields in human transcranial stimulation, and (2) assess the magnitude and spread of cortical electric field with a novel High-Definition tDCS (HD-tDCS) scalp montage using a 4 × 1-Ring electrode configuration. In three healthy adults, Transcranial Electrical Stimulation (TES) over primary motor cortex (M1) was delivered using the 4 × 1 montage (4 × cathode, surrounding a single central anode; montage radius ~3 cm) with sufficient intensity to elicit a discrete muscle twitch in the hand. The estimated current distribution in M1 was calculated using the individualized MRI-based model, and compared with the observed motor response across subjects. The response magnitude was quantified with stimulation over motor cortex as well as anterior and posterior to motor cortex. In each case the model data were consistent with the motor response across subjects. The estimated cortical electric fields with the 4 × 1 montage were compared (area, magnitude, direction) for TES and tDCS in each subject. We provide direct evidence in humans that TES with a 4 × 1-Ring configuration can activate motor cortex and that current does not substantially spread outside the stimulation area. Computational models predict that both TES and tDCS waveforms using the 4 × 1-Ring configuration generate electric fields in cortex with comparable gross current distribution, and preferentially directed normal (inward) currents. The agreement of modeling and experimental data for both current delivery and focality support the use of the HD-tDCS 4 × 1-Ring montage for cortically targeted neuromodulation.

  19. Brain Stimulation for Torsion Dystonia

    PubMed Central

    Fox, Michael D.; Alterman, Ron L.

    2016-01-01

    Dystonia is a heterogeneous neurological disorder characterized by abnormal muscle contractions for which standard medical therapy is often inadequate. For such patients, therapeutic brain stimulation is becoming increasingly utilized. Here we review the evidence and effect sizes for treating different types of dystonia with different types of brain stimulation. Strong (level B) evidence supports the use of deep brain stimulation (DBS) for the treatment of primary generalized or segmental dystonia, especially DYT-1, as well as for patients with cervical dystonia. Large effect sizes have also been reported for DBS treatment of tardive dystonia, writer’s cramp, cranial dystonia, myoclonus dystonia, and off-state dystonia associated with Parkinson’s disease. Lesser benefit is generally seen in dystonia secondary to structural brain damage. Other brain stimulation techniques including epidural cortical stimulation and noninvasive brain stimulation have been investigated, but generally report smaller effect sizes in a more limited number of patients. Recent advances relevant to patient selection, surgical approach, DBS programming, and mechanism of action are discussed. PMID:25894231

  20. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.

    2003-01-01

    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  1. Electrical stimulation: a societal perspective.

    PubMed

    Gater, D R; McDowell, S M; Abbas, J J

    2000-01-01

    Societal perspective on functional electrical stimulation is colored by media influence, popular thought, and political climate as much as by the science that supports it. The purpose of this article is to examine how these influences facilitate or inhibit the application of electrical stimulation in today's world and to describe the challenges facing the use of electrical stimulation in the future. Emphasis will be placed on perceived need, cost, and available resources and how these factors must be addressed to utilize functional electrical stimulation successfully in society.

  2. Implantable neurotechnologies: electrical stimulation and applications.

    PubMed

    Nag, Sudip; Thakor, Nitish V

    2016-01-01

    Neural stimulation using injected electrical charge is widely used both in functional therapies and as an experimental tool for neuroscience applications. Electrical pulses can induce excitation of targeted neural pathways that aid in the treatment of neural disorders or dysfunction of the central and peripheral nervous system. In this review, we summarize the recent trends in the field of electrical stimulation for therapeutic interventions of nervous system disorders, such as for the restoration of brain, eye, ear, spinal cord, nerve and muscle function. Neural prosthetic applications are discussed, and functional electrical stimulation parameters for treating such disorders are reviewed. Important considerations for implantable packaging and enhancing device reliability are also discussed. Neural stimulators are expected to play a profound role in implantable neural devices that treat disorders and help restore functions in injured or disabled nervous system. PMID:26753775

  3. Wireless magnetothermal deep brain stimulation.

    PubMed

    Chen, Ritchie; Romero, Gabriela; Christiansen, Michael G; Mohr, Alan; Anikeeva, Polina

    2015-03-27

    Wireless deep brain stimulation of well-defined neuronal populations could facilitate the study of intact brain circuits and the treatment of neurological disorders. Here, we demonstrate minimally invasive and remote neural excitation through the activation of the heat-sensitive capsaicin receptor TRPV1 by magnetic nanoparticles. When exposed to alternating magnetic fields, the nanoparticles dissipate heat generated by hysteresis, triggering widespread and reversible firing of TRPV1(+) neurons. Wireless magnetothermal stimulation in the ventral tegmental area of mice evoked excitation in subpopulations of neurons in the targeted brain region and in structures receiving excitatory projections. The nanoparticles persisted in the brain for over a month, allowing for chronic stimulation without the need for implants and connectors. PMID:25765068

  4. Electrical stimulation in exercise training

    NASA Technical Reports Server (NTRS)

    Kroll, Walter

    1994-01-01

    Electrical stimulation has a long history of use in medicine dating back to 46 A.D. when the Roman physician Largus found the electrical discharge of torpedo fishes useful in the treatment of pain produced by headache and gout. A rival Greek physician, Dioscorides, discounted the value of the torpedo fish for headache relief but did recommend its use in the treatment of hemorrhoids. In 1745, the Leyden jar and various sized electrostatic generators were used to treat angina pectoris, epilepsy, hemiplegia, kidney stones, and sciatica. Benjamin Franklin used an electrical device to treat successfully a young woman suffering from convulsive fits. In the late 1800's battery powered hydroelectric baths were used to treat chronic inflammation of the uterus while electrified athletic supporters were advertised for the treatment of male problems. Fortunately, such an amusing early history of the simple beginnings of electrical stimulation did not prevent eventual development of a variety of useful therapeutic and rehabilitative applications of electrical stimulation. Over the centuries electrical stimulation has survived as a modality in the treatment of various medical disorders with its primary application being in the rehabilitation area. Recently, a surge of new interest in electrical stimulation has been kindled by the work of a Russian sport scientist who reported remarkable muscle strength and endurance improvements in elite athletes. Yakov Kots reported his research on electric stimulation and strength improvements in 1977 at a Canadian-Soviet Exchange Symposium held at Concordia University in Montreal. Since then an explosion of new studies has been seen in both sport science and in medicine. Based upon the reported works of Kots and the present surge of new investigations, one could be misled as to the origin of electrical stimulation as a technique to increase muscle strength. As a matter of fact, electric stimulation has been used as a technique to improve

  5. Deep brain stimulation for movement disorders.

    PubMed

    Larson, Paul S

    2014-07-01

    Deep brain stimulation (DBS) is an implanted electrical device that modulates specific targets in the brain resulting in symptomatic improvement in a particular neurologic disease, most commonly a movement disorder. It is preferred over previously used lesioning procedures due to its reversibility, adjustability, and ability to be used bilaterally with a good safety profile. Risks of DBS include intracranial bleeding, infection, malposition, and hardware issues, such migration, disconnection, or malfunction, but the risk of each of these complications is low--generally ≤ 5% at experienced, large-volume centers. It has been used widely in essential tremor, Parkinson's disease, and dystonia when medical treatment becomes ineffective, intolerable owing to side effects, or causes motor complications. Brain targets implanted include the thalamus (most commonly for essential tremor), subthalamic nucleus (most commonly for Parkinson's disease), and globus pallidus (Parkinson's disease and dystonia), although new targets are currently being explored. Future developments include brain electrodes that can steer current directionally and systems capable of "closed loop" stimulation, with systems that can record and interpret regional brain activity and modify stimulation parameters in a clinically meaningful way. New, image-guided implantation techniques may have advantages over traditional DBS surgery. PMID:24833244

  6. Deep brain stimulation for movement disorders.

    PubMed

    Larson, Paul S

    2014-07-01

    Deep brain stimulation (DBS) is an implanted electrical device that modulates specific targets in the brain resulting in symptomatic improvement in a particular neurologic disease, most commonly a movement disorder. It is preferred over previously used lesioning procedures due to its reversibility, adjustability, and ability to be used bilaterally with a good safety profile. Risks of DBS include intracranial bleeding, infection, malposition, and hardware issues, such migration, disconnection, or malfunction, but the risk of each of these complications is low--generally ≤ 5% at experienced, large-volume centers. It has been used widely in essential tremor, Parkinson's disease, and dystonia when medical treatment becomes ineffective, intolerable owing to side effects, or causes motor complications. Brain targets implanted include the thalamus (most commonly for essential tremor), subthalamic nucleus (most commonly for Parkinson's disease), and globus pallidus (Parkinson's disease and dystonia), although new targets are currently being explored. Future developments include brain electrodes that can steer current directionally and systems capable of "closed loop" stimulation, with systems that can record and interpret regional brain activity and modify stimulation parameters in a clinically meaningful way. New, image-guided implantation techniques may have advantages over traditional DBS surgery.

  7. Enhanced brain responses to C-fiber input in the area of secondary hyperalgesia induced by high-frequency electrical stimulation of the skin

    PubMed Central

    Mouraux, André

    2014-01-01

    High-frequency electrical stimulation (HFS) of the human skin induces an increase in both mechanical and heat pain sensitivity in the surrounding unconditioned skin. The aim of this study was to investigate the effect of HFS on the intensity of perception and brain responses elicited by the selective activation of C fibers. HFS was applied to the ventral forearm of 15 healthy volunteers. Temperature-controlled CO2 laser stimulation was used to activate selectively low-threshold C-fiber afferents without concomitantly activating Aδ-fiber afferents. These stimuli were detected with reaction times compatible with the conduction velocity of C fibers. The intensity of perception and event-related brain potentials (ERPs) elicited by thermal stimuli delivered to the surrounding unconditioned skin were recorded before (T0) and after HFS (T1: 20 min after HFS; T2: 45 min after HFS). The contralateral forearm served as a control. Mechanical hyperalgesia following HFS was confirmed by measuring the change in the intensity of perception elicited by mechanical punctate stimuli. HFS resulted in increased intensity of perception to mechanical punctate stimulation and selective C-fiber thermal stimulation at both time points. In contrast, the N2 wave of the ERP elicited by C-fiber stimulation (679 ± 88 ms; means ± SD) was enhanced at T1 but not at T2. The P2 wave (808 ± 105 ms) was unaffected by HFS. Our results suggest that HFS enhances the sensitivity to thermal C-fiber input in the area of secondary hyperalgesia. However, there was no significant enhancement of the magnitude of the C-fiber ERPs at T2, suggesting that quickly adapting C fibers do not contribute to this enhancement. PMID:25098966

  8. Deep Brain Stimulation Tested for Early Alzheimer's

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_160137.html Deep Brain Stimulation Tested for Early Alzheimer's Although treatment seems ... 2016 THURSDAY, July 28, 2016 (HealthDay News) -- Deep brain stimulation appears safe for people with early Alzheimer's ...

  9. Deep Brain Stimulation: Expanding Applications

    PubMed Central

    TEKRIWAL, Anand; BALTUCH, Gordon

    2015-01-01

    For over two decades, deep brain stimulation (DBS) has shown significant efficacy in treatment for refractory cases of dyskinesia, specifically in cases of Parkinson's disease and dystonia. DBS offers potential alleviation from symptoms through a well-tolerated procedure that allows personalized modulation of targeted neuroanatomical regions and related circuitries. For clinicians contending with how to provide patients with meaningful alleviation from often debilitating intractable disorders, DBSs titratability and reversibility make it an attractive treatment option for indications ranging from traumatic brain injury to progressive epileptic supra-synchrony. The expansion of our collective knowledge of pathologic brain circuitries, as well as advances in imaging capabilities, electrophysiology techniques, and material sciences have contributed to the expanding application of DBS. This review will examine the potential efficacy of DBS for neurologic and psychiatric disorders currently under clinical investigation and will summarize findings from recent animal models. PMID:26466888

  10. Mechanisms responsible for the effect of median nerve electrical stimulation on traumatic brain injury-induced coma: orexin-A-mediated N-methyl-D-aspartate receptor subunit NR1 upregulation

    PubMed Central

    Feng, Zhen; Du, Qing

    2016-01-01

    Electrical stimulation of the median nerve is a noninvasive technique that facilitates awakening from coma. In rats with traumatic brain injury-induced coma, median nerve stimulation markedly enhances prefrontal cortex expression of orexin-A and its receptor, orexin receptor 1. To further understand the mechanism underlying wakefulness mediated by electrical stimulation of the median nerve, we evaluated its effects on the expression of the N-methyl-D-aspartate receptor subunit NR1 in the prefrontal cortex in rat models of traumatic brain injury-induced coma, using immunohistochemistry and western blot assays. In rats with traumatic brain injury, NR1 expression increased with time after injury. Rats that underwent electrical stimulation of the median nerve (30 Hz, 0.5 ms, 1.0 mA for 15 minutes) showed elevated NR1 expression and greater recovery of consciousness than those without stimulation. These effects were reduced by intracerebroventricular injection of the orexin receptor 1 antagonist SB334867. Our results indicate that electrical stimulation of the median nerve promotes recovery from traumatic brain injury-induced coma by increasing prefrontal cortex NR1 expression via an orexin-A-mediated pathway. PMID:27482224

  11. Mechanisms responsible for the effect of median nerve electrical stimulation on traumatic brain injury-induced coma: orexin-A-mediated N-methyl-D-aspartate receptor subunit NR1 upregulation.

    PubMed

    Feng, Zhen; Du, Qing

    2016-06-01

    Electrical stimulation of the median nerve is a noninvasive technique that facilitates awakening from coma. In rats with traumatic brain injury-induced coma, median nerve stimulation markedly enhances prefrontal cortex expression of orexin-A and its receptor, orexin receptor 1. To further understand the mechanism underlying wakefulness mediated by electrical stimulation of the median nerve, we evaluated its effects on the expression of the N-methyl-D-aspartate receptor subunit NR1 in the prefrontal cortex in rat models of traumatic brain injury-induced coma, using immunohistochemistry and western blot assays. In rats with traumatic brain injury, NR1 expression increased with time after injury. Rats that underwent electrical stimulation of the median nerve (30 Hz, 0.5 ms, 1.0 mA for 15 minutes) showed elevated NR1 expression and greater recovery of consciousness than those without stimulation. These effects were reduced by intracerebroventricular injection of the orexin receptor 1 antagonist SB334867. Our results indicate that electrical stimulation of the median nerve promotes recovery from traumatic brain injury-induced coma by increasing prefrontal cortex NR1 expression via an orexin-A-mediated pathway. PMID:27482224

  12. Evoked Electromyographically Controlled Electrical Stimulation

    PubMed Central

    Hayashibe, Mitsuhiro

    2016-01-01

    Time-variant muscle responses under electrical stimulation (ES) are often problematic for all the applications of neuroprosthetic muscle control. This situation limits the range of ES usage in relevant areas, mainly due to muscle fatigue and also to changes in stimulation electrode contact conditions, especially in transcutaneous ES. Surface electrodes are still the most widely used in noninvasive applications. Electrical field variations caused by changes in the stimulation contact condition markedly affect the resulting total muscle activation levels. Fatigue phenomena under functional electrical stimulation (FES) are also well known source of time-varying characteristics coming from muscle response under ES. Therefore, it is essential to monitor the actual muscle state and assess the expected muscle response by ES so as to improve the current ES system in favor of adaptive muscle-response-aware FES control. To deal with this issue, we have been studying a novel control technique using evoked electromyography (eEMG) signals to compensate for these muscle time-variances under ES for stable neuroprosthetic muscle control. In this perspective article, I overview the background of this topic and highlight important points to be aware of when using ES to induce the desired muscle activation regardless of the time-variance. I also demonstrate how to deal with the common critical problem of ES to move toward robust neuroprosthetic muscle control with the Evoked Electromyographically Controlled Electrical Stimulation paradigm. PMID:27471448

  13. Electrical stimulation of mechanoreceptors

    NASA Astrophysics Data System (ADS)

    Echenique, A. M.; Graffigna, J. P.

    2011-12-01

    Within the field of Rehabilitation Engineering, this work is aimed at identifying the optimal parameters of electric current stimulus which activate the nervous axons of mecanoreceptors found in the fingertip, allowing, this way, to resemble tactile senses. These sensorial feelings can be used by aiding technological means, namely, the sensorial substitution technology, in an attempt to render information to blind people through the tactile sense. The physical pressure on sensorial areas (fingertips) used for reading activities through the Braille System is the main effect that is imitated and studied in this research work. An experimental aiding prototype for Braille reading research has been developed and tested with blinds and reduced vision people, with highly satisfactory results.

  14. The Fos expression in rat brain following electrical stimulation of dura mater surrounding the superior sagittal sinus changed with the pre-treatment of rizatriptan benzoate.

    PubMed

    Wang, Xiaolin; Yu, Shengyuan; Dong, Zhao; Jiang, Lei

    2011-01-01

    Fos expression in the brain was systematically investigated by means of immunohistochemical staining after electrical stimulation of the dura mater surrounding the superior sagittal sinus in conscious rats. Fos-like immunoreactive neurons are distributed mainly in the upper cervical spinal cord, spinal trigeminal nucleus caudal part, raphe magnus nucleus, periaqueductal gray, ventromedial hypothalamic nucleus, and mediodorsal thalamus nucleus. With the pre-treatment of intraperitoneal injection of rizatriptan benzoate, the number of Fos-like immunoreactive neurons decreased in the spinal trigeminal nucleus caudal part and raphe magnus nucleus, increased in the periaqueductal gray, and remained unchanged in the ventromedial hypothalamic nucleus and mediodorsal thalamus nucleus. These results provide morphological evidence that the nuclei described above are involved in the development and maintenance of the trigeminovascular headache. PMID:20934408

  15. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee.

    PubMed

    Rossini, P M; Burke, D; Chen, R; Cohen, L G; Daskalakis, Z; Di Iorio, R; Di Lazzaro, V; Ferreri, F; Fitzgerald, P B; George, M S; Hallett, M; Lefaucheur, J P; Langguth, B; Matsumoto, H; Miniussi, C; Nitsche, M A; Pascual-Leone, A; Paulus, W; Rossi, S; Rothwell, J C; Siebner, H R; Ugawa, Y; Walsh, V; Ziemann, U

    2015-06-01

    These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments. PMID:25797650

  16. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee.

    PubMed

    Rossini, P M; Burke, D; Chen, R; Cohen, L G; Daskalakis, Z; Di Iorio, R; Di Lazzaro, V; Ferreri, F; Fitzgerald, P B; George, M S; Hallett, M; Lefaucheur, J P; Langguth, B; Matsumoto, H; Miniussi, C; Nitsche, M A; Pascual-Leone, A; Paulus, W; Rossi, S; Rothwell, J C; Siebner, H R; Ugawa, Y; Walsh, V; Ziemann, U

    2015-06-01

    These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.

  17. Electrical stimulation and motor recovery.

    PubMed

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  18. Theory of feedback controlled brain stimulations for Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Sanzeni, A.; Celani, A.; Tiana, G.; Vergassola, M.

    2016-01-01

    Limb tremor and other debilitating symptoms caused by the neurodegenerative Parkinson's disease are currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. While deep brain stimulation has shown therapeutic benefits in many instances, its mechanism is still unclear. Since its understanding could lead to improved protocols of stimulation and feedback control, we have studied a mathematical model of the many-body neural network dynamics controlling the dynamics of the basal ganglia. On the basis of the results obtained from the model, we propose a new procedure of active stimulation, that depends on the feedback of the network and that respects the constraints imposed by existing technology. We show by numerical simulations that the new protocol outperforms the standard ones for deep brain stimulation and we suggest future experiments that could further improve the feedback procedure.

  19. Effects of brain-derived neurotrophic factor (BDNF) and electrical stimulation on survival and function of cochlear spiral ganglion neurons in deafened, developing cats.

    PubMed

    Leake, Patricia A; Stakhovskaya, Olga; Hetherington, Alexander; Rebscher, Stephen J; Bonham, Ben

    2013-04-01

    Both neurotrophic support and neural activity are required for normal postnatal development and survival of cochlear spiral ganglion (SG) neurons. Previous studies in neonatally deafened cats demonstrated that electrical stimulation (ES) from a cochlear implant can promote improved SG survival but does not completely prevent progressive neural degeneration. Neurotrophic agents combined with an implant may further improve neural survival. Short-term studies in rodents have shown that brain-derived neurotrophic factor (BDNF) promotes SG survival after deafness and may be additive to trophic effects of stimulation. Our recent study in neonatally deafened cats provided the first evidence of BDNF neurotrophic effects in the developing auditory system over a prolonged duration Leake et al. (J Comp Neurol 519:1526-1545, 2011). Ten weeks of intracochlear BDNF infusion starting at 4 weeks of age elicited significant improvement in SG survival and larger soma size compared to contralateral. In the present study, the same deafening and BDNF infusion procedures were combined with several months of ES from an implant. After combined BDNF + ES, a highly significant increase in SG numerical density (>50 % improvement re: contralateral) was observed, which was significantly greater than the neurotrophic effect seen with ES-only over comparable durations. Combined BDNF + ES also resulted in a higher density of myelinated radial nerve fibers within the osseous spiral lamina. However, substantial ectopic and disorganized sprouting of these fibers into the scala tympani also occurred, which may be deleterious to implant function. EABR thresholds improved (re: initial thresholds at time of implantation) on the chronically stimulated channels of the implant. Terminal electrophysiological studies recording in the inferior colliculus (IC) revealed that the basic cochleotopic organization was intact in the midbrain in all studied groups. In deafened controls or after ES-only, lower IC

  20. Origin and Evolution of Deep Brain Stimulation

    PubMed Central

    Sironi, Vittorio A.

    2011-01-01

    This paper briefly describes how the electrical stimulation, used since antiquity to modulate the nervous system, has been a fundamental tool of neurophysiologic investigation in the second half of the eighteenth century and was subsequently used by the early twentieth century, even for therapeutic purposes. In mid-twentieth century the advent of stereotactic procedures has allowed the drift from lesional to stimulating technique of deep nuclei of the brain for therapeutic purposes. In this way, deep brain stimulation (DBS) was born, that, over the last two decades, has led to positive results for the treatment of medically refractory Parkinson’s disease, essential tremor, and dystonia. In recent years, the indications for therapeutic use of DBS have been extended to epilepsy, Tourette’s syndrome, psychiatric diseases (depression, obsessive–compulsive disorder), some kinds of headache, eating disorders, and the minimally conscious state. The potentials of the DBS for therapeutic use are fascinating, but there are still many unresolved technical and ethical problems, concerning the identification of the targets for each disease, the selection of the patients and the evaluation of the results. PMID:21887135

  1. Neuromuscular Electrical Stimulation for Skeletal Muscle Function

    PubMed Central

    Doucet, Barbara M.; Lam, Amy; Griffin, Lisa

    2012-01-01

    Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle. PMID:22737049

  2. Brain stimulation and inhibitory control.

    PubMed

    Juan, Chi-Hung; Muggleton, Neil G

    2012-04-01

    Inhibitory control mechanisms are important in a range of behaviours to prevent execution of motor acts which, having been planned, are no longer necessary or appropriate. Examples of this can be seen in a range of sports, such as cricket and baseball, where the choice between execution and inhibition of a bat swing must be made in a very brief time window. Deficits in inhibitory control have been associated with problems in behavioural regulation in impulsive violence as well as a range of clinical disorders. The roles of various areas, including the frontal eye fields (FEF), the pre-supplementary motor area (pre-SMA) and the inferior frontal gyrus, in inhibitory control have been investigated using an inhibitory control task and both transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Typically effects on response inhibition but no effects on response generation have been seen. The contributions of these areas to performance seem to differ with, for example, pre-SMA being involved when the task is relatively novel whereas this is not the case for FEF. The findings from brain stimulation studies offer both insight into which areas are necessary for effective inhibitory control and recent extension of findings for the role of the inferior frontal gyrus illustrate how the specific functions by which these areas contribute may be further clarified. Future work, including making use of the temporal specificity of TMS and combination of TMS/tDCS with other neuroimaging techniques, may further clarify the nature and functions played by the network of areas involved in inhibitory control. PMID:22494830

  3. Brain stimulation and inhibitory control.

    PubMed

    Juan, Chi-Hung; Muggleton, Neil G

    2012-04-01

    Inhibitory control mechanisms are important in a range of behaviours to prevent execution of motor acts which, having been planned, are no longer necessary or appropriate. Examples of this can be seen in a range of sports, such as cricket and baseball, where the choice between execution and inhibition of a bat swing must be made in a very brief time window. Deficits in inhibitory control have been associated with problems in behavioural regulation in impulsive violence as well as a range of clinical disorders. The roles of various areas, including the frontal eye fields (FEF), the pre-supplementary motor area (pre-SMA) and the inferior frontal gyrus, in inhibitory control have been investigated using an inhibitory control task and both transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Typically effects on response inhibition but no effects on response generation have been seen. The contributions of these areas to performance seem to differ with, for example, pre-SMA being involved when the task is relatively novel whereas this is not the case for FEF. The findings from brain stimulation studies offer both insight into which areas are necessary for effective inhibitory control and recent extension of findings for the role of the inferior frontal gyrus illustrate how the specific functions by which these areas contribute may be further clarified. Future work, including making use of the temporal specificity of TMS and combination of TMS/tDCS with other neuroimaging techniques, may further clarify the nature and functions played by the network of areas involved in inhibitory control.

  4. Functional electrical stimulation and spinal cord injury.

    PubMed

    Ho, Chester H; Triolo, Ronald J; Elias, Anastasia L; Kilgore, Kevin L; DiMarco, Anthony F; Bogie, Kath; Vette, Albert H; Audu, Musa L; Kobetic, Rudi; Chang, Sarah R; Chan, K Ming; Dukelow, Sean; Bourbeau, Dennis J; Brose, Steven W; Gustafson, Kenneth J; Kiss, Zelma H T; Mushahwar, Vivian K

    2014-08-01

    Spinal cord injuries (SCI) can disrupt communications between the brain and the body, resulting in loss of control over otherwise intact neuromuscular systems. Functional electrical stimulation (FES) of the central and peripheral nervous system can use these intact neuromuscular systems to provide therapeutic exercise options to allow functional restoration and to manage medical complications following SCI. The use of FES for the restoration of muscular and organ functions may significantly decrease the morbidity and mortality following SCI. Many FES devices are commercially available and should be considered as part of the lifelong rehabilitation care plan for all eligible persons with SCI.

  5. Functional electrical stimulation and spinal cord injury.

    PubMed

    Ho, Chester H; Triolo, Ronald J; Elias, Anastasia L; Kilgore, Kevin L; DiMarco, Anthony F; Bogie, Kath; Vette, Albert H; Audu, Musa L; Kobetic, Rudi; Chang, Sarah R; Chan, K Ming; Dukelow, Sean; Bourbeau, Dennis J; Brose, Steven W; Gustafson, Kenneth J; Kiss, Zelma H T; Mushahwar, Vivian K

    2014-08-01

    Spinal cord injuries (SCI) can disrupt communications between the brain and the body, resulting in loss of control over otherwise intact neuromuscular systems. Functional electrical stimulation (FES) of the central and peripheral nervous system can use these intact neuromuscular systems to provide therapeutic exercise options to allow functional restoration and to manage medical complications following SCI. The use of FES for the restoration of muscular and organ functions may significantly decrease the morbidity and mortality following SCI. Many FES devices are commercially available and should be considered as part of the lifelong rehabilitation care plan for all eligible persons with SCI. PMID:25064792

  6. Electrical Stimulation for Drug-Resistant Epilepsy

    PubMed Central

    Chambers, A; Bowen, JM

    2013-01-01

    Objective The objective of this analysis was to evaluate the effectiveness of deep brain stimulation (DBS) and vagus nerve stimulation (VNS) for the treatment of drug-resistant epilepsy in adults and children. Data Sources A literature search was performed using MEDLINE, EMBASE, the Cochrane Library, and the Centre for Reviews and Dissemination database, for studies published from January 2007 until December 2012. Review Methods Systematic reviews, meta-analyses, randomized controlled trials (RCTs), and observational studies (in the absence of RCTs) of adults or children were included. DBS studies were included if they specified that the anterior nucleus of thalamus was the area of the brain stimulated. Outcomes of interest were seizure frequency, health resource utilization, and safety. A cost analysis was also performed. Results The search identified 6 studies that assessed changes in seizure frequency after electrical stimulation: 1 RCT on DBS in adults, 4 RCTs on VNS in adults, and 1 RCT on VNS in children. The studies of DBS and VNS in adults found significantly improved rates of seizure frequency, but the study of VNS in children did not find a significant difference in seizure frequency between the high and low stimulation groups. Significant reductions in hospitalizations and emergency department visits were found for adults and children who received VNS. No studies addressed the use of health resources for patients undergoing DBS. Five studies reported on adverse events, which ranged from serious to transient for both procedures in adults and were mostly transient in the 1 study of VNS in children. Limitations We found no evidence on DBS in children or on health care use related to DBS. The measurement of seizure frequency is self-reported and is therefore subject to bias and issues of compliance. Conclusions Based on evidence of low to moderate quality, both DBS and VNS seemed to reduce seizure frequency in adults. In children, VNS did not appear to be as

  7. [MRI compatibility of deep brain stimulator].

    PubMed

    Zhang, Yujing

    2013-07-01

    Deep brain stimulation (DBS) therapy develops rapidly in clinical application. The structures of deep brain stimulator and magnetic resonance imaging (MRI) equipment are introduced, the interactions are analyzed, and the two compatible problems of radio frequency (RF) heating and imaging artifact are summarized in this paper.

  8. Transcranial magnetic stimulation and the human brain

    NASA Astrophysics Data System (ADS)

    Hallett, Mark

    2000-07-01

    Transcranial magnetic stimulation (TMS) is rapidly developing as a powerful, non-invasive tool for studying the human brain. A pulsed magnetic field creates current flow in the brain and can temporarily excite or inhibit specific areas. TMS of motor cortex can produce a muscle twitch or block movement; TMS of occipital cortex can produce visual phosphenes or scotomas. TMS can also alter the functioning of the brain beyond the time of stimulation, offering potential for therapy.

  9. Effects of brain-computer interface-based functional electrical stimulation on balance and gait function in patients with stroke: preliminary results

    PubMed Central

    Chung, EunJung; Park, Sang-In; Jang, Yun-Yung; Lee, Byoung-Hee

    2015-01-01

    [Purpose] The purpose of this study was to determine the effects of brain-computer interface (BCI)-based functional electrical stimulation (FES) on balance and gait function in patients with stroke. [Subjects] Subjects were randomly allocated to a BCI-FES group (n=5) and a FES group (n=5). [Methods] The BCI-FES group received ankle dorsiflexion training with FES according to a BCI-based program for 30 minutes per day for 5 days. The FES group received ankle dorsiflexion training with FES for the same duration. [Results] Following the intervention, the BCI-FES group showed significant differences in Timed Up and Go test value, cadence, and step length on the affected side. The FES group showed no significant differences after the intervention. However, there were no significant differences between the 2 groups after the intervention. [Conclusion] The results of this study suggest that BCI-based FES training is a more effective exercise for balance and gait function than FES training alone in patients with stroke. PMID:25729205

  10. Effect of Laryngopharyngeal Neuromuscular Electrical Stimulation on Dysphonia Accompanied by Dysphagia in Post-stroke and Traumatic Brain Injury Patients: A Pilot Study

    PubMed Central

    2016-01-01

    Objective To investigate the effect of laryngopharyngeal neuromuscular electrical stimulation (NMES) on dysphonia in patients with dysphagia caused by stroke or traumatic brain injury (TBI). Methods Eighteen patients participated in this study. The subjects were divided into NMES (n=12) and conventional swallowing training only (CST, n=6) groups. The NMES group received NMES combined with CST for 2 weeks, followed by CST without NMES for the next 2 weeks. The CST group received only CST for 4 weeks. All of the patients were evaluated before and at 2 and 4 weeks into the study. The outcome measurements included perceptual, acoustic and aerodynamic analyses. The correlation between dysphonia and swallowing function was also investigated. Results There were significant differences in the GRBAS (grade, roughness, breathiness, asthenia and strain scale) total score and sound pressure level (SPL) between the two groups over time. The NMES relative to the CST group showed significant improvements in total GRBAS score and SPL at 2 weeks, though no inter-group differences were evident at 4 weeks. The improvement of the total GRBAS scores at 2 weeks was positively correlated with the improved pharyngeal phase scores on the functional dysphagia scale at 2 weeks. Conclusion The results demonstrate that laryngopharyngeal NMES in post-stroke or TBI patients with dysphonia can have promising effects on phonation. Therefore, laryngopharyngeal NMES may be considered as an additional treatment option for dysphonia accompanied by dysphagia after stroke or TBI.

  11. Effect of Laryngopharyngeal Neuromuscular Electrical Stimulation on Dysphonia Accompanied by Dysphagia in Post-stroke and Traumatic Brain Injury Patients: A Pilot Study

    PubMed Central

    2016-01-01

    Objective To investigate the effect of laryngopharyngeal neuromuscular electrical stimulation (NMES) on dysphonia in patients with dysphagia caused by stroke or traumatic brain injury (TBI). Methods Eighteen patients participated in this study. The subjects were divided into NMES (n=12) and conventional swallowing training only (CST, n=6) groups. The NMES group received NMES combined with CST for 2 weeks, followed by CST without NMES for the next 2 weeks. The CST group received only CST for 4 weeks. All of the patients were evaluated before and at 2 and 4 weeks into the study. The outcome measurements included perceptual, acoustic and aerodynamic analyses. The correlation between dysphonia and swallowing function was also investigated. Results There were significant differences in the GRBAS (grade, roughness, breathiness, asthenia and strain scale) total score and sound pressure level (SPL) between the two groups over time. The NMES relative to the CST group showed significant improvements in total GRBAS score and SPL at 2 weeks, though no inter-group differences were evident at 4 weeks. The improvement of the total GRBAS scores at 2 weeks was positively correlated with the improved pharyngeal phase scores on the functional dysphagia scale at 2 weeks. Conclusion The results demonstrate that laryngopharyngeal NMES in post-stroke or TBI patients with dysphonia can have promising effects on phonation. Therefore, laryngopharyngeal NMES may be considered as an additional treatment option for dysphonia accompanied by dysphagia after stroke or TBI. PMID:27606266

  12. [Deep brain stimulation in schizophrenia].

    PubMed

    Kuhn, J; Bodatsch, M; Sturm, V; Lenartz, D; Klosterkötter, J; Uhlhaas, P J; Winter, C; Gründler, T O J

    2011-11-01

    Deep brain stimulation (DBS) has successfully advanced our treatment options for putative therapy-resistant neuropsychiatric diseases. Building on this strong foundation, more and more mental disorders in the stadium of therapy-resistance are considered as possible indications for DBS. Especially, schizophrenia with its associated severe and difficult to treat symptoms is gaining attention. This attention demands critical questions regarding the assumed mechanisms of DBS and its possible influence on the supposed pathophysiology of schizophrenia. Here, we synoptically compare current approaches and theories of DBS and discuss the feasibility of DBS in schizophrenia as well as the transferability from other psychiatric disorders successfully treated with DBS. For this we consider recent advances in animal models of schizophrenic symptoms, results regarding the influence of DBS on dopaminergic transmission as well as data concerning neural oscillation and synchronisation. In conclusion, the use of DBS for some symptoms of schizophrenia seems to be a promising approach, but the lack of a comprehensive theory of the mechanisms of DBS as well as its impact on schizophrenia might hinder the use of DBS for schizophrenia at this point in time.

  13. Movement disorders induced by deep brain stimulation.

    PubMed

    Baizabal-Carvallo, José Fidel; Jankovic, Joseph

    2016-04-01

    Deep brain stimulation represents a major advance in the treatment of several types of movement disorders. However, during stimulation new movement disorders may emerge, thus limiting the positive effects of this therapy. These movement disorders may be induced by: 1) stimulation of the targeted nucleus, 2) stimulation of surrounding tracts and nuclei, and 3) as a result of dose adjustment of accompanying medications, such as reduction of dopaminergic drugs in patients with Parkinson's disease. Various dyskinesias, blepharospasm, and apraxia of eyelid opening have been described mainly with subthalamic nucleus stimulation, whereas hypokinesia and freezing of gait have been observed with stimulation of the globus pallidus internus. Other deep brain stimulation-related movement disorders include dyskinesias associated with stimulation of the globus pallidus externus and ataxic gait as a side effect of chronic bilateral stimulation of the ventral intermediate nucleus of thalamus. These movement disorders are generally reversible and usually resolved once the stimulation is reduced or turned off. This, however, typically leads to loss of benefit of the underlying movement disorder which can be re-gained by using different contacts, changing targets or stimulation parameters, and adjusting pharmacological therapy. New and innovative emerging technologies and stimulation techniques may help to prevent or overcome the various deep brain stimulation-induced movement disorders. In this review we aim to describe the clinical features, frequency, pathophysiology, and strategies for treatment of these iatrogenic movement disorders. PMID:26806438

  14. Brain stimulation: Neuromodulation as a potential treatment for motor recovery following traumatic brain injury☆

    PubMed Central

    Clayton, E.; Kinley-Cooper, S.K.; Weber, R.A.; Adkins, D.L.

    2016-01-01

    There is growing evidence that electrical and magnetic brain stimulation can improve motor function and motor learning following brain damage. Rodent and primate studies have strongly demonstrated that combining cortical stimulation (CS) with skilled motor rehabilitative training enhances functional motor recovery following stroke. Brain stimulation following traumatic brain injury (TBI) is less well studied, but early pre-clinical and human pilot studies suggest that it is a promising treatment for TBI-induced motor impairments as well. This review will first discuss the evidence supporting brain stimulation efficacy derived from the stroke research field as proof of principle and then will review the few studies exploring neuromodulation in experimental TBI studies. PMID:26855256

  15. Developments in deep brain stimulation using time dependent magnetic fields

    NASA Astrophysics Data System (ADS)

    Crowther, L. J.; Nlebedim, I. C.; Jiles, D. C.

    2012-04-01

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  16. Developments in deep brain stimulation using time dependent magnetic fields

    SciTech Connect

    Crowther, L.J.; Nlebedim, I.C.; Jiles, D.C.

    2012-03-07

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  17. Braille line using electrical stimulation

    NASA Astrophysics Data System (ADS)

    Puertas, A.; Purés, P.; Echenique, A. M.; Ensinck, J. P. Graffigna y. G.

    2007-11-01

    Conceived within the field of Rehabilitation Technologies for visually impaired persons, the present work aims at enabling the blind user to read written material by means of a tactile display. Once he is familiarized to operate this system, the user will be able to achieve greater performance in study, academic and job activities, thus achieving a rapid and easier social inclusion. The devise accepts any kind of text that is computer-loadable (documents, books, Internet information, and the like) which, through digital means, can be read as Braille text on the pad. This tactile display is composed of an electrodes platform that simulate, through stimulation the writing/reading Braille characters. In order to perceive said characters in similar way to the tactile feeling from paper material, the skin receptor of fingers are stimulated electrically so as to simulate the same pressure and depressions as those of the paper-based counterpart information. Once designed and developed, the display was tested with blind subjects, with relatively satisfactory results. As a continuing project, this prototype is currently being improved as regards.

  18. Effects of Action Observational Training Plus Brain-Computer Interface-Based Functional Electrical Stimulation on Paretic Arm Motor Recovery in Patient with Stroke: A Randomized Controlled Trial.

    PubMed

    Kim, TaeHoon; Kim, SeongSik; Lee, ByoungHee

    2016-03-01

    The purpose of this study was to investigate whether action observational training (AOT) plus brain-computer interface-based functional electrical stimulation (BCI-FES) has a positive influence on motor recovery of paretic upper extremity in patients with stroke. This was a hospital-based, randomized controlled trial with a blinded assessor. Thirty patients with a first-time stroke were randomly allocated to one of two groups: the BCI-FES group (n = 15) and the control group (n = 15). The BCI-FES group administered to AOT plus BCI-FES on the paretic upper extremity five times per week during 4 weeks while both groups received conventional therapy. The primary outcomes were the Fugl-Meyer Assessment of the Upper Extremity, Motor Activity Log (MAL), Modified Barthel Index and range of motion of paretic arm. A blinded assessor evaluated the outcomes at baseline and 4 weeks. All baseline outcomes did not differ significantly between the two groups. After 4 weeks, the Fugl-Meyer Assessment of the Upper Extremity sub-items (total, shoulder and wrist), MAL (MAL-Activity of Use and Quality of Movement), Modified Barthel Index and wrist flexion range of motion were significantly higher in the BCI-FES group (p < 0.05). AOT plus BCI-based FES is effective in paretic arm rehabilitation by improving the upper extremity performance. The motor improvements suggest that AOT plus BCI-based FES can be used as a therapeutic tool for stroke rehabilitation. The limitations of the study are that subjects had a certain limited level of upper arm function, and the sample size was comparatively small; hence, it is recommended that future large-scale trials should consider stratified and lager populations according to upper arm function.

  19. A linearized current stimulator for deep brain stimulation.

    PubMed

    Shen, Ding-Lan; Chu, Yu-Jung

    2010-01-01

    This paper develops the front end of the stimulator which is applied in the implantable deep brain stimulation (DBS) for the therapy of Parkinson's disease. This stimulator adopts the low power switched-capacitor DAC accompanying with voltage-to-current transconductance amplifiers to obtain the adjustable output currents. The proposed distortion cancellation technique improves the linearity of the current stimulator. Multiple transconductance amplifiers sharing a single DAC save the circuit area. The biphasic stimulation waveform is generated from the bridge switching technique and the programmable pulse. This stimulation circuit provides the 0 approximately 165 microA current for a typical loading of 10 kΩ, 8 approximately 120 micros pulse width, and 126 approximately 244 Hz frequencies with a 0.35 microm CMOS technology at 3.3 V supply voltage. PMID:21096724

  20. Penfield’s Prediction: A Mechanism for Deep Brain Stimulation

    PubMed Central

    Murrow, Richard W.

    2014-01-01

    Context: Despite its widespread use, the precise mechanism of action of Deep Brain Stimulation (DBS) therapy remains unknown. The modern urgency to publish more and new data can obscure previously learned lessons by the giants who have preceded us and whose shoulders we now stand upon. Wilder Penfield extensively studied the effects of artificial electrical brain stimulation and his comments on the subject are still very relevant today. In particular, he noted two very different (and seemingly opposite) effects of stimulation within the human brain. In some structures, artificial electrical stimulation has an effect, which mimics ablation, while, in other structures, it produces a stimulatory effect on that tissue. Hypothesis: The hypothesis of this paper is fourfold. First, it proposes that some neural circuits are widely synchronized with other neural circuits, while some neural circuits are unsynchronized and operate independently. Second, it proposes that artificial high-frequency electrical stimulation of a synchronized neural circuit results in an ablative effect, but artificial high-frequency electrical stimulation of an unsynchronized neural circuit results in a stimulatory effect. Third, it suggests a part of the mechanism by which large-scale physiologic synchronization of widely distributed independently processed information streams may occur. This may be the neural mechanism underlying Penfield’s “centrencephalic system,” which he emphasized so many years ago. Fourth, it outlines the specific anatomic distribution of this physiologic synchronization, which Penfield has already clearly delineated as the distribution of his centrencephalic system. Evidence: This paper draws on a brief overview of previous theory regarding the mechanism of action of DBS and on historical, as well as widely known modern clinical data regarding the observed effects of stimulation delivered to various targets within the brain. Basic science investigations, which

  1. Functional Electrical Stimulation and Spinal Cord Injury

    PubMed Central

    Ho, Chester H.; Triolo, Ronald J.; Elias, Anastasia L.; Kilgore, Kevin L.; DiMarco, Anthony F.; Bogie, Kath; Vette, Albert H.; Audu, Musa; Kobetic, Rudi; Chang, Sarah R.; Chan, K. Ming; Dukelow, Sean; Bourbeau, Dennis J.; Brose, Steven W.; Gustafson, Kenneth J.; Kiss, Zelma; Mushahwar, Vivian K.

    2015-01-01

    Synopsis Spinal cord injuries (SCI) can disrupt communications between the brain and the body, leading to a loss of control over otherwise intact neuromuscular systems. The use of electrical stimulation (ES) of the central and peripheral nervous system can take advantage of these intact neuromuscular systems to provide therapeutic exercise options, to allow functional restoration, and even to manage or prevent many medical complications following SCI. The use of ES for the restoration of upper extremity, lower extremity and truncal functions can make many activities of daily living a potential reality for individuals with SCI. Restoring bladder and respiratory functions and preventing pressure ulcers may significantly decrease the morbidity and mortality following SCI. Many of the ES devices are already commercially available and should be considered by all SCI clinicians routinely as part of the lifelong rehabilitation care plan for all eligible individuals with SCI. PMID:25064792

  2. Deep Brain Stimulation using Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Jiles, David; Williams, Paul; Crowther, Lawrence; Iowa State University Team; Wolfson CentreMagnetics Team

    2011-03-01

    New applications for transcranial magnetic stimulation are developing rapidly for both diagnostic and therapeutic purposes. Therefore so is the demand for improved performance, particularly in terms of their ability to stimulate deeper regions of the brain and to do so selectively. The coil designs that are used presently are limited in their ability to stimulate the brain at depth and with high spatial focality. Consequently, any improvement in coil performance would have a significant impact in extending the usefulness of TMS in both clinical applications and academic research studies. New and improved coil designs have then been developed, modeled and tested as a result of this work. A large magnetizing coil, 300mm in diameter and compatible with a commercial TMS system has been constructed to determine its feasibility for use as a deep brain stimulator. The results of this work have suggested directions that could be pursued in order to further improve the coil designs.

  3. Transcranial magnetic stimulation: Improved coil design for deep brain investigation

    NASA Astrophysics Data System (ADS)

    Crowther, L. J.; Marketos, P.; Williams, P. I.; Melikhov, Y.; Jiles, D. C.; Starzewski, J. H.

    2011-04-01

    This paper reports on a design for a coil for transcranial magnetic stimulation. The design shows potential for improving the penetration depth of the magnetic field, allowing stimulation of subcortical structures within the brain. The magnetic and induced electric fields in the human head have been calculated with finite element electromagnetic modeling software and compared with empirical measurements. Results show that the coil design used gives improved penetration depth, but also indicates the likelihood of stimulation of additional tissue resulting from the spatial distribution of the magnetic field.

  4. An offline auditory P300 brain-computer interface using principal and independent component analysis techniques for functional electrical stimulation application.

    PubMed

    Bentley, Alexander S J; Andrew, Colin M; John, Lester R

    2008-01-01

    A brain-computer interface (BCI) provides technology that allows communication and control for people who are unable to interact with their environment. A P300 BCI exploits the fact that external or internal stimuli may provide a recognition response in the brain's electrical activity which may be recorded by an electroencephalogram (EEG) to act as a control signal. Additionally an auditory BCI does not require the user to avert their visual attention away from the task at hand and is thus more practical in a real environment than other visual stimulus BCIs.

  5. Vomiting Center reanalyzed: An electrical stimulation study

    NASA Technical Reports Server (NTRS)

    Miller, A. D.; Wilson, V. J.

    1982-01-01

    Electrical stimulation of the brainstem of 15 decerebrate cats produced stimulus-bound vomiting in only 4 animals. Vomiting was reproducible in only one cat. Effective stimulating sites were located in the solitary tract and reticular formation. Restricted localization of a vomiting center, stimulation of which evoked readily reproducible results, could not be obtained.

  6. It takes two: noninvasive brain stimulation combined with neurorehabilitation.

    PubMed

    Page, Stephen J; Cunningham, David A; Plow, Ela; Blazak, Brittani

    2015-04-01

    The goal of postacute neurorehabilitation is to maximize patient function, ideally by using surviving brain and central nervous system tissue when possible. However, the structures incorporated into neurorehabilitative approaches often differ from this target, which may explain why the efficacy of conventional clinical treatments targeting neurologic impairment varies widely. Noninvasive brain stimulation (eg, transcranial magnetic stimulation [TMS], transcranial direct current stimulation [tDCS]) offers the possibility of directly targeting brain structures to facilitate or inhibit their activity to steer neural plasticity in recovery and measure neuronal output and interactions for evaluating progress. The latest advances as stereotactic navigation and electric field modeling are enabling more precise targeting of patient's residual structures in diagnosis and therapy. Given its promise, this supplement illustrates the wide-ranging significance of TMS and tDCS in neurorehabilitation, including in stroke, pediatrics, traumatic brain injury, focal hand dystonia, neuropathic pain, and spinal cord injury. TMS and tDCS are still not widely used and remain poorly understood in neurorehabilitation. Therefore, the present supplement includes articles that highlight ready clinical application of these technologies, including their comparative diagnostic capabilities relative to neuroimaging, their therapeutic benefit, their optimal delivery, the stratification of likely responders, and the variable benefits associated with their clinical use because of interactions between pathophysiology and the innate reorganization of the patient's brain. Overall, the supplement concludes that whether provided in isolation or in combination, noninvasive brain stimulation and neurorehabilitation are synergistic in the potential to transform clinical practice.

  7. It takes two: noninvasive brain stimulation combined with neurorehabilitation.

    PubMed

    Page, Stephen J; Cunningham, David A; Plow, Ela; Blazak, Brittani

    2015-04-01

    The goal of postacute neurorehabilitation is to maximize patient function, ideally by using surviving brain and central nervous system tissue when possible. However, the structures incorporated into neurorehabilitative approaches often differ from this target, which may explain why the efficacy of conventional clinical treatments targeting neurologic impairment varies widely. Noninvasive brain stimulation (eg, transcranial magnetic stimulation [TMS], transcranial direct current stimulation [tDCS]) offers the possibility of directly targeting brain structures to facilitate or inhibit their activity to steer neural plasticity in recovery and measure neuronal output and interactions for evaluating progress. The latest advances as stereotactic navigation and electric field modeling are enabling more precise targeting of patient's residual structures in diagnosis and therapy. Given its promise, this supplement illustrates the wide-ranging significance of TMS and tDCS in neurorehabilitation, including in stroke, pediatrics, traumatic brain injury, focal hand dystonia, neuropathic pain, and spinal cord injury. TMS and tDCS are still not widely used and remain poorly understood in neurorehabilitation. Therefore, the present supplement includes articles that highlight ready clinical application of these technologies, including their comparative diagnostic capabilities relative to neuroimaging, their therapeutic benefit, their optimal delivery, the stratification of likely responders, and the variable benefits associated with their clinical use because of interactions between pathophysiology and the innate reorganization of the patient's brain. Overall, the supplement concludes that whether provided in isolation or in combination, noninvasive brain stimulation and neurorehabilitation are synergistic in the potential to transform clinical practice. PMID:25813373

  8. Modulating Hippocampal Plasticity with In Vivo Brain Stimulation

    PubMed Central

    Carhuatanta, Kim A.; McInturf, Shawn M.; Miklasevich, Molly K.; Jankord, Ryan

    2015-01-01

    Investigations into the use of transcranial direct current stimulation (tDCS) in relieving symptoms of neurological disorders and enhancing cognitive or motor performance have exhibited promising results. However, the mechanisms by which tDCS effects brain function remain under scrutiny. We have demonstrated that in vivo tDCS in rats produced a lasting effect on hippocampal synaptic plasticity, as measured using extracellular recordings. Ex vivo preparations of hippocampal slices from rats that have been subjected to tDCS of 0.10 or 0.25 mA for 30 min followed by 30 min of recovery time displayed a robust twofold enhancement in long-term potentiation (LTP) induction accompanied by a 30% increase in paired-pulse facilitation (PPF). The magnitude of the LTP effect was greater with 0.25 mA compared with 0.10 mA stimulations, suggesting a dose-dependent relationship between tDCS intensity and its effect on synaptic plasticity. To test the persistence of these observed effects, animals were stimulated in vivo for 30 min at 0.25 mA and then allowed to return to their home cage for 24 h. Observation of the enhanced LTP induction, but not the enhanced PPF, continued 24 h after completion of 0.25 mA of tDCS. Addition of the NMDA blocker AP-5 abolished LTP in both control and stimulated rats but maintained the PPF enhancement in stimulated rats. The observation of enhanced LTP and PPF after tDCS demonstrates that non-invasive electrical stimulation is capable of modifying synaptic plasticity. SIGNIFICANCE STATEMENT Researchers have used brain stimulation such as transcranial direct current stimulation on human subjects to alleviate symptoms of neurological disorders and enhance their performance. Here, using rats, we have investigated the potential mechanisms of how in vivo brain stimulation can produce such effect. We recorded directly on viable brain slices from rats after brain stimulation to detect lasting changes in pattern of neuronal activity. Our results showed that

  9. Mimicking muscle activity with electrical stimulation

    NASA Astrophysics Data System (ADS)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  10. Advances in functional electrical stimulation (FES).

    PubMed

    Popović, Dejan B

    2014-12-01

    This review discusses the advancements that are needed to enhance the effects of electrical stimulation for restoring or assisting movement in humans with an injury/disease of the central nervous system. A complex model of the effects of electrical stimulation of peripheral systems is presented. The model indicates that both the motor and sensory systems are activated by electrical stimulation. We propose that a hierarchical hybrid controller may be suitable for functional electrical stimulation (FES) because this type of controller acts as a structural mimetic of its biological counterpart. Specific attention is given to the neural systems at the periphery with respect to the required electrodes and stimulators. Furthermore, we note that FES with surface electrodes is preferred for the therapy, although there is a definite advantage associated with implantable technology for life-long use. The last section of the review discusses the potential need to combine FES and robotic systems to provide assistance in some cases. PMID:25287528

  11. Electrical stimulation to accelerate wound healing

    PubMed Central

    Thakral, Gaurav; LaFontaine, Javier; Najafi, Bijan; Talal, Talal K.; Kim, Paul; Lavery, Lawrence A.

    2013-01-01

    Background There are several applications of electrical stimulation described in medical literature to accelerate wound healing and improve cutaneous perfusion. This is a simple technique that could be incorporated as an adjunctive therapy in plastic surgery. The objective of this review was to evaluate the results of randomized clinical trials that use electrical stimulation for wound healing. Method We identified 21 randomized clinical trials that used electrical stimulation for wound healing. We did not include five studies with treatment groups with less than eight subjects. Results Electrical stimulation was associated with faster wound area reduction or a higher proportion of wounds that healed in 14 out of 16 wound randomized clinical trials. The type of electrical stimulation, waveform, and duration of therapy vary in the literature. Conclusion Electrical stimulation has been shown to accelerate wound healing and increase cutaneous perfusion in human studies. Electrical stimulation is an adjunctive therapy that is underutilized in plastic surgery and could improve flap and graft survival, accelerate postoperative recovery, and decrease necrosis following foot reconstruction. PMID:24049559

  12. Anticipation of brain shift in Deep Brain Stimulation automatic planning.

    PubMed

    Hamzé, Noura; Bilger, Alexandre; Duriez, Christian; Cotin, Stéphane; Essert, Caroline

    2015-08-01

    Deep Brain Stimulation is a neurosurgery procedure consisting in implanting an electrode in a deep structure of the brain. This intervention requires a preoperative planning phase, with a millimetric accuracy, in which surgeons decide the best placement of the electrode depending on a set of surgical rules. However, brain tissues may deform during the surgery because of the brain shift phenomenon, leading the electrode to mistake the target, or moreover to damage a vital anatomical structure. In this paper, we present a patient-specific automatic planning approach for DBS procedures which accounts for brain deformation. Our approach couples an optimization algorithm with FEM based brain shift simulation. The system was tested successfully on a patient-specific 3D model, and was compared to a planning without considering brain shift. The obtained results point out the importance of performing planning in dynamic conditions.

  13. Electrical Cerebral Stimulation Modifies Inhibitory Systems

    NASA Astrophysics Data System (ADS)

    Cuéllar-Herrera, M.; Rocha, L.

    2003-09-01

    Electrical stimulation of the nervous tissue has been proposed as a method to treat some neurological disorders, such as epilepsy. Epileptic seizures result from excessive, synchronous, abnormal firing patterns of neurons that are located predominantly in the cerebral cortex. Many people with epilepsy continue presenting seizures even though they are under regimens of antiepileptic medications. An alternative therapy for treatment resistant epilepsy is cerebral electrical stimulation. The present study is focused to review the effects of different types of electrical stimulation and specifically changes in amino acids.

