Sample records for electrical capacitance volume

  1. Electrical capacitance volume tomography (ECVT) applied to bubbling fluid beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, J., Mei, J.

    2012-01-01

    These presentation visuals illustrate the apparatus and method for applying Electrical Capacitance Volume Tomography (ECVT) to bubbling fluid beds to their solid fraction and bubble properties. Results are compared to estimated values.

  2. Electrical capacitance volume tomography with high contrast dielectrics using a cuboid sensor geometry

    NASA Astrophysics Data System (ADS)

    Nurge, Mark A.

    2007-05-01

    An electrical capacitance volume tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 × 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of dielectric distributions. This paper presents a method of reconstructing images of high contrast dielectric materials using only the self-capacitance measurements. By constraining the unknown dielectric material to one of two values, the inverse problem is no longer ill-determined. Resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminium structure inserted at different positions within the sensing region. Comparisons with standard two-dimensional ECT systems highlight the capabilities and limitations of the electronics and reconstruction algorithm.

  3. Electrical capacitance volume tomography of high contrast dielectrics using a cuboid geometry

    NASA Astrophysics Data System (ADS)

    Nurge, Mark A.

    An Electrical Capacitance Volume Tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 x 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of dielectric distributions. This dissertation presents a method of reconstructing images of high contrast dielectric materials using only the self capacitance measurements. By constraining the unknown dielectric material to one of two values, the inverse problem is no longer ill-determined. Resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminum structure inserted at different positions within the sensing region. Comparisons with standard two dimensional ECT systems highlight the capabilities and limitations of the electronics and reconstruction algorithm.

  4. Electrical Capacitance Volume Tomography: Design and Applications

    PubMed Central

    Wang, Fei; Marashdeh, Qussai; Fan, Liang-Shih; Warsito, Warsito

    2010-01-01

    This article reports recent advances and progress in the field of electrical capacitance volume tomography (ECVT). ECVT, developed from the two-dimensional electrical capacitance tomography (ECT), is a promising non-intrusive imaging technology that can provide real-time three-dimensional images of the sensing domain. Images are reconstructed from capacitance measurements acquired by electrodes placed on the outside boundary of the testing vessel. In this article, a review of progress on capacitance sensor design and applications to multi-phase flows is presented. The sensor shape, electrode configuration, and the number of electrodes that comprise three key elements of three-dimensional capacitance sensors are illustrated. The article also highlights applications of ECVT sensors on vessels of various sizes from 1 to 60 inches with complex geometries. Case studies are used to show the capability and validity of ECVT. The studies provide qualitative and quantitative real-time three-dimensional information of the measuring domain under study. Advantages of ECVT render it a favorable tool to be utilized for industrial applications and fundamental multi-phase flow research. PMID:22294905

  5. The challenges of achieving good electrical and mechanical properties when making structural supercapacitors

    NASA Astrophysics Data System (ADS)

    Ciocanel, C.; Browder, C.; Simpson, C.; Colburn, R.

    2013-04-01

    The paper presents results associated with the electro-mechanical characterization of a composite material with power storage capability, identified throughout the paper as a structural supercapacitor. The structural supercapacitor uses electrodes made of carbon fiber weave, a separator made of Celgard 3501, and a solid PEG-based polymer blend electrolyte. To be a viable structural supercapacitor, the material has to have good mechanical and power storage/electrical properties. The literature in this area is inconsistent on which electrical properties are evaluated, and how those properties are assessed. In general, measurements of capacitance or specific capacitance (i.e. capacitance per unit area or per unit volume) are made, without considering other properties such as leakage resistance and equivalent series resistance of the supercapacitor. This paper highlights the significance of these additional electrical properties, discusses the fluctuation of capacitance over time, and proposes methods to improve the stability of the material's electric properties over time.

  6. Electrical method for the measurements of volume averaged electron density and effective coupled power to the plasma bulk

    NASA Astrophysics Data System (ADS)

    Henault, M.; Wattieaux, G.; Lecas, T.; Renouard, J. P.; Boufendi, L.

    2016-02-01

    Nanoparticles growing or injected in a low pressure cold plasma generated by a radiofrequency capacitively coupled capacitive discharge induce strong modifications in the electrical parameters of both plasma and discharge. In this paper, a non-intrusive method, based on the measurement of the plasma impedance, is used to determine the volume averaged electron density and effective coupled power to the plasma bulk. Good agreements are found when the results are compared to those given by other well-known and established methods.

  7. Electrical description of N2 capacitively coupled plasmas with the global model

    NASA Astrophysics Data System (ADS)

    Cao, Ming-Lu; Lu, Yi-Jia; Cheng, Jia; Ji, Lin-Hong; Engineering Design Team

    2016-10-01

    N2 discharges in a commercial capacitively coupled plasma reactor are modelled by a combination of an equivalent circuit and the global model, for a range of gas pressure at 1 4 Torr. The ohmic and inductive plasma bulk and the capacitive sheath are represented as LCR elements, with electrical characteristics determined by plasma parameters. The electron density and electron temperature are obtained from the global model in which a Maxwellian electron distribution is assumed. Voltages and currents are recorded by a VI probe installed after the match network. Using the measured voltage as an input, the current flowing through the discharge volume is calculated from the electrical model and shows excellent agreement with the measurements. The experimentally verified electrical model provides a simple and accurate description for the relationship between the external electrical parameters and the plasma properties, which can serve as a guideline for process window planning in industrial applications.

  8. Aging dynamics in the polymer glass of poly(2-chlorostyrene): Dielectric susceptibility and volume

    NASA Astrophysics Data System (ADS)

    Fukao, Koji; Tahara, Daisuke

    2009-11-01

    Aging dynamics was investigated in the glassy states of poly(2-chlorostyrene) by measuring the complex electrical capacitance during aging below the glass transition temperature. The variations with time and temperature of the ac dielectric susceptibility and volume could be determined by simply measuring the variation in the complex electrical capacitance. Isothermal aging at a given temperature for several hours after an intermittent stop in constant-rate cooling is stored in the deviations of both the real and imaginary parts of the complex ac dielectric susceptibility and volume. During cooling after isothermal aging, the deviation of the ac dielectric susceptibility from the reference value decreases and almost vanishes at room temperature. By contrast, the deviation in volume induced during isothermal aging remains almost constant during cooling. The simultaneous measurement of ac dielectric susceptibility and volume clearly revealed that the ac dielectric susceptibility exhibits a full rejuvenation effect, whereas the volume does not show any rejuvenation effects. We discuss a plausible model that can reproduce the present experimental results.

  9. Fabrication of 3-D nanodimensioned electric double layer capacitor structures using block copolymer templates.

    PubMed

    Rasappa, Sozaraj; Borah, Dipu; Senthamaraikannan, Ramsankar; Faulkner, Colm C; Holmes, Justin D; Morris, Michael A

    2014-07-01

    The need for materials for high energy storage has led to very significant research in supercapacitor systems. These can exhibit electrical double layer phenomena and capacitances up to hundreds of F/g. Here, we demonstrate a new supercapacitor fabrication methodology based around the microphase separation of PS-b-PMMA which has been used to prepare copper nanoelectrodes of dimension -13 nm. These structures provide excellent capacitive performance with a maximum specific capacitance of -836 F/g for a current density of 8.06 A/g at a discharge current as high as 75 mA. The excellent performance is due to a high surface area: volume ratio. We suggest that this highly novel, easily fabricated structure might have a number of important applications.

  10. Role of ion hydration for the differential capacitance of an electric double layer.

    PubMed

    Caetano, Daniel L Z; Bossa, Guilherme V; de Oliveira, Vinicius M; Brown, Matthew A; de Carvalho, Sidney J; May, Sylvio

    2016-10-12

    The influence of soft, hydration-mediated ion-ion and ion-surface interactions on the differential capacitance of an electric double layer is investigated using Monte Carlo simulations and compared to various mean-field models. We focus on a planar electrode surface at physiological concentration of monovalent ions in a uniform dielectric background. Hydration-mediated interactions are modeled on the basis of Yukawa potentials that add to the Coulomb and excluded volume interactions between ions. We present a mean-field model that includes hydration-mediated anion-anion, anion-cation, and cation-cation interactions of arbitrary strengths. In addition, finite ion sizes are accounted for through excluded volume interactions, described either on the basis of the Carnahan-Starling equation of state or using a lattice gas model. Both our Monte Carlo simulations and mean-field approaches predict a characteristic double-peak (the so-called camel shape) of the differential capacitance; its decrease reflects the packing of the counterions near the electrode surface. The presence of hydration-mediated ion-surface repulsion causes a thin charge-depleted region close to the surface, which is reminiscent of a Stern layer. We analyze the interplay between excluded volume and hydration-mediated interactions on the differential capacitance and demonstrate that for small surface charge density our mean-field model based on the Carnahan-Starling equation is able to capture the Monte Carlo simulation results. In contrast, for large surface charge density the mean-field approach based on the lattice gas model is preferable.

  11. Charging and Transport Dynamics of a Flow-Through Electrode Capacitive Deionization System.

    PubMed

    Qu, Yatian; Campbell, Patrick G; Hemmatifar, Ali; Knipe, Jennifer M; Loeb, Colin K; Reidy, John J; Hubert, Mckenzie A; Stadermann, Michael; Santiago, Juan G

    2018-01-11

    We present a study of the interplay among electric charging rate, capacitance, salt removal, and mass transport in "flow-through electrode" capacitive deionization (CDI) systems. We develop two models describing coupled transport and electro-adsorption/desorption which capture salt removal dynamics. The first model is a simplified, unsteady zero-dimensional volume-averaged model which identifies dimensionless parameters and figures of merits associated with cell performance. The second model is a higher fidelity area-averaged model which captures both spatial and temporal responses of charging. We further conducted an experimental study of these dynamics and considered two salt transport regimes: (1) advection-limited regime and (2) dispersion-limited regime. We use these data to validate models. The study shows that, in the advection-limited regime, differential charge efficiency determines the salt adsorption at the early stage of the deionization process. Subsequently, charging transitions to a quasi-steady state where salt removal rate is proportional to applied current scaled by the inlet flow rate. In the dispersion-dominated regime, differential charge efficiency, cell volume, and diffusion rates govern adsorption dynamics and flow rate has little effect. In both regimes, the interplay among mass transport rate, differential charge efficiency, cell capacitance, and (electric) charging current governs salt removal in flow-through electrode CDI.

  12. Controlling the dynamics of electrons and ions in large area capacitive radio frequency plasmas via the Electrical Asymmetry Effect

    NASA Astrophysics Data System (ADS)

    Schuengel, Edmund

    2014-10-01

    The processing of large area surfaces in capacitive radio-frequency plasmas is a crucial step in the manufacturing of various high-technological products. To optimize these discharges for applications, understanding and controlling the dynamics of electrons and ions is vitally important. A recently proposed method of controlling these dynamics is based on the Electrical Asymmetry Effect (EAE): By driving the capacitive discharge with a dual-frequency voltage waveform composed of two consecutive harmonics, the symmetry of the discharge can be varied by tuning the relative phase. In this experimental study, the EAE is tested in hydrogen diluted silane discharges. The electron dynamics visualized by Phase Resolved Optical Emission Spectroscopy depends on the electrical asymmetry, the heating mode, and the presence of dust particles agglomerating in the plasma volume. In particular, a transition from the α-mode (heating by sheath expansion and field reversal) to the Ω-mode (heating by drift field in the bulk) is observed. The ion dynamics are strongly affected by the sheaths electric fields, which can be controlled via the EAE: Separate control of the flux and mean energy of ions onto the electrodes is possible via the EAE. Furthermore, investigations of the spatially resolved ion flux in the electromagnetic regime, i.e. using higher driving frequencies, reveal that the ion flux profile is controllable via the phase, as well, allowing for a significant improvement of the uniformity. Thus, it is demonstrated that the EAE is a powerful tool to control the properties of large area capacitive discharges in the volume and at the surfaces in various ways. Funded by the German Federal Ministry for the Environment, Nature conservation, and Nuclear Safety (0325210B).

  13. In situ self-sacrificed template synthesis of vanadium nitride/nitrogen-doped graphene nanocomposites for electrochemical capacitors.

    PubMed

    Liu, Hong-Hui; Zhang, Hong-Ling; Xu, Hong-Bin; Lou, Tai-Ping; Sui, Zhi-Tong; Zhang, Yi

    2018-03-15

    Vanadium nitride and graphene have been widely used as pseudo-capacitive and electric double-layer capacitor electrode materials for electrochemical capacitors, respectively. However, the poor cycling stability of vanadium nitride and the low capacitance of graphene impeded their practical applications. Herein, we demonstrated an in situ self-sacrificed template method for the synthesis of vanadium nitride/nitrogen-doped graphene (VN/NGr) nanocomposites by the pyrolysis of a mixture of dicyandiamide, glucose, and NH 4 VO 3 . Vanadium nitride nanoparticles of the size in the range of 2 to 7 nm were uniformly embedded into the nitrogen-doped graphene skeleton. Furthermore, the VN/NGr nanocomposites with a high specific surface area and pore volume showed a high specific capacitance of 255 F g -1 at 10 mV s -1 , and an excellent cycling stability (94% capacitance retention after 2000 cycles). The excellent capacitive properties were ascribed to the excellent conductivity of nitrogen-doped graphene, high surface area, high pore volume, and the synergistic effect between vanadium nitride and nitrogen-doped graphene.

  14. All-tantalum electrolytic capacitor

    NASA Technical Reports Server (NTRS)

    Green, G. E., Jr.

    1977-01-01

    Device uses single-compression tantalum-to-tantalum seal. Single-compression seal allows better utilization of volume within device. As result of all-tantalum case and lengthened cathode, electrical parameters, particularly equivalent series resistance and capacitance stability, improved over silver-cased capacitor.

  15. Volume Averaging Study of the Capacitive Deionization Process in Homogeneous Porous Media

    DOE PAGES

    Gabitto, Jorge; Tsouris, Costas

    2015-05-05

    Ion storage in porous electrodes is important in applications such as energy storage by supercapacitors, water purification by capacitive deionization, extraction of energy from a salinity difference and heavy ion purification. In this paper, a model is presented to simulate the charge process in homogeneous porous media comprising big pores. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without faradaic reactions or specific adsorption of ions. A volume averaging technique is used to derive the averaged transport equations in the limit of thin electrical double layers. Transport between the electrolyte solution and the chargedmore » wall is described using the Gouy–Chapman–Stern model. The effective transport parameters for isotropic porous media are calculated solving the corresponding closure problems. Finally, the source terms that appear in the average equations are calculated using numerical computations. An alternative way to deal with the source terms is proposed.« less

  16. Quantifying the thickness of the electrical double layer neutralizing a planar electrode: the capacitive compactness.

    PubMed

    Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Chávez-Páez, Martín; Kłos, Jacek; Lamperski, Stanisław

    2017-12-20

    The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few. In order to include consistently these features to describe more accurately the thickness of the electrical double layer of an inhomogeneous charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a generalization of the compactness of the spherical electrical double layer around a small macroion (González-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive compactness to characterize strongly coupled charged fluids in external electric fields, we use integral equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt near a planar electrode. In particular, we study the electrode's charge neutralization, and the maximum inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic concentration, and the electrode's charge. The behaviour of the associated capacitive compactness is interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive compactness and its first two derivatives are expressed in terms of experimentally measurable macroscopic properties such as the differential and integral capacity, the electrode's surface charge density, and the mean electrostatic potential at the electrode's surface.

  17. Effect of ion concentration, solution and membrane permittivity on electric energy storage and capacitance.

    PubMed

    Tajparast, Mohammad; Glavinović, Mladen I

    2018-06-06

    Bio-membranes as capacitors store electric energy, but their permittivity is low whereas the permittivity of surrounding solution is high. To evaluate the effective capacitance of the membrane/solution system and determine the electric energy stored within the membrane and in the solution, we estimated their electric variables using Poisson-Nernst-Planck simulations. We calculated membrane and solution capacitances from stored electric energy. The effective capacitance was calculated by fitting a six-capacitance model to charges (fixed and ion) and associated potentials, because it cannot be considered as a result of membrane and solution capacitance in series. The electric energy stored within the membrane (typically much smaller than that in the solution), depends on the membrane permittivity, but also on the external electric field, surface charge density, water permittivity and ion concentration. The effect on capacitances is more specific. Solution capacitance rises with greater solution permittivity or ion concentration, but the membrane capacitance (much smaller than solution capacitance) is only influenced by its permittivity. Interestingly, the effective capacitance is independent of membrane or solution permittivity, but rises as the ion concentration increases and surface charge becomes positive. Experimental estimates of membrane capacitance are thus not necessarily a reliable index of its surface area. Copyright © 2018. Published by Elsevier B.V.

  18. Towards understanding the effects of van der Waals strengths on the electric double-layer structures and capacitive behaviors

    NASA Astrophysics Data System (ADS)

    Yang, Huachao; Bo, Zheng; Yang, Jinyuan; Yan, Jianhua; Cen, Kefa

    2017-10-01

    Solid-liquid interactions are considered to play a crucial role in charge storage capability of electric double-layer capacitors (EDLCs). In this work, effects of van der Waals (VDW) strengths on the EDL structures and capacitive performances within two representative electrolytes of solvated aqueous solutions and solvent-free ionic liquids are illuminated by molecular dynamics simulations. Single crystalline metals with similar lattice constant but diverse VDW potentials are employed as electrodes. Upon enhancing VDW strengths, capacitance of aqueous electrolytes first increases conspicuously by ∼34.0% and then descends, manifesting a non-monotonic trend, which goes beyond traditional perspectives. Such unusual observation is interpreted by the excluded-volume effects stemmed from ion-solvent competitions. Stimulated by predominant coulombic interactions, more ions are aggregated at the interface despite of the increasing VDW potentials, facilitating superior screening efficiency and capacitance. However, further enhancing strengths preferentially attracts more solvents instead of ions to the electrified surface, which in turn strikingly repels ions from Helmholtz layers, deteriorating electrode capacitance. An essentially similar feather is also recognized for ionic liquids, while the corresponding mechanisms are prominently ascribed to the suppressed ionic separations issued from cation-anion competitions. We highlight that constructing electrode materials with a moderate-hydrophilicity could further advance the performances of EDLCs.

  19. Electrochemical properties for high surface area and improved electrical conductivity of platinum-embedded porous carbon nanofibers

    NASA Astrophysics Data System (ADS)

    An, Geon-Hyoung; Ahn, Hyo-Jin; Hong, Woong-Ki

    2015-01-01

    Four different types of carbon nanofibers (CNFs) for electrical double-layer capacitors (EDLCs), porous and non-porous CNFs with and without Pt metal nanoparticles, are synthesized by an electrospinning method and their performance in electrical double-layer capacitors (EDLCs) is characterized. In particular, the Pt-embedded porous CNFs (PCNFs) exhibit a high specific surface area of 670 m2 g-1, a large mesopore volume of 55.7%, and a low electrical resistance of 1.7 × 103. The synergistic effects of the high specific surface area with a large mesopore volume, and superior electrical conductivity result in an excellent specific capacitance of 130.2 F g-1, a good high-rate performance, superior cycling durability, and high energy density of 16.9-15.4 W h kg-1 for the performance of EDLCs.

  20. Electrode Mass Balancing as an Inexpensive and Simple Method to Increase the Capacitance of Electric Double-Layer Capacitors

    PubMed Central

    Andres, Britta; Engström, Ann-Christine; Blomquist, Nicklas; Forsberg, Sven; Dahlström, Christina; Olin, Håkan

    2016-01-01

    Symmetric electric double-layer capacitors (EDLCs) have equal masses of the same active material in both electrodes. However, having equal electrode masses may prevent the EDLC to have the largest possible specific capacitance if the sizes of the hydrated anions and cations in the electrolyte differ because the electrodes and the electrolyte may not be completely utilized. Here we demonstrate how this issue can be resolved by mass balancing. If the electrode masses are adjusted according to the size of the ions, one can easily increase an EDLC’s specific capacitance. To that end, we performed galvanostatic cycling to measure the capacitances of symmetric EDLCs with different electrode mass ratios using four aqueous electrolytes— Na2SO4, H2SO4, NaOH, and KOH (all with a concentration of 1 M)—and compared these to the theoretical optimal electrode mass ratio that we calculated using the sizes of the hydrated ions. Both the theoretical and experimental values revealed lower-than-1 optimal electrode ratios for all electrolytes except KOH. The largest increase in capacitance was obtained for EDLCs with NaOH as electrolyte. Specifically, we demonstrate an increase of the specific capacitance by 8.6% by adjusting the electrode mass ratio from 1 to 0.86. Our findings demonstrate that electrode mass balancing is a simple and inexpensive method to increase the capacitance of EDLCs. Furthermore, our results imply that one can reduce the amount of unused material in EDLCs and thus decrease their weight, volume and cost. PMID:27658253

  1. Electrical Capacitance Volume Tomography for the Packed Bed Reactor ISS Flight Experiment

    NASA Technical Reports Server (NTRS)

    Marashdeh, Qussai; Motil, Brian; Wang, Aining; Liang-Shih, Fan

    2013-01-01

    Fixed packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a highly desirable unit operation for long duration life support systems in space. NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. To validate these models, the instantaneous distribution of the gas and liquid phases must be measured.Electrical Capacitance Volume Tomography (ECVT) is a non-invasive imaging technology recently developed for multi-phase flow applications. It is based on distributing flexible capacitance plates on the peripheral of a flow column and collecting real-time measurements of inter-electrode capacitances. Capacitance measurements here are directly related to dielectric constant distribution, a physical property that is also related to material distribution in the imaging domain. Reconstruction algorithms are employed to map volume images of dielectric distribution in the imaging domain, which is in turn related to phase distribution. ECVT is suitable for imaging interacting materials of different dielectric constants, typical in multi-phase flow systems. ECVT is being used extensively for measuring flow variables in various gas-liquid and gas-solid flow systems. Recent application of ECVT include flows in risers and exit regions of circulating fluidized beds, gas-liquid and gas-solid bubble columns, trickle beds, and slurry bubble columns. ECVT is also used to validate flow models and CFD simulations. The technology is uniquely qualified for imaging phase concentrations in packed bed reactors for the ISS flight experiments as it exhibits favorable features of compact size, low profile sensors, high imaging speed, and flexibility to fit around columns of various shapes and sizes. ECVT is also safer than other commonly used imaging modalities as it operates in the range of low frequencies (1 MHz) and does not radiate radioactive energy. In this effort, ECVT is being used to image flow parameters in a packed bed reactor for an ISS flight experiment.

  2. Capacitance of carbon-based electrical double-layer capacitors.

    PubMed

    Ji, Hengxing; Zhao, Xin; Qiao, Zhenhua; Jung, Jeil; Zhu, Yanwu; Lu, Yalin; Zhang, Li Li; MacDonald, Allan H; Ruoff, Rodney S

    2014-01-01

    Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.

  3. Vascular capacitance and cardiac output in pacing-induced canine models of acute and chronic heart failure.

    PubMed

    Ogilvie, R I; Zborowska-Sluis, D

    1995-11-01

    The relationship between stressed and total blood volume, total vascular capacitance, central blood volume, cardiac output (CO), and pulmonary capillary wedge pressure (Ppcw) was investigated in pacing-induced acute and chronic heart failure. Acute heart failure was induced in anesthetized splenectomized dogs by a volume load (20 mL/kg over 10 min) during rapid right ventricular pacing at 250 beats/min (RRVP) for 60 min. Chronic heart failure was induced by continuous RRVP for 2-6 weeks (average 24 +/- 2 days). Total vascular compliance and capacitance were calculated from the mean circulatory filling pressure (Pmcf) during transient circulatory arrest after acetylcholine at three different circulating volumes. Stressed blood volume was calculated as a product of compliance and Pmcf, with the total blood volume measured by a dye dilution. Central blood volume (CBV) and CO were measured by thermodilution. Central (heart and lung) vascular capacitance was estimated from the plot of Ppcw against CBV. Acute volume loading without RRVP increased capacitance and CO, whereas after volume loading with RRVP, capacitance and CO were unaltered from baseline. Chronic RRVP reduced capacitance and CO. All interventions, volume +/- RRVP or chronic RRVP, increased stressed and central blood volumes and Ppcw. Acute or chronic RRVP reduced central vascular capacitance. Cardiac output was increased when stressed and unstressed blood volumes increased proportionately as during volume loading alone. When CO was reduced and Ppcw increased, as during chronic RRVP or acute RRVP plus a volume load, stressed blood volume was increased and unstressed blood volume was decreased. Thus, interventions that reduced CO and increased Ppcw also increased stressed and reduced unstressed blood volume and total vascular capacitance.

  4. Effects of surface chemical properties of activated carbon modified by amino-fluorination for electric double-layer capacitor.

    PubMed

    Jung, Min-Jung; Jeong, Euigyung; Cho, Seho; Yeo, Sang Young; Lee, Young-Seak

    2012-09-01

    The surface of phenol-based activated carbon (AC) was seriatim amino-fluorinated with solution of ammonium hydroxide and hydrofluoric acid in varying ratio to fabricate electrode materials for use in an electric double-layer capacitor (EDLC). The specific capacitance of the amino-fluorinated AC-based EDLC was measured in a 1 M H(2)SO(4) electrolyte, in which it was observed that the specific capacitances increased from 215 to 389 Fg(-1) and 119 and 250 Fg(-1) with the current densities of 0.1 and 1.0 Ag(-1), respectively, in comparison with those of an untreated AC-based EDLC when the amino-fluorination was optimized via seriatim mixed solution of 7.43 mol L(-1) ammonium hydroxide and 2.06 mol L(-1) hydrofluoric acid. This enhancement of capacitance was attributed to the synergistic effects of an increased electrochemical activity due to the formation of surface N- and F-functional groups and increased, specific surface area, and mesopore volumes, all of which resulted from the amino-fluorination of the electrode material. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Impedance spectroscopy study of a catechol-modified activated carbon electrode as active material in electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Cougnon, C.; Lebègue, E.; Pognon, G.

    2015-01-01

    Modified activated carbon (Norit S-50) electrodes with electrochemical double layer (EDL) capacitance and redox capacitance contributions to the electric charge storage were tested in 1 M H2SO4 to quantify the benefit and the limitation of the surface redox reactions on the electrochemical performances of the resulting pseudo-capacitive materials. The electrochemical performances of an electrochemically anodized carbon electrode and a catechol-modified carbon electrode, which make use both EDL capacitance of the porous structure of the carbon and redox capacitance, were compared to the performances obtained for the pristine carbon. Nitrogen gas adsorption measurements have been used for studying the impact of the grafting on the BET surface area, pore size distribution, pore volume and average pore diameter. The electrochemical behavior of carbon materials was studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The EIS data were discussed by using a complex capacitance model that allows defining the characteristic time constant, the global capacitance and the frequency at which the maximum charge stored is reached. The EIS measurements were achieved at different dc potential values where a redox activity occurs and the evolution of the capacitance and the capacitive relaxation time with the electrode potential are presented. Realistic galvanostatic charge/discharge measurements performed at different current rates corroborate the results obtained by impedance.

  6. Capacitance Measurement with a Sigma Delta Converter for 3D Electrical Capacitance Tomography

    NASA Technical Reports Server (NTRS)

    Nurge, Mark

    2005-01-01

    This paper will explore suitability of a newly available capacitance to digital converter for use in a 3D Electrical Capacitance Tomography system. A switch design is presented along with circuitry needed to extend the range of the capacitance to digital converter. Results are then discussed for a 15+ hour drift and noise test.