  14. Electrical stimulation mapping of nouns and verbs in Broca's area.

    PubMed

    Havas, Viktória; Gabarrós, Andreu; Juncadella, Montserrat; Rifa-Ros, Xavi; Plans, Gerard; Acebes, Juan José; de Diego Balaguer, Ruth; Rodríguez-Fornells, Antoni

    2015-01-01

    Electric stimulation mapping (ESM) is frequently used during brain surgery to localise higher cognitive functions to avoid post-chirurgical disabilities. Experiments with brain imaging techniques and neuropsychological studies showed differences in the cortical representation and processing of nouns and verbs. The goal of the present study was to investigate whether electric stimulation in specific sites in the frontal cortex disrupted noun and verb production selectively. We found that most of the stimulated areas showed disruption of both verbs and nouns at the inferior frontal gyrus. However, when selective effects were obtained, verbs were more prone to disruption than nouns with important individual differences. The overall results indicate that selective impairments can be observed at inferior and middle frontal regions and the action naming task seems to be more suitable to avoid post-chirurgical language disabilities, as it shows a greater sensitivity to disruption with ESM than the classical object naming task. PMID:25957505

  15. Electrical stimulation mapping of nouns and verbs in Broca's area.

    PubMed

    Havas, Viktória; Gabarrós, Andreu; Juncadella, Montserrat; Rifa-Ros, Xavi; Plans, Gerard; Acebes, Juan José; de Diego Balaguer, Ruth; Rodríguez-Fornells, Antoni

    2015-01-01

    Electric stimulation mapping (ESM) is frequently used during brain surgery to localise higher cognitive functions to avoid post-chirurgical disabilities. Experiments with brain imaging techniques and neuropsychological studies showed differences in the cortical representation and processing of nouns and verbs. The goal of the present study was to investigate whether electric stimulation in specific sites in the frontal cortex disrupted noun and verb production selectively. We found that most of the stimulated areas showed disruption of both verbs and nouns at the inferior frontal gyrus. However, when selective effects were obtained, verbs were more prone to disruption than nouns with important individual differences. The overall results indicate that selective impairments can be observed at inferior and middle frontal regions and the action naming task seems to be more suitable to avoid post-chirurgical language disabilities, as it shows a greater sensitivity to disruption with ESM than the classical object naming task.

  16. Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain

    NASA Astrophysics Data System (ADS)

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-12-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

  17. Increased skin temperature during transcutaneous electrical stimulation.

    PubMed

    Abram, S E; Asiddao, C B; Reynolds, A C

    1980-01-01

    Conflicting reports have appeared in the literature concerning the effects of transcutaneous electrical nerve stimulation on skin temperature. This report studied 33 patients with chronic pain involving one extremity (13 upper, 20 lower) to determine whether changes in sympathetic tone, as reflected in skin temperature, occurred in response to electrical stimulation of painful areas. Stimulation was carried out for 20 to 45 minutes. Skin temperatures were measured from the thumbs or great toes of stimulated and contralateral extremities before and during stimulation. Skin temperature rose 2.5 +/- 0.7 (mean +/- SEM) in both the ipsilateral and contralateral extremity in patients who experienced relief of pain during stimulation. There was no significant change in skin temperature in patients who experienced no relief.

  18. Deep brain transcranial magnetic stimulation using variable "Halo coil" system

    NASA Astrophysics Data System (ADS)

    Meng, Y.; Hadimani, R. L.; Crowther, L. J.; Xu, Z.; Qu, J.; Jiles, D. C.

    2015-05-01

    Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-invasively and safely. The "Halo coil" configuration can stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to other coil configurations. The existing "Halo coil" configuration is fixed and is limited in varying the site of stimulation in the brain. We have developed a new system based on the current "Halo coil" design along with a graphical user interface system that enables the larger coil to rotate along the transverse plane. The new system can also enable vertical movement of larger coil. Thus, this adjustable "Halo coil" configuration can stimulate different regions of the brain by adjusting the position and orientation of the larger coil on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous head model for various positions and orientations of the coil. We have also investigated the mechanical and thermal stability of the adjustable "Halo coil" configuration for various positions and orientations of the coil to ensure safe operation of the system.

  19. Noninvasive brain stimulation for addiction medicine: From monitoring to modulation.

    PubMed

    Yavari, Fatemeh; Shahbabaie, Alireza; Leite, Jorge; Carvalho, Sandra; Ekhtiari, Hamed; Fregni, Felipe

    2016-01-01

    Addiction is a chronic relapsing brain disease with significant economical and medical burden on the societies but with limited effectiveness in the available treatment options. Better understanding of the chemical, neuronal, regional, and network alterations of the brain due to drug abuse can ultimately lead to tailoring individualized and more effective interventions. To this end, employing new assessment and intervention procedures seems crucial. Noninvasive brain stimulation (NIBS) techniques including transcranial electrical and magnetic stimulations (tES and TMS) have provided promising opportunities for the addiction medicine in two main domains: (1) providing new insights into neurochemical and neural circuit changes in the human brain cortex and (2) understanding the role of different brain regions by using NIBS and modulating cognitive functions, such as drug craving, risky decision making, inhibitory control and executive functions to obtain specific treatment outcomes. In spite of preliminary positive results, there are several open questions, which need to be addressed before routine clinical utilization of NIBS techniques in addiction to medicine, such as how to account for interindividual differences, define optimal cognitive and neural targets, optimize stimulation protocols, and integrate NIBS with other therapeutic methods. Therefore, in this chapter we revise the available literature on the use of NIBS (TMS and tES) in the diagnostic, prognostic, and therapeutic aspects of the addiction medicine.

  20. Closing the loop of deep brain stimulation

    PubMed Central

    Carron, Romain; Chaillet, Antoine; Filipchuk, Anton; Pasillas-Lépine, William; Hammond, Constance

    2013-01-01

    High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment. PMID:24391555

  1. Closing the loop of deep brain stimulation.

    PubMed

    Carron, Romain; Chaillet, Antoine; Filipchuk, Anton; Pasillas-Lépine, William; Hammond, Constance

    2013-01-01

    High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment. PMID:24391555

  2. Imaging Electrical Stimulation of the Human Cortex

    NASA Astrophysics Data System (ADS)

    Bahar, Sonya; Suh, Minah; Mehta, Ashesh D.; Schwartz, Theodore H.

    2004-03-01

    The intrinsic optical signal (IOS) is a change in light reflectance from neural tissue that correlates spatially with electrophysiological activity. Depending on the wavelength of incident light, the IOS reveals different physiological changes in the tissue. In order for the IOS to be applicable to problems such as the intraoperative brain mapping, it is critical to determine which wavelengths of incident light provide optimal information about the time course and spatial localization of the underlying activity. We performed intraoperative imaging of the human cortex during direct electrical stimulation, with illumination at 546 nm (corresponding mainly to blood flow) and 605 nm (corresponding to the oxy/deoxy ratio of hemoglobin). Incident light at 546 nm showed a much larger reflectance change than orange light; at 605 nm an initial reflectance change was observed which may correspond to the ``initial dip'' observed in BOLD (blood oxygen level dependent) fMRI imaging, followed by a large inverse reflectance signal which may correlate closely with the BOLD fMRI signal itself.

  3. Brain networks modulated by subthalamic nucleus deep brain stimulation.

    PubMed

    Accolla, Ettore A; Herrojo Ruiz, Maria; Horn, Andreas; Schneider, Gerd-Helge; Schmitz-Hübsch, Tanja; Draganski, Bogdan; Kühn, Andrea A

    2016-09-01

    Deep brain stimulation of the subthalamic nucleus is an established treatment for the motor symptoms of Parkinson's disease. Given the frequent occurrence of stimulation-induced affective and cognitive adverse effects, a better understanding about the role of the subthalamic nucleus in non-motor functions is needed. The main goal of this study is to characterize anatomical circuits modulated by subthalamic deep brain stimulation, and infer about the inner organization of the nucleus in terms of motor and non-motor areas. Given its small size and anatomical intersubject variability, functional organization of the subthalamic nucleus is difficult to investigate in vivo with current methods. Here, we used local field potential recordings obtained from 10 patients with Parkinson's disease to identify a subthalamic area with an analogous electrophysiological signature, namely a predominant beta oscillatory activity. The spatial accuracy was improved by identifying a single contact per macroelectrode for its vicinity to the electrophysiological source of the beta oscillation. We then conducted whole brain probabilistic tractography seeding from the previously identified contacts, and further described connectivity modifications along the macroelectrode's main axis. The designated subthalamic 'beta' area projected predominantly to motor and premotor cortical regions additional to connections to limbic and associative areas. More ventral subthalamic areas showed predominant connectivity to medial temporal regions including amygdala and hippocampus. We interpret our findings as evidence for the convergence of different functional circuits within subthalamic nucleus' portions deemed to be appropriate as deep brain stimulation target to treat motor symptoms in Parkinson's disease. Potential clinical implications of our study are illustrated by an index case where deep brain stimulation of estimated predominant non-motor subthalamic nucleus induced hypomanic behaviour.

  4. Network effects of deep brain stimulation

    PubMed Central

    Alhourani, Ahmad; McDowell, Michael M.; Randazzo, Michael J.; Wozny, Thomas A.; Kondylis, Efstathios D.; Lipski, Witold J.; Beck, Sarah; Karp, Jordan F.; Ghuman, Avniel S.

    2015-01-01

    The ability to differentially alter specific brain functions via deep brain stimulation (DBS) represents a monumental advance in clinical neuroscience, as well as within medicine as a whole. Despite the efficacy of DBS in the treatment of movement disorders, for which it is often the gold-standard therapy when medical management becomes inadequate, the mechanisms through which DBS in various brain targets produces therapeutic effects is still not well understood. This limited knowledge is a barrier to improving efficacy and reducing side effects in clinical brain stimulation. A field of study related to assessing the network effects of DBS is gradually emerging that promises to reveal aspects of the underlying pathophysiology of various brain disorders and their response to DBS that will be critical to advancing the field. This review summarizes the nascent literature related to network effects of DBS measured by cerebral blood flow and metabolic imaging, functional imaging, and electrophysiology (scalp and intracranial electroencephalography and magnetoencephalography) in order to establish a framework for future studies. PMID:26269552

  5. Network effects of deep brain stimulation.

    PubMed

    Alhourani, Ahmad; McDowell, Michael M; Randazzo, Michael J; Wozny, Thomas A; Kondylis, Efstathios D; Lipski, Witold J; Beck, Sarah; Karp, Jordan F; Ghuman, Avniel S; Richardson, R Mark

    2015-10-01

    The ability to differentially alter specific brain functions via deep brain stimulation (DBS) represents a monumental advance in clinical neuroscience, as well as within medicine as a whole. Despite the efficacy of DBS in the treatment of movement disorders, for which it is often the gold-standard therapy when medical management becomes inadequate, the mechanisms through which DBS in various brain targets produces therapeutic effects is still not well understood. This limited knowledge is a barrier to improving efficacy and reducing side effects in clinical brain stimulation. A field of study related to assessing the network effects of DBS is gradually emerging that promises to reveal aspects of the underlying pathophysiology of various brain disorders and their response to DBS that will be critical to advancing the field. This review summarizes the nascent literature related to network effects of DBS measured by cerebral blood flow and metabolic imaging, functional imaging, and electrophysiology (scalp and intracranial electroencephalography and magnetoencephalography) in order to establish a framework for future studies.

  6. Neuroethics of deep brain stimulation for mental disorders: brain stimulation reward in humans.

    PubMed

    Oshima, Hideki; Katayama, Yoichi

    2010-01-01

    The theoretical basis of some deep brain stimulation (DBS) trials undertaken in the early years was the phenomenon of "brain stimulation reward (BSR)," which was first identified in rats. The animals appeared to be rewarded by pleasure caused by the stimulation of certain brain regions (reward system), such as the septal area. "Self-stimulation" experiments, in which rats were allowed to stimulate their own brain by pressing a freely accessible lever, they quickly learned lever pressing and sometimes continued to stimulate until they exhausted themselves. BSR was also observed with DBS of the septal area in humans. DBS trials in later years were undertaken on other theoretical bases, but unexpected BSR was sometimes induced by stimulation of some areas, such as the locus coeruleus complex. When BSR was induced, the subjects experienced feelings that were described as "cheerful," "alert," "good," "well-being," "comfort," "relaxation," "joy," or "satisfaction." Since the DBS procedure is equivalent to a "self-stimulation" experiment, they could become "addicted to the stimulation itself" or "compulsive about the stimulation," and stimulate themselves "for the entire day," "at maximum amplitude" and, in some instances, "into convulsions." DBS of the reward system has recently been applied to alleviate anhedonia in patients with refractory major depression. Although this approach appears promising, there remains a difficult problem: who can adjust their feelings and reward-oriented behavior within the normal range? With a self-stimulation procedure, the BSR may become uncontrollable. To develop DBS to the level of a standard therapy for mental disorders, we need to discuss "Who has the right to control the mental condition?" and "Who makes decisions" on "How much control is appropriate?" in daily life. PMID:20885119

  7. Neuroethics of deep brain stimulation for mental disorders: brain stimulation reward in humans.

    PubMed

    Oshima, Hideki; Katayama, Yoichi

    2010-01-01

    The theoretical basis of some deep brain stimulation (DBS) trials undertaken in the early years was the phenomenon of "brain stimulation reward (BSR)," which was first identified in rats. The animals appeared to be rewarded by pleasure caused by the stimulation of certain brain regions (reward system), such as the septal area. "Self-stimulation" experiments, in which rats were allowed to stimulate their own brain by pressing a freely accessible lever, they quickly learned lever pressing and sometimes continued to stimulate until they exhausted themselves. BSR was also observed with DBS of the septal area in humans. DBS trials in later years were undertaken on other theoretical bases, but unexpected BSR was sometimes induced by stimulation of some areas, such as the locus coeruleus complex. When BSR was induced, the subjects experienced feelings that were described as "cheerful," "alert," "good," "well-being," "comfort," "relaxation," "joy," or "satisfaction." Since the DBS procedure is equivalent to a "self-stimulation" experiment, they could become "addicted to the stimulation itself" or "compulsive about the stimulation," and stimulate themselves "for the entire day," "at maximum amplitude" and, in some instances, "into convulsions." DBS of the reward system has recently been applied to alleviate anhedonia in patients with refractory major depression. Although this approach appears promising, there remains a difficult problem: who can adjust their feelings and reward-oriented behavior within the normal range? With a self-stimulation procedure, the BSR may become uncontrollable. To develop DBS to the level of a standard therapy for mental disorders, we need to discuss "Who has the right to control the mental condition?" and "Who makes decisions" on "How much control is appropriate?" in daily life.

  8. Deep brain stimulation for movement disorders.

    PubMed

    Thevathasan, Wesley; Gregory, Ralph

    2010-02-01

    Deep brain stimulation is now considered a routine treatment option for selected patients with advanced Parkinson's disease, primary segmental and generalised dystonia, and essential tremor. The neurosurgeon is responsible for the accurate and safe placement of the electrodes and the neurologist for the careful selection of patients and titration of medication against the effects of stimulation. A multidisciplinary team approach involving specialist nurses, neuropsychologists and neurophysiologists is required for a successful outcome. In this article we will summarise the key points in patient selection, provide an overview of the surgical technique, and discuss the beneficial and adverse outcomes that can occur.

  9. StimExplorer: deep brain stimulation parameter selection software system.

    PubMed

    Butson, C R; Noecker, A M; Maks, C B; McIntyre, C C

    2007-01-01

    StimExplorer is a Windows-based software package intended to aid the clinical implementation of deep brain stimulation (DBS) technology. StimExplorer uses detailed computer models to provide a quantitative description of the 3D volume of tissue activated (VTA) by DBS as a function of the stimulation parameters and electrode location within the brain. The stimulation models are tailored to the individual patient by importing their magnetic resonance imaging (MRI) data and interactively scaling 3D anatomical nuclei to fit the patient anatomy. The user also inputs the DBS electrode orientation, location, and impedance data. The software then provides theoretically optimal stimulation parameter suggestions, intended to represent the start point for clinical programming of the DBS device. The software system is packaged into a clinician-friendly graphical user interface that allows for simultaneous interactive 3D visualization of the MRI, anatomical nuclei, DBS electrode, and VTAs for a wide range of stimulation parameter settings (contact, impedance, voltage, pulse width, and frequency). The goals of the StimExplorer system are to educate clinicians on the impact of stimulation parameter manipulation, and improve therapeutic outcomes by providing quantitative anatomical and electrical information useful for customizing DBS to individual patients. PMID:17691349

  10. In vivo impedance spectroscopy of deep brain stimulation electrodes

    NASA Astrophysics Data System (ADS)

    Lempka, Scott F.; Miocinovic, Svjetlana; Johnson, Matthew D.; Vitek, Jerrold L.; McIntyre, Cameron C.

    2009-08-01

    Deep brain stimulation (DBS) represents a powerful clinical technology, but a systematic characterization of the electrical interactions between the electrode and the brain is lacking. The goal of this study was to examine the in vivo changes in the DBS electrode impedance that occur after implantation and during clinically relevant stimulation. Clinical DBS devices typically apply high-frequency voltage-controlled stimulation, and as a result, the injected current is directly regulated by the impedance of the electrode-tissue interface. We monitored the impedance of scaled-down clinical DBS electrodes implanted in the thalamus and subthalamic nucleus of a rhesus macaque using electrode impedance spectroscopy (EIS) measurements ranging from 0.5 Hz to 10 kHz. To further characterize our measurements, equivalent circuit models of the electrode-tissue interface were used to quantify the role of various interface components in producing the observed electrode impedance. Following implantation, the DBS electrode impedance increased and a semicircular arc was observed in the high-frequency range of the EIS measurements, commonly referred to as the tissue component of the impedance. Clinically relevant stimulation produced a rapid decrease in electrode impedance with extensive changes in the tissue component. These post-operative and stimulation-induced changes in impedance could play an important role in the observed functional effects of voltage-controlled DBS and should be considered during clinical stimulation parameter selection and chronic animal research studies.

  11. Optogenetics and deep brain stimulation neurotechnologies.

    PubMed

    Kondabolu, Krishnakanth; Kowalski, Marek Mateusz; Roberts, Erik Andrew; Han, Xue

    2015-01-01

    Brain neural network is composed of densely packed, intricately wired neurons whose activity patterns ultimately give rise to every behavior, thought, or emotion that we experience. Over the past decade, a novel neurotechnique, optogenetics that combines light and genetic methods to control or monitor neural activity patterns, has proven to be revolutionary in understanding the functional role of specific neural circuits. We here briefly describe recent advance in optogenetics and compare optogenetics with deep brain stimulation technology that holds the promise for treating many neurological and psychiatric disorders.

  12. A Programmable High-Voltage Compliance Neural Stimulator for Deep Brain Stimulation in Vivo

    PubMed Central

    Gong, Cihun-Siyong Alex; Lai, Hsin-Yi; Huang, Sy-Han; Lo, Yu-Chun; Lee, Nicole; Chen, Pin-Yuan; Tu, Po-Hsun; Yang, Chia-Yen; Lin, James Chang-Chieh; Chen, You-Yin

    2015-01-01

    Deep brain stimulation (DBS) is one of the most effective therapies for movement and other disorders. The DBS neurosurgical procedure involves the implantation of a DBS device and a battery-operated neurotransmitter, which delivers electrical impulses to treatment targets through implanted electrodes. The DBS modulates the neuronal activities in the brain nucleus for improving physiological responses as long as an electric discharge above the stimulation threshold can be achieved. In an effort to improve the performance of an implanted DBS device, the device size, implementation cost, and power efficiency are among the most important DBS device design aspects. This study aims to present preliminary research results of an efficient stimulator, with emphasis on conversion efficiency. The prototype stimulator features high-voltage compliance, implemented with only a standard semiconductor process, without the use of extra masks in the foundry through our proposed circuit structure. The results of animal experiments, including evaluation of evoked responses induced by thalamic electrical stimuli with our fabricated chip, were shown to demonstrate the proof of concept of our design. PMID:26029954

  13. A programmable high-voltage compliance neural stimulator for deep brain stimulation in vivo.

    PubMed

    Gong, Cihun-Siyong Alex; Lai, Hsin-Yi; Huang, Sy-Han; Lo, Yu-Chun; Lee, Nicole; Chen, Pin-Yuan; Tu, Po-Hsun; Yang, Chia-Yen; Lin, James Chang-Chieh; Chen, You-Yin

    2015-05-28

    Deep brain stimulation (DBS) is one of the most effective therapies for movement and other disorders. The DBS neurosurgical procedure involves the implantation of a DBS device and a battery-operated neurotransmitter, which delivers electrical impulses to treatment targets through implanted electrodes. The DBS modulates the neuronal activities in the brain nucleus for improving physiological responses as long as an electric discharge above the stimulation threshold can be achieved. In an effort to improve the performance of an implanted DBS device, the device size, implementation cost, and power efficiency are among the most important DBS device design aspects. This study aims to present preliminary research results of an efficient stimulator, with emphasis on conversion efficiency. The prototype stimulator features high-voltage compliance, implemented with only a standard semiconductor process, without the use of extra masks in the foundry through our proposed circuit structure. The results of animal experiments, including evaluation of evoked responses induced by thalamic electrical stimuli with our fabricated chip, were shown to demonstrate the proof of concept of our design.

  14. A new brain stimulation method: Noninvasive transcranial magneto-acoustical stimulation

    NASA Astrophysics Data System (ADS)

    Yuan, Yi; Chen, Yu-Dong; Li, Xiao-Li

    2016-08-01

    We investigate transcranial magneto-acoustical stimulation (TMAS) for noninvasive brain neuromodulation in vivo. TMAS as a novel technique uses an ultrasound wave to induce an electric current in the brain tissue in the static magnetic field. It has the advantage of high spatial resolution and penetration depth. The mechanism of TMAS onto a neuron is analyzed by combining the TMAS principle and Hodgkin-Huxley neuron model. The anesthetized rats are stimulated by TMAS, resulting in the local field potentials which are recorded and analyzed. The simulation results show that TMAS can induce neuronal action potential. The experimental results indicate that TMAS can not only increase the amplitude of local field potentials but also enhance the effect of focused ultrasound stimulation on the neuromodulation. In summary, TMAS can accomplish brain neuromodulation, suggesting a potentially powerful noninvasive stimulation method to interfere with brain rhythms for diagnostic and therapeutic purposes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503321 and 61273063) and the Natural Science Foundation of Hebei Province, China (Grant No. F2014203161).

  15. A new brain stimulation method: Noninvasive transcranial magneto–acoustical stimulation

    NASA Astrophysics Data System (ADS)

    Yuan, Yi; Chen, Yu-Dong; Li, Xiao-Li

    2016-08-01

    We investigate transcranial magneto–acoustical stimulation (TMAS) for noninvasive brain neuromodulation in vivo. TMAS as a novel technique uses an ultrasound wave to induce an electric current in the brain tissue in the static magnetic field. It has the advantage of high spatial resolution and penetration depth. The mechanism of TMAS onto a neuron is analyzed by combining the TMAS principle and Hodgkin–Huxley neuron model. The anesthetized rats are stimulated by TMAS, resulting in the local field potentials which are recorded and analyzed. The simulation results show that TMAS can induce neuronal action potential. The experimental results indicate that TMAS can not only increase the amplitude of local field potentials but also enhance the effect of focused ultrasound stimulation on the neuromodulation. In summary, TMAS can accomplish brain neuromodulation, suggesting a potentially powerful noninvasive stimulation method to interfere with brain rhythms for diagnostic and therapeutic purposes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503321 and 61273063) and the Natural Science Foundation of Hebei Province, China (Grant No. F2014203161).

  16. Modeling the current distribution across the depth electrode-brain interface in deep brain stimulation.

    PubMed

    Yousif, Nada; Liu, Xuguang

    2007-09-01

    The mismatch between the extensive clinical use of deep brain stimulation (DBS), which is being used to treat an increasing number of neurological disorders, and the lack of understanding of the underlying mechanisms is confounded by the difficulty of measuring the spread of electric current in the brain in vivo. In this article we present a brief review of the recent computational models that simulate the electric current and field distribution in 3D space and, consequently, make estimations of the brain volume being modulated by therapeutic DBS. Such structural modeling work can be categorized into three main approaches: target-specific modeling, models of instrumentation and modeling the electrode-brain interface. Comments are made for each of these approaches with emphasis on our electrode-brain interface modeling, since the stimulating current must travel across the electrode-brain interface in order to reach the surrounding brain tissue and modulate the pathological neural activity. For future modeling work, a combined approach needs to be taken to reveal the underlying mechanisms, and both structural and dynamic models need to be clinically validated to make reliable predictions about the therapeutic effect of DBS in order to assist clinical practice.

  17. Modeling of a Segmented Electrode for Desynchronizing Deep Brain Stimulation

    PubMed Central

    Buhlmann, J.; Hofmann, L.; Tass, P. A.; Hauptmann, C.

    2011-01-01

    Deep brain stimulation (DBS) is an effective therapy for medically refractory movement disorders like Parkinson’s disease. The electrodes, implanted in the target area within the human brain, generate an electric field which activates nerve fibers and cell bodies in the vicinity. Even though the different target nuclei display considerable differences in their anatomical structure, only few types of electrodes are currently commercially available. It is desirable to adjust the electric field and in particular the volume of tissue activated around the electrode with respect to the corresponding target nucleus in a such way that side effects can be reduced. Furthermore, a more selective and partial activation of the target structure is desirable for an optimal application of novel stimulation strategies, e.g., coordinated reset neuromodulation. Hence we designed a DBS electrode with a segmented design allowing a more selective activation of the target structure. We created a finite element model (FEM) of the electrode and analyzed the volume of tissue activated for this electrode design. The segmented electrode activated an area in a targeted manner, of which the dimension and position relative to the electrode could be controlled by adjusting the stimulation parameters for each electrode contact. According to our computational analysis, this directed stimulation might be superior with respect to the occurrence of side effects and it enables the application of coordinated reset neuromodulation under optimal conditions. PMID:22163220

  18. Magnetic fields in noninvasive brain stimulation.

    PubMed

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985. PMID:23787954

  19. Magnetic fields in noninvasive brain stimulation.

    PubMed

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985.

  20. Prediction and control of neural responses to pulsatile electrical stimulation

    NASA Astrophysics Data System (ADS)

    Campbell, Luke J.; Sly, David James; O'Leary, Stephen John

    2012-04-01

    This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s-1. A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s-1. Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.

  1. Technological Advances in Deep Brain Stimulation.

    PubMed

    Ughratdar, Ismail; Samuel, Michael; Ashkan, Keyoumars

    2015-01-01

    Functional and stereotactic neurosurgery has always been regarded as a subspecialty based on and driven by technological advances. However until recently, the fundamentals of deep brain stimulation (DBS) hardware and software design had largely remained stagnant since its inception almost three decades ago. Recent improved understanding of disease processes in movement disorders as well clinician and patient demands has resulted in new avenues of development for DBS technology. This review describes new advances both related to hardware and software for neuromodulation. New electrode designs with segmented contacts now enable sophisticated shaping and sculpting of the field of stimulation, potentially allowing multi-target stimulation and avoidance of side effects. To avoid lengthy programming sessions utilising multiple lead contacts, new user-friendly software allows for computational modelling and individualised directed programming. Therapy delivery is being improved with the next generation of smaller profile, longer-lasting, re-chargeable implantable pulse generators (IPGs). These include IPGs capable of delivering constant current stimulation or personalised closed-loop adaptive stimulation. Post-implantation Magnetic Resonance Imaging (MRI) has long been an issue which has been partially overcome with 'MRI conditional devices' and has enabled verification of DBS lead location. Surgical technique is considering a shift from frame-based to frameless stereotaxy or greater role for robot assisted implantation. The challenge for these contemporary techniques however, will be in demonstrating equivalent safety and accuracy to conventional methods. We also discuss potential future direction utilising wireless technology allowing for miniaturisation of hardware. PMID:26406128

  2. Technological Advances in Deep Brain Stimulation.

    PubMed

    Ughratdar, Ismail; Samuel, Michael; Ashkan, Keyoumars

    2015-01-01

    Functional and stereotactic neurosurgery has always been regarded as a subspecialty based on and driven by technological advances. However until recently, the fundamentals of deep brain stimulation (DBS) hardware and software design had largely remained stagnant since its inception almost three decades ago. Recent improved understanding of disease processes in movement disorders as well clinician and patient demands has resulted in new avenues of development for DBS technology. This review describes new advances both related to hardware and software for neuromodulation. New electrode designs with segmented contacts now enable sophisticated shaping and sculpting of the field of stimulation, potentially allowing multi-target stimulation and avoidance of side effects. To avoid lengthy programming sessions utilising multiple lead contacts, new user-friendly software allows for computational modelling and individualised directed programming. Therapy delivery is being improved with the next generation of smaller profile, longer-lasting, re-chargeable implantable pulse generators (IPGs). These include IPGs capable of delivering constant current stimulation or personalised closed-loop adaptive stimulation. Post-implantation Magnetic Resonance Imaging (MRI) has long been an issue which has been partially overcome with 'MRI conditional devices' and has enabled verification of DBS lead location. Surgical technique is considering a shift from frame-based to frameless stereotaxy or greater role for robot assisted implantation. The challenge for these contemporary techniques however, will be in demonstrating equivalent safety and accuracy to conventional methods. We also discuss potential future direction utilising wireless technology allowing for miniaturisation of hardware.

  3. The rationale for deep brain stimulation in Alzheimer's disease.

    PubMed

    Mirzadeh, Zaman; Bari, Ausaf; Lozano, Andres M

    2016-07-01

    Alzheimer's disease is a major worldwide health problem with no effective therapy. Deep brain stimulation (DBS) has emerged as a useful therapy for certain movement disorders and is increasingly being investigated for treatment of other neural circuit disorders. Here we review the rationale for investigating DBS as a therapy for Alzheimer's disease. Phase I clinical trials of DBS targeting memory circuits in Alzheimer's disease patients have shown promising results in clinical assessments of cognitive function, neurophysiological tests of cortical glucose metabolism, and neuroanatomical volumetric measurements showing reduced rates of atrophy. These findings have been supported by animal studies, where electrical stimulation of multiple nodes within the memory circuit have shown neuroplasticity through stimulation-enhanced hippocampal neurogenesis and improved performance in memory tasks. The precise mechanisms by which DBS may enhance memory and cognitive functions in Alzheimer's disease patients and the degree of its clinical efficacy continue to be examined in ongoing clinical trials.

  4. Binaural hearing with electrical stimulation

    PubMed Central

    Kan, Alan; Litovsky, Ruth Y.

    2014-01-01

    Bilateral cochlear implantation is becoming a standard of care in many clinics. While much benefit has been shown through bilateral implantation, patients who have bilateral cochlear implants (CIs) still do not perform as well as normal hearing listeners in sound localization and understanding speech in noisy environments. This difference in performance can arise from a number of different factors, including the areas of hardware and engineering, surgical precision and pathology of the auditory system in deaf persons. While surgical precision and individual pathology are factors that are beyond careful control, improvements can be made in the areas of clinical practice and the engineering of binaural speech processors. These improvements should be grounded in a good understanding of the sensitivities of bilateral CI patients to the acoustic binaural cues that are important to normal hearing listeners for sound localization and speech in noise understanding. To this end, we review the current state-of-the-art in the understanding of the sensitivities of bilateral CI patients to binaural cues in electric hearing, and highlight the important issues and challenges as they relate to clinical practice and the development of new binaural processing strategies. PMID:25193553

  5. Binaural hearing with electrical stimulation.

    PubMed

    Kan, Alan; Litovsky, Ruth Y

    2015-04-01

    Bilateral cochlear implantation is becoming a standard of care in many clinics. While much benefit has been shown through bilateral implantation, patients who have bilateral cochlear implants (CIs) still do not perform as well as normal hearing listeners in sound localization and understanding speech in noisy environments. This difference in performance can arise from a number of different factors, including the areas of hardware and engineering, surgical precision and pathology of the auditory system in deaf persons. While surgical precision and individual pathology are factors that are beyond careful control, improvements can be made in the areas of clinical practice and the engineering of binaural speech processors. These improvements should be grounded in a good understanding of the sensitivities of bilateral CI patients to the acoustic binaural cues that are important to normal hearing listeners for sound localization and speech in noise understanding. To this end, we review the current state-of-the-art in the understanding of the sensitivities of bilateral CI patients to binaural cues in electric hearing, and highlight the important issues and challenges as they relate to clinical practice and the development of new binaural processing strategies. This article is part of a Special Issue entitled .

  6. The ethics of deep brain stimulation (DBS).

    PubMed

    Unterrainer, Marcus; Oduncu, Fuat S

    2015-11-01

    Deep brain stimulation (DBS) is an invasive technique designed to stimulate certain deep brain regions for therapeutic purposes and is currently used mainly in patients with neurodegenerative disorders, such as Parkinson's disease. However, DBS is also used increasingly for other experimental applications, such as the treatment of psychiatric disorders (e.g. severe depression), weight reduction. Apart from its therapeutic potential, DBS can cause severe adverse effects, some that might also have a significant impact on the patient's personality and autonomy by the external stimulation of DBS which effects lie beyond the individual's control and free will. The article's purpose is to outline the procedures of DBS currently used in therapeutic and experimental applications and to discuss the ethical concerns regarding this procedure. It will address the clinical benefit-risk-ratio, the particular ethics of research in this field, and the ethical issues raised by affecting a patient's or an individual's personality and autonomous behaviour. Moreover, a potential ethical guideline, the Ulysses contract is discussed for the field of clinical application as well as the question of responsibility. PMID:25597042

  7. The ethics of deep brain stimulation (DBS).

    PubMed

    Unterrainer, Marcus; Oduncu, Fuat S

    2015-11-01

    Deep brain stimulation (DBS) is an invasive technique designed to stimulate certain deep brain regions for therapeutic purposes and is currently used mainly in patients with neurodegenerative disorders, such as Parkinson's disease. However, DBS is also used increasingly for other experimental applications, such as the treatment of psychiatric disorders (e.g. severe depression), weight reduction. Apart from its therapeutic potential, DBS can cause severe adverse effects, some that might also have a significant impact on the patient's personality and autonomy by the external stimulation of DBS which effects lie beyond the individual's control and free will. The article's purpose is to outline the procedures of DBS currently used in therapeutic and experimental applications and to discuss the ethical concerns regarding this procedure. It will address the clinical benefit-risk-ratio, the particular ethics of research in this field, and the ethical issues raised by affecting a patient's or an individual's personality and autonomous behaviour. Moreover, a potential ethical guideline, the Ulysses contract is discussed for the field of clinical application as well as the question of responsibility.

  8. Transcutaneous Electrical Nerve Stimulation: Research Update.

    ERIC Educational Resources Information Center

    Johns, Florene Carnicelli

    Currently, research is being performed in the area of nonsurgical and nonchemical means for influencing the body's threshold for pain. Today, transcutaneous electrical nerve stimulation (TENS) is being widely used for this purpose. Application of this treatment can be confusing, however, because determining such things as selection of the proper…

  9. Electrical stimulation of the nervous system for pain control.

    PubMed

    Long, D M

    1978-01-01

    Transcutaneous electrical stimulation appears to be a valid technique for the treatment of many pain states. Its use in chronic pain is limited and it appears to be much more likely to be effective in the relief of acute painful states. Nevertheless, since it provides a simple way to treat a significant number of patients whose pain would otherwise by intractable, it has been a valuable addition to the armamentarium of the physician dealing with chronic pain. Peripheral nerve stimulation is an excellent way to relieve pain of peripheral nerve injury origin and certain painful, poorly understood, vasopastic or reflex sympathetic states. Spinal cord stimulation has been revived by the advent of percutaneous stimulators. The technique is currently the best available for the treatment of the patient suffering from the chronic low back syndrome with severe arachnoiditis, for whom no definitive therapy is available. Brain stimulation has been relegated to therapy for pain of central nervous system origin. It is a most promising technique though its application appears to be limited at this point to a few specific problems. The seriousness of potential complications has kept it from being widely applicable to date. There is little information concerning the mechanism whereby these various techniques are effective. Transcutaneous and peripheral nerve stimulation might have their effect through peripheral mechanisms or through a gating mechanism in the posterior horn (Melzack and Wall 1965; Campbell and Taub 1973). Spinal cord stimulation could act through a retrograde effect upon a dorsal horn gate or have more central actions. Brain stimulation in the opiate receptor system may be effective through activation of this system. The mechanisms of action of stimulation in the sensory system centrally are certainly not well understood (Bloedel 1974).

  10. Determinants of the electric field during transcranial direct current stimulation.

    PubMed

    Opitz, Alexander; Paulus, Walter; Will, Susanne; Antunes, Andre; Thielscher, Axel

    2015-04-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field distribution in the brain during tDCS. We constructed anatomically realistic finite element (FEM) models of two individual heads including conductivity anisotropy and different skull layers. We simulated a widely employed electrode montage to induce motor cortex plasticity and moved the stimulating electrode over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect is counteracted by a larger proportion of higher conducting spongy bone in thicker regions leading to a more homogenous current over the skull. Using a multiple regression model we could identify key factors that determine the field distribution to a significant extent, namely the thicknesses of the cerebrospinal fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant to electrode positioning. Our results give valuable novel insights in the biophysical foundation of tDCS and highlight the importance to account for individual anatomical factors when choosing an electrode montage.

  11. Determinants of the electric field during transcranial direct current stimulation.

    PubMed

    Opitz, Alexander; Paulus, Walter; Will, Susanne; Antunes, Andre; Thielscher, Axel

    2015-04-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field distribution in the brain during tDCS. We constructed anatomically realistic finite element (FEM) models of two individual heads including conductivity anisotropy and different skull layers. We simulated a widely employed electrode montage to induce motor cortex plasticity and moved the stimulating electrode over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect is counteracted by a larger proportion of higher conducting spongy bone in thicker regions leading to a more homogenous current over the skull. Using a multiple regression model we could identify key factors that determine the field distribution to a significant extent, namely the thicknesses of the cerebrospinal fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant to electrode positioning. Our results give valuable novel insights in the biophysical foundation of tDCS and highlight the importance to account for individual anatomical factors when choosing an electrode montage. PMID:25613437

  12. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates

    PubMed Central

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan; Yeagle, Erin M.; Linn, Gary S.; Megevand, Pierre; Thielscher, Axel; Deborah A., Ross; Milham, Michael P.; Mehta, Ashesh D.; Schroeder, Charles E.

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reaches the brain, and how it distributes across the brain. Lack of this basic information precludes a firm mechanistic understanding of TES effects. In this study we directly measure the spatial and temporal characteristics of the electric field generated by TES using stereotactic EEG (s-EEG) electrode arrays implanted in cebus monkeys and surgical epilepsy patients. We found a small frequency dependent decrease (10%) in magnitudes of TES induced potentials and negligible phase shifts over space. Electric field strengths were strongest in superficial brain regions with maximum values of about 0.5 mV/mm. Our results provide crucial information of the underlying biophysics in TES applications in humans and the optimization and design of TES stimulation protocols. In addition, our findings have broad implications concerning electric field propagation in non-invasive recording techniques such as EEG/MEG. PMID:27535462

  13. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates.

    PubMed

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan; Yeagle, Erin M; Linn, Gary S; Megevand, Pierre; Thielscher, Axel; Deborah A, Ross; Milham, Michael P; Mehta, Ashesh D; Schroeder, Charles E

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reaches the brain, and how it distributes across the brain. Lack of this basic information precludes a firm mechanistic understanding of TES effects. In this study we directly measure the spatial and temporal characteristics of the electric field generated by TES using stereotactic EEG (s-EEG) electrode arrays implanted in cebus monkeys and surgical epilepsy patients. We found a small frequency dependent decrease (10%) in magnitudes of TES induced potentials and negligible phase shifts over space. Electric field strengths were strongest in superficial brain regions with maximum values of about 0.5 mV/mm. Our results provide crucial information of the underlying biophysics in TES applications in humans and the optimization and design of TES stimulation protocols. In addition, our findings have broad implications concerning electric field propagation in non-invasive recording techniques such as EEG/MEG. PMID:27535462

  14. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury

    PubMed Central

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-01-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue. PMID:25368644

  15. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring...

  16. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring...

  17. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring...

  18. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring...

  19. Metallic taste from electrical and chemical stimulation.

    PubMed

    Lawless, Harry T; Stevens, David A; Chapman, Kathryn W; Kurtz, Anne

    2005-03-01

    A series of three experiments investigated the nature of metallic taste reports after stimulation with solutions of metal salts and after stimulation with metals and electric currents. To stimulate with electricity, a device was fabricated consisting of a small battery affixed to a plastic handle with the anode side exposed for placement on the tongue or oral tissues. Intensity of taste from metals and batteries was dependent upon the voltage and was more robust in areas dense in fungiform papillae. Metallic taste was reported from stimulation with ferrous sulfate solutions, from metals and from electric stimuli. However, reports of metallic taste were more frequent when the word 'metallic' was presented embedded in a list of choices, as opposed to simple free-choice labeling. Intensity decreased for ferrous sulfate when the nose was occluded, consistent with a decrease in retronasal smell, as previously reported. Intensity of taste evoked by copper metal, bimetallic stimuli (zinc/copper) or small batteries (1.5-3 V) was not affected by nasal occlusion. This difference suggests two distinct mechanisms for evocation of metallic taste reports, one dependent upon retronasal smell and a second mediated by oral chemoreceptors. PMID:15741603

  20. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens

    PubMed Central

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-01-01

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse. PMID:27327255

  1. Electrical stimulation of the dorsolateral prefrontal cortex improves memory monitoring.

    PubMed

    Chua, Elizabeth F; Ahmed, Rifat

    2016-05-01

    The ability to accurately monitor one's own memory is an important feature of normal memory function. Converging evidence from neuroimaging and lesion studies have implicated the dorsolateral prefrontal cortex (DLPFC) in memory monitoring. Here we used high definition transcranial direct stimulation (HD-tDCS), a non-invasive form of brain stimulation, to test whether the DLPFC has a causal role in memory monitoring, and the nature of that role. We used a metamemory monitoring task, in which participants first attempted to recall the answer to a general knowledge question, then gave a feeling-of-knowing (FOK) judgment, followed by a forced choice recognition task. When participants received DLPFC stimulation, their feeling-of-knowing judgments were better predictors of memory performance, i.e., they had better memory monitoring accuracy, compared to stimulation of a control site, the anterior temporal lobe (ATL). Effects of DLPFC stimulation were specific to monitoring accuracy, as there was no significant increase in memory performance, and if anything, there was poorer memory performance with DLPFC stimulation. Thus we have demonstrated a causal role for the DLPFC in memory monitoring, and showed that electrically stimulating the left DLPFC led people to more accurately monitor and judge their own memory. PMID:26970142

  2. Deep brain stimulation for major depression.

    PubMed

    Schlaepfer, T E; Bewernick, B H

    2013-01-01

    A third of patients suffering from major depression cannot be helped by conventional treatment methods. These patients face reduced quality of life, high risk of suicide, and little hope of recovery. Deep brain stimulation (DBS) is under scientific evaluation as a new treatment option for these treatment-resistant patients. First clinical studies with small samples have been stimulated at the subgenual cingulate gyrus (Cg25/24), the anterior limb of the capsula interna (ALIC), and the nucleus accumbens (NAcc). Long-term antidepressant effects, augmentation of social functioning, and normalization of brain metabolism have been shown in about 50% of patients. Cognitive safety regarding attention, learning, and memory has been reported. Adverse events were wound infection, suicide, and hypomania, amongst others. Larger studies are under way to confirm these preliminary encouraging results. New hypothesis-guided targets (e.g., medial forebrain bundle, habenula) are about to be assessed in clinical trials. The application of DBS for other psychiatric diseases (e.g., bipolar disorder, alcohol dependency, opioid addiction, schizophrenia) is debated and single case studies are under way. Standards are needed for study registration, target selection, patient inclusion and monitoring, and publication of results to guarantee safety for the patients and scientific exchange.

  3. Electrical stimulation for epilepsy: stimulation of hippocampal foci.

    PubMed

    Velasco, F; Velasco, M; Velasco, A L; Menez, D; Rocha, L

    2001-01-01

    Subacute and chronic continuous electrical stimulation at the epileptic focus in the hippocampus or parahippocampal cortex at 130 Hz, 0.21-1.0 ms, 2.5-3.5 V (about 200-300 microA) induces a decrease in focal EEG epileptic interictal activity and also in the occurrence of clinical seizures. This may represent an alternative for the treatment of temporal lobe seizures originated in bilateral independent temporal lobe foci or occurring in patients where one is uncertain whether memory deficit might result from ablative procedures.

  4. Assessment of Neuromuscular Function Using Percutaneous Electrical Nerve Stimulation.

    PubMed

    Rozand, Vianney; Grosprêtre, Sidney; Stapley, Paul J; Lepers, Romuald

    2015-09-13

    Percutaneous electrical nerve stimulation is a non-invasive method commonly used to evaluate neuromuscular function from brain to muscle (supra-spinal, spinal and peripheral levels). The present protocol describes how this method can be used to stimulate the posterior tibial nerve that activates plantar flexor muscles. Percutaneous electrical nerve stimulation consists of inducing an electrical stimulus to a motor nerve to evoke a muscular response. Direct (M-wave) and/or indirect (H-reflex) electrophysiological responses can be recorded at rest using surface electromyography. Mechanical (twitch torque) responses can be quantified with a force/torque ergometer. M-wave and twitch torque reflect neuromuscular transmission and excitation-contraction coupling, whereas H-reflex provides an index of spinal excitability. EMG activity and mechanical (superimposed twitch) responses can also be recorded during maximal voluntary contractions to evaluate voluntary activation level. Percutaneous nerve stimulation provides an assessment of neuromuscular function in humans, and is highly beneficial especially for studies evaluating neuromuscular plasticity following acute (fatigue) or chronic (training/detraining) exercise.

  5. High permeability cores to optimize the stimulation of deeply located brain regions using transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Salvador, R.; Miranda, P. C.; Roth, Y.; Zangen, A.

    2009-05-01

    Efficient stimulation of deeply located brain regions with transcranial magnetic stimulation (TMS) poses many challenges, arising from the fact that the induced field decays rapidly and becomes less focal with depth. We propose a new method to improve the efficiency of TMS of deep brain regions that combines high permeability cores, to increase focality and field intensity, with a coil specifically designed to induce a field that decays slowly with increasing depth. The performance of the proposed design was investigated using the finite element method to determine the total electric field induced by this coil/core arrangement on a realistically shaped homogeneous head model. The calculations show that the inclusion of the cores increases the field's magnitude by as much as 25% while also decreasing the field's decay with depth along specific directions. The focality, as measured by the area where the field's norm is greater than 1/\\sqrt 2 of its maximum value, is also improved by as much as 15% with some core arrangements. The coil's inductance is not significantly increased by the cores. These results show that the presence of the cores might make this specially designed coil even more suited for the effective stimulation of deep brain regions.

  6. Tissue damage thresholds during therapeutic electrical stimulation

    NASA Astrophysics Data System (ADS)

    Cogan, Stuart F.; Ludwig, Kip A.; Welle, Cristin G.; Takmakov, Pavel

    2016-04-01

    Objective. Recent initiatives in bioelectronic modulation of the nervous system by the NIH (SPARC), DARPA (ElectRx, SUBNETS) and the GlaxoSmithKline Bioelectronic Medicines effort are ushering in a new era of therapeutic electrical stimulation. These novel therapies are prompting a re-evaluation of established electrical thresholds for stimulation-induced tissue damage. Approach. In this review, we explore what is known and unknown in published literature regarding tissue damage from electrical stimulation. Main results. For macroelectrodes, the potential for tissue damage is often assessed by comparing the intensity of stimulation, characterized by the charge density and charge per phase of a stimulus pulse, with a damage threshold identified through histological evidence from in vivo experiments as described by the Shannon equation. While the Shannon equation has proved useful in assessing the likely occurrence of tissue damage, the analysis is limited by the experimental parameters of the original studies. Tissue damage is influenced by factors not explicitly incorporated into the Shannon equation, including pulse frequency, duty cycle, current density, and electrode size. Microelectrodes in particular do not follow the charge per phase and charge density co-dependence reflected in the Shannon equation. The relevance of these factors to tissue damage is framed in the context of available reports from modeling and in vivo studies. Significance. It is apparent that emerging applications, especially with microelectrodes, will require clinical charge densities that exceed traditional damage thresholds. Experimental data show that stimulation at higher charge densities can be achieved without causing tissue damage, suggesting that safety parameters for microelectrodes might be distinct from those defined for macroelectrodes. However, these increased charge densities may need to be justified by bench, non-clinical or clinical testing to provide evidence of device

  7. Magnetic resonance imaging safety of deep brain stimulator devices.

    PubMed

    Oluigbo, Chima O; Rezai, Ali R

    2013-01-01

    Magnetic resonance imaging (MRI) has become the standard of care for the evaluation of different neurological disorders of the brain and spinal cord due to its multiplanar capabilities and excellent soft tissue resolution. With the large and increasing population of patients with implanted deep brain stimulation (DBS) devices, a significant proportion of these patients with chronic neurological diseases require evaluation of their primary neurological disease processes by MRI. The presence of an implanted DBS device in a magnetic resonance environment presents potential hazards. These include the potential for induction of electrical currents or heating in DBS devices, which can result in neurological tissue injury, magnetic field-induced device migration, or disruption of the operational aspects of the devices. In this chapter, we review the basic physics of potential interactions of the MRI environment with implanted DBS devices, summarize results from phantom studies and clinical series, and discuss present recommendations for safe MRI in patients with implanted DBS devices.

  8. Magnetic resonance imaging safety of deep brain stimulator devices.

    PubMed

    Oluigbo, Chima O; Rezai, Ali R

    2013-01-01

    Magnetic resonance imaging (MRI) has become the standard of care for the evaluation of different neurological disorders of the brain and spinal cord due to its multiplanar capabilities and excellent soft tissue resolution. With the large and increasing population of patients with implanted deep brain stimulation (DBS) devices, a significant proportion of these patients with chronic neurological diseases require evaluation of their primary neurological disease processes by MRI. The presence of an implanted DBS device in a magnetic resonance environment presents potential hazards. These include the potential for induction of electrical currents or heating in DBS devices, which can result in neurological tissue injury, magnetic field-induced device migration, or disruption of the operational aspects of the devices. In this chapter, we review the basic physics of potential interactions of the MRI environment with implanted DBS devices, summarize results from phantom studies and clinical series, and discuss present recommendations for safe MRI in patients with implanted DBS devices. PMID:24112886

  9. Neuropsychiatric deep brain stimulation for translational neuroimaging.

    PubMed

    Höflich, Anna; Savli, Markus; Comasco, Erika; Moser, Ulrike; Novak, Klaus; Kasper, Siegfried; Lanzenberger, Rupert

    2013-10-01

    From a neuroimaging point of view, deep brain stimulation (DBS) in psychiatric disorders represents a unique source of information to probe results gained in functional, structural and molecular neuroimaging studies in vivo. However, the implementation has, up to now, been restricted by the heterogeneity of the data reported in DBS studies. The aim of the present study was therefore to provide a comprehensive and standardized database of currently used DBS targets in selected psychiatric disorders (obsessive-compulsive disorder (OCD), treatment-resistant depression (TRD), Gilles de la Tourette syndrome (GTS)) to enable topological comparisons between neuroimaging results and stimulation areas. A systematic literature research was performed and all peer-reviewed publications until the year 2012 were included. Literature research yielded a total of 84 peer-reviewed studies including about 296 psychiatric patients. The individual stimulation data of 37 of these studies meeting the inclusion criteria which included a total of 202 patients (63 OCD, 89 TRD, 50 GTS) was translated into MNI stereotactic space with respect to AC origin in order to identify key targets. The created database can be used to compare DBS target areas in MNI stereotactic coordinates with: 1) activation patterns in functional brain imaging (fMRI, phfMRI, PET, MET, EEG); 2) brain connectivity data (e.g., MR-based DTI/tractography, functional and effective connectivity); 3) quantitative molecular distribution data (e.g., neuroreceptor PET, post-mortem neuroreceptor mapping); 4) structural data (e.g., VBM for neuroplastic changes). Vice versa, the structural, functional and molecular data may provide a rationale to define new DBS targets and adjust/fine-tune currently used targets in DBS based on this overview in stereotactic coordinates. Furthermore, the availability of DBS data in stereotactic space may facilitate the investigation and interpretation of treatment effects and side effect of DBS by

  10. Stimulants

    MedlinePlus

    Stimulants are drugs that increase your heart rate, breathing rate, and brain function. Some stimulants affect only a specific organ, such as the heart, lungs, brain, or nervous system. Epinephrine is a stimulant. It ...

  11. Deep brain stimulation for obesity: past, present, and future targets.

    PubMed

    Dupré, Derrick A; Tomycz, Nestor; Oh, Michael Y; Whiting, Donald

    2015-06-01

    The authors review the history of deep brain stimulation (DBS) in patients for treating obesity, describe current DBS targets in the brain, and discuss potential DBS targets and nontraditional stimulation parameters that may improve the effectiveness of DBS for ameliorating obesity. Deep brain stimulation for treating obesity has been performed both in animals and in humans with intriguing preliminary results. The brain is an attractive target for addressing obesity because modulating brain activity may permit influencing both sides of the energy equation--caloric intake and energy expenditure.

  12. Deep brain stimulation for obesity: past, present, and future targets.

    PubMed

    Dupré, Derrick A; Tomycz, Nestor; Oh, Michael Y; Whiting, Donald

    2015-06-01

    The authors review the history of deep brain stimulation (DBS) in patients for treating obesity, describe current DBS targets in the brain, and discuss potential DBS targets and nontraditional stimulation parameters that may improve the effectiveness of DBS for ameliorating obesity. Deep brain stimulation for treating obesity has been performed both in animals and in humans with intriguing preliminary results. The brain is an attractive target for addressing obesity because modulating brain activity may permit influencing both sides of the energy equation--caloric intake and energy expenditure. PMID:26030707

  13. A method for estimation of stimulated brain sites based on columnar structure of cerebral cortex in transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Hiwaki, Osamu; Inoue, Tomonori

    2009-04-01

    Transcranial magnetic stimulation (TMS) is a noninvasive method to stimulate the cortex. In TMS with a figure-of-eight coil, the induced electric field elicited by the pulsed magnetic fields is gathered beneath the center of the figure-of-eight coil, so the point on the cortex beneath the center of the figure-of-eight coil has been regarded as a stimulating site conventionally. However, the stimulating point determined in this way is not supposed to be plausible because electric field induced in TMS is dispersed over the brain vectorially. The present study proposed the novel method for the accurate estimation of stimulating points of the cortex in TMS. In our proposed method, the cortical structure and property of neural excitation in magnetic nerve stimulation were taken into account. The basic unit of the cerebral cortex is the cylindrical column containing pyramidal neurons perpendicular to the cortical surface, and neural excitation in the magnetic nerve stimulation is determined by the spatial derivative of the electric field parallel to the cablelike neuron such as a pyramidal neuron. According to these understandings, the relative intensity of nerve stimulation in TMS corresponds to the strength of the component of the induced electrical field perpendicular to the cortical surface. We realized the method for the estimation of stimulating sites of the cortex in TMS by using this principle. The component of the electric field perpendicular to the cortical surface at each pixel of magnetic resonance imaging was obtained with computation of the dot product of the electric field and the unit vector perpendicular to the cortex surface. The strength of the component of the electric field perpendicular to the cortical surface was regarded as the stimulating strength at each pixel of the cortical surface in TMS. We conducted the experiments of TMS to confirm the validity of this method. The cortex sites, which innervate muscles of the upper limb, were successfully

  14. Deep Brain Stimulation for Psychiatric Disorders

    PubMed Central

    Holtzheimer, Paul E.; Mayberg, Helen S.