  7. The composite capacitive behaviors of the N and S dual doped ordered mesoporous carbon with ultrahigh doping level

    NASA Astrophysics Data System (ADS)

    Zhang, Deyi; Lei, Longyan; Shang, Yonghua; Wang, Kunjie; Wang, Yi

    2016-01-01

    Heteroatoms doping provides a promising strategy for improving the energy density of supercapacitors based on the carbon electrodes. In this paper, we present a N and S dual doped ordered mesoporous carbon with ultrahigh doping level using dimethylglyoxime as pristine precursor. The N doping content of the reported materials varies from 6.6 to 15.6 at.% dependent on the carbonization temperature, and the S doping content varies from 0.46 to 1.01 at.%. Due to the ultrahigh heteroatoms doping content, the reported materials exhibit pronounced pseudo-capacitance. Meanwhile, the reported materials exhibit high surface areas (640⿿869 m2 g⿿1), large pore volume (0.71⿿1.08 cm2 g⿿1) and ordered pore structure. The outstanding textual properties endow the reported materials excellent electrical double-layer capacitance (EDLC). By effectively combining the pseudo-capacitance with EDLC, the reported materials exhibit a surprising energy storage/relax capacity with the highest specific capacitance of 565 F g⿿1, which value is 3.3 times higher than that of pristine CMK-3, and can compete against some conventional pseudo-capacitance materials.

  8. Capacitive Sensors for Feedback Control of Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Chen, J. Z.; Darhuber, A. A.; Troian, S. M.; Wagner, S.

    2003-11-01

    Automation of microfluidic devices based on thermocapillary flow [1] requires feedback control and detection techniques for monitoring the location, and ideally also composition and volume of liquid droplets. For this purpose we have developed a co-planar capacitance technique with a sensitivity of 0.07 pF at a frequency of 370 kHz. The variation in capacitance due to the presence of a droplet is monitored by the output frequency of an RC relaxation oscillator consisting of two inverters, one resistor and one capacitor. We discuss the performance of this coplanar sensor as a function of the electrode dimensions and geometry. These geometric variables determine the electric field penetration depth within the liquid, which in our studies ranged from 30 to 450 microns. Numerical solutions for the capacitance corresponding to the exact fabricated geometry agree very well with experimental data. An approximate analytic solution, which ignores fringe field effects, provides a simple but excellent guide for design development. [1] A. A. Darhuber et al., Appl. Phys. Lett. 82, 657 (2003).

  9. On the theory of electric double layer with explicit account of a polarizable co-solvent.

    PubMed

    Budkov, Yu A; Kolesnikov, A L; Kiselev, M G

    2016-05-14

    We present a continuation of our theoretical research into the influence of co-solvent polarizability on a differential capacitance of the electric double layer. We formulate a modified Poisson-Boltzmann theory, using the formalism of density functional approach on the level of local density approximation taking into account the electrostatic interactions of ions and co-solvent molecules as well as their excluded volume. We derive the modified Poisson-Boltzmann equation, considering the three-component symmetric lattice gas model as a reference system and minimizing the grand thermodynamic potential with respect to the electrostatic potential. We apply present modified Poisson-Boltzmann equation to the electric double layer theory, showing that accounting for the excluded volume of co-solvent molecules and ions slightly changes the main result of our previous simplified theory. Namely, in the case of small co-solvent polarizability with its increase under the enough small surface potentials of electrode, the differential capacitance undergoes the significant growth. Oppositely, when the surface potential exceeds some threshold value (which is slightly smaller than the saturation potential), the increase in the co-solvent polarizability results in a differential capacitance decrease. However, when the co-solvent polarizability exceeds some threshold value, its increase generates a considerable enhancement of the differential capacitance in a wide range of surface potentials. We demonstrate that two qualitatively different behaviors of the differential capacitance are related to the depletion and adsorption of co-solvent molecules at the charged electrode. We show that an additive of the strongly polarizable co-solvent to an electrolyte solution can shift significantly the saturation potential in two qualitatively different manners. Namely, a small additive of strongly polarizable co-solvent results in a shift of saturation potential to higher surface potentials. On the contrary, a sufficiently large additive of co-solvent shifts the saturation potential to lower surface potentials. We obtain that an increase in the co-solvent polarizability makes the electrostatic potential profile longer-ranged. However, increase in the co-solvent concentration in the bulk leads to non-monotonic behavior of the electrostatic potential profile. An increase in the co-solvent concentration in the bulk at its sufficiently small values makes the electrostatic potential profile longer-ranged. Oppositely, when the co-solvent concentration in the bulk exceeds some threshold value, its further increase leads to decrease in electrostatic potential at all distances from the electrode.

  10. Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Ma, Wujun; Chen, Shaohua; Yang, Shengyuan; Chen, Wenping; Cheng, Yanhua; Guo, Yiwei; Peng, Shengjie; Ramakrishna, Seeram; Zhu, Meifang

    2016-02-01

    Towards rapid development of lightweight, flexible, and even wearable electronics, a highly efficient energy-storage device is required for their energy supply management. Graphene fiber-based supercapacitor is considered as one of the promising candidates because of the remarkable mechanical and electrical properties of graphene fibers. However, supercapacitors based on bare graphene fibers generally suffer a low capacitance, which certainly restricts their potentially wide applications. In this work, hierarchically structured MnO2 nanowire/graphene hybrid fibers are fabricated through a simple, scalable wet-spinning method. The hybrid fibers form mesoporous structure with large specific surface area of 139.9 m2 g-1. The mass loading of MnO2 can be as high as 40 wt%. Due to the synergistic effect between MnO2 nanowires and graphene, the main pseudocapacitance of MnO2 and the electric double-layer capacitance of graphene are improved simultaneously. In view of the practical demonstration, a highly flexible solid-state supercapacitor is fabricated by twisting of two MnO2/graphene fibers coated by polyvinyl alcohol/H3PO4 electrolyte. The supercapacitor exhibits a high volumetric capacitance (66.1 F cm-3, normalized by the total volume of two fiber electrodes), excellent cycling stability (96% capacitance retention over 10,000 cycles), high energy and power density (5.8 mWh cm-3 and 0.51 W cm-3, respectively).

  11. Effect of an electric field on the orientation of a liquid crystal in a cell with a nonuniform director distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksenova, E. V., E-mail: e.aksenova@spbu.ru; Karetnikov, A. A.; Karetnikov, N. A.

    2016-05-15

    The electric field-induced reorientation of a nematic liquid crystal in cells with a planar helicoidal or a homeoplanar structure of a director field is studied theoretically and experimentally. The dependences of the capacitances of these systems on the voltage in an applied electric field below and above the Fréedericksz threshold are experimentally obtained and numerically calculated. The calculations use the director distribution in volume that is obtained by direct minimization of free energy at various voltages. The inhomogeneity of the electric field inside a cell is taken into account. The calculation results are shown to agree with the experimental data.

  12. High rate capacitive performance of single-walled carbon nanotube aerogels

    DOE PAGES

    Van Aken, Katherine L.; Pérez, Carlos R.; Oh, Youngseok; ...

    2015-05-30

    Single-walled carbon nanotube (SWCNT) aerogels produced by critical-point-drying of wet-gel precursors exhibit unique properties, such as high surface-area-to-volume and strength-to-weight ratios. They are free-standing, are binder-free, and can be scaled to thicknesses of more than 1 mm. In this paper, we examine the electric double layer capacitive behavior of these materials using a common room temperature ionic liquid electrolyte, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI). Electrochemical performance is assessed through galvanostatic cycling, cyclic voltammetry and impedance spectroscopy. Results indicate stable capacitive performance over 10,000 cycles as well as an impressive performance at high charge and discharge rates, due to accessible pore networks andmore » enhanced electronic and ionic conductivities of SWCNT aerogels. Finally, these materials can find applications in mechanically compressible and flexible supercapacitor devices with high power requirements.« less

  13. The Breakdown Characteristics of the Silicone Oil for Electric Power Apparatus

    NASA Astrophysics Data System (ADS)

    Yoshida, Hisashi; Yanabu, Satoru

    The basic breakdown characteristics of the silicone oil as an insulating medium was studied with aim of realization of electric power apparatus which may be considered to be SF6 free and flame-retarding. As the first step, the impulse breakdown characteristics was measured with three kinds of electrodes whose electric field distributions differed. The breakdown characteristics in silicone oil was explained in relation to stressed oil volume (SOV) and the breakdown stress. At the second step the surface breakdown characteristic for impulse voltage was measured with two kinds of insulators which was set to between plane electrodes. The surface breakdown characteristic for impulse voltage was explained in relation to the ratio of the relative permittivity of oil and insulator. And on the third step, the breakdown characteristics of oil gap after interrupting small capacitive current was studied. In this experiment, the disconnecting switch to interrupt capacitive current was simulated by oil gap after interrupting impulse current, and to measure breakdown characteristics the high impulse voltage was subsequently applied. The breakdown stress in silicone oil after application of impulse current was discussed for insulation recovery characteristics.

  14. A system for measuring thermal activation energy levels in silicon by thermally stimulated capacitance

    NASA Technical Reports Server (NTRS)

    Cockrum, R. H.

    1982-01-01

    One method being used to determine energy level(s) and electrical activity of impurities in silicon is described. The method is called capacitance transient spectroscopy (CTS). It can be classified into three basic categories: the thermally stimulated capacitance method, the voltage-stimulated capacitance method, and the light-stimulated capacitance method; the first two categories are discussed. From the total change in capacitance and the time constant of the capacitance response, emission rates, energy levels, and trap concentrations can be determined. A major advantage of using CTS is its ability to detect the presence of electrically active impurities that are invisible to other techniques, such as Zeeman effect atomic absorption, and the ability to detect more than one electrically active impurity in a sample. Examples of detection of majority and minority carrier traps from gold donor and acceptor centers in silicon using the capacitance transient spectrometer are given to illustrate the method and its sensitivity.

  15. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line

    PubMed Central

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-01-01

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid. PMID:26729119

  16. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line.

    PubMed

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-12-30

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid.

  17. Atomistic simulations of aromatic polyurea and polyamide for capacitive energy storage

    NASA Astrophysics Data System (ADS)

    Dong, Rui; Ranjan, V.; Buongiorno Nardelli, Marco; Bernholc, J.

    2015-07-01

    Materials for capacitive energy storage with high energy density and low loss are desired in many fields. We investigate several polymers with urea and amide functional groups using density functional theory and classical molecular dynamics simulations. For aromatic polyurea (APU) and para-aramid (PA), we find several nearly energetically degenerate ordered structures, while meta-aromatic polyurea (mAPU) tends to be rotationally disordered along the polymer chains. Simulated annealing of APU and PA structures results in the formation of hydrogen-bonded sheets, highlighting the importance of dipole-dipole interactions. In contrast, hydrogen bonding does not play a significant role in mAPU, hence the propensity to disorder. We find that the disordered structures with misaligned chains have significantly larger dielectric constants, due to significant increase in the free volume, which leads to easier reorientation of dipolar groups in the presence of an electric field. Large segment motion is still not allowed below the glass transition temperature, which explains the experimentally observed very low loss at high field and elevated temperature. However, the degree of disorder needs to be controlled, because highly entangled structures diminish the free dipoles and decrease permittivity. Among the considered materials, mAPU is the most promising dielectric for capacitive energy storage, but the concept of increasing permittivity while maintaining low loss through disorder-induced free volume increase is generally applicable and provides an alternative pathway for the design of high-performance dielectrics for capacitive energy storage.

  18. High performance capacitive deionization using modified ZIF-8-derived, N-doped porous carbon with improved conductivity.

    PubMed

    Li, Yang; Kim, Jeonghun; Wang, Jie; Liu, Nei-Ling; Bando, Yoshio; Alshehri, Abdulmohsen Ali; Yamauchi, Yusuke; Hou, Chia-Hung; Wu, Kevin C-W

    2018-06-05

    Zeolitic imidazolate framework (ZIF) composite-derived carbon exhibiting large surface area and high micropore volume is demonstrated to be a promising electrode material for the capacitive deionization (CDI) application. However, some inherent serious issues (e.g., low electrical conductivity, narrow pore size, relatively low pore volume, etc.) are still observed for nitrogen-doped porous carbon particles, which restrict their CDI performance. To solve the above-mentioned problems, herein, we prepared gold-nanoparticle-embedded ZIF-8-derived nitrogen-doped carbon calcined at 800 °C (Au@NC800) and PEDOT doped-NC-800 (NC800-PEDOT). The newly generated NC800-PEDOT and Au@NC800 electrodes exhibited notably increased conductivity, and they also achieved high electrosorption capacities of 16.18 mg g-1 and 14.31 mg g-1, respectively, which were much higher than that of NC800 (8.36 mg g-1). Au@NC800 and NC800-PEDOT can be promisingly applicable as highly efficient CDI electrode materials.

  19. Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor

    NASA Astrophysics Data System (ADS)

    Hao, Zhi-Qiang; Cao, Jing-Pei; Wu, Yan; Zhao, Xiao-Yan; Zhuang, Qi-Qi; Wang, Xing-Yong; Wei, Xian-Yong

    2017-09-01

    Waste sugar solution (WSS), which contains abundant 2-keto-L-gulonic acid, is harmful to the environment if discharged directly. For value-added utilization of the waste resource, a novel process is developed for preparation of porous carbon spheres by hydrothermal carbonization (HTC) of WSS followed by KOH activation. Additionally, the possible preparation mechanism of carbon spheres is proposed. The effects of hydrothermal and activation parameters on the properties of the carbon sphere are also investigated. The carbon sphere is applied to electric double-layer capacitor and its electrochemical performance is studied. These results show that the carbon sphere obtained by HTC at 180 °C for 12 h with the WSS/deionized water volume ratio of 2/3 possess the highest specific capacitance under identical activation conditions. The specific capacitance of the carbon spheres can reach 296.1 F g-1 at a current density of 40 mA g-1. Besides, excellent cycle life and good capacitance retention (89.6%) are observed at 1.5 A g-1 after 5000 cycles. This study not only provides a facile and potential method for the WSS treatment, but also achieves the high value-added recycling of WSS for the preparation of porous carbon spheres with superior electrochemical properties.

  20. Hierarchical Nanostructures of Nitrogen-Doped Porous Carbon Polyhedrons Confined in Carbon Nanosheets for High-Performance Supercapacitors.

    PubMed

    Zhao, Zhe; Liu, Siliang; Zhu, Jixin; Xu, Jingsan; Li, Le; Huang, Zhaoqi; Zhang, Chao; Liu, Tianxi

    2018-05-31

    Interconnected close-packed nitrogen-doped porous carbon polyhedrons (NCPs) confined in two-dimensional carbon nanosheets (CNSs) have been prepared through a sustainable one-pot pyrolysis of a simple solid mixture of zeolitic imidazolate framework-8 (ZIF-8) crystals and with organic potassium as the precursors. The hierarchically organized framework of the NCP-CNS composites enables NCPs and CNSs to act as well-defined electrolyte reservoirs and mechanical buffers accommodating large volume expansions of NCPs, respectively. Among the unique composite nanostructures, the NCPs with vast micropores provide electric double-layer capacitances, while the CNSs bridge the individual NCPs to form a conductive pathway with a hierarchical porosity. As a result, the NCP-CNS composites with high electrical integrity and structural stability are used as electrode materials for high-performance supercapacitors, which exhibit excellent electrochemical capacitive characteristics in terms of an outstanding capacitance of 300 F g -1 at 1 A g -1 , large energy density of 20.9 W h kg -1 , and great cycling performance of 100% retention after 6000 cycles. This work therefore presents a one-pot and efficient strategy to prepare an ordered arrangement of ZIF-8-derived porous carbons toward new electrode materials in promising energy storage systems.

  1. Module Eleven: Capacitance; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    In this module the student will learn about another circuit quantity, capacitance, and discover the effects of this component on circuit current, voltage, and power. The module is divided into seven lessons: the capacitor, theory of capacitance, total capacitance, RC (resistive-capacitive circuit) time constant, capacitive reactance, phase and…

  2. Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst.

    PubMed

    Im, Ji Sun; Woo, Sang-Wook; Jung, Min-Jung; Lee, Young-Seak

    2008-11-01

    Nano-sized carbon fibers were prepared by using electrospinning, and their electrochemical properties were investigated as a possible electrode material for use as an electric double-layer capacitor (EDLC). To improve the electrode capacitance of EDLC, we implemented a three-step optimization. First, metal catalyst was introduced into the carbon fibers due to the excellent conductivity of metal. Vanadium pentoxide was used because it could be converted to vanadium for improved conductivity as the pore structure develops during the carbonization step. Vanadium catalyst was well dispersed in the carbon fibers, improving the capacitance of the electrode. Second, pore-size development was manipulated to obtain small mesopore sizes ranging from 2 to 5 nm. Through chemical activation, carbon fibers with controlled pore sizes were prepared with a high specific surface and pore volume, and their pore structure was investigated by using a BET apparatus. Finally, polyacrylonitrile was used as a carbon precursor to enrich for nitrogen content in the final product because nitrogen is known to improve electrode capacitance. Ultimately, the electrospun activated carbon fibers containing vanadium show improved functionality in charge/discharge, cyclic voltammetry, and specific capacitance compared with other samples because of an optimal combination of vanadium, nitrogen, and fixed pore structures.

  3. Conductivity enhancement of carbon aerogel by modified gelation using self additive

    NASA Astrophysics Data System (ADS)

    Singh, Ashish; Kohli, D. K.; Bhartiya, Sushmita; Singh, Rashmi; Rajak, Gaurav; Singh, M. K.; Karnal, A. K.

    2018-04-01

    Carbon aerogels having high surface area and open pore structure are being studied for many electrochemical applications such as fuel cells and super capacitors. Moderate electrical conductivity of resorcinol - formaldehyde (R-F) derived carbon aerogel limits its utility in these applications. The current manuscript briefs about the synthesis of composite carbon aerogel using carbon aerogel itself as additive during gelation of water based carbon aerogel and study the effect on its conductivity and surface properties. The additive carbon aerogel was synthesized and pre-treated at higher temperature to achieve enhancement in conductivity. The composite carbon aerogel (CCA) samples were characterized for surface area properties, morphology, electrical conductivity and specific capacitance. The surface area properties of CCA showed improvement and specific surface area of ˜1798 m2/g with total pore volume of 1.7 cm3/g. was obtained. The electrical conductivity of the composite carbon aerogel with 5 wt % additive showed improvement over the plain carbon aerogel with respective values of 144 S/m and 128 S/m. The specific capacitance evaluated for CA and CCA are 102 and 118 F/g at scan rate of 10mV/s with improvement of ˜16%.

  4. Modeling the Capacitive Deionization Process in Dual-Porosity Electrodes

    DOE PAGES

    Gabitto, Jorge; Tsouris, Costas

    2016-04-28

    In many areas of the world, there is a need to increase water availability. Capacitive deionization (CDI) is an electrochemical water treatment process that can be a viable alternative for treating water and for saving energy. A model is presented to simulate the CDI process in heterogeneous porous media comprising two different pore sizes. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A two steps volume averaging technique is used to derive the averaged transport equations in the limit of thin electrical double layers. A one-equationmore » model based on the principle of local equilibrium is derived. The constraints determining the range of application of the one-equation model are presented. The effective transport parameters for isotropic porous media are calculated solving the corresponding closure problems. The source terms that appear in the average equations are calculated using theoretical derivations. The global diffusivity is calculated by solving the closure problem.« less

  5. Capacitance-digital and impedance converter as electrical tomography measurement system for biological tissue

    NASA Astrophysics Data System (ADS)

    Ikhsanti, Mila Izzatul; Bouzida, Rana; Wijaya, Sastra Kusuma; Rohmadi, Muttakin, Imamul; Taruno, Warsito P.

    2017-02-01

    This research aims to explore the feasibility of capacitance-digital converter and impedance converter for measurement module in electrical capacitance tomography (ECT) system. ECT sensor used was a cylindrical sensor having 8 electrodes. Absolute capacitance measurement system based on Sigma Delta Capacitance-to-Digital-Converter AD7746 has been shown to produce measurement with high resolution. Whereas, capacitance measurement with wide range of frequency is possible using Impedance Converter AD5933. Comparison of measurement accuracy by both AD7746 and AD5933 with reference of LCR meter was evaluated. Biological matters represented in water and oil were treated as object reconstructed into image using linear back projection (LBP) algorithm.

  6. Electrical capacitance clearanceometer

    NASA Technical Reports Server (NTRS)

    Hester, Norbert J. (Inventor); Hornbeck, Charles E. (Inventor); Young, Joseph C. (Inventor)

    1992-01-01

    A hot gas turbine engine capacitive probe clearanceometer is employed to measure the clearance gap or distance between blade tips on a rotor wheel and its confining casing under operating conditions. A braze sealed tip of the probe carries a capacitor electrode which is electrically connected to an electrical inductor within the probe which is inserted into a turbine casing to position its electrode at the inner surface of the casing. Electrical power is supplied through a voltage controlled variable frequency oscillator having a tuned circuit in which the probe is a component. The oscillator signal is modulated by a change in electrical capacitance between the probe electrode and a passing blade tip surface while an automatic feedback correction circuit corrects oscillator signal drift. A change in distance between a blade tip and the probe electrode is a change in capacitance therebetween which frequency modulates the oscillator signal. The modulated oscillator signal which is then processed through a phase detector and related circuitry to provide an electrical signal is proportional to the clearance gap.

  7. Contribution of Dielectric Screening to the Total Capacitance of Few-Layer Graphene Electrodes.

    PubMed

    Zhan, Cheng; Jiang, De-en

    2016-03-03

    We apply joint density functional theory (JDFT), which treats the electrode/electrolyte interface self-consistently, to an electric double-layer capacitor (EDLC) based on few-layer graphene electrodes. The JDFT approach allows us to quantify a third contribution to the total capacitance beyond quantum capacitance (CQ) and EDL capacitance (CEDL). This contribution arises from the dielectric screening of the electric field by the surface of the few-layer graphene electrode, and we therefore term it the dielectric capacitance (CDielec). We find that CDielec becomes significant in affecting the total capacitance when the number of graphene layers in the electrode is more than three. Our investigation sheds new light on the significance of the electrode dielectric screening on the capacitance of few-layer graphene electrodes.

  8. Actuatable capacitive transducer for quantitative nanoindentation combined with transmission electron microscopy

    DOEpatents

    Warren, Oden L.; Asif, S. A. Syed; Cyrankowski, Edward; Kounev, Kalin

    2010-09-21

    An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.-

  9. Actuatable capacitive transducer for quantitative nanoindentation combined with transmission electron microscopy

    DOEpatents

    Warren, Oden L; Asif, Syed Amanula Syed; Cyrankowski, Edward; Kounev, Kalin

    2013-06-04

    An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.

  10. Electrical Capacitance Volume Tomography with High-Contrast Dielectrics

    NASA Technical Reports Server (NTRS)

    Nurge, Mark

    2010-01-01

    The Electrical Capacitance Volume Tomography (ECVT) system has been designed to complement the tools created to sense the presence of water in nonconductive spacecraft materials, by helping to not only find the approximate location of moisture but also its quantity and depth. The ECVT system has been created for use with a new image reconstruction algorithm capable of imaging high-contrast dielectric distributions. Rather than relying solely on mutual capacitance readings as is done in traditional electrical capacitance tomography applications, this method reconstructs high-resolution images using only the self-capacitance measurements. The image reconstruction method assumes that the material under inspection consists of a binary dielectric distribution, with either a high relative dielectric value representing the water or a low dielectric value for the background material. By constraining the unknown dielectric material to one of two values, the inverse math problem that must be solved to generate the image is no longer ill-determined. The image resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminum structure inserted at different positions within the sensing region. The cuboid geometry of the system has two parallel planes of 16 conductors arranged in a 4 4 pattern. The electrode geometry consists of parallel planes of copper conductors, connected through custom-built switch electronics, to a commercially available capacitance to digital converter. The figure shows two 4 4 arrays of electrodes milled from square sections of copper-clad circuit-board material and mounted on two pieces of glass-filled plastic backing, which were cut to approximately square shapes, 10 cm on a side. Each electrode is placed on 2.0-cm centers. The parallel arrays were mounted with the electrode arrays approximately 3 cm apart. The open ends were surrounded by a metal guard to reduce the sensitivity of the electrodes to outside interference and to help maintain the spacing between the arrays. Other uses for this innovation potentially include quantifying the amount of commodity remaining in the fuel and oxidizer tanks while on-orbit without having to fire spacecraft engines. Another orbit application is moisture sensing in plant-growth experiments because microgravity causes moisture in soil to distribute itself in unusual ways. At the moment, the hardware and image reconstruction technique may only be of interest to people involved in nondestructive evaluation. The reconstructed image takes almost a full week to reproduce with existing computer power. However, because computer power and speeds follows Moore s Law, execution times are likely to become acceptable within the next five to eight years. The code was written in Mathematica for dedicated use with the ECVT system. In its present form, it is not suitable to be used directly as a consumer product. However, the code could be likely improved by rewriting it in a compiled language such as C or Fortran.

  11. Contribution of dielectric screening to the total capacitance of few-layer graphene electrodes

    DOE PAGES

    Zhan, Cheng; Jiang, De-en

    2016-02-17

    We apply joint density functional theory (JDFT), which treats the electrode/electrolyte interface self-consistently, to an electric double-layer capacitor (EDLC) based on few-layer graphene electrodes. The JDFT approach allows us to quantify a third contribution to the total capacitance beyond quantum capacitance (C Q) and EDL capacitance (C EDL). This contribution arises from the dielectric screening of the electric field by the surface of the few-layer graphene electrode, and we therefore term it the dielectric capacitance (C Dielec). We find that C Dielec becomes significant in affecting the total capacitance when the number of graphene layers in the electrode is moremore » than three. In conclusion, our investigation sheds new light on the significance of the electrode dielectric screening on the capacitance of few-layer graphene electrodes.« less

  12. Flexible Framework for Capacitive Sensing

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2006-01-01

    A flexible framework supports electrically-conductive elements in a capacitive sensing arrangement. Identical frames are arranged end-to-end with adjacent frames being capable of rotational movement there between. Each frame has first and second passages extending therethrough and parallel to one another. Each of the first and second passages is adapted to receive an electrically-conductive element therethrough. Each frame further has a hollowed-out portion for the passage of a fluent material therethrough. The hollowed-out portion is sized and shaped to provide for capacitive sensing along a defined region between the electrically-conductive element in the first passage and the electrically-conductive element in the second passage.

  13. Determining blood and plasma volumes using bioelectrical response spectroscopy

    NASA Technical Reports Server (NTRS)

    Siconolfi, S. F.; Nusynowitz, M. L.; Suire, S. S.; Moore, A. D. Jr; Leig, J.

    1996-01-01

    We hypothesized that an electric field (inductance) produced by charged blood components passing through the many branches of arteries and veins could assess total blood volume (TBV) or plasma volume (PV). Individual (N = 29) electrical circuits (inductors, two resistors, and a capacitor) were determined from bioelectrical response spectroscopy (BERS) using a Hewlett Packard 4284A Precision LCR Meter. Inductance, capacitance, and resistance from the circuits of 19 subjects modeled TBV (sum of PV and computed red cell volume) and PV (based on 125I-albumin). Each model (N = 10, cross validation group) had good validity based on 1) mean differences (-2.3 to 1.5%) between the methods that were not significant and less than the propagated errors (+/- 5.2% for TBV and PV), 2) high correlations (r > 0.92) with low SEE (< 7.7%) between dilution and BERS assessments, and 3) Bland-Altman pairwise comparisons that indicated "clinical equivalency" between the methods. Given the limitation of this study (10 validity subjects), we concluded that BERS models accurately assessed TBV and PV. Further evaluations of the models' validities are needed before they are used in clinical or research settings.