    2015-01-01

    Medications, psychotherapy, and other treatments are effective for many patients with psychiatric disorders. However, with currently available interventions, a substantial number of patients experience incomplete resolution of symptoms, and relapse rates are high. In the search for better treatments, increasing interest has focused on focal neuromodulation. This focus has been driven by improved neuroanatomical models of mood, thought, and behavior regulation, as well as by more advanced strategies for directly and focally altering neural activity. Deep brain stimulation (DBS) is one of the most invasive focal neuromodulation techniques available; data have supported its safety and efficacy in a number of movement disorders. Investigators have produced preliminary data on the safety and efficacy of DBS for several psychiatric disorders, as well. In this review, we describe the development and justification for testing DBS for various psychiatric disorders, carefully consider the available clinical data, and briefly discuss potential mechanisms of action. PMID:21692660

  15. Deep brain stimulation to reduce sexual drive

    PubMed Central

    Fuss, Johannes; Auer, Matthias K.; Biedermann, Sarah V.; Briken, Peer; Hacke, Werner

    2015-01-01

    To date there are few treatment options to reduce high sexual drive or sexual urges in paraphilic patients with a risk for sexual offending. Pharmacological therapy aims to reduce sexual drive by lowering testosterone at the cost of severe side effects. We hypothesize that high sexual drive could also be reduced with deep brain stimulation (DBS) of circuits that generate sexual drive. This approach would help to avoid systemic side effects of antiandrogenic drug therapies. So far the best investigated target to reduce sexual drive is the ventromedial hypothalamus, which was lesioned unilaterally and bilaterally by stereotaxic interventions in paraphilic patients in the 1970s. Here, we discuss DBS as a treatment strategy in patients with severe paraphilic disorders with a serious risk of sexual offending. There are profound ethical and practical issues associated with DBS treatment of paraphilic patients that must be solved before considering such a treatment approach. PMID:26057198

  16. Thalamic Deep Brain Stimulation for Writer's Cramp

    PubMed Central

    Cho, Chul Bum; Park, Hae Kwan; Rha, Hyoung Kyun

    2009-01-01

    Writer's cramp is a type of idiopathic focal hand dystonia characterized by muscle cramps that accompany execution of the writing task specifically. There has been renewed interest in neurosurgical procedures for the treatment of dystonia over the past several years. In particular, deep brain stimulation (DBS) has received increasing attention as a therapeutic option for patients with dystonia. However, to date, limited reporters made investigations into DBS in relation to the Writer's cramp. In this case, unilateral Ventro-oralis complex (Vo) DBS resulted in a major improvement in patient's focal dystonic movement disorders. Her post-operative Burke-Fahn-Marsden Dystonia Rating (BFMDR) scale demonstrated 1 compared with pre-operative BFMDR scale 4. We conclude that thalamic Vo complex DBS may be an important neurosurgical therapeutic option for Writer's cramp. PMID:19707494

  17. Electrical stimulation for the relief of pain.

    PubMed

    Miles, J

    1984-03-01

    Electrical stimulation can relieve some severe and otherwise persisting pains. At its best it can be associated with either a gradual reduction in the pain or an increased ability by the patient to control his suffering. It seems particularly appropriate for use in the field of benign persistent pain. Equipment design and materials, particularly for implantable circuits, are not perfect. Movement towards percutaneous implantation, obviating the need for open operation, seems progressively more popular. Any unit or group using this form of treatment, must be prepared to provide major technical facilities, both in the form of people and equipment in order to cater for the many purely technical problems that occur. A great deal of knowledge both neurophysiological and neurochemical seems to be accruing from the clinical use of electrical stimulation. We would do well to take advantage of this opportunity, in the hope that it might lead us to a better understanding of the functioning of the nervous system. This consideration remarkably parallels an observation made by John Hunter in his presentation to the Royal Society in 1773 (13) which anticipated the realisation of the part played by electricity in the function of nerves. Following his description of the extraordinary innervation of the electric organs of the Torpedo fish, he wrote: 'How far this may be connected with the power of the nerves in general, or how far it may lead to an explanation of their operations, time and future discoveries alone can fully determine.' PMID:6608312

  18. A microprocessor-based multichannel subsensory stochastic resonance electrical stimulator.

    PubMed

    Chang, Gwo-Ching

    2013-01-01

    Stochastic resonance electrical stimulation is a novel intervention which provides potential benefits for improving postural control ability in the elderly, those with diabetic neuropathy, and stroke patients. In this paper, a microprocessor-based subsensory white noise electrical stimulator for the applications of stochastic resonance stimulation is developed. The proposed stimulator provides four independent programmable stimulation channels with constant-current output, possesses linear voltage-to-current relationship, and has two types of stimulation modes, pulse amplitude and width modulation.

  19. Electrical Stimulation Technologies for Wound Healing

    PubMed Central

    Kloth, Luther C.

    2014-01-01

    Objective: To discuss the physiological bases for using exogenously applied electric field (EF) energy to enhance wound healing with conductive electrical stimulation (ES) devices. Approach: To describe the types of electrical currents that have been reported to enhance chronic wound-healing rate and closure. Results: Commercial ES devices that generate direct current (DC), and mono and biphasic pulsed current waveforms represent the principal ES technologies which are reported to enhance wound healing. Innovation: Wafer-thin, disposable ES technologies (wound dressings) that utilize mini or micro-batteries to deliver low-level DC for wound healing and antibacterial wound-treatment purposes are commercially available. Microfluidic wound-healing chips are currently being used with greater accuracy to investigate the EF effects on cellular electrotaxis. Conclusion: Numerous clinical trials described in subsequent sections of this issue have demonstrated that ES used adjunctively with standard wound care (SWC), enhances wound healing rate faster than SWC alone. PMID:24761348

  20. Electrical stimulation systems for cardiac tissue engineering

    PubMed Central

    Tandon, Nina; Cannizzaro, Christopher; Chao, Pen-Hsiu Grace; Maidhof, Robert; Marsano, Anna; Au, Hoi Ting Heidi; Radisic, Milica; Vunjak-Novakovic, Gordana

    2009-01-01

    We describe a protocol for tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cells with the application of pulsatile electrical fields designed to mimic those present in the native heart. Tissue culture is conducted in a customized chamber built to allow for cultivation of (i) engineered three-dimensional (3D) cardiac tissue constructs, (ii) cell monolayers on flat substrates or (iii) cells on patterned substrates. This also allows for analysis of the individual and interactive effects of pulsatile electrical field stimulation and substrate topography on cell differentiation and assembly. The protocol is designed to allow for delivery of predictable electrical field stimuli to cells, monitoring environmental parameters, and assessment of cell and tissue responses. The duration of the protocol is 5 d for two-dimensional cultures and 10 d for 3D cultures. PMID:19180087

  1. Electrical stimulation systems for cardiac tissue engineering.

    PubMed

    Tandon, Nina; Cannizzaro, Christopher; Chao, Pen-Hsiu Grace; Maidhof, Robert; Marsano, Anna; Au, Hoi Ting Heidi; Radisic, Milica; Vunjak-Novakovic, Gordana

    2009-01-01

    We describe a protocol for tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cells with the application of pulsatile electrical fields designed to mimic those present in the native heart. Tissue culture is conducted in a customized chamber built to allow for cultivation of (i) engineered three-dimensional (3D) cardiac tissue constructs, (ii) cell monolayers on flat substrates or (iii) cells on patterned substrates. This also allows for analysis of the individual and interactive effects of pulsatile electrical field stimulation and substrate topography on cell differentiation and assembly. The protocol is designed to allow for delivery of predictable electrical field stimuli to cells, monitoring environmental parameters, and assessment of cell and tissue responses. The duration of the protocol is 5 d for two-dimensional cultures and 10 d for 3D cultures.

  2. Functional Electrical Stimulation in Children and Adolescents with Cerebral Palsy

    ERIC Educational Resources Information Center

    van der Linden, Marietta

    2012-01-01

    In this article, the author talks about functional electrical stimulation in children and adolescents with cerebral palsy. Functional electrical stimulation (FES) is defined as the electrical stimulation of muscles that have impaired motor control, in order to produce a contraction to obtain functionally useful movement. It was first proposed in…

  3. The adaptive deep brain stimulation challenge.

    PubMed

    Arlotti, Mattia; Rosa, Manuela; Marceglia, Sara; Barbieri, Sergio; Priori, Alberto

    2016-07-01

    Sub-optimal clinical outcomes of conventional deep brain stimulation (cDBS) in treating Parkinson's Disease (PD) have boosted the development of new solutions to improve DBS therapy. Adaptive DBS (aDBS), consisting of closed-loop, real-time changing of stimulation parameters according to the patient's clinical state, promises to achieve this goal and is attracting increasing interest in overcoming all of the challenges posed by its development and adoption. In the design, implementation, and application of aDBS, the choice of the control variable and of the control algorithm represents the core challenge. The proposed approaches, in fact, differ in the choice of the control variable and control policy, in the system design and its technological limits, in the patient's target symptom, and in the surgical procedure needed. Here, we review the current proposals for aDBS systems, focusing on the choice of the control variable and its advantages and drawbacks, thus providing a general overview of the possible pathways for the clinical translation of aDBS with its benefits, limitations and unsolved issues. PMID:27079257

  4. Tractography patterns of subthalamic nucleus deep brain stimulation.

    PubMed

    Vanegas-Arroyave, Nora; Lauro, Peter M; Huang, Ling; Hallett, Mark; Horovitz, Silvina G; Zaghloul, Kareem A; Lungu, Codrin

    2016-04-01

    Deep brain stimulation therapy is an effective symptomatic treatment for Parkinson's disease, yet the precise mechanisms responsible for its therapeutic effects remain unclear. Although the targets of deep brain stimulation are grey matter structures, axonal modulation is known to play an important role in deep brain stimulation's therapeutic mechanism. Several white matter structures in proximity to the subthalamic nucleus have been implicated in the clinical benefits of deep brain stimulation for Parkinson's disease. We assessed the connectivity patterns that characterize clinically beneficial electrodes in Parkinson's disease patients, after deep brain stimulation of the subthalamic nucleus. We evaluated 22 patients with Parkinson's disease (11 females, age 57 ± 9.1 years, disease duration 13.3 ± 6.3 years) who received bilateral deep brain stimulation of the subthalamic nucleus at the National Institutes of Health. During an initial electrode screening session, one month after deep brain stimulation implantation, the clinical benefits of each contact were determined. The electrode was localized by coregistering preoperative magnetic resonance imaging and postoperative computer tomography images and the volume of tissue activated was estimated from stimulation voltage and impedance. Brain connectivity for the volume of tissue activated of deep brain stimulation contacts was assessed using probabilistic tractography with diffusion-tensor data. Areas most frequently connected to clinically effective contacts included the thalamus, substantia nigra, brainstem and superior frontal gyrus. A series of discriminant analyses demonstrated that the strength of connectivity to the superior frontal gyrus and the thalamus were positively associated with clinical effectiveness. The connectivity patterns observed in our study suggest that the modulation of white matter tracts directed to the superior frontal gyrus and the thalamus is associated with favourable clinical

  5. Auricular electrical stimulation and dental pain threshold.

    PubMed Central

    Simmons, M. S.; Oleson, T. D.

    1993-01-01

    A modified double-blind evaluation of naloxone reversibility of dental analgesia produced by auricular electrical stimulation (AES) was examined in 40 subjects assigned randomly to one of four groups: AES followed by saline (AS), AES followed by naloxone (AN), placebo AES followed by saline (PS), and placebo AES followed by naloxone (PN). Dental pain threshold was tested using a hand-held dental pulp tester. A second investigator administered the true or placebo AES using an electrical stimulator. A third investigator injected intravenously saline or naloxone. The subjects and investigators 1 and 3 were blind to all treatment conditions. A repeated measures analysis of variance revealed a significant difference among the four groups. The AES groups exhibited a statistically significant 18% elevation of pain threshold, whereas the two placebo stimulation groups (PS and PN) remained essentially unchanged. The mean pain threshold increased to more than 23% for group AS, but fell to less than 12% for the subjects in group AN, who were given naloxone. These findings indicate a small but significant elevation of pain threshold by AES, an effect partially blocked by naloxone, suggesting an endogenous opioid system as one mechanism for AES analgesia. Images Figure 1 Figure 2 PMID:8185085

  6. Electric Field Model of Transcranial Electric Stimulation in Nonhuman Primates: Correspondence to Individual Motor Threshold

    PubMed Central

    Lee, Won Hee; Lisanby, Sarah H.; Laine, Andrew F.

    2015-01-01

    Objective To develop a pipeline for realistic head models of nonhuman primates (NHPs) for simulations of noninvasive brain stimulation, and use these models together with empirical threshold measurements to demonstrate that the models capture individual anatomical variability. Methods Based on structural MRI data, we created models of the electric field (E-field) induced by right unilateral (RUL) electroconvulsive therapy (ECT) in four rhesus macaques. Individual motor threshold (MT) was measured with transcranial electric stimulation (TES) administered through the RUL electrodes in the same subjects. Results The interindividual anatomical differences resulted in 57% variation in median E-field strength in the brain at fixed stimulus current amplitude. Individualization of the stimulus current by MT reduced the E-field variation in the target motor area by 27%. There was significant correlation between the measured MT and the ratio of simulated electrode current and E-field strength (r2 = 0.95, p = 0.026). Exploratory analysis revealed significant correlations of this ratio with anatomical parameters including of the superior electrode-to-cortex distance, vertex-to-cortex distance, and brain volume (r2 > 0.96, p < 0.02). The neural activation threshold was estimated to be 0.45 ± 0.07 V/cm for 0.2 ms stimulus pulse width. Conclusion These results suggest that our individual-specific NHP E-field models appropriately capture individual anatomical variability relevant to the dosing of TES/ECT. These findings are exploratory due to the small number of subjects. Significance This work can contribute insight in NHP studies of ECT and other brain stimulation interventions, help link the results to clinical studies, and ultimately lead to more rational brain stimulation dosing paradigms. PMID:25910001

  7. An investigation into the induced electric fields from transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Hadimani, Ravi; Lee, Erik; Duffy, Walter; Waris, Mohammed; Siddiqui, Waquar; Islam, Faisal; Rajamani, Mahesh; Nathan, Ryan; Jiles, David; David C Jiles Team; Walter Duffy Collaboration

    Transcranial magnetic stimulation (TMS) is a promising tool for noninvasive brain stimulation that has been approved by the FDA for the treatment of major depressive disorder. To stimulate the brain, TMS uses large, transient pulses of magnetic field to induce an electric field in the head. This transient magnetic field is large enough to cause the depolarization of cortical neurons and initiate a synaptic signal transmission. For this study, 50 unique head models were created from MRI images. Previous simulation studies have primarily used a single head model, and thus give a limited image of the induced electric field from TMS. This study uses finite element analysis simulations on 50 unique, heterogeneous head models to better investigate the relationship between TMS and the electric field induced in brain tissues. Results showed a significant variation in the strength of the induced electric field in the brain, which can be reasonably predicted by the distance from the TMS coil to the stimulated brain. Further, it was seen that some models had high electric field intensities in over five times as much brain volume as other models.

  8. Functional electrical stimulation bicycle ergometry: patient perceptions.

    PubMed

    Sipski, M L; Delisa, J A; Schweer, S

    1989-06-01

    Forty-seven patients who had participated in a clinical electrical stimulation ergometry program were administered a questionnaire to determine their perceptions of the therapy. Improved endurance was reported by 62% of paraplegics and 65% of quadriplegics. Sixty-two percent of paraplegics and 56% of quadriplegics reported improved self-image, while 54% of paraplegics and 77% of quadriplegics perceived their appearance was better. Thirty-nine percent of paraplegics and 24% of quadriplegics noted decreased lower extremity edema with training. Six out of nine patients with a previous history of neurogenic pain noted an increase in pain, which caused them to leave the program.

  9. Stimulation-Based Control of Dynamic Brain Networks.

    PubMed

    Muldoon, Sarah Feldt; Pasqualetti, Fabio; Gu, Shi; Cieslak, Matthew; Grafton, Scott T; Vettel, Jean M; Bassett, Danielle S

    2016-09-01

    The ability to modulate brain states using targeted stimulation is increasingly being employed to treat neurological disorders and to enhance human performance. Despite the growing interest in brain stimulation as a form of neuromodulation, much remains unknown about the network-level impact of these focal perturbations. To study the system wide impact of regional stimulation, we employ a data-driven computational model of nonlinear brain dynamics to systematically explore the effects of targeted stimulation. Validating predictions from network control theory, we uncover the relationship between regional controllability and the focal versus global impact of stimulation, and we relate these findings to differences in the underlying network architecture. Finally, by mapping brain regions to cognitive systems, we observe that the default mode system imparts large global change despite being highly constrained by structural connectivity. This work forms an important step towards the development of personalized stimulation protocols for medical treatment or performance enhancement.

  10. Stimulation-Based Control of Dynamic Brain Networks

    PubMed Central

    Pasqualetti, Fabio; Gu, Shi; Cieslak, Matthew

    2016-01-01

    The ability to modulate brain states using targeted stimulation is increasingly being employed to treat neurological disorders and to enhance human performance. Despite the growing interest in brain stimulation as a form of neuromodulation, much remains unknown about the network-level impact of these focal perturbations. To study the system wide impact of regional stimulation, we employ a data-driven computational model of nonlinear brain dynamics to systematically explore the effects of targeted stimulation. Validating predictions from network control theory, we uncover the relationship between regional controllability and the focal versus global impact of stimulation, and we relate these findings to differences in the underlying network architecture. Finally, by mapping brain regions to cognitive systems, we observe that the default mode system imparts large global change despite being highly constrained by structural connectivity. This work forms an important step towards the development of personalized stimulation protocols for medical treatment or performance enhancement. PMID:27611328

  11. Stimulation-Based Control of Dynamic Brain Networks.

    PubMed

    Muldoon, Sarah Feldt; Pasqualetti, Fabio; Gu, Shi; Cieslak, Matthew; Grafton, Scott T; Vettel, Jean M; Bassett, Danielle S

    2016-09-01

    The ability to modulate brain states using targeted stimulation is increasingly being employed to treat neurological disorders and to enhance human performance. Despite the growing interest in brain stimulation as a form of neuromodulation, much remains unknown about the network-level impact of these focal perturbations. To study the system wide impact of regional stimulation, we employ a data-driven computational model of nonlinear brain dynamics to systematically explore the effects of targeted stimulation. Validating predictions from network control theory, we uncover the relationship between regional controllability and the focal versus global impact of stimulation, and we relate these findings to differences in the underlying network architecture. Finally, by mapping brain regions to cognitive systems, we observe that the default mode system imparts large global change despite being highly constrained by structural connectivity. This work forms an important step towards the development of personalized stimulation protocols for medical treatment or performance enhancement. PMID:27611328

  12. Transcranial electric stimulation entrains cortical neuronal populations in rats

    PubMed Central

    Ozen, Simal; Sirota, Anton; Belluscio, Mariano A.; Anastassiou, Costas A.; Stark, Eran; Koch, Christof; Buzsáki, György

    2010-01-01

    Low intensity electric fields have been suggested to affect the ongoing neuronal activity in vitro and in human studies. However, the physiological mechanism of how weak electrical fields affect and interact with intact brain activity is not well understood. We performed in vivo extracellular and intracellular recordings from the neocortex and hippocampus of anaesthetized rats and extracellular recordings in behaving rats. Electric fields were generated by sinusoid patterns at slow frequency (0.8, 1.25 or 1.7 Hz) via electrodes placed on the surface of the skull or the dura. Transcranial electric stimulation (TES) reliably entrained neurons in widespread cortical areas, including the hippocampus. The percentage of TES phase-locked neurons increased with stimulus intensity and depended on the behavioral state of the animal. TES-induced voltage gradient, as low as 1 mV/mm at the recording sites, was sufficient to phase-bias neuronal spiking. Intracellular recordings showed that both spiking and subthreshold activity were under the combined influence of TES forced fields and network activity. We suggest that TES in chronic preparations may be used for experimental and therapeutic control of brain activity. PMID:20739569

  13. Deep Brain Stimulation for the Treatment of Severe, Medically Refractory Obsessive-Compulsive Disorder

    PubMed Central

    Sedrak, Mark; Wong, William; Wilson, Paul; Bruce, Diana; Bernstein, Ivan; Khandhar, Suketu; Pappas, Conrad; Heit, Gary; Sabelman, Eric

    2013-01-01

    Deep brain stimulation is a rapidly expanding therapy initially designed for the treatment of movement disorders and pain syndromes. The therapy includes implantation of electrodes in specific targets of the brain, delivering programmable small and safe electric impulses, like a pacemaker, that modulates both local and broad neurologic networks. The effects are thought to primarily involve a focus in the brain, probably inhibitory, which then restores a network of neural circuitry. Psychiatric diseases can be refractory and severe, leading to high medical costs, significant morbidity, and even death. Whereas surgery for psychiatric disease used to include destructive procedures, deep brain stimulation allows safe, reversible, and adjustable treatment that can be tailored for each patient. Deep brain stimulation offers new hope for these unfortunate patients, and the preliminary results are promising. PMID:24361021

  14. Electrical stimulation for the relief of pain.

    PubMed Central

    Miles, J.

    1984-01-01

    Electrical stimulation can relieve some severe and otherwise persisting pains. At its best it can be associated with either a gradual reduction in the pain or an increased ability by the patient to control his suffering. It seems particularly appropriate for use in the field of benign persistent pain. Equipment design and materials, particularly for implantable circuits, are not perfect. Movement towards percutaneous implantation, obviating the need for open operation, seems progressively more popular. Any unit or group using this form of treatment, must be prepared to provide major technical facilities, both in the form of people and equipment in order to cater for the many purely technical problems that occur. A great deal of knowledge both neurophysiological and neurochemical seems to be accruing from the clinical use of electrical stimulation. We would do well to take advantage of this opportunity, in the hope that it might lead us to a better understanding of the functioning of the nervous system. This consideration remarkably parallels an observation made by John Hunter in his presentation to the Royal Society in 1773 (13) which anticipated the realisation of the part played by electricity in the function of nerves. Following his description of the extraordinary innervation of the electric organs of the Torpedo fish, he wrote: 'How far this may be connected with the power of the nerves in general, or how far it may lead to an explanation of their operations, time and future discoveries alone can fully determine.' Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:6608312

  15. A Review on Brain Stimulation Using Low Intensity Focused Ultrasound

    PubMed Central

    Rezayat, Ehsan; Toostani, Iman Ghodrati

    2016-01-01

    Brain stimulation techniques are important in both basic and clinical studies. Majority of well-known brain stimulating techniques have low spatial resolution or entail invasive processes. Low intensity focused ultrasound (LIFU) seems to be a proper candidate for dealing with such deficiencies. This review recapitulates studies which explored the effects of LIFU on brain structures and its function, in both research and clinical areas. Although the mechanism of LIFU action is still unclear, its different effects from molecular level up to behavioral level can be explored in animal and human brain. It can also be coupled with brain imaging assessments in future research. PMID:27563411

  16. Individual differences in transcranial electrical stimulation current density

    PubMed Central

    Russell, Michael J; Goodman, Theodore; Pierson, Ronald; Shepherd, Shane; Wang, Qiang; Groshong, Bennett; Wiley, David F

    2013-01-01

    Transcranial electrical stimulation (TCES) is effective in treating many conditions, but it has not been possible to accurately forecast current density within the complex anatomy of a given subject's head. We sought to predict and verify TCES current densities and determine the variability of these current distributions in patient-specific models based on magnetic resonance imaging (MRI) data. Two experiments were performed. The first experiment estimated conductivity from MRIs and compared the current density results against actual measurements from the scalp surface of 3 subjects. In the second experiment, virtual electrodes were placed on the scalps of 18 subjects to model simulated current densities with 2 mA of virtually applied stimulation. This procedure was repeated for 4 electrode locations. Current densities were then calculated for 75 brain regions. Comparison of modeled and measured external current in experiment 1 yielded a correlation of r = .93. In experiment 2, modeled individual differences were greatest near the electrodes (ten-fold differences were common), but simulated current was found in all regions of the brain. Sites that were distant from the electrodes (e.g. hypothalamus) typically showed two-fold individual differences. MRI-based modeling can effectively predict current densities in individual brains. Significant variation occurs between subjects with the same applied electrode configuration. Individualized MRI-based modeling should be considered in place of the 10-20 system when accurate TCES is needed. PMID:24285948

  17. A continuum model of retinal electrical stimulation

    NASA Astrophysics Data System (ADS)

    Joarder, Saiful A.; Abramian, Miganoosh; Suaning, Gregg J.; Lovell, Nigel H.; Dokos, Socrates

    2011-10-01

    A continuum mathematical model of retinal electrical stimulation is described. The model is represented by a passive vitreous domain, a thin layer of active retinal ganglion cell (RGC) tissue adjacent to deeper passive neural layers of the retina, the retinal pigmented epithelium (RPE) and choroid thus ending at the sclera. To validate the model, in vitro epiretinal responses to stimuli from 50 µm disk electrodes, arranged in a hexagonal mosaic, were recorded from rabbit retinas. 100 µs/phase anodic-first biphasic current pulses were delivered to the retinal surface in both the mathematical model and experiments. RGC responses were simulated and recorded using extracellular microelectrodes. The model's epiretinal thresholds compared favorably with the in vitro data. In addition, simulations showed that single-return bipolar electrodes recruited a larger area of the retina than twin-return or six-return electrodes arranged in a hexagonal layout in which a central stimulating electrode is surrounded by six, eqi-spaced returns. Simulations were also undertaken to investigate the patterns of RGC activation in an anatomically-accurate model of the retina, as well as RGC activation patterns for subretinal and suprachoroidal bipolar stimulation. This paper was originally submitted for the special issue containing contributions from the Sixth Biennial Research Congress of The Eye and the Chip.

  18. Suppression and facilitation of auditory neurons through coordinated acoustic and midbrain stimulation: investigating a deep brain stimulator for tinnitus

    NASA Astrophysics Data System (ADS)

    Offutt, Sarah J.; Ryan, Kellie J.; Konop, Alexander E.; Lim, Hubert H.

    2014-12-01

    Objective. The inferior colliculus (IC) is the primary processing center of auditory information in the midbrain and is one site of tinnitus-related activity. One potential option for suppressing the tinnitus percept is through deep brain stimulation via the auditory midbrain implant (AMI), which is designed for hearing restoration and is already being implanted in deaf patients who also have tinnitus. However, to assess the feasibility of AMI stimulation for tinnitus treatment we first need to characterize the functional connectivity within the IC. Previous studies have suggested modulatory projections from the dorsal cortex of the IC (ICD) to the central nucleus of the IC (ICC), though the functional properties of these projections need to be determined. Approach. In this study, we investigated the effects of electrical stimulation of the ICD on acoustic-driven activity within the ICC in ketamine-anesthetized guinea pigs. Main Results. We observed ICD stimulation induces both suppressive and facilitatory changes across ICC that can occur immediately during stimulation and remain after stimulation. Additionally, ICD stimulation paired with broadband noise stimulation at a specific delay can induce greater suppressive than facilitatory effects, especially when stimulating in more rostral and medial ICD locations. Significance. These findings demonstrate that ICD stimulation can induce specific types of plastic changes in ICC activity, which may be relevant for treating tinnitus. By using the AMI with electrode sites positioned with the ICD and the ICC, the modulatory effects of ICD stimulation can be tested directly in tinnitus patients.

  19. Modeling and percept of transcorneal electrical stimulation in humans.

    PubMed

    Xie, John; Wang, Gene-Jack; Yow, Lindy; J Cela, Carlos; Humayun, Mark S; Weiland, James D; Lazzi, Gianluca; Jadvar, Hossein

    2011-07-01

    Retinal activation via transcorneal electrical stimulation (TcES) in normal humans was investigated by comparing subject perception, model predictions, and brain activation patterns. The preferential location of retinal stimulation was predicted from 3-D admittance modeling. Visual cortex activation was measured using positron emission tomography (PET) and (18)F-fluorodeoxyglucose (FDG). Two different corneal electrodes were investigated: DTL-Plus and ERG-Jet. Modeling results predicted preferential stimulation of the peripheral, inferior, nasal retina during right eye TcES using DTL-Plus, but more extensive activation of peripheral, nasal hemiretina using ERG-Jet. The results from human FDG PET study using both corneal electrodes showed areas of visual cortex activation that consistently corresponded with the reported phosphene percept and modeling predictions. ERG-Jet was able to generate brighter phosphene percept than DTL-Plus and elicited retinotopically mapped primary visual cortex activation. This study demonstrates that admittance modeling and PET imaging consistently predict the perceived location of electrically elicited phosphenes produced during TcES.

  20. A Novel Brain Stimulation Technology Provides Compatibility with MRI

    PubMed Central

    Serano, Peter; Angelone, Leonardo M.; Katnani, Husam; Eskandar, Emad; Bonmassar, Giorgio

    2015-01-01

    Clinical electrical stimulation systems — such as pacemakers and deep brain stimulators (DBS) — are an increasingly common therapeutic option to treat a large range of medical conditions. Despite their remarkable success, one of the significant limitations of these medical devices is the limited compatibility with magnetic resonance imaging (MRI), a standard diagnostic tool in medicine. During an MRI exam, the leads used with these devices, implanted in the body of the patient, act as an electric antenna potentially causing a large amount of energy to be absorbed in the tissue, which can lead to serious heat-related injury. This study presents a novel lead design that reduces the antenna effect and allows for decreased tissue heating during MRI. The optimal parameters of the wire design were determined by a combination of computational modeling and experimental measurements. The results of these simulations were used to build a prototype, which was tested in a gel phantom during an MRI scan. Measurement results showed a three-fold decrease in heating when compared to a commercially available DBS lead. Accordingly, the proposed design may allow a significantly increased number of patients with medical implants to have safe access to the diagnostic benefits of MRI. PMID:25924189

  1. A novel brain stimulation technology provides compatibility with MRI.

    PubMed

    Serano, Peter; Angelone, Leonardo M; Katnani, Husam; Eskandar, Emad; Bonmassar, Giorgio

    2015-04-29

    Clinical electrical stimulation systems--such as pacemakers and deep brain stimulators (DBS)--are an increasingly common therapeutic option to treat a large range of medical conditions. Despite their remarkable success, one of the significant limitations of these medical devices is the limited compatibility with magnetic resonance imaging (MRI), a standard diagnostic tool in medicine. During an MRI exam, the leads used with these devices, implanted in the body of the patient, act as an electric antenna potentially causing a large amount of energy to be absorbed in the tissue, which can lead to serious heat-related injury. This study presents a novel lead design that reduces the antenna effect and allows for decreased tissue heating during MRI. The optimal parameters of the wire design were determined by a combination of computational modeling and experimental measurements. The results of these simulations were used to build a prototype, which was tested in a gel phantom during an MRI scan. Measurement results showed a three-fold decrease in heating when compared to a commercially available DBS lead. Accordingly, the proposed design may allow a significantly increased number of patients with medical implants to have safe access to the diagnostic benefits of MRI.

  2. Sources and effects of electrode impedance during deep brain stimulation

    PubMed Central

    Butson, Christopher R.; Maks, Christopher B.; McIntyre, Cameron C.

    2013-01-01

    Objective Clinical impedance measurements for deep brain stimulation (DBS) electrodes in human patients are normally in the range 500–1500 Ω. DBS devices utilize voltage-controlled stimulation; therefore, the current delivered to the tissue is inversely proportional to the impedance. The goals of this study were to evaluate the effects of various electrical properties of the tissue medium and electrode-tissue interface on the impedance and to determine the impact of clinically relevant impedance variability on the volume of tissue activated (VTA) during DBS. Methods Axisymmetric finite-element models (FEM) of the DBS system were constructed with explicit representation of encapsulation layers around the electrode and implanted pulse generator. Impedance was calculated by dividing the stimulation voltage by the integrated current density along the active electrode contact. The models utilized a Fourier FEM solver that accounted for the capacitive components of the electrode-tissue interface during voltage-controlled stimulation. The resulting time- and space-dependent voltage waveforms generated in the tissue medium were superimposed onto cable model axons to calculate the VTA. Results The primary determinants of electrode impedance were the thickness and conductivity of the encapsulation layer around the electrode contact and the conductivity of the bulk tissue medium. The difference in the VTA between our low (790 Ω) and high (1244 Ω) impedance models with typical DBS settings (−3 V, 90 μs, 130 Hz pulse train) was 121 mm3, representing a 52% volume reduction. Conclusions Electrode impedance has a substantial effect on the VTA and accurate representation of electrode impedance should be an explicit component of computational models of voltage-controlled DBS. Significance Impedance is often used to identify broken leads (for values >2000 Ω) or short circuits in the hardware (for values <50 Ω); however, clinical impedance values also represent an important

  3. Nonmotor Symptoms and Subthalamic Deep Brain Stimulation in Parkinson's Disease.

    PubMed

    Kim, Han-Joon; Jeon, Beom S; Paek, Sun Ha

    2015-05-01

    Subthalamic deep brain stimulation (STN DBS) is an established treatment for the motor symptoms in patients with advanced Parkinson's disease (PD). In addition to improvements in motor symptoms, many studies have reported changes in various nonmotor symptoms (NMSs) after STN DBS in patients with PD. Psychiatric symptoms, including depression, apathy, anxiety, and impulsivity, can worsen or improve depending on the electrical stimulation parameters, the locations of the stimulating contacts within the STN, and changes in medications after surgery. Global cognitive function is not affected by STN DBS, and there is no increase in the incidence of dementia after STN DBS compared to that after medical treatment, although clinically insignificant declines in verbal fluency have been consistently reported. Pain, especially PD-related pain, improves with STN DBS. Evidence regarding the effects of STN DBS on autonomic symptoms and sleep-related problems is limited and remains conflicting. Many symptoms of nonmotor fluctuations, which are occasionally more troublesome than motor fluctuations, improve with STN DBS. Although it is clear that NMSs are not target symptoms for STN DBS, NMSs have a strong influence on the quality of life of patients with PD, and clinicians should thus be aware of these NMSs when deciding whether to perform surgery and should pay attention to changes in these symptoms after STN DBS to ensure the optimal care for patients. PMID:26090080

  4. Tinnitus: Is there a place for brain stimulation?

    PubMed Central

    van Zwieten, Gusta; Smit, Jasper V.; Jahanshahi, Ali; Temel, Yasin; Stokroos, Robert J.

    2016-01-01

    Tinnitus is the perception of a “phantom sound” and has a high prevalence. Although many therapies have been investigated within the last decades, there is still no effective standard therapy. Animal studies and human functional imaging studies revealed that tinnitus perception is associated with many complex changes in multiple brain structures. There is growing evidence that brain stimulation might be able to interrupt the local altered neuronal activity and hereby inhibit tinnitus perception. In this editorial review, an update is given on the most promising targets for brain stimulation. Promising structures for stimulation are the dorsal cochlear nucleus, the inferior colliculus and the medial geniculate body of the thalamus. For cortical stimulation, the auditory cortex is considered as a target. Nevertheless, the field is waiting for evidence from well-designed clinical trials, based on supporting evidence from experimental/mechanistic research, to support or discourage the application of brain stimulation in tinnitus. PMID:26958429

  5. Neuromechanism Study of Insect–Machine Interface: Flight Control by Neural Electrical Stimulation

    PubMed Central

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A.; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect–machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee–machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control. PMID:25409523

  6. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    PubMed

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect-machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control. PMID:25409523

  7. Electrochemical corrosion of STS304 acupuncture needles by electrical stimulation.

    PubMed

    Hwang, Hye Suk; Yang, Eun Jin; Ryu, Yeon Hee; Lee, Myeong Soo; Choi, Sun-Mi

    2010-06-01

    We present the first investigation of electrical corrosion in acupuncture needles after electrical stimulation. Using scanning electron microscopy, we observed the occurrence of electrochemical corrosion on the surface of stainless steel 304 acupuncture needles after electrical stimulation in the tibial muscles of rats. Biphasic pulse electrical stimuli with 10-Hz frequency, 1-mA intensity and 1-ms pulse width were applied to the needles. The terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) method labels fragmented DNA. Positive staining using this test indicates apoptotic cells in electrically stimulated tissues. The risk of electrical corrosion was found to be less in bipolar, short-duration, low-current or voltage and short-period stimulation than in monopolar, long-duration, high-current or voltage and long-period stimulation. Evaluation with a scanning electron microscope revealed that electrical stimulation can increase the electrical corrosion of stainless steel 304 acupuncture needles. In biocompatibility studies of stainless steel 304 acupuncture needles for electrical stimulation, TUNEL-positive cells were detected in the tibial muscle within 5 days after electrical stimulation. The results of this study demonstrate that the corrosion products of stainless steel 304 acupuncture needles might affect the post-electrical stimulation tissue response. PMID:20633521

  8. Technical aspects of neurostimulation: Focus on equipment, electric field modeling, and stimulation protocols.

    PubMed

    Klooster, D C W; de Louw, A J A; Aldenkamp, A P; Besseling, R M H; Mestrom, R M C; Carrette, S; Zinger, S; Bergmans, J W M; Mess, W H; Vonck, K; Carrette, E; Breuer, L E M; Bernas, A; Tijhuis, A G; Boon, P

    2016-06-01

    Neuromodulation is a field of science, medicine, and bioengineering that encompasses implantable and non-implantable technologies for the purpose of improving quality of life and functioning of humans. Brain neuromodulation involves different neurostimulation techniques: transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS), which are being used both to study their effects on cognitive brain functions and to treat neuropsychiatric disorders. The mechanisms of action of neurostimulation remain incompletely understood. Insight into the technical basis of neurostimulation might be a first step towards a more profound understanding of these mechanisms, which might lead to improved clinical outcome and therapeutic potential. This review provides an overview of the technical basis of neurostimulation focusing on the equipment, the present understanding of induced electric fields, and the stimulation protocols. The review is written from a technical perspective aimed at supporting the use of neurostimulation in clinical practice. PMID:27021215

  9. Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS).

    PubMed

    Witkowski, Matthias; Garcia-Cossio, Eliana; Chander, Bankim S; Braun, Christoph; Birbaumer, Niels; Robinson, Stephen E; Soekadar, Surjo R

    2016-10-15

    Transcranial alternating current stimulation (tACS), a non-invasive and well-tolerated form of electric brain stimulation, can influence perception, memory, as well as motor and cognitive function. While the exact underlying neurophysiological mechanisms are unknown, the effects of tACS are mainly attributed to frequency-specific entrainment of endogenous brain oscillations in brain areas close to the stimulation electrodes, and modulation of spike timing dependent plasticity reflected in gamma band oscillatory responses. tACS-related electromagnetic stimulator artifacts, however, impede investigation of these neurophysiological mechanisms. Here we introduce a novel approach combining amplitude-modulated tACS during whole-head magnetoencephalography (MEG) allowing for artifact-free source reconstruction and precise mapping of entrained brain oscillations underneath the stimulator electrodes. Using this approach, we show that reliable reconstruction of neuromagnetic low- and high-frequency oscillations including high gamma band activity in stimulated cortical areas is feasible opening a new window to unveil the mechanisms underlying the effects of stimulation protocols that entrain brain oscillatory activity.

  10. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release.

    PubMed

    Melchior, James R; Ferris, Mark J; Stuber, Garret D; Riddle, David R; Jones, Sara R

    2015-09-01

    The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse microenvironments. Local electrical stimulation excites all of the neuronal processes in the stimulation field, potentially modulating the dopamine signal - measured using cyclic voltammetry. Optogenetically targeting light stimulation to dopamine

  11. Interaction between electrical modulation of the brain and pharmacotherapy to control pharmacoresistant epilepsy.

    PubMed

    Rocha, Luisa

    2013-05-01

    In spite of the high success rate of many surgical procedures for pharmacoresistant epilepsy, a substantial number of patients do not become seizure-free. Different strategies for electrical modulation of the brain such as Deep Brain Stimulation, Vagal Nerve Stimulation and Transcraneal Magnetic Stimulation have gained considerable interest in the last decade as alternative therapies for patients with medically refractory epilepsy. Research into the mechanism of action of the strategies for electrical modulation of the brain suggests a crucial role of different molecules and channels such as glutamate, γ-aminobutyric acid, adenosine, brain-derived neurotrophic factor, calcium channels, sodium channels as well as extracellular potassium. Electrical modulation of the brain may reduce the overexpression of P-glycoprotein, a drug efflux transporter that reduces the absorption of antiepileptic drugs. Electrical modulation of the brain induces long-term effects associated with beneficial consequences on clinical symptoms observed during the postictal state. In addition, electrical modulation of the brain might also promote the neurogenesis in subjects with pharmacoresistant epilepsy in whom this process is decreased. Targeting the regulatory pathways in charge of the effects of electrical modulation of the brain is discussed as a means to improve its efficacy. Electrical modulation of the brain combined with pharmacotherapy may represent an innovative approach to avoid epileptogenesis, reduce seizure activity, induce beneficial effects during the postictal state, diminish the amount of antiepileptic drugs, and improve alertness, memory and mood in pharmacoresistant epilepsy.

  12. Intrusive Thoughts Elicited by Direct Electrical Stimulation during Stereo-Electroencephalography.

    PubMed

    Popa, Irina; Donos, Cristian; Barborica, Andrei; Opris, Ioan; Mălîia, Mihai Dragoş; Ene, Mirela; Ciurea, Jean; Mîndruţă, Ioana

    2016-01-01

    Cortical direct electrical stimulation (DES) is a method of brain mapping used during invasive presurgical evaluation of patients with intractable epilepsy. Intellectual auras like intrusive thoughts, also known as forced thinking (FT), have been reported during frontal seizures. However, there are few reports on FT obtained during DES in frontal cortex. We report three cases in which we obtained intrusive thoughts while stimulating the dorsolateral prefrontal cortex and the white matter in the prefrontal region. In order to highlight the effective connectivity that might explain this clinical response, we have analyzed cortico-cortical potentials evoked by single pulse electrical stimulation. PMID:27486431

  13. Intrusive Thoughts Elicited by Direct Electrical Stimulation during Stereo-Electroencephalography

    PubMed Central

    Popa, Irina; Donos, Cristian; Barborica, Andrei; Opris, Ioan; Mălîia, Mihai Dragoş; Ene, Mirela; Ciurea, Jean; Mîndruţă, Ioana

    2016-01-01

    Cortical direct electrical stimulation (DES) is a method of brain mapping used during invasive presurgical evaluation of patients with intractable epilepsy. Intellectual auras like intrusive thoughts, also known as forced thinking (FT), have been reported during frontal seizures. However, there are few reports on FT obtained during DES in frontal cortex. We report three cases in which we obtained intrusive thoughts while stimulating the dorsolateral prefrontal cortex and the white matter in the prefrontal region. In order to highlight the effective connectivity that might explain this clinical response, we have analyzed cortico-cortical potentials evoked by single pulse electrical stimulation. PMID:27486431

  14. Electrical stimulation in the bed nucleus of the stria terminalis alleviates severe obsessive-compulsive disorder.

    PubMed

    Luyten, L; Hendrickx, S; Raymaekers, S; Gabriëls, L; Nuttin, B

    2016-09-01

    In 1998, we proposed deep brain stimulation as a last-resort treatment option for patients suffering from severe, treatment-resistant obsessive-compulsive disorder (OCD). Here, 24 OCD patients were included in a long-term follow-up study to evaluate the effects of electrical stimulation in the anterior limbs of the internal capsule (ALIC) and bed nucleus of the stria terminalis (BST). We find that electrical stimulation in the ALIC/BST area is safe and significantly decreases obsessions, compulsions, and associated anxiety and depressive symptoms, and improves global functioning in a blinded crossover trial (n=17), after 4 years (n=18), and at last follow-up (up to 171 months, n=24). Moreover, our data indicate that BST may be a better stimulation target compared with ALIC to alleviate OCD symptoms. We conclude that electrical stimulation in BST is a promising therapeutic option for otherwise treatment-resistant OCD patients. PMID:26303665

  15. In vivo assessment of human brain oscillations during application of transcranial electric currents.

    PubMed

    Soekadar, Surjo R; Witkowski, Matthias; Cossio, Eliana G; Birbaumer, Niels; Robinson, Stephen E; Cohen, Leonardo G

    2013-01-01

    Brain oscillations reflect pattern formation of cell assemblies' activity, which is often disturbed in neurological and psychiatric diseases like depression, schizophrenia and stroke. In the neurobiological analysis and treatment of these conditions, transcranial electric currents applied to the brain proved beneficial. However, the direct effects of these currents on brain oscillations have remained an enigma because of the inability to record them simultaneously. Here we report a novel strategy that resolves this problem. We describe accurate reconstructed localization of dipolar sources and changes of brain oscillatory activity associated with motor actions in primary cortical brain regions undergoing transcranial electric stimulation. This new method allows for the first time direct measurement of the effects of non-invasive electrical brain stimulation on brain oscillatory activity and behavior. PMID:23787780

  16. Designing a deep brain stimulator to suppress pathological neuronal synchrony.

    PubMed

    Montaseri, Ghazal; Yazdanpanah, Mohammad Javad; Bahrami, Fariba

    2015-03-01

    Some of neuropathologies are believed to be related to abnormal synchronization of neurons. In the line of therapy, designing effective deep brain stimulators to suppress the pathological synchrony among neuronal ensembles is a challenge of high clinical relevance. The stimulation should be able to disrupt the synchrony in the presence of latencies due to imperfect knowledge about parameters of a neuronal ensemble and stimulation impacts on the ensemble. We propose an adaptive desynchronizing deep brain stimulator capable of dealing with these uncertainties. We analyze the collective behavior of the stimulated neuronal ensemble and show that, using the designed stimulator, the resulting asynchronous state is stable. Simulation results reveal the efficiency of the proposed technique. PMID:25601718

  17. Bioreactor for modulation of cardiac microtissue phenotype by combined static stretch and electrical stimulation

    PubMed Central

    Miklas, Jason W; Nunes, Sara S; Sofla, Aarash; Reis, Lewis A; Pahnke, Aric; Xiao, Yun; Laschinger, Carol; Radisic, Milica

    2014-01-01

    We describe here a bioreactor capable of simultaneously applying mechanical and electrical field stimulation in conjunction with static strain and on-line force of contraction measurements. It consisted of a polydimethylsiloxane (PDMS) tissue chamber and a pneumatically driven stretch platform. The chamber contained eight tissue microwells (8.05 mm in length and 2.5 mm in width) with a pair of posts (2.78 mm in height and 0.8 mm in diameter) in each well to serve as fixation points and for measurements of contraction force. Carbon rods, stimulating electrodes, were placed into the PDMS chamber such that one pair stimulated four microwells. For feasibility studies, neonatal rat cardiomyocytes were seeded in collagen gels into the microwells. Following three days of gel compaction, electrical field stimulation at 3–4 V/cm and 1Hz, mechanical stimulation of 5% static strain or electromechanical stimulation (field stimulation at 3–4 V/cm, 1Hz and 5% static strain) were applied for 3 days. Cardiac microtissues subjected to electromechanical stimulation exhibited elevated amplitude of contraction and improved sarcomere structure as evidenced by sarcomeric α-actinin, actin and troponin T staining compared to microtissues subjected to electrical or mechanical stimulation alone or non-stimulated controls. The expression of atrial natriuretic factor and brain natriuretic peptide was also elevated in the electromechanically stimulated group. PMID:24876342

  18. Bipolar deep brain stimulation permits routine EKG, EEG, and polysomnography.

    PubMed

    Frysinger, Robert C; Quigg, Mark; Elias, W Jeffrey

    2006-01-24

    As the population of patients treated with deep brain stimulation (DBS) grows and the patients age, more will require routine or emergent electrophysiologic tests. DBS artifact may render these uninterpretable, whereas stopping DBS may release symptoms that confound evaluation. The authors find that monopolar, but not bipolar, stimulation produces significant artifact during EKG, EEG, and polysomnography.

  19. Brain responses to acupuncture stimulation in the prosthetic hand of an amputee patient.

    PubMed

    Lee, In-Seon; Jung, Won-Mo; Lee, Ye-Seul; Wallraven, Christian; Chae, Younbyoung

    2015-10-01

    This report describes the brain responses to acupuncture in an upper limb amputee patient. A 62-year-old male had previously undergone a lower left arm amputation following an electrical accident. Using functional MRI, we investigated brain responses to acupuncture stimulation in the aforementioned amputee under three conditions: (a) intact hand, (b) prosthetic hand (used by the patient), and (c) fake fabric hand. The patient described greater de qi sensation when he received acupuncture stimulation in his prosthetic hand compared to a fake hand, with both stimulations performed in a similar manner. We found enhanced brain activation in the insula and sensorimotor cortex in response to acupuncture stimulation in the amputee's prosthetic hand, while there was only minimal activation in the visual cortex in response to acupuncture stimulation in a fake hand. The enhanced brain responses to acupuncture stimulation of the patient's prosthetic hand might be derived from cortical reorganisation, as he has been using his prosthetic hand for over 40 years. Our findings suggest the possible use of acupuncture stimulation in a prosthetic hand as an enhanced sensory feedback mechanism, which may represent a new treatment approach for phantom limb pain.

  20. Deep brain stimulation in addiction: a review of potential brain targets.

    PubMed

    Luigjes, J; van den Brink, W; Feenstra, M; van den Munckhof, P; Schuurman, P R; Schippers, R; Mazaheri, A; De Vries, T J; Denys, D

    2012-06-01

    Deep brain stimulation (DBS) is an adjustable, reversible, non-destructive neurosurgical intervention using implanted electrodes to deliver electrical pulses to areas in the brain. DBS is currently investigated in psychiatry for the treatment of refractory obsessive-compulsive disorder, Tourette syndrome and depressive disorder. Although recent research in both animals and humans has indicated that DBS may be an effective intervention for patients with treatment-refractory addiction, it is not yet entirely clear which brain areas should be targeted. The objective of this review is to provide a systematic overview of the published literature on DBS and addiction and outline the most promising target areas using efficacy and adverse event data from both preclinical and clinical studies. We found 7 animal studies targeting six different brain areas: nucleus accumbens (NAc), subthalamic nucleus (STN), dorsal striatum, lateral habenula, medial prefrontal cortex (mPFC) and hypothalamus, and 11 human studies targeting two different target areas: NAc and STN. Our analysis of the literature suggests that the NAc is currently the most promising DBS target area for patients with treatment-refractory addiction. The mPFC is another promising target, but needs further exploration to establish its suitability for clinical purposes. We conclude the review with a discussion on translational issues in DBS research, medical ethical considerations and recommendations for clinical trials with DBS in patients with addiction.

  1. The present indication and future of deep brain stimulation.

    PubMed

    Sugiyama, Kenji; Nozaki, Takao; Asakawa, Tetsuya; Koizumi, Shinichiro; Saitoh, Osamu; Namba, Hiroki

    2015-01-01

    The use of electrical stimulation to treat pain in human disease dates back to ancient Rome or Greece. Modern deep brain stimulation (DBS) was initially applied for pain treatment in the 1960s, and was later used to treat movement disorders in the 1990s. After recognition of DBS as a therapy for central nervous system (CNS) circuit disorders, DBS use showed drastic increase in terms of adaptability to disease and the patient's population. More than 100,000 patients have received DBS therapy worldwide. The established indications for DBS are Parkinson's disease, tremor, and dystonia, whereas global indications of DBS expanded to other neuronal diseases or disorders such as neuropathic pain, epilepsy, and tinnitus. DBS is also experimentally used to manage cognitive disorders and psychiatric diseases such as major depression, obsessive-compulsive disorder (OCD), Tourette's syndrome, and eating disorders. The importance of ethics and conflicts surrounding the regulation and freedom of choice associated with the application of DBS therapy for new diseases or disorders is increasing. These debates are centered on the use of DBS to treat new diseases and disorders as well as its potential to enhance ability in normal healthy individuals. Here we present three issues that need to be addressed in the future: (1) elucidation of the mechanisms of DBS, (2) development of new DBS methods, and (3) miniaturization of the DBS system. With the use of DBS, functional neurosurgery entered into the new era that man can manage and control the brain circuit to treat intractable neuronal diseases and disorders. PMID:25925757

  2. The Present Indication and Future of Deep Brain Stimulation

    PubMed Central

    SUGIYAMA, Kenji; NOZAKI, Takao; ASAKAWA, Tetsuya; KOIZUMI, Shinichiro; SAITOH, Osamu; NAMBA, Hiroki

    2015-01-01

    The use of electrical stimulation to treat pain in human disease dates back to ancient Rome or Greece. Modern deep brain stimulation (DBS) was initially applied for pain treatment in the 1960s, and was later used to treat movement disorders in the 1990s. After recognition of DBS as a therapy for central nervous system (CNS) circuit disorders, DBS use showed drastic increase in terms of adaptability to disease and the patient’s population. More than 100,000 patients have received DBS therapy worldwide. The established indications for DBS are Parkinson’s disease, tremor, and dystonia, whereas global indications of DBS expanded to other neuronal diseases or disorders such as neuropathic pain, epilepsy, and tinnitus. DBS is also experimentally used to manage cognitive disorders and psychiatric diseases such as major depression, obsessive-compulsive disorder (OCD), Tourette’s syndrome, and eating disorders. The importance of ethics and conflicts surrounding the regulation and freedom of choice associated with the application of DBS therapy for new diseases or disorders is increasing. These debates are centered on the use of DBS to treat new diseases and disorders as well as its potential to enhance ability in normal healthy individuals. Here we present three issues that need to be addressed in the future: (1) elucidation of the mechanisms of DBS, (2) development of new DBS methods, and (3) miniaturization of the DBS system. With the use of DBS, functional neurosurgery entered into the new era that man can manage and control the brain circuit to treat intractable neuronal diseases and disorders. PMID:25925757

  3. Noninvasive brain stimulation: from physiology to network dynamics and back

    PubMed Central

    Dayan, Eran; Censor, Nitzan; Buch, Ethan R; Sandrini, Marco; Cohen, Leonardo G

    2016-01-01

    Noninvasive brain stimulation techniques have been widely used for studying the physiology of the CNS, identifying the functional role of specific brain structures and, more recently, exploring large-scale network dynamics. Here we review key findings that contribute to our understanding of the mechanisms underlying the physiological and behavioral effects of these techniques. We highlight recent innovations using noninvasive stimulation to investigate global brain network dynamics and organization. New combinations of these techniques, in conjunction with neuroimaging, will further advance the utility of their application. PMID:23799477

  4. Enhancement of performance for brain stimulation reward after footshock in rats.

    PubMed

    Sadowski, B; Marek, P; Panocka, I

    1984-01-01

    Rats bearing electrodes in the anterior forebrain region (AF), lateral hypothalamus (LH) or dorsal raphe (DR) nucleus were trained to press lever for brain stimulation reward. Ten minutes self- stimulation in all these placements produced a lowering of pain sensitivity as assessed by the hot-plate test. Electric footshock administered on 1 s on/4 s off paradigm for 10 min prior to self-stimulation elevated lever pressing rates in AF rats and in part of LH rats, but not in DR rats. The results are discussed in terms of opiate theory of reinforcement.

  5. Non-invasive brain stimulation of the aging brain: State of the art and future perspectives.

    PubMed

    Tatti, Elisa; Rossi, Simone; Innocenti, Iglis; Rossi, Alessandro; Santarnecchi, Emiliano

    2016-08-01

    Favored by increased life expectancy and reduced birth rate, worldwide demography is rapidly shifting to older ages. The golden age of aging is not only an achievement but also a big challenge because of the load of the elderly on social and medical health care systems. Moreover, the impact of age-related decline of attention, memory, reasoning and executive functions on self-sufficiency emphasizes the need of interventions to maintain cognitive abilities at a useful degree in old age. Recently, neuroscientific research explored the chance to apply Non-Invasive Brain Stimulation (NiBS) techniques (as transcranial electrical and magnetic stimulation) to healthy aging population to preserve or enhance physiologically-declining cognitive functions. The present review will update and address the current state of the art on NiBS in healthy aging. Feasibility of NiBS techniques will be discussed in light of recent neuroimaging (either structural or functional) and neurophysiological models proposed to explain neural substrates of the physiologically aging brain. Further, the chance to design multidisciplinary interventions to maximize the efficacy of NiBS techniques will be introduced as a necessary future direction.

  6. Non-invasive brain stimulation of the aging brain: State of the art and future perspectives.

    PubMed

    Tatti, Elisa; Rossi, Simone; Innocenti, Iglis; Rossi, Alessandro; Santarnecchi, Emiliano

    2016-08-01

    Favored by increased life expectancy and reduced birth rate, worldwide demography is rapidly shifting to older ages. The golden age of aging is not only an achievement but also a big challenge because of the load of the elderly on social and medical health care systems. Moreover, the impact of age-related decline of attention, memory, reasoning and executive functions on self-sufficiency emphasizes the need of interventions to maintain cognitive abilities at a useful degree in old age. Recently, neuroscientific research explored the chance to apply Non-Invasive Brain Stimulation (NiBS) techniques (as transcranial electrical and magnetic stimulation) to healthy aging population to preserve or enhance physiologically-declining cognitive functions. The present review will update and address the current state of the art on NiBS in healthy aging. Feasibility of NiBS techniques will be discussed in light of recent neuroimaging (either structural or functional) and neurophysiological models proposed to explain neural substrates of the physiologically aging brain. Further, the chance to design multidisciplinary interventions to maximize the efficacy of NiBS techniques will be introduced as a necessary future direction. PMID:27221544

  7. Frequency dependence of behavioral modulation by hippocampal electrical stimulation

    PubMed Central

    La Corte, Giorgio; Wei, Yina; Chernyy, Nick; Gluckman, Bruce J.

    2013-01-01

    Electrical stimulation offers the potential to develop novel strategies for the treatment of refractory medial temporal lobe epilepsy. In particular, direct electrical stimulation of the hippocampus presents the opportunity to modulate pathological dynamics at the ictal focus, although the neuroanatomical substrate of this region renders it susceptible to altering cognition and affective processing as a side effect. We investigated the effects of three electrical stimulation paradigms on separate groups of freely moving rats (sham, 8-Hz and 40-Hz sine-wave stimulation of the ventral/intermediate hippocampus, where 8- and 40-Hz stimulation were chosen to mimic naturally occurring hippocampal oscillations). Animals exhibited attenuated locomotor and exploratory activity upon stimulation at 40 Hz, but not at sham or 8-Hz stimulation. Such behavioral modifications were characterized by a significant reduction in rearing frequency, together with increased freezing behavior. Logistic regression analysis linked the observed changes in animal locomotion to 40-Hz electrical stimulation independently of time-related variables occurring during testing. Spectral analysis, conducted to monitor the electrophysiological profile in the CA1 area of the dorsal hippocampus, showed a significant reduction in peak theta frequency, together with reduced theta power in the 40-Hz vs. the sham stimulation animal group, independent of locomotion speed (theta range: 4–12 Hz). These findings contribute to the development of novel and safe medical protocols by indicating a strategy to constrain or optimize parameters in direct hippocampal electrical stimulation. PMID:24198322

  8. Noninvasive brain stimulation improves language learning.

    PubMed

    Flöel, Agnes; Rösser, Nina; Michka, Olesya; Knecht, Stefan; Breitenstein, Caterina

    2008-08-01

    Anodal transcranial direct current stimulation (tDCS) is a reliable technique to improve motor learning. We here wanted to test its potential to enhance associative verbal learning, a skill crucial for both acquiring new languages in healthy individuals and for language reacquisition after stroke-induced aphasia. We applied tDCS (20 min, 1 mA) over the posterior part of the left peri-sylvian area of 19 young right-handed individuals while subjects acquired a miniature lexicon of 30 novel object names. Every subject participated in one session of anodal tDCS, one session of cathodal tDCS, and one sham session in a randomized and double-blinded design with three parallel versions of the miniature lexicon. Outcome measures were learning speed and learning success at the end of each session, and the transfer to the subjects' native language after the respective stimulation. With anodal stimulation, subjects showed faster and better associative learning as compared to sham stimulation. Mood ratings, reaction times, and response styles were comparable between stimulation conditions. Our results demonstrate that anodal tDCS is a promising technique to enhance language learning in healthy adults and may also have the potential to improve language reacquisition after stroke.

  9. A history of deep brain stimulation: Technological innovation and the role of clinical assessment tools

    PubMed Central

    2013-01-01

    Deep brain stimulation involves using a pacemaker-like device to deliver constant electrical stimulation to problematic areas within the brain. It has been used to treat over 40,000 people with Parkinson’s disease and essential tremor worldwide and is currently undergoing clinical trials as a treatment for depression and obsessive–compulsive disorder. This article will provide an historical account of deep brain stimulation in order to illustrate the plurality of interests involved in the development and stabilization of deep brain stimulation technology. Using Latour’s notion of immutable mobiles, this article will illustrate the importance of clinical assessment tools in shaping technological development in the era of medical device regulation. Given that such tools can serve commercial and professional interests, this article suggests that it is necessary to scrutinise their application in research contexts to ensure that they capture clinical changes that are meaningful for patients and their families. This is particularly important in relation to potentially ethically problematic therapies such as deep brain stimulation for psychiatric disorders.

  10. Non-invasive electric current stimulation for restoration of vision after unilateral occipital stroke.

    PubMed

    Gall, Carolin; Silvennoinen, Katri; Granata, Giuseppe; de Rossi, Francesca; Vecchio, Fabrizio; Brösel, Doreen; Bola, Michał; Sailer, Michael; Waleszczyk, Wioletta J; Rossini, Paolo M; Tatlisumak, Turgut; Sabel, Bernhard A

    2015-07-01

    Occipital stroke often leads to visual field loss, for which no effective treatment exists. Little is known about the potential of non-invasive electric current stimulation to ameliorate visual functions in patients suffering from unilateral occipital stroke. One reason is the traditional thinking that visual field loss after brain lesions is permanent. Since evidence is available documenting vision restoration by means of vision training or non-invasive electric current stimulation future studies should also consider investigating recovery processes after visual cortical strokes. Here, protocols of repetitive transorbital alternating current stimulation (rtACS) and transcranial direct current stimulation (tDCS) are presented and the European consortium for restoration of vision (REVIS) is introduced. Within the consortium different stimulation approaches will be applied to patients with unilateral occipital strokes resulting in homonymous hemianopic visual field defects. The aim of the study is to evaluate effects of current stimulation of the brain on vision parameters, vision-related quality of life, and physiological parameters that allow concluding about the mechanisms of vision restoration. These include EEG-spectra and coherence measures, and visual evoked potentials. The design of stimulation protocols involves an appropriate sham-stimulation condition and sufficient follow-up periods to test whether the effects are stable. This is the first application of non-invasive current stimulation for vision rehabilitation in stroke-related visual field deficits. Positive results of the trials could have far-reaching implications for clinical practice. The ability of non-invasive electrical current brain stimulation to modulate the activity of neuronal networks may have implications for stroke rehabilitation also in the visual domain.

  11. Non-invasive electric current stimulation for restoration of vision after unilateral occipital stroke.

    PubMed

    Gall, Carolin; Silvennoinen, Katri; Granata, Giuseppe; de Rossi, Francesca; Vecchio, Fabrizio; Brösel, Doreen; Bola, Michał; Sailer, Michael; Waleszczyk, Wioletta J; Rossini, Paolo M; Tatlisumak, Turgut; Sabel, Bernhard A

    2015-07-01

    Occipital stroke often leads to visual field loss, for which no effective treatment exists. Little is known about the potential of non-invasive electric current stimulation to ameliorate visual functions in patients suffering from unilateral occipital stroke. One reason is the traditional thinking that visual field loss after brain lesions is permanent. Since evidence is available documenting vision restoration by means of vision training or non-invasive electric current stimulation future studies should also consider investigating recovery processes after visual cortical strokes. Here, protocols of repetitive transorbital alternating current stimulation (rtACS) and transcranial direct current stimulation (tDCS) are presented and the European consortium for restoration of vision (REVIS) is introduced. Within the consortium different stimulation approaches will be applied to patients with unilateral occipital strokes resulting in homonymous hemianopic visual field defects. The aim of the study is to evaluate effects of current stimulation of the brain on vision parameters, vision-related quality of life, and physiological parameters that allow concluding about the mechanisms of vision restoration. These include EEG-spectra and coherence measures, and visual evoked potentials. The design of stimulation protocols involves an appropriate sham-stimulation condition and sufficient follow-up periods to test whether the effects are stable. This is the first application of non-invasive current stimulation for vision rehabilitation in stroke-related visual field deficits. Positive results of the trials could have far-reaching implications for clinical practice. The ability of non-invasive electrical current brain stimulation to modulate the activity of neuronal networks may have implications for stroke rehabilitation also in the visual domain. PMID:26072125

  12. Friends, not foes: Magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation.

    PubMed

    Neuling, Toralf; Ruhnau, Philipp; Fuscà, Marco; Demarchi, Gianpaolo; Herrmann, Christoph S; Weisz, Nathan

    2015-09-01

    Brain oscillations are supposedly crucial for normal cognitive functioning and alterations are associated with cognitive dysfunctions. To demonstrate their causal role on behavior, entrainment approaches in particular aim at driving endogenous oscillations via rhythmic stimulation. Within this context, transcranial electrical stimulation, especially transcranial alternating current stimulation (tACS), has received renewed attention. This is likely due to the possibility of defining oscillatory stimulation properties precisely. Also, measurements comparing pre-tACS with post-tACS electroencephalography (EEG) have shown impressive modulations. However, the period during tACS has remained a blackbox until now, due to the enormous stimulation artifact. By means of application of beamforming to magnetoencephalography (MEG) data, we successfully recovered modulations of the amplitude of brain oscillations during weak and strong tACS. Additionally, we demonstrate that also evoked responses to visual and auditory stimuli can be recovered during tACS. The main contribution of the present study is to provide critical evidence that during ongoing tACS, subtle modulations of oscillatory brain activity can be reconstructed even at the stimulation frequency. Future tACS experiments will be able to deliver direct physiological insights in order to further the understanding of the contribution of brain oscillations to cognition and behavior.

  13. Uncovering the mechanism(s) of deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Gang, Li; Chao, Yu; Ling, Lin; C-Y Lu, Stephen

    2005-01-01

    Deep brain stimulators, often called `pacemakers for the brain', are implantable devices which continuously deliver impulse stimulation to specific targeted nuclei of deep brain structure, namely deep brain stimulation (DBS). To date, deep brain stimulation (DBS) is the most effective clinical technique for the treatment of several medically refractory movement disorders (e.g., Parkinson's disease, essential tremor, and dystonia). In addition, new clinical applications of DBS for other neurologic and psychiatric disorders (e.g., epilepsy and obsessive-compulsive disorder) have been put forward. Although DBS has been effective in the treatment of movement disorders and is rapidly being explored for the treatment of other neurologic disorders, the scientific understanding of its mechanisms of action remains unclear and continues to be debated in the scientific community. Optimization of DBS technology for present and future therapeutic applications will depend on identification of the therapeutic mechanism(s) of action. The goal of this review is to address our present knowledge of the effects of high-frequency stimulation within the central nervous system and comment on the functional implications of this knowledge for uncovering the mechanism(s) of DBS.

  14. Muscle damage induced by electrical stimulation.

    PubMed

    Nosaka, Kazunori; Aldayel, Abdulaziz; Jubeau, Marc; Chen, Trevor C

    2011-10-01

    Electrical stimulation (ES) induces muscle damage that is characterised by histological alterations of muscle fibres and connective tissue, increases in circulating creatine kinase (CK) activity, decreases in muscle strength and development of delayed onset muscle soreness (DOMS). Muscle damage is induced not only by eccentric contractions with ES but also by isometric contractions evoked by ES. Muscle damage profile following 40 isometric contractions of the knee extensors is similar between pulsed current (75 Hz, 400 μs) and alternating current (2.5 kHz delivered at 75 Hz, 400 μs) ES for similar force output. When comparing maximal voluntary and ES-evoked (75 Hz, 200 μs) 50 isometric contractions of the elbow flexors, ES results in greater decreases in maximal voluntary contraction strength, increases in plasma CK activity and DOMS. It appears that the magnitude of muscle damage induced by ES-evoked isometric contractions is comparable to that induced by maximal voluntary eccentric contractions, although the volume of affected muscles in ES is not as large as that of eccentric exercise-induced muscle damage. It seems likely that the muscle damage in ES is associated with high mechanical stress on the activated muscle fibres due to the specificity of motor unit recruitment (i.e., non-selective, synchronous and spatially fixed manner). The magnitude of muscle damage induced by ES is significantly reduced when the second ES bout is performed 2-4 weeks later. It is possible to attenuate the magnitude of muscle damage by "pre-conditioning" muscles, so that muscle damage should not limit the use of ES in training and rehabilitation. PMID:21811767

  15. New perspectives on using brain imaging to study CNS stimulants.

    PubMed

    Lukas, Scott E

    2014-12-01

    While the recent application of brain imaging to study CNS stimulants has offered new insights into the fundamental factors that contribute to their use and abuse, many gaps remain. Brain circuits that mediate pleasure, dependence, craving and relapse are anatomically, neurophysiologically and neurochemically distinct from one another, which has guided the search for correlates of stimulant-seeking and taking behavior. However, unlike other drugs of abuse, metrics for tolerance and physical dependence on stimulants are not obvious. The dopamine theory of stimulant abuse does not sufficiently explain this disorder as serotonergic, GABAergic and glutamagergic circuits are clearly involved in stimulant pharmacology and so tracking the source of the "addictive" processes must adopt a more multimodal, multidisciplinary approach. To this end, both anatomical and functional magnetic resonance imaging (MRI), MR spectroscopy (MRS) and positron emission tomography (PET) are complementary and have equally contributed to our understanding of how stimulants affect the brain and behavior. New vistas in this area include nanotechnology approaches to deliver small molecules to receptors and use MRI to resolve receptor dynamics. Anatomical and blood flow imaging has yielded data showing that cognitive enhancers might be useful adjuncts in treating CNS stimulant dependence, while MRS has opened opportunities to examine the brain's readiness to accept treatment as GABA tone normalizes after detoxification. A desired outcome of the above approaches is being able to offer evidence-based rationales for treatment approaches that can be implemented in a more broad geographic area, where access to brain imaging facilities may be limited. This article is part of the Special Issue entitled 'CNS Stimulants'.

  16. Imaging human brain networks to improve the clinical efficacy of non-invasive brain stimulation.

    PubMed

    Sale, Martin V; Mattingley, Jason B; Zalesky, Andrew; Cocchi, Luca

    2015-10-01

    The flexible integration of segregated neural processes is essential to healthy brain function. Advances in neuroimaging techniques have revealed that psychiatric and neurological disorders are characterized by anomalies in the dynamic integration of widespread neural populations. Re-establishing optimal neural activity is an important component of the treatment of such disorders. Non-invasive brain stimulation is emerging as a viable tool to selectively restore both local and widespread neural activity in patients affected by psychiatric and neurological disorders. Importantly, the different forms of non-invasive brain stimulation affect neural activity in distinct ways, which has important ramifications for their clinical efficacy. In this review, we discuss how non-invasive brain stimulation techniques influence widespread neural integration across brain regions. We suggest that the efficacy of such techniques in the treatment of psychiatric and neurological conditions is contingent on applying the appropriate stimulation paradigm to restore specific aspects of altered neural integration. PMID:26409343

  17. [Repetitive transcranial magnetic stimulation in depression; stimulation of the brain in order to cure the psyche].

    PubMed

    Helmich, R C; Snijders, A H; Verkes, R J; Bloem, B R

    2004-02-28

    Transcranial magnetic stimulation (TMS) is a non-invasive approach to briefly stimulate or inhibit cortical brain areas. A novel approach entails the delivery of repetitive TMS pulses (rTMS) at a fixed frequency. In rTMS cortical activity is altered beyond the period of actual stimulation. The changes occur locally as well as at a distance in functionally connected brain areas. These features render rTMS a suitable tool to study normal brain functions and the pathophysiology of brain diseases. Furthermore, it is expected that rTMS could be used as a novel therapy for neurological or psychiatric diseases characterised by abnormal cortical activation. This possibility has been studied mostly in patients suffering from depression, where rTMS has been used to restore normal activity in the hypoactive prefrontal cortex. Despite statistically significant therapeutic effects in small sized trials, the clinical implications are still limited.

  18. Best of both worlds: promise of combining brain stimulation and brain connectome

    PubMed Central

    Luft, Caroline Di Bernardi; Pereda, Ernesto; Banissy, Michael J.; Bhattacharya, Joydeep

    2014-01-01

    Transcranial current brain stimulation (tCS) is becoming increasingly popular as a non-pharmacological non-invasive neuromodulatory method that alters cortical excitability by applying weak electrical currents to the scalp via a pair of electrodes. Most applications of this technique have focused on enhancing motor and learning skills, as well as a therapeutic agent in neurological and psychiatric disorders. In these applications, similarly to lesion studies, tCS was used to provide a causal link between a function or behavior and a specific brain region (e.g., primary motor cortex). Nonetheless, complex cognitive functions are known to rely on functionally connected multitude of brain regions with dynamically changing patterns of information flow rather than on isolated areas, which are most commonly targeted in typical tCS experiments. In this review article, we argue in favor of combining tCS method with other neuroimaging techniques (e.g., fMRI, EEG) and by employing state-of-the-art connectivity data analysis techniques (e.g., graph theory) to obtain a deeper understanding of the underlying spatiotemporal dynamics of functional connectivity patterns and cognitive performance. Finally, we discuss the possibilities of using these combined techniques to investigate the neural correlates of human creativity and to enhance creativity. PMID:25126060

  19. Toward rational design of electrical stimulation strategies for epilepsy control

    PubMed Central

    Sunderam, Sridhar; Gluckman, Bruce; Reato, Davide; Bikson, Marom

    2009-01-01

    Electrical stimulation is emerging as a viable alternative for epilepsy patients whose seizures are not alleviated by drugs or surgery. Its attractions are temporal and spatial specificity of action, flexibility of waveform parameters and timing, and the perception that its effects are reversible unlike resective surgery. However, despite significant advances in our understanding of mechanisms of neural electrical stimulation, clinical electrotherapy for seizures relies heavily on empirical tuning of parameters and protocols. We highlight concurrent treatment goals with potentially conflicting design constraints that must be resolved when formulating rational strategies for epilepsy electrotherapy: namely seizure reduction versus cognitive impairment, stimulation efficacy versus tissue safety, and mechanistic insight versus clinical pragmatism. First, treatment markers, objectives, and metrics relevant to electrical stimulation for epilepsy are discussed from a clinical perspective. Then the experimental perspective is presented, with the biophysical mechanisms and modalities of open-loop electrical stimulation, and the potential benefits of closed-loop control for epilepsy. PMID:19926525

  20. Conditioning of brain stimulation-induced presleep behavior.

    PubMed

    Wyrwicka, W; Chase, M H

    1994-11-01

    Experiments were conducted on three chronic unanesthetized, undrugged cats. Electrical stimulation of the basal forebrain area (BFA) resulted in presleep behavior (i.e., the cats would sit or lie down, and EEG spindles would arise). After several sessions (conducted twice a week), two of these cats began to exhibit presleep behavior almost immediately after entering the experimental compartment, even before the application of BFA stimulation. The third cat often ate some food (which was always present in the compartment) before showing presleep behavior. When stimulation was withheld during an extinction procedure, the cats still exhibited presleep behavior in the absence of stimulation during several sessions. We conclude that repeated BFA stimulation led to conditioning of the stimulation effects, that is, the presleep behavior that was evoked by the environmental situation alone, without BFA stimulation or any other intermittent stimulus. PMID:7824587

  1. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral...

  2. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral...

  3. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral...

  4. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral...

  5. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral...

  6. Revealing humans’ sensorimotor functions with electrical cortical stimulation

    PubMed Central

    Desmurget, Michel; Sirigu, Angela

    2015-01-01

    Direct electrical stimulation (DES) of the human brain has been used by neurosurgeons for almost a century. Although this procedure serves only clinical purposes, it generates data that have a great scientific interest. Had DES not been employed, our comprehension of the organization of the sensorimotor systems involved in movement execution, language production, the emergence of action intentionality or the subjective feeling of movement awareness would have been greatly undermined. This does not mean, of course, that DES is a gold standard devoid of limitations and that other approaches are not of primary importance, including electrophysiology, modelling, neuroimaging or psychophysics in patients and healthy subjects. Rather, this indicates that the contribution of DES cannot be restricted, in humans, to the ubiquitous concepts of homunculus and somatotopy. DES is a fundamental tool in our attempt to understand the human brain because it represents a unique method for mapping sensorimotor pathways and interfering with the functioning of localized neural populations during the performance of well-defined behavioural tasks. PMID:26240422

  7. Deep brain stimulation affects conditioned and unconditioned anxiety in different brain areas.

    PubMed

    van Dijk, A; Klanker, M; van Oorschot, N; Post, R; Hamelink, R; Feenstra, M G P; Denys, D

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) has proven to be an effective treatment for therapy refractory obsessive-compulsive disorder. Clinical observations show that anxiety symptoms decrease rapidly following DBS. As in clinical studies different regions are targeted, it is of principal interest to understand which brain area is responsible for the anxiolytic effect and whether high-frequency stimulation of different areas differentially affect unconditioned (innate) and conditioned (learned) anxiety. In this study, we examined the effect of stimulation in five brain areas in rats (NAc core and shell, bed nucleus of the stria terminalis (BNST), internal capsule (IC) and the ventral medial caudate nucleus (CAU)). The elevated plus maze was used to test the effect of stimulation on unconditioned anxiety, the Vogel conflict test for conditioned anxiety, and an activity test for general locomotor behaviour. We found different anxiolytic effects of stimulation in the five target areas. Stimulation of the CAU decreased both conditioned and unconditioned anxiety, while stimulation of the IC uniquely reduced conditioned anxiety. Remarkably, neither the accumbens nor the BNST stimulation affected conditioned or unconditioned anxiety. Locomotor activity increased with NAc core stimulation but decreased with the BNST. These findings suggest that (1) DBS may have a differential effect on unconditioned and conditioned anxiety depending on the stimulation area, and that (2) stimulation of the IC exclusively reduces conditioned anxiety. This suggests that the anxiolytic effects of DBS seen in OCD patients may not be induced by stimulation of the NAc, but rather by the IC. PMID:23900312

  8. Electrical stimulation of the insular region attenuates nicotine-taking and nicotine-seeking behaviors.

    PubMed

    Pushparaj, Abhiram; Hamani, Clement; Yu, Wilson; Shin, Damian S; Kang, Bin; Nobrega, José N; Le Foll, Bernard

    2013-03-01

    Pharmacological inactivation of the granular insular cortex is able to block nicotine-taking and -seeking behaviors in rats. In this study, we explored the potential of modulating activity in the insular region using electrical stimulation. Animals were trained to self-administer nicotine (0.03 mg/kg per infusion) under a fixed ratio-5 (FR-5) schedule of reinforcement followed by a progressive ratio (PR) schedule. Evaluation of the effect of stimulation in the insular region was performed on nicotine self-administration under FR-5 and PR schedules, as well on reinstatement of nicotine-seeking behavior induced by nicotine-associated cues or nicotine-priming injections. The effect of stimulation was also examined in brain slices containing insular neurons. Stimulation significantly attenuated nicotine-taking, under both schedules of reinforcement, as well as nicotine-seeking behavior induced by cues and priming. These effects appear to be specific to nicotine-associated behaviors, as stimulation did not have any effect on food-taking behavior. They appear to be anatomically specific, as stimulation surrounding the insular region had no effect on behavior. Stimulation of brain slices containing the insular region was found to inactivate insular neurons. Our results suggest that deep brain stimulation to modulate insular activity should be further explored. PMID:23249816

  9. Design of electrical stimulation bioreactors for cardiac tissue engineering.

    PubMed

    Tandon, N; Marsano, A; Cannizzaro, C; Voldman, J; Vunjak-Novakovic, G

    2008-01-01

    Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. Carbon electrodes were found in past studies to have the best current injection characteristics. The goal of this study was to develop rational experimental design principles for the electrodes and stimulation regime, in particular electrode configuration, electrode ageing, and stimulation amplitude. Carbon rod electrodes were compared via electrochemical impedance spectroscopy (EIS) and we identified a safety range of 0 to 8 V/cm by comparing excitation thresholds and maximum capture rates for neonatal rat cardiomyocytes cultured with electrical stimulation. We conclude with recommendations for studies involving carbon electrodes for cardiac tissue engineering.

  10. Design of Electrical Stimulation Bioreactors for Cardiac Tissue Engineering

    PubMed Central

    Tandon, N.; Marsano, A.; Cannizzaro, C.; Voldman, J.; Vunjak-Novakovic, G.

    2009-01-01

    Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. Carbon electrodes were found in past studies to have the best current injection characteristics. The goal of this study was to develop rational experimental design principles for the electrodes and stimulation regime, in particular electrode configuration, electrode ageing, and stimulation amplitude. Carbon rod electrodes were compared via electrochemical impedance spectroscopy (EIS) and we identified a safety range of 0 to 8 V/cm by comparing excitation thresholds and maximum capture rates for neonatal rat cardiomyocytes cultured with electrical stimulation. We conclude with recommendations for studies involving carbon electrodes for cardiac tissue engineering. PMID:19163486

  11. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation

    PubMed Central

    Miocinovic, Svjetlana; Lempka, Scott F.; Russo, Gary S.; Maks, Christopher B.; Butson, Christopher R.; Sakaie, Ken E.; Vitek, Jerrold L.; McIntyre, Cameron C.

    2008-01-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson’s disease and shows great promise for numerous other disorders. While the fundamental purpose of DBS is to modulate neural activity with electric fields, little is known about the actual voltage distribution generated in the brain by DBS electrodes and as a result it is difficult to accurately predict which brain areas are directly affected by the stimulation. The goal of this study was to characterize the spatial and temporal characteristics of the voltage distribution generated by DBS electrodes. We experimentally recorded voltages around active DBS electrodes in either a saline bath or implanted in the brain of a non-human primate. Recordings were made during voltage-controlled and current-controlled stimulation. The experimental findings were compared to volume conductor electric field models of DBS parameterized to match the different experiments. Three factors directly affected the experimental and theoretical voltage measurements: 1) DBS electrode impedance, primarily dictated by a voltage drop at the electrode-electrolyte interface and the conductivity of the tissue medium, 2) capacitive modulation of the stimulus waveform, and 3) inhomogeneity and anisotropy of the tissue medium. While the voltage distribution does not directly predict the neural response to DBS, the results of this study do provide foundational building blocks for understanding the electrical parameters of DBS and characterizing its effects on the nervous system. PMID:19118551

  12. Vascular effects of free radicals generated by electrical stimulation

    SciTech Connect

    Lamb, F.S.; Webb, R.C.

    1984-11-01

    Electrical field stimulation (9 V, 1.0 ms, 4 Hz) of isolated segments of rat tail arteries and dog coronary arteries inhibits contractile response to exogenous norephinephrine and elevated potassium concentration. This inhibitory effect of electrical stimulation is blocked by various agents that alter oxygen metabolism: superoxide dismutase, catalase, glutathione, ascorbate, and dimethyl sulfoxide. The observations suggest that the inhibitory effect is due to an action of oxygen free radical metabolites that are generated by the electrical stimulation of the oxygen-rich buffer. These free radical metabolites have two actions: 1) they oxidize drugs in the experimental system, and 2) they exert a direct inhbitory action on vascular smooth muscle.

  13. Entrainment of Perceptually Relevant Brain Oscillations by Non-Invasive Rhythmic Stimulation of the Human Brain

    PubMed Central

    Thut, Gregor; Schyns, Philippe G.; Gross, Joachim

    2011-01-01

    The notion of driving brain oscillations by directly stimulating neuronal elements with rhythmic stimulation protocols has become increasingly popular in research on brain rhythms. Induction of brain oscillations in a controlled and functionally meaningful way would likely prove highly beneficial for the study of brain oscillations, and their therapeutic control. We here review conventional and new non-invasive brain stimulation protocols as to their suitability for controlled intervention into human brain oscillations. We focus on one such type of intervention, the direct entrainment of brain oscillations by a periodic external drive. We review highlights of the literature on entraining brain rhythms linked to perception and attention, and point out controversies. Behaviourally, such entrainment seems to alter specific aspects of perception depending on the frequency of stimulation, informing models on the functional role of oscillatory activity. This indicates that human brain oscillations and function may be promoted in a controlled way by focal entrainment, with great potential for probing into brain oscillations and their causal role. PMID:21811485

  14. Deep Brain Stimulation for Essential Vocal Tremor: A Technical Report.

    PubMed

    Ho, Allen L; Choudhri, Omar; Sung, C Kwang; DiRenzo, Elizabeth E; Halpern, Casey H

    2015-03-01

    Essential vocal tremor (EVT) is the presence of a tremulous voice that is commonly associated with essential tremor. Patients with EVT often report a necessary increase in vocal effort that significantly worsens with stress and anxiety and can significantly impact quality of life despite optimal medical and behavioral treatment options. Deep brain stimulation (DBS) has been proposed as an effective therapy for vocal tremor, but very few studies exist in the literature that comprehensively evaluate the efficacy of DBS for specifically addressing EVT. We present a technical report on our multidisciplinary, comprehensive operative methodology for treatment of EVT with frameless, awake deep brain stimulation (DBS). PMID:26180680

  15. Pedunculopontine arousal system physiology - Deep brain stimulation (DBS).

    PubMed

    Garcia-Rill, Edgar; Luster, Brennon; D'Onofrio, Stasia; Mahaffey, Susan; Bisagno, Veronica; Urbano, Francisco J

    2015-11-01

    This review describes the wake/sleep symptoms present in Parkinson׳s disease, and the role of the pedunculopontine nucleus in these symptoms. The physiology of PPN cells is important not only because it is a major element of the reticular activating system, but also because it is a novel target for deep brain stimulation in the treatment of gait and postural deficits in Parkinson׳s disease. A greater understanding of the physiology of the target nuclei within the brainstem and basal ganglia, amassed over the past decades, has enabled increasingly better patient outcomes from deep brain stimulation for movement disorders.

  16. The effects of subthalamic deep brain stimulation on metaphor comprehension and language abilities in Parkinson's disease.

    PubMed

    Tremblay, Christina; Macoir, Joël; Langlois, Mélanie; Cantin, Léo; Prud'homme, Michel; Monetta, Laura

    2015-02-01

    The effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) on different language abilities are still controversial and its impact on high-level language abilities such as metaphor comprehension has been overlooked. The aim of this study was to determine the effects of STN electrical stimulation on metaphor comprehension and language abilities such as lexical and semantic capacities. Eight PD individuals with bilateral STN-DBS were first evaluated OFF-DBS and, at least seven weeks later, ON-DBS. Performance on metaphor comprehension, lexical decision, word association and verbal fluency tasks were compared ON and OFF-DBS in addition to motor symptoms evaluation. STN stimulation had a significant beneficial effect on motor symptoms in PD. However, this stimulation did not have any effect on metaphor comprehension or any other cognitive ability evaluated in this study. These outcomes suggest that STN stimulation may have dissociable effects on motor and language functions. PMID:25577507

  17. The effects of subthalamic deep brain stimulation on metaphor comprehension and language abilities in Parkinson's disease.

    PubMed

    Tremblay, Christina; Macoir, Joël; Langlois, Mélanie; Cantin, Léo; Prud'homme, Michel; Monetta, Laura

    2015-02-01

    The effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) on different language abilities are still controversial and its impact on high-level language abilities such as metaphor comprehension has been overlooked. The aim of this study was to determine the effects of STN electrical stimulation on metaphor comprehension and language abilities such as lexical and semantic capacities. Eight PD individuals with bilateral STN-DBS were first evaluated OFF-DBS and, at least seven weeks later, ON-DBS. Performance on metaphor comprehension, lexical decision, word association and verbal fluency tasks were compared ON and OFF-DBS in addition to motor symptoms evaluation. STN stimulation had a significant beneficial effect on motor symptoms in PD. However, this stimulation did not have any effect on metaphor comprehension or any other cognitive ability evaluated in this study. These outcomes suggest that STN stimulation may have dissociable effects on motor and language functions.

  18. Chronic Stress Decreases Cerebrovascular Responses During Rat Hindlimb Electrical Stimulation

    PubMed Central

    Lee, Sohee; Kang, Bok-Man; Shin, Min-Kyoo; Min, Jiwoong; Heo, Chaejeong; Lee, Yubu; Baeg, Eunha; Suh, Minah

    2015-01-01

    Repeated stress is one of the major risk factors for cerebrovascular disease, including stroke, and vascular dementia. However, the functional alterations in the cerebral hemodynamic response induced by chronic stress have not been clarified. Here, we investigated the in vivo cerebral hemodynamic changes and accompanying cellular and molecular changes in chronically stressed rats. After 3 weeks of restraint stress, the elicitation of stress was verified by behavioral despair in the forced swimming test and by physical indicators of stress. The evoked changes in the cerebral blood volume and pial artery responses following hindpaw electrical stimulation were measured using optical intrinsic signal imaging. We observed that, compared to the control group, animals under chronic restraint stress exhibited a decreased hemodynamic response, with a smaller pial arterial dilation in the somatosensory cortex during hindpaw electrical stimulation. The effect of chronic restraint stress on vasomodulator enzymes, including neuronal nitric oxide synthase (nNOS) and heme oxygenase-2 (HO-2), was assessed in the somatosensory cortex. Chronic restraint stress downregulated nNOS and HO-2 compared to the control group. In addition, we examined the subtypes of cells that can explain the environmental changes due to the decreased vasomodulators. The expression of parvalbumin in GABAergic interneurons and glutamate receptor-1 in neurons were decreased, whereas the microglial activation was increased. Our results suggest that the chronic stress-induced alterations in cerebral vascular function and the modulations of the cellular expression in the neuro-vasomodulatory system may be crucial contributing factors in the development of various vascular-induced conditions in the brain. PMID:26778944

  19. Clinical utility of brain stimulation modalities following traumatic brain injury: current evidence

    PubMed Central

    Li, Shasha; Zaninotto, Ana Luiza; Neville, Iuri Santana; Paiva, Wellingson Silva; Nunn, Danuza; Fregni, Felipe

    2015-01-01

    Traumatic brain injury (TBI) remains the main cause of disability and a major public health problem worldwide. This review focuses on the neurophysiology of TBI, and the rationale and current state of evidence of clinical application of brain stimulation to promote TBI recovery, particularly on consciousness, cognitive function, motor impairments, and psychiatric conditions. We discuss the mechanisms of different brain stimulation techniques including major noninvasive and invasive stimulations. Thus far, most noninvasive brain stimulation interventions have been nontargeted and focused on the chronic phase of recovery after TBI. In the acute stages, there is limited available evidence of the efficacy and safety of brain stimulation to improve functional outcomes. Comparing the studies across different techniques, transcranial direct current stimulation is the intervention that currently has the higher number of properly designed clinical trials, though total number is still small. We recognize the need for larger studies with target neuroplasticity modulation to fully explore the benefits of brain stimulation to effect TBI recovery during different stages of recovery. PMID:26170670

  20. Inhibition of the baroreceptor reflex on stimulation in the brain stem defence centre

    PubMed Central

    Coote, J. H.; Hilton, S. M.; Perez-Gonzalez, J. F.

    1979-01-01

    1. In anaesthetized cats, the pattern of cardiovascular response characteristic of the defence reaction has been elicited by localized electrical stimulation within the appropriate region of the hypothalamus. The baroreceptor reflex response has been elicited by raising the pressure in a blind sac preparation of the carotid sinus or by electrical stimulation of the sinus nerve. 2. In addition to arterial blood pressure, heart rate and regional blood flows, activity was recorded in cardiac and renal sympathetic nerves, to assess more precisely the cardiomotor and vasomotor changes during interactions between brain stem stimulation and baroreceptor activation. 3. The sympatho-inhibitory and depressor effects of carotid sinus stimulation or electrical stimulation of the sinus nerve could be completely suppressed by stimulation within the hypothalamic defence area, as could the reflex bradycardia. It is concluded that this suppression is effected through the central nervous system. 4. Stimulation at points in the hypothalamus close to, but outside, the defence area, and which elicited increases in arterial pressure and sympathetic activity of similar magnitude to those from the defence area itself, did not abolish the sympatho-inhibitory or depressor effects of baroreceptor activation, though the reflex bradycardia was usually inhibited. It is suggested that this less localized change results from augmentation of the central inspiratory drive which inhibits the vagal outflow to the heart. ImagesFig. 1Fig. 3Fig. 4 PMID:572871

  1. Selective Activation of Neuronal Targets With Sinusoidal Electric Stimulation

    PubMed Central

    Freeman, Daniel K.; Eddington, Donald K.; Rizzo, Joseph F.

    2010-01-01

    Electric stimulation of the CNS is being evaluated as a treatment modality for a variety of neurological, psychiatric, and sensory disorders. Despite considerable success in some applications, existing stimulation techniques offer little control over which cell types or neuronal substructures are activated by stimulation. The ability to more precisely control neuronal activation would likely improve the clinical outcomes associated with these applications. Here, we show that specific frequencies of sinusoidal stimulation can be used to preferentially activate certain retinal cell types: photoreceptors are activated at 5 Hz, bipolar cells at 25 Hz, and ganglion cells at 100 Hz. In addition, low-frequency stimulation (≤25 Hz) did not activate passing axons but still elicited robust synaptically mediated responses in ganglion cells; therefore, elicited neural activity is confined to within a focal region around the stimulating electrode. Our results suggest that sinusoidal stimulation provides significantly improved control over elicited neural activity relative to conventional pulsatile stimulation. PMID:20810683

  2. Noninvasive brain stimulation in Huntington's disease.

    PubMed

    Berardelli, Alfredo; Suppa, Antonio

    2013-01-01

    Several important advances in the pathophysiology of Huntington's disease (HD) have been achieved by means of neurophysiological techniques designed to investigate the excitability and plasticity of brainstem and cortical circuits in patients with the condition. Studies designed to investigate brainstem reflexes, with paired-pulse and repetitive stimulation of the supraorbital nerve (blink reflex), have demonstrated abnormal excitability and plasticity of brainstem interneurons. In addition, several authors have tested the excitability of the primary motor cortex (M1) with the transcranial magnetic stimulation (TMS) technique and reported abnormal excitability of inhibitory intracortical circuits (cortical silent period, short afferent inhibition). Studies investigating plasticity processes by means of repetitive TMS (rTMS) protocols have demonstrated altered short-term as well as long-term M1 plasticity. Abnormal cortical excitability and plasticity can be present in the early phase of HD and in asymptomatic HD carriers. Evidence from a single study of small cohorts of patients with HD supports the therapeutic application of rTMS for symptomatic improvement of chorea in HD. PMID:24112923

  3. Optimization of Electrical Stimulation Parameters for Cardiac Tissue Engineering

    PubMed Central

    Tandon, Nina; Marsano, Anna; Maidhof, Robert; Wan, Leo; Park, Hyoungshin; Vunjak-Novakovic, Gordana

    2010-01-01

    In vitro application of pulsatile electrical stimulation to neonatal rat cardiomyocytes cultured on polymer scaffolds has been shown to improve the functional assembly of cells into contractile cardiac tissue constrcuts. However, to date, the conditions of electrical stimulation have not been optimized. We have systematically varied the electrode material, amplitude and frequency of stimulation, to determine the conditions that are optimal for cardiac tissue engineering. Carbon electrodes, exhibiting the highest charge-injection capacity and producing cardiac tissues with the best structural and contractile properties, and were thus used in tissue engineering studies. Cardiac tissues stimulated at 3V/cm amplitude and 3Hz frequency had the highest tissue density, the highest concentrations of cardiac troponin-I and connexin-43, and the best developed contractile behavior. These findings contribute to defining bioreactor design specifications and electrical stimulation regime for cardiac tissue engineering. PMID:21604379

  4. Optimization of electrical stimulation parameters for cardiac tissue engineering.

    PubMed

    Tandon, Nina; Marsano, Anna; Maidhof, Robert; Wan, Leo; Park, Hyoungshin; Vunjak-Novakovic, Gordana

    2011-06-01

    In vitro application of pulsatile electrical stimulation to neonatal rat cardiomyocytes cultured on polymer scaffolds has been shown to improve the functional assembly of cells into contractile engineered cardiac tissues. However, to date, the conditions of electrical stimulation have not been optimized. We have systematically varied the electrode material, amplitude and frequency of stimulation to determine the conditions that are optimal for cardiac tissue engineering. Carbon electrodes, exhibiting the highest charge-injection capacity and producing cardiac tissues with the best structural and contractile properties, were thus used in tissue engineering studies. Engineered cardiac tissues stimulated at 3 V/cm amplitude and 3 Hz frequency had the highest tissue density, the highest concentrations of cardiac troponin-I and connexin-43 and the best-developed contractile behaviour. These findings contribute to defining bioreactor design specifications and electrical stimulation regime for cardiac tissue engineering.

  5. Introduction to the programming of deep brain stimulators.

    PubMed

    Volkmann, Jens; Herzog, Jan; Kopper, Florian; Deuschl, Güntner

    2002-01-01

    The clinical success of deep brain stimulation (DBS) for treating Parkinson's disease, tremor, or dystonia critically depends on the quality of postoperative neurologic management. Movement disorder specialists becoming involved with this therapy need to acquire new skills to optimally adapt stimulation parameters and medication after implantation of a DBS system. In clinical practice, the infinite number of possible parameter settings in DBS can be reduced to few relevant combinations. In this article, the authors describe a general scheme of selecting stimulation parameters in DBS and provide clinical and neurophysiological arguments for such a standardized algorithm. They also describe noninvasive technical trouble shooting by using programming features of the commercially available neurostimulation devices.

  6. A CONTINUED INVESTIGATION OF ELECTRICALLY STIMULATED FABRIC FILTRATION

    EPA Science Inventory

    The report summarizes three experiments performed by Southern Research Institute under a cooperative agreement with EPA. First was a demonstration of electrostatically stimulated fabric filtration (ESFF) used to collect particulate matter (PM) from fossil fuel electrical power pl...

  7. Electrical stimulation therapies for spinal fusions: current concepts.

    PubMed

    Gan, Jean C; Glazer, Paul A

    2006-09-01

    Electrical stimulation therapies have been used for more than 30 years to enhance spinal fusions. Although their positive effects on spinal fusions have been widely reported, the mechanisms of action of the technologies were only recently identified. Three types of technologies are available clinically: direct current, capacitive coupling, and inductive coupling. The latter is the basis of pulsed electromagnetic fields and combined magnetic fields. This review summarizes the current concepts on the mechanisms of action, animal and clinical studies, and cost justification for the use of electrical stimulation for spinal fusions. Scientific studies support the validity of electrical stimulation treatments. The mechanisms of action of each of the three electrical stimulation therapies are different. New data demonstrates that the upregulation of several growth factors may be responsible for the clinical success seen with the use of such technologies.

  8. Non-invasive brain stimulation in neglect rehabilitation: an update.

    PubMed

    Müri, René Martin; Cazzoli, Dario; Nef, Tobias; Mosimann, Urs P; Hopfner, Simone; Nyffeler, Thomas

    2013-01-01

    Here, we review the effects of non-invasive brain stimulation such as transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) in the rehabilitation of neglect. We found 12 studies including 172 patients (10 TMS studies and 2 tDCS studies) fulfilling our search criteria. Activity of daily living measures such as the Barthel Index or, more specifically for neglect, the Catherine Bergego Scale were the outcome measure in three studies. Five studies were randomized controlled trials with a follow-up time after intervention of up to 6 weeks. One TMS study fulfilled criteria for Class I and one for Class III evidence. The studies are heterogeneous concerning their methodology, outcome measures, and stimulation parameters making firm comparisons and conclusions difficult. Overall, there are however promising results for theta-burst stimulation, suggesting that TMS is a powerful add-on therapy in the rehabilitation of neglect patients.

  9. Non-Invasive Brain Stimulation in Neglect Rehabilitation: An Update

    PubMed Central

    Müri, René Martin; Cazzoli, Dario; Nef, Tobias; Mosimann, Urs P.; Hopfner, Simone; Nyffeler, Thomas

    2013-01-01

    Here, we review the effects of non-invasive brain stimulation such as transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) in the rehabilitation of neglect. We found 12 studies including 172 patients (10 TMS studies and 2 tDCS studies) fulfilling our search criteria. Activity of daily living measures such as the Barthel Index or, more specifically for neglect, the Catherine Bergego Scale were the outcome measure in three studies. Five studies were randomized controlled trials with a follow-up time after intervention of up to 6 weeks. One TMS study fulfilled criteria for Class I and one for Class III evidence. The studies are heterogeneous concerning their methodology, outcome measures, and stimulation parameters making firm comparisons and conclusions difficult. Overall, there are however promising results for theta-burst stimulation, suggesting that TMS is a powerful add-on therapy in the rehabilitation of neglect patients. PMID:23772209

  10. Repeated BOLD-fMRI imaging of deep brain stimulation responses in rats.

    PubMed

    Chao, Tzu-Hao Harry; Chen, Jyh-Horng; Yen, Chen-Tung

    2014-01-01

    Functional magnetic resonance imaging (fMRI) provides a picture of the global spatial activation pattern of the brain. Interest is growing regarding the application of fMRI to rodent models to investigate adult brain plasticity. To date, most rodent studies used an electrical forepaw stimulation model to acquire fMRI data, with α-chloralose as the anesthetic. However, α-chloralose is harmful to animals, and not suitable for longitudinal studies. Moreover, peripheral stimulation models enable only a limited number of brain regions to be studied. Processing between peripheral regions and the brain is multisynaptic, and renders interpretation difficult and uncertain. In the present study, we combined the medetomidine-based fMRI protocol (a noninvasive rodent fMRI protocol) with chronic implantation of an MRI-compatible stimulation electrode in the ventroposterior (VP) thalamus to repetitively sample thalamocortical responses in the rat brain. Using this model, we scanned the forebrain responses evoked by the VP stimulation repeatedly of individual rats over 1 week. Cortical BOLD responses were compared between the 2 profiles obtained at day1 and day8. We discovered reproducible frequency- and amplitude-dependent BOLD responses in the ipsilateral somatosensory cortex (S1). The S1 BOLD responses during the 2 sessions were conserved in maximal response amplitude, area size (size ratio from 0.88 to 0.91), and location (overlap ratio from 0.61 to 0.67). The present study provides a long-term chronic brain stimulation protocol for studying the plasticity of specific neural circuits in the rodent brain by BOLD-fMRI. PMID:24825464

  11. Using brain stimulation to disentangle neural correlates of conscious vision.

    PubMed

    de Graaf, Tom A; Sack, Alexander T

    2014-01-01

    Research into the neural correlates of consciousness (NCCs) has blossomed, due to the advent of new and increasingly sophisticated brain research tools. Neuroimaging has uncovered a variety of brain processes that relate to conscious perception, obtained in a range of experimental paradigms. But methods such as functional magnetic resonance imaging or electroencephalography do not always afford inference on the functional role these brain processes play in conscious vision. Such empirical NCCs could reflect neural prerequisites, neural consequences, or neural substrates of a conscious experience. Here, we take a closer look at the use of non-invasive brain stimulation (NIBS) techniques in this context. We discuss and review how NIBS methodology can enlighten our understanding of brain mechanisms underlying conscious vision by disentangling the empirical NCCs.

  12. Using brain stimulation to disentangle neural correlates of conscious vision

    PubMed Central

    de Graaf, Tom A.; Sack, Alexander T.

    2014-01-01

    Research into the neural correlates of consciousness (NCCs) has blossomed, due to the advent of new and increasingly sophisticated brain research tools. Neuroimaging has uncovered a variety of brain processes that relate to conscious perception, obtained in a range of experimental paradigms. But methods such as functional magnetic resonance imaging or electroencephalography do not always afford inference on the functional role these brain processes play in conscious vision. Such empirical NCCs could reflect neural prerequisites, neural consequences, or neural substrates of a conscious experience. Here, we take a closer look at the use of non-invasive brain stimulation (NIBS) techniques in this context. We discuss and review how NIBS methodology can enlighten our understanding of brain mechanisms underlying conscious vision by disentangling the empirical NCCs. PMID:25295015

  13. Affective Brain-Computer Interfaces As Enabling Technology for Responsive Psychiatric Stimulation

    PubMed Central

    Widge, Alik S.; Dougherty, Darin D.; Moritz, Chet T.

    2014-01-01

    There is a pressing clinical need for responsive neurostimulators, which sense a patient’s brain activity and deliver targeted electrical stimulation to suppress unwanted symptoms. This is particularly true in psychiatric illness, where symptoms can fluctuate throughout the day. Affective BCIs, which decode emotional experience from neural activity, are a candidate control signal for responsive stimulators targeting the limbic circuit. Present affective decoders, however, cannot yet distinguish pathologic from healthy emotional extremes. Indiscriminate stimulus delivery would reduce quality of life and may be actively harmful. We argue that the key to overcoming this limitation is to specifically decode volition, in particular the patient’s intention to experience emotional regulation. Those emotion-regulation signals already exist in prefrontal cortex (PFC), and could be extracted with relatively simple BCI algorithms. We describe preliminary data from an animal model of PFC-controlled limbic brain stimulation and discuss next steps for pre-clinical testing and possible translation. PMID:25580443

  14. Do electrically stimulated sensory inputs and movements lead to long-term plasticity and rehabilitation gains?

    PubMed

    Dobkin, Bruce H

    2003-12-01

    Peripheral and cortical magnetic and electrical stimulation may find a therapeutic niche as augmentative rehabilitation interventions for lessening impairments and disabilities after brain and spinal cord injury. The momentum for these approaches arose from recent physiological studies that examined the effects of paradigms of stimulation on synaptic and biological adaptations within the cortex and lumbar cord. A case report about improvements made by Christopher Reeve is driving requests by patients with profound spinal cord injury for interventions that include resistance pedaling facilitated by electrical neuromuscular stimulation. Although the evidence for this particular approach is less than convincing, reorganization-inducing cortical and peripheral afferent stimulation protocols offer insights into the steps needed for scientific designs of these potential rehabilitation interventions. PMID:14624077

  15. Models to Tailor Brain Stimulation Therapies in Stroke

    PubMed Central

    Plow, E. B.; Sankarasubramanian, V.; Cunningham, D. A.; Potter-Baker, K.; Varnerin, N.; Cohen, L. G.; Sterr, A.; Conforto, A. B.; Machado, A. G.

    2016-01-01

    A great challenge facing stroke rehabilitation is the lack of information on how to derive targeted therapies. As such, techniques once considered promising, such as brain stimulation, have demonstrated mixed efficacy across heterogeneous samples in clinical studies. Here, we explain reasons, citing its one-type-suits-all approach as the primary cause of variable efficacy. We present evidence supporting the role of alternate substrates, which can be targeted instead in patients with greater damage and deficit. Building on this groundwork, this review will also discuss different frameworks on how to tailor brain stimulation therapies. To the best of our knowledge, our report is the first instance that enumerates and compares across theoretical models from upper limb recovery and conditions like aphasia and depression. Here, we explain how different models capture heterogeneity across patients and how they can be used to predict which patients would best respond to what treatments to develop targeted, individualized brain stimulation therapies. Our intent is to weigh pros and cons of testing each type of model so brain stimulation is successfully tailored to maximize upper limb recovery in stroke. PMID:27006833

  16. The effect of electrical stimulation on obstructive sleep apnea syndrome.

    PubMed

    Guilleminault, C; Powell, N; Bowman, B; Stoohs, R

    1995-01-01

    Patients with severe obstructive sleep apnea polygraphically documented underwent electrical stimulation treatment trials. Submental and intraoral stimulations were applied during waking and during nocturnal sleep. The stimulation was applied using a custom-designed neuromuscular electrical stimulator (EdenTec Corp) providing symmetric biphasic constant voltage pulses. Pulse duration of each phase was set to 80 microseconds based on a subjective evaluation of pulse durations from 80 to 300 microseconds to minimize sensation while generating equivalent motor responses. Pulse repetition rate was set to 50 pulses per second. Cephalometric radiographs and endoscopies were obtained with and without stimulations during waking. Most commonly, stimulations induced alpha EEG arousals. Submental subcutaneous stimulation induced good contractions of platysmal muscles but had no impact on the upper airway. Intraoral stimulation induced clear tongue muscle movements but with change of shape of the upper airway and posterior movements of the tongue. Each time a breakage of apnea was noted, it was associated with a time-linked alpha EEG arousal. The results obtained by us and others do not, at this time, give convincing support for the use of electrical stimulation using submental surface or intraoral electrodes as a viable approach for effective control of obstructive sleep apnea syndrome symptoms.

  17. Pulsed laser versus electrical energy for peripheral nerve stimulation

    PubMed Central

    Wells, Jonathon; Konrad, Peter; Kao, Chris; Jansen, E. Duco; Mahadevan-Jansen, Anita

    2010-01-01

    Transient optical neural stimulation has previously been shown to elicit highly controlled, artifact-free potentials within the nervous system in a non-contact fashion without resulting in damage to tissue. This paper presents the physiologic validity of elicited nerve and muscle potentials from pulsed laser induced stimulation of the peripheral nerve in a comparative study with the standard method of electrically evoked potentials. Herein, the fundamental physical properties underlying the two techniques are contrasted. Key laser parameters for efficient optical stimulation of the peripheral nerve are detailed. Strength response curves are shown to be linear for each stimulation modality, although fewer axons can be recruited with optically evoked potentials. Results compare the relative transient energy requirements for stimulation using each technique and demonstrate that optical methods can selectively excite functional nerve stimulation. Adjacent stimulation and recording of compound nerve potentials in their entirety from optical and electrical stimulation are presented, with optical responses shown to be free of any stimulation artifact. Thus, use of a pulsed laser exhibits some advantages when compared to standard electrical means for excitation of muscle potentials in the peripheral nerve in the research domain and possibly for clinical diagnostics in the future. PMID:17537515

  18. Effects of acute selective pudendal nerve electrical stimulation after simulated childbirth injury

    PubMed Central

    Gill, Bradley C.; Dissaranan, Charuspong; Zutshi, Massarat; Balog, Brian M.; Lin, Danli; Damaser, Margot S.

    2013-01-01

    During childbirth, a combinatorial injury occurs and can result in stress urinary incontinence (SUI). Simulated childbirth injury, consisting of vaginal distension (VD) and pudendal nerve crush (PNC), results in slowed recovery of continence, as well as decreased expression of brain-derived neurotrophic factor (BDNF), a regenerative cytokine. Electrical stimulation has been shown to upregulate BDNF in motor neurons and facilitate axon regrowth through the increase of βII-tubulin expression after injury. In this study, female rats underwent selective pudendal nerve motor branch (PNMB) stimulation after simulated childbirth injury or sham injury to determine whether such stimulation affects bladder and anal function after injury and whether the stimulation increases BDNF expression in Onuf's nucleus after injury. Rats received 4 h of VD followed by bilateral PNC and 1 h of subthreshold electrical stimulation of the left PNMB and sham stimulation of the right PNMB. Rats underwent filling cystometry and anal pressure recording before, during, and after the stimulation. Bladder and anal contractile function were partially disrupted after injury. PNMB stimulation temporarily inhibited bladder contraction after injury. Two days and 1 wk after injury, BDNF expression in Onuf's nucleus of the stimulated side was significantly increased compared with the sham-stimulated side, whereas βII-tubulin expression in Onuf's nucleus of the stimulated side was significantly increased only 1 wk after injury. Acute electrical stimulation of the pudendal nerve proximal to the crush site upregulates BDNF and βII-tubulin in Onuf's nucleus after simulated childbirth injury, which could be a potential preventive option for SUI after childbirth injury. PMID:23152293

  19. Abnormal hemodynamic response to forepaw stimulation in rat brain after cocaine injection

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Park, Kicheon; Choi, Jeonghun; Pan, Yingtian; Du, Congwu

    2015-03-01

    Simultaneous measurement of hemodynamics is of great importance to evaluate the brain functional changes induced by brain diseases such as drug addiction. Previously, we developed a multimodal-imaging platform (OFI) which combined laser speckle contrast imaging with multi-wavelength imaging to simultaneously characterize the changes in cerebral blood flow (CBF), oxygenated- and deoxygenated- hemoglobin (HbO and HbR) from animal brain. Recently, we upgraded our OFI system that enables detection of hemodynamic changes in response to forepaw electrical stimulation to study potential brain activity changes elicited by cocaine. The improvement includes 1) high sensitivity to detect the cortical response to single forepaw electrical stimulation; 2) high temporal resolution (i.e., 16Hz/channel) to resolve dynamic variations in drug-delivery study; 3) high spatial resolution to separate the stimulation-evoked hemodynamic changes in vascular compartments from those in tissue. The system was validated by imaging the hemodynamic responses to the forepaw-stimulations in the somatosensory cortex of cocaine-treated rats. The stimulations and acquisitions were conducted every 2min over 40min, i.e., from 10min before (baseline) to 30min after cocaine challenge. Our results show that the HbO response decreased first (at ~4min) followed by the decrease of HbR response (at ~6min) after cocaine, and both did not fully recovered for over 30min. Interestingly, while CBF decreased at 4min, it partially recovered at 18min after cocaine administration. The results indicate the heterogeneity of cocaine's effects on vasculature and tissue metabolism, demonstrating the unique capability of optical imaging for brain functional studies.

  20. Trimodal nanoelectrode array for precise deep brain stimulation: prospects of a new technology based on carbon nanofiber arrays.