  14. Thermal noise due to surface-charge effects within the Debye layer of endogenous structures in dendrites.

    PubMed

    Poznanski, Roman R

    2010-02-01

    An assumption commonly used in cable theory is revised by taking into account electrical amplification due to intracellular capacitive effects in passive dendritic cables. A generalized cable equation for a cylindrical volume representation of a dendritic segment is derived from Maxwell's equations under assumptions: (i) the electric-field polarization is restricted longitudinally along the cable length; (ii) extracellular isopotentiality; (iii) quasielectrostatic conditions; and (iv) homogeneous medium with constant conductivity and permittivity. The generalized cable equation is identical to Barenblatt's equation arising in the theory of infiltration in fissured strata with a known analytical solution expressed in terms of a definite integral involving a modified Bessel function and the solution to a linear one-dimensional classical cable equation. Its solution is used to determine the impact of thermal noise on voltage attenuation with distance at any particular time. A regular perturbation expansion for the membrane potential about the linear one-dimensional classical cable equation solution is derived in terms of a Green's function in order to describe the dynamics of free charge within the Debye layer of endogenous structures in passive dendritic cables. The asymptotic value of the first perturbative term is explicitly evaluated for small values of time to predict how the slowly fluctuating (in submillisecond range) electric field attributed to intracellular capacitive effects alters the amplitude of the membrane potential. It was found that capacitive effects are almost negligible for cables with electrotonic lengths L>0.5 , contributes up to 10% of the signal for cables with electrotonic lengths in the range between 0.25

  15. Bivariate quadratic method in quantifying the differential capacitance and energy capacity of supercapacitors under high current operation

    NASA Astrophysics Data System (ADS)

    Goh, Chin-Teng; Cruden, Andrew

    2014-11-01

    Capacitance and resistance are the fundamental electrical parameters used to evaluate the electrical characteristics of a supercapacitor, namely the dynamic voltage response, energy capacity, state of charge and health condition. In the British Standards EN62391 and EN62576, the constant capacitance method can be further improved with a differential capacitance that more accurately describes the dynamic voltage response of supercapacitors. This paper presents a novel bivariate quadratic based method to model the dynamic voltage response of supercapacitors under high current charge-discharge cycling, and to enable the derivation of the differential capacitance and energy capacity directly from terminal measurements, i.e. voltage and current, rather than from multiple pulsed-current or excitation signal tests across different bias levels. The estimation results the author achieves are in close agreement with experimental measurements, within a relative error of 0.2%, at various high current levels (25-200 A), more accurate than the constant capacitance method (4-7%). The archival value of this paper is the introduction of an improved quantification method for the electrical characteristics of supercapacitors, and the disclosure of the distinct properties of supercapacitors: the nonlinear capacitance-voltage characteristic, capacitance variation between charging and discharging, and distribution of energy capacity across the operating voltage window.

  16. Electrical detection and quantification of single and mixed DNA nucleotides in suspension

    NASA Astrophysics Data System (ADS)

    Ahmad, Mahmoud Al; Panicker, Neena G.; Rizvi, Tahir A.; Mustafa, Farah

    2016-09-01

    High speed sequential identification of the building blocks of DNA, (deoxyribonucleotides or nucleotides for short) without labeling or processing in long reads of DNA is the need of the hour. This can be accomplished through exploiting their unique electrical properties. In this study, the four different types of nucleotides that constitute a DNA molecule were suspended in a buffer followed by performing several types of electrical measurements. These electrical parameters were then used to quantify the suspended DNA nucleotides. Thus, we present a purely electrical counting scheme based on the semiconductor theory that allows one to determine the number of nucleotides in a solution by measuring their capacitance-voltage dependency. The nucleotide count was observed to be similar to the multiplication of the corresponding dopant concentration and debye volume after de-embedding the buffer contribution. The presented approach allows for a fast and label-free quantification of single and mixed nucleotides in a solution.

  17. Plasmon resonances on opto-capacitive nanostructures

    NASA Astrophysics Data System (ADS)

    Shahcheraghi, N.; Dowd, A.; Arnold, M. D.; Cortie, M. B.

    2015-12-01

    Silver is considered as one of the most desirable materials for plasmonic devices due to it having low loss, low epsilon2, across the visible spectrum. In addition, silver nanotriangles can self-assemble into complex structures that can include tip-totip or base-to-base arrangements. While the optical properties of tip-to-tip dimers of nanotriangles have been quite intensively studied, the geometric inverse, the base-to-base configuration, has received much less attention. Here we report the results of a computational study of the optical response of this latter configuration. Calculations were performed using the discrete dipole approximation. The effect of gap size and substrate are considered. The results indicate that the base-to-base configuration can sustain a strong coupled dipole and various multimode resonances. The pairing of the parallel triangle edges produces a strongly capacitive configuration and very intense electric fields over an extended volume of space. Therefore, the base-to-base configuration could be suitable for a range of plasmonic applications that require a strong and uniform concentration of electric field. Examples include refractometeric sensing or metal-enhanced fluorescence.

  18. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, M.Y.

    1996-08-13

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall. 14 figs.

  19. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, M.Y.

    1995-10-17

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall. 14 figs.

  20. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, Michel Y.

    1995-01-01

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.

  1. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, Michel Y.

    1996-01-01

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.

  2. Negative Capacitance in BaTiO3/BiFeO3 Bilayer Capacitors.

    PubMed

    Hou, Ya-Fei; Li, Wei-Li; Zhang, Tian-Dong; Yu, Yang; Han, Ren-Lu; Fei, Wei-Dong

    2016-08-31

    Negative capacitances provide an approach to reduce heat generations in field-effect transistors during the switch processes, which contributes to further miniaturization of the conventional integrated circuits. Although there are many studies about negative capacitances using ferroelectric materials, the direct observation of stable ferroelectric negative capacitances has rarely been reported. Here, we put forward a dc bias assistant model in bilayer capacitors, where one ferroelectric layer with large dielectric constant and the other ferroelectric layer with small dielectric constant are needed. Negative capacitances can be obtained when external dc bias electric fields are larger than a critical value. Based on the model, BaTiO3/BiFeO3 bilayer capacitors are chosen as study objects, and negative capacitances are observed directly. Additionally, the upward self-polarization effect in the ferroelectric layer reduces the critical electric field, which may provide a method for realizing zero and/or small dc bias assistant negative capacitances.

  3. Computational insight into the capacitive performance of graphene edge planes

    DOE PAGES

    Zhan, Cheng; Zhang, Yu; Cummings, Peter T.; ...

    2017-02-01

    Recent experiments have shown that electric double-layer capacitors utilizing electrodes consisting of graphene edge plane exhibit higher capacitance than graphene basal plane. However, theoretical understanding of this capacitance enhancement is still limited. Here we applied a self-consistent joint density functional theory calculation on the electrode/electrolyte interface and found that the capacitance of graphene edge plane depends on the edge type: zigzag edge has higher capacitance than armchair edge due to the difference in their electronic structures. We further examined the quantum, dielectric, and electric double-layer (EDL) contributions to the total capacitance of the edge-plane electrodes. Classical molecular dynamics simulation foundmore » that the edge planes have higher EDL capacitance than the basal plane due to better adsorption of counter-ions and higher solvent accessible surface area. Finally, our work therefore has elucidated the capacitive energy storage in graphene edge planes that take into account both the electrode's electronic structure and the EDL structure.« less

  4. Experimental observation of the inductive electric field and related plasma nonuniformity in high frequency capacitive discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, S. K.; Chang, H. Y.

    To elucidate plasma nonuniformity in high frequency capacitive discharges, Langmuir probe and B-dot probe measurements were carried out in the radial direction in a cylindrical capacitive discharge driven at 90 MHz with argon pressures of 50 and 400 mTorr. Through the measurements, a significant inductive electric field (i.e., time-varying magnetic field) was observed at the radial edge, and it was found that the inductive electric field creates strong plasma nonuniformity at high pressure operation. The plasma nonuniformity at high pressure operation is physically similar to the E-H mode transition typically observed in inductive discharges. This result agrees well with themore » theories of electromagnetic effects in large area and/or high frequency capacitive discharges.« less

  5. Integration of piezo-capacitive and piezo-electric nanoweb based pressure sensors for imaging of static and dynamic pressure distribution.

    PubMed

    Jeong, Y J; Oh, T I; Woo, E J; Kim, K J

    2017-07-01

    Recently, highly flexible and soft pressure distribution imaging sensor is in great demand for tactile sensing, gait analysis, ubiquitous life-care based on activity recognition, and therapeutics. In this study, we integrate the piezo-capacitive and piezo-electric nanowebs with the conductive fabric sheets for detecting static and dynamic pressure distributions on a large sensing area. Electrical impedance tomography (EIT) and electric source imaging are applied for reconstructing pressure distribution images from measured current-voltage data on the boundary of the hybrid fabric sensor. We evaluated the piezo-capacitive nanoweb sensor, piezo-electric nanoweb sensor, and hybrid fabric sensor. The results show the feasibility of static and dynamic pressure distribution imaging from the boundary measurements of the fabric sensors.

  6. Highly porous activated carbons from resource-recovered Leucaena leucocephala wood as capacitive deionization electrodes.

    PubMed

    Hou, Chia-Hung; Liu, Nei-Ling; Hsi, Hsing-Cheng

    2015-12-01

    Highly porous activated carbons were resource-recovered from Leucaena leucocephala (Lam.) de Wit. wood through combined chemical and physical activation (i.e., KOH etching followed by CO2 activation). This invasive species, which has severely damaged the ecological economics of Taiwan, was used as the precursor for producing high-quality carbonaceous electrodes for capacitive deionization (CDI). Carbonization and activation conditions strongly influenced the structure of chars and activated carbons. The total surface area and pore volume of activated carbons increased with increasing KOH/char ratio and activation time. Overgasification induced a substantial amount of mesopores in the activated carbons. In addition, the electrochemical properties and CDI electrosorptive performance of the activated carbons were evaluated; cyclic voltammetry and galvanostatic charge/discharge measurements revealed a typical capacitive behavior and electrical double layer formation, confirming ion electrosorption in the porous structure. The activated-carbon electrode, which possessed high surface area and both mesopores and micropores, exhibited improved capacitor characteristics and high electrosorptive performance. Highly porous activated carbons derived from waste L. leucocephala were demonstrated to be suitable CDI electrode materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. High-Energy-Density Electrolytic Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Lewis, Carol R.

    1993-01-01

    Reductions in weight and volume make new application possible. Supercapacitors and improved ultracapacitors advanced electrolytic capacitors developed for use as electric-load-leveling devices in such applications as electric vehicle propulsion systems, portable power tools, and low-voltage pulsed power supplies. One primary advantage: offer power densities much higher than storage batteries. Capacitors used in pulse mode, with short charge and discharge times. Derived from commercially available ultracapacitors. Made of lightweight materials; incorporate electrode/electrolyte material systems capable of operation at voltages higher than previous electrode/electrolyte systems. By use of innovative designs and manufacturing processes, made in wide range of rated capacitances and in rated operating potentials ranging from few to several hundred volts.

  8. Comparison of carbon onions and carbon blacks as conductive additives for carbon supercapacitors in organic electrolytes

    NASA Astrophysics Data System (ADS)

    Jäckel, N.; Weingarth, D.; Zeiger, M.; Aslan, M.; Grobelsek, I.; Presser, V.

    2014-12-01

    This study investigates carbon onions (∼400 m2 g-1) as a conductive additive for supercapacitor electrodes of activated carbon and compares their performance with carbon black with high or low internal surface area. We provide a study of the electrical conductivity and electrochemical behavior between 2.5 and 20 mass% addition of each of these three additives to activated carbon. Structural characterization shows that the density of the resulting film electrodes depends on the degree of agglomeration and the amount of additive. Addition of low surface area carbon black (∼80 m2 g-1) enhances the power handling of carbon electrodes but significantly lowers the specific capacitance even when adding small amounts of carbon black. A much lower decrease in specific capacitance is observed for carbon onions and the best values are seen for carbon black with a high surface area (∼1390 m2 g-1). The overall performance benefits from the addition of any of the studied additives only at either high scan rates and/or electrolytes with high ion mobility. Normalization to the volume shows a severe decrease in volumetric capacitance and only at high current densities nearing 10 A g-1 we can see an improvement of the electrode capacitance.

  9. On error sources during airborne measurements of the ambient electric field

    NASA Technical Reports Server (NTRS)

    Evteev, B. F.

    1991-01-01

    The principal sources of errors during airborne measurements of the ambient electric field and charge are addressed. Results of their analysis are presented for critical survey. It is demonstrated that the volume electric charge has to be accounted for during such measurements, that charge being generated at the airframe and wing surface by droplets of clouds and precipitation colliding with the aircraft. The local effect of that space charge depends on the flight regime (air speed, altitude, particle size, and cloud elevation). Such a dependence is displayed in the relation between the collector conductivity of the aircraft discharging circuit - on one hand, and the sum of all the residual conductivities contributing to aircraft discharge - on the other. Arguments are given in favor of variability in the aircraft electric capacitance. Techniques are suggested for measuring from factors to describe the aircraft charge.

  10. Large capacitance enhancement induced by metal-doping in graphene-based supercapacitors: a first-principles-based assessment.

    PubMed

    Paek, Eunsu; Pak, Alexander J; Hwang, Gyeong S

    2014-08-13

    Chemically doped graphene-based materials have recently been explored as a means to improve the performance of supercapacitors. In this work, we investigate the effects of 3d transition metals bound to vacancy sites in graphene with [BMIM][PF6] ionic liquid on the interfacial capacitance; these results are compared to the pristine graphene case with particular attention to the relative contributions of the quantum and electric double layer capacitances. Our study highlights that the presence of metal-vacancy complexes significantly increases the availability of electronic states near the charge neutrality point, thereby enhancing the quantum capacitance drastically. In addition, the use of metal-doped graphene electrodes is found to only marginally influence the microstructure and capacitance of the electric double layer. Our findings indicate that metal-doping of graphene-like electrodes can be a promising route toward increasing the interfacial capacitance of electrochemical double layer capacitors, primarily by enhancing the quantum capacitance.

  11. The Origin of Improved Electrical Double-Layer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors.

    PubMed

    Chen, Jiafeng; Han, Yulei; Kong, Xianghua; Deng, Xinzhou; Park, Hyo Ju; Guo, Yali; Jin, Song; Qi, Zhikai; Lee, Zonghoon; Qiao, Zhenhua; Ruoff, Rodney S; Ji, Hengxing

    2016-10-24

    Low-energy density has long been the major limitation to the application of supercapacitors. Introducing topological defects and dopants in carbon-based electrodes in a supercapacitor improves the performance by maximizing the gravimetric capacitance per mass of the electrode. However, the main mechanisms governing this capacitance improvement are still unclear. We fabricated planar electrodes from CVD-derived single-layer graphene with deliberately introduced topological defects and nitrogen dopants in controlled concentrations and of known configurations, to estimate the influence of these defects on the electrical double-layer (EDL) capacitance. Our experimental study and theoretical calculations show that the increase in EDL capacitance due to either the topological defects or the nitrogen dopants has the same origin, yet these two factors improve the EDL capacitance in different ways. Our work provides a better understanding of the correlation between the atomic-scale structure and the EDL capacitance and presents a new strategy for the development of experimental and theoretical models for understanding the EDL capacitance of carbon electrodes. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Development of Electrical Capacitance Sensors for Accident Tolerant Fuel (ATF) Testing at the Transient Reactor Test (TREAT) Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Maolong; Ryals, Matthew; Ali, Amir

    2016-08-01

    A variety of instruments are being developed and qualified to support the Accident Tolerant Fuels (ATF) program and future transient irradiations at the Transient Reactor Test (TREAT) facility at Idaho National Laboratory (INL). The University of New Mexico (UNM) is working with INL to develop capacitance-based void sensors for determining the timing of critical boiling phenomena in static capsule fuel testing and the volume-averaged void fraction in flow-boiling in-pile water loop fuel testing. The static capsule sensor developed at INL is a plate-type configuration, while UNM is utilizing a ring-type capacitance sensor. Each sensor design has been theoretically and experimentallymore » investigated at INL and UNM. Experiments are being performed at INL in an autoclave to investigate the performance of these sensors under representative Pressurized Water Reactor (PWR) conditions in a static capsule. Experiments have been performed at UNM using air-water two-phase flow to determine the sensitivity and time response of the capacitance sensor under a flow boiling configuration. Initial measurements from the capacitance sensor have demonstrated the validity of the concept to enable real-time measurement of void fraction. The next steps include designing the cabling interface with the flow loop at UNM for Reactivity Initiated Accident (RIA) ATF testing at TREAT and further characterization of the measurement response for each sensor under varying conditions by experiments and modeling.« less

  13. Non- contacting capacitive diagnostic device

    DOEpatents

    Ellison, Timothy

    2005-07-12

    A non-contacting capacitive diagnostic device includes a pulsed light source for producing an electric field in a semiconductor or photovoltaic device or material to be evaluated and a circuit responsive to the electric field. The circuit is not in physical contact with the device or material being evaluated and produces an electrical signal characteristic of the electric field produced in the device or material. The diagnostic device permits quality control and evaluation of semiconductor or photovoltaic device properties in continuous manufacturing processes.

  14. Source of electrical power for an electric vehicle and other purposes, and related methods

    DOEpatents

    LaFollette, Rodney M.

    2000-05-16

    Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries, silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (j) higher capacities (A.multidot.hr); and k) high specific capacitance.

  15. Source of electrical power for an electric vehicle and other purposes, and related methods

    DOEpatents

    LaFollette, Rodney M.

    2002-11-12

    Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form corrugated thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries, silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (i) higher capacities (A.multidot.hr); and (j) high specific capacitance.

  16. High-performance super capacitors based on activated anthracite with controlled porosity

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Chul; Byamba-Ochir, Narandalai; Shim, Wang-Geun; Balathanigaimani, M. S.; Moon, Hee

    2015-02-01

    Mongolian anthracite is chemically activated using potassium hydroxide as an activation agent to make activated carbon materials. Prior to the chemical activation, the chemical agent is introduced by two different methods as follows, (1) simple physical mixing, (2) impregnation. The physical properties such as specific surface area, pore volume, pore size distribution, and adsorption energy distribution are measured to assess them as carbon electrode materials for electric double-layer capacitors (EDLC). The surface functional groups and morphology are also characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analyses respectively. The electrochemical results for the activated carbon electrodes in 3 M sulfuric acid electrolyte solution indicate that the activated Mongolian anthracite has relatively large specific capacitances in the range of 120-238 F g-1 and very high electrochemical stability, as they keep more than 98% of initial capacitances until 1000 charge/discharge cycles.

  17. Development of an electrical model for integrated magnetic inductors

    NASA Astrophysics Data System (ADS)

    Bechir, M. B.; Yaya, D. D.; Youssouf, M. K.; Soultan, M.; Capraro, S.; Siblini, A.; Chatelon, J. P.; Rousseau, J. J.

    2014-07-01

    Nowadays, the current trend consists in the development of new technologies with the aim of reducing volume, weight as well as production cost. With the aim of decreasing occupied component area, it will be interesting to use magnetic materials to confine the fields. Therefore, our works concern the modelling and the characterization of magnetic planar inductors. The proposed model is detailed for inductors fabricated with one magnetic layer. The model can take into account, the capacitance between turns and the capacitance between the last turn and the ground plane, the magnetic permeability, the skin and proximity effects of the conductors according to the frequency. The structure of optimization developed to extract the parameters of the model will be presented. Results of extracted parameters are compared with the simulation parameters. A good correlation is observed on Y11 and Y12 parameters on all the broad band frequency.

  18. Effect of Plasma Membrane Semipermeability in Making the Membrane Electric Double Layer Capacitances Significant.

    PubMed

    Sinha, Shayandev; Sachar, Harnoor Singh; Das, Siddhartha

    2018-01-30

    Electric double layers (or EDLs) formed at the membrane-electrolyte interface (MEI) and membrane-cytosol interface (MCI) of a charged lipid bilayer plasma membrane develop finitely large capacitances. However, these EDL capacitances are often much larger than the intrinsic capacitance of the membrane, and all of these capacitances are in series. Consequently, the effect of these EDL capacitances in dictating the overall membrane-EDL effective capacitance C eff becomes negligible. In this paper, we challenge this conventional notion pertaining to the membrane-EDL capacitances. We demonstrate that, on the basis of the system parameters, the EDL capacitance for both the permeable and semipermeable membranes can be small enough to influence C eff . For the semipermeable membranes, however, this lowering of the EDL capacitance can be much larger, ensuring a reduction of C eff by more than 20-25%. Furthermore, for the semipermeable membranes, the reduction in C eff is witnessed over a much larger range of system parameters. We attribute such an occurrence to the highly nonintuitive electrostatic potential distribution associated with the recently discovered phenomena of charge-inversion-like electrostatics and the attainment of a positive zeta potential at the MCI for charged semipermeable membranes. We anticipate that our findings will impact the quantification and the identification of a large number of biophysical phenomena that are probed by measuring the plasma membrane capacitance.

  19. Electrically Small Folded Slot Antenna Utilizing Capacitive Loaded Slot Lines

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Ponchak, George E.; Merritt, Shane; Minor, John S.; Zorman, Christian A.

    2007-01-01

    This paper presents an electrically small, coplanar waveguide fed, folded slot antenna that uses capacitive loading. Several antennas are fabricated with and without capacitive loading to demonstrate the ability of this design approach to reduce the resonant frequency of the antenna, which is analogous to reducing the antenna size. The antennas are fabricated on Cu-clad Rogers Duriod(TM) 6006 with multilayer chip capacitors to load the antennas. Simulated and measured results show close agreement, thus, validating the approach. The electrically small antennas have a measured return loss greater than 15 dB and a gain of 5.4, 5.6, and 2.7 dBi at 4.3, 3.95, and 3.65 GHz, respectively.

  20. Electrically Variable or Programmable Nonvolatile Capacitors

    NASA Technical Reports Server (NTRS)

    Shangqing, Liu; NaiJuan, Wu; Ignatieu, Alex; Jianren, Li

    2009-01-01

    Electrically variable or programmable capacitors based on the unique properties of thin perovskite films are undergoing development. These capacitors show promise of overcoming two important deficiencies of prior electrically programmable capacitors: Unlike in the case of varactors, it is not necessary to supply power continuously to make these capacitors retain their capacitance values. Hence, these capacitors may prove useful as components of nonvolatile analog and digital electronic memories. Unlike in the case of ferroelectric capacitors, it is possible to measure the capacitance values of these capacitors without changing the values. In other words, whereas readout of ferroelectric capacitors is destructive, readout of these capacitors can be nondestructive. A capacitor of this type is a simple two terminal device. It includes a thin film of a suitable perovskite as the dielectric layer, sandwiched between two metal or metal oxide electrodes (for example, see Figure 1). The utility of this device as a variable capacitor is based on a phenomenon, known as electrical-pulse-induced capacitance (EPIC), that is observed in thin perovskite films and especially in those thin perovskite films that exhibit the colossal magnetoresistive (CMR) effect. In EPIC, the application of one or more electrical pulses that exceed a threshold magnitude (typically somewhat less than 1 V) gives rise to a nonvolatile change in capacitance. The change in capacitance depends on the magnitude duration, polarity, and number of pulses. It is not necessary to apply a magnetic field or to cool the device below (or heat it above) room temperature to obtain EPIC. Examples of suitable CMR perovskites include Pr(1-x)Ca(x)MnO3, La(1-x)S-r(x)MnO3,and Nb(1-x)Ca(x)MnO3. Figure 2 is a block diagram showing an EPIC capacitor connected to a circuit that can vary the capacitance, measure the capacitance, and/or measure the resistance of the capacitor.

  1. One- and Two-Equation Models to Simulate Ion Transport in Charged Porous Electrodes

    DOE PAGES

    Gabitto, Jorge; Tsouris, Costas

    2018-01-19

    Energy storage in porous capacitor materials, capacitive deionization (CDI) for water desalination, capacitive energy generation, geophysical applications, and removal of heavy ions from wastewater streams are some examples of processes where understanding of ionic transport processes in charged porous media is very important. In this work, one- and two-equation models are derived to simulate ionic transport processes in heterogeneous porous media comprising two different pore sizes. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A two-step volume averaging technique is used to derive the averaged transportmore » equations for multi-ionic systems without any further assumptions, such as thin electrical double layers or Donnan equilibrium. A comparison between both models is presented. The effective transport parameters for isotropic porous media are calculated by solving the corresponding closure problems. An approximate analytical procedure is proposed to solve the closure problems. Numerical and theoretical calculations show that the approximate analytical procedure yields adequate solutions. Lastly, a theoretical analysis shows that the value of interphase pseudo-transport coefficients determines which model to use.« less

  2. One- and Two-Equation Models to Simulate Ion Transport in Charged Porous Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabitto, Jorge; Tsouris, Costas

    Energy storage in porous capacitor materials, capacitive deionization (CDI) for water desalination, capacitive energy generation, geophysical applications, and removal of heavy ions from wastewater streams are some examples of processes where understanding of ionic transport processes in charged porous media is very important. In this work, one- and two-equation models are derived to simulate ionic transport processes in heterogeneous porous media comprising two different pore sizes. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A two-step volume averaging technique is used to derive the averaged transportmore » equations for multi-ionic systems without any further assumptions, such as thin electrical double layers or Donnan equilibrium. A comparison between both models is presented. The effective transport parameters for isotropic porous media are calculated by solving the corresponding closure problems. An approximate analytical procedure is proposed to solve the closure problems. Numerical and theoretical calculations show that the approximate analytical procedure yields adequate solutions. Lastly, a theoretical analysis shows that the value of interphase pseudo-transport coefficients determines which model to use.« less

  3. Electric double-layer capacitance between an ionic liquid and few-layer graphene.

    PubMed

    Uesugi, Eri; Goto, Hidenori; Eguchi, Ritsuko; Fujiwara, Akihiko; Kubozono, Yoshihiro

    2013-01-01

    Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and the quantum capacitance Cq, which is proportional to the density of states. We investigated the variables that determine CEDL at the molecular level by varying the number of graphene layers n and thereby optimising Cq. The CEDL value is governed by Cq at n < 4, and by Cg at n > 4. This transition with n indicates a composite nature for CEDL. Our finding clarifies a universal principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives on charge accumulation and energy storage using an ultimately thin capacitor.

  4. Electric double-layer capacitance between an ionic liquid and few-layer graphene

    PubMed Central

    Uesugi, Eri; Goto, Hidenori; Eguchi, Ritsuko; Fujiwara, Akihiko; Kubozono, Yoshihiro

    2013-01-01

    Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and the quantum capacitance Cq, which is proportional to the density of states. We investigated the variables that determine CEDL at the molecular level by varying the number of graphene layers n and thereby optimising Cq. The CEDL value is governed by Cq at n < 4, and by Cg at n > 4. This transition with n indicates a composite nature for CEDL. Our finding clarifies a universal principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives on charge accumulation and energy storage using an ultimately thin capacitor. PMID:23549208

  5. Oscillator or Amplifier With Wide Frequency Range

    NASA Technical Reports Server (NTRS)

    Kleinberg, L.; Sutton, J.

    1987-01-01

    Inductive and capacitive effects synthesized with feedback circuits. Oscillator/amplifier resistively tunable over wide frequency range. Feedback circuits containing operational amplifiers, resistors, and capacitors synthesize electrical effects of inductance and capacitance in parallel between input terminals. Synthetic inductance and capacitance, and, therefore, resonant frequency of input admittance, adjusted by changing potentiometer setting.