    PubMed

    Li, J; Andrews, R J

    2007-01-01

    Although deep brain stimulation (DBS) has recently been shown to be effective for neurological disorders such as Parkinson's disease, there are many limitations of the current technology: the large size of current microelectrodes (approximately 1 mm diameter); the lack of monitoring of local brain electrical activity and neurotransmitters (e.g. dopamine in Parkinson's disease); the open-loop nature of the stimulation (i.e. not guided by brain electrochemical activity). Reducing the size of the monitoring and stimulating electrodes by orders of magnitude (to the size of neural elements) allows remarkable improvements in both monitoring (spatial resolution, temporal resolution, and sensitivity) and stimulation. Carbon nanofiber nanoelectrode technology offers the possibility of trimodal arrays (monitoring electrical activity, monitoring neurotransmitter levels, precise stimulation). DBS can then be guided by changes in brain electrical activity and/or neurotransmitter levels (i.e. closed-loop DBS). Here, we describe the basic manufacture and electrical characteristics of a prototype nanoelectrode array for DBS, as well as preliminary studies with electroconductive polymers necessary to optimize DBS in vivo. An approach such as the nanoelectrode array described here may offer a generic electrical-neural interface for use in various neural prostheses. PMID:17691345

  1. From Nose to Brain: Un-Sensed Electrical Currents Applied in the Nose Alter Activity in Deep Brain Structures

    PubMed Central

    Weiss, Tali; Shushan, Sagit; Ravia, Aharon; Hahamy, Avital; Secundo, Lavi; Weissbrod, Aharon; Ben-Yakov, Aya; Holtzman, Yael; Cohen-Atsmoni, Smadar; Roth, Yehudah; Sobel, Noam

    2016-01-01

    Rules linking patterns of olfactory receptor neuron activation in the nose to activity patterns in the brain and ensuing odor perception remain poorly understood. Artificially stimulating olfactory neurons with electrical currents and measuring ensuing perception may uncover these rules. We therefore inserted an electrode into the nose of 50 human volunteers and applied various currents for about an hour in each case. This induced assorted non-olfactory sensations but never once the perception of odor. To validate contact with the olfactory path, we used functional magnetic resonance imaging to measure resting-state brain activity in 18 subjects before and after un-sensed stimulation. We observed stimulation-induced neural decorrelation specifically in primary olfactory cortex, implying contact with the olfactory path. These results suggest that indiscriminate olfactory activation does not equate with odor perception. Moreover, this effort serendipitously uncovered a novel path for minimally invasive brain stimulation through the nose. PMID:27591145

  2. Brain State-Dependent Closed-Loop Modulation of Paired Associative Stimulation Controlled by Sensorimotor Desynchronization

    PubMed Central

    Royter, Vladislav; Gharabaghi, Alireza

    2016-01-01

    Background: Pairing peripheral electrical stimulation (ES) and transcranial magnetic stimulation (TMS) increases corticospinal excitability when applied with a specific temporal pattern. When the two stimulation techniques are applied separately, motor imagery (MI)-related oscillatory modulation amplifies both ES-related cortical effects—sensorimotor event-related desynchronization (ERD), and TMS-induced peripheral responses—motor-evoked potentials (MEP). However, the influence of brain self-regulation on the associative pairing of these stimulation techniques is still unclear. Objective: The aim of this pilot study was to investigate the effects of MI-related ERD during associative ES and TMS on subsequent corticospinal excitability. Method: The paired application of functional electrical stimulation (FES) of the extensor digitorum communis (EDC) muscle and subsequent single-pulse TMS (110% resting motor threshold (RMT)) of the contralateral primary motor cortex (M1) was controlled by beta-band (16–22 Hz) ERD during MI of finger extension and applied within a brain-machine interface environment in six healthy subjects. Neural correlates were probed by acquiring the stimulus-response curve (SRC) of both MEP peak-to-peak amplitude and area under the curve (AUC) before and after the intervention. Result: The application of approximately 150 pairs of associative FES and TMS resulted in a significant increase of MEP amplitudes and AUC, indicating that the induced increase of corticospinal excitability was mediated by the recruitment of additional neuronal pools. MEP increases were brain state-dependent and correlated with beta-band ERD, but not with the background EDC muscle activity; this finding was independent of the FES intensity applied. Conclusion: These results could be relevant for developing closed-loop therapeutic approaches such as the application of brain state-dependent, paired associative stimulation (PAS) in the context of neurorehabilitation. PMID

  3. Towards a Switched-Capacitor based Stimulator for efficient deep-brain stimulation.

    PubMed

    Vidal, Jose; Ghovanloo, Maysam

    2010-01-01

    We have developed a novel 4-channel prototype stimulation circuit for implantable neurological stimulators (INS). This Switched-Capacitor based Stimulator (SCS) aims to utilize charge storage and charge injection techniques to take advantage of both the efficiency of conventional voltage-controlled stimulators (VCS) and the safety and controllability of current-controlled stimulators (CCS). The discrete SCS prototype offers fine control over stimulation parameters such as voltage, current, pulse width, frequency, and active electrode channel via a LabVIEW graphical user interface (GUI) when connected to a PC through USB. Furthermore, the prototype utilizes a floating current sensor to provide charge-balanced biphasic stimulation and ensure safety. The stimulator was analyzed using an electrode-electrolyte interface (EEI) model as well as with a pair of pacing electrodes in saline. The primary motivation of this research is to test the feasibility and functionality of a safe, effective, and power-efficient switched-capacitor based stimulator for use in Deep Brain Stimulation. PMID:21095987

  4. Towards a Switched-Capacitor Based Stimulator for Efficient Deep-Brain Stimulation

    PubMed Central

    Vidal, Jose; Ghovanloo, Maysam

    2013-01-01

    We have developed a novel 4-channel prototype stimulation circuit for implantable neurological stimulators (INS). This Switched-Capacitor based Stimulator (SCS) aims to utilize charge storage and charge injection techniques to take advantage of both the efficiency of conventional voltage-controlled stimulators (VCS) and the safety and controllability of current-controlled stimulators (CCS). The discrete SCS prototype offers fine control over stimulation parameters such as voltage, current, pulse width, frequency, and active electrode channel via a LabVIEW graphical user interface (GUI) when connected to a PC through USB. Furthermore, the prototype utilizes a floating current sensor to provide charge-balanced biphasic stimulation and ensure safety. The stimulator was analyzed using an electrode-electrolyte interface (EEI) model as well as with a pair of pacing electrodes in saline. The primary motivation of this research is to test the feasibility and functionality of a safe, effective, and power-efficient switched-capacitor based stimulator for use in Deep Brain Stimulation. PMID:21095987

  5. A new handheld electromagnetic cortical stimulator for brain mapping during open skull neurosurgery: a feasibility study.

    PubMed

    Buzzi, Jacopo; De Momi, Elena; Baratelli, Francesco Maria; Giacometti, Marco; Fiocchi, Serena; Parazzini, Marta; Ravazzani, Paolo; Ferrigno, Giancarlo

    2015-01-01

    Transcranial magnetic stimulations have provided invaluable tools for investigating nervous system functions in a preoperative context; in this paper we propose an innovative tool to extend the magnetic stimulation to an open skull context as a promising approach to map the brain cortex. The present gold standard for intraoperative functional mapping of the brain cortex, the direct brain stimulation, has a low spatial resolution and limited penetration and focusing capabilities. The magnetic stimulatory device that we present, is designed to overcome these limitations, while working with low currents and voltages. In the present work we propose an early study of feasibility, in which the possibility of exploiting a train of fast changing magnetic fields to reach the neuron's current thresholds is investigated. Measurements of electric field intensity at different distances from the coil, showed that the magnetic stimulator realized is capable of delivering an electric field on a loop of wire theoretically sufficient to evoke neuron's action potential, thus showing the approach' feasibility. PMID:26737019

  6. Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Hirata, Akimasa

    2012-12-01

    In transcranial magnetic stimulation (TMS), the distribution of the induced electric field, and the affected brain areas, depends on the position of the stimulation coil and the individual geometry of the head and brain. The distribution of the induced electric field in realistic anatomies can be modelled using computational methods. However, existing computational methods for accurately determining the induced electric field in realistic anatomical models have suffered from long computation times, typically in the range of tens of minutes or longer. This paper presents a matrix-free implementation of the finite-element method with a geometric multigrid method that can potentially reduce the computation time to several seconds or less even when using an ordinary computer. The performance of the method is studied by computing the induced electric field in two anatomically realistic models. An idealized two-loop coil is used as the stimulating coil. Multiple computational grid resolutions ranging from 2 to 0.25 mm are used. The results show that, for macroscopic modelling of the electric field in an anatomically realistic model, computational grid resolutions of 1 mm or 2 mm appear to provide good numerical accuracy compared to higher resolutions. The multigrid iteration typically converges in less than ten iterations independent of the grid resolution. Even without parallelization, each iteration takes about 1.0 s or 0.1 s for the 1 and 2 mm resolutions, respectively. This suggests that calculating the electric field with sufficient accuracy in real time is feasible.

  7. Facilitate Insight by Non-Invasive Brain Stimulation

    PubMed Central

    Chi, Richard P.; Snyder, Allan W.

    2011-01-01

    Our experiences can blind us. Once we have learned to solve problems by one method, we often have difficulties in generating solutions involving a different kind of insight. Yet there is evidence that people with brain lesions are sometimes more resistant to this so-called mental set effect. This inspired us to investigate whether the mental set effect can be reduced by non-invasive brain stimulation. 60 healthy right-handed participants were asked to take an insight problem solving task while receiving transcranial direct current stimulation (tDCS) to the anterior temporal lobes (ATL). Only 20% of participants solved an insight problem with sham stimulation (control), whereas 3 times as many participants did so (p = 0.011) with cathodal stimulation (decreased excitability) of the left ATL together with anodal stimulation (increased excitability) of the right ATL. We found hemispheric differences in that a stimulation montage involving the opposite polarities did not facilitate performance. Our findings are consistent with the theory that inhibition to the left ATL can lead to a cognitive style that is less influenced by mental templates and that the right ATL may be associated with insight or novel meaning. Further studies including neurophysiological imaging are needed to elucidate the specific mechanisms leading to the enhancement. PMID:21311746

  8. Computational modeling of chemotactic signaling and aggregation of microglia around implantation site during deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Silchenko, A. N.; Tass, P. A.

    2013-10-01

    It is well established that prolonged electrical stimulation of brain tissue causes massive release of ATP in the extracellular space. The released ATP and the products of its hydrolysis, such as ADP and adenosine, become the main elements mediating chemotactic sensitivity and motility of microglial cells via subsequent activation of P2Y2,12 as well as A3A and A2A adenosine receptors. The size of the sheath around the electrode formed by the microglial cells is an important criterion for the optimization of the parameters of electrical current delivered to brain tissue. Here, we study a purinergic signaling pathway underlying the chemotactic motion of microglia towards the implanted electrode during deep brain stimulation. We present a computational model describing formation of a stable aggregate around the implantation site due to the joint chemo-attractive action of ATP and ADP together with a mixed influence of extracellular adenosine. The model was built in accordance with the classical Keller-Segel approach and includes an equation for the cells' density as well as equations describing the hydrolysis of extracellular ATP via successive reaction steps ATP →ADP →AMP →adenosine. The results of our modeling allowed us to reveal the dependence of the width of the encapsulating layer around the electrode on the amount of ATP released due to permanent electrical stimulation. The dependences of the aggregates' size on the parameter governing the nonlinearity of interaction between extracellular adenosine and adenosine receptors are also analyzed.

  9. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation

    PubMed Central

    Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin

    2015-01-01

    Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes. PMID:26193273

  10. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation.

    PubMed

    Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin

    2015-07-16

    Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes.

  11. Complex networks in brain electrical activity

    NASA Astrophysics Data System (ADS)

    Ray, C.; Ruffini, G.; Marco-Pallarés, J.; Fuentemilla, L.; Grau, C.

    2007-08-01

    This letter reports a method to extract a functional network of the human brain from electroencephalogram measurements. A network analysis was performed on the resultant network and the statistics of the cluster coefficient, node degree, path length, and physical distance of the links, were studied. Even given the low electrode count of the experimental data the method was able to extract networks with network parameters that clearly depend on the type of stimulus presented to the subject. This type of analysis opens a door to studying the cerebral networks underlying brain electrical activity, and links the fields of complex networks and cognitive neuroscience.

  12. The Neural Correlates of Long-Term Carryover following Functional Electrical Stimulation for Stroke

    PubMed Central

    Gandolla, Marta; Ward, Nick S.; Molteni, Franco; Guanziroli, Eleonora; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2016-01-01

    Neurorehabilitation effective delivery for stroke is likely to be improved by establishing a mechanistic understanding of how to enhance adaptive plasticity. Functional electrical stimulation is effective at reducing poststroke foot drop; in some patients, the effect persists after therapy has finished with an unknown mechanism. We used fMRI to examine neural correlates of functional electrical stimulation key elements, volitional intent to move and concurrent stimulation, in a group of chronic stroke patients receiving functional electrical stimulation for foot-drop correction. Patients exhibited task-related activation in a complex network, sharing bilateral sensorimotor and supplementary motor activation with age-matched controls. We observed consistent separation of patients with and without carryover effect on the basis of brain responses. Patients who experienced the carryover effect had responses in supplementary motor area that correspond to healthy controls; the interaction between experimental factors in contralateral angular gyrus was seen only in those without carryover. We suggest that the functional electrical stimulation carryover mechanism of action is based on movement prediction and sense of agency/body ownership—the ability of a patient to plan the movement and to perceive the stimulation as a part of his/her own control loop is important for carryover effect to take place. PMID:27073701

  13. Transcranial magnetic stimulation of mouse brain using high-resolution anatomical models

    NASA Astrophysics Data System (ADS)

    Crowther, L. J.; Hadimani, R. L.; Kanthasamy, A. G.; Jiles, D. C.

    2014-05-01

    Transcranial magnetic stimulation (TMS) offers the possibility of non-invasive treatment of brain disorders in humans. Studies on animals can allow rapid progress of the research including exploring a variety of different treatment conditions. Numerical calculations using animal models are needed to help design suitable TMS coils for use in animal experiments, in particular, to estimate the electric field induced in animal brains. In this paper, we have implemented a high-resolution anatomical MRI-derived mouse model consisting of 50 tissue types to accurately calculate induced electric field in the mouse brain. Magnetic field measurements have been performed on the surface of the coil and compared with the calculations in order to validate the calculated magnetic and induced electric fields in the brain. Results show how the induced electric field is distributed in a mouse brain and allow investigation of how this could be improved for TMS studies using mice. The findings have important implications in further preclinical development of TMS for treatment of human diseases.

  14. Short latency vestibular potentials evoked by electrical round window stimulation in the guinea pig.

    PubMed

    Bordure, P; Desmadryl, G; Uziel, A; Sans, A

    1989-11-01

    Short-latency potentials evoked by round window electrical stimulation were recorded in guinea pig by means of vertex-pinna skin electrodes using averaging techniques. Constant current shocks of 20 microseconds or 50 microseconds (25-300 microA) were used to evoke both auditory and vestibular brain-stem potentials. Pure auditory potentials, comparable to those evoked by acoustic clicks, were obtained by 20 microseconds electrical stimuli and disappeared during an auditory masking procedure made with a continuous white noise (110 dB SPL). Short latency potentials labeled V1, V2 and V3 were obtained by 50 microseconds electrical stimuli during an auditory masking procedure. This response disappeared after specific vestibular neurectomy, whereas the auditory response evoked by acoustic clicks or by electrical stimulation remained unchanged, suggesting that these latter potentials had a vestibular origin.

  15. Short latency vestibular potentials evoked by electrical round window stimulation in the guinea pig.

    PubMed

    Bordure, P; Desmadryl, G; Uziel, A; Sans, A

    1989-11-01

    Short-latency potentials evoked by round window electrical stimulation were recorded in guinea pig by means of vertex-pinna skin electrodes using averaging techniques. Constant current shocks of 20 microseconds or 50 microseconds (25-300 microA) were used to evoke both auditory and vestibular brain-stem potentials. Pure auditory potentials, comparable to those evoked by acoustic clicks, were obtained by 20 microseconds electrical stimuli and disappeared during an auditory masking procedure made with a continuous white noise (110 dB SPL). Short latency potentials labeled V1, V2 and V3 were obtained by 50 microseconds electrical stimuli during an auditory masking procedure. This response disappeared after specific vestibular neurectomy, whereas the auditory response evoked by acoustic clicks or by electrical stimulation remained unchanged, suggesting that these latter potentials had a vestibular origin. PMID:2479525

  16. The neurophysiology of language: Insights from non-invasive brain stimulation in the healthy human brain.

    PubMed

    Hartwigsen, Gesa

    2015-09-01

    With the advent of non-invasive brain stimulation (NIBS), a new decade in the study of language has started. NIBS allows for testing the functional relevance of language-related brain activation and enables the researcher to investigate how neural activation changes in response to focal perturbations. This review focuses on the application of NIBS in the healthy brain. First, some basic mechanisms will be introduced and the prerequisites for carrying out NIBS studies of language are addressed. The next section outlines how NIBS can be used to characterize the contribution of the stimulated area to a task. In this context, novel approaches such as multifocal transcranial magnetic stimulation and the condition-and-perturb approach are discussed. The third part addresses the combination of NIBS and neuroimaging in the study of plasticity. These approaches are particularly suited to investigate short-term reorganization in the healthy brain and may inform models of language recovery in post-stroke aphasia.

  17. Deep brain stimulation for the treatment of uncommon tremor syndromes

    PubMed Central

    Ramirez-Zamora, Adolfo; Okun, Michael S.

    2016-01-01

    ABSTRACT Introduction: Deep brain stimulation (DBS) has become a standard therapy for the treatment of select cases of medication refractory essential tremor and Parkinson’s disease however the effectiveness and long-term outcomes of DBS in other uncommon and complex tremor syndromes has not been well established. Traditionally, the ventralis intermedius nucleus (VIM) of the thalamus has been considered the main target for medically intractable tremors; however alternative brain regions and improvements in stereotactic techniques and hardware may soon change the horizon for treatment of complex tremors. Areas covered: In this article, we conducted a PubMed search using different combinations between the terms ‘Uncommon tremors’, ‘Dystonic tremor’, ‘Holmes tremor’ ‘Midbrain tremor’, ‘Rubral tremor’, ‘Cerebellar tremor’, ‘outflow tremor’, ‘Multiple Sclerosis tremor’, ‘Post-traumatic tremor’, ‘Neuropathic tremor’, and ‘Deep Brain Stimulation/DBS’. Additionally, we examined and summarized the current state of evolving interventions for treatment of complex tremor syndromes. Expert c ommentary: Recently reported interventions for rare tremors include stimulation of the posterior subthalamic area, globus pallidus internus, ventralis oralis anterior/posterior thalamic subnuclei, and the use of dual lead stimulation in one or more of these targets. Treatment should be individualized and dictated by tremor phenomenology and associated clinical features. PMID:27228280

  18. Reducing proactive aggression through non-invasive brain stimulation.

    PubMed

    Dambacher, Franziska; Schuhmann, Teresa; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Sack, Alexander T

    2015-10-01

    Aggressive behavior poses a threat to human collaboration and social safety. It is of utmost importance to identify the functional mechanisms underlying aggression and to develop potential interventions capable of reducing dysfunctional aggressive behavior already at a brain level. We here experimentally shifted fronto-cortical asymmetry to manipulate the underlying motivational emotional states in both male and female participants while assessing the behavioral effects on proactive and reactive aggression. Thirty-two healthy volunteers received either anodal transcranial direct current stimulation to increase neural activity within right dorsolateral prefrontal cortex, or sham stimulation. Aggressive behavior was measured with the Taylor Aggression Paradigm. We revealed a general gender effect, showing that men displayed more behavioral aggression than women. After the induction of right fronto-hemispheric dominance, proactive aggression was reduced in men. This study demonstrates that non-invasive brain stimulation can reduce aggression in men. This is a relevant and promising step to better understand how cortical brain states connect to impulsive actions and to examine the causal role of the prefrontal cortex in aggression. Ultimately, such findings could help to examine whether the brain can be a direct target for potential supportive interventions in clinical settings dealing with overly aggressive patients and/or violent offenders.

  19. Electric field stimulated growth of Zn whiskers

    NASA Astrophysics Data System (ADS)

    Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana

    2016-07-01

    We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  20. [Shining light on translational research in deep brain stimulation].

    PubMed

    Lüscher, Christian; Davoine, Elise; Bellone, Carmilla

    2015-04-29

    For the last decade, optogenetics has revolutionised the neurosciences by enabling an unprecedented characterisation of the circuits involved in brain diseases, in particular addiction, depression, and obsessive compulsive disorders (OCD) and other anxiety disorders. Recently, the technique has also been used to propose blueprints for novel treatments of these diseases. For many reasons, optogenetics cannot be applied to humans applications anytime soon; we therefore argue that an intermediate step would be novel deep brain stimulation (DBS) protocols that emulate successful optogenetic "treatments" in animal models. Here we provide a roadmap of a translational path to rational, optogenetically inspired DBS protocols to refine existing approaches and expand it to novel indications. PMID:26062226

  1. Why intra-epidermal electrical stimulation achieves stimulation of small fibres selectively: a simulation study

    NASA Astrophysics Data System (ADS)

    Motogi, Jun; Sugiyama, Yukiya; Laakso, Ilkka; Hirata, Akimasa; Inui, Koji; Tamura, Manabu; Muragaki, Yoshihiro

    2016-06-01

    The in situ electric field in the peripheral nerve of the skin is investigated to discuss the selective stimulation of nerve fibres. Coaxial planar electrodes with and without intra-epidermal needle tip were considered as electrodes of a stimulator. From electromagnetic analysis, the tip depth of the intra-epidermal electrode should be larger than the thickness of the stratum corneum, the electrical conductivity of which is much lower than the remaining tissue. The effect of different radii of the outer ring electrode on the in situ electric field is marginal. The minimum threshold in situ electric field (rheobase) for free nerve endings is estimated to be 6.3 kV m-1. The possible volume for electrostimulation, which can be obtained from the in situ electric field distribution, becomes deeper and narrower with increasing needle depth, suggesting that possible stimulation sites may be controlled by changing the needle depth. The injection current amplitude should be adjusted when changing the needle depth because the peak field strength also changes. This study shows that intra-epidermal electrical stimulation can achieve stimulation of small fibres selectively, because Aβ-, Aδ-, and C-fibre terminals are located at different depths in the skin.

  2. A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region

    NASA Astrophysics Data System (ADS)

    van Dijk, Kees J.; Verhagen, Rens; Chaturvedi, Ashutosh; McIntyre, Cameron C.; Bour, Lo J.; Heida, Ciska; Veltink, Peter H.

    2015-08-01

    Objective. The clinical effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) as a treatment for Parkinson’s disease are sensitive to the location of the DBS lead within the STN. New high density (HD) lead designs have been created which are hypothesized to provide additional degrees of freedom in shaping the stimulating electric field. The objective of this study is to compare the performances of a new HD lead with a conventional cylindrical contact (CC) lead. Approach. A computational model, consisting of a finite element electric field model combined with multi-compartment neuron and axon models representing different neural populations in the subthalamic region, was used to evaluate the two leads. We compared ring-mode and steering-mode stimulation with the HD lead to single contact stimulation with the CC lead. These stimulation modes were tested for the lead: (1) positioned in the centroid of the STN, (2) shifted 1 mm towards the internal capsule (IC), and (3) shifted 2 mm towards the IC. Under these conditions, we quantified the number of STN neurons that were activated without activating IC fibers, which are known to cause side-effects. Main results. The modeling results show that the HD lead is able to mimic the stimulation effect of the CC lead. Additionally, in steering-mode stimulation there was a significant increase of activated STN neurons compared to the CC mode. Significance. From the model simulations we conclude that the HD lead in steering-mode with optimized stimulation parameter selection can stimulate more STN cells. Next, the clinical impact of the increased number of activated STN cells should be tested and balanced across the increased complexity of identifying the optimized stimulation parameter settings for the HD lead.

  3. Safe neuromuscular electrical stimulator designed for the elderly.

    PubMed

    Krenn, Matthias; Haller, Michael; Bijak, Manfred; Unger, Ewald; Hofer, Christian; Kern, Helmut; Mayr, Winfried

    2011-03-01

    A stimulator for neuromuscular electrical stimulation (NMES) was designed, especially suiting the requirements of elderly people with reduced cognitive abilities and diminished fine motor skills. The aging of skeletal muscle is characterized by a progressive decline in muscle mass, force, and condition. Muscle training with NMES reduces the degradation process. The discussed system is intended for evoked muscle training of the anterior and posterior thigh. The core of the stimulator is based on a microcontroller with two modular output stages. The system has two charge-balanced biphasic voltage-controlled stimulation channels. Additionally, the evoked myoelectric signal (M-wave) and the myokinematic signal (surface acceleration) are measured. A central controller unit allows using the stimulator as a stand-alone device. To set up the training sequences and to evaluate the compliance data, a personal computer is connected to the stimulator via a universal serial bus. To help elderly people handle the stimulator by themselves, the user interface is kept very simple. For safety reasons, the electrode impedance is monitored during stimulation. A comprehensive compliance management with included measurements of muscle activity and stimulation intensity enables a scientific use of the stimulator in clinical trials.

  4. Bladder emptying by intermittent electrical stimulation of the pudendal nerve

    NASA Astrophysics Data System (ADS)

    Boggs, Joseph W.; Wenzel, Brian J.; Gustafson, Kenneth J.; Grill, Warren M.

    2006-03-01

    Persons with a suprasacral spinal cord injury cannot empty their bladder voluntarily. Bladder emptying can be restored by intermittent electrical stimulation of the sacral nerve roots (SR) to cause bladder contraction. However, this therapy requires sensory nerve transection to prevent dyssynergic contraction of the external urethral sphincter (EUS). Stimulation of the compound pudendal nerve trunk (PN) activates spinal micturition circuitry, leading to a reflex bladder contraction without a reflex EUS contraction. The present study determined if PN stimulation could produce bladder emptying without nerve transection in cats anesthetized with α-chloralose. With all nerves intact, intermittent PN stimulation emptied the bladder (64 ± 14% of initial volume, n = 37 across six cats) more effectively than either distention-evoked micturition (40 ± 19%, p < 0.001, n = 27 across six cats) or bilateral intermittent SR stimulation (25 ± 23%, p < 0.005, n = 4 across two cats). After bilateral transection of the nerves innervating the urethral sphincter, intermittent SR stimulation voided 79 ± 17% (n = 12 across three cats), comparable to clinical results obtained with SR stimulation. Voiding via intermittent PN stimulation did not increase after neurotomy (p > 0.10), indicating that PN stimulation was not limited by bladder-sphincter dyssynergia. Intermittent PN stimulation holds promise for restoring bladder emptying following spinal injury without requiring nerve transection.

  5. Safe neuromuscular electrical stimulator designed for the elderly.

    PubMed

    Krenn, Matthias; Haller, Michael; Bijak, Manfred; Unger, Ewald; Hofer, Christian; Kern, Helmut; Mayr, Winfried

    2011-03-01

    A stimulator for neuromuscular electrical stimulation (NMES) was designed, especially suiting the requirements of elderly people with reduced cognitive abilities and diminished fine motor skills. The aging of skeletal muscle is characterized by a progressive decline in muscle mass, force, and condition. Muscle training with NMES reduces the degradation process. The discussed system is intended for evoked muscle training of the anterior and posterior thigh. The core of the stimulator is based on a microcontroller with two modular output stages. The system has two charge-balanced biphasic voltage-controlled stimulation channels. Additionally, the evoked myoelectric signal (M-wave) and the myokinematic signal (surface acceleration) are measured. A central controller unit allows using the stimulator as a stand-alone device. To set up the training sequences and to evaluate the compliance data, a personal computer is connected to the stimulator via a universal serial bus. To help elderly people handle the stimulator by themselves, the user interface is kept very simple. For safety reasons, the electrode impedance is monitored during stimulation. A comprehensive compliance management with included measurements of muscle activity and stimulation intensity enables a scientific use of the stimulator in clinical trials. PMID:21401669

  6. Effects of Deep Brain Stimulation on Autonomic Function.

    PubMed

    Basiago, Adam; Binder, Devin K

    2016-01-01

    Over the course of the development of deep brain stimulation (DBS) into a well-established therapy for Parkinson's disease, essential tremor, and dystonia, its utility as a potential treatment for autonomic dysfunction has emerged. Dysfunction of autonomic processes is common in neurological diseases. Depending on the specific target in the brain, DBS has been shown to raise or lower blood pressure, normalize the baroreflex, to alter the caliber of bronchioles, and eliminate hyperhidrosis, all through modulation of the sympathetic nervous system. It has also been shown to improve cortical control of the bladder, directly induce or inhibit the micturition reflex, and to improve deglutition and gastric emptying. In this review, we will attempt to summarize the relevant available studies describing these effects of DBS on autonomic function, which vary greatly in character and magnitude with respect to stimulation target. PMID:27537920

  7. Effects of Deep Brain Stimulation on Autonomic Function

    PubMed Central

    Basiago, Adam; Binder, Devin K.

    2016-01-01

    Over the course of the development of deep brain stimulation (DBS) into a well-established therapy for Parkinson’s disease, essential tremor, and dystonia, its utility as a potential treatment for autonomic dysfunction has emerged. Dysfunction of autonomic processes is common in neurological diseases. Depending on the specific target in the brain, DBS has been shown to raise or lower blood pressure, normalize the baroreflex, to alter the caliber of bronchioles, and eliminate hyperhidrosis, all through modulation of the sympathetic nervous system. It has also been shown to improve cortical control of the bladder, directly induce or inhibit the micturition reflex, and to improve deglutition and gastric emptying. In this review, we will attempt to summarize the relevant available studies describing these effects of DBS on autonomic function, which vary greatly in character and magnitude with respect to stimulation target. PMID:27537920

  8. Changes in Vowel Articulation with Subthalamic Nucleus Deep Brain Stimulation in Dysarthric Speakers with Parkinson's Disease

    PubMed Central

    Langlois, Mélanie; Prud'Homme, Michel; Cantin, Léo

    2014-01-01

    Purpose. To investigate changes in vowel articulation with the electrical deep brain stimulation (DBS) of the subthalamic nucleus (STN) in dysarthric speakers with Parkinson's disease (PD). Methods. Eight Quebec-French speakers diagnosed with idiopathic PD who had undergone STN DBS were evaluated ON-stimulation and OFF-stimulation (1 hour after DBS was turned off). Vowel articulation was compared ON-simulation versus OFF-stimulation using acoustic vowel space and formant centralization ratio, calculated with the first (F1) and second formant (F2) of the vowels /i/, /u/, and /a/. The impact of the preceding consonant context on articulation, which represents a measure of coarticulation, was also analyzed as a function of the stimulation state. Results. Maximum vowel articulation increased during ON-stimulation. Analyses also indicate that vowel articulation was modulated by the consonant context but this relationship did not change with STN DBS. Conclusions. Results suggest that STN DBS may improve articulation in dysarthric speakers with PD, in terms of range of movement. Optimization of the electrical parameters for each patient is important and may lead to improvement in speech fine motor control. However, the impact on overall speech intelligibility may still be small. Clinical considerations are discussed and new research avenues are suggested. PMID:25400977

  9. [Safety and neuroethical consideration of deep brain stimulation as a psychiatric treatment].

    PubMed

    Takagi, Miyako

    2009-01-01

    Deep brain stimulation (DBS) is a surgical treatment involving the implantation of a medical device, which sends electrical impulses to specific parts of the brain. DBS in select brain regions has provided remarkable therapeutic benefits for treatment-resistant movement and affective disorders such as Parkinson's disease. DBS directly alters brain activity in a controlled manner, and its effects are reversible. Lately, DBS treatment has been used for the treatment of various psychiatric disorders, such as obsessive compulsive disorder, Tourette syndrome, and severe depression. However, DBS therapies for affective disorders are still at their experimental stage, and some scientists point out that there may be a risk involved, because the device implanted in a person's brain may alter his/her brain function and hence his personal identity. With support from the New Energy and Industrial Technology Development Organization (NEDO), Japanese government, we conducted international research on the effects of DBS therapies for psychiatric disorders, examined the safety of such therapies, and clarified the conditions for proper application of the DBS technique. The research items were as follows: (1) safety issues concerning the deterioration of DBS electrodes and the possibilities of developing new and better materials, (2) the role of coordinators who mediate between patients and DBS devices, (3) social concerns regarding personality changes/brain plasticity, (4) re-examination of ethical debates on prefrontal lobotomy (lessons from the past), (5) possible use of DBS for the purpose of brain enhancement, and (6) end users' expectations and fears toward DBS.

  10. Microfabricated polymer-based neural interface for electrical stimulation/recording, drug delivery, and chemical sensing--development.

    PubMed

    Tooker, Angela; Madsen, Teresa E; Yorita, Allison; Crowell, Andrea; Shah, Kedar G; Felix, Sarah; Mayberg, Helen S; Pannu, Satinderpall; Rainnie, Donald G; Tolosa, Vanessa

    2013-01-01

    We present here a microfabricated, multi-functional neural interface with the ability to selectively apply electrical and chemical stimuli, while simultaneously monitoring both electrical and chemical activity in the brain. Such a comprehensive approach is required to understand and treat neuropsychiatric disorders, such as major depressive disorder (MDD), and to understand the mechanisms underlying treatments, such as pharmaceutical therapies and deep brain stimulation (DBS). The polymer-based, multi-functional neural interface is capable of electrical stimulation and recording, targeted drug delivery, and electrochemical sensing. A variety of different electrode and fluidic channel arrangements are possible with this fabrication process. Preliminary testing has shown the suitability of these neural interfaces for in vivo electrical stimulation and recording, as well as in vitro chemical sensing. Testing of the in vitro drug delivery and combined in vivo functionalities this neural interface are currently underway.

  11. Mapping of electrical muscle stimulation using MRI

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Harris, Robert T.; Woodard, Daniel; Dudley, Gary A.

    1993-01-01

    The pattern of muscle contractile activity elicited by electromyostimulation (EMS) was mapped and compared to the contractile-activity pattern produced by voluntary effort. This was done by examining the patterns and the extent of contrast shift, as indicated by T2 values, im magnetic resonance (MR) images after isometric activity of the left m. quadriceps of human subjects was elicited by EMS (1-sec train of 500-microsec sine wave pulses at 50 Hz) or voluntary effort. The results suggest that, whereas EMS stimulates the same fibers repeatedly, thereby increasing the metabolic demand and T2 values, the voluntary efforts are performed by more diffuse asynchronous activation of skeletal muscle even at forces up to 75 percent of maximal to maintain performance.

  12. Calculating the electric field in real human head by transcranial magnetic stimulation with shield plate

    NASA Astrophysics Data System (ADS)

    Lu, Mai; Ueno, Shoogo

    2009-04-01

    In this paper, we present a transcranial magnetic stimulation (TMS) system by incorporating a conductive shield plate. The magnetic field, induced current density, and electric field in a real human head were calculated by impedance method and the results were compared with TMS without shielding. Our results show that the field localization can be improved by introducing a conductive shield plate; the stimulation magnitude (depth) in the brain is reduced comparing with the TMS without shielding. The strong magnetic field near the TMS coil is difficult to be efficiently shielded by a thinner conductive shield plate.

  13. Anomia training and brain stimulation in chronic aphasia.

    PubMed

    Cotelli, Maria; Fertonani, Anna; Miozzo, Antonio; Rosini, Sandra; Manenti, Rosa; Padovani, Alessandro; Ansaldo, Ana Ines; Cappa, Stefano F; Miniussi, Carlo

    2011-10-01

    Recent studies have reported enhanced performance on language tasks induced by non-invasive brain stimulation, i.e., repetitive transcranial magnetic stimulation (rTMS), or transcranial direct current stimulation (tDCS), in patients with aphasia due to stroke or Alzheimer's disease (AD). The first part of this article reviews brain stimulation studies related to language recovery in aphasic patients. The second part reports results from a pilot study with three chronic stroke patients who had non-fluent aphasia, where real or placebo rTMS was immediately followed by 25 minutes of individualised speech therapy. Real rTMS consisted of high-frequency rTMS over the left dorsolateral prefrontal cortex (BA 8/9) for 25 minutes. Each patient underwent a total of four weeks of intervention. P1 underwent four weeks of real rTMS (5 days/week) where individualised speech therapy was provided for 25 minutes immediately following each rTMS session. P2 and P3 each underwent two weeks of placebo rTMS, followed immediately by individualised speech therapy; then two weeks of real rTMS, followed immediately by individualised speech therapy. Assessments took place at 2, 4, 12, 24 and 48 weeks post-entry/baseline testing. Relative to entry/baseline testing, a significant improvement in object naming was observed at all testing times, from two weeks post-intervention in real rTMS plus speech therapy, or placebo rTMS plus speech therapy. Our findings suggest beneficial effects of targeted behavioural training in combination with brain stimulation in chronic aphasic patients. However, further work is required in order to verify whether optimal combination parameters (rTMS alone or speech therapy alone) and length of rTMS treatment may be found.

  14. Stimulation of functional vision in children with perinatal brain damage.

    PubMed

    Alimović, Sonja; Mejaski-Bosnjak, Vlatka

    2011-01-01

    Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual stimulation on development of functional vision at early age of life. We initially assessed 30 children with perinatal brain damage up to 3 years of age, who were reffered to our pediatric low vision cabinet in "Little house" from child neurologists, ophthalmologists Type and degree of visual impairment was determined according to functional vision assessment of each child. On the bases of those assessments different kind of visual stimulations were carried out with children who have been identified to have a certain visual impairment. Through visual stimulation program some of the children were stimulated with light stimulus, some with different materials under the ultraviolet (UV) light, and some with bright color and high contrast materials. Children were also involved in program of early stimulation of overall sensory motor development. Goals and methods of therapy were determined individually, based on observation of child's possibilities and need. After one year of program, reassessment was done. Results for visual functions and functional vision were compared to evaluate the improvement of the vision development. These results have shown that there was significant improvement in functional vision, especially in visual attention and visual communication.

  15. Future of brain stimulation: new targets, new indications, new technology.

    PubMed

    Hariz, Marwan; Blomstedt, Patric; Zrinzo, Ludvic

    2013-11-01

    In the last quarter of a century, DBS has become an established neurosurgical treatment for Parkinson's disease (PD), dystonia, and tremors. Improved understanding of brain circuitries and their involvement in various neurological and psychiatric illnesses, coupled with the safety of DBS and its exquisite role as a tool for ethical study of the human brain, have unlocked new opportunities for this technology, both for future therapies and in research. Serendipitous discoveries and advances in structural and functional imaging are providing abundant "new" brain targets for an ever-increasing number of pathologies, leading to investigations of DBS in diverse neurological, psychiatric, behavioral, and cognitive conditions. Trials and "proof of concept" studies of DBS are underway in pain, epilepsy, tinnitus, OCD, depression, and Gilles de la Tourette syndrome, as well as in eating disorders, addiction, cognitive decline, consciousness, and autonomic states. In parallel, ongoing technological development will provide pulse generators with longer battery longevity, segmental electrode designs allowing a current steering, and the possibility to deliver "on-demand" stimulation based on closed-loop concepts. The future of brain stimulation is certainly promising, especially for movement disorders-that will remain the main indication for DBS for the foreseeable future-and probably for some psychiatric disorders. However, brain stimulation as a technique may be at risk of gliding down a slippery slope: Some reports indicate a disturbing trend with suggestions that future DBS may be proposed for enhancement of memory in healthy people, or as a tool for "treatment" of "antisocial behavior" and for improving "morality." PMID:24123327

  16. In Vivo Mapping of Cortical Columnar Networks in the Monkey with Focal Electrical and Optical Stimulation

    PubMed Central

    Roe, Anna Wang; Chernov, Mykyta M.; Friedman, Robert M.; Chen, Gang

    2015-01-01

    There are currently largescale efforts to understand the brain as a connection machine. However, there has been little emphasis on understanding connection patterns between functionally specific cortical columns. Here, we review development and application of focal electrical and optical stimulation methods combined with optical imaging and fMRI mapping in the non-human primate. These new approaches, when applied systematically on a large scale, will elucidate functionally specific intra-areal and inter-areal network connection patterns. Such functionally specific network data can provide accurate views of brain network topology. PMID:26635539

  17. Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat.

    PubMed

    Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart

    2015-01-01

    Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation. PMID:25897892

  18. Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat

    PubMed Central

    Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart

    2015-01-01

    Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation. PMID:25897892

  19. Brain sites mediating corticosteroid feedback inhibition of stimulated ACTH secretion

    SciTech Connect

    Jacobson, L.

    1989-01-01

    There is substantial evidence that the brain mediates stress-induced and circadian increases in ACTH secretion and that corticosteroid concentrations which normalize basal plasma ACTH are insufficient to normalize ACTH responses to circadian or stressful stimuli in adrenalectomized rats. To identify brain sites mediating corticosteroid inhibition of stimulated ACTH secretion, two approaches were used. The first compared brain ({sup 14}C)-2-deoxyglucose uptake in rats with differential ACTH responses to stress. Relative to sham-adrenalectomized (SHAM) rats, adrenalectomized rats replaced with low, constant corticosterone levels via a subcutaneous corticosterone pellet (B-PELLET) exhibited elevated and prolonged ACTH responses to a variety of stimuli. Adrenalectomized rate given a circadian corticosterone rhythm via corticosterone in their drinking water exhibited elevated ACTH levels immediately after stress, but unlike B-PELLET rats, terminated stress induced ACTH secretion normally relative to SHAMS. Therefore, the abnormal ACTH responses to stress in B-PELLET rats were due to the lack of both circadian variations and stress-induced increases in corticosterone. Hypoxia was selected as a standardized stimulus for correlating brain ({sup 14}C)-2-deoxyglucose uptake with ACTH secretion. In intact rats, increases in plasma ACTH and decreases in arterial PO{sub 2} correlated with the severity of hypoxia at arterial PCO{sub 2} below 60 mm Hg. Hypoxia PELLET vs. SHAM rats. However, in preliminary experiments, although hypoxia increased brain 2-deoxyglucose uptake in most brain regions, plasma ACTH correlated poorly with 2-deoxyglucose uptake at 12% and 10% O{sub 2}.

  20. Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses.

    PubMed

    Sperdin, Holger F; Spierer, Lucas; Becker, Robert; Michel, Christoph M; Landis, Theodor

    2015-04-01

    Subliminal perception is strongly associated to the processing of meaningful or emotional information and has mostly been studied using visual masking. In this study, we used high density 256-channel EEG coupled with an liquid crystal display (LCD) tachistoscope to characterize the spatio-temporal dynamics of the brain response to visual checkerboard stimuli (Experiment 1) or blank stimuli (Experiment 2) presented without a mask for 1 ms (visible), 500 µs (partially visible), and 250 µs (subliminal) by applying time-wise, assumption-free nonparametric randomization statistics on the strength and on the topography of high-density scalp-recorded electric field. Stimulus visibility was assessed in a third separate behavioral experiment. Results revealed that unmasked checkerboards presented subliminally for 250 µs evoked weak but detectable visual evoked potential (VEP) responses. When the checkerboards were replaced by blank stimuli, there was no evidence for the presence of an evoked response anymore. Furthermore, the checkerboard VEPs were modulated topographically between 243 and 296 ms post-stimulus onset as a function of stimulus duration, indicative of the engagement of distinct configuration of active brain networks. A distributed electrical source analysis localized this modulation within the right superior parietal lobule near the precuneus. These results show the presence of a brain response to submillisecond unmasked subliminal visual stimuli independently of their emotional saliency or meaningfulness and opens an avenue for new investigations of subliminal stimulation without using visual masking. PMID:25487054

  1. Cortical excitability changes following grasping exercise augmented with electrical stimulation.

    PubMed

    Barsi, Gergely I; Popovic, Dejan B; Tarkka, Ina M; Sinkjaer, Thomas; Grey, Michael J

    2008-10-01

    Rehabilitation with augmented electrical stimulation can enhance functional recovery after stroke, and cortical plasticity may play a role in this process. The purpose of this study was to compare the effects of three training paradigms on cortical excitability in healthy subjects. Cortical excitability was evaluated by analysing the input-output relationship between transcranial magnetic stimulation intensity and motor evoked potentials (MEPs) from the flexor muscles of the fingers. The study was performed with 25 healthy volunteers who underwent 20-min simulated therapy sessions of: (1) functional electrical stimulation (FES) of the finger flexors and extensors, (2) voluntary movement (VOL) with sensory stimulation, and (3) therapeutic FES (TFES) where the electrical stimulation augmented voluntary activation. TFES training produced a significant increase in MEP magnitude throughout the stimulation range, suggesting an increase in cortical excitability. In contrast, neither the FES nor voluntary movement alone had such an effect. These results suggest that the combination of voluntary effort and FES has greater potential to induce plasticity in the motor cortex and that TFES might be a more effective approach in rehabilitation after stroke than FES or repetitive voluntary training alone.

  2. Corticospinal potentials after electrical and magnetic stimulation in man.

    PubMed

    Berardelli, A; Inghilleri, M; Cruccu, G; Manfredi, M

    1991-01-01

    The present report deals with our study of the descending volley evoked by both electrical and magnetic transcranial stimulation in man. We discuss the differences of these two techniques specifically as regards the latency and amplitude of evoked potentials. In both cases, electrodes were placed either in the epidural space or directly on the spinal cord. Following electrical stimulation, the descending volley consisted of an early wave which appeared at low stimulation intensity and increased in amplitude and decreased in latency when the strength of the stimulus was increased. At high stimulation intensities the early wave was followed by later waves which travel at the same speed as the initial wave. By delivering paired cortical stimuli, the early wave evoked by the test stimuli is present at 1-msec interval and progressively recovered with longer intervals. The recovery cycle of the later waves is also extremely short. Following magnetic stimulation, the descending volley also consisted of an initial wave followed by later waves. The initial wave has a slightly longer latency, a higher threshold and a smaller amplitude than the early wave evoked by electrical stimulation. The results are discussed with reference to the D and I waves recorded from the pyramidal tract in animals.

  3. Non-invasive brain stimulation (NIBS) and motor recovery after stroke.

    PubMed

    Simonetta-Moreau, M

    2014-11-01

    Recovery of motor function after stroke occurs largely on the basis of a sustained capacity of the adult brain for plastic changes. This brain plasticity has been validated by functional imaging and electrophysiological studies. Various concepts of how to enhance beneficial plasticity and in turn improve functional recovery are emerging based on the concept of functional interhemispheric balance between the two motor cortices. Besides conventional rehabilitation interventions and the most recent neuropharmacological approaches, non-invasive brain stimulation (NIBS) has recently been proposed as an add-on method to promote motor function recovery after stroke. Several methods can be used based either on transcranial magnetic stimulation (repetitive mode: rTMS, TBS) via a coil, or small electric current via larges electrodes placed on the scalp, (transcranial direct current stimulation tDCS). Depending on the different electrophysiological parameters of stimulation used, NIBS can induce a transient modulation of the excitability of the stimulated motor cortex (facilitation or inhibition) via a probable LTP-LTD-like mechanism. Several small studies have shown feasible and positive treatment effects for most of these strategies and their potential clinical relevance to help restoring the disruption of interhemispheric imbalance after stroke. Results of these studies are encouraging but many questions remain unsolved: what are the optimal stimulation parameters? What is the best NIBS intervention? Which cortex, injured or intact, should be stimulated? What is the best window of intervention? Is there a special subgroup of stroke patients who could strongly benefit from these interventions? Finally is it possible to boost NIBS treatment effect by motor training of the paretic hand or by additional neuropharmacological interventions? There is clearly a need for large-scale, controlled, multicenter trials to answer these questions before proposing their routine use in the

  4. Non-invasive brain stimulation (NIBS) and motor recovery after stroke.

    PubMed

    Simonetta-Moreau, M

    2014-11-01

    Recovery of motor function after stroke occurs largely on the basis of a sustained capacity of the adult brain for plastic changes. This brain plasticity has been validated by functional imaging and electrophysiological studies. Various concepts of how to enhance beneficial plasticity and in turn improve functional recovery are emerging based on the concept of functional interhemispheric balance between the two motor cortices. Besides conventional rehabilitation interventions and the most recent neuropharmacological approaches, non-invasive brain stimulation (NIBS) has recently been proposed as an add-on method to promote motor function recovery after stroke. Several methods can be used based either on transcranial magnetic stimulation (repetitive mode: rTMS, TBS) via a coil, or small electric current via larges electrodes placed on the scalp, (transcranial direct current stimulation tDCS). Depending on the different electrophysiological parameters of stimulation used, NIBS can induce a transient modulation of the excitability of the stimulated motor cortex (facilitation or inhibition) via a probable LTP-LTD-like mechanism. Several small studies have shown feasible and positive treatment effects for most of these strategies and their potential clinical relevance to help restoring the disruption of interhemispheric imbalance after stroke. Results of these studies are encouraging but many questions remain unsolved: what are the optimal stimulation parameters? What is the best NIBS intervention? Which cortex, injured or intact, should be stimulated? What is the best window of intervention? Is there a special subgroup of stroke patients who could strongly benefit from these interventions? Finally is it possible to boost NIBS treatment effect by motor training of the paretic hand or by additional neuropharmacological interventions? There is clearly a need for large-scale, controlled, multicenter trials to answer these questions before proposing their routine use in the

  5. Electrically stimulated contractions of Vorticella convallaria

    NASA Astrophysics Data System (ADS)

    Kantha, Deependra; van Winkle, David

    2009-03-01

    The contraction of Vorticella convallaria was triggered by applying a voltage pulse in its host culturing medium. The 50V, 1ms wide pulse was applied across platinum wires separated by 0.7 cm on a microscope slide. The contractions were recorded as cines (image sequences) by a Phantom V5 camera (Vision Research) on a bright field microscope with 20X objective, with the image size of 256 pixels x 128 pixels at 7352 pictures per second. The starting time of the cines was synchronized with the starting of the electrical pulse. We recorded five contractions of each of 12 organisms. The cines were analyzed to obtain the initiation time, defined as the difference in time between the leading edge of the electrical pulse and the first frame showing zooid movement. From multiple contractions of same organism, we found the initiation time is reproducible. In comparing different organisms, we found the average initiation time of 1.73 ms with a standard deviation of 0.63 ms. This research is supported by the state of Florida (MARTECH) and Research Corporation.

  6. A General Method for Evaluating Deep Brain Stimulation Effects on Intravenous Methamphetamine Self-Administration

    PubMed Central

    Batra, Vinita; Guerin, Glenn F.; Goeders, Nicholas E.; Wilden, Jessica A.

    2016-01-01

    Substance use disorders, particularly to methamphetamine, are devastating, relapsing diseases that disproportionally affect young people. There is a need for novel, effective and practical treatment strategies that are validated in animal models. Neuromodulation, including deep brain stimulation (DBS) therapy, refers to the use of electricity to influence pathological neuronal activity and has shown promise for psychiatric disorders, including drug dependence. DBS in clinical practice involves the continuous delivery of stimulation into brain structures using an implantable pacemaker-like system that is programmed externally by a physician to alleviate symptoms. This treatment will be limited in methamphetamine users due to challenging psychosocial situations. Electrical treatments that can be delivered intermittently, non-invasively and remotely from the drug-use setting will be more realistic. This article describes the delivery of intracranial electrical stimulation that is temporally and spatially separate from the drug-use environment for the treatment of IV methamphetamine dependence. Methamphetamine dependence is rapidly developed in rodents using an operant paradigm of intravenous (IV) self-administration that incorporates a period of extended access to drug and demonstrates both escalation of use and high motivation to obtain drug. PMID:26863392

  7. Deep brain stimulation in the treatment of obesity.

    PubMed

    Halpern, Casey H; Wolf, John A; Bale, Tracy L; Stunkard, Albert J; Danish, Shabbar F; Grossman, Murray; Jaggi, Jurg L; Grady, M Sean; Baltuch, Gordon H

    2008-10-01

    Obesity is a growing global health problem frequently intractable to current treatment options. Recent evidence suggests that deep brain stimulation (DBS) may be effective and safe in the management of various, refractory neuropsychiatric disorders, including obesity. The authors review the literature implicating various neural regions in the pathophysiology of obesity, as well as the evidence supporting these regions as targets for DBS, in order to explore the therapeutic promise of DBS in obesity. The lateral hypothalamus and ventromedial hypothalamus are the appetite and satiety centers in the brain, respectively. Substantial data support targeting these regions with DBS for the purpose of appetite suppression and weight loss. However, reward sensation associated with highly caloric food has been implicated in overconsumption as well as obesity, and may in part explain the failure rates of conservative management and bariatric surgery. Thus, regions of the brain's reward circuitry, such as the nucleus accumbens, are promising alternatives for DBS in obesity control. The authors conclude that deep brain stimulation should be strongly considered as a promising therapeutic option for patients suffering from refractory obesity. PMID:18826348

  8. Deep brain stimulation for psychiatric disorders: where we are now.

    PubMed

    Cleary, Daniel R; Ozpinar, Alp; Raslan, Ahmed M; Ko, Andrew L

    2015-06-01

    Fossil records showing trephination in the Stone Age provide evidence that humans have sought to influence the mind through physical means since before the historical record. Attempts to treat psychiatric disease via neurosurgical means in the 20th century provided some intriguing initial results. However, the indiscriminate application of these treatments, lack of rigorous evaluation of the results, and the side effects of ablative, irreversible procedures resulted in a backlash against brain surgery for psychiatric disorders that continues to this day. With the advent of psychotropic medications, interest in invasive procedures for organic brain disease waned. Diagnosis and classification of psychiatric diseases has improved, due to a better understanding of psychiatric patho-physiology and the development of disease and treatment biomarkers. Meanwhile, a significant percentage of patients remain refractory to multiple modes of treatment, and psychiatric disease remains the number one cause of disability in the world. These data, along with the safe and efficacious application of deep brain stimulation (DBS) for movement disorders, in principle a reversible process, is rekindling interest in the surgical treatment of psychiatric disorders with stimulation of deep brain sites involved in emotional and behavioral circuitry. This review presents a brief history of psychosurgery and summarizes the development of DBS for psychiatric disease, reviewing the available evidence for the current application of DBS for disorders of the mind. PMID:26030702

  9. Ethical considerations in deep brain stimulation for psychiatric illness.

    PubMed

    Grant, Ryan A; Halpern, Casey H; Baltuch, Gordon H; O'Reardon, John P; Caplan, Arthur

    2014-01-01

    Deep brain stimulation (DBS) is an efficacious surgical treatment for many conditions, including obsessive-compulsive disorder and treatment-resistant depression. DBS provides a unique opportunity to not only ameliorate disease but also to study mood, cognition, and behavioral effects in the brain. However, there are many ethical questions that must be fully addressed in designing clinical research trials. It is crucial to maintain sound ethical boundaries in this new era so as to permit the proper testing of the potential therapeutic role DBS may play in ameliorating these devastating and frequently treatment-refractory psychiatric disorders. In this review, we focus on the selection of patients for study, informed consent, clinical trial design, DBS in the pediatric population, concerns about intentionally or inadvertently altering an individual's personal identity, potential use of DBS for brain enhancement, direct modification of behavior through neuromodulation, and resource allocation. PMID:24055023

  10. An update on functional electrical stimulation after spinal cord injury.

    PubMed

    Gorman, P H

    2000-01-01

    Recent advances in biomedical engineering as applied to neurologic rehabilitation have finally borne clinically relevant fruit. Nowhere is this more evident than in the field of functional electrical stimulation (FES). This article highlights the remarkable clinical progress that has been made in the use of electrical stimulation for restoring movement and function in individuals with spinal cord injury. Specific attention is given to respiratory-assist devices, hand-grasp systems, standing and walking, and bladder control. This review article features discussion of eight devices that have gone through the United States Food and Drug Administration (FDA) regulatory approval process. PMID:11402876

  11. Exploring Selective Neural Electrical Stimulation for Upper Limb Function Restoration

    PubMed Central

    Tigra, Wafa; Guiraud, David; Andreu, David; Coulet, Bertrand; Gelis, Anthony; Fattal, Charles; Maciejasz, Pawel; Picq, Chloé; Rossel, Olivier; Teissier, Jacques; Coste, Christine Azevedo

    2016-01-01

    This article introduces a new approach of selective neural electrical stimulation of the upper limb nerves. Median and radial nerves of individuals with tetraplegia are stimulated via a multipolar cuff electrode to elicit movements of wrist and hand in acute conditions during a surgical intervention. Various configurations corresponding to various combinations of a 12-poles cuff electrode contacts are tested. Video recording and electromyographic (EMG) signals recorded via sterile surface electrodes are used to evaluate the selectivity of each stimulation configuration in terms of activated muscles. In this abstract we introduce the protocol and preliminary results will be presented during the conference. PMID:27478571

  12. Hearing suppression induced by electrical stimulation of human auditory cortex.

    PubMed

    Fenoy, Albert J; Severson, Meryl A; Volkov, Igor O; Brugge, John F; Howard, Matthew A

    2006-11-01

    In the course of performing electrical stimulation functional mapping (ESFM) in neurosurgery patients, we identified three subjects who experienced hearing suppression during stimulation of sites within the superior temporal gyrus (STG). One of these patients had long standing tinnitus that affected both ears. In all subjects, auditory event related potentials (ERPs) were recorded from chronically implanted intracranial electrodes and the results were used to localize auditory cortical fields within the STG. Hearing suppression sites were identified within anterior lateral Heschl's gyrus (HG) and posterior lateral STG, in what may be auditory belt and parabelt fields. Cortical stimulation suppressed hearing in both ears, which persisted beyond the period of electrical stimulation. Subjects experienced other stimulation-evoked perceptions at some of these same sites, including symptoms of vestibular activation and alteration of audio-visual speech processing. In contrast, stimulation of presumed core auditory cortex within posterior medial HG evoked sound perceptions, or in one case an increase in tinnitus intensity, that affected the contralateral ear and did not persist beyond the period of stimulation. The current results confirm a rarely reported experimental observation, and correlate the cortical sites associated with hearing suppression with physiologically identified auditory cortical fields. PMID:16979144

  13. Using Brain Electrical Activity Mapping to Diagnose Learning Disabilities.

    ERIC Educational Resources Information Center

    Torello, Michael, W.; Duffy, Frank H.