  6. Electrical Counting and Sizing of Mammalian Cells in Suspension

    PubMed Central

    Gregg, E. C.; Steidley, K. David

    1965-01-01

    A recently developed method of determining the number and size of particles suspended in a conducting solution is to pump the suspension through a small orifice having an immersed electrode on each side to supply electrical current. The current changes due to the passage of particles of resistivity different from that of the solution. Theoretical expressions are developed which relate the current change caused by such particles to their volume and shape. It is found that most biological cells may be treated as dielectric particles whose capacitive effects are negligible. Electrolytic tank measurements on models confirm the theoretical development, and electric field plots of model orifices are used to predict the observed pulse shapes. An equivalent circuit of the orifice-electrode system is analyzed and shows that the current pulse may be made conductivity-independent when observed with a zero input impedance amplifier. PMID:5861698

  7. Capacitance probe for fluid flow and volume measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1995-01-01

    Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a microgravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.

  8. Capacitance Probe for Fluid Flow and Volume Measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1997-01-01

    Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.

  9. Theoretical models for electrochemical impedance spectroscopy and local ζ-potential of unfolded proteins in nanopores

    NASA Astrophysics Data System (ADS)

    Vitarelli, Michael J.; Talaga, David S.

    2013-09-01

    Single solid-state nanopores find increasing use for electrical detection and/or manipulation of macromolecules. These applications exploit the changes in signals due to the geometry and electrical properties of the molecular species found within the nanopore. The sensitivity and resolution of such measurements are also influenced by the geometric and electrical properties of the nanopore. This paper continues the development of an analytical theory to predict the electrochemical impedance spectra of nanopores by including the influence of the presence of an unfolded protein using the variable topology finite Warburg impedance model previously published by the authors. The local excluded volume of, and charges present on, the segment of protein sampled by the nanopore are shown to influence the shape and peak frequency of the electrochemical impedance spectrum. An analytical theory is used to relate the capacitive response of the electrical double layer at the surface of the protein to both the charge density at the protein surface and the more commonly measured zeta potential. Illustrative examples show how the theory predicts that the varying sequential regions of surface charge density and excluded volume dictated by the protein primary structure may allow for an impedance-based approach to identifying unfolded proteins.

  10. Characterization and organic electric-double-layer-capacitor application of KOH activated coal-tar-pitch-based carbons: Effect of carbonization temperature

    NASA Astrophysics Data System (ADS)

    Choi, Poo Reum; Lee, Eunji; Kwon, Soon Hyung; Jung, Ji Chul; Kim, Myung-Soo

    2015-12-01

    The present study reports the influence of pre-carbonization on the properties of KOH-activated coal tar pitch (CTP). The change of crystallinity and pore structure of pre-carbonized CTPs as well as their activated carbons (ACs) as function of pre-carbonization temperature are investigated. The crystallinity of pre-carbonized CTPs increases with increasing the carbonization temperature up to 600 °C, but a disorder occurs during the carbonization around 700 °C and an order happens gradually with increasing the carbonization temperatures in range of 800-1000 °C. The CTPs pre-carbonized at high temperatures are more difficult to be activated with KOH than those pre-carbonized at low temperatures due to the increase of micro-crystalline size and the decrease of surface functional groups. The micro-pores and meso-pores are well developed at around 1.0 nm and 2.4 nm, respectively, as the ACs are pre-carbonized at temperatures of 500-600 °C, exhibiting high specific capacitances as electrode materials for electric double layer capacitor (EDLC). Although the specific surface area (SSA) and pore volume of ACs pre-carbonized at temperatures of 900-1000 °C are extraordinary low (non-porous) as compared to those of AC pre-carbonized at 600 °C, their specific capacitances are comparable to each other. The large specific capacitances with low SSA ACs can be attributed to the structural change resulting from the electrochemical activation during the 1st charge above 2.0 V.

  11. Effects of nitroglycerin and nitroprusside on vascular capacitance of anesthetized ganglion-blocked dogs.

    PubMed

    Ogilvie, R I; Zborowska-Sluis, D

    1991-10-01

    To determine whether changes in vascular capacitance induced by nitroglycerin (NTG) and nitroprusside were due to changes in compliance or unstressed vascular volume, doses producing similar reductions in arterial pressure (Psa) were studied on separate days in six dogs anesthetized and ventilated with pentobarbital after splenectomy during ganglion blockade with hexamethonium. Mean circulatory filling pressure (Pmcf) was determined during transient circulatory arrest induced by acetylcholine at baseline blood volumes and after increases of 5 and 10 ml/kg. Central blood volumes (CBVs, pulmonary artery to aortic root) were determined from transit times, and separately measured cardiac output (CO) was estimated by thermodilution (right atrium to pulmonary artery). NTG and nitroprusside produced similar reductions in Psa and Pmcf without significantly altering right atrial pressure (Pra), pressure gradient for venous return, or CO. Total vascular compliance was not altered, but total vascular capacitance was increased on an average of 4.0 +/- 1.4 ml/kg after NTG and 3.0 +/- 1.3 ml/kg after nitroprusside by increases in unstressed volume. Both drugs caused a variable reduction in CBV, averaging 2 ml/kg. Thus, both drugs produced a large increase in peripheral venous capacitance by increasing unstressed vascular volume without altering total vascular compliance.

  12. Adaptive piezoelectric sensoriactuator

    NASA Technical Reports Server (NTRS)

    Clark, Jr., Robert L. (Inventor); Vipperman, Jeffrey S. (Inventor); Cole, Daniel G. (Inventor)

    1996-01-01

    An adaptive algorithm implemented in digital or analog form is used in conjunction with a voltage controlled amplifier to compensate for the feedthrough capacitance of piezoelectric sensoriactuator. The mechanical response of the piezoelectric sensoriactuator is resolved from the electrical response by adaptively altering the gain imposed on the electrical circuit used for compensation. For wideband, stochastic input disturbances, the feedthrough capacitance of the sensoriactuator can be identified on-line, providing a means of implementing direct-rate-feedback control in analog hardware. The device is capable of on-line system health monitoring since a quasi-stable dynamic capacitance is indicative of sustained health of the piezoelectric element.

  13. Modeling and Characterization of Capacitive Elements With Tissue as Dielectric Material for Wireless Powering of Neural Implants.

    PubMed

    Erfani, Reza; Marefat, Fatemeh; Sodagar, Amir M; Mohseni, Pedram

    2018-05-01

    This paper reports on the modeling and characterization of capacitive elements with tissue as the dielectric material, representing the core building block of a capacitive link for wireless power transfer to neural implants. Each capacitive element consists of two parallel plates that are aligned around the tissue layer and incorporate a grounded, guarded, capacitive pad to mitigate the adverse effect of stray capacitances and shield the plates from external interfering electric fields. The plates are also coated with a biocompatible, insulating, coating layer on the inner side of each plate in contact with the tissue. A comprehensive circuit model is presented that accounts for the effect of the coating layers and is validated by measurements of the equivalent capacitance as well as impedance magnitude/phase of the parallel plates over a wide frequency range of 1 kHz-10 MHz. Using insulating coating layers of Parylene-C at a thickness of and Parylene-N at a thickness of deposited on two sets of parallel plates with different sizes and shapes of the guarded pad, our modeling and characterization results accurately capture the effect of the thickness and electrical properties of the coating layers on the behavior of the capacitive elements over frequency and with different tissues.

  14. Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67.

    PubMed

    Torad, Nagy L; Salunkhe, Rahul R; Li, Yunqi; Hamoudi, Hicham; Imura, Masataka; Sakka, Yoshio; Hu, Chi-Chang; Yamauchi, Yusuke

    2014-06-23

    Nanoporous carbons (NPCs) have large specific surface areas, good electrical and thermal conductivity, and both chemical and mechanical stability, which facilitate their use in energy storage device applications. In the present study, highly graphitized NPCs are synthesized by one-step direct carbonization of cobalt-containing zeolitic imidazolate framework-67 (ZIF-67). After chemical etching, the deposited Co content can be completely removed to prepare pure NPCs with high specific surface area, large pore volume, and intrinsic electrical conductivity (high content of sp(2) -bonded carbons). A detailed electrochemical study is performed using cyclic voltammetry and galvanostatic charge-discharge measurements. Our NPC is very promising for efficient electrodes for high-performance supercapacitor applications. A maximum specific capacitance of 238 F g(-1) is observed at a scan rate of 20 mV s(-1) . This value is very high compared to previous works on carbon-based electric double layer capacitors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Development of high energy density electrical double layer capacitors

    NASA Astrophysics Data System (ADS)

    Devarajan, Thamarai selvi

    Electrochemical Double Layer capacitors (EDLCs) have shown themselves as a viable energy storage alternative. EDLCs have high power density, faster charge/discharge, wide operating temperature and long cycle life compared to batteries since it stores charge by physical separation. Despites all their advantages, their low energy density stand as a bottleneck for capacitors. This research aims to increase the energy density of EDLC without compromising the power density. Energy is proportional to the square of cell voltage. Cell voltage is mainly dependent on electrolyte breakdown. Electrolytes also provide ions for charge separation and conduction. Therefore various electrolytes (Solutes and Solvents) which can give high concentration, solubility and decomposition potential were characterized in the first part of the research. In that study, a novel ionic liquid OPBF4 had higher capacitance and comparable voltage window compared to commercial TEABF4 in Acetonitrile. However, the increased polarity of the fixed ring O-atom and the ion-ion interaction in OPBF4 was responsible for lowering its conductivity. Oxygenated ionic compounds with alkyl groups had lower stability due to beta elimination between two electron withdrawing atoms. Volume based thermodynamics and quantum chemical calculations were used to calculate ion size, HOMO/LUMO energies, and free energy changes and establish relationship with capacitance, redox potential and melting points respectively. In addition free energy of fusion was used to predict the melting point. Ion size had correlation with capacitance due to compact double layer formation. Free energy changes did not explain the differences in melting point and predicted dielectric constant was inconsistent with the polarity. This is presumably due to using Van der Waals volume instead of crystal structure volume and insufficient incorporation of polarization term. The HOMO/LUMO energies gave direct relation between oxidation and reduction potential at 1mA/cm 2. A brief study on non-polar co-solvents for EDLC was studied. Among the solvents studied, fluorinated solvents had low melting point and viscosity due to incorporation of asymmetry. However, because of low dielectric constant, TEABF4 is insoluble and had to be mixed with other solvents. The mixed fluorinated solvents had slightly higher voltage window due to decreased donicity of lone pairs of electrons. The second approach to increasing energy density is to increase capacitance. Capacitance is mainly dependent on surface area and porosity of electrodes. Nanostructured materials which can offer multiple charge storage are currently of interest. Hence, novel NiSi nanotubes were studied as electrodes for supercapacitor applications. Silicon material has high capacity and these inert electrodes can enable higher capacitance by controlling the porosity and functional groups in specific electrolytes. The Silicon wafers were made porous by anodization using hydrofluoric acid. In order to improve the conductivity, the porous silicon was doped, then plated with Ni using electroless plating method and annealed to form nickel mono silicide. Gold was deposited on the back side of the electrode to enhance conductivity. Our porous NiSi electrodes gave capacitance of about 1185muF /cm2 in 0.5 M H 2SO4. Further investigation of oxide formation and modification of functional groups will help achieve higher capacitance.

  16. Effects of nifedipine and captopril on vascular capacitance of ganglion-blocked anesthetized dogs.

    PubMed

    Ogilvie, R I; Zborowska-Sluis, D

    1990-03-01

    The hemodynamic effects of nifedipine and captopril at doses producing similar reductions in arterial pressure were studied in pentobarbital-anesthetized ventilated dogs after splenectomy during ganglion blockade with hexamethonium. Mean circulatory filling pressure (Pmcf) was determined during transient circulatory arrest induced by acetylcholine at baseline circulating blood volumes and after increases of 5 and 10 mL/kg. Central blood volumes (pulmonary artery to aortic root) were determined from transit times, and separately determined cardiac outputs (right atrium to pulmonary artery) were estimated by thermodilution. Nifedipine (n = 5) increased Pmcf at all circulating blood volumes and reduced total vascular capacitance without a change in total vascular compliance. Central blood volume, right atrial pressure, and cardiac output were increased with induced increases in circulating blood volume. In contrast, captopril (n = 5) did not alter total vascular capacitance, central blood volume, right atrial pressure, or cardiac output at baseline or with increased circulating volume. Thus, at doses producing similar reductions in arterial pressure, nifedipine but not captopril increased venous return and cardiac output in ganglion-blocked dogs.

  17. High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Hu, Sixiao; Zhang, Sanliang; Pan, Ning; Hsieh, You-Lo

    2014-12-01

    Highly porous submicron activated carbon fibers (ACFs) were robustly generated from low sulfonated alkali lignin and fabricated into supercapacitors for capacitive energy storage. The hydrophilic and high specific surface ACFs exhibited large-size nanographites and good electrical conductivity to demonstrate outstanding electrochemical performance. ACFs from KOH activation, in particular, showed very high 344 F g-1 specific capacitance at low 1.8 mg cm-2 mass loading and 10 mV s-1 scan rate in aqueous electrolytes. Even at relatively high scan rate of 50 mV s-1 and mass loading of 10 mg cm-2, a decent specific capacitance of 196 F g-1 and a remarkable areal capacitance of 0.55 F cm-2 was obtained, leading to high energy density of 8.1 Wh kg-1 based on averaged electrodes mass. Furthermore, over 96% capacitance retention rates were achieved after 5000 charge/discharge cycles. Such excellent performance demonstrated great potential of lignin derived carbons for electrical energy storage.

  18. Molecular Insights into Carbon Nanotube Supercapacitors: Capacitance Independent of Voltage and Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Guang; Li, Song; Atchison, Jennifer S.

    2013-04-12

    Molecular dynamics (MD) simulations of supercapacitors with single-walled carbon nanotube (SWCNT) electrodes in room-temperature ionic liquids were performed to investigate the influences of the applied electrical potential, the radius/curvature of SWCNTs, and temperature on their capacitive behavior. It is found that (1) SWCNTs-based supercapacitors exhibit a near-flat capacitance–potential curve, (2) the capacitance increases as the tube radius decreases, and (3) the capacitance depends little on the temperature. We report the first MD study showing the influence of the electrode curvature on the capacitance–potential curve and negligible dependence of temperature on capacitance of tubular electrode. The latter is in good agreementmore » with recent experimental findings and is attributed to the similarity of the electrical double layer (EDL) microstructure with temperature varying from 260 to 400 K. The electrode curvature effect is explained by the dominance of charge overscreening and increased ion density per unit area of electrode surface.« less

  19. Modeling of electrical capacitance tomography with the use of complete electrode model

    NASA Astrophysics Data System (ADS)

    Fang, Weifu

    2016-10-01

    We introduce the complete electrode model in the modeling of electrical capacitance tomography (ECT), which extends the model with the commonly used model for electrodes. We show that the solution of the complete electrode model approaches the solution of the corresponding common electrode model as the impedance effect on the electrodes vanishes. We also derive the nonlinear relation between capacitance and permitivity and the sensitivity maps with respect to both the permittivity and the impedance constants, and present a finite difference scheme in polar coordinates for the case of circular ECT sensors that retains the continuity of displacement current with piecewise-constant permitivities.

  20. A Tunable Reentrant Resonator with Transverse Orientation of Electric Field for in Vivo EPR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chzhan, Michael; Kuppusamy, Periannan; Samouilov, Alexandre; He, Guanglong; Zweier, Jay L.

    1999-04-01

    There has been a need for development of microwave resonator designs optimized to provide high sensitivity and high stability for EPR spectroscopy and imaging measurements ofin vivosystems. The design and construction of a novel reentrant resonator with transversely oriented electric field (TERR) and rectangular sample opening cross section for EPR spectroscopy and imaging ofin vivobiological samples, such as the whole body of mice and rats, is described. This design with its transversely oriented capacitive element enables wide and simple setting of the center frequency by trimming the dimensions of the capacitive plate over the range 100-900 MHz with unloadedQvalues of approximately 1100 at 750 MHz, while the mechanical adjustment mechanism allows smooth continuous frequency tuning in the range ±50 MHz. This orientation of the capacitive element limits the electric field based loss of resonatorQobserved with large lossy samples, and it facilitates the use of capacitive coupling. Both microwave performance data and EPR measurements of aqueous samples demonstrate high sensitivity and stability of the design, which make it well suited forin vivoapplications.

  1. An experimental system for symmetric capacitive rf discharge studies

    NASA Astrophysics Data System (ADS)

    Godyak, V. A.; Piejak, R. B.; Alexandrovich, B. M.

    1990-09-01

    An experimental system has been designed and built to comprehensively study the electrical and plasma characteristics in symmetric capacitively coupled rf discharges at low gas pressures. Descriptions of the system concept, the discharge chamber, the vacuum-gas control system, and the rf matching and electrical measurement system are presented together with some results of electrical measurements carried out in an argon discharge at 13.56 MHz. The system has been specifically designed to facilitate external discharge parameter measurements and probe measurements and to be compatible with a wide variety of other diagnostics. External electrical measurements and probe measurements within the discharge show that it is an ideal vehicle to study low-pressure rf discharge physics. Measurements from this system should be comparable to one-dimensional rf symmetric capacitive discharge theories and may help to verify them. Although only a few results are given here, the system has been operated reliably over a wide range of gas pressures and should give reproducible and accurate results for discharge electrical characteristics and plasma parameters over a wide range of driving frequency and gas components.

  2. The Electrical Double Layer and Its Structure

    NASA Astrophysics Data System (ADS)

    Stojek, Zbigniew

    At any electrode immersed in an electrolyte solution, a specific interfacial region is formed. This region is called the double layer. The electrical properties of such a layer are important, since they significantly affect the electrochemical measurements. In an electrical circuit used to measure the current that flows at a particular working electrode, the double layer can be viewed as a capacitor. Figure I.1.1 depicts this situation where the electrochemical cell is represented by an electrical circuit and capacitor C d corresponds to the differential capacity of the double layer. To obtain a desired potential at the working electrodes, the double-layer capacitor must be first appropriately charged, which means that a capacitive current, not related to the reduction or oxidation of the substrates, flows in the electrical circuit. While this capacitive current carries some information concerning the double layer and its structure, and in some cases can be used for analytical purposes, in general, it interferes with electrochemical investigations. A variety of methods are used in electrochemistry to depress, isolate, or filter the capacitive current.

  3. A nondisturbing electric-field sensor using piezoelectric and converse piezoelectric resonances

    NASA Astrophysics Data System (ADS)

    Lee, Yongkwan; Kim, Ilryong; Lee, Soonchil

    1997-12-01

    An electric-field sensor was developed using both piezoelectric and converse piezoelectric resonances. Composed of no metallic parts, this probe minimizes field disturbance. The most distinguishing feature of this probe is that a signal is transmitted neither electrically nor optically, but mechanically. To demonstrate the field sensing capability of this probe, we measured both the capacitive and inductive fields inside empty and plasma-filled solenoidal coils. The result shows that the capacitive field is dominant in an empty solenoid, although it is almost completely shielded by inductively excited plasma.

  4. Isolating the effect of pore size distribution on electrochemical double-layer capacitance using activated fluid coke

    NASA Astrophysics Data System (ADS)

    Zuliani, Jocelyn E.; Tong, Shitang; Kirk, Donald W.; Jia, Charles Q.

    2015-12-01

    Electrochemical double-layer capacitors (EDLCs) use physical ion adsorption in the capacitive electrical double layer of high specific surface area (SSA) materials to store electrical energy. Previous work shows that the SSA-normalized capacitance increases when pore diameters are less than 1 nm. However, there still remains uncertainty about the charge storage mechanism since the enhanced SSA-normalized capacitance is not observed in all microporous materials. In previous studies, the total specific surface area and the chemical composition of the electrode materials were not controlled. The current work is the first reported study that systematically compares the performance of activated carbon prepared from the same raw material, with similar chemical composition and specific surface area, but different pore size distributions. Preparing samples with similar SSAs, but different pores sizes is not straightforward since increasing pore diameters results in decreasing the SSA. This study observes that the microporous activated carbon has a higher SSA-normalized capacitance, 14.1 μF cm-2, compared to the mesoporous material, 12.4 μF cm-2. However, this enhanced SSA-normalized capacitance is only observed above a threshold operating voltage. Therefore, it can be concluded that a minimum applied voltage is required to induce ion adsorption in these sub-nanometer micropores, which increases the capacitance.

  5. Enhancement in ion adsorption rate and desalination efficiency in a capacitive deionization cell through improved electric field distribution using electrodes composed of activated carbon cloth coated with zinc oxide nanorods.

    PubMed

    Laxman, Karthik; Myint, Myo Tay Zar; Bourdoucen, Hadj; Dutta, Joydeep

    2014-07-09

    Electrodes composed of activated carbon cloth (ACC) coated with zinc oxide (ZnO) nanorods are compared with plain ACC electrodes, with respect to their desalination efficiency of a 17 mM NaCl solution at different applied potentials. Polarization of the ZnO nanorods increased the penetration depth and strength of the electric field between the electrodes, leading to an increase in the capacitance and charge efficiency at reduced input charge ratios. Uniform distribution of the electric field lines between two electrodes coated with ZnO nanorods led to faster ion adsorption rates, reduced the electrode saturation time, and increased the average desalination efficiency by ∼45% for all applied potentials. The electrodes were characterized for active surface area, capacitance from cyclic voltammetry, theoretical assessment of surface area utilization, and the magnitude of electric field force acting on an ion of unit charge for each potential.

  6. Capacitive Feedthroughs for Medical Implants

    PubMed Central

    Grob, Sven; Tass, Peter A.; Hauptmann, Christian

    2016-01-01

    Important technological advances in the last decades paved the road to a great success story for electrically stimulating medical implants, including cochlear implants or implants for deep brain stimulation. However, there are still many challenges in reducing side effects and improving functionality and comfort for the patient. Two of the main challenges are the wish for smaller implants on one hand, and the demand for more stimulation channels on the other hand. But these two aims lead to a conflict of interests. This paper presents a novel design for an electrical feedthrough, the so called capacitive feedthrough, which allows both reducing the size, and increasing the number of included channels. Capacitive feedthroughs combine the functionality of a coupling capacitor and an electrical feedthrough within one and the same structure. The paper also discusses the progress and the challenges of the first produced demonstrators. The concept bears a high potential in improving current feedthrough technology, and could be applied on all kinds of electrical medical implants, even if its implementation might be challenging. PMID:27660602

  7. Capacitive Feedthroughs for Medical Implants.

    PubMed

    Grob, Sven; Tass, Peter A; Hauptmann, Christian

    2016-01-01

    Important technological advances in the last decades paved the road to a great success story for electrically stimulating medical implants, including cochlear implants or implants for deep brain stimulation. However, there are still many challenges in reducing side effects and improving functionality and comfort for the patient. Two of the main challenges are the wish for smaller implants on one hand, and the demand for more stimulation channels on the other hand. But these two aims lead to a conflict of interests. This paper presents a novel design for an electrical feedthrough, the so called capacitive feedthrough, which allows both reducing the size, and increasing the number of included channels. Capacitive feedthroughs combine the functionality of a coupling capacitor and an electrical feedthrough within one and the same structure. The paper also discusses the progress and the challenges of the first produced demonstrators. The concept bears a high potential in improving current feedthrough technology, and could be applied on all kinds of electrical medical implants, even if its implementation might be challenging.

  8. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Eleven: Capacitance. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on capacitance is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Seven lessons are included in the module:…

  9. Enhancing Graphene Capacitance by Nitrogen: Effects of Doping Configuration and Concentration

    DOE PAGES

    Zhan, Cheng; Cummings, Peter; Jiang, De-en

    2016-01-08

    Recent experiments have shown that nitrogen doping enhances capacitance in carbon electrode supercapacitors. However, a detailed study of the effect of N-doping on capacitance is still lacking. In this paper, we study the doping concentration and the configuration effect on the electric double-layer (EDL) capacitance, quantum capacitance, and total capacitance. It is found that pyridinic and graphitic nitrogens can increase the total capacitance by increasing quantum capacitance, but pyrrolic configuration limits the total capacitance due to its much lower quantum capacitance than the other two configurations. We also find that, unlike the graphitic and pyridinic nitrogens, the pyrrolic configuration's quantummore » capacitance does not depend on the nitrogen concentration, which may explain why some capacitance versus voltage measurements of N-doped graphene exhibit a V-shaped curve similar to that of undoped graphene. Our investigation provides a deeper understanding of the capacitance enhancement of the N-doping effect in carbon electrodes and suggests a potentially effective way to optimize the capacitance by controlling the type of N-doping.« less

  10. Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Mohd Zaid, Norsaadatul Akmal; Idris, Nurul Hayati

    2016-08-01

    In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g-1 at a current density of 2 A g-1, which is higher than the capacitance of bare G (145 F g-1) and bare Ni (3 F g-1). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g-1 at a current density of 5 A g-1 and a capacitance of 144 F g-1 at a current density of 10 A g-1. The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor.

  11. Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors.

    PubMed

    Mohd Zaid, Norsaadatul Akmal; Idris, Nurul Hayati

    2016-08-24

    In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g(-1) at a current density of 2 A g(-1), which is higher than the capacitance of bare G (145 F g(-1)) and bare Ni (3 F g(-1)). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g(-1) at a current density of 5 A g(-1) and a capacitance of 144 F g(-1) at a current density of 10 A g(-1). The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor.

  12. Electrosorption capacitance of nanostructured carbon-based materials.

    PubMed

    Hou, Chia-Hung; Liang, Chengdu; Yiacoumi, Sotira; Dai, Sheng; Tsouris, Costas

    2006-10-01

    The fundamental mechanism of electrosorption of ions developing a double layer inside nanopores was studied via a combination of experimental and theoretical studies. A novel graphitized-carbon monolithic material has proven to be a good electrical double-layer capacitor that can be applied in the separation of ions from aqueous solutions. An extended electrical double-layer model indicated that the pore size distribution plays a key role in determining the double-layer capacitance in an electrosorption process. Because of the occurrence of double-layer overlapping in narrow pores, mesopores and micropores make significantly different contributions to the double-layer capacitance. Mesopores show good electrochemical accessibility. Micropores present a slow mass transfer of ions and a considerable loss of double-layer capacitance, associated with a shallow potential distribution inside pores. The formation of the diffuse layer inside the micropores determines the magnitude of the double-layer capacitance at low electrolyte concentrations and at conditions close to the point of zero charge of the material. The effect of the double-layer overlapping on the electrosorption capacitance can be reduced by increasing the pore size, electrolyte concentration, and applied potential. The results are relevant to water deionization.

  13. ANSYS simulation of the capacitance coupling of quartz tuning fork gyroscope

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Feng, Lihui; Zhao, Ke; Cui, Fang; Sun, Yu-nan

    2013-12-01

    Coupling error is one of the main error sources of the quartz tuning fork gyroscope. The mechanism of capacitance coupling error is analyzed in this article. Finite Element Method (FEM) is used to simulate the structure of the quartz tuning fork by ANSYS software. The voltage output induced by the capacitance coupling is simulated with the harmonic analysis and characteristics of electrical and mechanical parameters influenced by the capacitance coupling between drive electrodes and sense electrodes are discussed with the transient analysis.

  14. A Laboratory Exercise in Physics: Determining Single Capacitances and Series and Parallel Combinations of Capacitance.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This document presents a series of physics experiments which allow students to determine the value of unknown electrical capacitors. The exercises include both parallel and series connected capacitors. (SL)

  15. IMPEDANCE ALARM SYSTEM

    DOEpatents

    Cowen, R.G.

    1959-09-29

    A description is given of electric protective systems and burglar alarm systems of the capacitance type in which the approach of an intruder at a place to be protected varies the capacitance in an electric circuit and the change is thereafter communicated to a remote point to actuate an alarm. According to the invention, an astable transitor multi-vibrator has the amplitude at its output voltage controlled by a change in the sensing capacitance. The sensing capacitance is effectively connected between collector and base of one stage of the multivibrator circuit through the detector-to-monitor line. The output of the detector is a small d-c voltage across the detector-to-monitor line. This d- c voltage is amplified and monitored at the other end of the line, where an appropriate alarm is actuated if a sudden change in the voltage occurs. The present system has a high degree of sensitivity and is very difficult to defeat by known techniques.

  16. Optimal synthesis and characterization of Ag nanofluids by electrical explosion of wires in liquids

    PubMed Central

    2011-01-01

    Silver nanoparticles were produced by electrical explosion of wires in liquids with no additive. In this study, we optimized the fabrication method and examined the effects of manufacturing process parameters. Morphology and size of the Ag nanoparticles were determined using transmission electron microscopy and field-emission scanning electron microscopy. Size and zeta potential were analyzed using dynamic light scattering. A response optimization technique showed that optimal conditions were achieved when capacitance was 30 μF, wire length was 38 mm, liquid volume was 500 mL, and the liquid type was deionized water. The average Ag nanoparticle size in water was 118.9 nm and the zeta potential was -42.5 mV. The critical heat flux of the 0.001-vol.% Ag nanofluid was higher than pure water. PMID:21711757

  17. Permanent split capacitor single phase electric motor system

    DOEpatents

    Kirschbaum, Herbert S.

    1984-01-01

    A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation.

  18. Double-driven shield capacitive type proximity sensor

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1993-01-01

    A capacity type proximity sensor comprised of a capacitance type sensor, a capacitance type reference, and two independent and mutually opposing driven shields respectively adjacent to the sensor and reference and which are coupled in an electrical bridge circuit configuration and driven by a single frequency crystal controlled oscillator is presented. The bridge circuit additionally includes a pair of fixed electrical impedance elements which form adjacent arms of the bridge and which comprise either a pair of precision resistances or capacitors. Detection of bridge unbalance provides an indication of the mutual proximity between an object and the sensor. Drift compensation is also utilized to improve performance and thus increase sensor range and sensitivity.

  19. Probing-models for interdigitated electrode systems with ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Nguyen, Cuong H.; Nigon, Robin; Raeder, Trygve M.; Hanke, Ulrik; Halvorsen, Einar; Muralt, Paul

    2018-05-01

    In this paper, a new method to characterize ferroelectric thin films with interdigitated electrodes is presented. To obtain accurate properties, all parasitic contributions should be subtracted from the measurement results and accurate models for the ferroelectric film are required. Hence, we introduce a phenomenological model for the parasitic capacitance. Moreover, two common analytical models based on conformal transformations are compared and used to calculate the capacitance and the electric field. With a thin film approximation, new simplified electric field and capacitance formulas are derived. By using these formulas, more consistent CV, PV and stress-field loops for samples with different geometries are obtained. In addition, an inhomogeneous distribution of the permittivity due to the non-uniform electric field is modelled by finite element simulation in an iterative way. We observed that this inhomogeneous distribution can be treated as a homogeneous one with an effective value of the permittivity.

  20. Enhancing the Capacitive Performance of Electric Double-Layer Capacitors with Ionic Liquid Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, C.; Liu, K.; Van Aken, Katherine L.

    Formulating room-temperature ionic liquid (RTIL) mixed electrolytes was recently proposed as an effective and convenient strategy to increase the capacitive performance of electrochemical capacitors. In this paper, we investigate the electrical double-layer (EDL) structure and the capacitance of two RTILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF 4), and their mixtures with onion-like carbon electrodes using experiment and classical density functional theory. The principal difference between these ionic liquids is the smaller diameter of the BF 4 – anion relative to the TFSI – anion and the EMI + cation. A volcano-shaped trend is identified for the capacitance versus themore » composition of the RTIL mixture. The mixture effect, which makes more counterions pack on and more co-ions leave from the electrode surface, leads to an increase of the counterion density within the EDL and thus a larger capacitance. Finally, these theoretical predictions are in good agreement with our experimental observations and offer guidance for designing RTIL mixtures for EDL supercapacitors.« less

  1. Enhancing the Capacitive Performance of Electric Double-Layer Capacitors with Ionic Liquid Mixtures

    DOE PAGES

    Lian, C.; Liu, K.; Van Aken, Katherine L.; ...

    2016-04-18

    Formulating room-temperature ionic liquid (RTIL) mixed electrolytes was recently proposed as an effective and convenient strategy to increase the capacitive performance of electrochemical capacitors. In this paper, we investigate the electrical double-layer (EDL) structure and the capacitance of two RTILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF 4), and their mixtures with onion-like carbon electrodes using experiment and classical density functional theory. The principal difference between these ionic liquids is the smaller diameter of the BF 4 – anion relative to the TFSI – anion and the EMI + cation. A volcano-shaped trend is identified for the capacitance versus themore » composition of the RTIL mixture. The mixture effect, which makes more counterions pack on and more co-ions leave from the electrode surface, leads to an increase of the counterion density within the EDL and thus a larger capacitance. Finally, these theoretical predictions are in good agreement with our experimental observations and offer guidance for designing RTIL mixtures for EDL supercapacitors.« less

  2. Quantum Effects on the Capacitance of Graphene-Based Electrodes

    DOE PAGES

    Zhan, Cheng; Neal, Justin; Wu, Jianzhong; ...

    2015-09-08

    We recently measured quantum capacitance for electric double layers (EDL) at electrolyte/graphene interfaces. However, the importance of quantum capacitance in realistic carbon electrodes is not clear. Toward understanding that from a theoretical perspective, here we studied the quantum capacitance and total capacitance of graphene electrodes as a function of the number of graphene layers. The quantum capacitance was obtained from electronic density functional theory based on fixed band approximation with an implicit solvation model, while the EDL capacitances were from classical density functional theory. We found that quantum capacitance plays a dominant role in total capacitance of the single-layer graphenemore » both in aqueous and ionic-liquid electrolytes but the contribution decreases as the number of graphene layers increases. Moreover, the total integral capacitance roughly levels off and is dominated by the EDL capacitance beyond about four graphene layers. Finally, because many porous carbons have nanopores with stacked graphene layers at the surface, this research provides a good estimate of the effect of quantum capacitance on their electrochemical performance.« less

  3. Preliminary Evaluation of Polyarylate Dielectric Films for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Fialla, Peter

    2002-01-01

    Polymeric materials are used extensively on spacecraft and satellites in electrical power and distribution systems, as thermal blankets and optical surface coatings, as well as mechanical support structures. The reliability of these systems when exposed to the harsh environment of space is very critical to the success of the mission and the safety of the crew in manned-flight ventures. In this work, polyarylate films were evaluated for potential use as capacitor dielectrics and wiring insulation for cryogenic applications. Two grades of the film were characterized in terms of their electrical and mechanical properties before and after exposure to liquid nitrogen (-196 C). The electrical characterization consisted of capacitance and dielectric loss measure Cents in the frequency range of 50 Hz to 100 kHz, and volume and surface resistivities. The mechanical measurements performed included changes in tensile (Young's modulus, elongation-at-break, and tensile strength) and structural properties (dimensional change, weight, and surface morphology). The preliminary results, which indicate good stability of the polymer after exposure to liquid nitrogen, are presented and discussed.

  4. On the correlation between the porous structure and the electrochemical response of powdered and monolithic carbon aerogels as electrodes for capacitive deionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macías, C., E-mail: carlosmacias@nanoquimia.com; Lavela, P.; Rasines, G.

    2016-10-15

    The combined effect of resorcinol/catalyst (100≤R/C≤800) and resorcinol/water (0.04≤R/W≤0.13) molar ratio on the textural and capacitive properties of carbon aerogels with potential application for capacitive deionization has been evaluated. Activated and pyrolyzed aerogels were synthesized by the sol-gel polymerization of resorcinol-formaldehyde mixtures and dried in supercritical conditions. Data show that high R/C and R/W molar ratios lead to materials with large pores in the mesopore range, whereas the surface area and micropore volumes remain somewhat the same. The activation of the aerogels increased the differences in the specific surface and micropore volumes due to the development of microporosity. This effectmore » was more remarkable for the samples with low R/C whatever the R/W ratio, indicating that the carbon aerogel obtained using high amounts of catalyst are more prone to be activated. Regarding the electrochemical features of the aerogels, low capacitance values were measured in aerogels combining low R/W and high R/C and reciprocally low R/C and high R/W molar ratios, due to their higher resistance. Polarization resistances were found to be slightly higher for the pyrolyzed than for activated aerogels, and followed a decreasing trend with the mesoporosity, indicating the outstanding contribution of the mesoporous network to provide a good kinetic response. The desalting capacity of monolithic aerogels showed a simultaneous dependence with the surface area and the resistivity of the electrodes, pointing out the importance of performing electrochemical measurements in adequate cell configurations (i.e., desalting units) upon the intended application. - Graphical abstract: The textural properties of carbon aerogels are strongly influenced by the synthesis parameters precursor to catalyst (R/C) and water (R/C) ratios. The volumetric capacitance measured in a symmetric cell with monolithic electrodes of carbon aerogel strongly correlates with both surface area and electrical resistivity. - Highlights: • Influence of the synthesis conditions on the properties of carbon aerogels is reported. • Specific surface decreases in the activated samples when either R/C or R/W increase. • An enhanced decrease of the capacitance was observed when R/C and R/W increase. • Ohmic resistance of the electrodes that strongly depends on the R/W and R/C. • Electrosorption capacity is successfully correlated to surface area and resistivity.« less

  5. Niobium Nitride Nb4N5 as a New High‐Performance Electrode Material for Supercapacitors

    PubMed Central

    Cui, Houlei; Zhu, Guilian; Liu, Xiangye; Liu, Fengxin; Xie, Yian; Yang, Chongyin; Lin, Tianquan; Gu, Hui

    2015-01-01

    Supercapacitors suffer either from low capacitance for carbon or derivate electrodes or from poor electrical conductivity and electrochemical stability for metal oxide or conducting polymer electrodes. Transition metal nitrides possess fair electrical conductivity but superior chemical stability, which may be desirable candidates for supercapacitors. Herein, niobium nitride, Nb4N5, is explored to be an excellent capacitive material for the first time. An areal capacitance of 225.8 mF cm−2, with a reasonable rate capability (60.8% retention from 0.5 to 10 mA cm−2) and cycling stability (70.9% retention after 2000 cycles), is achieved in Nb4N5 nanochannels electrode with prominent electrical conductivity and electrochemical activity. Faradaic pseudocapacitance is confirmed by the mechanistic studies, deriving from the proton incorporation/chemisorption reaction owing to the copious +5 valence Nb ions in Nb4N5. Moreover, this Nb4N5 nanochannels electrode with an ultrathin carbon coating exhibits nearly 100% capacitance retention after 2000 CV cycles, which is an excellent cycling stability for metal nitride materials. Thus, the Nb4N5 nanochannels are qualified for a candidate for supercapacitors and other energy storage applications. PMID:27980920

  6. Niobium Nitride Nb4N5 as a New High-Performance Electrode Material for Supercapacitors.

    PubMed

    Cui, Houlei; Zhu, Guilian; Liu, Xiangye; Liu, Fengxin; Xie, Yian; Yang, Chongyin; Lin, Tianquan; Gu, Hui; Huang, Fuqiang

    2015-12-01

    Supercapacitors suffer either from low capacitance for carbon or derivate electrodes or from poor electrical conductivity and electrochemical stability for metal oxide or conducting polymer electrodes. Transition metal nitrides possess fair electrical conductivity but superior chemical stability, which may be desirable candidates for supercapacitors. Herein, niobium nitride, Nb 4 N 5 , is explored to be an excellent capacitive material for the first time. An areal capacitance of 225.8 mF cm -2 , with a reasonable rate capability (60.8% retention from 0.5 to 10 mA cm -2 ) and cycling stability (70.9% retention after 2000 cycles), is achieved in Nb 4 N 5 nanochannels electrode with prominent electrical conductivity and electrochemical activity. Faradaic pseudocapacitance is confirmed by the mechanistic studies, deriving from the proton incorporation/chemisorption reaction owing to the copious +5 valence Nb ions in Nb 4 N 5 . Moreover, this Nb 4 N 5 nanochannels electrode with an ultrathin carbon coating exhibits nearly 100% capacitance retention after 2000 CV cycles, which is an excellent cycling stability for metal nitride materials. Thus, the Nb 4 N 5 nanochannels are qualified for a candidate for supercapacitors and other energy storage applications.

  7. Electrical characterization of Bi1.50-xYxZn0.92Nb1.5O6.92 varactors

    NASA Astrophysics Data System (ADS)

    Qasrawi, A. F.; Muis, Khalil O. Abu; Rob, Osama H. Abu Al; Mergen, A.

    2014-05-01

    The electrical properties of yttrium doped bismuth zinc niobium oxide (BZN) pyrochlore ceramics are explored by means of temperature dependent electrical conductivity dielectric constant and capacitance spectra in the frequency range of 0-3 GHz. It is observed that the doped BZN exhibit a conductivity type conversion from intrinsic to extrinsic as the doping content increased from 0.04 to 0.06. The thermal energy bandgap of the intrinsic type is 3.45 eV. The pyrochlore is observed to exhibit a dielectric breakdown at 395 K. In addition, a negative capacitance (NC) spectrum with main resonance peak position of 23.2 MHz is detected. The NC effect is ascribed to the increased polarization and the availability of more free carriers in the device. When the NC signal amplitude is attenuated in the range of 0-20 dBm at 50 MHz and 150 MHz, wide tunability is monitored. Such characteristics of the Y-doped BZN are attractive for using them to cancel the positive parasitic capacitance of electronic circuits. The canceling of parasitic capacitance improves the high frequency performance of filter inductors and reduces the common mode noise of the resonance signal.

  8. Computational Insights into Materials and Interfaces for Capacitive Energy Storage

    PubMed Central

    Zhan, Cheng; Lian, Cheng; Zhang, Yu; Thompson, Matthew W.; Xie, Yu; Wu, Jianzhong; Kent, Paul R. C.; Cummings, Peter T.; Wesolowski, David J.

    2017-01-01

    Supercapacitors such as electric double‐layer capacitors (EDLCs) and pseudocapacitors are becoming increasingly important in the field of electrical energy storage. Theoretical study of energy storage in EDLCs focuses on solving for the electric double‐layer structure in different electrode geometries and electrolyte components, which can be achieved by molecular simulations such as classical molecular dynamics (MD), classical density functional theory (classical DFT), and Monte‐Carlo (MC) methods. In recent years, combining first‐principles and classical simulations to investigate the carbon‐based EDLCs has shed light on the importance of quantum capacitance in graphene‐like 2D systems. More recently, the development of joint density functional theory (JDFT) enables self‐consistent electronic‐structure calculation for an electrode being solvated by an electrolyte. In contrast with the large amount of theoretical and computational effort on EDLCs, theoretical understanding of pseudocapacitance is very limited. In this review, we first introduce popular modeling methods and then focus on several important aspects of EDLCs including nanoconfinement, quantum capacitance, dielectric screening, and novel 2D electrode design; we also briefly touch upon pseudocapactive mechanism in RuO2. We summarize and conclude with an outlook for the future of materials simulation and design for capacitive energy storage. PMID:28725531

  9. High energy overcurrent protective device

    DOEpatents

    Praeg, Walter F.

    1982-01-01

    Electrical loads connected to capacitance elements in high voltage direct current systems are protected from damage by capacitance discharge overcurrents by connecting between the capacitance element and the load, a longitudinal inductor comprising a bifilar winding wound about a magnetic core, which forms an incomplete magnetic circuit. A diode is connected across a portion of the bifilar winding which conducts a unidirectional current only. Energy discharged from the capacitance element is stored in the inductor and then dissipated in an L-R circuit including the diode and the coil winding. Multiple high voltage circuits having capacitance elements may be connected to loads through bifilar windings all wound about the aforementioned magnetic core.

  10. Formation and characterization of Ta2O5/TaOx films formed by O ion implantation

    NASA Astrophysics Data System (ADS)

    Ruffell, S.; Kurunczi, P.; England, J.; Erokhin, Y.; Hautala, J.; Elliman, R. G.

    2013-07-01

    Ta2O5/TaOx (oxide/suboxide) heterostructures are fabricated by high fluence O ion-implantation into deposited Ta films. The resultant films are characterized by depth profiling X-ray photoelectron spectroscopy (XPS), cross-sectional transmission electron microscopy (XTEM), four-point probe, and current-voltage and capacitance-voltage measurements. The measurements show that Ta2O5/TaOx oxide/suboxide heterostructures can be fabricated with the relative thicknesses of the layers controlled by implantation energy and fluence. Electrical measurements show that this approach has promise for high volume manufacturing of resistive switching memory devices based on oxide/suboxide heterostructures.

  11. Permanent split capacitor single phase electric motor system

    DOEpatents

    Kirschbaum, H.S.

    1984-08-14

    A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation. 4 figs.

  12. Harvesting dissipated energy with a mesoscopic ratchet

    NASA Astrophysics Data System (ADS)

    Roche, B.; Roulleau, P.; Jullien, T.; Jompol, Y.; Farrer, I.; Ritchie, D. A.; Glattli, D. C.

    2015-04-01

    The search for new efficient thermoelectric devices converting waste heat into electrical energy is of major importance. The physics of mesoscopic electronic transport offers the possibility to develop a new generation of nanoengines with high efficiency. Here we describe an all-electrical heat engine harvesting and converting dissipated power into an electrical current. Two capacitively coupled mesoscopic conductors realized in a two-dimensional conductor form the hot source and the cold converter of our device. In the former, controlled Joule heating generated by a voltage-biased quantum point contact results in thermal voltage fluctuations. By capacitive coupling the latter creates electric potential fluctuations in a cold chaotic cavity connected to external leads by two quantum point contacts. For unequal quantum point contact transmissions, a net electrical current is observed proportional to the heat produced.

  13. High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH₃ gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g⁻¹), high electrical conductivity (1532S m⁻¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg⁻¹ at a current density of 1 A g⁻¹, and a capacitance of 261 F g⁻¹ was retained at 50 A g⁻¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorptionmore » fine-structure spectroscopy evidenced the recover of π-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.« less

  14. High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors

    DOE PAGES

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; ...

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH₃ gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g⁻¹), high electrical conductivity (1532S m⁻¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg⁻¹ at a current density of 1 A g⁻¹, and a capacitance of 261 F g⁻¹ was retained at 50 A g⁻¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorptionmore » fine-structure spectroscopy evidenced the recover of π-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.« less

  15. Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors

    PubMed Central

    Mohd Zaid, Norsaadatul Akmal; Idris, Nurul Hayati

    2016-01-01

    In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g−1 at a current density of 2 A g−1, which is higher than the capacitance of bare G (145 F g−1) and bare Ni (3 F g−1). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g−1 at a current density of 5 A g−1 and a capacitance of 144 F g−1 at a current density of 10 A g−1. The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor. PMID:27553290

  16. Biochemical capacitance of Geobacter sulfurreducens biofilms.

    PubMed

    Bueno, Paulo R; Schrott, Germán D; Bonanni, Pablo S; Simison, Silvia N; Busalmen, Juan P

    2015-08-10

    An electrical model able to decouple the electron pathway from microbial cell machinery impedance terms is introduced. In this context, capacitance characteristics of the biofilm are clearly resolved. In other words, the model allows separating, according to the advantage of frequency and spectroscopic response approach, the different terms controlling the performance of the microbial biofilm respiratory process and thus the directly related electricity production process. The model can be accurately fitted to voltammetry measurements obtained under steady-state conditions and also to biofilm discharge amperometric measurements. The implications of biological aspects of the electrochemical or redox capacitance are discussed theoretically in the context of current knowledge with regard to structure and physiological activity of microbial Geobacter biofilms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High-performance free-standing capacitor electrodes of multilayered Co9S8 plates wrapped by carbonized poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Yao, Tinghui; Li, Yali; Liu, Dequan; Gu, Yipeng; Qin, Shengchun; Guo, Xin; Guo, Hui; Ding, Yongqiang; Liu, Qiming; Chen, Qiang; Li, Junshuai; He, Deyan

    2018-03-01

    In this paper, a free-standing electrode structure composed of multilayered Co9S8 plates wrapped by carbonized poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/reduced graphene oxide (PEDOT:PSS/rGO) layers is introduced. Excellent supercapacitive behaviors, especially long cycling stability at high current densities are delivered owing to the synergetic effects of stable electrical contact between the active material and carbonized PEDOT:PSS/rGO due to the wrapped configuration, efficient charge exchange between the multilayered Co9S8 plates and electrolyte, improved electrical conductance by rGO, and plenty of voids for accommodating volume changes. For the optimized electrode (starting materials: 0.5 mL PEDOT:PSS, 1.0 mL GO (6.0 mg mL-1) and 10.0 mg Co(OH)2), a specific capacitance of about 788.9 F g-1 at 1.0 A g-1 and good cycling stability of over 100% of the initial capacitance (∼488.6 F g-1) after 10000 cycles at a current density of 15.0 A g-1 can be achieved. The assembled asymmetric supercapacitor based on the optimized electrode//active carbon exhibits an energy density of ∼19.6 Wh kg-1 at a power density of 400.9 W kg-1.

  18. Exploring Capabilities of Electrical Capacitance Tomography Sensor and Velocity Analysis of Two-Phase R-134A Flow Through a Sudden Expansion

    DTIC Science & Technology

    2017-05-01

    SUDDEN EXPANSION 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62203F 6. AUTHOR(S) Joseph Michael Cronin 5d. PROJECT ...heat transfer in order to manage the ever-increasing airframe and engine heat loads. Two-phase liquid-vapor refrigerant systems are one solution for...were compared with pressure drop correlations. 15. SUBJECT TERMS thermal management , two-phase flow, flow visualization, electric capacitance

  19. Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers.

    PubMed

    Haskins, Justin B; Lawson, John W

    2016-05-14

    We investigate how systematically increasing the accuracy of various molecular dynamics modeling techniques influences the structure and capacitance of ionic liquid electric double layers (EDLs). The techniques probed concern long-range electrostatic interactions, electrode charging (constant charge versus constant potential conditions), and electrolyte polarizability. Our simulations are performed on a quasi-two-dimensional, or slab-like, model capacitor, which is composed of a polarizable ionic liquid electrolyte, [EMIM][BF4], interfaced between two graphite electrodes. To ensure an accurate representation of EDL differential capacitance, we derive new fluctuation formulas that resolve the differential capacitance as a function of electrode charge or electrode potential. The magnitude of differential capacitance shows sensitivity to different long-range electrostatic summation techniques, while the shape of differential capacitance is affected by charging technique and the polarizability of the electrolyte. For long-range summation techniques, errors in magnitude can be mitigated by employing two-dimensional or corrected three dimensional electrostatic summations, which led to electric fields that conform to those of a classical electrostatic parallel plate capacitor. With respect to charging, the changes in shape are a result of ions in the Stern layer (i.e., ions at the electrode surface) having a higher electrostatic affinity to constant potential electrodes than to constant charge electrodes. For electrolyte polarizability, shape changes originate from induced dipoles that soften the interaction of Stern layer ions with the electrode. The softening is traced to ion correlations vertical to the electrode surface that induce dipoles that oppose double layer formation. In general, our analysis indicates an accuracy dependent differential capacitance profile that transitions from the characteristic camel shape with coarser representations to a more diffuse profile with finer representations.

  20. Rf capacitively-coupled electrodeless light source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.

    2000-01-01

    An rf capacitively-coupled electrodeless light source is provided. The light source comprises a hollow, elongated chamber and at least one center conductor disposed within the hollow, elongated chamber. A portion of each center conductor extends beyond the hollow, elongated chamber. At least one gas capable of forming an electronically excited molecular state is contained within each center conductor. An electrical coupler is positioned concentric to the hollow, elongated chamber and the electrical coupler surrounds the portion of each center conductor that extends beyond the hollow, elongated chamber. A rf-power supply is positioned in an operable relationship to the electrical couplermore » and an impedance matching network is positioned in an operable relationship to the rf power supply and the electrical coupler.« less

  1. Development of Electrochemical Supercapacitors for EMA Applications

    NASA Technical Reports Server (NTRS)

    Kosek, John A.; Dunning, Thomas; LaConti, Anthony B.

    1996-01-01

    A limitation of the typical electrochemical capacitor is the maximum available power and energy density, and an improvement in capacitance per unit weight and volume is needed. A solid-ionomer electrochemical capacitor having a unit cell capacitance greater than 2 F/sq cm and a repeating element thickness of 6 mils has been developed. This capacitor could provide high-current pulses for electromechanical actuation (EMA). Primary project objectives were to develop high-capacitance particulates, to increase capacitor gravimetric and volumetric energy densities above baseline and to fabricate a 10-V capacitor with a repeating element thickness of 6 mils or less. Specific EMA applications were identified and capacitor weight and volume projections made.

  2. Negative capacitance in multidomain ferroelectric superlattices

    NASA Astrophysics Data System (ADS)

    Zubko, Pavlo; Wojdeł, Jacek C.; Hadjimichael, Marios; Fernandez-Pena, Stéphanie; Sené, Anaïs; Luk'Yanchuk, Igor; Triscone, Jean-Marc; Íñiguez, Jorge

    2016-06-01

    The stability of spontaneous electrical polarization in ferroelectrics is fundamental to many of their current applications, which range from the simple electric cigarette lighter to non-volatile random access memories. Research on nanoscale ferroelectrics reveals that their behaviour is profoundly different from that in bulk ferroelectrics, which could lead to new phenomena with potential for future devices. As ferroelectrics become thinner, maintaining a stable polarization becomes increasingly challenging. On the other hand, intentionally destabilizing this polarization can cause the effective electric permittivity of a ferroelectric to become negative, enabling it to behave as a negative capacitance when integrated in a heterostructure. Negative capacitance has been proposed as a way of overcoming fundamental limitations on the power consumption of field-effect transistors. However, experimental demonstrations of this phenomenon remain contentious. The prevalent interpretations based on homogeneous polarization models are difficult to reconcile with the expected strong tendency for domain formation, but the effect of domains on negative capacitance has received little attention. Here we report negative capacitance in a model system of multidomain ferroelectric-dielectric superlattices across a wide range of temperatures, in both the ferroelectric and paraelectric phases. Using a phenomenological model, we show that domain-wall motion not only gives rise to negative permittivity, but can also enhance, rather than limit, its temperature range. Our first-principles-based atomistic simulations provide detailed microscopic insight into the origin of this phenomenon, identifying the dominant contribution of near-interface layers and paving the way for its future exploitation.