    1985-01-01

    Cognitive neuroscience assumes that measurement of brain electrical activity should relate to cognition. Brain Electrical Activity Mapping (BEAM), a non-invasive technique, is used to record changes in activity from one brain area to another and is 80 to 90 percent successful in classifying subjects as dyslexic or normal. (MT)

  14. Spatiotemporal visualization of deep brain stimulation-induced effects in the subthalamic nucleus.

    PubMed

    Yousif, Nada; Borisyuk, Roman; Pavese, Nicola; Nandi, Dipankar; Bain, Peter

    2012-07-01

    Deep brain stimulation (DBS) is a successful surgical therapy used to treat the disabling symptoms of movement disorders such as Parkinson's disease. It involves the chronic stimulation of disorder-specific nuclei. However, the mechanisms that lead to clinical improvements remain unclear. Consequently, this slows the optimization of present-day DBS therapy and hinders its future development and application. We used a computational model to calculate the distribution of electric potential induced by DBS and study the effect of stimulation on the spiking activity of a subthalamic nucleus (STN) projection neuron. We previously showed that such a model can reveal detailed spatial effects of stimulation in the vicinity of the electrode. However, this multi-compartmental STN neuron model can fire in either a burst or tonic mode and, in this study, we hypothesized that the firing mode of the cell will have a major impact on the DBS-induced effects. Our simulations showed that the bursting model exhibits behaviour observed in studies of high-frequency stimulation of STN neurons, such as the presence of a silent period at stimulation offset and frequency-dependent stimulation effects. We validated the model by simulating the clinical parameter settings used for a Parkinsonian patient and showed, in a patient-specific anatomical model, that the region of affected tissue is consistent with clinical observations of the optimal DBS site. Our results demonstrated a method of quantitatively assessing neuronal changes induced by DBS, to maximize therapeutic benefit and minimize unwanted side effects. PMID:22805069

  15. Evaluation of high-perimeter electrode designs for deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Howell, Bryan; Grill, Warren M.

    2014-08-01

    Objective. Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, complications including infections and mis-programing following surgical replacement of the battery-powered implantable pulse generator adversely impact the safety profile of this therapy. We sought to decrease power consumption and extend battery life by modifying the electrode geometry to increase stimulation efficiency. The specific goal of this study was to determine whether electrode contact perimeter or area had a greater effect on increasing stimulation efficiency. Approach. Finite-element method (FEM) models of eight prototype electrode designs were used to calculate the electrode access resistance, and the FEM models were coupled with cable models of passing axons to quantify stimulation efficiency. We also measured in vitro the electrical properties of the prototype electrode designs and measured in vivo the stimulation efficiency following acute implantation in anesthetized cats. Main results. Area had a greater effect than perimeter on altering the electrode access resistance; electrode (access or dynamic) resistance alone did not predict stimulation efficiency because efficiency was dependent on the shape of the potential distribution in the tissue; and, quantitative assessment of stimulation efficiency required consideration of the effects of the electrode-tissue interface impedance. Significance. These results advance understanding of the features of electrode geometry that are important for designing the next generation of efficient DBS electrodes.

  16. Evaluation of novel stimulus waveforms for deep brain stimulation

    PubMed Central

    Foutz, TJ; McIntyre, CC

    2010-01-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of a wide range of neurological disorders. Historically, DBS and other neurostimulation technologies have relied on rectangular stimulation waveforms to impose their effects on the nervous system. Recent work has suggested that non-rectangular waveforms may have advantages over the traditional rectangular pulse. Therefore, we used detailed computer models to compare a range of charge-balanced biphasic waveforms with rectangular, exponential, triangular, Gaussian, and sinusoidal stimulus pulse shapes. We explored the neural activation energy of these waveforms in both intracellular and extracellular stimulation. In the context of extracellular stimulation, we compared their effects on both axonal fibers of passage and projection neurons. Finally, we evaluated the impact of delivering the waveforms through a clinical DBS electrode, as opposed to a theoretical point source. Our results suggest that DBS with a 1 ms centered-triangular pulse can decrease energy consumption by 64 % when compared to the standard 100 μs rectangular pulse (energy cost of 48 nJ and 133 nJ, respectively, to stimulate 50 % of a distributed population of axons) and can decrease energy consumption by 10 % when compared to the most energy efficient rectangular pulse (1.25 ms duration). In turn, there may be measureable energy savings when using appropriately designed non-rectangular pulses in clinical DBS applications, thereby warranting further experimental investigation. PMID:21084732

  17. Numerical characterization of intraoperative and chronic electrodes in deep brain stimulation

    PubMed Central

    Paffi, Alessandra; Camera, Francesca; Apollonio, Francesca; d’Inzeo, Guglielmo; Liberti, Micaela

    2015-01-01

    An intraoperative electrode (microelectrode) is used in the deep brain stimulation (DBS) technique to pinpoint the brain target and to choose the best parameters for the electrical stimulus. However, when the intraoperative electrode is replaced with the chronic one (macroelectrode), the observed effects do not always coincide with predictions. To investigate the causes of such discrepancies, a 3D model of the basal ganglia has been considered and realistic models of both intraoperative and chronic electrodes have been developed and numerically solved. Results of simulations of the electric potential (V) and the activating function (AF) along neuronal fibers show that the different geometries and sizes of the two electrodes do not change the distributions and polarities of these functions, but rather the amplitudes. This effect is similar to the one produced by the presence of different tissue layers (edema or glial tissue) in the peri-electrode space. Conversely, an inaccurate positioning of the chronic electrode with respect to the intraoperative one (electric centers not coincident) may induce a completely different electric stimulation in some groups of fibers. PMID:25745397

  18. Glia: A Neglected Player in Non-invasive Direct Current Brain Stimulation

    PubMed Central

    Gellner, Anne-Kathrin; Reis, Janine; Fritsch, Brita

    2016-01-01

    Non-invasive electrical brain stimulation by application of direct current (DCS) promotes plasticity in neuronal networks in vitro and in in vivo. This effect has been mainly attributed to the direct modulation of neurons. Glia represents approximately 50% of cells in the brain. Glial cells are electrically active and participate in synaptic plasticity. Despite of that, effects of DCS on glial structures and on interaction with neurons are only sparsely investigated. In this perspectives article we review the current literature, present own dose response data and provide a framework for future research from two points of view: first, the direct effects of DCS on glia and second, the contribution of glia to DCS related neuronal plasticity. PMID:27551261

  19. Spatially Patterned Electrical Stimulation to Enhance Resolution of Retinal Prostheses

    PubMed Central

    Hottowy, Paweł; Mathieson, Keith; Gunning, Deborah E.; Dąbrowski, Władysław; Litke, Alan M.; Chichilnisky, E. J.

    2014-01-01

    Retinal prostheses electrically stimulate neurons to produce artificial vision in people blinded by photoreceptor degenerative diseases. The limited spatial resolution of current devices results in indiscriminate stimulation of interleaved cells of different types, precluding veridical reproduction of natural activity patterns in the retinal output. Here we investigate the use of spatial patterns of current injection to increase the spatial resolution of stimulation, using high-density multielectrode recording and stimulation of identified ganglion cells in isolated macaque retina. As previously shown, current passed through a single electrode typically induced a single retinal ganglion cell spike with submillisecond timing precision. Current passed simultaneously through pairs of neighboring electrodes modified the probability of activation relative to injection through a single electrode. This modification could be accurately summarized by a piecewise linear model of current summation, consistent with a simple biophysical model based on multiple sites of activation. The generalizability of the piecewise linear model was tested by using the measured responses to stimulation with two electrodes to predict responses to stimulation with three electrodes. Finally, the model provided an accurate prediction of which among a set of spatial stimulation patterns maximized selective activation of a cell while minimizing activation of a neighboring cell. The results demonstrate that tailored multielectrode stimulation patterns based on a piecewise linear model may be useful in increasing the spatial resolution of retinal prostheses. PMID:24695706

  20. Cortical responses to C-fiber stimulation by intra-epidermal electrical stimulation: an MEG study.

    PubMed

    Motogi, Jun; Kodaira, Minori; Muragaki, Yoshihiro; Inui, Koji; Kakigi, Ryusuke

    2014-06-01

    Intra-epidermal electric stimulation (IES) is an alternative to laser stimulation for selective activation of cutaneous Aδ-fibers. IES is based on the fact that nociceptive fiber terminals are located in the epidermis, whereas receptors of other fibers end deep in the dermis. IES can selectively stimulate C-fibers if the electrode structure and stimulation parameters are carefully selected. However, stable selective stimulation of C-fibers using IES has proven difficult and cannot currently be used in clinical settings. The purpose of the present study was to determine if IES performed using a modified electrode reliably stimulates C-fibers. Magnetoencephalographic responses to IES to the foot were measured in seven healthy subjects. IES elicited somatosensory evoked fields in all subjects. The mean peak latency was 1,327 ± 116 ms in the opercular region contralateral to the stimulated side, 1,318 ± 90 ms in the opercular region ipsilateral to the stimulated side, and 1350 ± 139 ms in the primary somatosensory cortex. These results indicate that IES performed using the modified electrode can selectively stimulate C-fibers and may be a useful tool for pain research as well as clinical evaluation of peripheral small fiber function.

  1. Electrical and mechanical stimulation of cardiac cells and tissue constructs.

    PubMed

    Stoppel, Whitney L; Kaplan, David L; Black, Lauren D

    2016-01-15

    The field of cardiac tissue engineering has made significant strides over the last few decades, highlighted by the development of human cell derived constructs that have shown increasing functional maturity over time, particularly using bioreactor systems to stimulate the constructs. However, the functionality of these tissues is still unable to match that of native cardiac tissue and many of the stem-cell derived cardiomyocytes display an immature, fetal like phenotype. In this review, we seek to elucidate the biological underpinnings of both mechanical and electrical signaling, as identified via studies related to cardiac development and those related to an evaluation of cardiac disease progression. Next, we review the different types of bioreactors developed to individually deliver electrical and mechanical stimulation to cardiomyocytes in vitro in both two and three-dimensional tissue platforms. Reactors and culture conditions that promote functional cardiomyogenesis in vitro are also highlighted. We then cover the more recent work in the development of bioreactors that combine electrical and mechanical stimulation in order to mimic the complex signaling environment present in vivo. We conclude by offering our impressions on the important next steps for physiologically relevant mechanical and electrical stimulation of cardiac cells and engineered tissue in vitro.

  2. Acetylation mediates Cx43 reduction caused by electrical stimulation

    PubMed Central

    Meraviglia, Viviana; Azzimato, Valerio; Colussi, Claudia; Florio, Maria Cristina; Binda, Anna; Panariti, Alice; Qanud, Khaled; Suffredini, Silvia; Gennaccaro, Laura; Miragoli, Michele; Barbuti, Andrea; Lampe, Paul D.; Gaetano, Carlo; Pramstaller, Peter P.; Capogrossi, Maurizio C.; Recchia, Fabio A.; Pompilio, Giulio; Rivolta, Ilaria; Rossini, Alessandra

    2015-01-01

    Communication between cardiomyocytes depends upon Gap Junctions (GJ). Previous studies have demonstrated that electrical stimulation induces GJ remodeling and modifies histone acetylases (HAT) and deacetylases (HDAC) activities, although these two results have not been linked. The aim of this work was to establish whether electrical stimulation modulates GJ-mediated cardiac cell-cell communication by acetylation-dependent mechanisms. Field stimulation of HL-1 cardiomyocytes at 0.5 Hz for 24 hours significantly reduced Connexin43 (Cx43) expression and cell-cell communication. HDAC activity was down-regulated whereas HAT activity was not modified resulting in increased acetylation of Cx43. Consistent with a post-translational mechanism, we did not observe a reduction in Cx43 mRNA in electrically stimulated cells, while the proteasomal inhibitor MG132 maintained Cx43 expression. Further, the treatment of paced cells with the HAT inhibitor Anacardic Acid maintained both the levels of Cx43 and cell-cell communication. Finally, we observed increased acetylation of Cx43 in the left ventricles of dogs subjected to chronic tachypacing as a model of abnormal ventricular activation. In conclusion, our findings suggest that altered electrical activity can regulate cardiomyocyte communication by influencing the acetylation status of Cx43. PMID:26264759

  3. Magnetoelectric ‘spin’ on stimulating the brain

    PubMed Central

    Guduru, Rakesh; Liang, Ping; Hong, J; Rodzinski, Alexandra; Hadjikhani, Ali; Horstmyer, Jeffrey; Levister, Ernest; Khizroev, Sakhrat

    2015-01-01

    Aim: The in vivo study on imprinting control region mice aims to show that magnetoelectric nanoparticles may directly couple the intrinsic neural activity-induced electric fields with external magnetic fields. Methods: Approximately 10 µg of CoFe2O4–BaTiO3 30-nm nanoparticles have been intravenously administrated through a tail vein and forced to cross the blood–brain barrier via a d.c. field gradient of 3000 Oe/cm. A surgically attached two-channel electroencephalography headmount has directly measured the modulation of intrinsic electric waveforms by an external a.c. 100-Oe magnetic field in a frequency range of 0–20 Hz. Results: The modulated signal has reached the strength comparable to that due the regular neural activity. Conclusion: The study opens a pathway to use multifunctional nanoparticles to control intrinsic fields deep in the brain. PMID:25953069

  4. Deep brain stimulation in tinnitus: current and future perspectives.

    PubMed

    Smit, J V; Janssen, M L F; Schulze, H; Jahanshahi, A; Van Overbeeke, J J; Temel, Y; Stokroos, R J

    2015-05-22

    Chronic tinnitus, also known as ringing in the ears, affects up to 15% of the adults and causes a serious socio-economic burden. At present, there is no treatment available which substantially reduces the perception of this phantom sound. In the past few years, preclinical and clinical studies have unraveled central mechanisms involved in the pathophysiology of tinnitus, replacing the classical periphery-based hypothesis. In subcortical auditory and non-auditory regions, increased spontaneous activity, neuronal bursting and synchrony were found. When reaching the auditory cortex, these neuronal alterations become perceptually relevant and consequently are perceived as phantom sound. A therapy with a potential to counteract deeply located pathological activity is deep brain stimulation, which has already been demonstrated to be effective in neurological diseases such as Parkinson's disease. In this review, several brain targets are discussed as possible targets for deep brain stimulation in tinnitus. The potential applicability of this treatment in tinnitus is discussed with examples from the preclinical field and clinical case studies. PMID:25758066

  5. Modeling the effects of noninvasive transcranial brain stimulation at the biophysical, network, and cognitive level.

    PubMed

    Hartwigsen, Gesa; Bergmann, Til Ole; Herz, Damian Marc; Angstmann, Steffen; Karabanov, Anke; Raffin, Estelle; Thielscher, Axel; Siebner, Hartwig Roman

    2015-01-01

    Noninvasive transcranial brain stimulation (NTBS) is widely used to elucidate the contribution of different brain regions to various cognitive functions. Here we present three modeling approaches that are informed by functional or structural brain mapping or behavior profiling and discuss how these approaches advance the scientific potential of NTBS as an interventional tool in cognitive neuroscience. (i) Leveraging the anatomical information provided by structural imaging, the electric field distribution in the brain can be modeled and simulated. Biophysical modeling approaches generate testable predictions regarding the impact of interindividual variations in cortical anatomy on the injected electric fields or the influence of the orientation of current flow on the physiological stimulation effects. (ii) Functional brain mapping of the spatiotemporal neural dynamics during cognitive tasks can be used to construct causal network models. These models can identify spatiotemporal changes in effective connectivity during distinct cognitive states and allow for examining how effective connectivity is shaped by NTBS. (iii) Modeling the NTBS effects based on neuroimaging can be complemented by behavior-based cognitive models that exploit variations in task performance. For instance, NTBS-induced changes in response speed and accuracy can be explicitly modeled in a cognitive framework accounting for the speed-accuracy trade-off. This enables to dissociate between behavioral NTBS effects that emerge in the context of rapid automatic responses or in the context of slow deliberate responses. We argue that these complementary modeling approaches facilitate the use of NTBS as a means of dissecting the causal architecture of cognitive systems of the human brain.

  6. Closing of venus flytrap by electrical stimulation of motor cells.

    PubMed

    Volkov, Alexander G; Adesina, Tejumade; Jovanov, Emil

    2007-05-01

    Electrical signaling and rapid closure of the carnivorous plant Dionaea muscipula Ellis (Venus flytrap) have been attracting the attention of researchers since XIX century, but the exact mechanism of Venus flytrap closure is still unknown. We found that the electrical stimulus between a midrib and a lobe closes the Venus flytrap leaf by activating motor cells without mechanical stimulation of trigger hairs. The closing time of Venus flytrap by electrical stimulation of motor cells is 0.3 s, the same as mechanically induced closing. The mean electrical charge required for the closure of the Venus flytrap leaf is 13.6 microC. Ion channel blockers such as Ba(2+), TEACl as well as uncouplers such as FCCP, 2,4-dinitrophenol and pentachlorophenol dramatically decrease the speed of the trap closing. Using an ultra-fast data acquisition system with measurements in real time, we found that the action potential in the Venus flytrap has a duration time of about 1.5 ms. Our results demonstrate that electrical stimulation can be used to study mechanisms of fast activity in motor cells of the plant kingdom.

  7. Using Saccadometry with Deep Brain Stimulation to Study Normal and Pathological Brain Function.

    PubMed

    Antoniades, Chrystalina A; FitzGerald, James J

    2016-01-01

    The oculomotor system involves a large number of brain areas including parts of the basal ganglia, and various neurodegenerative diseases including Parkinson's and Huntington's can disrupt it. People with Parkinson's disease, for example, tend to have increased saccadic latencies. Consequently, the quantitative measurement of saccadic eye movements has received considerable attention as a potential biomarker for neurodegenerative conditions. A lot more can be learned about the brain in both health and disease by observing what happens to eye movements when the function of specific brain areas is perturbed. Deep brain stimulation is a surgical intervention used for the management of a range of neurological conditions including Parkinson's disease, in which stimulating electrodes are placed in specific brain areas including several sites in the basal ganglia. Eye movement measurements can then be made with the stimulator systems both off and on and the results compared. With suitable experimental design, this approach can be used to study the pathophysiology of the disease being treated, the mechanism by which DBS exerts it beneficial effects, and even aspects of normal neurophysiology. PMID:27501123

  8. Volume conductor model of transcutaneous electrical stimulation with kilohertz signals

    PubMed Central

    Medina, Leonel E.; Grill, Warren M.

    2014-01-01

    Objective Incorporating high-frequency components in transcutaneous electrical stimulation (TES) waveforms may make it possible to stimulate deeper nerve fibers since the impedance of tissue declines with increasing frequency. However, the mechanisms of high-frequency TES remain largely unexplored. We investigated the properties of TES with frequencies beyond those typically used in neural stimulation. Approach We implemented a multilayer volume conductor model including dispersion and capacitive effects, coupled to a cable model of a nerve fiber. We simulated voltage- and current-controlled transcutaneous stimulation, and quantified the effects of frequency on the distribution of potentials and fiber excitation. We also quantified the effects of a novel transdermal amplitude modulated signal (TAMS) consisting of a non-zero offset sinusoidal carrier modulated by a square-pulse train. Main results The model revealed that high-frequency signals generated larger potentials at depth than did low frequencies, but this did not translate into lower stimulation thresholds. Both TAMS and conventional rectangular pulses activated more superficial fibers in addition to the deeper, target fibers, and at no frequency did we observe an inversion of the strength-distance relationship. Current regulated stimulation was more strongly influenced by fiber depth, whereas voltage regulated stimulation was more strongly influenced by skin thickness. Finally, our model reproduced the threshold-frequency relationship of experimentally measured motor thresholds. Significance The model may be used for prediction of motor thresholds in TES, and contributes to the understanding of high-frequency TES. PMID:25380254

  9. Electrical Stimulation of Coleopteran Muscle for Initiating Flight.

    PubMed

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots. PMID:27050093

  10. Electrical Stimulation of Coleopteran Muscle for Initiating Flight.

    PubMed

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots.

  11. Electrical Stimulation of Coleopteran Muscle for Initiating Flight

    PubMed Central

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots. PMID:27050093

  12. Surgery insight: Deep brain stimulation for movement disorders.

    PubMed

    Anderson, William S; Lenz, Frederick A

    2006-06-01

    Over the past two decades, deep brain stimulation (DBS) has supplanted lesioning techniques for the treatment of movement disorders, and has been shown to be safe and efficacious. The primary therapeutic indications for DBS are essential tremor, dystonia and Parkinson's disease. In the case of Parkinson's disease, DBS is effective for treating the primary symptoms--tremor, bradykinesia and rigidity--as well as the motor complications of drug treatment. Progress has been made in understanding the effects of stimulation at the neuronal level, and this knowledge should eventually improve the effectiveness of this therapy. Preliminary studies also indicate that DBS might be used to treat Tourette's syndrome, obsessive-compulsive disorder, depression and epilepsy. As we will discuss in this review, the success of DBS depends on an appropriate rationale for the procedure, and on collaborations between neurologists and neurosurgeons in defining outcomes.

  13. Minimal brain dysfunction, stimulant drugs, and autonomic nervous system activity.

    PubMed

    Zahn, T P; Abate, F; Little, B C; Wender, P H

    1975-03-01

    Autonomic base levels and responsivity to stimuli were investigated in normal and minimally brain dysfunctioned (MBD) children. Continuous recordings of skin conductance, heart rate, skin temperature, and respiration rate were made during rest, at presentation of tones, and when performing a reaction time task. No significant differences in base levels were obtained between normal and MBD children when not taking drugs, but stimulant medication increased skin conductance and heart rate and decreased skin temperature and reaction time. The MBD children were less reactive, autonomically, to all types of stimuli. Stimulant drugs decreased electrodermal responsivity, which was predictable from concurrent changes in base line skin conductance and skintemperature. The MBD performance deficits are not related to lower autonomic responsivity or lower absolute base levels of arousal, but MBD children may perform better at relatively high autonomic base levels.

  14. Time and Frequency-Dependent Modulation of Local Field Potential Synchronization by Deep Brain Stimulation

    PubMed Central

    McCracken, Clinton B.; Kiss, Zelma H. T.

    2014-01-01

    High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS), is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP), the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson’s disease (PD). We performed simultaneous multi-site local field potential (LFP) recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective), low-frequency (LF, 15 Hz; ineffective) and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR), ventroanterior thalamus (VA), primary motor cortex (M1), and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic effects

  15. Investigation of electrical responses to acupuncture stimulation: the effect of electrical grounding and insulation conditions.

    PubMed

    Lee, Yong-Heum; Ryu, Yeon-Hang; Jung, Byungjo

    2009-03-01

    Acupuncture in Oriental medicine has been widely used as a core therapeutic method due to its minimal side-effects and therapeutic efficacy. However, the electrical response to acupuncture stimulation (ERAS) has not been clearly studied under acupuncture conditions that might affect the efficacy of acupuncture therapy. In this study, the ERAS was objectively investigated by measuring meridian electric potentials (MEPs) when the electrical grounding conditions of the operator and subject were varied, and when the insulation conditions of acupuncture needle were varied. MEPs between Sang-geoheo (ST37) and Ha-geoheo (ST39) of the Stomach Meridian (ST) were measured by stimulating Jok-samni (ST36) with an acupuncture needle. For non-insulated acupuncture stimulation (NIAS), the average MEP peak was 148.6 +/- 20.6 when neither the operator nor the subject were electrically grounded, 23.1 +/- 8.8 when the subject only was electrically grounded, 348 +/- 76.8 when the operator only was electrically grounded, and 19.9 +/- 4.7 when both the operator and the subject were electrically grounded. The MEPs presented various magnitudes and patterns depending on the electrical grounding conditions. The MEP pattern was very similar to that of the charge and discharge of a capacitor. For insulated acupuncture stimulation (IAS), the average MEP peak was 20 +/- 4 in all electrical grounding conditions, which is not a significant electric response for acupuncture stimulation. In terms of electricity, this study verified that acupuncture therapy might be affected by acupuncture conditions such as (1) the electrical grounding condition of the operator and the subject and (2) the insulation condition of the acupuncture needle.

  16. The Use of Deep Brain Stimulation in Tourette Syndrome

    PubMed Central

    Akbarian-Tefaghi, Ladan; Zrinzo, Ludvic; Foltynie, Thomas

    2016-01-01

    Tourette syndrome (TS) is a childhood neurobehavioural disorder, characterised by the presence of motor and vocal tics, typically starting in childhood but persisting in around 20% of patients into adulthood. In those patients who do not respond to pharmacological or behavioural therapy, deep brain stimulation (DBS) may be a suitable option for potential symptom improvement. This manuscript attempts to summarise the outcomes of DBS at different targets, explore the possible mechanisms of action of DBS in TS, as well as the potential of adaptive DBS. There will also be a focus on the future challenges faced in designing optimized trials. PMID:27548235

  17. Authenticity or autonomy? When deep brain stimulation causes a dilemma.

    PubMed

    Kraemer, Felicitas

    2013-12-01

    While deep brain stimulation (DBS) for patients with Parkinson's disease has typically raised ethical questions about autonomy, accountability and personal identity, recent research indicates that we need to begin taking into account issues surrounding the patients' feelings of authenticity and alienation as well. In order to bring out the relevance of this dimension to ethical considerations of DBS, I analyse a recent case study of a Dutch patient who, as a result of DBS, faced a dilemma between autonomy and authenticity. This case study is meant to point out the normatively meaningful tension patients under DBS experience between authenticity and autonomy.

  18. Management of skin erosion following deep brain stimulation.

    PubMed

    Lanotte, Michele; Verna, Giovanni; Panciani, Pier Paolo; Taveggia, Antonio; Zibetti, Maurizio; Lopiano, Leonardo; Ducati, Alessandro

    2009-01-01

    Skin erosion is a hardware-related complication commonly described after deep brain stimulation (DBS). Despite the considerable incidence reported in literature, little is written about the management of this complication. In this report, we describe a case of noninfected device extrusion through the skin; in order to prevent infection and system removal, we performed a scalp reconstruction over the area of system exposure. During the follow-up, no signs of infection or fistula occurred and DBS efficacy was preserved. The paper shows the possibility to treat, in noninfectious cases, this frequent complication avoiding the psychological and clinical consequences related to implant removal.

  19. Current Topics in Deep Brain Stimulation for Parkinson Disease

    PubMed Central

    UMEMURA, Atsushi; OYAMA, Genko; SHIMO, Yasushi; NAKAJIMA, Madoka; NAKAJIMA, Asuka; JO, Takayuki; SEKIMOTO, Satoko; ITO, Masanobu; MITSUHASHI, Takumi; HATTORI, Nobutaka; ARAI, Hajime

    2016-01-01

    There is a long history of surgical treatment for Parkinson disease (PD). After pioneering trials and errors, the current primary surgical treatment for PD is deep brain stimulation (DBS). DBS is a promising treatment option for patients with medically refractory PD. However, there are still many problems and controversies associated with DBS. In this review, we discuss current issues in DBS for PD, including patient selection, clinical outcomes, complications, target selection, long-term outcomes, management of axial symptoms, timing of surgery, surgical procedures, cost-effectiveness, and new technology. PMID:27349658

  20. The Use of Deep Brain Stimulation in Tourette Syndrome.

    PubMed

    Akbarian-Tefaghi, Ladan; Zrinzo, Ludvic; Foltynie, Thomas

    2016-01-01

    Tourette syndrome (TS) is a childhood neurobehavioural disorder, characterised by the presence of motor and vocal tics, typically starting in childhood but persisting in around 20% of patients into adulthood. In those patients who do not respond to pharmacological or behavioural therapy, deep brain stimulation (DBS) may be a suitable option for potential symptom improvement. This manuscript attempts to summarise the outcomes of DBS at different targets, explore the possible mechanisms of action of DBS in TS, as well as the potential of adaptive DBS. There will also be a focus on the future challenges faced in designing optimized trials. PMID:27548235

  1. Carbon Nanofiber Nanoelectrodes for Neural Stimulation and Chemical Detection: The Era of Smart Deep Brain Stimulation

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica E.

    2016-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable "smart" therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.

  2. Amplifier design for EMG recording from stimulation electrodes during functional electrical stimulation leg cycling ergometry.

    PubMed

    Shalaby, Raafat; Schauer, Thomas; Liedecke, Wolfgang; Raisch, Jörg

    2011-02-01

    Functional electrical stimulation leg cycle ergometry (FES-LCE), which is often used as exercise for people with spinal cord injury (SCI), has recently been applied in the motor rehabilitation of stroke patients. Recently completed studies show controversial results, but with a tendency to positive training effects. Current technology is identical to that used in FES-LCE for SCI, whereas the pathology of stroke differs strongly. Most stroke patients with hemiparesis are able to drive an ergometer independently. Depending on the degree of spasticity, the paretic leg will partially support or hinder movements. Electrical stimulation increases muscle force and endurance and both are prerequisites for restoring gait. However, the effect of FES-LCE on improving impaired motor coordination is unclear. To measure motor coordination during FES-LCE, an EMG-amplifier design has been investigated which suppresses stimulation artifacts and allows detection of volitional or reflex induced muscle activity. Direct measurement of EMG from stimulation electrodes between stimulation pulses is an important asset of this amplifier. Photo-MOS switches in front of the preamplifier are utilized to achieve this. The technology presented here can be used to monitor the effects of FES-LCE to adapt the stimulation strategy or to realize EMG-biofeedback training. PMID:21162696

  3. Diffusion Tractography in Deep Brain Stimulation Surgery: A Review

    PubMed Central

    Calabrese, Evan

    2016-01-01

    Deep brain stimulation (DBS) is believed to exert its therapeutic effects through modulation of brain circuitry, yet conventional preoperative planning does not allow direct targeting or visualization of white matter pathways. Diffusion MRI tractography (DT) is virtually the only non-invasive method of visualizing structural connectivity in the brain, leading many to suggest its use to guide DBS targeting. DT-guided DBS not only has the potential to allow direct white matter targeting for established applications [e.g., Parkinson’s disease (PD), essential tremor (ET), dystonia], but may also aid in the discovery of new therapeutic targets for a variety of other neurologic and psychiatric diseases. Despite these exciting opportunities, DT lacks standardization and rigorous anatomic validation, raising significant concern for the use of such data in stereotactic brain surgery. This review covers the technical details, proposed methods, and initial clinical data for the use of DT in DBS surgery. Rather than focusing on specific disease applications, this review focuses on methods that can be applied to virtually any DBS target. PMID:27199677

  4. Direct-current electrical stimulation of tendon healing in vitro

    SciTech Connect

    Nessler, J.P.; Mass, D.P.

    1987-04-01

    The intrinsic capacity of tendons to heal in response to injury has recently been demonstrated by many investigators. Electrical stimulation is often assumed to augment regeneration of various tissues. Using newly developed methods of whole-tendon culture, the authors examined the effect of direct-current electricity on healing in vitro. Deep flexor tendons of rabbits were excised, transected, repaired, and grown in an acellular culture medium for seven, 14, 21, or 42 days. Tendons through which a continuous 7-microAmp current was passed at the repair site were compared with nonstimulated controls. The incorporation of (/sup 14/C)proline and its conversion to (/sup 14/C)hydroxyproline was measured at seven days. The mean (/sup 14/C)proline and (/sup 14/C)hydroxyproline activities were 91% and 255% greater, respectively, in the stimulated group. The activity was also higher in the stimulated group, by 42 days. Histologic sections showed that intrinsic tenoblastic repair may be enhanced with electrical stimulation in vitro.

  5. Classification of methods in transcranial Electrical Stimulation (tES) and evolving strategy from historical approaches to contemporary innovations

    PubMed Central

    Guleyupoglu, Berkan; Schestatsky, Pedro; Edwards, Dylan; Fregni, Felipe; Bikson, Marom

    2013-01-01

    Transcranial Electrical Stimulation (tES) encompasses all methods of non-invasive current application to the brain used in research and clinical practice. We present the first comprehensive and technical review, explaining the evolution of tES in both terminology and dosage over the past 100 years of research to present day. Current transcranial Pulsed Current Stimulation (tPCS) approaches such as Cranial Electrotherapy Stimulation (CES) descended from Electrosleep (ES) through Cranial Electro-stimulation Therapy (CET), Transcerebral Electrotherapy (TCET), and NeuroElectric Therapy (NET) while others like Transcutaneous Cranial Electrical Stimulation (TCES) descended from Electroanesthesia (EA) through Limoge, and Interferential Stimulation. Prior to a contemporary resurgence in interest, variations of trans-cranial Direct Current Stimulation were explored intermittently, including Polarizing current, Galvanic Vestibular Stimulation (GVS), and Transcranial Micropolarization. The development of these approaches alongside Electroconvulsive Therapy (ECT) and pharmacological developments are considered. Both the roots and unique features of contemporary approaches such as transcranial Alternating Current Stimulation (tACS) and transcranial Random Noise Stimulation (tRNS) are discussed. Trends and incremental developments in electrode montage and waveform spanning decades are presented leading to the present day. Commercial devices, seminal conferences, and regulatory decisions are noted. We conclude with six rules on how increasing medical and technological sophistication may now be leveraged for broader success and adoption of tES. PMID:23954780

  6. Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations.

    PubMed

    Guleyupoglu, Berkan; Schestatsky, Pedro; Edwards, Dylan; Fregni, Felipe; Bikson, Marom

    2013-10-15

    Transcranial Electrical Stimulation (tES) encompasses all methods of non-invasive current application to the brain used in research and clinical practice. We present the first comprehensive and technical review, explaining the evolution of tES in both terminology and dosage over the past 100 years of research to present day. Current transcranial Pulsed Current Stimulation (tPCS) approaches such as Cranial Electrotherapy Stimulation (CES) descended from Electrosleep (ES) through Cranial Electro-stimulation Therapy (CET), Transcerebral Electrotherapy (TCET), and NeuroElectric Therapy (NET) while others like Transcutaneous Cranial Electrical Stimulation (TCES) descended from Electroanesthesia (EA) through Limoge, and Interferential Stimulation. Prior to a contemporary resurgence in interest, variations of transcranial Direct Current Stimulation were explored intermittently, including Polarizing current, Galvanic Vestibular Stimulation (GVS), and Transcranial Micropolarization. The development of these approaches alongside Electroconvulsive Therapy (ECT) and pharmacological developments are considered. Both the roots and unique features of contemporary approaches such as transcranial Alternating Current Stimulation (tACS) and transcranial Random Noise Stimulation (tRNS) are discussed. Trends and incremental developments in electrode montage and waveform spanning decades are presented leading to the present day. Commercial devices, seminal conferences, and regulatory decisions are noted. We conclude with six rules on how increasing medical and technological sophistication may now be leveraged for broader success and adoption of tES.

  7. Neural Responses to Electrical Stimulation on Patterned Silk Films

    PubMed Central

    Hronik-Tupaj, Marie; Raja, Waseem Khan; Tang-Schomer, Min; Omenetto, Fiorenzo G.; Kaplan, David L.

    2013-01-01

    Peripheral nerve injury is a critical issue for trauma patients. Following injury, incomplete axon regeneration or misguided axon innervation into tissue will result in loss of sensory and motor functions. The objective of this study was to examine axon outgrowth and axon alignment in response to surface patterning and electrical stimulation. To accomplish our objective, metal electrodes with dimensions of 1.5 mm × 4 cm, were sputter coated onto micropatterned silk protein films, with surface grooves 3.5 μm wide × 500 nm deep. P19 neurons were seeded on the patterned electronic silk films and stimulated at 120 mV, 1 kHz, for 45 minutes each day for 7 days. Responses were compared to neurons on flat electronic silk films, patterned silk films without stimulation, and flat silk films without stimulation. Significant alignment was found on the patterned film groups compared to the flat film groups. Axon outgrowth was greater (p < 0.05) on electronic films on day 5 and day 7 compared to the unstimulated groups. In conclusion, electrical stimulation, at 120 mV, 1 kHz, for 45 minutes daily, in addition to surface patterning, of 3.5 μm wide × 500 nm deep grooves, offered control of nerve axon outgrowth and alignment. PMID:23401351

  8. Remote Electrical Stimulation by Means of Implanted Rectifiers

    PubMed Central

    Ivorra, Antoni

    2011-01-01

    Miniaturization of active implantable medical devices is currently compromised by the available means for electrically powering them. Most common energy supply techniques for implants – batteries and inductive couplers – comprise bulky parts which, in most cases, are significantly larger than the circuitry they feed. Here, for overcoming such miniaturization bottleneck in the case of implants for electrical stimulation, it is proposed to make those implants act as rectifiers of high frequency bursts supplied by remote electrodes. In this way, low frequency currents will be generated locally around the implant and these low frequency currents will perform stimulation of excitable tissues whereas the high frequency currents will cause only innocuous heating. The present study numerically demonstrates that low frequency currents capable of stimulation can be produced by a miniature device behaving as a diode when high frequency currents, neither capable of thermal damage nor of stimulation, flow through the tissue where the device is implanted. Moreover, experimental evidence is provided by an in vivo proof of concept model consisting of an anesthetized earthworm in which a commercial diode was implanted. With currently available microelectronic techniques, very thin stimulation capsules (diameter <500 µm) deliverable by injection are easily conceivable. PMID:21850274

  9. Remote electrical stimulation by means of implanted rectifiers.

    PubMed

    Ivorra, Antoni

    2011-01-01

    Miniaturization of active implantable medical devices is currently compromised by the available means for electrically powering them. Most common energy supply techniques for implants--batteries and inductive couplers--comprise bulky parts which, in most cases, are significantly larger than the circuitry they feed. Here, for overcoming such miniaturization bottleneck in the case of implants for electrical stimulation, it is proposed to make those implants act as rectifiers of high frequency bursts supplied by remote electrodes. In this way, low frequency currents will be generated locally around the implant and these low frequency currents will perform stimulation of excitable tissues whereas the high frequency currents will cause only innocuous heating. The present study numerically demonstrates that low frequency currents capable of stimulation can be produced by a miniature device behaving as a diode when high frequency currents, neither capable of thermal damage nor of stimulation, flow through the tissue where the device is implanted. Moreover, experimental evidence is provided by an in vivo proof of concept model consisting of an anesthetized earthworm in which a commercial diode was implanted. With currently available microelectronic techniques, very thin stimulation capsules (diameter <500 µm) deliverable by injection are easily conceivable. PMID:21850274

  10. [Electrical nerve stimulation for plexus and nerve blocks].

    PubMed

    Birnbaum, J; Klotz, E; Bogusch, G; Volk, T

    2007-11-01

    Despite the increasing use of ultrasound, electrical nerve stimulation is commonly used as the standard for both plexus and peripheral nerve blocks. Several recent randomized trials have contributed to a better understanding of physiological and clinical correlations. Traditionally used currents and impulse widths are better defined in relation to the distance between needle tip and nerves. Commercially available devices enable transcutaneous nerve stimulation and provide new opportunities for the detection of puncture sites and for training. The electrically ideal position of the needle usually is defined by motor responses which can not be interpreted without profound anatomical knowledge. For instance, interscalene blocks can be successful even after motor responses of deltoid or pectoral muscles. Infraclavicular blocks should be aimed at stimulation of the posterior fascicle (extension). In contrast to multiple single nerve blocks, axillary single-shot blocks more commonly result in incomplete anaesthesia. Blockade of the femoral nerve can be performed without any nerve stimulation if the fascia iliaca block is used. Independently of the various approaches to the sciatic nerve, inversion and plantar flexion are the best options for single-shot blocks. Further clinical trials are needed to define the advantages of stimulating catheters in continuous nerve blocks.

  11. Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation.

    PubMed

    Laakso, Ilkka; Hirata, Akimasa

    2012-12-01

    In transcranial magnetic stimulation (TMS), the distribution of the induced electric field, and the affected brain areas, depends on the position of the stimulation coil and the individual geometry of the head and brain. The distribution of the induced electric field in realistic anatomies can be modelled using computational methods. However, existing computational methods for accurately determining the induced electric field in realistic anatomical models have suffered from long computation times, typically in the range of tens of minutes or longer. This paper presents a matrix-free implementation of the finite-element method with a geometric multigrid method that can potentially reduce the computation time to several seconds or less even when using an ordinary computer. The performance of the method is studied by computing the induced electric field in two anatomically realistic models. An idealized two-loop coil is used as the stimulating coil. Multiple computational grid resolutions ranging from 2 to 0.25 mm are used. The results show that, for macroscopic modelling of the electric field in an anatomically realistic model, computational grid resolutions of 1 mm or 2 mm appear to provide good numerical accuracy compared to higher resolutions. The multigrid iteration typically converges in less than ten iterations independent of the grid resolution. Even without parallelization, each iteration takes about 1.0 s or 0.1 s for the 1 and 2 mm resolutions, respectively. This suggests that calculating the electric field with sufficient accuracy in real time is feasible.

  12. Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation.

    PubMed

    Noury, Nima; Hipp, Joerg F; Siegel, Markus

    2016-10-15

    Transcranial electric stimulation (tES) is a promising tool to non-invasively manipulate neuronal activity in the human brain. Several studies have shown behavioral effects of tES, but stimulation artifacts complicate the simultaneous investigation of neural activity with EEG or MEG. Here, we first show for EEG and MEG, that contrary to previous assumptions, artifacts do not simply reflect stimulation currents, but that heartbeat and respiration non-linearly modulate stimulation artifacts. These modulations occur irrespective of the stimulation frequency, i.e. during both transcranial alternating and direct current stimulations (tACS and tDCS). Second, we show that, although at first sight previously employed artifact rejection methods may seem to remove artifacts, data are still contaminated by non-linear stimulation artifacts. Because of their complex nature and dependence on the subjects' physiological state, these artifacts are prone to be mistaken as neural entrainment. In sum, our results uncover non-linear tES artifacts, show that current techniques fail to fully remove them, and pave the way for new artifact rejection methods.

  13. Sensory electrical stimulation improves foot placement during targeted stepping post-stroke

    PubMed Central

    Walker, Eric R.; Hyngstrom, Allison S.

    2015-01-01

    Proper foot placement is vital for maintaining balance during walking, requiring the integration of multiple sensory signals with motor commands. Disruption of brain structures post-stroke likely alters the processing of sensory information by motor centers, interfering with precision control of foot placement and walking function for stroke survivors. In this study, we examined whether somatosensory stimulation, which improves functional movements of the paretic hand, could be used to improve foot placement of the paretic limb. Foot placement was evaluated before, during, and after application of somatosensory electrical stimulation to the paretic foot during a targeted stepping task. Starting from standing, twelve chronic stroke participants initiated movement with the non-paretic limb and stepped to one of five target locations projected onto the floor with distances normalized to the paretic stride length. Targeting error and lower extremity kinematics were used to assess changes in foot placement and limb control due to somatosensory stimulation. Significant reductions in placement error in the medial–lateral direction (p = 0.008) were observed during the stimulation and post-stimulation blocks. Seven participants, presenting with a hip circumduction walking pattern, had reductions (p = 0.008) in the magnitude and duration of hip abduction during swing with somatosensory stimulation. Reductions in circumduction correlated with both functional and clinical measures, with larger improvements observed in participants with greater impairment. The results of this study suggest that somatosensory stimulation of the paretic foot applied during movement can improve the precision control of foot placement. PMID:24449007

  14. Transcranial Brain Stimulation Techniques For Major Depression: Should We Extend TMS Lessons to tDCS?

    PubMed

    Dell'Osso, Bernardo; Altamura, A Carlo

    2014-01-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are non-invasive brain stimulation techniques that, by means of magnetic fields and low intensity electrical current, respectively, aim to interefere with and modulate cortical excitability, at the level of dorsolateral prefrontal cortex, in patients with major depression and poor response to standard antidepressants. While the clinical efficacy of TMS in major depression has been extensively investigated over the last 10 years, tDCS has attracted research interest only in the last years, with fewer randomized clinical trials (RCTs) in the field. Nevertheless, in spite of the different rationale and mechanism of action of the two techniques, tDCS recent acquisitions, in relation to the treatment of major depression, seem to parallel those previously obtained with TMS, in terms of treatment duration to achieve optimal benefit and patient's history of drug-resistance. After briefly introducing the two techniques, the article examines possible common pathways of clinical use for TMS and tDCS, emerging from recent RCTs and likely orienting future investigation with non invasive brain stimulation for the treatment of major depression.

  15. Treatment of neurological and psychiatric disorders with deep brain stimulation; raising hopes and future challenges.

    PubMed

    Sharifi, Mohammad Sharif

    2013-01-01

    The technology of Neural Stimulation in recent years has become the focus of the research and treatment, although it has been around for many years. The potential use of stimulating the brain and nerves ranges from the spinal cord stimulation to the implantations of cochlear and bionic eyes with a large discrepancy between the clinical readiness for these various uses. Electrical high-frequency Deep Brain Stimulation (DBS) was developed as an alternative option to treat a few neurological disorders. However, with advancing in surgical procedures, technologies and safeties, the applications of DBS are expanding not only for therapeutic purposes but also for research. Although the exact mechanisms of action/s are not fully understood, the outcome of the ongoing research and clinical trials are promising. DBS has been used to treat the essential tremor since 1997, Parkinson's disease (PD) since 2002 and dystonia since 2003. It has also been used to treat various disorders, including major depression. The therapeutic effect of DBS in PD is well established but for other diseases such as epilepsy the outcomes are unclear and ambiguous. This article is a succinct review of the literature, focusing on PD, epilepsy and Obsessive Compulsive Disorder (OCD). PMID:25337356

  16. Computational Modeling and Neuroimaging Techniques for Targeting during Deep Brain Stimulation

    PubMed Central

    Sweet, Jennifer A.; Pace, Jonathan; Girgis, Fady; Miller, Jonathan P.

    2016-01-01

    Accurate surgical localization of the varied targets for deep brain stimulation (DBS) is a process undergoing constant evolution, with increasingly sophisticated techniques to allow for highly precise targeting. However, despite the fastidious placement of electrodes into specific structures within the brain, there is increasing evidence to suggest that the clinical effects of DBS are likely due to the activation of widespread neuronal networks directly and indirectly influenced by the stimulation of a given target. Selective activation of these complex and inter-connected pathways may further improve the outcomes of currently treated diseases by targeting specific fiber tracts responsible for a particular symptom in a patient-specific manner. Moreover, the delivery of such focused stimulation may aid in the discovery of new targets for electrical stimulation to treat additional neurological, psychiatric, and even cognitive disorders. As such, advancements in surgical targeting, computational modeling, engineering designs, and neuroimaging techniques play a critical role in this process. This article reviews the progress of these applications, discussing the importance of target localization for DBS, and the role of computational modeling and novel neuroimaging in improving our understanding of the pathophysiology of diseases, and thus paving the way for improved selective target localization using DBS. PMID:27445709

  17. Comparing neural response to painful electrical stimulation with functional MRI at 3 and 7 T.

    PubMed

    Hahn, Andreas; Kranz, Georg S; Seidel, Eva-Maria; Sladky, Ronald; Kraus, Christoph; Küblböck, Martin; Pfabigan, Daniela M; Hummer, Allan; Grahl, Arvina; Ganger, Sebastian; Windischberger, Christian; Lamm, Claus; Lanzenberger, Rupert

    2013-11-15

    Progressing from 3T to 7 T functional MRI enables marked improvements of human brain imaging in vivo. Although direct comparisons demonstrated advantages concerning blood oxygen level dependent (BOLD) signal response and spatial specificity, these mostly focused on single brain regions with rather simple tasks. Considering that physiological noise also increases with higher field strength, it is not entirely clear whether the advantages of 7T translate equally to the entire brain during tasks which elicit more complex neuronal processing. Therefore, we investigated the difference between 3T and 7 T in response to transcutaneous electrical painful and non-painful stimulation in 22 healthy subjects. For painful stimuli vs. baseline, stronger activations were observed at 7 T in several brain regions including the insula and supplementary motor area, but not the secondary somatosensory cortex (p<0.05 FWE-corrected). Contrasting painful vs. non-painful stimulation limited the differences between the field strengths to the periaqueductal gray (PAG, p<0.001 uncorrected) due to a similar signal increase at 7 T for both the target and specific control condition in most brain regions. This regional specificity obtained for the PAG at higher field strengths was confirmed by an additional spatial normalization strategy optimized for the brainstem. Here, robust BOLD responses were obtained in the dorsal PAG at 7 T (p<0.05 FWE-corrected), whereas at 3T activation was completely missing for the contrast against non-painful stimuli. To summarize, our findings support previously reported benefits obtained at ultra-high field strengths also for complex activation patterns elicited by painful electrical stimulation. However, this advantage depends on the region and even more on the contrast of interest. The greatest gain at 7 T was observed within the small brainstem region of the PAG, where the increased field strength offered marked improvement for the localization of activation

  18. Restoring Cognitive Functions Using Non-Invasive Brain Stimulation Techniques in Patients with Cerebellar Disorders

    PubMed Central

    Pope, Paul A.; Miall, R. Chris

    2014-01-01

    Numerous studies have highlighted the possibility of modulating the excitability of cerebro–cerebellar circuits bi-directionally using transcranial electrical brain stimulation, in a manner akin to that observed using magnetic stimulation protocols. It has been proposed that cerebellar stimulation activates Purkinje cells in the cerebellar cortex, leading to inhibition of the dentate nucleus, which exerts a tonic facilitatory drive onto motor and cognitive regions of cortex through a synaptic relay in the ventral–lateral thalamus. Some cerebellar deficits present with cognitive impairments if damage to non-motor regions of the cerebellum disrupts the coupling with cerebral cortical areas for thinking and reasoning. Indeed, white matter changes in the dentato–rubral tract correlate with cognitive assessments in patients with Friedreich ataxia, suggesting that this pathway is one component of the anatomical substrate supporting a cerebellar contribution to cognition. An understanding of the physiology of the cerebro–cerebellar pathway previously helped us to constrain our interpretation of results from two recent studies in which we showed cognitive enhancements in healthy participants during tests of arithmetic after electrical stimulation of the cerebellum, but only when task demands were high. Others studies have also shown how excitation of the prefrontal cortex can enhance performance in a variety of working memory tasks. Thus, future efforts might be guided toward neuro-enhancement in certain patient populations, using what is commonly termed “non-invasive brain stimulation” as a cognitive rehabilitation tool to modulate cerebro–cerebellar circuits, or for stimulation over the cerebral cortex to compensate for decreased cerebellar drive to this region. This article will address these possibilities with a review of the relevant literature covering ataxias and cerebellar cognitive affective disorders, which are characterized by thalamo

  19. The will to persevere induced by electrical stimulation of the human cingulate gyrus.

    PubMed

    Parvizi, Josef; Rangarajan, Vinitha; Shirer, William R; Desai, Nikita; Greicius, Michael D

    2013-12-18

    Anterior cingulate cortex (ACC) is known to be involved in functions such as emotion, pain, and cognitive control. While studies in humans and nonhuman mammals have advanced our understanding of ACC function, the subjective correlates of ACC activity have remained largely unexplored. In the current study, we show that electrical charge delivery in the anterior midcingulate cortex (aMCC) elicits autonomic changes and the expectation of an imminent challenge coupled with a determined attitude to overcome it. Seed-based, resting-state connectivity analysis revealed that the site of stimulation in both patients was at the core of a large-scale distributed network linking aMCC to the frontoinsular and frontopolar as well as some subcortical regions. This report provides compelling, first-person accounts of electrical stimulation of this brain network and suggests its possible involvement in psychopathological conditions that are characterized by a reduced capacity to endure psychological or physical distress. PMID:24316296

  20. [ELECTRIC STIMULATION OF VAGUS NERVE MODULATES A PROPAGATION OF OXYGEN EPILEPSY IN RABBITS].

    PubMed

    Zhilyaev, S Yu; Moskvin, A N; Platonova, T F; Demchenko, I T

    2015-11-01

    The activation of autonomic afferents (achieved through the vagus nerve (VN) electrical stimulation) on CNS O2 toxicity and cardiovascular function was investigated. In conscious rabbits at 5 ATA 02, prodromal signs of CNS O2 toxicity and convulsion latency were determined with and without vagus nerve (VN) stimulation. EEG, ECG and respiration were also recorded. In rabbits at 5 ATA, sympathetic overdrive and specific patterns on the EEG (synchronization of slow-waves), ECG (tachycardia) and respiration (respiratory minute volume increase) preceded motor convulsions. Vagus nerve stimulation increased parasympathetic component of autonomic drive and significantly delayed prodromal signs of oxygen toxicity and convulsion latency. Autonomic afferent input to the brain is a novel target for preventing CNS toxicity in HBO2. PMID:26995956

  1. Measurement of evoked potentials during thalamic deep brain stimulation

    PubMed Central

    Kent, Alexander R.; Swan, Brandon D.; Brocker, David T.; Turner, Dennis A.; Gross, Robert E.; Grill, Warren M.

    2014-01-01

    Background Deep brain stimulation (DBS) treats the symptoms of several movement disorders, but optimal selection of stimulation parameters remains a challenge. The evoked compound action potential (ECAP) reflects synchronized neural activation near the DBS lead, and may be useful for feedback control and automatic adjustment of stimulation parameters in closed-loop DBS systems. Objectives Determine the feasibility of recording ECAPs in the clinical setting, understand the neural origin of the ECAP and sources of any stimulus artifact, and correlate ECAP characteristics with motor symptoms. Methods The ECAP and tremor response were measured simultaneously during intraoperative studies of thalamic DBS, conducted in patients who were either undergoing surgery for initial lead implantation or replacement of their internal pulse generator. Results There was large subject-to-subject variation in stimulus artifact amplitude, which model-based analysis suggested may have been caused by glial encapsulation of the lead, resulting in imbalances in the tissue impedance between the contacts. ECAP recordings obtained from both acute and chronically implanted electrodes revealed that specific phase characteristics of the signal varied systematically with stimulation parameters. Further, a trend was observed in some patients between the energy of the initial negative and positive ECAP phases, as well as secondary phases, and changes in tremor from baseline. A computational model of thalamic DBS indicated that direct cerebellothalamic fiber activation dominated the clinically measured ECAP, suggesting that excitation of these fibers is critical in DBS therapy. Conclusions This work demonstrated that ECAPs can be recorded in the clinical setting and may provide a surrogate feedback control signal for automatic adjustment of stimulation parameters to reduce tremor amplitude. PMID:25457213

  2. Seeing scenes: topographic visual hallucinations evoked by direct electrical stimulation of the parahippocampal place area.

    PubMed

    Mégevand, Pierre; Groppe, David M; Goldfinger, Matthew S; Hwang, Sean T; Kingsley, Peter B; Davidesco, Ido; Mehta, Ashesh D

    2014-04-16

    In recent years, functional neuroimaging has disclosed a network of cortical areas in the basal temporal lobe that selectively respond to visual scenes, including the parahippocampal place area (PPA). Beyond the observation that lesions involving the PPA cause topographic disorientation, there is little causal evidence linking neural activity in that area to the perception of places. Here, we combined functional magnetic resonance imaging (fMRI) and intracranial EEG (iEEG) recordings to delineate place-selective cortex in a patient implanted with stereo-EEG electrodes for presurgical evaluation of drug-resistant epilepsy. Bipolar direct electrical stimulation of a cortical area in the collateral sulcus and medial fusiform gyrus, which was place-selective according to both fMRI and iEEG, induced a topographic visual hallucination: the patient described seeing indoor and outdoor scenes that included views of the neighborhood he lives in. By contrast, stimulating the more lateral aspect of the basal temporal lobe caused distortion of the patient's perception of faces, as recently reported (Parvizi et al., 2012). Our results support the causal role of the PPA in the perception of visual scenes, demonstrate that electrical stimulation of higher order visual areas can induce complex hallucinations, and also reaffirm direct electrical brain stimulation as a tool to assess the function of the human cerebral cortex.

  3. Electrical stimulation for pressure sore prevention and wound healing.

    PubMed

    Bogie, K M; Reger, S I; Levine, S P; Sahgal, V

    2000-01-01

    This paper reviews applications of therapeutic electrical stimulation (ES) specific to wound healing and pressure sore prevention. The application of ES for wound healing has been found to increase the rate of healing by more than 50%. Furthermore, the total number of wounds healed is also increased. However, optimal delivery techniques for ES therapy have not been established to date. A study of stimulation current effects on wound healing in a pig model has shown that direct current (DC) stimulation is most effective in wound area reduction and alternating current (AC) stimulation for wound volume reduction at current densities of 127 microA/cm2 and 1,125 microA/cm2, respectively. Preliminary studies have been carried out at two research centers to assess the role of ES in pressure sore prevention. Surface stimulation studies have shown that ES can produce positive short-term changes in tissue health variables such as regional blood flow and pressure distribution. The use of an implanted stimulation system consisting of intramuscular electrodes with percutaneous leads has been found to produce additional long-term changes. Specifically, gluteal muscle thickness increased by 50% with regular long-term ES application concurrent with a 20% decrease in regional interface pressures and increased tissue oxygen levels. These findings indicate that an implantable ES system may have great potential for pressure sore prevention, particularly for individuals who lack sensation or who are physically unable to perform regular independent pressure relief.