  3. Electrical, structural, thermal and electrochemical properties of corn starch-based biopolymer electrolytes.

    PubMed

    Liew, Chiam-Wen; Ramesh, S

    2015-06-25

    Biopolymer electrolytes containing corn starch, lithium hexafluorophosphate (LiPF6) and ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) are prepared by solution casting technique. Temperature dependence-ionic conductivity studies reveal Vogel-Tamman-Fulcher (VTF) relationship which is associated with free volume theory. Ionic liquid-based biopolymer electrolytes show lower glass transition temperature (Tg) than ionic liquid-free biopolymer electrolyte. X-ray diffraction (XRD) studies demonstrate higher amorphous region of ionic liquid-added biopolymer electrolytes. In addition, the potential stability window of the biopolymer electrolyte becomes wider and stable up to 2.9V. Conclusively, the fabricated electric double layer capacitor (EDLC) shows improved electrochemical performance upon addition of ionic liquid into the biopolymer electrolyte. The specific capacitance of EDLC based on ionic liquid-added polymer electrolyte is relatively higher than that of ionic liquid-free polymer electrolyte as depicted in cyclic voltammogram. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. AC and DC electrical properties of graphene nanoplatelets reinforced epoxy syntactic foam

    NASA Astrophysics Data System (ADS)

    Zegeye, Ephraim; Wicker, Scott; Woldesenbet, Eyassu

    2018-04-01

    Benefits of employing graphene nanopletlates (GNPLs) in composite structures include mechanical as well as multifunctional properties. Understanding the impedance behavior of GNPLs reinforced syntactic foams may open new applications for syntactic foam composites. In this work, GNPLs reinforced syntactic foams were fabricated and tested for DC and AC electrical properties. Four sets of syntactic foam samples containing 0, 0.1, 0.3, and 0.5 vol% of GNPLs were fabricated and tested. Significant increase in conductivity of syntactic foams due to the addition of GNPLs was noted. AC impedance measurements indicated that the GNPLs syntactic foams become frequency dependent as the volume fraction of GNPLs increases. With addition of GNPLs, the characteristic of the syntactic foams are also observed to transition from dominant capacitive to dominant resistive behavior. This work was carried out at Southern University, Mechanical Engineering Department, Baton Rouge, LA 70802, United States of America.

  5. Efficiency of thermoelectric conversion in ferroelectric film capacitive structures

    NASA Astrophysics Data System (ADS)

    Volpyas, V. A.; Kozyrev, A. B.; Soldatenkov, O. I.; Tepina, E. R.

    2012-06-01

    Thermal heating/cooling conditions for metal-insulator-metal structures based on barium strontium titanate ferroelectric films are studied by numerical methods with the aim of their application in capacitive thermoelectric converters. A correlation between the thermal and capacitive properties of thin-film ferroelectric capacitors is considered. The time of the temperature response and the rate of variation of the capacitive properties of the metal-insulator-metal structures are determined by analyzing the dynamics of thermal processes. Thermophysical calculations are carried out that take into consideration the real electrical properties of barium strontium titanate ferroelectric films and allow estimation of thermal modulation parameters and the efficiency of capacitive thermoelectric converters on their basis.

  6. Evaluation of excitation strategy with multi-plane electrical capacitance tomography sensor

    NASA Astrophysics Data System (ADS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Zhang, Jiaolong; Yang, Wuqiang

    2016-11-01

    Electrical capacitance tomography (ECT) is an imaging technique for measuring the permittivity change of materials. Using a multi-plane ECT sensor, three-dimensional (3D) distribution of permittivity may be represented. In this paper, three excitation strategies, including single-electrode excitation, dual-electrode excitation in the same plane, and dual-electrode excitation in different planes are investigated by numerical simulation and experiment for two three-plane ECT sensors with 12 electrodes in total. In one sensor, the electrodes on the middle plane are in line with the others. In the other sensor, they are rotated 45° with reference to the other two planes. A linear back projection algorithm is used to reconstruct the images and a correlation coefficient is used to evaluate the image quality. The capacitance data and sensitivity distribution with each measurement strategy and sensor model are analyzed. Based on simulation and experimental results using noise-free and noisy capacitance data, the performance of the three strategies is evaluated.

  7. Exponential model normalization for electrical capacitance tomography with external electrodes under gap permittivity conditions

    NASA Astrophysics Data System (ADS)

    Baidillah, Marlin R.; Takei, Masahiro

    2017-06-01

    A nonlinear normalization model which is called exponential model for electrical capacitance tomography (ECT) with external electrodes under gap permittivity conditions has been developed. The exponential model normalization is proposed based on the inherently nonlinear relationship characteristic between the mixture permittivity and the measured capacitance due to the gap permittivity of inner wall. The parameters of exponential equation are derived by using an exponential fitting curve based on the simulation and a scaling function is added to adjust the experiment system condition. The exponential model normalization was applied to two dimensional low and high contrast dielectric distribution phantoms by using simulation and experimental studies. The proposed normalization model has been compared with other normalization models i.e. Parallel, Series, Maxwell and Böttcher models. Based on the comparison of image reconstruction results, the exponential model is reliable to predict the nonlinear normalization of measured capacitance in term of low and high contrast dielectric distribution.

  8. Highly conductive porous Na-embedded carbon nanowalls for high-performance capacitive deionization

    NASA Astrophysics Data System (ADS)

    Chang, Liang; Hu, Yun Hang

    2018-05-01

    Highly conductive porous Na-embedded carbon nanowalls (Na@C), which were recently invented, have exhibited excellent performance for dye-sensitized solar cells and electric double-layer capacitors. In this work, Na@C was demonstrated as an excellent electrode material for capacitive deionization (CDI). In a three-electrode configuration system, the specific capacity of the Na@C electrodes can achieve 306.4 F/g at current density of 0.2 A/g in 1 M NaCl, which is higher than that (235.2 F/g) of activated carbon (AC) electrodes. Furthermore, a high electrosorption capacity of 8.75 mg g-1 in 100 mg/L NaCl was obtained with the Na@C electrodes in a batch-mode capacitive deionization cell. It exceeds the electrosorption capacity (4.08 mg g-1) of AC electrodes. The Na@C electrode also showed a promising cycle stability. The excellent performance of Na@C electrode for capacitive deionization (CDI) can be attributed to its high electrical conductivity and large accessible surface area.

  9. Approximations useful for the prediction of electrostatic discharges for simple electrode geometries

    NASA Technical Reports Server (NTRS)

    Edmonds, L.

    1986-01-01

    The report provides approximations for estimating the capacitance and the ratio of electric field strength to potential for a certain class of electrode geometries. The geometry consists of an electrode near a grounded plane, with the electrode being a surface of revolution about the perpendicular to the plane. Some examples which show the accuracy of the capacitance estimate and the accuracy of the estimate of electric field over potential can be found in the appendix. When it is possible to estimate the potential of the electrode, knowing the ratio of electric field to potential will help to determine if an electrostatic discharge is likely to occur. Knowing the capacitance will help to determine the strength of the discharge (the energy released by it) if it does occur. A brief discussion of discharge mechanisms is given. The medium between the electrode and the grounded plane may be a neutral gas, a vacuum, or an unchanged homogeneous isotropic dielectric.

  10. Non-contact capacitance based image sensing method and system

    DOEpatents

    Novak, James L.; Wiczer, James J.

    1995-01-01

    A system and a method is provided for imaging desired surfaces of a workpiece. A sensor having first and second sensing electrodes which are electrically isolated from the workpiece is positioned above and in proximity to the desired surfaces of the workpiece. An electric field is developed between the first and second sensing electrodes of the sensor in response to input signals being applied thereto and capacitance signals are developed which are indicative of any disturbances in the electric field as a result of the workpiece. An image signal of the workpiece may be developed by processing the capacitance signals. The image signals may provide necessary control information to a machining device for machining the desired surfaces of the workpiece in processes such as deburring or chamfering. Also, the method and system may be used to image dimensions of weld pools on a workpiece and surfaces of glass vials. The sensor may include first and second preview sensors used to determine the feed rate of a workpiece with respect to the machining device.

  11. Non-contact capacitance based image sensing method and system

    DOEpatents

    Novak, James L.; Wiczer, James J.

    1994-01-01

    A system and a method for imaging desired surfaces of a workpiece. A sensor having first and second sensing electrodes which are electrically isolated from the workpiece is positioned above and in proximity to the desired surfaces of the workpiece. An electric field is developed between the first and second sensing electrodes of the sensor in response to input signals being applied thereto and capacitance signals are developed which are indicative of any disturbances in the electric field as a result of the workpiece. An image signal of the workpiece may be developed by processing the capacitance signals. The image signals may provide necessary control information to a machining device for machining the desired surfaces of the workpiece in processes such as deburring or chamfering. Also, the method and system may be used to image dimensions of weld pools on a workpiece and surfaces of glass vials. The sensor may include first and second preview sensors used to determine the feed rate of a workpiece with respect to the machining device.

  12. Hierarchically porous carbon nanosheets derived from Moringa oleifera stems as electrode material for high-performance electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Cai, Yijin; Luo, Ying; Dong, Hanwu; Zhao, Xiao; Xiao, Yong; Liang, Yeru; Hu, Hang; Liu, Yingliang; Zheng, Mingtao

    2017-06-01

    A facile one-step pyrolysis route for the synthesis of hierarchically porous carbon nanosheets (PCNSs) derived from Moringa oleifera stems (MOSs) is reported, in which no post-activation-process in needed. The as-prepared PCNSs possesses unique porous nanosheet morphology with high specific surface area of ca. 2250 m2 g-1, large pore volume of ca. 2.3 cm3 g-1, appropriate porosity as well as heteroatom doping (N and O), endowing outstanding electrochemical properties as electrode material for high-performance supercapacitors. The PCNS-based electrodes are investigated in various aqueous electrolytes including 1.0 M Na2SO4, 1.0 M H2SO4, and 6.0 M KOH. The PCNSs exhibit a maximum specific capacitance of ca. 283 F g-1 (0.5 A g-1), excellent rate capability (ca. 72% of capacitance retention even at an ultrahigh current density of 50 A g-1), and a tremendous long-term cycling stability in the three-electrode system. Moreover, the as-assembled PCNS-based symmetric supercapacitor shows a high energy density of ca. 25.8 Wh kg-1 (in 1.0 M Na2SO4 electrolyte) and remarkable long-term cycling stability (almost no capacitance fade in aqueous electrolytes), indicating the promising of the as-prepared PCNSs for electrochemical energy storage and conversion.

  13. Lanthanum doped strontium titanate - ceria anodes: deconvolution of impedance spectra and relationship with composition and microstructure

    NASA Astrophysics Data System (ADS)

    Burnat, Dariusz; Nasdaurk, Gunnar; Holzer, Lorenz; Kopecki, Michal; Heel, Andre

    2018-05-01

    Electrochemical performance of ceramic (Ni-free) SOFC anodes based on La0.2Sr0.7TiO3-δ (LST) and Gd0.1Ce0.9O1.95-δ (CGO) is thoroughly investigated. Microstructures and compositions are systematically varied around the percolation thresholds of both phases by modification of phase volume fractions, particle size distributions and firing temperature. Differential impedance spectroscopy was performed while varying gas composition, electrical potential and operating temperature, which allows determining four distinct electrode processes. Significant anode impedances are measured at low frequencies, which in contrast to the literature cannot be linked with gas concentration impedance. The dominant low frequency process (∼1 Hz) is attributed to the chemical capacitance. Combined EIS and microstructure investigations show that the chemical capacitance correlates inversely with the available surface area of CGO, indicating CGO surface reactions as the kinetic limitation for the dominant anode process and for the associated chemical capacitance. In anodes with a fine-grained microstructure this limitation is significantly smaller, which results in an impressive power output as high as 0.34 Wcm-2. The anodes show high redox stability by not only withstanding 30 isothermal redox cycles, but even improving the performance. Hence, compared to conventional Ni-cermet anodes the new LST-CGO material represents an interesting alternative with much improved redox-stability.

  14. Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors

    NASA Astrophysics Data System (ADS)

    Qiu, Zhipeng; Wang, Yesheng; Bi, Xu; Zhou, Tong; Zhou, Jin; Zhao, Jinping; Miao, Zhichao; Yi, Weiming; Fu, Peng; Zhuo, Shuping

    2018-02-01

    The development of supercapacitors with high energy density and power density is an important research topic despite many challenging issues exist. In this work, porous carbon material was prepared from corn straw biochar and used as the active electrode material for electric double-layer capacitors (EDLCs). During the KOH activation process, the ratio of KOH/biochar significantly affects the microstructure of the resultant carbon, which further influences the capacitive performance. The optimized carbon material possesses typical hierarchical porosity composed of multi-leveled pores with high surface area and pore volume up to 2790.4 m2 g-1 and 2.04 cm3 g-1, respectively. Such hierarchical micro-meso-macro porosity significantly improved the rate performance of the biochar-based carbons. The achieved maximum specific capacitance was 327 F g-1 and maintained a high value of 205 F g-1 at a ultrahigh current density of 100 A g-1. Meanwhile, the prepared EDLCs present excellent cycle stability in alkaline electrolytes for 120 000 cycles at 5 A g-1. Moreover, the biochar-based carbon could work at a high voltage of 1.6 V in neutral Na2SO4, and exhibit a high specific capacitance of 227 F g-1, thus giving an outstanding energy density of 20.2 Wh kg-1.

  15. Elastic anisotropy effects on the electrical responses of a thin sample of nematic liquid crystal.

    PubMed

    Gomes, O A; Yednak, C A R; Ribeiro de Almeida, R R; Teixeira-Souza, R T; Evangelista, L R

    2017-03-01

    The electrical responses of a nematic liquid crystal cell are investigated by means of the elastic continuum theory. The nematic medium is considered as a parallel circuit of a resistance and a capacitance and the electric current profile across the sample is determined as a function of the elastic constants. In the reorientation process of the nematic director, the resistance and capacitance of the sample are determined by taking into account the elastic anisotropy. A nonmonotonic profile for the current is observed in which a minimum value of the current may be used to estimate the elastic constants values. This scenario suggests a theoretical method to determine the values of the bulk elastic constants in a single planar aligned cell just by changing the direction of applied electrical field and measuring the resulting electrical current.

  16. Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields

    PubMed Central

    Coronado, Lorena M.; Montealegre, Stephania; Chaverra, Zumara; Mojica, Luis; Espinosa, Carlos; Almanza, Alejandro; Correa, Ricardo; Stoute, José A.; Gittens, Rolando A.

    2016-01-01

    The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC) capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways. PMID:27537497

  17. Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields.

    PubMed

    Coronado, Lorena M; Montealegre, Stephania; Chaverra, Zumara; Mojica, Luis; Espinosa, Carlos; Almanza, Alejandro; Correa, Ricardo; Stoute, José A; Gittens, Rolando A; Spadafora, Carmenza

    2016-01-01

    The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC) capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways.

  18. Circuital characterisation of space-charge motion with a time-varying applied bias

    PubMed Central

    Kim, Chul; Moon, Eun-Yi; Hwang, Jungho; Hong, Hiki

    2015-01-01

    Understanding the behaviour of space-charge between two electrodes is important for a number of applications. The Shockley-Ramo theorem and equivalent circuit models are useful for this; however, fundamental questions of the microscopic nature of the space-charge remain, including the meaning of capacitance and its evolution into a bulk property. Here we show that the microscopic details of the space-charge in terms of resistance and capacitance evolve in a parallel topology to give the macroscopic behaviour via a charge-based circuit or electric-field-based circuit. We describe two approaches to this problem, both of which are based on energy conservation: the energy-to-current transformation rule, and an energy-equivalence-based definition of capacitance. We identify a significant capacitive current due to the rate of change of the capacitance. Further analysis shows that Shockley-Ramo theorem does not apply with a time-varying applied bias, and an additional electric-field-based current is identified to describe the resulting motion of the space-charge. Our results and approach provide a facile platform for a comprehensive understanding of the behaviour of space-charge between electrodes. PMID:26133999

  19. Temperature aspect of degradation of electrochemical double-layer capacitors (EDLC)

    NASA Astrophysics Data System (ADS)

    Baek, Dong-Cheon; Kim, Hyun-Ho; Lee, Soon-Bok

    2015-03-01

    Electric double layer capacitors (EDLC) cells have a process variation and temperature dependency in capacitance so that balancing is required when they are connected in series, which includes electronic voltage management based on capacitance monitoring. This paper measured temperature aspect of capacitance periodically to monitor health and degradation behavior of EDLC stressed under high temperatures and zero below temperatures respectively, which enables estimation of the state of health (SOH) regardless of temperature. At high temperature, capacitance saturation and delayed expression of degradation was observed. After cyclic stress at zero below temperature, less effective degradation and time recovery phenomenon were occurred.

  20. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, D.C.; Marcus, R.K.; Donohue, D.L.; Lewis, T.A.

    1994-06-28

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components. 11 figures.

  1. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, Douglas C.; Marcus, R. Kenneth; Donohue, David L.; Lewis, Trousdale A.

    1994-01-01

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components.

  2. Contact inspection of Si nanowire with SEM voltage contrast

    NASA Astrophysics Data System (ADS)

    Ohashi, Takeyoshi; Yamaguchi, Atsuko; Hasumi, Kazuhisa; Ikota, Masami; Lorusso, Gian; Horiguchi, Naoto

    2018-03-01

    A methodology to evaluate the electrical contact between nanowire (NW) and source/drain (SD) in NW FETs was investigated with SEM voltage contrast (VC). The electrical defects were robustly detected by VC. The validity of the inspection result was verified by TEM physical observations. Moreover, estimation of the parasitic resistance and capacitance was achieved from the quantitative analysis of VC images which were acquired with different scan conditions of electron beam (EB). A model considering the dynamics of EB-induce charging was proposed to calculate the VC. The resistance and capacitance can be determined by comparing the model-based VC with experimentally obtained VC. Quantitative estimation of resistance and capacitance would be valuable not only for more accurate inspection, but also for identification of the defect point.

  3. Three-dimensional vertical Si nanowire MOS capacitor model structure for the study of electrical versus geometrical Si nanowire characteristics

    NASA Astrophysics Data System (ADS)

    Hourdakis, E.; Casanova, A.; Larrieu, G.; Nassiopoulou, A. G.

    2018-05-01

    Three-dimensional (3D) Si surface nanostructuring is interesting towards increasing the capacitance density of a metal-oxidesemiconductor (MOS) capacitor, while keeping reduced footprint for miniaturization. Si nanowires (SiNWs) can be used in this respect. With the aim of understanding the electrical versus geometrical characteristics of such capacitors, we fabricated and studied a MOS capacitor with highly ordered arrays of vertical Si nanowires of different lengths and thermal silicon oxide dielectric, in comparison to similar flat MOS capacitors. The high homogeneity and ordering of the SiNWs allowed the determination of the single SiNW capacitance and intrinsic series resistance, as well as other electrical characteristics (density of interface states, flat-band voltage and leakage current) in relation to the geometrical characteristics of the SiNWs. The SiNW capacitors demonstrated increased capacitance density compared to the flat case, while maintaining a cutoff frequency above 1 MHz, much higher than in other reports in the literature. Finally, our model system has been shown to constitute an excellent platform for the study of SiNW capacitors with either grown or deposited dielectrics, as for example high-k dielectrics for further increasing the capacitance density. This will be the subject of future work.

  4. Micromachined capacitive ultrasonic immersion transducer array

    NASA Astrophysics Data System (ADS)

    Jin, Xuecheng

    Capacitive micromachined ultrasonic transducers (cMUTs) have emerged as an attractive alternative to conventional piezoelectric ultrasonic transducers. They offer performance advantages of wide bandwidth and sensitivity that have heretofore been attainable. In addition, micromachining technology, which has benefited from the fast-growing microelectronics industry, enables cMUT array fabrication and electronics integration. This thesis describes the design and fabrication of micromachined capacitive ultrasonic immersion transducer arrays. The basic transducer electrical equivalent circuit is derived from Mason's theory. The effects of Lamb waves and Stoneley waves on cross coupling and acoustic losses are discussed. Electrical parasitics such as series resistance and shunt capacitance are also included in the model of the transducer. Transducer fabrication technology is systematically studied. Device dimension control in both vertical and horizontal directions, process alternatives and variations in membrane formation, via etch and cavity sealing, and metalization as well as their impact on transducer performance are summarized. Both 64 and 128 element 1-D array transducers are fabricated. Transducers are characterized in terms of electrical input impedance, bandwidth, sensitivity, dynamic range, impulse response and angular response, and their performance is compared with theoretical simulation. Various schemes for cross coupling reduction is analyzed, implemented, and verified with both experiments and theory. Preliminary results of immersion imaging are presented using 64 elements 1-D array transducers for active source imaging.

  5. Computational Insights into Materials and Interfaces for Capacitive Energy Storage

    DOE PAGES

    Zhan, Cheng; Lian, Cheng; Zhang, Yu; ...

    2017-04-24

    Supercapacitors such as electric double-layer capacitors (EDLCs) and pseudocapacitors are becoming increasingly important in the field of electrical energy storage. Theoretical study of energy storage in EDLCs focuses on solving for the electric double-layer structure in different electrode geometries and electrolyte components, which can be achieved by molecular simulations such as classical molecular dynamics (MD), classical density functional theory (classical DFT), and Monte-Carlo (MC) methods. In recent years, combining first-principles and classical simulations to investigate the carbon-based EDLCs has shed light on the importance of quantum capacitance in graphene-like 2D systems. More recently, the development of joint density functional theorymore » (JDFT) enables self-consistent electronic-structure calculation for an electrode being solvated by an electrolyte. In contrast with the large amount of theoretical and computational effort on EDLCs, theoretical understanding of pseudocapacitance is very limited. In this review, we first introduce popular modeling methods and then focus on several important aspects of EDLCs including nanoconfinement, quantum capacitance, dielectric screening, and novel 2D electrode design; we also briefly touch upon pseudocapactive mechanism in RuO 2. We summarize and conclude with an outlook for the future of materials simulation and design for capacitive energy storage.« less

  6. Capacitors and Resistance-Capacitance Networks.

    ERIC Educational Resources Information Center

    Balabanian, Norman; Root, Augustin A.

    This programed textbook was developed under a contract with the United States Office of Education as Number 5 in a series of materials for use in an electrical engineering sequence. It is divided into three parts--(1) capacitors, (2) voltage-current relationships, and (3) simple resistance-capacitance networks. (DH)

  7. Acute effect of L-arginine on hemodynamics and vascular capacitance in the canine pacing model of heart failure.

    PubMed

    Ogilvie, R I; Zborowska-Sluis, D

    1995-09-01

    The effect of L-arginine, 250 mg/kg over 10 min, on hemodynamics and venous function was studied in nine splenectomized dogs under light pentobarbital anesthesia before and after 17 +/- 1 days of rapid right ventricular pacing (RRVP) at 250 beats/min. Chronic RRVP induced mild congestive heart failure with increased mean circulatory filling (Pmcf), right atrial (Pra) and pulmonary capillary wedge pressures (Ppcw), and reduced cardiac output (CO). During the development of heart failure, total vascular compliance assessed from Pmcf-blood volume relationships during circulatory arrest was unchanged, but total vascular capacitance was markedly reduced, with an increase in stressed and reduction in unstressed blood volumes. At baseline but not after RRVP, L-arginine increased CO and reduced pulmonary vascular resistance. There were no significant changes in Pra, Ppcw, or total peripheral resistance. L-Arginine failed to alter total vascular compliance and capacitance or central blood volume in the baseline or failure state. These results do not support the hypothesis that increased Pmcf and reduced total vascular capacitance in the early stages of pacing-induced heart failure are caused by reduced substrate availability for or an endogenous competitive antagonist of NO synthase in venous endothelial cells.

  8. Polypyrrole/titanium oxide nanotube arrays composites as an active material for supercapacitors.

    PubMed

    Kim, Min Seok; Park, Jong Hyeok

    2011-05-01

    The authors present the first reported use of vertically oriented titanium oxide nanotube/polypyrrole (PPy) nanocomposites to increase the specific capacitance of TiO2 based energy storage devices. To increase their electrical storage capacity, titanium oxide nanotubes were coated with PPy and their morphologies were characterized. The incorporation of PPy increased the specific capacitance of the titanium oxide nanotube based supercapacitor system, due to their increased surface area and additional pseudo-capacitance.

  9. Apparatus and method for pyroelectric power conversion

    DOEpatents

    Olsen, Randall B.

    1984-01-01

    Apparatus and method for converting heat to electrical energy by the use of one or more capacitors having temperature dependent capacitance. The capacitor is cycled between relatively high and relatively low temperatures by successive thermal contact with relatively high and relatively low temperature portions of a heat transfer medium having a temperature gradient therein. Upon heating of the capacitor, the capacitance thereof is reduced, so that a charge therein is caused to expand into associated external circuitry in which it is available to do electrical work. The capacitor is then cooled and recharged and the cycle is repeated. The electrical output of the capacitor results from the regenerative delivery of heat to and removal of heat from the capacitor by the heat transfer medium, and efficient conversion of heat to electric energy is thereby effected.

  10. Simulations of Cyclic Voltammetry for Electric Double Layers in Asymmetric Electrolytes: A Generalized Modified Poisson-Nernst-Planck Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hainan; Thiele, Alexander; Pilon, Laurent

    2013-11-15

    This paper presents a generalized modified Poisson–Nernst–Planck (MPNP) model derived from first principles based on excess chemical potential and Langmuir activity coefficient to simulate electric double-layer dynamics in asymmetric electrolytes. The model accounts simultaneously for (1) asymmetric electrolytes with (2) multiple ion species, (3) finite ion sizes, and (4) Stern and diffuse layers along with Ohmic potential drop in the electrode. It was used to simulate cyclic voltammetry (CV) measurements for binary asymmetric electrolytes. The results demonstrated that the current density increased significantly with decreasing ion diameter and/or increasing valency |z i| of either ion species. By contrast, the ionmore » diffusion coefficients affected the CV curves and capacitance only at large scan rates. Dimensional analysis was also performed, and 11 dimensionless numbers were identified to govern the CV measurements of the electric double layer in binary asymmetric electrolytes between two identical planar electrodes of finite thickness. A self-similar behavior was identified for the electric double-layer integral capacitance estimated from CV measurement simulations. Two regimes were identified by comparing the half cycle period τ CV and the “RC time scale” τ RC corresponding to the characteristic time of ions’ electrodiffusion. For τ RC ← τ CV, quasi-equilibrium conditions prevailed and the capacitance was diffusion-independent while for τ RC → τ CV, the capacitance was diffusion-limited. The effect of the electrode was captured by the dimensionless electrode electrical conductivity representing the ratio of characteristic times associated with charge transport in the electrolyte and that in the electrode. The model developed here will be useful for simulating and designing various practical electrochemical, colloidal, and biological systems for a wide range of applications.« less

  11. High-Surface-Area Nitrogen-Doped Reduced Graphene Oxide for Electric Double-Layer Capacitors.

    PubMed

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH3 gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007 m(2)  g(-1) ), high electrical conductivity (1532 S m(-1) ), and low oxygen content (1.5 wt %) for electrical double-layer capacitor applications. The specific capacitance of N-RGO was 291 F g(-1) at a current density of 1 A g(-1) , and a capacitance of 261 F g(-1) was retained at 50 A g(-1) , which indicated a very good rate capability. N-RGO also showed excellent cycling stability and preserved 96 % of the initial specific capacitance after 100 000 cycles. Near-edge X-ray absorption fine-structure spectroscopy results provided evidenced for the recovery of π conjugation in the carbon networks with the removal of oxygenated groups and revealed chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electrical detection of DNA hybridization: three extraction techniques based on interdigitated Al/Al2O3 capacitors.

    PubMed

    Moreno-Hagelsieb, L; Foultier, B; Laurent, G; Pampin, R; Remacle, J; Raskin, J-P; Flandre, D

    2007-04-15

    Based on interdigitated aluminum electrodes covered with Al(2)O(3) and silver precipitation via biotin-antibody coupled gold nano-labels as signal enhancement, three complementary electrical methods were used and compared to detect the hybridization of target DNA for concentrations down to the 50 pM of a PCR product from cytochrome P450 2b2 gene. Human hepatic cytochrome P450 (CYP) enzymes participate in detoxification metabolism of xenobiotics. Therefore, determination of mutational status of P450 gene in a patient could have a significant impact on the choice of a medical treatment. Our three electrical extraction procedures are performed on the same interdigitated capacitive sensor lying on a passivated silicon substrate and consist in the measurement of respectively the low-frequency inter-electrodes capacitance, the high-frequency self-resonance frequency, and the equivalent MOS capacitance between the short-circuited electrodes and the backside metallization of the silicon substrate. This study is the first of its kind as it opens the way for correlation studies and noise reduction techniques based on multiple electrical measurements of the same DNA hybridization event with a single sensor.

  13. Online capacitive densitometer

    DOEpatents

    Porges, K.G.

    1988-01-21

    This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained. 7 figs.

  14. Online capacitive densitometer

    DOEpatents

    Porges, Karl G.

    1990-01-01

    This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained.

  15. Fast semi-analytical method for precise prediction of ion energy distribution functions and sheath electric field in multi-frequency capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Wencong; Zhang, Xi; Diao, Dongfeng

    2018-05-01

    We propose a fast semi-analytical method to predict ion energy distribution functions and sheath electric field in multi-frequency capacitively coupled plasmas, which are difficult to measure in commercial plasma reactors. In the intermediate frequency regime, the ion density within the sheath is strongly modulated by the low-frequency sheath electric field, making the time-independent ion density assumption employed in conventional models invalid. Our results are in a good agreement with experimental measurements and computer simulations. The application of this method will facilitate the understanding of ion–material interaction mechanisms and development of new-generation plasma etching devices.

  16. Direct measurement of exciton dissociation energy in polymers

    NASA Astrophysics Data System (ADS)

    Toušek, J.; Toušková, J.; Chomutová, R.; Paruzel, B.; Pfleger, J.

    2017-01-01

    Exciton dissociation energy was obtained based on the comparison of thickness of the space charge region estimated from the measurement of capacitance of prepared Schottky diode and from the measurement of photovoltage spectra. While the capacitance measurements provide information about the total width of the space charge region (SCR) the surface photovoltaic effect brings information only about the part of the SCR where electric field is sufficiently high to cause dissociation. For determination of the dissociation energy it is sufficient to find the electric potential in the SCR where the process starts.

  17. Wireless Fluid Level Measuring System

    NASA Technical Reports Server (NTRS)

    Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor)

    2007-01-01

    A level-sensing probe positioned in a tank is divided into sections with each section including (i) a fluid-level capacitive sensor disposed along the length thereof, (ii) an inductor electrically coupled to the capacitive sensor, (iii) a sensor antenna positioned for inductive coupling to the inductor, and (iv) an electrical conductor coupled to the sensor antenna. An electrically non-conductive housing accessible from a position outside of the tank houses antennas arrayed in a pattern. Each antenna is electrically coupled to the electrical conductor from a corresponding one of the sections. A magnetic field response recorder has a measurement head with transceiving antennas arrayed therein to correspond to the pattern of the housing's antennas. When a measurement is to be taken, the measurement head is mechanically coupled to the housing so that each housing antenna is substantially aligned with a specific one of the transceiving antennas.

  18. Current source enhancements in Electrical Impedance Spectroscopy (EIS) to cancel unwanted capacitive effects

    NASA Astrophysics Data System (ADS)

    Zarafshani, Ali; Bach, Thomas; Chatwin, Chris; Xiang, Liangzhong; Zheng, Bin

    2017-03-01

    Electrical Impedance Spectroscopy (EIS) has emerged as a non-invasive imaging modality to detect and quantify functional or electrical properties related to the suspicious tumors in cancer screening, diagnosis and prognosis assessment. A constraint on EIS systems is that the current excitation system suffers from the effects of stray capacitance having a major impact on the hardware subsystem as the EIS is an ill-posed inverse problem which depends on the noise level in EIS measured data and regularization parameter in the reconstruction algorithm. There is high complexity in the design of stable current sources, with stray capacitance reducing the output impedance and bandwidth of the system. To confront this, we have designed an EIS current source which eliminates the effect of stray capacitance and other impacts of the capacitance via a variable inductance. In this paper, we present a combination of operational CCII based on a generalized impedance converter (OCCII-GIC) with a current source. The aim of this study is to use the EIS system as a biomedical imaging technique, which is effective in the early detection of breast cancer. This article begins with the theoretical description of the EIS structure, current source topologies and proposes a current conveyor in application of a Gyrator to eliminate the current source limitations and its development followed by simulation and experimental results. We demonstrated that the new design could achieve a high output impedance over a 3MHz frequency bandwidth when compared to other types of GIC circuits combined with an improved Howland topology.

  19. 16 CFR 1204.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the total rate at which electrical charge is transported through the antenna-mast system in response to the applied test voltage, including both capacitive and resistive components. (f) Electrical... can be measured by the current monitoring device. (g) Feed cable means the electrical cable that...

  20. Dielectric and piezoelectric properties of percolative three-phase piezoelectric polymer composites

    NASA Astrophysics Data System (ADS)

    Sundar, Udhay

    Three-phase piezoelectric bulk composites were fabricated using a mix and cast method. The composites were comprised of lead zirconate titanate (PZT), aluminum (Al) and an epoxy matrix. The volume fraction of the PZT and Al were varied from 0.1 to 0.3 and 0.0 to 0.17, respectively. The influences of three entities on piezoelectric and dielectric properties: inclusion of an electrically conductive filler (Al), poling process (contact and Corona) and Al surface treatment, were observed. The piezoelectric strain coefficient, d33, effective dielectric constant, epsilon r, capacitance, C, and resistivity were measured and compared according to poling process, volume fraction of constituent phases and Al surface treatment. The maximum values of d33 were 3.475 and 1.0 pC/N for Corona and contact poled samples respectively, for samples with volume fractions of 0.40 and 0.13 of PZT and Al (surface treated) respectively. Also, the maximum dielectric constant for the surface treated Al samples was 411 for volume fractions of 0.40 and 0.13 for PZT and Al respectively. The percolation threshold was observed to occur at an Al volume fraction of 0.13. The composites achieved a percolated state for Al volume fractions >0.13 for both contact and corona poled samples. In addition, a comparative time study was conducted to examine the influence of surface treatment processing time of Al particles. The effectiveness of the surface treatment, sample morphology and composition was observed with the aid of SEM and EDS images. These images were correlated with piezoelectric and dielectric properties. PZT-epoxy-aluminum thick films (200 mum) were also fabricated using a two-step spin coat deposition and annealing method. The PZT volume fraction were varied from 0.2, 0.3 and 0.4, wherein the Aluminum volume fraction was varied from 0.1 to 0.17 for each PZT volume fraction, respectively. The two-step process included spin coating the first layer at 500 RPM for 30 seconds, and the second layer at 1000 RPM for 1 minute. The piezoelectric strain coefficients d33 and d31, capacitance and the dielectric constant were measured, and were studied as a function of Aluminum volume fraction.

  1. Structure and Fabrication of a Microscale Flow-Rate/Skin Friction Sensor

    NASA Technical Reports Server (NTRS)

    Chandrasekharan, Vijay (Inventor); Sells, Jeremy (Inventor); Sheplak, Mark (Inventor); Arnold, David P. (Inventor)

    2014-01-01

    A floating element shear sensor and method for fabricating the same are provided. According to an embodiment, a microelectromechanical systems (MEMS)-based capacitive floating element shear stress sensor is provided that can achieve time-resolved turbulence measurement. In one embodiment, a differential capacitive transduction scheme is used for shear stress measurement. The floating element structure for the differential capacitive transduction scheme incorporates inter digitated comb fingers forming differential capacitors, which provide electrical output proportional to the floating element deflection.

  2. Surfactant-treated graphene covered polyaniline nanowires for supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Balasubramaniyan; Hur, Seung Hyun; Chung, Jin Suk

    2015-04-01

    Surfactant-treated graphene/polyaniline (G/PANI) nanocomposites were prepared by the MnO2 template-aided oxidative polymerization of aniline (ANI) on the surfactant-treated graphene sheets. The electrochemical performances of the G/PANI nanocomposites in a three-electrode system using an aqueous sulfuric acid as an electrolyte exhibited a specific capacitance of 436 F g-1 at 1 A g-1, which is much higher than the specific capacitance of pure PANI (367 F g-1). Such a higher specific capacitance of the G/PANI nanocomposite inferred an excellent synergistic effect of respective pseudocapacitance and electrical double-layer capacitance of PANI and graphene.

  3. Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors.

    PubMed

    Li, Lei; Raji, Abdul-Rahman O; Fei, Huilong; Yang, Yang; Samuel, Errol L G; Tour, James M

    2013-07-24

    A facile and cost-effective approach to the fabrication of a nanocomposite material of polyaniline (PANI) and graphene nanoribbons (GNRs) has been developed. The morphology of the composite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron microscopy, and X-ray diffraction analysis. The resulting composite has a high specific capacitance of 340 F/g and stable cycling performance with 90% capacitance retention over 4200 cycles. The high performance of the composite results from the synergistic combination of electrically conductive GNRs and highly capacitive PANI. The method developed here is practical for large-scale development of pseudocapacitor electrodes for energy storage.

  4. Manganese oxide micro-supercapacitors with ultra-high areal capacitance

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Myers, Benjamin D.; Yan, Jian; Shekhawat, Gajendra; Dravid, Vinayak; Lee, Pooi See

    2013-05-01

    A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2.A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2. Electronic supplementary information (ESI) available: Experimental procedures; optical images of micro-supercapacitors; areal capacitances of samples M-0.3C, M-0.6C and M-0.9C; illustration of interdigital finger electrodes; Nyquist plot of Co(OH)2 deposited on micro-electrodes. See DOI: 10.1039/c3nr00210a

  5. Micropore engineering of carbonized porous aromatic framework (PAF-1) for supercapacitors application.

    PubMed

    Li, Yanqiang; Roy, Soumyajit; Ben, Teng; Xu, Shixian; Qiu, Shilun

    2014-07-07

    Micropore engineering of porous carbons on the effect of capacitance was explored using a carbonized porous aromatic framework (PAF-1). The porous carbons obtained through different carbonization methods show different pore structures enabling us to do this. The capacitance was measured both in aqueous electrolyte and different organic electrolytes. The porous carbons prepared by KOH activation show both high microporous volume, which is beneficial for charge storage, and mesoporous volume, which is devoted to fast ion diffusion in the pores; properties which are highly desirable. It shows a capacitance as high as 280 F g(-1) and 203 F g(-1) at a current density of 1 A g(-1) in 6.0 M KOH and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMImTFSI), respectively. We also demonstrate the effect of diffusion and that of geometric packing of the electrolyte ions in the pores, where a commensurate match of the electrolyte ions with the pores of carbonized materials control and influence significantly the capacitance of these materials.

  6. Distribution of coronary arterial capacitance in a canine model.

    PubMed

    Lader, A S; Smith, R S; Phillips, G C; McNamee, J E; Abel, F L

    1998-03-01

    The capacitative properties of the major left coronary arteries, left main (LM), left anterior descending (LAD), and left circumflex (LCX), were studied in 19 open-chest isolated dog hearts. Capacitance was determined by using ramp perfusion and a left ventricular-to-coronary shunt diastolic decay method; both methods gave similar results, indicating a minimal systolic capacitative component. Increased pericardial pressure (PCP), 25 mmHg, was used to experimentally alter transmural wall pressure. The response to increased PCP was different in the LAD vs. LCX; increasing PCP decreased capacitance in the LCX but increased capacitance in the LAD. This may have been due to the different intramural vs. epicardial volume distribution of these vessels and a decrease in intramural tension during increased PCP. Increased PCP decreased LCX capacitance by approximately 13%, but no changes in conductance or zero flow pressure intercept occurred in any of the three vessels, i. e., evidence against the waterfall theory of vascular collapse at these levels of PCP. Coronary arterial capacitance was also linearly related to perfusion pressure.

  7. Advances in Spectral Electrical Impedance Tomography (EIT) for Near-Surface Geophysical Exploration

    NASA Astrophysics Data System (ADS)

    Huisman, J. A.; Zimmermann, E.; Kelter, M.; Zhao, Y.; Bukhary, T. H.; Vereecken, H.

    2016-12-01

    Recent advances in spectral Electrical Impedance Tomography (EIT) now allow to obtain the complex electrical conductivity distribution in near-surface environments with a high accuracy for a broad range of frequencies (mHz - kHz). One of the key advances has been the development of correction methods to account for inductive coupling effects between wires used for current and potential measurements and capacitive coupling between cables and the subsurface environment. In this study, we first review these novel correction methods and then illustrate how the consideration of capacitive and inductive coupling improves spectral EIT results. For this, borehole EIT measurements were made in a shallow aquifer using a custom-made EIT system with two electrode chains each consisting of eight active electrodes with a separation of 1 m. The EIT measurements were inverted with and without consideration of inductive and capacitive coupling effects. The inversion results showed that spatially and spectrally consistent imaging results can only be obtained when inductive coupling effects are considered (phase accuracy of 1-2 mrad at 1 kHz). Capacitive coupling effects were found to be of secondary importance for the set-up used here, but its importance will increase when longer cables are used. Although these results are promising, the active electrode chains can only be used with our custom-made EIT system. Therefore, we also explored to what extent EIT measurements with passive electrode chains amenable to commercially available EIT measurement systems can be corrected for coupling effects. It was found that EIT measurements with passive unshielded cables could not be corrected above 100 Hz because of the strong but inaccurately known capacitive coupling between the electrical wires. However, it was possible to correct EIT measurements with passive shielded cables, and the final accuracy of the phase measurements was estimated to be 2-4 mrad at 1 kHz.

  8. Effectiveness, active energy produced by molecular motors, and nonlinear capacitance of the cochlear outer hair cell.

    PubMed

    Spector, Alexander A

    2005-06-01

    Cochlear outer hair cells are crucial for active hearing. These cells have a unique form of motility, named electromotility, whose main features are the cell's length changes, active force production, and nonlinear capacitance. The molecular motor, prestin, that drives outer hair cell electromotility has recently been identified. We reveal relationships between the active energy produced by the outer hair cell molecular motors, motor effectiveness, and the capacitive properties of the cell membrane. We quantitatively characterize these relationships by introducing three characteristics: effective capacitance, zero-strain capacitance, and zero-resultant capacitance. We show that zero-strain capacitance is smaller than zero-resultant capacitance, and that the effective capacitance is between the two. It was also found that the differences between the introduced capacitive characteristics can be expressed in terms of the active energy produced by the cell's molecular motors. The effectiveness of the cell and its molecular motors is introduced as the ratio of the motors'active energy to the energy of the externally applied electric field. It is shown that the effectiveness is proportional to the difference between zero-strain and zero-resultant capacitance. We analyze the cell and motor's effectiveness within a broad range of cellular parameters and estimate it to be within a range of 12%-30%.

  9. Important parameters affecting the cell voltage of aqueous electrical double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Ho; Hsu, Chun-Tsung; Hu, Chi-Chang; Hardwick, Laurence J.

    2013-11-01

    This study discusses and demonstrates how the open-circuit potential and charges stored in the working potential window on positive and negative electrodes affect the cell voltage of carbon-based electrical double-layer capacitors (EDLCs) in aqueous electrolytes. An EDLC consisting of two activated carbon electrodes is employed as the model system for identifying these key parameters although the potential window of water decomposition can be simply determined by voltammetric methods. First, the capacitive performances of an EDLC with the same charge on positive and negative electrodes are evaluated by cyclic voltammetric, charge-discharge, electrochemical impedance spectroscopic (EIS) analyses, and inductance-capacitance-resistance meter (LCR meter). The principles for obtaining the highest acceptable cell voltage of such symmetric ECs with excellent reversibility and capacitor-like behaviour are proposed. Aqueous charge-balanced EDLCs can be operated as high as 2.0 V with high energy efficiency (about 90%) and only 4% capacitance loss after the 600-cycle stability checking. The necessity of charge balance (but not capacitance balance) for positive and negative electrodes is substantiated from the lower acceptable cell voltage of charge-unbalanced EDLCs.

  10. Effect of temperature on compact layer of Pt electrode in PEMFCs by first-principles molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    He, Yang; Chen, Changfeng; Yu, Haobo; Lu, Guiwu

    2017-01-01

    Formation of the double-layer electric field and capacitance of the water-metal interface is of significant interest in physicochemical processes. In this study, we perform first- principles molecular dynamics simulations on the water/Pt(111) interface to investigate the temperature dependence of the compact layer electric field and capacitance based on the calculated charge densities. On the Pt (111) surface, water molecules form ice-like structures that exhibit more disorder along the height direction with increasing temperature. The Osbnd H bonds of more water molecules point toward the Pt surface to form Ptsbnd H covalent bonds with increasing temperature, which weaken the corresponding Osbnd H bonds. In addition, our calculated capacitance at 300 K is 15.2 mF/cm2, which is in good agreement with the experimental results. As the temperature increases from 10 to 450 K, the field strength and capacitance of the compact layer on Pt (111) first increase and then decrease slightly, which is significant for understanding the water/Pt interface from atomic level.

  11. "Egg-Box"-Assisted Fabrication of Porous Carbon with Small Mesopores for High-Rate Electric Double Layer Capacitors.

    PubMed

    Kang, Danmiao; Liu, Qinglei; Gu, Jiajun; Su, Yishi; Zhang, Wang; Zhang, Di

    2015-11-24

    Here we report a method to fabricate porous carbon with small mesopores around 2-4 nm by simple activation of charcoals derived from carbonization of seaweed consisting of microcrystalline domains formed by the "egg-box" model. The existence of mesopores in charcoals leads to a high specific surface area up to 3270 m(2) g(-1), with 95% surface area provided by small mesopores. This special pore structure shows high adaptability when used as electrode materials for an electric double layer capacitor, especially at high charge-discharge rate. The gravimetric capacitance values of the porous carbon are 425 and 210 F g(-1) and volumetric capacitance values are 242 and 120 F cm(-3) in 1 M H2SO4 and 1 M TEA BF4/AN, respectively. The capacitances even remain at 280 F g(-1) (160 F cm(-3)) at 100 A g(-1) and 156 F g(-1) (90 F cm(-3)) at 50 A g(-1) in the aqueous and organic electrolytes, demonstrating excellent high-rate capacitive performance.

  12. Enhanced tunability of magneto-impedance and magneto-capacitance in annealed Metglas/PZT magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Leung, Chung Ming; Zhuang, Xin; Xu, Junran; Li, Jiefang; Zhang, Jitao; Srinivasan, G.; Viehland, D.

    2018-05-01

    This report is on a new class of magnetostatically tunable magneto-impedance and magneto-capacitance devices based on a composite of ferromagnetic Metglas and ferroelectric lead zirconate titanate (PZT). Layered magneto-electric (ME) composites with annealed Metglas and PZT were studied in a longitudinal in-plane magnetic field-transverse electric field (L-T) mode. It was found that the degree of tunability was dependent on the annealing temperature of Metglas. An impedance tunability (ΔZ/Z0) of ≥400% was obtained at the electromechanical resonance (EMR) frequency (fr) for a sample with Metglas layers annealed at Ta = 500oC. This tunability is a factor of two higher than for composites with Metglas annealed at 350oC. The tunability of the capacitance, (ΔC/C0), was found to be 290% and -135k% at resonance and antiresonance, respectively, for Ta = 500oC. These results provide clear evidence for improvement in static magnetic field tunability of impedance and capacitance of ME composites with the use of annealed Metglas and are of importance for their potential use in tunable electronic applications.

  13. Molecular Dynamics Simulation Study of the Capacitive Performance of a Binary Mixture of Ionic Liquids near an Onion-like Carbon Electrode.

    PubMed

    Li, Song; Feng, Guang; Fulvio, Pasquale F; Hillesheim, Patrick C; Liao, Chen; Dai, Sheng; Cummings, Peter T

    2012-09-06

    An equimolar mixture of 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C3mpy][Tf2N]), 1-methyl-1-butylpiperidinium bis(trifluoromethylsulfonyl)imide ([C4mpip][Tf2N]) was investigated by classic molecular dynamics (MD) simulation. Differential scanning calorimetry (DSC) measurements verified that the binary mixture exhibited lower glass transition temperature than either of the pure room-temperature ionic liquids (RTILs). Moreover, the binary mixture gave rise to higher conductivity than the neat RTILs at lower temperature range. In order to study its capacitive performance in supercapacitors, simulations were performed of the mixture, and the neat RTILs used as electrolytes near an onion-like carbon (OLC) electrode at varying temperatures. The differential capacitance exhibited independence of the electrical potential applied for three electrolytes, which is in agreement with previous work on OLC electrodes in a different RTILs. Positive temperature dependence of the differential capacitance was observed, and it was dominated by the electrical double layer (EDL) thickness, which is for the first time substantiated in MD simulation.

  14. An experimental/theoretical method to measure the capacitive compactness of an aqueous electrolyte surrounding a spherical charged colloid

    NASA Astrophysics Data System (ADS)

    Moraila-Martínez, Carmen Lucía; Guerrero-García, Guillermo Iván; Chávez-Páez, Martín; González-Tovar, Enrique

    2018-04-01

    The capacitive compactness has been introduced very recently [G. I. Guerrero-García et al., Phys. Chem. Chem. Phys. 20, 262-275 (2018)] as a robust and accurate measure to quantify the thickness, or spatial extension, of the electrical double layer next to either an infinite charged electrode or a spherical macroion. We propose here an experimental/theoretical scheme to determine the capacitive compactness of a spherical electrical double layer that relies on the calculation of the electrokinetic charge and the associated mean electrostatic potential at the macroparticle's surface. This is achieved by numerically solving the non-linear Poisson-Boltzmann equation of point ions around a colloidal sphere and matching the corresponding theoretical mobility, predicted by the O'Brien and White theory [J. Chem. Soc., Faraday Trans. 2 74, 1607-1626 (1978)], with experimental measurements of the electrophoretic mobility under the same conditions. This novel method is used to calculate the capacitive compactness of NaCl and CaCl2 electrolytes surrounding a negatively charged polystyrene particle as a function of the salt concentration.

  15. Apparatus and method for pyroelectric power conversion

    DOEpatents

    Olsen, R.B.

    1984-01-10

    Apparatus and method for converting heat to electrical energy by the use of one or more capacitors having temperature dependent capacitance are disclosed. The capacitor is cycled between relatively high and relatively low temperatures by successive thermal contact with relatively high and relatively low temperature portions of a heat transfer medium having a temperature gradient therein. Upon heating of the capacitor, the capacitance thereof is reduced, so that a charge therein is caused to expand into associated external circuitry in which it is available to do electrical work. The capacitor is then cooled and recharged and the cycle is repeated. The electrical output of the capacitor results from the regenerative delivery of heat to and removal of heat from the capacitor by the heat transfer medium, and efficient conversion of heat to electric energy is thereby effected. 12 figs.

  16. The effect of a source-contacted light shield on the electrical characteristics of an LTPS TFT

    NASA Astrophysics Data System (ADS)

    Kim, Miryeon; Sun, Wookyung; Kang, Jongseuk; Shin, Hyungsoon

    2017-08-01

    The electrical characteristics of a low-temperature polycrystalline silicon thin-film transistor (TFT) with a source-contacted light shield (SCLS) are observed and analyzed. Compared with that of a conventional TFT without a light shield (LS), the on-current of the TFT with an SCLS is lower because the SCLS blocks the fringing electric field from the drain to the active layer. Furthermore, the gate-to-source capacitance (C gs) of the TFT with an SCLS in the off and saturation regions is higher than that of a conventional TFT, which is due to the gate-to-LS capacitance (C g-LS). The electrical characteristics of the TFT with an SCLS are thoroughly investigated by two-dimensional device simulations, and a semi-empirical C g-LS model for SPICE simulation is proposed and verified.

  17. Non-contact capacitance based image sensing method and system

    DOEpatents

    Novak, J.L.; Wiczer, J.J.

    1994-01-25

    A system and a method for imaging desired surfaces of a workpiece is described. A sensor having first and second sensing electrodes which are electrically isolated from the workpiece is positioned above and in proximity to the desired surfaces of the workpiece. An electric field is developed between the first and second sensing electrodes of the sensor in response to input signals being applied thereto and capacitance signals are developed which are indicative of any disturbances in the electric field as a result of the workpiece. An image signal of the workpiece may be developed by processing the capacitance signals. The image signals may provide necessary control information to a machining device for machining the desired surfaces of the workpiece in processes such as deburring or chamfering. Also, the method and system may be used to image dimensions of weld pools on a workpiece and surfaces of glass vials. The sensor may include first and second preview sensors used to determine the feed rate of a workpiece with respect to the machining device. 18 figures.

  18. Non-contact capacitance based image sensing method and system

    DOEpatents

    Novak, J.L.; Wiczer, J.J.

    1995-01-03

    A system and a method is provided for imaging desired surfaces of a workpiece. A sensor having first and second sensing electrodes which are electrically isolated from the workpiece is positioned above and in proximity to the desired surfaces of the workpiece. An electric field is developed between the first and second sensing electrodes of the sensor in response to input signals being applied thereto and capacitance signals are developed which are indicative of any disturbances in the electric field as a result of the workpiece. An image signal of the workpiece may be developed by processing the capacitance signals. The image signals may provide necessary control information to a machining device for machining the desired surfaces of the workpiece in processes such as deburring or chamfering. Also, the method and system may be used to image dimensions of weld pools on a workpiece and surfaces of glass vials. The sensor may include first and second preview sensors used to determine the feed rate of a workpiece with respect to the machining device. 18 figures.