  4. Orosensory self-stimulation by sucrose involves brain dopaminergic mechanisms.

    PubMed

    Schneider, L H

    1989-01-01

    The most convincing body of evidence supporting a role for brain dopaminergic mechanisms in sweet taste reward has been obtained using the sham-feeding rat. In rats prepared with a chronic gastric fistula and tested with the cannula open, intake is a direct function of the palatability of the solution offered as well as of the state of food deprivation. Because essentially none of the ingested fluid passes on to the intestine, negative postingestive feedback is eliminated. Thus, the relative orosensory/hedonic potency of the food determines and sustains the rate of sham intake; long periods of food deprivation are not required. In this way, the sham feeding of sweet solutions may be considered a form of oral self-stimulation behavior and afford a preparation through which the neurochemical and neuranatomical substrates of sweet taste reward may be identified. The results obtained in the series of experiments summarized in this paper clearly indicate that central D-1 and D-2 receptor mechanisms are critical for the orosensory self-stimulation by sucrose in the rat. In conclusion, I suggest that such investigations of the roles of brain dopaminergic mechanisms in the sucrose sham-feeding rat preparation may further our understanding of normal and aberrant attractions to sweet fluids in humans (see Cabanac, Drewnowski, and Halmi, this volume), as an innate, positive affective response of human neonates to sucrose and the sustained positive hedonic ratings for glucose when tasted but not when consumed have demonstrated. PMID:2699194

  5. Brain-controlled muscle stimulation for the restoration of motor function.

    PubMed

    Ethier, Christian; Miller, Lee E

    2015-11-01

    Loss of the ability to move, as a consequence of spinal cord injury or neuromuscular disorder, has devastating consequences for the paralyzed individual, and great economic consequences for society. Functional electrical stimulation (FES) offers one means to restore some mobility to these individuals, improving not only their autonomy, but potentially their general health and well-being as well. FES uses electrical stimulation to cause the paralyzed muscles to contract. Existing clinical systems require the stimulation to be preprogrammed, with the patient typically using residual voluntary movement of another body part to trigger and control the patterned stimulation. The rapid development of neural interfacing in the past decade offers the promise of dramatically improved control for these patients, potentially allowing continuous control of FES through signals recorded from motor cortex, as the patient attempts to control the paralyzed body part. While application of these 'brain-machine interfaces' (BMIs) has undergone dramatic development for control of computer cursors and even robotic limbs, their use as an interface for FES has been much more limited. In this review, we consider both FES and BMI technologies and discuss the prospect for combining the two to provide important new options for paralyzed individuals. PMID:25447224

  6. Brain-controlled muscle stimulation for the restoration of motor function

    PubMed Central

    Ethier, Christian; Miller, Lee E

    2014-01-01

    Loss of the ability to move, as a consequence of spinal cord injury or neuromuscular disorder, has devastating consequences for the paralyzed individual, and great economic consequences for society. Functional Electrical Stimulation (FES) offers one means to restore some mobility to these individuals, improving not only their autonomy, but potentially their general health and well-being as well. FES uses electrical stimulation to cause the paralyzed muscles to contract. Existing clinical systems require the stimulation to be preprogrammed, with the patient typically using residual voluntary movement of another body part to trigger and control the patterned stimulation. The rapid development of neural interfacing in the past decade offers the promise of dramatically improved control for these patients, potentially allowing continuous control of FES through signals recorded from motor cortex, as the patient attempts to control the paralyzed body part. While application of these ‘Brain Machine Interfaces’ (BMIs) has undergone dramatic development for control of computer cursors and even robotic limbs, their use as an interface for FES has been much more limited. In this review, we consider both FES and BMI technologies and discuss the prospect for combining the two to provide important new options for paralyzed individuals. PMID:25447224

  7. Brain-controlled muscle stimulation for the restoration of motor function.

    PubMed

    Ethier, Christian; Miller, Lee E

    2015-11-01

    Loss of the ability to move, as a consequence of spinal cord injury or neuromuscular disorder, has devastating consequences for the paralyzed individual, and great economic consequences for society. Functional electrical stimulation (FES) offers one means to restore some mobility to these individuals, improving not only their autonomy, but potentially their general health and well-being as well. FES uses electrical stimulation to cause the paralyzed muscles to contract. Existing clinical systems require the stimulation to be preprogrammed, with the patient typically using residual voluntary movement of another body part to trigger and control the patterned stimulation. The rapid development of neural interfacing in the past decade offers the promise of dramatically improved control for these patients, potentially allowing continuous control of FES through signals recorded from motor cortex, as the patient attempts to control the paralyzed body part. While application of these 'brain-machine interfaces' (BMIs) has undergone dramatic development for control of computer cursors and even robotic limbs, their use as an interface for FES has been much more limited. In this review, we consider both FES and BMI technologies and discuss the prospect for combining the two to provide important new options for paralyzed individuals.

  8. Electrical stimulation of the parabrachial nucleus induces reanimation from isoflurane general anesthesia.

    PubMed

    Muindi, Fanuel; Kenny, Jonathan D; Taylor, Norman E; Solt, Ken; Wilson, Matthew A; Brown, Emery N; Van Dort, Christa J

    2016-06-01

    Clinically, emergence from general anesthesia is viewed as a passive process where anesthetics are discontinued at the end of surgery and anesthesiologists wait for the drugs to wear off. The mechanisms involved in emergence are not well understood and there are currently no drugs that can actively reverse the state of general anesthesia. An emerging hypothesis states that brain regions that control arousal become active during emergence and are a key part of the return to wakefulness. In this study, we tested the hypothesis that electrical activation of the glutamatergic parabrachial nucleus (PBN) in the brainstem is sufficient to induce reanimation (active emergence) during continuous isoflurane general anesthesia. Using c-Fos immunohistochemistry as a marker of neural activity, we first show a selective increase in active neurons in the PBN during passive emergence from isoflurane anesthesia. We then electrically stimulated the PBN to assess whether it is sufficient to induce reanimation from isoflurane general anesthesia. Stimulation induced behavioral arousal and restoration of the righting reflex during continuous isoflurane general anesthesia. In contrast, stimulation of the nearby central inferior colliculus (CIC) did not restore the righting reflex. Spectral analysis of the electroencephalogram (EEG) revealed that stimulation produced a significant decrease in EEG delta power during PBN stimulation. The results are consistent with the hypothesis that the PBN provides critical arousal input during emergence from isoflurane anesthesia.

  9. Weight Gain following Pallidal Deep Brain Stimulation: A PET Study.

    PubMed

    Sauleau, Paul; Drapier, Sophie; Duprez, Joan; Houvenaghel, Jean-François; Dondaine, Thibaut; Haegelen, Claire; Drapier, Dominique; Jannin, Pierre; Robert, Gabriel; Le Jeune, Florence; Vérin, Marc

    2016-01-01

    The mechanisms behind weight gain following deep brain stimulation (DBS) surgery seem to be multifactorial and suspected depending on the target, either the subthalamic nucleus (STN) or the globus pallidus internus (GPi). Decreased energy expenditure following motor improvement and behavioral and/or metabolic changes are possible explanations. Focusing on GPi target, our objective was to analyze correlations between changes in brain metabolism (measured with PET) and weight gain following GPi-DBS in patients with Parkinson's disease (PD). Body mass index was calculated and brain activity prospectively measured using 2-deoxy-2[18F]fluoro-D-glucose PET four months before and four months after the start of GPi-DBS in 19 PD patients. Dopaminergic medication was included in the analysis to control for its possible influence on brain metabolism. Body mass index increased significantly by 0.66 ± 1.3 kg/m2 (p = 0.040). There were correlations between weight gain and changes in brain metabolism in premotor areas, including the left and right superior gyri (Brodmann area, BA 6), left superior gyrus (BA 8), the dorsolateral prefrontal cortex (right middle gyrus, BAs 9 and 46), and the left and right somatosensory association cortices (BA 7). However, we found no correlation between weight gain and metabolic changes in limbic and associative areas. Additionally, there was a trend toward a correlation between reduced dyskinesia and weight gain (r = 0.428, p = 0.067). These findings suggest that, unlike STN-DBS, motor improvement is the major contributing factor for weight gain following GPi-DBS PD, confirming the motor selectivity of this target. PMID:27070317

  10. Weight Gain following Pallidal Deep Brain Stimulation: A PET Study

    PubMed Central

    Sauleau, Paul; Drapier, Sophie; Duprez, Joan; Houvenaghel, Jean-François; Dondaine, Thibaut; Haegelen, Claire; Drapier, Dominique; Jannin, Pierre; Robert, Gabriel; Le Jeune, Florence; Vérin, Marc

    2016-01-01

    The mechanisms behind weight gain following deep brain stimulation (DBS) surgery seem to be multifactorial and suspected depending on the target, either the subthalamic nucleus (STN) or the globus pallidus internus (GPi). Decreased energy expenditure following motor improvement and behavioral and/or metabolic changes are possible explanations. Focusing on GPi target, our objective was to analyze correlations between changes in brain metabolism (measured with PET) and weight gain following GPi-DBS in patients with Parkinson’s disease (PD). Body mass index was calculated and brain activity prospectively measured using 2-deoxy-2[18F]fluoro-D-glucose PET four months before and four months after the start of GPi-DBS in 19 PD patients. Dopaminergic medication was included in the analysis to control for its possible influence on brain metabolism. Body mass index increased significantly by 0.66 ± 1.3 kg/m2 (p = 0.040). There were correlations between weight gain and changes in brain metabolism in premotor areas, including the left and right superior gyri (Brodmann area, BA 6), left superior gyrus (BA 8), the dorsolateral prefrontal cortex (right middle gyrus, BAs 9 and 46), and the left and right somatosensory association cortices (BA 7). However, we found no correlation between weight gain and metabolic changes in limbic and associative areas. Additionally, there was a trend toward a correlation between reduced dyskinesia and weight gain (r = 0.428, p = 0.067). These findings suggest that, unlike STN-DBS, motor improvement is the major contributing factor for weight gain following GPi-DBS PD, confirming the motor selectivity of this target. PMID:27070317

  11. Neuromuscular Electrical Stimulation for Mobility Support of Elderly

    PubMed Central

    2015-01-01

    The stimulator for neuromuscular electrical stimulation for mobility support of elderly is not very complicated, but for application within “MOBIL” we have some additional demands to fulfill. First we have specific safety issues for this user group. A powerful compliance management system is crucial not only to guide daily application, but for creating hard data for the scientific outcome. We also need to assure easy handling of the stimulator, because the subjects are generally not able to cope with too difficult and complex motor skills. So, we developed five generations of stimulators and optimizing solutions after field tests. We are already planning the sixth generation with wireless control of the stimulation units by the central main handheld control unit. In a prototype, we have implemented a newly available high capacity memory, a breakthrough in “compliance data storage” as they offer the necessary high storage capacity and fast data handling for an affordable prize. The circuit also contains a 3D accelerometer sensor which acts as a further important safety features: if the control unit drops, this event is detected automatically by the sensor and activates an emergency switch-off that disables the stimulation to avoid associated risks. Further, we have implemented a hardware emergence shutdown and other safety measures. Finally, in the last example muscle torque measurements are referenced with compliance data. In the study normalized maximum voluntary contraction (MVC) and maximum stimulation induced contraction (MSC) were assessed in regular check-ups along the training period. With additional consideration of adjusted stimulation intensity for training out of the compliance data records we are able to estimate the induced contraction strength, which turned out to amount in average 11% of MVC. This value may seem on a first sight rather low, and ought to be considered in relation to the results at the end of the training period. Therefore the

  12. Neuromuscular Electrical Stimulation for Mobility Support of Elderly.

    PubMed

    Mayr, Winfried

    2015-08-24

    The stimulator for neuromuscular electrical stimulation for mobility support of elderly is not very complicated, but for application within "MOBIL" we have some additional demands to fulfill. First we have specific safety issues for this user group. A powerful compliance management system is crucial not only to guide daily application, but for creating hard data for the scientific outcome. We also need to assure easy handling of the stimulator, because the subjects are generally not able to cope with too difficult and complex motor skills. So, we developed five generations of stimulators and optimizing solutions after field tests. We are already planning the sixth generation with wireless control of the stimulation units by the central main handheld control unit. In a prototype, we have implemented a newly available high capacity memory, a breakthrough in "compliance data storage" as they offer the necessary high storage capacity and fast data handling for an affordable prize. The circuit also contains a 3D accelerometer sensor which acts as a further important safety features: if the control unit drops, this event is detected automatically by the sensor and activates an emergency switch-off that disables the stimulation to avoid associated risks. Further, we have implemented a hardware emergence shutdown and other safety measures. Finally, in the last example muscle torque measurements are referenced with compliance data. In the study normalized maximum voluntary contraction (MVC) and maximum stimulation induced contraction (MSC) were assessed in regular check-ups along the training period. With additional consideration of adjusted stimulation intensity for training out of the compliance data records we are able to estimate the induced contraction strength, which turned out to amount in average 11% of MVC. This value may seem on a first sight rather low, and ought to be considered in relation to the results at the end of the training period. Therefore the

  13. The stimulated social brain: effects of transcranial direct current stimulation on social cognition.

    PubMed

    Sellaro, Roberta; Nitsche, Michael A; Colzato, Lorenza S

    2016-04-01

    Transcranial direct current stimulation (tDCS) is an increasingly popular noninvasive neuromodulatory tool in the fields of cognitive and clinical neuroscience and psychiatry. It is an inexpensive, painless, and safe brain-stimulation technique that has proven to be effective in modulating cognitive and sensory-perceptual functioning in healthy individuals and clinical populations. Importantly, recent findings have shown that tDCS may also be an effective and promising tool for probing the neural mechanisms of social cognition. In this review, we present the state-of-the-art of the field of tDCS research in social cognition. By doing so, we aim to gather knowledge of the potential of tDCS to modulate social functioning and social decision making in healthy humans, and to inspire future research investigations. PMID:27206250

  14. Characterization of electrical stimulation electrodes for cardiac tissue engineering.

    PubMed

    Tandon, Nina; Cannizzaro, Chris; Figallo, Elisa; Voldman, Joel; Vunjak-Novakovic, Gordana

    2006-01-01

    Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. The goal of this study was to assess the conditions of electrical stimulation with respect to the electrode geometry, material properties and charge-transfer characteristics at the electrode-electrolyte interface. We compared various biocompatible materials, including nanoporous carbon, stainless steel, titanium and titanium nitride, for use in cardiac tissue engineering bioreactors. The faradaic and non-faradaic charge transfer mechanisms were assessed by electrochemical impedance spectroscopy (EIS), studying current injection characteristics, and examining surface properties of electrodes with scanning electron microscopy. Carbon electrodes were found to have the best current injection characteristics. However, these electrodes require careful handling because of their limited mechanical strength. The efficacy of various electrodes for use in 2-D and 3-D cardiac tissue engineering systems with neonatal rat cardiomyocytes is being determined by assessing cell viability, amplitude of contractions, excitation thresholds, maximum capture rate, and tissue morphology.

  15. Optogenetically inspired deep brain stimulation: linking basic with clinical research.

    PubMed

    Lüscher, Christian; Pollak, Pierre

    2016-01-01

    In the last decade, optogenetics has revolutionised the neurosciences. The technique, which allows for cell-type specific excitation and inhibition of neurons in the brain of freely moving rodents, has been used to tighten the links of causality between neural activity and behaviour. Optogenetics is also enabling an unprecedented characterisation of circuits and their dysfunction in a number of brain diseases, above all those conditions that are not caused by neurodegeneration. Notable progress has been made in addiction, depression and obsessive-compulsive disorders, as well as other anxiety disorders. By extension, the technique has also been used to propose blueprints for innovative rational treatment of these diseases. The goal is to design manipulations that disrupt pathological circuit function or restore normal activity. This can be achieved by targeting specific projections in order to apply specific stimulation protocols validated by ex-vivo analysis of the mechanisms underlying the dysfunction. In a number of cases, specific forms of pathological synaptic plasticity have been implicated. For example, addictive drugs via strong increase of dopamine trigger a myriad of alterations of glutamate and γ-aminobutyric acid transmission, also called drug-evoked synaptic plasticity. This opens the way to the design of optogenetic reversal protocols, which might restore normal transmission with the hope to abolish the pathological behaviour. Several proof of principle studies for this approach have recently been published. However, for many reasons, optogenetics will not be translatable to human applications in the near future. Here, we argue that an intermediate step is novel deep brain stimulation (DBS) protocols that emulate successful optogenetic approaches in animal models. We provide a roadmap for a translational path to rational, optogenetically inspired DBS protocols to refine existing approaches and expand to novel indications.

  16. Deep brain stimulation for enhancement of learning and memory.

    PubMed

    Suthana, Nanthia; Fried, Itzhak

    2014-01-15

    Deep brain stimulation (DBS) has emerged as a powerful technique to treat a host of neurological and neuropsychiatric disorders from Parkinson's disease and dystonia, to depression, and obsessive compulsive disorder (Benabid et al., 1987; Lang and Lozano, 1998; Davis et al., 1997; Vidailhet et al., 2005; Mayberg et al., 2005; Nuttin et al., 1999). More recently, results suggest that DBS can enhance memory for facts and events that are dependent on the medial temporal lobe (MTL), thus raising the possibility for DBS to be used as a treatment for MTL- related neurological disorders (e.g. Alzheimer's disease, temporal lobe epilepsy, and MTL injuries). In the following review, we summarize key results that show the ability of DBS or cortical surface stimulation to enhance memory. We also discuss current knowledge regarding the temporal specificity, underlying neurophysiological mechanisms of action, and generalization of stimulation's effects on memory. Throughout our discussion, we also propose several future directions that will provide the necessary insight into if and how DBS could be used as a therapeutic treatment for memory disorders. PMID:23921099

  17. Clinical application of neuromuscular electrical stimulation induced cardiovascular exercise.

    PubMed

    Caulfield, Brian; Crowe, Louis; Coughlan, Garrett; Minogue, Conor

    2011-01-01

    We need to find novel ways of increasing exercise participation, particularly in those populations who find it difficult to participate in voluntary exercise. In recent years researchers have started to investigate the potential for using electrical stimulation to artificially stimulate a pattern of muscle activity that would induce a physiological response consistent with cardiovascular exercise. Work to date has indicated that this is best achieved by using a stimulation protocol that results in rapid rhythmical isometric contractions of the large leg muscle groups at sub tetanic frequencies. Studies completed by our group indicate that this technique can serve as a viable alternative to voluntary cardiovascular exercise. Apart from being able to induce a cardiovascular exercise effect in patient populations (e.g. heart failure, COPD, spinal cord injury, obesity), this approach may also have value in promotion of exercise activity in a microgravity environment. PMID:22255036

  18. Electrical stimulation of the hypoglossal nerve: a potential therapy.

    PubMed

    Schwartz, Alan R; Smith, Philip L; Oliven, Arie

    2014-02-01

    Obstructive sleep apnea is characterized by recurrent episodes of pharyngeal collapse, which result from a decrease in pharyngeal dilator muscle tone. The genioglossus is a major pharyngeal dilator that maintains airway patency during sleep. Early studies in animal and humans have demonstrated that electrical stimulation of this muscle reduces pharyngeal collapsibility, increases airflow, and mitigates obstructive sleep apnea. These findings impelled the development of fully implantable hypoglossal nerve stimulating systems (HGNS), for which feasibility trial results are now available. These pilot studies have confirmed that hypoglossal nerve stimulation can prevent pharyngeal collapse without arousing patients from sleep. Potentially, a substantial segment of the patient population with obstructive sleep apnea can be treated with this novel approach. Furthermore, the feasibility trial findings suggest that the therapeutic potential of HGNS can be optimized by selecting patients judiciously, titrating the stimulus intensity optimally, and characterizing the underlying function and anatomy of the pharynx. These strategies are currently being examined in ongoing pivotal trials of HGNS.

  19. New algorithm to control a cycle ergometer using electrical stimulation.

    PubMed

    Petrofsky, J S

    2003-01-01

    Data were collected from four male subjects to determine the relationships between load, speed and muscle use during cycle ergometry. These data were then used to construct equations to govern the stimulation of muscle in paralysed individuals, during cycle ergometry induced by functional electrical stimulation (FES) of the quadriceps, gluteus maximus and hamstring muscles. The algorithm was tested on four subjects who were paralysed owing to a complete spinal cord injury between T4 and T11. Using the multivariate equation, the control of movement was improved, and work was accomplished that was double (2940 Nm min(-1) compared with 5880 Nm min(-1)) that of traditional FES cycle ergometry, when muscle stimulation was also controlled by electrical stimulation. Stress on the body, assessed by cardiac output, was increased almost two-fold during maximum work with the new algorithm (81 min(-1) compared with 15 l min(-1) with the new algorithm). These data support the concept that the limitation to workload that a person can achieve on FES cycle ergometry is in the control equations and not in the paralysed muscle.

  20. A Computational Framework for Electrical Stimulation of Vestibular Nerve.

    PubMed

    Marianelli, Prisca; Capogrosso, Marco; Bassi Luciani, Lorenzo; Panarese, Alessandro; Micera, Silvestro

    2015-09-01

    The vestibular organs are very important to generate reflexes critical for stabilizing gaze and body posture. Vestibular diseases significantly reduce the quality of life of people who are affected by them. Some research groups have recently started developing vestibular neuroprostheses to mitigate these symptoms. However, many scientific and technological issues need to be addressed to optimise their use in clinical trials. We developed a computational model able to mimic the response of human vestibular nerves and which can be exploited for "in-silico" testing of new strategies to design implantable vestibular prostheses. First, a digital model of the vestibular system was reconstructed from anatomical data. Monopolar stimulation was delivered at different positions and distances from ampullary nerves. The electrical potential induced by the injected current was computed through finite-element methods and drove extra-cellular stimulation of fibers in the vestibular, facial, and cochlear nerves. The electrical activity of vestibular nerves and the resulting eye movements elicited by different stimulation protocols were investigated. A set of electrode configurations was analyzed in terms of selectivity at increasing injected current. Electrode position along the nerve plays a major role in producing undesired activity in other nontargeted nerves, whereas distance from the fiber does not significantly affect selectivity. Indications are provided to minimize misalignment in nonoptimal electrode locations. Eye movements elicited by the different stimulation protocols are calculated and compared to experimental values, for the purpose of model validation. PMID:25751868

  1. Neuromuscular electric stimulation in patellofemoral dysfunction: literature review

    PubMed Central

    dos Santos, Ricardo Lucas; Souza, Márcia Leal São Pedro; dos Santos, Fernanda Andrade

    2013-01-01

    Patellofemoral dysfunction is a fairly common deficiency among young individuals that primarily affects females and may be characterized by pain, swelling and retropatellar crepitation. The purpose of this review of literature from the period between 2005 and 2011 was to systematize knowledge in relation to the increase in quadriceps muscle strength and pain relief in patients with patellofemoral dysfunction, using neuromuscular electrical stimulation and resistance exercises. The inclusion criteria were intervention articles from the past six years, in English, Spanish and Portuguese, which used muscle strengthening and neuromuscular electrical stimulation for rehabilitation obtained through searches in the electronic databases Medline and Lilacs and in the Bireme library. The bibliographic search yielded 28 references, of which nine were excluded in accordance with the aims and inclusion criteria while 16 articles were selected for reading of the abstracts and subsequent analysis. Mediumfrequency Neuromuscular Electrical Stimulation (NMES) can be used in association with resistance exercises as an adjuvant in the treatment of patellofemoral dysfunction (PFD), both to achieve muscle rebalance and for pain relief. PMID:24453645

  2. Laparoscopic insertion of gastric electrodes for electrical stimulation.

    PubMed

    Brody, Fred; Nam, Arthur; Drenon, Elizabeth; Ali, Aamir; Soffer, Edy

    2007-02-01

    Gastric electrical stimulation can provide symptomatic relief for patients with refractory gastroparesis. Traditionally, these wires are placed through a midline laparotomy. This paper describes and illustrates, in detail, the laparoscopic technique for successful implantation. Thirty-one consecutive patients from October 2003 to March 2005 underwent laparoscopic insertion of gastric stimulating wires for gastroparesis. Twenty-six patients were female. Four laparoscopic ports were used to insert a pair of electrodes. Anterior, cephalad retraction of the gastric wall is critical for accurate seromuscular placement of gastric leads. Intraoperative endoscopy was used to verify the seromuscular placement of the leads. Both leads were secured to a subcutaneous generator and electrical parameters were immediately established in the operating room. Patient demographics, operative details, and postoperative morbidities were recorded. All procedures were completed laparoscopically. The mean operative time was 114.4 +/- 20.9 minutes (range, 95-140). No perioperative mortality occurred. Two patients developed cellulitis at the generator site postoperatively and oral antibiotics were prescribed for one week postoperatively. No hardware was removed. Two patients had their generators repositioned due to pain at the pocket site. Gastric electrical stimulation is a novel treatment modality for patients with refractory gastroparesis and can be accomplished safely via laparoscopy. Laparoscopic insertion is successful even in patients with prior surgery and intact gastrointestinal tubes. Long-term follow-up and the current prospective multicenter trial continue to assess the efficacy of this treatment modality. PMID:17362169

  3. Practical aspects of cardiac tissue engineering with electrical stimulation.

    PubMed

    Cannizzaro, Christopher; Tandon, Nina; Figallo, Elisa; Park, Hyoungshin; Gerecht, Sharon; Radisic, Milica; Elvassore, Nicola; Vunjak-Novakovic, Gordana

    2007-01-01

    Heart disease is a leading cause of death in western society. Despite the success of heart transplantation, a chronic shortage of donor organs, along with the associated immunological complications of this approach, demands that alternative treatments be found. One such option is to repair, rather than replace, the heart with engineered cardiac tissue. Multiple studies have shown that to attain functional tissue, assembly signaling cues must be recapitulated in vitro. In their native environment, cardiomyocytes are directed to beat in synchrony by propagation of pacing current through the tissue. Recently, we have shown that electrical stimulation directs neonatal cardiomyocytes to assemble into native-like tissue in vitro. This chapter provides detailed methods we have employed in taking this "biomimetic" approach. After an initial discussion on how electric field stimulation can influence cell behavior, we examine the practical aspects of cardiac tissue engineering with electrical stimulation, such as electrode selection and cell seeding protocols, and conclude with what we feel are the remaining challenges to be overcome.

  4. Deep brain stimulation (DBS) at the interface of neurology and psychiatry

    PubMed Central

    Williams, Nolan R.; Okun, Michael S.

    2013-01-01

    Deep brain stimulation (DBS) is an emerging interventional therapy for well-screened patients with specific treatment-resistant neuropsychiatric diseases. Some neuropsychiatric conditions, such as Parkinson disease, have available and reasonable guideline and efficacy data, while other conditions, such as major depressive disorder and Tourette syndrome, have more limited, but promising results. This review summarizes both the efficacy and the neuroanatomical targets for DBS in four common neuropsychiatric conditions: Parkinson disease, Tourette syndrome, major depressive disorder, and obsessive-compulsive disorder. Based on emerging new research, we summarize novel approaches to optimization of stimulation for each neuropsychiatric disease and we review the potential positive and negative effects that may be observed following DBS. Finally, we summarize the likely future innovations in the field of electrical neural-network modulation. PMID:24177464

  5. MRI-related heating near deep brain stimulation electrodes: more data are needed.

    PubMed

    Gupte, Akshay A; Shrivastava, Devashish; Spaniol, Maggie A; Abosch, Aviva

    2011-01-01

    Magnetic resonance imaging (MRI) of patients with implanted deep brain stimulation (DBS) devices poses a challenge for healthcare providers. As a consequence of safety concerns about magnetic field interactions with the device, induced electrical currents and thermal damage due to radiofrequency heating, a number of stringent guidelines have been proposed by the device manufacturer. Very few detailed investigations of these safety issues have been published to date, and the stringent manufacturer guidelines have gone unchallenged, leading some hospitals and imaging centers around the world to ban or restrict the use of MRI in DBS patients. The purpose of this review is to stimulate research towards defining appropriate guidelines for the use of MRI in patients with DBS. Additionally, this review is intended to help healthcare providers and researchers make sound clinical judgments about the use of MRI in the setting of implanted DBS devices.

  6. [Twiddler's syndrome in a patient with obsessive-compulsive disorder treated with deep brain stimulation].

    PubMed

    Moliz, Nicolás; Katati, Majed J; Iañez, Benjamín; García, Asunción; Yagui, Eskandar; Horcajadas, Ángel

    2015-01-01

    Twiddler's syndrome is a rare complication associated with implantable electrical stimulation devices. First described in a patient with a pacemaker, it is a known complication in the field of cardiology. However, it is not so recognised in the world of neurosurgery, in which it has been described in relation to deep brain stimulation (DBS) devices. Characterised by manipulating either consciously or unconsciously the generator of such devices, which causes it to rotate on itself, the syndrome causes the coiling of the wiring of these systems and can lead to their rupture or the displacement of intracranial electrodes. We describe a case of twiddler's syndrome in a patient treated with DBS for obsessive-compulsive disorder, in which clinical deterioration presented after a good initial response. Control radiographs revealed rotation of the wiring system and displacement of the intracranial electrodes.

  7. Neural origin of evoked potentials during thalamic deep brain stimulation.

    PubMed

    Kent, Alexander R; Grill, Warren M

    2013-08-01

    Closed-loop deep brain stimulation (DBS) systems could provide automatic adjustment of stimulation parameters and improve outcomes in the treatment of Parkinson's disease and essential tremor. The evoked compound action potential (ECAP), generated by activated neurons near the DBS electrode, may provide a suitable feedback control signal for closed-loop DBS. The objectives of this work were to characterize the ECAP across stimulation parameters and determine the neural elements contributing to the signal. We recorded ECAPs during thalamic DBS in anesthetized cats and conducted computer simulations to calculate the ECAP of a population of thalamic neurons. The experimental and computational ECAPs were similar in shape and had characteristics that were correlated across stimulation parameters (R(2) = 0.80-0.95, P < 0.002). The ECAP signal energy increased with larger DBS amplitudes (P < 0.0001) and pulse widths (P < 0.002), and the signal energy of secondary ECAP phases was larger at 10-Hz than at 100-Hz DBS (P < 0.002). The computational model indicated that these changes resulted from a greater extent of neural activation and an increased synchronization of postsynaptic thalamocortical activity, respectively. Administration of tetrodotoxin, lidocaine, or isoflurane abolished or reduced the magnitude of the experimental and computational ECAPs, glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and D(-)-2-amino-5-phosphonopentanoic acid (APV) reduced secondary ECAP phases by decreasing postsynaptic excitation, and the GABAA receptor agonist muscimol increased the latency of the secondary phases by augmenting postsynaptic hyperpolarization. This study demonstrates that the ECAP provides information about the type and extent of neural activation generated during DBS, and the ECAP may serve as a feedback control signal for closed-loop DBS.

  8. Computational modeling of pedunculopontine nucleus deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Zitella, Laura M.; Mohsenian, Kevin; Pahwa, Mrinal; Gloeckner, Cory; Johnson, Matthew D.

    2013-08-01

    Objective. Deep brain stimulation (DBS) near the pedunculopontine nucleus (PPN) has been posited to improve medication-intractable gait and balance problems in patients with Parkinson's disease. However, clinical studies evaluating this DBS target have not demonstrated consistent therapeutic effects, with several studies reporting the emergence of paresthesia and oculomotor side effects. The spatial and pathway-specific extent to which brainstem regions are modulated during PPN-DBS is not well understood. Approach. Here, we describe two computational models that estimate the direct effects of DBS in the PPN region for human and translational non-human primate (NHP) studies. The three-dimensional models were constructed from segmented histological images from each species, multi-compartment neuron models and inhomogeneous finite element models of the voltage distribution in the brainstem during DBS. Main Results. The computational models predicted that: (1) the majority of PPN neurons are activated with -3 V monopolar cathodic stimulation; (2) surgical targeting errors of as little as 1 mm in both species decrement activation selectivity; (3) specifically, monopolar stimulation in caudal, medial, or anterior PPN activates a significant proportion of the superior cerebellar peduncle (up to 60% in the human model and 90% in the NHP model at -3 V) (4) monopolar stimulation in rostral, lateral or anterior PPN activates a large percentage of medial lemniscus fibers (up to 33% in the human model and 40% in the NHP model at -3 V) and (5) the current clinical cylindrical electrode design is suboptimal for isolating the modulatory effects to PPN neurons. Significance. We show that a DBS lead design with radially-segmented electrodes may yield improved functional outcome for PPN-DBS.

  9. Modulation of Human Time Processing by Subthalamic Deep Brain Stimulation

    PubMed Central

    Timmermann, Lars; Reck, Christiane; Maarouf, Mohammad; Jörgens, Silke; Ploner, Markus; Südmeyer, Martin; Groiss, Stefan Jun; Sturm, Volker; Niedeggen, Michael; Schnitzler, Alfons

    2011-01-01

    Timing in the range of seconds referred to as interval timing is crucial for cognitive operations and conscious time processing. According to recent models of interval timing basal ganglia (BG) oscillatory loops are involved in time interval recognition. Parkinsońs disease (PD) is a typical disease of the basal ganglia that shows distortions in interval timing. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a powerful treatment of PD which modulates motor and cognitive functions depending on stimulation frequency by affecting subcortical-cortical oscillatory loops. Thus, for the understanding of BG-involvement in interval timing it is of interest whether STN-DBS can modulate timing in a frequency dependent manner by interference with oscillatory time recognition processes. We examined production and reproduction of 5 and 15 second intervals and millisecond timing in a double blind, randomised, within-subject repeated-measures design of 12 PD-patients applying no, 10-Hz- and ≥130-Hz-STN-DBS compared to healthy controls. We found under(re-)production of the 15-second interval and a significant enhancement of this under(re-)production by 10-Hz-stimulation compared to no stimulation, ≥130-Hz-STN-DBS and controls. Milliseconds timing was not affected. We provide first evidence for a frequency-specific modulatory effect of STN-DBS on interval timing. Our results corroborate the involvement of BG in general and of the STN in particular in the cognitive representation of time intervals in the range of multiple seconds. PMID:21931767

  10. [Research progress in reanimation of peripheral facial paralysis by use of functional electrical stimulation].

    PubMed

    Deng, Simin; Shen, Guofang

    2010-08-01

    With the development of electronics and information technology, the application of functional electrical stimulation in the medical field has been expanding. However, the use of functional electrical stimulation to treat patients with peripheral facial paralysis is still in its infancy. The main problems include: (1) Finding in the signals which could fire the stimulator; (2) Exploring the parameters for the stimulator; (3) The effects on the muscle attributed to the electrical stimulation. A review on these problems is presented.

  11. Gut pain reactions in man: an experimental investigation using short and long duration transmucosal electrical stimulation.

    PubMed

    Arendt-Nielsen, L; Drewes, A M; Hansen, J B; Tage-Jensen, U

    1997-02-01

    Visceral pain is a substantial, clinical problem but unfortunately few experimental models are available to study this phenomenon in man. In the present study we inserted a stimulation catheter 5-10 cm into the ileo-sigmoidostomy of nine patients. The catheter contained six small, flexible electrodes separated by 4 mm. The gut was stimulated by single burst, repeated burst (five stimuli delivered at 2 Hz), or continuous burst stimuli (4 Hz for 30, 60, 90, and 120 s). The sensation (ST), pain detection (PDT), and pain tolerance (PTT) thresholds to single/repeated burst stimuli were determined. The location/size/sensitivity of referred pain after repeated/continuous stimulation were characterized. The brain potentials to single burst stimuli and to increasing stimulus intensity were measured. ST to single burst stimuli was easy to determine (8 mA) and to reproduce. The patients found it difficult to determine the PDT and PTT to single burst stimuli, however both thresholds were easily determined for repeated burst stimuli. The pain thresholds to single burst stimuli were twice as high as the thresholds to repeated burst stimuli, indicating the importance of central temporal summation for visceral pain. Minor changes in the stimulus location resulted in changes of the referred pain projection site. The words most frequently selected (78%) from the McGill Pain Questionnaire to describe repeated burst stimulations were shooting, pricking, flashing, and boring. The amplitude of the brain potentials increased at increasing stimulus intensity. A stimulus intensity giving an initial pain rating of around 5 on a 0-10 visual analog scale (VAS) was used for continuous stimulation. A general increase of the pain intensity and the area of referred pain was found during this stimulation. It was concluded that electrical stimulation of the human gut provokes pain and especially long sequences of visceral stimuli are adequate to evoke referred pain mimicking pain profiles of

  12. Fos immunoreactivity in the rat forebrain induced by electrical stimulation of the dorsolateral periaqueductal gray matter.

    PubMed

    Lim, Lee Wei; Temel, Yasin; Visser-Vandewalle, Veerle; Blokland, Arjan; Steinbusch, Harry

    2009-10-01

    Electrical stimulation of the dorsolateral periaqueductal gray (dlPAG) matter induces panic- or fear-like responses with intense emotional distress and severe anxiety. In this study, we evoked panic-like behaviour by dlPAG stimulation and evaluated the effect on neuronal activation in different brain regions. The number of c-Fos immunoreactive (c-Fos-ir) cells was measured semi-quantitatively through series of stained rat brain sections. Our results demonstrate strong neural activation in the medial prefrontal cortex, orbital cortex, anterior olfactory nuclei, secondary motor cortex, and the somatosensory cortex. Moderate increases in the number of c-Fos-ir cells were detected in various regions, including the hypothalamus, amygdala, and striatum. Additionally, there was mild expression of c-Fos-ir cells in the hippocampus, thalamus, and habenula regions. In conclusion, we have shown that deep brain stimulation of the dlPAG produced a distinctive pattern of neuronal activation across forebrain regions as compared to the sham and control animals.

  13. TEST OF DEUTSCH'S DRIVE-DECAY THEORY OF REWARDING SELF-STIMULATION OF THE BRAIN.

    PubMed

    PLISKOFF, S S; HAWKINS, T D

    1963-08-30

    Deutsch's theory of intracranial self-stimulation generates experimental predictions regarding the effects of both free stimulation of the brain and the pre-extinction training procedure on extinction behavior after rewarding stimulation of the brain. The results of one experiment confirmed the prediction regarding free stimulation; the other experiment did not provide the expected result. We concluded that Deutsch's theory, in its present form, is of restricted enerality.

  14. Transcutaneous Electrical Acupoint Stimulation in Children with Autism and Its Impact on Plasma Levels of Arginine-Vasopressin and Oxytocin: A Prospective Single-Blinded Controlled Study

    ERIC Educational Resources Information Center

    Zhang, Rong; Jia, Mei-Xiang; Zhang, Ji-Sui; Xu, Xin-Jie; Shou, Xiao-Jing; Zhang, Xiu-Ting; Li, Li; Li, Ning; Han, Song-Ping; Han, Ji-Sheng

    2012-01-01

    Acupuncture increases brain levels of arginine-vasopressin (AVP) and oxytocin (OXT), which are known to be involved in the modulation of mammalian social behavior. Transcutaneous electrical acupoint stimulation (TEAS) is often used clinically to produce a similar stimulation to that of acupuncture on the acupoints. In the present study, TEAS was…

  15. The facilitation of motor actions by acoustic and electric stimulation.

    PubMed

    Marinovic, Welber; Milford, Magdalene; Carroll, Timothy; Riek, Stephan

    2015-12-01

    The presentation of a loud acoustic stimulus during the preparation of motor actions can both speed movement initiation and increase response vigor. Several recent studies have explored this phenomenon as a means to investigate the mechanisms and neural correlates of movement preparation. Here, we sought to determine the generality of this effect across sensory modalities, and in particular whether unexpected somatosensory stimulation can facilitate movements in a manner similar to loud sounds. We show that electric and acoustic stimuli can be similarly effective in inducing the early release of motor actions, in both reaction time and anticipatory timing tasks. Consistent with recent response activation models of motor preparation, we also demonstrate that increasing the intensity of electric stimuli induces both progressive decreases in reaction time and increases in response vigor. Additionally, we show that the early release of motor actions can be induced by electric stimuli targeting predominantly either muscle afferents or skin afferents. Finally, we show that simultaneous acoustic and electric stimulation leads to earlier releases of anticipatory actions than either unimodal stimulus. These findings may lead to new avenues for experimental and clinical exploitation of the effects of accessory sensory information on movement preparation and initiation. PMID:26338375

  16. Transcranial magnetic stimulation and brain atrophy: a computer-based human brain model study

    PubMed Central

    Eden, Uri; Fregni, Felipe; Valero-Cabre, Antoni; Ramos-Estebanez, Ciro; Pronio-Stelluto, Valerie; Grodzinsky, Alan; Zahn, Markus; Pascual-Leone, Alvaro

    2012-01-01

    This paper is aimed at exploring the effect of cortical brain atrophy on the currents induced by transcranial magnetic stimulation (TMS). We compared the currents induced by various TMS conditions on several different MRI derived finite element head models of brain atrophy, incorporating both decreasing cortical volume and widened sulci. The current densities induced in the cortex were dependent upon the degree and type of cortical atrophy and were altered in magnitude, location, and orientation when compared to healthy head models. Predictive models of the degree of current density attenuation as a function of the scalp-to-cortex distance were analyzed, concluding that those which ignore the electromagnetic field–tissue interactions lead to inaccurate conclusions. Ultimately, the precise site and population of neural elements stimulated by TMS in an atrophic brain cannot be predicted based on healthy head models which ignore the effects of the altered cortex on the stimulating currents. Clinical applications of TMS should be carefully considered in light of these findings. PMID:18193208

  17. Chronic Spinal Cord Electrical Stimulation Protects Against 6-hydroxydopamine Lesions

    NASA Astrophysics Data System (ADS)

    Yadav, Amol P.; Fuentes, Romulo; Zhang, Hao; Vinholo, Thais; Wang, Chi-Han; Freire, Marco Aurelio M.; Nicolelis, Miguel A. L.

    2014-01-01

    Although L-dopa continues to be the gold standard for treating motor symptoms of Parkinson's disease (PD), it presents long-term complications. Deep brain stimulation is effective, but only a small percentage of idiopathic PD patients are eligible. Based on results in animal models and a handful of patients, dorsal column stimulation (DCS) has been proposed as a potential therapy for PD. To date, the long-term effects of DCS in animal models have not been quantified. Here, we report that DCS applied twice a week in rats treated with bilateral 6-OHDA striatal infusions led to a significant improvement in symptoms. DCS-treated rats exhibited a higher density of dopaminergic innervation in the striatum and higher neuronal cell count in the substantia nigra pars compacta compared to a control group. These results suggest that DCS has a chronic therapeutical and neuroprotective effect, increasing its potential as a new clinical option for treating PD patients.

  18. Understanding the biophysical effects of transcranial magnetic stimulation on brain tissue: the bridge between brain stimulation and cognition.

    PubMed

    Neggers, Sebastiaan F W; Petrov, Petar I; Mandija, Stefano; Sommer, Iris E C; van den Berg, Nico A T

    2015-01-01

    Transcranial magnetic stimulation (TMS) is rapidly being adopted in neuroscience, medicine, psychology, and biology, for basic research purposes, diagnosis, and therapy. However, a coherent picture of how TMS affects neuronal processing, and especially how this in turn influences behavior, is still largely unavailable despite several studies that investigated aspects of the underlying neurophysiological effects of TMS. Perhaps as a result from this "black box approach," TMS studies show a large interindividual variability in applied paradigms and TMS treatment outcome can be quite variable, hampering its general efficacy and introduction into the clinic. A better insight into the biophysical, neuronal, and cognitive mechanisms underlying TMS is crucial in order to apply it effectively in the clinic and to increase our understanding of brain-behavior relationship. Therefore, computational and experimental efforts have been started recently to understand and control the effect TMS has on neuronal functioning. Especially, how the brain shapes magnetic fields induced by a TMS coil, how currents are generated locally in the cortical surface, and how they interact with complex functional neuronal circuits within and between brain areas are crucial to understand the observed behavioral changes and potential therapeutic effects resulting from TMS. Here, we review the current knowledge about the biophysical underpinnings of single-pulse TMS and argue how to move forward to fully understand and exploit the powerful technique that TMS can be. PMID:26541383

  19. Noninvasive Brain Stimulation in Pediatric Attention-Deficit Hyperactivity Disorder (ADHD): A Review.

    PubMed

    Rubio, Belen; Boes, Aaron D; Laganiere, Simon; Rotenberg, Alexander; Jeurissen, Danique; Pascual-Leone, Alvaro

    2016-05-01

    Attention-deficit hyperactivity disorder (ADHD) is one of the most prevalent neurodevelopmental disorders in the pediatric population. The clinical management of ADHD is currently limited by a lack of reliable diagnostic biomarkers and inadequate therapy for a minority of patients who do not respond to standard pharmacotherapy. There is optimism that noninvasive brain stimulation may help to address these limitations. Transcranial magnetic stimulation and transcranial direct current stimulation are 2 methods of noninvasive brain stimulation that modulate cortical excitability and brain network activity. Transcranial magnetic stimulation can be used diagnostically to probe cortical neurophysiology, whereas daily use of repetitive transcranial magnetic stimulation or transcranial direct current stimulation can induce long-lasting and potentially therapeutic changes in targeted networks. In this review, we highlight research showing the potential diagnostic and therapeutic applications of transcranial magnetic stimulation and transcranial direct current stimulation in pediatric ADHD. We also discuss the safety and ethics of using these tools in the pediatric population. PMID:26661481

  20. Investigation into Deep Brain Stimulation Lead Designs: A Patient-Specific Simulation Study.

    PubMed

    Alonso, Fabiola; Latorre, Malcolm A; Göransson, Nathanael; Zsigmond, Peter; Wårdell, Karin

    2016-01-01

    New deep brain stimulation (DBS) electrode designs offer operation in voltage and current mode and capability to steer the electric field (EF). The aim of the study was to compare the EF distributions of four DBS leads at equivalent amplitudes (3 V and 3.4 mA). Finite element method (FEM) simulations (n = 38) around cylindrical contacts (leads 3389, 6148) or equivalent contact configurations (leads 6180, SureStim1) were performed using homogeneous and patient-specific (heterogeneous) brain tissue models. Steering effects of 6180 and SureStim1 were compared with symmetric stimulation fields. To make relative comparisons between simulations, an EF isolevel of 0.2 V/mm was chosen based on neuron model simulations (n = 832) applied before EF visualization and comparisons. The simulations show that the EF distribution is largely influenced by the heterogeneity of the tissue, and the operating mode. Equivalent contact configurations result in similar EF distributions. In steering configurations, larger EF volumes were achieved in current mode using equivalent amplitudes. The methodology was demonstrated in a patient-specific simulation around the zona incerta and a "virtual" ventral intermediate nucleus target. In conclusion, lead design differences are enhanced when using patient-specific tissue models and current stimulation mode. PMID:27618109

  1. Investigation into Deep Brain Stimulation Lead Designs: A Patient-Specific Simulation Study

    PubMed Central

    Alonso, Fabiola; Latorre, Malcolm A.; Göransson, Nathanael; Zsigmond, Peter; Wårdell, Karin

    2016-01-01

    New deep brain stimulation (DBS) electrode designs offer operation in voltage and current mode and capability to steer the electric field (EF). The aim of the study was to compare the EF distributions of four DBS leads at equivalent amplitudes (3 V and 3.4 mA). Finite element method (FEM) simulations (n = 38) around cylindrical contacts (leads 3389, 6148) or equivalent contact configurations (leads 6180, SureStim1) were performed using homogeneous and patient-specific (heterogeneous) brain tissue models. Steering effects of 6180 and SureStim1 were compared with symmetric stimulation fields. To make relative comparisons between simulations, an EF isolevel of 0.2 V/mm was chosen based on neuron model simulations (n = 832) applied before EF visualization and comparisons. The simulations show that the EF distribution is largely influenced by the heterogeneity of the tissue, and the operating mode. Equivalent contact configurations result in similar EF distributions. In steering configurations, larger EF volumes were achieved in current mode using equivalent amplitudes. The methodology was demonstrated in a patient-specific simulation around the zona incerta and a “virtual” ventral intermediate nucleus target. In conclusion, lead design differences are enhanced when using patient-specific tissue models and current stimulation mode. PMID:27618109

  2. Effects of thalamic deep brain stimulation on spontaneous language production.

    PubMed

    Ehlen, Felicitas; Vonberg, Isabelle; Kühn, Andrea A; Klostermann, Fabian

    2016-08-01

    The thalamus is thought to contribute to language-related processing, but specifications of this notion remain vague. An assessment of potential effects of thalamic deep brain stimulation (DBS) on spontaneous language may help to delineate respective functions. For this purpose, we analyzed spontaneous language samples from thirteen (six female / seven male) patients with essential tremor treated with DBS of the thalamic ventral intermediate nucleus (VIM) in their respective ON vs. OFF conditions. Samples were obtained from semi-structured interviews and examined on multidimensional linguistic levels. In the VIM-DBS ON condition, participants used a significantly higher proportion of paratactic as opposed to hypotactic sentence structures. This increase correlated negatively with the change in the more global cognitive score, which in itself did not change significantly. In conclusion, VIM-DBS appears to induce the use of a simplified syntactic structure. The findings are discussed in relation to concepts of thalamic roles in language-related cognitive behavior. PMID:27267813

  3. Clustered Desynchronization from High-Frequency Deep Brain Stimulation.

    PubMed

    Wilson, Dan; Moehlis, Jeff

    2015-12-01

    While high-frequency deep brain stimulation is a well established treatment for Parkinson's disease, its underlying mechanisms remain elusive. Here, we show that two competing hypotheses, desynchronization and entrainment in a population of model neurons, may not be mutually exclusive. We find that in a noisy group of phase oscillators, high frequency perturbations can separate the population into multiple clusters, each with a nearly identical proportion of the overall population. This phenomenon can be understood by studying maps of the underlying deterministic system and is guaranteed to be observed for small noise strengths. When we apply this framework to populations of Type I and Type II neurons, we observe clustered desynchronization at many pulsing frequencies. PMID:26713619

  4. Authenticity and autonomy in deep-brain stimulation.

    PubMed

    Wardrope, Alistair

    2014-08-01

    Felicitas Kraemer draws on the experiences of patients undergoing deep-brain stimulation (DBS) to propose two distinct and potentially conflicting principles of respect: for an individual's autonomy (interpreted as mental competence), and for their authenticity. I argue instead that, according to commonly-invoked justifications of respect for autonomy, authenticity is itself in part constitutive of an analysis of autonomy worthy of respect; Kraemer's argument thus highlights the shortcomings of practical applications of respect for autonomy that emphasise competence while neglecting other important dimensions of autonomy such as authenticity, since it shows that competence alone cannot be interpreted as a reliable indicator of an individual's capacity for exercising autonomy. I draw from relational accounts to suggest how respect for a more expansive conception of autonomy might be interpreted for individuals undergoing DBS and in general. PMID:23698887

  5. Authenticity and autonomy in deep-brain stimulation.

    PubMed

    Wardrope, Alistair

    2014-08-01

    Felicitas Kraemer draws on the experiences of patients undergoing deep-brain stimulation (DBS) to propose two distinct and potentially conflicting principles of respect: for an individual's autonomy (interpreted as mental competence), and for their authenticity. I argue instead that, according to commonly-invoked justifications of respect for autonomy, authenticity is itself in part constitutive of an analysis of autonomy worthy of respect; Kraemer's argument thus highlights the shortcomings of practical applications of respect for autonomy that emphasise competence while neglecting other important dimensions of autonomy such as authenticity, since it shows that competence alone cannot be interpreted as a reliable indicator of an individual's capacity for exercising autonomy. I draw from relational accounts to suggest how respect for a more expansive conception of autonomy might be interpreted for individuals undergoing DBS and in general.

  6. Clustered Desynchronization from High-Frequency Deep Brain Stimulation

    PubMed Central

    Wilson, Dan; Moehlis, Jeff

    2015-01-01

    While high-frequency deep brain stimulation is a well established treatment for Parkinson’s disease, its underlying mechanisms remain elusive. Here, we show that two competing hypotheses, desynchronization and entrainment in a population of model neurons, may not be mutually exclusive. We find that in a noisy group of phase oscillators, high frequency perturbations can separate the population into multiple clusters, each with a nearly identical proportion of the overall population. This phenomenon can be understood by studying maps of the underlying deterministic system and is guaranteed to be observed for small noise strengths. When we apply this framework to populations of Type I and Type II neurons, we observe clustered desynchronization at many pulsing frequencies. PMID:26713619

  7. Tinnitus suppression by electric stimulation of the auditory nerve

    PubMed Central

    Chang, Janice E.; Zeng, Fan-Gang

    2012-01-01

    Electric stimulation of the auditory nerve via a cochlear implant (CI) has been observed to suppress tinnitus, but parameters of an effective electric stimulus remain unexplored. Here we used CI research processors to systematically vary pulse rate, electrode place, and current amplitude of electric stimuli, and measure their effects on tinnitus loudness and stimulus loudness as a function of stimulus duration. Thirteen tinnitus subjects who used CIs were tested, with nine (70%) being “Responders” who achieved greater than 30% tinnitus loudness reduction in response to at least one stimulation condition and the remaining four (30%) being “Non-Responders” who had less than 30% tinnitus loudness reduction in response to any stimulus condition tested. Despite large individual variability, several interesting observations were made between stimulation parameters, tinnitus characteristics, and tinnitus suppression. If a subject's tinnitus was suppressed by one stimulus, then it was more likely to be suppressed by another stimulus. If the tinnitus contained a “pulsating” component, then it would be more likely suppressed by a given combination of stimulus parameters than tinnitus without these components. There was also a disassociation between the subjects' clinical speech processor and our research processor in terms of their effectiveness in tinnitus suppression. Finally, an interesting dichotomy was observed between loudness adaptation to electric stimuli and their effects on tinnitus loudness, with the Responders exhibiting higher degrees of loudness adaptation than the Non-Responders. Although the mechanisms underlying these observations remain to be resolved, their clinical implications are clear. When using a CI to manage tinnitus, the clinical processor that is optimized for speech perception needs to be customized for optimal tinnitus suppression. PMID:22479238

  8. Electrical stimulation vs thermal effects in a complex electromagnetic environment.

    PubMed

    Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Sánchez, Miguel

    2009-08-01

    Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10(-4)) than that based on thermal considerations (exposure quotient 0.16 10(-4)). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects.

  9. Electrical stimulation vs thermal effects in a complex electromagnetic environment.

    PubMed

    Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Sánchez, Miguel

    2009-08-01

    Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10(-4)) than that based on thermal considerations (exposure quotient 0.16 10(-4)). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects. PMID:19481236

  10. Moving Forward by Stimulating the Brain: Transcranial Direct Current Stimulation in Post-Stroke Hemiparesis.

    PubMed

    Peters, Heather T; Edwards, Dylan J; Wortman-Jutt, Susan; Page, Stephen J

    2016-01-01

    Stroke remains a leading cause of disability worldwide, with a majority of survivors experiencing long term decrements in motor function that severely undermine quality of life. While many treatment approaches and adjunctive strategies exist to remediate motor impairment, many are only efficacious or feasible for survivors with active hand and wrist function, a population who constitute only a minority of stroke survivors. Transcranial direct current stimulation (tDCS), a type of non-invasive brain stimulation, has been increasingly utilized to increase motor function following stroke as it is able to be used with stroke survivors of varying impairment levels, is portable, is relatively inexpensive and has few side effects and contraindications. Accordingly, in recent years the number of studies investigating its efficacy when utilized as an adjunct to motor rehabilitation regimens has drastically increased. While many of these trials have reported positive and promising efficacy, methodologies vary greatly between studies, including differences in stimulation parameters, outcome measures and the nature of physical practice. As such, an urgent need remains, centering on the need to investigate these methodological differences and synthesize the most current evidence surrounding the application of tDCS for post-stroke motor rehabilitation. Accordingly, the purpose of this paper is to provide a detailed overview of the most recent tDCS literature (published 2014-2015), while highlighting these variations in methodological approach, as well to elucidate the mechanisms associated with tDCS and post-stroke motor re-learning and neuroplasticity. PMID:27555811

  11. Moving Forward by Stimulating the Brain: Transcranial Direct Current Stimulation in Post-Stroke Hemiparesis.

    PubMed

    Peters, Heather T; Edwards, Dylan J; Wortman-Jutt, Susan; Page, Stephen J

    2016-01-01

    Stroke remains a leading cause of disability worldwide, with a majority of survivors experiencing long term decrements in motor function that severely undermine quality of life. While many treatment approaches and adjunctive strategies exist to remediate motor impairment, many are only efficacious or feasible for survivors with active hand and wrist function, a population who constitute only a minority of stroke survivors. Transcranial direct current stimulation (tDCS), a type of non-invasive brain stimulation, has been increasingly utilized to increase motor function following stroke as it is able to be used with stroke survivors of varying impairment levels, is portable, is relatively inexpensive and has few side effects and contraindications. Accordingly, in recent years the number of studies investigating its efficacy when utilized as an adjunct to motor rehabilitation regimens has drastically increased. While many of these trials have reported positive and promising efficacy, methodologies vary greatly between studies, including differences in stimulation parameters, outcome measures and the nature of physical practice. As such, an urgent need remains, centering on the need to investigate these methodological differences and synthesize the most current evidence surrounding the application of tDCS for post-stroke motor rehabilitation. Accordingly, the purpose of this paper is to provide a detailed overview of the most recent tDCS literature (published 2014-2015), while highlighting these variations in methodological approach, as well to elucidate the mechanisms associated with tDCS and post-stroke motor re-learning and neuroplasticity.

  12. Moving Forward by Stimulating the Brain: Transcranial Direct Current Stimulation in Post-Stroke Hemiparesis

    PubMed Central

    Peters, Heather T.; Edwards, Dylan J.; Wortman-Jutt, Susan; Page, Stephen J.

    2016-01-01

    Stroke remains a leading cause of disability worldwide, with a majority of survivors experiencing long term decrements in motor function that severely undermine quality of life. While many treatment approaches and adjunctive strategies exist to remediate motor impairment, many are only efficacious or feasible for survivors with active hand and wrist function, a population who constitute only a minority of stroke survivors. Transcranial direct current stimulation (tDCS), a type of non-invasive brain stimulation, has been increasingly utilized to increase motor function following stroke as it is able to be used with stroke survivors of varying impairment levels, is portable, is relatively inexpensive and has few side effects and contraindications. Accordingly, in recent years the number of studies investigating its efficacy when utilized as an adjunct to motor rehabilitation regimens has drastically increased. While many of these trials have reported positive and promising efficacy, methodologies vary greatly between studies, including differences in stimulation parameters, outcome measures and the nature of physical practice. As such, an urgent need remains, centering on the need to investigate these methodological differences and synthesize the most current evidence surrounding the application of tDCS for post-stroke motor rehabilitation. Accordingly, the purpose of this paper is to provide a detailed overview of the most recent tDCS literature (published 2014-2015), while highlighting these variations in methodological approach, as well to elucidate the mechanisms associated with tDCS and post-stroke motor re-learning and neuroplasticity. PMID:27555811

  13. [The kinesiological, chemical and pathological analysis in pulsed magnetic stimulation to the brain].

    PubMed

    Mano, Y; Funakawa, I; Nakamuro, T; Takayanagi, T; Matsui, K

    1989-08-01

    Pulsed magnetic stimulation of the human brain and spinal region has been reported recently. Unlike electrical stimulation, magnetic stimulation excites the motor cortex without discomfort to the subject. This method will be used as a new clinical test to study the central motor pathway. Although no deleterious effects have been observed thus far, the safety of this technique is regarded as unproven. We have investigated kinesiological, neurochemical and pathological analysis. Our pulsed magnetic discharge system consists of a high voltage capacitor bank and flat circular coil of insulated copper wire. The high voltage capacitor bank has a maximum voltage of 900 V, a maximum current flow of 8,000 amp and 1,637 uF in condenser capacitance. Sixty four normal wistar rats each weighing 200 g were used in this study. The rats were separated into two groups. Rats in one group received pulsed magnetic stimulation 50 times in 0.5 Hz by a flat circular coil which surrounded the head of rat at 1 cm in front of the interauricular line. The rats were housed in a long circular chamber. Rats in the other group did not receive the pulsed magnetic stimulation in the long circular chamber. The details of kinesiological analysis by Animex II measurement were described in an other paper (Act Neurologica Scandinavica 73; 352-358, 1986). The measurement of monoamines, dopamine (DA), homovalinic acid (HVA), noradrenaline (NA), and 5-hydroxytryptamine (5-HT), were made according to the Mefford's method 1 hour and 4 days after the magnetic stimulation. The analysis of the pathological state was also studied 1 hour and 4 days after the magnetic stimulation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2574648

  14. How does transcranial magnetic stimulation modify neuronal activity in the brain? - Implications for studies of cognition

    PubMed Central

    Siebner, Hartwig R.; Hartwigsen, Gesa; Kassuba, Tanja; Rothwell, John

    2010-01-01

    Transcranial magnetic stimulation (TMS) uses a magnetic field to “carry” a short lasting electrical current pulse into the brain where it stimulates neurones, particularly in superficial regions of cerebral cortex. TMS can interfere with cognitive functions in two ways. A high intensity TMS pulse causes a synchronised high frequency burst of discharge in a relatively large population of neurones that is terminated by a long lasting GABAergic inhibition. The combination of artificial synchronisation of activity followed by depression effectively disrupts perceptual, motor and cognitive processes in the human brain. This transient neurodisruption has been termed a “virtual lesion”. Smaller intensities of stimulation produce less activity; in such cases, cognitive operations can probably continue but are disrupted because of the added noisy input from the TNS pulse. It is usually argued that if a TMS pulse affects performance, then the area stimulated must provide an essential contribution to behaviour being studied. However, there is one exception to this: the pulse could be applied to an area that is not involved in the task but which has projections to the critical site. Activation of outputs from the site of stimulation could potentially disrupt processing at the distant site, interfering with behaviour without having any involvement in the task. A final important feature of the response to TMS is “context dependency”, which indicates that the response depends on how excitable the cortex is at the time the stimulus is applied: if many neurones are close to firing threshold then the more of them are recruited by the pulse than at rest. Many studies have noted this context-dependent modulation. However, it is often assumed that the excitability of an area has a simple relationship to activity in that area. We argue that this is not necessarily the case. Awareness of the problem may help resolve some apparent anomalies in the literature. PMID:19371866

  15. A Phase II Study of Fornix Deep Brain Stimulation in Mild Alzheimer’s Disease

    PubMed Central

    Lozano, Andres M.; Fosdick, Lisa; Chakravarty, M. Mallar; Leoutsakos, Jeannie-Marie; Munro, Cynthia; Oh, Esther; Drake, Kristen E.; Lyman, Christopher H.; Rosenberg, Paul B.; Anderson, William S.; Tang-Wai, David F.; Pendergrass, Jo Cara; Salloway, Stephen; Asaad, Wael F.; Ponce, Francisco A.; Burke, Anna; Sabbagh, Marwan; Wolk, David A.; Baltuch, Gordon; Okun, Michael S.; Foote, Kelly D.; McAndrews, Mary Pat; Giacobbe, Peter; Targum, Steven D.; Lyketsos, Constantine G.; Smith, Gwenn S.

    2016-01-01

    Background: Deep brain stimulation (DBS) is used to modulate the activity of dysfunctional brain circuits. The safety and efficacy of DBS in dementia is unknown. Objective: To assess DBS of memory circuits as a treatment for patients with mild Alzheimer’s disease (AD). Methods: We evaluated active “on” versus sham “off” bilateral DBS directed at the fornix-a major fiber bundle in the brain’s memory circuit-in a randomized, double-blind trial (ClinicalTrials.gov NCT01608061) in 42 patients with mild AD. We measured cognitive function and cerebral glucose metabolism up to 12 months post-implantation. Results: Surgery and electrical stimulation were safe and well tolerated. There were no significant differences in the primary cognitive outcomes (ADAS-Cog 13, CDR-SB) in the “on” versus “off” stimulation group at 12 months for the whole cohort. Patients receiving stimulation showed increased metabolism at 6 months but this was not significant at 12 months. On post-hoc analysis, there was a significant interaction between age and treatment outcome: in contrast to patients <65 years old (n = 12) whose results trended toward being worse with DBS ON versus OFF, in patients≥65 (n = 30) DBS-f ON treatment was associated with a trend toward both benefit on clinical outcomes and a greater increase in cerebral glucose metabolism. Conclusion: DBS for AD was safe and associated with increased cerebral glucose metabolism. There were no differences in cognitive outcomes for participants as a whole, but participants aged≥65 years may have derived benefit while there was possible worsening in patients below age 65 years with stimulation. PMID:27567810

  16. Noninvasive brain stimulation to suppress craving in substance use disorders: Review of human evidence and methodological considerations for future work.

    PubMed

    Hone-Blanchet, Antoine; Ciraulo, Domenic A; Pascual-Leone, Alvaro; Fecteau, Shirley

    2015-12-01

    Substance use disorders (SUDs) can be viewed as a pathology of neuroadaptation. The pharmacological overstimulation of neural mechanisms of reward, motivated learning and memory leads to drug-seeking behavior. A critical characteristic of SUDs is the appearance of craving, the motivated desire and urge to use, which is a main focus of current pharmacological and behavioral therapies. Recent proof-of-concept studies have tested the effects of noninvasive brain stimulation on craving. Although its mechanisms of action are not fully understood, this approach shows interesting potential in tuning down craving and possibly consumption of diverse substances. This article reviews available results on the use of repetitive transcranial magnetic stimulation (rTMS) and transcranial electrical stimulation (tES) in SUDs, specifically tobacco, alcohol and psychostimulant use disorders. We discuss several important factors that need to be addressed in future works to improve clinical assessment and effects of noninvasive brain stimulation in SUDs. Factors discussed include brain stimulation devices and parameters, study designs, brain states and subjects' characteristics.

  17. Electromagnetic Field Modeling of Transcranial Electric and Magnetic Stimulation: Targeting, Individualization, and Safety of Convulsive and Subconvulsive Applications

    NASA Astrophysics Data System (ADS)

    Deng, Zhi-De

    The proliferation of noninvasive transcranial electric and magnetic brain stimulation techniques and applications in recent years has led to important insights into brain function and pathophysiology of brain-based disorders. Transcranial electric and magnetic stimulation encompasses a wide spectrum of methods that have developed into therapeutic interventions for a variety of neurological and psychiatric disorders. Although these methods are at different stages of development, the physical principle underlying these techniques is the similar. Namely, an electromagnetic field is induced in the brain either via current injection through scalp electrodes or via electromagnetic induction. The induced electric field modulates the neuronal transmembrane potentials and, thereby, neuronal excitability or activity. Therefore, knowledge of the induced electric field distribution is key in the design and interpretation of basic research and clinical studies. This work aims to delineate the fundamental physical limitations, tradeoffs, and technological feasibility constraints associated with transcranial electric and magnetic stimulation, in order to inform the development of technologies that deliver safer, and more spatially, temporally, and patient specific stimulation. Part I of this dissertation expounds on the issue of spatial targeting of the electric field. Contrasting electroconvulsive therapy (ECT) and magnetic seizure therapy (MST) configurations that differ markedly in efficacy, side effects, and seizure induction efficiency could advance our understanding of the principles linking treatment parameters and therapeutic outcome and could provide a means of testing hypotheses of the mechanisms of therapeutic action. Using the finite element method, we systematically compare the electric field characteristics of existing forms of ECT and MST. We introduce a method of incorporating a modality-specific neural activation threshold in the electric field models that can

  18. Differential impact of thalamic versus subthalamic deep brain stimulation on lexical processing.

    PubMed

    Krugel, Lea K; Ehlen, Felicitas; Tiedt, Hannes O; Kühn, Andrea A; Klostermann, Fabian

    2014-10-01

    Roles of subcortical structures in language processing are vague, but, interestingly, basal ganglia and thalamic Deep Brain Stimulation can go along with reduced lexical capacities. To deepen the understanding of this impact, we assessed word processing as a function of thalamic versus subthalamic Deep Brain Stimulation. Ten essential tremor patients treated with thalamic and 14 Parkinson׳s disease patients with subthalamic Deep Brain Stimulation performed an acoustic Lexical Decision Task ON and OFF stimulation. Combined analysis of task performance and event-related potentials allowed the determination of processing speed, priming effects, and N400 as neurophysiological correlate of lexical stimulus processing. 12 age-matched healthy participants acted as control subjects. Thalamic Deep Brain Stimulation prolonged word decisions and reduced N400 potentials. No comparable ON-OFF effects were present in patients with subthalamic Deep Brain Stimulation. In the latter group of patients with Parkinson' disease, N400 amplitudes were, however, abnormally low, whether under active or inactive Deep Brain Stimulation. In conclusion, performance speed and N400 appear to be influenced by state functions, modulated by thalamic, but not subthalamic Deep Brain Stimulation, compatible with concepts of thalamo-cortical engagement in word processing. Clinically, these findings specify cognitive sequels of Deep Brain Stimulation in a target-specific way. PMID:25194209

  19. Choosing electrodes for deep brain stimulation experiments--electrochemical considerations.

    PubMed

    Gimsa, Jan; Habel, Beate; Schreiber, Ute; van Rienen, Ursula; Strauss, Ulf; Gimsa, Ulrike

    2005-03-30

    Deep brain stimulation (DBS) is a therapy of movement disorders including Parkinson's disease (PD). Commercially available electrodes for animal models of Parkinson's disease vary in geometry and material. We characterized such electrodes and found a drift in their properties within minutes and up to about 60 h after immersion in cell culture medium, both with and without a stimulation signal. Electrode properties could largely be restored by proteolytic treatment for platinum/iridium electrodes but not for stainless steel ones. Short-term drift and irreversible aging could be followed by impedance measurements. Aging was accompanied by metal corrosion and erosion of the plastic insulation. For both materials, the degradation rates depended on the current density at the electrode surfaces. Fourier analysis of the DBS pulse (60 micros, repetition rate 130 Hz) revealed harmonic frequencies spanning a band of more than three decades, with significant harmonics up to the MHz range. The band is located in a window imposed by electrode processes and capacitive cell membrane bridging at the low and high frequency ends, respectively. Even though electrode processes are reduced at higher frequencies they only vanish above 1 MHz and cannot be avoided. Therefore, the use of inert electrode materials is of special importance. The neurotoxicity of iron makes avoiding stainless steel electrodes imperative. Future developments need to avoid the use of corrosive materials and current density hot spots at the electrode surface, and to reduce low frequency components in the DBS pulses in order to diminish electrode processes.

  20. Deep brain stimulation for vocal tremor: a comprehensive, multidisciplinary methodology.

    PubMed

    Ho, Allen L; Erickson-Direnzo, Elizabeth; Pendharkar, Arjun V; Sung, Chih-Kwang; Halpern, Casey H

    2015-06-01

    Tremulous voice is a characteristic feature of a multitude of movement disorders, but when it occurs in individuals diagnosed with essential tremor, it is referred to as essential vocal tremor (EVT). For individuals with EVT, their tremulous voice is associated with significant social embarrassment and in severe cases may result in the discontinuation of employment and hobbies. Management of EVT is extremely difficult, and current behavioral and medical interventions for vocal tremor result in suboptimal outcomes. Deep brain stimulation (DBS) has been proposed as a potential therapeutic avenue for EVT, but few studies can be identified that have systematically examined improvements in EVT following DBS. The authors describe a case of awake bilateral DBS targeting the ventral intermediate nucleus for a patient suffering from severe voice and arm tremor. They also present their comprehensive, multidisciplinary methodology for definitive treatment of EVT via DBS. To the authors' knowledge, this is the first time comprehensive intraoperative voice evaluation has been used to guide microelectrode/stimulator placement, as well as the first time that standard pre- and post-DBS assessments have been conducted, demonstrating the efficacy of this tailored DBS approach. PMID:26030706

  1. Deep brain stimulation for severe autism: from pathophysiology to procedure.

    PubMed

    Sinha, Saurabh; McGovern, Robert A; Sheth, Sameer A

    2015-06-01

    Autism is a heterogeneous neurodevelopmental disorder characterized by early-onset impairment in social interaction and communication and by repetitive, restricted behaviors and interests. Because the degree of impairment may vary, a spectrum of clinical manifestations exists. Severe autism is characterized by complete lack of language development and potentially life-threatening self-injurious behavior, the latter of which may be refractory to medical therapy and devastating for affected individuals and their caretakers. New treatment strategies are therefore needed. Here, the authors propose deep brain stimulation (DBS) of the basolateral nucleus of the amygdala (BLA) as a therapeutic intervention to treat severe autism. The authors review recent developments in the understanding of the pathophysiology of autism. Specifically, they describe the genetic and environmental alterations that affect neurodevelopment. The authors also highlight the resultant microstructural, macrostructural, and functional abnormalities that emerge during brain development, which create a pattern of dysfunctional neural networks involved in socioemotional processing. They then discuss how these findings implicate the BLA as a key node in the pathophysiology of autism and review a reported case of BLA DBS for treatment of severe autism. Much progress has been made in recent years in understanding the pathophysiology of autism. The BLA represents a logical neurosurgical target for treating severe autism. Further study is needed that considers mechanistic and operative challenges.

  2. Use of deep brain stimulation for major affective disorders

    PubMed Central

    Mi, Kuanqing

    2016-01-01

    The multifactorial etiology of major affective disorders, such as major depression and bipolar disorder, poses a challenge for identification of effective treatments. In a substantial number of patients, psychopharmacologic treatment does not lead to effective continuous symptom relief. The use of deep brain stimulation (DBS) for treatment-resistant patients is an investigational approach that has recently produced promising results. The recent development of safer stereotaxic neurosurgery, and the combination with functional neuroimaging to map the affected brain circuits, have led to the investigation of DBS as a potential strategy to treat major mood disorders. Several independent clinical studies have recently shown that chronic DBS treatment leads to remission of symptoms in a high number of treatment-resistant patients for major depression and bipolar disorder. In conclusion, the existing proof-of-principle that DBS can be an effective intervention for treatment-resistant depression opens new avenues for treatment. However, multicenter, randomized and blind trials need to confirm efficacy and be approved after the most recent failures. Patient selection and surgical-related improvements are key issues that remain to be addressed to help deliver more precise and customized treatment.

  3. Use of deep brain stimulation for major affective disorders

    PubMed Central

    Mi, Kuanqing

    2016-01-01

    The multifactorial etiology of major affective disorders, such as major depression and bipolar disorder, poses a challenge for identification of effective treatments. In a substantial number of patients, psychopharmacologic treatment does not lead to effective continuous symptom relief. The use of deep brain stimulation (DBS) for treatment-resistant patients is an investigational approach that has recently produced promising results. The recent development of safer stereotaxic neurosurgery, and the combination with functional neuroimaging to map the affected brain circuits, have led to the investigation of DBS as a potential strategy to treat major mood disorders. Several independent clinical studies have recently shown that chronic DBS treatment leads to remission of symptoms in a high number of treatment-resistant patients for major depression and bipolar disorder. In conclusion, the existing proof-of-principle that DBS can be an effective intervention for treatment-resistant depression opens new avenues for treatment. However, multicenter, randomized and blind trials need to confirm efficacy and be approved after the most recent failures. Patient selection and surgical-related improvements are key issues that remain to be addressed to help deliver more precise and customized treatment. PMID:27698736

  4. Deep brain stimulation for severe autism: from pathophysiology to procedure.

    PubMed

    Sinha, Saurabh; McGovern, Robert A; Sheth, Sameer A

    2015-06-01

    Autism is a heterogeneous neurodevelopmental disorder characterized by early-onset impairment in social interaction and communication and by repetitive, restricted behaviors and interests. Because the degree of impairment may vary, a spectrum of clinical manifestations exists. Severe autism is characterized by complete lack of language development and potentially life-threatening self-injurious behavior, the latter of which may be refractory to medical therapy and devastating for affected individuals and their caretakers. New treatment strategies are therefore needed. Here, the authors propose deep brain stimulation (DBS) of the basolateral nucleus of the amygdala (BLA) as a therapeutic intervention to treat severe autism. The authors review recent developments in the understanding of the pathophysiology of autism. Specifically, they describe the genetic and environmental alterations that affect neurodevelopment. The authors also highlight the resultant microstructural, macrostructural, and functional abnormalities that emerge during brain development, which create a pattern of dysfunctional neural networks involved in socioemotional processing. They then discuss how these findings implicate the BLA as a key node in the pathophysiology of autism and review a reported case of BLA DBS for treatment of severe autism. Much progress has been made in recent years in understanding the pathophysiology of autism. The BLA represents a logical neurosurgical target for treating severe autism. Further study is needed that considers mechanistic and operative challenges. PMID:26030703

  5. Preclinical evaluation of a miniaturized Deep Brain Stimulation electrode lead.

    PubMed

    Villalobos, Joel; Fallon, James B; McNeill, Peter M; Allison, Rachel K; Bibari, Olivier; Williams, Chris E; McDermott, Hugh J

    2015-01-01

    The effect of miniaturizing the electrode lead for Deep Brain Stimulation (DBS) therapy was investigated in this work. A direct comparison was made between a miniature lead (0.65 mm diameter) and a lead of standard size (1.3 mm). Acute in vivo implantation in two cat brains was performed to evaluate surgical trauma and confirm capacity to target thalamic nuclei. Insertion into a homogeneous gel model of neural tissue was used to compare insertion forces while visualizing the process. The standard size cannula, used first to guide lead insertion, required substantially higher insertion force compared with the miniature version and produced a significantly larger region of tissue disruption. The characteristic hemorrhage and edema extended 119-352 μm from the implanted track surface of the miniature lead and cannula, while these extended 311-571 μm for the standard size lead and cannula. A miniature DBS implant can reduce the extent of trauma and could potentially help improve neural function preservation after functional neurosurgery. PMID:26737881

  6. Preclinical evaluation of a miniaturized Deep Brain Stimulation electrode lead.

    PubMed

    Villalobos, Joel; Fallon, James B; McNeill, Peter M; Allison, Rachel K; Bibari, Olivier; Williams, Chris E; McDermott, Hugh J

    2015-01-01

    The effect of miniaturizing the electrode lead for Deep Brain Stimulation (DBS) therapy was investigated in this work. A direct comparison was made between a miniature lead (0.65 mm diameter) and a lead of standard size (1.3 mm). Acute in vivo implantation in two cat brains was performed to evaluate surgical trauma and confirm capacity to target thalamic nuclei. Insertion into a homogeneous gel model of neural tissue was used to compare insertion forces while visualizing the process. The standard size cannula, used first to guide lead insertion, required substantially higher insertion force compared with the miniature version and produced a significantly larger region of tissue disruption. The characteristic hemorrhage and edema extended 119-352 μm from the implanted track surface of the miniature lead and cannula, while these extended 311-571 μm for the standard size lead and cannula. A miniature DBS implant can reduce the extent of trauma and could potentially help improve neural function preservation after functional neurosurgery.

  7. Using independent component analysis to remove artifacts in visual cortex responses elicited by electrical stimulation of the optic nerve

    NASA Astrophysics Data System (ADS)

    Lu, Yiliang; Cao, Pengjia; Sun, Jingjing; Wang, Jing; Li, Liming; Ren, Qiushi; Chen, Yao; Chai, Xinyu

    2012-04-01

    In visual prosthesis research, electrically evoked potentials (EEPs) can be elicited by one or more biphasic current pulses delivered to the optic nerve (ON) through penetrating electrodes. Multi-channel EEPs recorded from the visual cortex usually contain large stimulus artifacts caused by instantaneous electrotonic current spread through the brain tissue. These stimulus artifacts contaminate the EEP waveform and often make subsequent analysis of the underlying neural responses difficult. This is particularly serious when investigating EEPs in response to electrical stimulation with long duration and multi-pulses. We applied independent component analysis (ICA) to remove these electrical stimulation-induced artifacts during the development of a visual prosthesis. Multi-channel signals were recorded from visual cortices of five rabbits in response to ON electrical stimulation with various stimulus parameters. ON action potentials were then blocked by lidocaine in order to acquire cortical potentials only including stimulus artifacts. Correlation analysis of reconstructed artifacts by ICA and artifacts recorded after blocking the ON indicates successful removal of artifacts from electrical stimulation by the ICA method. This technique has potential applications in studies designed to optimize the electrical stimulation parameters used by visual prostheses.

  8. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields.

    PubMed

    Ruffini, Giulio; Fox, Michael D; Ripolles, Oscar; Miranda, Pedro Cavaleiro; Pascual-Leone, Alvaro

    2014-04-01

    Recently, multifocal transcranial current stimulation (tCS) devices using several relatively small electrodes have been used to achieve more focal stimulation of specific cortical targets. However, it is becoming increasingly recognized that many behavioral manifestations of neurological and psychiatric disease are not solely the result of abnormality in one isolated brain region but represent alterations in brain networks. In this paper we describe a method for optimizing the configuration of multifocal tCS for stimulation of brain networks, represented by spatially extended cortical targets. We show how, based on fMRI, PET, EEG or other data specifying a target map on the cortical surface for excitatory, inhibitory or neutral stimulation and a constraint on the maximal number of electrodes, a solution can be produced with the optimal currents and locations of the electrodes. The method described here relies on a fast calculation of multifocal tCS electric fields (including components normal and tangential to the cortical boundaries) using a five layer finite element model of a realistic head. Based on the hypothesis that the effects of current stimulation are to first order due to the interaction of electric fields with populations of elongated cortical neurons, it is argued that the optimization problem for tCS stimulation can be defined in terms of the component of the electric field normal to the cortical surface. Solutions are found using constrained least squares to optimize current intensities, while electrode number and their locations are selected using a genetic algorithm. For direct current tCS (tDCS) applications, we provide some examples of this technique using an available tCS system providing 8 small Ag/AgCl stimulation electrodes. We demonstrate the approach both for localized and spatially extended targets defined using rs-fcMRI and PET data, with clinical applications in stroke and depression. Finally, we extend these ideas to more general

  9. Safety of Noninvasive Brain Stimulation in Children and Adolescents

    PubMed Central

    Krishnan, Chandramouli; Santos, Luciana; Peterson, Mark D.; Ehinger, Margaret

    2015-01-01

    Background Noninvasive brain stimulation (NIBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial current stimulation (tCS) have the potential to mitigate a variety of symptoms associated with neurological and psychiatric conditions, including stroke, cerebral palsy, autism, depression, and Tourette syndrome. While the safety of these modalities has been established in adults, there is a paucity of research assessing the safety of NIBS among children. Objective To examine the existing literature regarding the safety of NIBS techniques in children and adolescents with neurologic and neuropsychiatric disorders. Methods An electronic search was performed on online databases for studies using NIBS in individuals less than 18 years of age. Non-English publications, diagnostic studies, electroconvulsive therapy, single/dual pulse TMS studies, and reviews were excluded. Adverse events reported in the studies were carefully examined and synthesized to understand the safety and tolerability of NIBS among children and adolescents. Results The data from 48 studies involving more than 513 children/adolescents (2.5–17.8 years of age) indicate that the side-effects of NIBS were, in general, mild and transient [TMS: headache (11.5%), scalp discomfort (2.5%), twitching (1.2%), mood changes (1.2%), fatigue (0.9%), tinnitus (0.6%); tCS: tingling (11.5%), itching (5.8%), redness (4.7%), scalp discomfort (3.1%)] with relatively few serious adverse events. Conclusion Our findings indicate that both repetitive TMS and tCS are safe modalities in children and adolescents with various neurological conditions, especially when safety guidelines are followed. The incidence of adverse events appears to be similar to that observed in adults; however, further studies with longer treatment and follow-up periods are needed to better understand the benefits and tolerance of long-term use of NIBS in children. PMID:25499471

  10. [Percutaneous electric and magnetic stimulation of the motor cortex in man. Physiological aspects and clinical applications].

    PubMed

    Maertens de Noordhout, A; Rothwell, J C; Day, B L; Thompson, P D; Delwaide, P J; Marsden, C D

    1989-01-01

    The new techniques of percutaneous electric and magnetic stimulation of the motor cortex in conscious man provide a unique opportunity of functional testing of the central motor pathways. These techniques seem to be safe and no immediate or delayed adverse reactions have been reported. The physiological studies so far performed suggest that the structures which are preferentially excited by these methods are the fast conducting pyramidal neurones. It has been shown that a single cortical stimulus is able to activate spinal motoneurones repeatedly. This phenomenon can easily be explained if the cortical stimulus generates multiple descending volleys in the central motor pathways. By comparison with experiments of stimulation of the exposed motor cortex in animals, it is likely that electric brain stimulation directly activates the axons of the pyramidal neurons at their origin and to a lesser extent also recruits these neurons transsynaptically, via some cortical interneurones. Magnetic stimulation of the brain at the vertex seems to act mostly by the latter mechanism. These different modes of action of the two methods of cortical stimulation explain the latency differences of the EMG responses obtained with either technique. Increased excitability of the spinal motoneurones and the existence of multiple descending volleys in response to a single cortical stimulus result in shortening of the latencies and greater amplitude of the responses recorded during voluntary contraction of the target muscle. Stimulation of the motor cortex has been used in pilot studies conducted on patients suffering from various disorders of the central motor pathways, such as multiple sclerosis, cervical spondylosis, motor neurone disease or stroke. The sensitivity of the technique looks promising. In M.S., the EMG responses usually show an increased central conduction latency, a reduced amplitude and a prolonged duration. The severity of the electrophysiological abnormalities is not very

  11. Intraoperative magnetic resonance imaging findings during deep brain stimulation surgery

    PubMed Central

    Huston, Olivia O.; Watson, Robert E.; Bernstein, Matt A.; McGee, Kiaran P.; Stead, S. Matt; Gorman, Debb A.; Lee, Kendall H.; Huston, John

    2012-01-01

    Object Deep brain stimulation (DBS) is an established neurosurgical technique used to treat a variety of neurological disorders, including Parkinson disease, essential tremor, dystonia, epilepsy, depression, and obsessive-compulsive disorder. This study reports on the use of intraoperative MR imaging during DBS surgery to evaluate acute hemorrhage, intracranial air, brain shift, and accuracy of lead placement. Methods During a 46-month period, 143 patients underwent 152 DBS surgeries including 289 lead placements utilizing intraoperative 1.5-T MR imaging. Imaging was supervised by an MR imaging physicist to maintain the specific absorption rate below the required level of 0.1 W/kg and always included T1 magnetization-prepared rapid gradient echo and T2* gradient echo sequences with selected use of T2 fluid attenuated inversion recovery (FLAIR) and T2 fast spin echo (FSE). Retrospective review of the intraoperative MR imaging examinations was performed to quantify the amount of hemorrhage and the amount of air introduced during the DBS surgery. Results Intraoperative MR imaging revealed 5 subdural hematomas, 3 subarachnoid hemorrhages, and 1 intra-parenchymal hemorrhage in 9 of the 143 patients. Only 1 patient experiencing a subarachnoid hemorrhage developed clinically apparent symptoms, which included transient severe headache and mild confusion. Brain shift due to intracranial air was identified in 144 separate instances. Conclusions Intraoperative MR imaging can be safely performed and may assist in demonstrating acute changes involving intracranial hemorrhage and air during DBS surgery. These findings are rarely clinically significant and typically resolve prior to follow-up imaging. Selective use of T2 FLAIR and T2 FSE imaging can confirm the presence of hemorrhage or air and preclude the need for CT examinations. PMID:21699482

  12. Effect of electrical stimulation superimposed with isokinetic contractions.

    PubMed

    Poumarat, G; Squire, P; Lawani, M

    1992-09-01

    Previous studies have considered the effects of the superimposition of electrical stimulation (ES) upon maximal voluntary contraction (MVC) under isometric conditions. This investigation considered these effects using isokinetic muscle action. Eleven males, non athletes, volunteered for the experiment. Isokinetic torque for extension of the right knee was measured by means of a Cybex 340 using two speeds of movement, 12 degrees/s and 30 degrees/s. Torque was measured at 5 degrees increments (from 100 degrees flexion to full extension) under conditions of MVC alone and MVC+ES. Stimulation was provided by means of a bi-phasic, symmetrical, square wave with a pulse width of 600 mu. Frequency of stimulation was either 30 Hz or 80 Hz. It was found that the pattern of torque production was unaffected by the application of ES. Peak torque values at both speeds were significantly lower when ES was applied at both frequencies compared to MVC alone. This inhibitory effect was found to extend throughout the middle range of movement. This tended to be more pronounced with the 80 Hz frequency. In general these findings were in agreement with those reported previously for isometric conditions. Possible explanations for these results include the inability of ES to recruit more motor units than MVC alone; the limitations of the subjects to tolerate a current of a sufficiently high intensity to elicit a stronger contraction, possibly due to lack of familiarization with these forms of muscle action; and the characteristics, especially pulse width, of the stimulating current.

  13. Modulating Human Auditory Processing by Transcranial Electrical Stimulation

    PubMed Central

    Heimrath, Kai; Fiene, Marina; Rufener, Katharina S.; Zaehle, Tino

    2016-01-01

    Transcranial electrical stimulation (tES) has become a valuable research tool for the investigation of neurophysiological processes underlying human action and cognition. In recent years, striking evidence for the neuromodulatory effects of transcranial direct current stimulation, transcranial alternating current stimulation, and transcranial random noise stimulation has emerged. While the wealth of knowledge has been gained about tES in the motor domain and, to a lesser extent, about its ability to modulate human cognition, surprisingly little is known about its impact on perceptual processing, particularly in the auditory domain. Moreover, while only a few studies systematically investigated the impact of auditory tES, it has already been applied in a large number of clinical trials, leading to a remarkable imbalance between basic and clinical research on auditory tES. Here, we review the state of the art of tES application in the auditory domain focussing on the impact of neuromodulation on acoustic perception and its potential for clinical application in the treatment of auditory related disorders. PMID:27013969

  14. Generation of Electrical Power from Stimulated Muscle Contractions Evaluated

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David B.

    2004-01-01

    This project is a collaborative effort between NASA Glenn Research Center's Revolutionary Aeropropulsion Concepts (RAC) Project, part of the NASA Aerospace Propulsion and Power Program of the Aerospace Technology Enterprise, and Case Western Reserve University's Cleveland Functional Electrical Stimulation (FES) Center. The RAC Project foresees implantable power requirements for future applications such as organically based sensor platforms and robotics that can interface with the human senses. One of the goals of the FES Center is to develop a totally implantable neural prosthesis. This goal is based on feedback from patients who would prefer a system with an internal power source over the currently used system with an external power source. The conversion system under investigation would transform the energy produced from a stimulated muscle contraction into electrical energy. We hypothesize that the output power of the system will be greater than the input power necessary to initiate, sustain, and control the electrical conversion system because of the stored potential energy of the muscle. If the system can be made biocompatible, durable, and with the potential for sustained use, then the biological power source will be a viable solution.

  15. Photoacoustic microscopy of microvascular responses to cortical electrical stimulation

    NASA Astrophysics Data System (ADS)

    Tsytsarev, Vassiliy; Hu, Song; Yao, Junjie; Maslov, Konstantin; Barbour, Dennis L.; Wang, Lihong V.

    2011-07-01

    Advances in the functional imaging of cortical hemodynamics have greatly facilitated the understanding of neurovascular coupling. In this study, label-free optical-resolution photoacoustic microscopy (OR-PAM) was used to monitor microvascular responses to direct electrical stimulations of the mouse somatosensory cortex through a cranial opening. The responses appeared in two forms: vasoconstriction and vasodilatation. The transition between these two forms of response was observed in single vessels by varying the stimulation intensity. Marked correlation was found between the current-dependent responses of two daughter vessels bifurcating from the same parent vessel. Statistical analysis of twenty-seven vessels from three different animals further characterized the spatial-temporal features and the current dependence of the microvascular response. Our results demonstrate that OR-PAM is a valuable tool to study neurovascular coupling at the microscopic level.

  16. Technical Rebuilding of Movement Function Using Functional Electrical Stimulation

    NASA Astrophysics Data System (ADS)

    Gföhler, Margit

    To rebuild lost movement functions, neuroprostheses based on functional electrical stimulation (FES) artificially activate skeletal muscles in corresponding sequences, using both residual body functions and artificial signals for control. Besides the functional gain, FES training also brings physiological and psychological benefits for spinal cord-injured subjects. In this chapter, current stimulation technology and the main components of FES-based neuroprostheses including enhanced control systems are presented. Technology and application of FES cycling and rowing, both approaches that enable spinal cord-injured subjects to participate in mainstream activities and improve their health and fitness by exercising like able-bodied subjects, are discussed in detail, and an overview of neuroprostheses that aim at restoring movement functions for daily life as walking or grasping is given.

  17. Deep brain stimulation for treatment of the epilepsies: the centromedian thalamic target.

    PubMed

    Velasco, F; Velasco, A L; Velasco, M; Jiménez, F; Carrillo-Ruiz, J D; Castro, G

    2007-01-01

    Electrical stimulation (ES) of the thalamic centromedian nucleus (CMN) has been proposed as a minimally invasive alternative for the treatment of difficult-to-control seizures of multifocal origin and seizures that are generalized from the onset. ES intends to interfere with seizure propagation in a non-specific manner through the thalamic system. By adopting a frontal parasagittal approach and based on anterior-posterior (AC-PC) commissure intersection, deep brain stimulation (DBS) electrodes are stereotactically inserted. Electrophysiologic confirmation of electrodes position is accomplished by eliciting cortical recruiting responses and direct current (DC) shifts by low- and high-frequency stimulation through the electrodes. Cycling mode of bipolar stimulation has been used at 60-130 Hz, 0.45 msec, 2.5-3.5 V, 1 min ON in one side 4 min OFF, 1 min ON in the other side and 4 min OFF forward and back for 24h. ES of CMN significantly decreases generalized seizures of cortical origin and focal motor seizures. Best results are obtained in non-focal generalized tonic clonic seizures and atypical absences of the Lennox-Gastaut syndrome. Experience has indicated that the most effective target for seizure control is the thalamic parvocellular centromedian subnucleus. PMID:17691321

  18. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases

    PubMed Central

    Fox, Michael D.; Buckner, Randy L.; Liu, Hesheng; Chakravarty, M. Mallar; Lozano, Andres M.; Pascual-Leone, Alvaro

    2014-01-01

    Brain stimulation, a therapy increasingly used for neurological and psychiatric disease, traditionally is divided into invasive approaches, such as deep brain stimulation (DBS), and noninvasive approaches, such as transcranial magnetic stimulation. The relationship between these approaches is unknown, therapeutic mechanisms remain unclear, and the ideal stimulation site for a given technique is often ambiguous, limiting optimization of the stimulation and its application in further disorders. In this article, we identify diseases treated with both types of stimulation, list the stimulation sites thought to be most effective in each disease, and test the hypothesis that these sites are different nodes within the same brain network as defined by resting-state functional-connectivity MRI. Sites where DBS was effective were functionally connected to sites where noninvasive brain stimulation was effective across diseases including depression, Parkinson's disease, obsessive-compulsive disorder, essential tremor, addiction, pain, minimally conscious states, and Alzheimer’s disease. A lack of functional connectivity identified sites where stimulation was ineffective, and the sign of the correlation related to whether excitatory or inhibitory noninvasive stimulation was found clinically effective. These results suggest that resting-state functional connectivity may be useful for translating therapy between stimulation modalities, optimizing treatment, and identifying new stimulation targets. More broadly, this work supports a network perspective toward understanding and treating neuropsychiatric disease, highlighting the therapeutic potential of targeted brain network modulation. PMID:25267639

  19. Neuronal excitability level transition induced by electrical stimulation

    NASA Astrophysics Data System (ADS)

    Florence, G.; Kurths, J.; Machado, B. S.; Fonoff, E. T.; Cerdeira, H. A.; Teixeira, M. J.; Sameshima, K.

    2014-12-01

    In experimental studies, electrical stimulation (ES) has been applied to induce neuronal activity or to disrupt pathological patterns. Nevertheless, the underlying mechanisms of these activity pattern transitions are not clear. To study these phenomena, we simulated a model of the hippocampal region CA1. The computational simulations using different amplitude levels and duration of ES revealed three states of neuronal excitability: burst-firing mode, depolarization block and spreading depression wave. We used the bifurcation theory to analyse the interference of ES in the cellular excitability and the neuronal dynamics. Understanding this process would help to improve the ES techniques to control some neurological disorders.

  20. New Perspectives in Edema Control via Electrical Stimulation

    PubMed Central

    Mendel, Frank C.; Fish, Dale R.

    1993-01-01

    Clinicians commonly use electrical stimulation (ES) to control acute edema. But, except for anecdotal reports, there is little evidence to support that practice. We recently conducted a series of controlled, blinded studies on several nonhuman animal models to determine the efficacy of several forms of ES, but high-voltage pulsed current (HVPC) in particular, in controlling acute posttraumatic edema. We observed that acute posttraumatic edema is curbed by HVPC when certain protocols are used. Results of these studies suggest to us that wave form, polarity, treatment schedule, intensity and frequency of pulses all influence ES, and that clinical protocols need revision. PMID:16558209

  1. Safety measures implemented for modular functioning electrical stimulators.

    PubMed

    Chen, Chiun-Fan; Lai, Jin-Shin; Chen, Shih-Wei; Lin, Yin-Tsong; Kuo, Te-Son

    2009-01-01

    The modular architecture allows for greater flexibility in the building of neural prostheses with a variety of channels but may result in unpredictable accidents under circumstances such as sensor displacements, improper coordination of the connected modules and malfunction of any individual module. A novel fail-safe interface is offered as a solution that puts in place the necessary safety measures when building a module based functional electrical stimulator. By using a single reference line in the interconnecting bus of the modules, various commands would immediately be directed to each module so that proper actions may be taken.

  2. Electrical stimulation of the salivatory nucleus in the rat.

    PubMed Central

    Donaldson, J; Mitchell, J; Templeton, D

    1984-01-01

    Unilateral electrical stimulation of the salivatory nucleus evoked a secretion from the ipsilateral parotid gland which was well maintained. Flow rate was not affected by sympathetic decentralization or by adrenoceptor antagonists but was abolished by atropine. Protein secretion was reduced by beta-adrenoceptor antagonists but not by sympathetic decentralization or adrenalectomy. In support of previous histochemical findings it is concluded that the cells of the reticular formation are the origin of the preganglionic parasympathetic fibres to the salivary glands but that a beta-adrenoceptor mechanism as yet unidentified is also involved in the protein secretion. PMID:6520785

  3. Long-term enhancement of brain function and cognition using cognitive training and brain stimulation.

    PubMed

    Snowball, Albert; Tachtsidis, Ilias; Popescu, Tudor; Thompson, Jacqueline; Delazer, Margarete; Zamarian, Laura; Zhu, Tingting; Cohen Kadosh, Roi

    2013-06-01

    Noninvasive brain stimulation has shown considerable promise for enhancing cognitive functions by the long-term manipulation of neuroplasticity. However, the observation of such improvements has been focused at the behavioral level, and enhancements largely restricted to the performance of basic tasks. Here, we investigate whether transcranial random noise stimulation (TRNS) can improve learning and subsequent performance on complex arithmetic tasks. TRNS of the bilateral dorsolateral prefrontal cortex (DLPFC), a key area in arithmetic, was uniquely coupled with near-infrared spectroscopy (NIRS) to measure online hemodynamic responses within the prefrontal cortex. Five consecutive days of TRNS-accompanied cognitive training enhanced the speed of both calculation- and memory-recall-based arithmetic learning. These behavioral improvements were associated with defined hemodynamic responses consistent with more efficient neurovascular coupling within the left DLPFC. Testing 6 months after training revealed long-lasting behavioral and physiological modifications in the stimulated group relative to sham controls for trained and nontrained calculation material. These results demonstrate that, depending on the learning regime, TRNS can induce long-term enhancement of cognitive and brain functions. Such findings have significant implications for basic and translational neuroscience, highlighting TRNS as a viable approach to enhancing learning and high-level cognition by the long-term modulation of neuroplasticity. PMID:23684971

  4. Transcutaneous electric nerve stimulation (TENS) in dentistry- A review

    PubMed Central

    Gupta, Aditi; Ladda, Ruchi; Kathariya, Mitesh; Saluja, Harish; Farooqui, Anjum-Ara

    2014-01-01

    Transcutaneous electric nerve stimulation (TENS) is a non-pharmacological method which is widely used by medical and paramedical professionals for the management of acute and chronic pain in a variety of conditions. Similarly, it can be utilized for the management of pain during various dental procedures as well as pain due to various conditions affecting maxillofacial region. This review aims to provide an insight into clinical research evidence available for the analgesic and non analgesic uses of TENS in pediatric as well as adult patients related to the field of dentistry. Also, an attempt is made to briefly discuss history of therapeutic electricity, mechanism of action of TENS, components of TENs equipment, types, techniques of administration, advantages and contradictions of TENS. With this we hope to raise awareness among dental fraternity regarding its dental applications thereby increasing its use in dentistry. Key words:Dentistry, pain, TENS. PMID:25674327

  5. Glioma localization and excision using direct electrical stimulation for language mapping during awake surgery

    PubMed Central

    LI, TIANDONG; BAI, HONGMIN; WANG, GUOLIANG; WANG, WEIMIN; LIN, JIAN; GAO, HAN; WANG, LIMIN; XIA, LIHUI; XIE, XUEMIN

    2015-01-01

    The aim of this study was to investigate the method and significance of the application of direct electrical stimulation (DES) to the brain mapping of language functions during glioma surgery. A retrospective analysis of clinical data was performed for 91 cases of brain functional area glioma surgery under DES from January 2003 until January 2012. Following cortical electrical stimulation, 88 patients exhibited seizures involving facial or hand movements and 91 cases experienced language disorders such as counting interruption, naming errors or anomia. The most commonly observed areas of counting interruption were distributed on the posterior part of the left anterior central gyrus (47.7%), the operculum of the left inferior frontal gyrus (24.4%) and the triangular part of the left inferior frontal gyrus (12.8%). Postoperative magnetic resonance imaging demonstrated that overall excision was achieved in 53 cases and sub-overall excision was performed in 31 cases. A total of 42 cases (46.2%) exhibited no postoperative neurological dysfunction, 39 cases (42.9%) exhibited brief language dysfunction, 27 cases (29.7%) experienced brief limb movement disorder, and one case appeared to have permanent neurological dysfunction. DES was indicated to be a reliable and noninvasive method for the intraoperative positioning of language areas, and was able to resect gliomas in the language area with maximal safety. PMID:26136923

  6. Two is More Than One: How to Combine Brain Stimulation Rehabilitative Training for Functional Recovery?

    PubMed Central

    Koganemaru, Satoko; Fukuyama, Hidenao; Mima, Tatsuya

    2015-01-01

    A number of studies have shown that non-invasive brain stimulation has an additional effect in combination with rehabilitative therapy to enhance functional recovery than either therapy alone. The combination enhances use-dependent plasticity induced by repetitive training. The neurophysiological mechanism of the effects of this combination is based on associative plasticity. However, these effects were not reported in all cases. We propose a list of possible strategies to achieve an effective association between rehabilitative training with brain stimulation for plasticity: (1) control of temporal aspect between stimulation and task execution; (2) the use of a shaped task for the combination; (3) the appropriate stimulation of neuronal circuits where use-dependent plastic changes occur; and (4) phase synchronization between rhythmically patterned brain stimulation and task-related patterned activities of neurons. To better utilize brain stimulation in neuro-rehabilitation, it is important to develop more effective techniques to combine them. PMID:26617497

  7. Electrical stimulation of the lateral habenula produces an inhibitory effect on sucrose self-administration.

    PubMed

    Friedman, Alexander; Lax, Elad; Dikshtein, Yahav; Abraham, Lital; Flaumenhaft, Yakov; Sudai, Einav; Ben-Tzion, Moshe; Yadid, Gal

    2011-01-01

    The lateral habenula (LHb) plays a role in prediction of negative reinforcement, punishment and aversive responses. In the current study, we examined the role that the LHb plays in regulation of negative reward responses and aversion. First, we tested the effect of intervention in LHb activity on sucrose reinforcing behavior. An electrode was implanted into the LHb and rats were trained to self-administer sucrose (20%; 16 days) until at least three days of stable performance were achieved (as represented by the number of active lever presses in self-administration cages). Rats subsequently received deep brain stimulation (DBS) of the LHb, which significantly reduced sucrose self-administration levels. In contrast, lesion of the LHb increased sucrose-seeking behavior, as demonstrated by a delayed extinction response to substitution of sucrose with water. Furthermore, in a modified non-rewarding conditioned-place-preference paradigm, DBS of the LHb led to aversion to the context associated with stimulation of this brain region. We postulate that electrical stimulation of the LHb attenuates positive reward-associated reinforcement by natural substances. PMID:20955718

  8. Electrical stimulation of the lateral habenula produces an inhibitory effect on sucrose self-administration.

    PubMed

    Friedman, Alexander; Lax, Elad; Dikshtein, Yahav; Abraham, Lital; Flaumenhaft, Yakov; Sudai, Einav; Ben-Tzion, Moshe; Yadid, Gal

    2011-01-01

    The lateral habenula (LHb) plays a role in prediction of negative reinforcement, punishment and aversive responses. In the current study, we examined the role that the LHb plays in regulation of negative reward responses and aversion. First, we tested the effect of intervention in LHb activity on sucrose reinforcing behavior. An electrode was implanted into the LHb and rats were trained to self-administer sucrose (20%; 16 days) until at least three days of stable performance were achieved (as represented by the number of active lever presses in self-administration cages). Rats subsequently received deep brain stimulation (DBS) of the LHb, which significantly reduced sucrose self-administration levels. In contrast, lesion of the LHb increased sucrose-seeking behavior, as demonstrated by a delayed extinction response to substitution of sucrose with water. Furthermore, in a modified non-rewarding conditioned-place-preference paradigm, DBS of the LHb led to aversion to the context associated with stimulation of this brain region. We postulate that electrical stimulation of the LHb attenuates positive reward-associated reinforcement by natural substances.

  9. "Sexy stimulants": the interaction between psychomotor stimulants and sexual behavior in the female brain.

    PubMed

    Guarraci, Fay A; Bolton, Jessica L

    2014-06-01

    Research indicates gender differences in sensitivity to psychomotor stimulants. Preclinical work investigating the interaction between drugs of abuse and sex-specific behaviors, such as sexual behavior, is critical to our understanding of such gender differences in humans. A number of behavioral paradigms can be used to model aspects of human sexual behavior in animal subjects. Although traditional assessment of the reflexive, lordosis posture of the female rat has been used to map the neuroanatomical and neurochemical systems that contribute to uniquely female copulatory behavior, the additional behavioral paradigms discussed in the current review have helped us expand our description of the appetitive and consummatory patterns of sexual behavior in the female rat. Measuring appetitive behavior is particularly important for assessing sexual motivation, the equivalent of "desire" in humans. By investigating the effects of commonly abused drugs on female sexual motivation, we are beginning to elucidate the role of dopaminergic neurotransmission, a neural system also known to be critical to the neurobiology of drug addiction, in female sexual motivation. A better understanding of the nexus of sex and drugs in the female brain will help advance our understanding of motivation in general and explain how psychomotor stimulants affect males and females differently.

  10. "Sexy stimulants": the interaction between psychomotor stimulants and sexual behavior in the female brain.

    PubMed

    Guarraci, Fay A; Bolton, Jessica L

    2014-06-01

    Research indicates gender differences in sensitivity to psychomotor stimulants. Preclinical work investigating the interaction between drugs of abuse and sex-specific behaviors, such as sexual behavior, is critical to our understanding of such gender differences in humans. A number of behavioral paradigms can be used to model aspects of human sexual behavior in animal subjects. Although traditional assessment of the reflexive, lordosis posture of the female rat has been used to map the neuroanatomical and neurochemical systems that contribute to uniquely female copulatory behavior, the additional behavioral paradigms discussed in the current review have helped us expand our description of the appetitive and consummatory patterns of sexual behavior in the female rat. Measuring appetitive behavior is particularly important for assessing sexual motivation, the equivalent of "desire" in humans. By investigating the effects of commonly abused drugs on female sexual motivation, we are beginning to elucidate the role of dopaminergic neurotransmission, a neural system also known to be critical to the neurobiology of drug addiction, in female sexual motivation. A better understanding of the nexus of sex and drugs in the female brain will help advance our understanding of motivation in general and explain how psychomotor stimulants affect males and females differently. PMID:24269964

  11. Transcranial Magnetic Stimulation and Deep Brain Stimulation in the treatment of alcohol dependence

    PubMed Central

    Alba-Ferrara, L.; Fernandez, F.; Salas, R.; de Erausquin, G. A.

    2013-01-01

    Alcohol dependence is a major social, economic, and public health problem. Alcoholism can lead to damage of the gastrointestinal, nervous, cardiovascular, and respiratory systems and it can be lethal, costing hundreds of billions to the health care system. Despite the existence of cognitive-behavioral therapy, psychosocial interventions, and spiritually integrated treatment to treat it, alcohol dependence has a high relapse rate and poor prognosis, albeit with high interindividual variability. In this review, we discuss the use of two neuromodulation techniques, namely repetitive transcranial magnetic stimulation (rTMS) and deep brain stimulation (DBS), and their advantages and disadvantages compared to first-line pharmacological treatment for alcohol dependence. We also discuss rTMS and DBS targets for alcohol dependence treatment, considering experimental animal and human evidence, with careful consideration of methodological issues preventing the identification of feasible targets for neuromodulation treatments, as well as inter-individual variability factors influencing alcoholism prognosis. Lastly, we anticipate future research aiming to tailor the treatment to each individual patient by combining neurofunctional, neuroanatomical and neurodisruptive techniques optimizing the outcome. PMID:25598743

  12. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation.

    PubMed

    Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén

    2016-11-01

    Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. PMID:27511839

  13. Rewarding brain stimulation induces only sparse Fos-like immunoreactivity in dopaminergic neurons.

    PubMed

    Hunt, G E; McGregor, I S

    1998-03-01

    In this study, c-fos immunohistochemistry was used to identify the brain regions activated by rewarding brain stimulation in rats. Rats had monopolar electrodes implanted in the medial forebrain bundle and were allocated to either a self-stimulation (n = 4), yoked stimulation (n = 4) or no stimulation (n = 6) group. In a single 1 h test session, each rat in the self-stimulation group made 1000 nose poke responses with each response followed by a 0.5 s train of brain stimulation. Rats in the yoked-stimulation group were paired with a partner in the self-stimulation group and received brain stimulation whenever their partner did. However, their nose poke responses did not trigger stimulation. This yoked procedure was thus used to identify any Fos-like immunoreactivity due to operant responding. Rats in the no stimulation group were placed in the same apparatus as the other rats but received no brain stimulation and were thus used to assess baseline Fos-like immunoreactivity. Results showed that stimulation increased Fos-like immunoreactivity in many areas of the brain in both the self-stimulation and yoked groups. The areas with the highest Fos-like immunoreactivity were ipsilateral to the electrode site and included the medial prefrontal cortex, lateral septum, nucleus accumbens (shell), the medial and lateral preoptic areas, bed nucleus of the stria terminalis, central amygdala, lateral habenula, dorsomedial hypothalamus, lateral hypothalamus and the anterior ventral tegmental area. Bilateral Fos-like immunoreactivity was evident in the nucleus accumbens core, paraventricular nucleus of the hypothalamus, the retrorubral fields and the locus coeruleus. A double-labelling procedure identifying both Fos and tyrosine hydroxylase was used to show that very few (< 5%) of the A10 dopamine cell bodies in the ventral tegmental area expressed Fos following brain stimulation. In contrast, most of the noradrenergic neurons of the locus coeruleus (A6), rubrospinal tract (A5

  14. Deep brain stimulation for psychiatric diseases: what are the risks?

    PubMed

    Saleh, Christian; Fontaine, Denys

    2015-05-01

    Despite the application of deep brain stimulation (DBS) as an efficient treatment modality for psychiatric disorders, such as obsessive-compulsive disorder (OCD), Gilles de la Tourette Syndrome (GTS), and treatment refractory major depression (TRD), few patients are operated or included in clinical trials, often for fear of the potential risks of an approach deemed too dangerous. To assess the surgical risks, we conducted an analysis of publications on DBS for psychiatric disorders. A PubMed search was conducted on reports on DBS for OCD, GTS, and TRD. Forty-nine articles were included. Only reports on complications related to DBS were selected and analyzed. Two hundred seventy-two patients with a mean follow-up of 22 months were included in our analysis. Surgical mortality was nil. The overall mortality was 1.1 %: two suicides were unrelated to DBS and one death was reported to be unlikely due to DBS. The majority of complications were transient and related to stimulation. Long-term morbidity occurred in 16.5 % of cases. Three patients had permanent neurological complications due to intracerebral hemorrhage (2.2 %). Complications reported in DBS for psychiatric diseases appear to be similar to those reported for DBS in movement disorders. But class I evidence is lacking. Our analysis was based mainly on small non-randomized studies. A significant number of patients (approximately 150 patients) who were treated with DBS for psychiatric diseases had to be excluded from our analysis as no data on complications was available. The exact prevalence of complications of DBS in psychiatric diseases could not be established. DBS for psychiatric diseases is promising, but remains an experimental technique in need of further evaluation. A close surveillance of patients undergoing DBS for psychiatric diseases is mandatory. PMID:25795265

  15. Uncommon Applications of Deep Brain Stimulation in Hyperkinetic Movement Disorders

    PubMed Central

    Smith, Kara M.; Spindler, Meredith A.

    2015-01-01

    Background In addition to the established indications of tremor and dystonia, deep brain stimulation (DBS) has been utilized less commonly for several hyperkinetic movement disorders, including medication-refractory myoclonus, ballism, chorea, and Gilles de la Tourette (GTS) and tardive syndromes. Given the lack of adequate controlled trials, it is difficult to translate published reports into clinical use. We summarize the literature, draw conclusions regarding efficacy when possible, and highlight concerns and areas for future study. Methods A Pubmed search was performed for English-language articles between January 1980 and June 2014. Studies were selected if they focused primarily on DBS to treat the conditions of focus. Results We identified 49 cases of DBS for myoclonus-dystonia, 21 for Huntington's disease, 15 for choreacanthocytosis, 129 for GTS, and 73 for tardive syndromes. Bilateral globus pallidus interna (GPi) DBS was the most frequently utilized procedure for all conditions except GTS, in which medial thalamic DBS was more common. While the majority of cases demonstrate some improvement, there are also reports of no improvement or even worsening of symptoms in each condition. The few studies including functional or quality of life outcomes suggest benefit. A limited number of studies included blinded on/off testing. There have been two double-blind controlled