  19. Fully integrated low-noise readout circuit with automatic offset cancellation loop for capacitive microsensors.

    PubMed

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-Il Dan; Ko, Hyoungho

    2015-10-14

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm². The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of -250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  20. Fully Integrated Low-Noise Readout Circuit with Automatic Offset Cancellation Loop for Capacitive Microsensors

    PubMed Central

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-il Dan; Ko, Hyoungho

    2015-01-01

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm2. The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of −250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms. PMID:26473877

  1. Electrical Double Layer Capacitance in a Graphene-embedded Al2O3 Gate Dielectric

    PubMed Central

    Ki Min, Bok; Kim, Seong K.; Jun Kim, Seong; Ho Kim, Sung; Kang, Min-A; Park, Chong-Yun; Song, Wooseok; Myung, Sung; Lim, Jongsun; An, Ki-Seok

    2015-01-01

    Graphene heterostructures are of considerable interest as a new class of electronic devices with exceptional performance in a broad range of applications has been realized. Here, we propose a graphene-embedded Al2O3 gate dielectric with a relatively high dielectric constant of 15.5, which is about 2 times that of Al2O3, having a low leakage current with insertion of tri-layer graphene. In this system, the enhanced capacitance of the hybrid structure can be understood by the formation of a space charge layer at the graphene/Al2O3 interface. The electrical properties of the interface can be further explained by the electrical double layer (EDL) model dominated by the diffuse layer. PMID:26530817

  2. Controllable in situ synthesis of epsilon manganese dioxide hollow structure/RGO nanocomposites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Lin, Mei; Chen, Bolei; Wu, Xiao; Qian, Jiasheng; Fei, Linfeng; Lu, Wei; Chan, Lai Wa Helen; Yuan, Jikang

    2016-01-01

    Well-organized epsilon-MnO2 hollow spheres/reduced graphene oxide (MnO2HS/RGO) composites have been successfully constructed via a facile and one-pot synthetic route. The ε-MnO2 hollow spheres with the diameter of ~500 nm were grown in situ with homogeneous distribution on both sides of graphene oxide (GO) sheets in aqueous suspensions. The formation mechanism of the MnO2HS/RGO composites has been systematically investigated, and a high specific capacitance and good cycling capability were achieved on using the composites as supercapacitors. The galvanostatic charge/discharge curves show a specific capacitance of 471.5 F g-1 at 0.8 A g-1. The hollow structures of ε-MnO2 and the crumpled RGO sheets can enhance the electroactive surface area and improve the electrical conductivity, thus further facilitating the charge transport. The MnO2HS/RGO composite exhibits a high capacitance of 272 F g-1 at 3 A g-1 (92% retention) even after 1000 cycles. The prominent electrochemical performance might be attributed to the combination of the pseudo-capacitance of the MnO2 nanospheres with a hollow structure and to the good electrical conductivity of the RGO sheets. This work explores a new concept in designing metal oxides/RGO composites as electrode materials.Well-organized epsilon-MnO2 hollow spheres/reduced graphene oxide (MnO2HS/RGO) composites have been successfully constructed via a facile and one-pot synthetic route. The ε-MnO2 hollow spheres with the diameter of ~500 nm were grown in situ with homogeneous distribution on both sides of graphene oxide (GO) sheets in aqueous suspensions. The formation mechanism of the MnO2HS/RGO composites has been systematically investigated, and a high specific capacitance and good cycling capability were achieved on using the composites as supercapacitors. The galvanostatic charge/discharge curves show a specific capacitance of 471.5 F g-1 at 0.8 A g-1. The hollow structures of ε-MnO2 and the crumpled RGO sheets can enhance the electroactive surface area and improve the electrical conductivity, thus further facilitating the charge transport. The MnO2HS/RGO composite exhibits a high capacitance of 272 F g-1 at 3 A g-1 (92% retention) even after 1000 cycles. The prominent electrochemical performance might be attributed to the combination of the pseudo-capacitance of the MnO2 nanospheres with a hollow structure and to the good electrical conductivity of the RGO sheets. This work explores a new concept in designing metal oxides/RGO composites as electrode materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07900d

  3. Biological capacitance studies of anodes in microbial fuel cells using electrochemical impedance spectroscopy.

    PubMed

    Lu, Zhihao; Girguis, Peter; Liang, Peng; Shi, Haifeng; Huang, Guangtuan; Cai, Lankun; Zhang, Lehua

    2015-07-01

    It is known that cell potential increases while anode resistance decreases during the start-up of microbial fuel cells (MFCs). Biological capacitance, defined as the apparent capacitance attributed to biological activity including biofilm production, plays a role in this phenomenon. In this research, electrochemical impedance spectroscopy was employed to study anode capacitance and resistance during the start-up period of MFCs so that the role of biological capacitance was revealed in electricity generation by MFCs. It was observed that the anode capacitance ranged from 3.29 to 120 mF which increased by 16.8% to 18-20 times over 10-12 days. Notably, lowering the temperature and arresting biological activity via fixation by 4% para formaldehyde resulted in the decrease of biological capacitance by 16.9 and 62.6%, indicating a negative correlation between anode capacitance and anode resistance of MFCs. Thus, biological capacitance of anode should play an important role in power generation by MFCs. We suggest that MFCs are not only biological reactors and/or electrochemical cells, but also biological capacitors, extending the vision on mechanism exploration of electron transfer, reactor structure design and electrode materials development of MFCs.

  4. Fuel-Cell-Powered Vehicle with Hybrid Power Management

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2010-01-01

    Figure 1 depicts a hybrid electric utility vehicle that is powered by hydrogenburning proton-exchange-membrane (PEM) fuel cells operating in conjunction with a metal hydride hydrogen-storage unit. Unlike conventional hybrid electric vehicles, this vehicle utilizes ultracapacitors, rather than batteries, for storing electric energy. This vehicle is a product of continuing efforts to develop the technological discipline known as hybrid power management (HPM), which is oriented toward integration of diverse electric energy-generating, energy-storing, and energy- consuming devices in optimal configurations. Instances of HPM were reported in five prior NASA Tech Briefs articles, though not explicitly labeled as HPM in the first three articles: "Ultracapacitors Store Energy in a Hybrid Electric Vehicle" (LEW-16876), Vol. 24, No. 4 (April 2000), page 63; "Photovoltaic Power Station With Ultracapacitors for Storage" (LEW- 17177), Vol. 27, No. 8 (August 2003), page 38; "Flasher Powered by Photovoltaic Cells and Ultracapacitors" (LEW-17246), Vol. 27, No. 10 (October 2003), page 37; "Hybrid Power Management" (LEW-17520), Vol. 29, No. 12 (December 2005), page 35; and "Ultracapacitor-Powered Cordless Drill" (LEW-18116-1), Vol. 31, No. 8 (August 2007), page 34. To recapitulate from the cited prior articles: The use of ultracapacitors as energy- storage devices lies at the heart of HPM. An ultracapacitor is an electrochemical energy-storage device, but unlike in a conventional rechargeable electrochemical cell or battery, chemical reactions do not take place during operation. Instead, energy is stored electrostatically at an electrode/electrolyte interface. The capacitance per unit volume of an ultracapacitor is much greater than that of a conventional capacitor because its electrodes have much greater surface area per unit volume and the separation between the electrodes is much smaller.

  5. Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays

    DOE PAGES

    Nguyen, Mary -Anne; Srijanto, Bernadeta; Collier, C. Patrick; ...

    2016-08-02

    The droplet interface bilayer (DIB) is a modular technique for assembling planar lipid membranes between water droplets in oil. The DIB method thus provides a unique capability for developing digital, droplet-based membrane platforms for rapid membrane characterization, drug screening and ion channel recordings. This paper demonstrates a new, low-volume microfluidic system that automates droplet generation, sorting, and sequential trapping in designated locations to enable the rapid assembly of arrays of DIBs. The channel layout of the device is guided by an equivalent circuit model, which predicts that a serial arrangement of hydrodynamic DIB traps enables sequential droplet placement and minimizesmore » the hydrodynamic pressure developed across filled traps to prevent squeeze-through of trapped droplets. Furthermore, the incorporation of thin-film electrodes fabricated via evaporation metal deposition onto the glass substrate beneath the channels allows for the first time in situ, simultaneous electrical interrogation of multiple DIBs within a sealed device. Combining electrical measurements with imaging enables measurements of membrane capacitance and resistance and bilayer area, and our data show that DIBs formed in different trap locations within the device exhibit similar sizes and transport properties. Simultaneous, single channel recordings of ion channel gating in multiple membranes are obtained when alamethicin peptides are incorporated into the captured droplets, qualifying the thin-film electrodes as a means for measuring stimuli-responsive functions of membrane-bound biomolecules. Furthermore, this novel microfluidic-electrophysiology platform provides a reproducible, high throughput method for performing electrical measurements to study transmembrane proteins and biomembranes in low-volume, droplet-based membranes.« less

  6. Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Mary -Anne; Srijanto, Bernadeta; Collier, C. Patrick

    The droplet interface bilayer (DIB) is a modular technique for assembling planar lipid membranes between water droplets in oil. The DIB method thus provides a unique capability for developing digital, droplet-based membrane platforms for rapid membrane characterization, drug screening and ion channel recordings. This paper demonstrates a new, low-volume microfluidic system that automates droplet generation, sorting, and sequential trapping in designated locations to enable the rapid assembly of arrays of DIBs. The channel layout of the device is guided by an equivalent circuit model, which predicts that a serial arrangement of hydrodynamic DIB traps enables sequential droplet placement and minimizesmore » the hydrodynamic pressure developed across filled traps to prevent squeeze-through of trapped droplets. Furthermore, the incorporation of thin-film electrodes fabricated via evaporation metal deposition onto the glass substrate beneath the channels allows for the first time in situ, simultaneous electrical interrogation of multiple DIBs within a sealed device. Combining electrical measurements with imaging enables measurements of membrane capacitance and resistance and bilayer area, and our data show that DIBs formed in different trap locations within the device exhibit similar sizes and transport properties. Simultaneous, single channel recordings of ion channel gating in multiple membranes are obtained when alamethicin peptides are incorporated into the captured droplets, qualifying the thin-film electrodes as a means for measuring stimuli-responsive functions of membrane-bound biomolecules. Furthermore, this novel microfluidic-electrophysiology platform provides a reproducible, high throughput method for performing electrical measurements to study transmembrane proteins and biomembranes in low-volume, droplet-based membranes.« less

  7. The importance of ion size and electrode curvature on electrical double layers in ionic liquids.

    PubMed

    Feng, Guang; Qiao, Rui; Huang, Jingsong; Dai, Sheng; Sumpter, Bobby G; Meunier, Vincent

    2011-01-21

    Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF(6)], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF(6)] (near the positive electrode) ≈ [BMIM][Cl] (near the negative electrode) ≈ [BMIM][PF(6)] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a "Multiple Ion Layers with Overscreening" (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

  8. 3D flower-like hierarchical Ag@nickel-cobalt hydroxide microsphere with enhanced electrochemical properties

    NASA Astrophysics Data System (ADS)

    Lv, Zijian; Zhong, Qin; Bu, Yunfei; Wu, Junpeng

    2016-10-01

    The morphology and electrical conductivity are essential to electrochemical performance of electrode materials in renewable energy conversion and storage technologies such as fuel cells and supercapacitors. Here, we explored a facile method to grow Ag@nickel-cobalt layered double hydroxide (Ag@Ni/Co-LDHs) with 3D flower-like microsphere structure. The results show the morphology of Ni/Co-LDHs varies with the introduction of Ag species. The prepared Ag@Ni/Co-LDHs not only exhibits an open hierarchical structure with high specific capacitance but also shows good electrical conductivity to support fast electron transport. Benefiting from the unique structural features, these flower-like Ag@Ni/Co-LDHs microspheres have impressive specific capacitance as high as 1768 F g-1 at 1 A g-1. It can be concluded that engineering the structure of the electrode can increase the efficiency of the specific capacitance as a battery-type electrode for hybrid supercapacitors.

  9. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  10. Electrical double layers and differential capacitance in molten salts from density functional theory

    DOE PAGES

    Frischknecht, Amalie L.; Halligan, Deaglan O.; Parks, Michael L.

    2014-08-05

    Classical density functional theory (DFT) is used to calculate the structure of the electrical double layer and the differential capacitance of model molten salts. The DFT is shown to give good qualitative agreement with Monte Carlo simulations in the molten salt regime. The DFT is then applied to three common molten salts, KCl, LiCl, and LiKCl, modeled as charged hard spheres near a planar charged surface. The DFT predicts strong layering of the ions near the surface, with the oscillatory density profiles extending to larger distances for larger electrostatic interactions resulting from either lower temperature or lower dielectric constant. Inmore » conclusion, overall the differential capacitance is found to be bell-shaped, in agreement with recent theories and simulations for ionic liquids and molten salts, but contrary to the results of the classical Gouy-Chapman theory.« less

  11. Electrical and absorption properties of fresh cassava tubers and cassava starch

    NASA Astrophysics Data System (ADS)

    Harnsoongnoen, S.; Siritaratiwat, A.

    2015-09-01

    The objective of this study was to analyze the electrical and absorption properties of fresh cassava tubers and cassava starch at various frequencies using electric impedance spectroscopy and near-infrared spectroscopy, as well as determine the classification of the electrical parameters of both materials using the principle component analysis (PCA) method. All samples were measured at room temperature. The electrical and absorption parameters consisted of dielectric constant, dissipation factor, parallel capacitance, resistance, reactance, impedance and absorbance. It was found that the electrical and absorption properties of fresh cassava tubers and cassava starch were a function of frequency, and there were significant differences between the materials. The dielectric constant, parallel capacitance, resistance and impedance of fresh cassava tubers and cassava starch had similar dramatic decreases with increasing frequency. However, the reactance of both materials increased with an increasing frequency. The electrical parameters of both materials could be classified into two groups. Moreover, the dissipation factor and phase of impedance were the parameters that could be used in the separation of both materials. According to the absorbance patterns of the fresh cassava tubers and cassava starch, there were significant differences.

  12. An Educational Laboratory Virtual Instrumentation Suite Assisted Experiment for Studying Fundamentals of Series Resistance-Inductance-Capacitance Circuit

    ERIC Educational Resources Information Center

    Rana, K. P. S.; Kumar, Vineet; Mendiratta, Jatin

    2017-01-01

    One of the most elementary concepts in freshmen Electrical Engineering subject comprises the Resistance-Inductance-Capacitance (RLC) circuit fundamentals, that is, their time and frequency domain responses. For a beginner, generally, it is difficult to understand and appreciate the step and the frequency responses, particularly the resonance. This…

  13. Capacitive charge generation apparatus and method for testing circuits

    DOEpatents

    Cole, E.I. Jr.; Peterson, K.A.; Barton, D.L.

    1998-07-14

    An electron beam apparatus and method for testing a circuit are disclosed. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 {micro}m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits. 7 figs.

  14. Capacitive charge generation apparatus and method for testing circuits

    DOEpatents

    Cole, Jr., Edward I.; Peterson, Kenneth A.; Barton, Daniel L.

    1998-01-01

    An electron beam apparatus and method for testing a circuit. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 .mu.m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits.

  15. Association between left atrial phasic conduit function and early atrial fibrillation recurrence in patients undergoing electrical cardioversion.

    PubMed

    Degiovanni, Anna; Boggio, Enrico; Prenna, Eleonora; Sartori, Chiara; De Vecchi, Federica; Marino, Paolo N

    2018-04-01

    Diastolic dysfunction promotes atrial fibrillation (AF) inducing left atrial (LA) remodeling, with chamber dilation and fibrosis. Predominance of LA phasic conduit (LAC) function should reflect not only chamber alterations but also underlying left ventricular (LV) filling impairment. Thus, LAC was tested as possible predictor of early AF relapse after electrical cardioversion (EC). 96 consecutive patients, who underwent EC for persistent non-valvular AF, were prospectively enrolled. Immediately after successful EC (3 h ± 15 min), an echocardiographic apical four-chamber view was acquired with transmitral velocities, annular tissue Doppler and simultaneous LV and LA three-dimensional full-volume datasets. Then, from LA-LV volumetric curves we computed LAC as: [(LV maximum - LV minimum) - (LA maximum - LA minimum) volume], expressed as % LV stroke volume. LA pump, immediately post-EC, was assumed and verified as being negligible. Sinus rhythm persistence at 1 month was checked with ECG-Holter monitoring. At 1 month 62 patients were in sinus rhythm and 34 in AF. AF patients presented pre-EC higher E/é values (p = 0.012), no major LA volume differences (p = NS), but a stiffer LV cavity (p = 0.012) for a comparable LV capacitance (p = 0.461). Conduit contributed more (p < 0.001) to LV stroke volume in AF subpopulation. Multiple regression revealed LAC as the most significant AF predictor (p = 0.013), even after correction for biometric characteristics and pharmacotherapy (p = 0.008). Our data suggest that LAC larger contribution to LV filling soon after EC reflects LA-LV stiffening, which skews atrioventricular interaction leading to AF perpetuation and makes conduit dominance a powerful predictor of early AF recurrence.

  16. Electrical characteristics of pentacene-based Schottky diodes

    NASA Astrophysics Data System (ADS)

    Lee, Y. S.; Park, J. H.; Choi, J. S.

    2003-01-01

    The current-voltage ( I-V), capacitance-frequency ( C-f), and capacitance-voltage ( C-V) characteristics of organic diodes with a pentacene/aluminum Sckottky contact have been investigated. From the measured diode capacitances, it is revealed that the frequency-dependent properties are related to the localized traps in the band gap of pentacene. The C-V characteristics for different test frequencies are presented. In the low frequency region, the capacitance is nearly constant with reverse bias and increase with the forward bias. With even higher forward bias, the capacitance gradually decreases, which is due to the detrapping of the trapped charges. The intrinsic charge carrier concentration in pentacene was extracted as 3.1×10 17 cm -3 from the C-V characteristics. The C-V properties of the pentacene-based metal-oxide-semiconductor structure have also studied.

  17. Method and apparatus for capacitive deionization and electrochemical purification and regeneration of electrodes

    DOEpatents

    Tran, Tri D.; Farmer, Joseph C.; Murguia, Laura

    2001-01-01

    An electrically regeneratable electrochemical cell (30) for capacitive deionization and electrochemical purification and regeneration of electrodes includes two end plates (31, 32), one at each end of the cell (30). A new regeneration method is applied to the cell (30) which includes slowing or stopping the purification cycle, electrically desorbing contaminants and removing the desorbed contaminants. The cell (30) further includes a plurality of generally identical double-sided intermediate electrodes (37-43) that are equidistally separated from each other, between the two end electrodes (35, 36). As the electrolyte enters the cell, it flows through a continuous open serpentine channel (65-71) defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cell (30), ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. The cell (30) is regenerated electrically to desorb such previously removed ions.

  18. Modelling of cardiac-related changes in lung resistivity measured with EITS.

    PubMed

    Zhao, T X; Brown, B H; Nopp, P; Wang, W; Leathard, A D; Lu, L Q

    1996-11-01

    Resistivity data from 9.6 kHZ to 1.2 MHz were recorded from eight normal subjects using an electrical impedance tomographic spectroscopy (EITS) system and then averaged to a mean cardiac cycle using the ECG gating technique. The Cole-Cole model, that is, extracellular resistance R connected in parallel with intracellular resistance S and membrane capacitance C in series, with a distribution parameter a, was applied to model the frequency characteristics and to produce parametric images. During systole, SC and RC were found to decrease and FR increase. The changes in R/S were not consistent among the subjects. We estimated the peak changes in R, S and C to be -2.5%, -3.3% and -7.6% respectively. The results can be explained by considering the blood vessels as spheres of different sizes with blood inside them. The decrease in R during systole might be caused by the increased blood content in relatively large vessels, whereas that in S by the increased blood volume in relatively small vessels. The capacitance of blood is normally smaller than that of lung tissue, whereas FR blood is higher than that of lung tissue. Hence, as blood content increases, C should decrease and FR increase.

  19. A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes.

    PubMed

    Han, Yining; Huang, Shanghui; Yan, Tianying

    2014-07-16

    The size of ions significantly influences the electric double layer structure of room temperature ionic liquid (IL) electrolytes and their differential capacitance (Cd). In this study, we extended the mean-field theory (MFT) developed independently by Kornyshev (2007J. Phys. Chem. B 111 5545-57) and Kilic, Bazant, and Ajdari (2007 Phys. Rev. E 75 021502) (the KKBA MFT) to take into account the asymmetric 1:1 IL electrolytes by introducing an additional parameter ξ for the anion/cation volume ratio, besides the ionic compressibility γ in the KKBA MFT. The MFT of asymmetric ions becomes KKBA MFT upon ξ = 1, and further reduces to Gouy-Chapman theory in the γ → 0 limit. The result of the extended MFT demonstrates that the asymmetric ILs give rise to an asymmetric Cd, with the higher peak in Cd occurring at positive polarization for the smaller anionic size. At high potential, Cd decays asymptotically toward KKBA MFT characterized by γ for the negative polarization, and characterized by ξγ for the positive polarization, with inverse-square-root behavior. At low potential, around the potential of zero charge, the asymmetric ions cause a higher Cd, which exceeds that of Gouy-Chapman theory.

  20. Electron kinetics in capacitively coupled plasmas modulated by electron injection

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Peng, Yanli; Innocenti, Maria Elena; Jiang, Wei; Wang, Hong-yu; Lapenta, Giovanni

    2017-09-01

    The controlling effect of an electron injection on the electron energy distribution function (EEDF) and on the energetic electron flux, in a capacitive radio-frequency argon plasma, is studied using a one-dimensional particle-in-cell/Monte Carlo collisions model. The input power of the electron beam is as small as several tens of Watts with laboratory achievable emission currents and energies. With the electron injection, the electron temperature decreases but with a significant high energy tail. The electron density, electron temperature in the sheath, and electron heating rate increase with the increasing emission energy. This is attributed to the extra heating of the energetic electrons in the EEDF tail. The non-equilibrium EEDF is obtained for strong non-local distributions of the electric field, electron heating rate, excitation, and ionization rate, indicating the discharge has transited from a volume heating (α-mode dominated) into a sheath heating (γ-mode dominated) type. In addition, the electron injection not only modifies the self-bias voltage, but also enhances the electron flux that can reach the electrodes. Moreover, the relative population of energetic electrons significantly increases with the electron injection compared to that without the electron injection, relevant for modifying the gas and surface chemistry reactions.

  1. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation.

    PubMed

    Kim, Ki Soo; Hernandez, Daniel; Lee, Soo Yeol

    2015-10-24

    Capacitive radiofrequency (RF) hyperthermia suffers from excessive temperature rise near the electrodes and poorly localized heat transfer to the deep-seated tumor region even though it is known to have potential to cure ill-conditioned tumors. To better localize heat transfer to the deep-seated target region in which electrical conductivity is elevated by nanoparticle mediation, two-channel capacitive RF heating has been tried on a phantom. We made a tissue-mimicking phantom consisting of two compartments, a tumor-tissue-mimicking insert against uniform background agarose. The tumor-tissue-mimicking insert was made to have higher electrical conductivity than the normal-tissue-mimicking background by applying magnetic nanoparticle suspension to the insert. Two electrode pairs were attached on the phantom surface by equal-angle separation to apply RF electric field to the phantom. To better localize heat transfer to the tumor-tissue-mimicking insert, RF power with a frequency of 26 MHz was delivered to the two channels in a time-multiplexed way. To monitor the temperature rise inside the phantom, MR thermometry was performed at a 3T MRI intermittently during the RF heating. Finite-difference-time-domain (FDTD) electromagnetic and thermal simulations on the phantom model were also performed to verify the experimental results. As compared to the one-channel RF heating, the two-channel RF heating with time-multiplexed driving improved the spatial localization of heat transfer to the tumor-tissue-mimicking region in both the simulation and experiment. The two-channel RF heating also reduced the temperature rise near the electrodes significantly. Time-multiplexed two-channel capacitive RF heating has the capability to better localize heat transfer to the nanoparticle-mediated tumor region which has higher electrical conductivity than the background normal tissues.

  2. Solid-state supercapacitors with ionic liquid gel polymer electrolyte based on poly (3, 4-ethylenedioxythiophene), carbon nanotubes, and metal oxides nanocomposites for electrical energy storage

    NASA Astrophysics Data System (ADS)

    Obeidat, Amr M.

    Clean and renewable energy systems have emerged as an important area of research having diverse and significant new applications. These systems utilize different energy storage methods such as the batteries and supercapacitors. Supercapacitors are electrochemical energy storage devices that are designed to bridge the gap between batteries and conventional capacitors. Supercapacitors which store electrical energy by electrical double layer capacitance are based on large surface area structured carbons. The materials systems in which the Faradaic reversible redox reactions store electrical energy are the transition metal oxides and electronically conducting polymers. Among the different types of conducting polymers, poly (3, 4- ethylenedioxythiophene) (PEDOT) is extensively investigated owing to its chemical and mechanical stability. Due to instability of aqueous electrolytes at high voltages and toxicity of organic electrolytes, potential of supercapacitors has not been fully exploited. A novel aspect of this work is in utilizing the ionic liquid gel polymer electrolyte to design solid-state supercapacitors for energy storage. Various electrochemical systems were investigated including graphene, PEDOT, PEDOT-carbon nanotubes, PEDOT-manganese oxide, and PEDOT-iron oxide nanocomposites. The electrochemical performance of solid-state supercapacitor devices was evaluated based on cyclic voltammetry (CV), charge-discharge (CD), prolonged cyclic tests, and electrochemical impedance spectroscopy (EIS) techniques. Raman spectroscopy technique was also utilized to analyze the bonding structure of the electrode materials. The graphene solid-state supercapacitor system displayed areal capacitance density of 141.83 mF cm-2 based on high potential window up to 4V. The PEDOT solid-state supercapacitor system was synthesized in acetonitrile and aqueous mediums achieving areal capacitance density of 219.17 mF cm-2. The hybrid structure of solid-state supercapacitors was also studied in solid-state design based on PEDOT and graphene electrodes that produced areal capacitance density of 198.26 mF cm-2. Symmetrical PEDOT-manganese oxide nanocomposites were synthesized by co-deposition and dip-coating techniques to fabricate solid-state supercapacitor systems achieving areal capacitance density of 122.08 mF cm-2 credited to the PEDOT-MnO2 supercapacitor that was synthesized by dipping the PEDOT electrode in pure KMnO4 solution. The electrochemical performance of PEDOT-carbon nanotube solid-state supercapacitors was also investigated in both acetonitrile and aqueous medium showing good dispersion characteristics with optimum CNT content of 1 mg. The PEDOT-CNT solid-state supercapacitor system synthesized in acetonitrile displayed areal capacitance density of 297.43 mF cm-2. PEDOT-Fe2O3 nanocomposites were synthesized by single-step co-deposition techniques, and these were used to fabricate solid-state supercapacitors achieving areal capacitance density of 96.89 mF cm-2. Furthermore, some of these thin flexible solid-state supercapacitors were integrated with solar cells for direct storage of solar electricity, which proved to be promising as autonomous power source for flexible and wearable electronics. This dissertation describes the electrode synthesis, design and properties of solid-state supercapacitors, and their electrochemical performance in the storage of electrical energy.

  3. Time constant determination for electrical equivalent of biological cells

    NASA Astrophysics Data System (ADS)

    Dubey, Ashutosh Kumar; Dutta-Gupta, Shourya; Kumar, Ravi; Tewari, Abhishek; Basu, Bikramjit

    2009-04-01

    The electric field interactions with biological cells are of significant interest in various biophysical and biomedical applications. In order to study such important aspect, it is necessary to evaluate the time constant in order to estimate the response time of living cells in the electric field (E-field). In the present study, the time constant is evaluated by considering the hypothesis of electrical analog of spherical shaped cells and assuming realistic values for capacitance and resistivity properties of cell/nuclear membrane, cytoplasm, and nucleus. In addition, the resistance of cytoplasm and nucleoplasm was computed based on simple geometrical considerations. Importantly, the analysis on the basis of first principles shows that the average values of time constant would be around 2-3 μs, assuming the theoretical capacitance values and the analytically computed resistance values. The implication of our analytical solution has been discussed in reference to the cellular adaptation processes such as atrophy/hypertrophy as well as the variation in electrical transport properties of cellular membrane/cytoplasm/nuclear membrane/nucleoplasm.

  4. Sensitivity of the Enviroscan soil moisture capacitance probe to the presence of artificial macropores

    USDA-ARS?s Scientific Manuscript database

    Capacitance probes (CP) have been used to measure soil water contents in various applications. Effects of large macropores, cracks and other large heterogeneities within the CP sensitivity volume are sources of concerns related to such applications. The objective of this work was to evaluate the sen...

  5. Ferroelectric negative capacitance domain dynamics

    NASA Astrophysics Data System (ADS)

    Hoffmann, Michael; Khan, Asif Islam; Serrao, Claudy; Lu, Zhongyuan; Salahuddin, Sayeef; Pešić, Milan; Slesazeck, Stefan; Schroeder, Uwe; Mikolajick, Thomas

    2018-05-01

    Transient negative capacitance effects in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 capacitors are investigated with a focus on the dynamical switching behavior governed by domain nucleation and growth. Voltage pulses are applied to a series connection of the ferroelectric capacitor and a resistor to directly measure the ferroelectric negative capacitance during switching. A time-dependent Ginzburg-Landau approach is used to investigate the underlying domain dynamics. The transient negative capacitance is shown to originate from reverse domain nucleation and unrestricted domain growth. However, with the onset of domain coalescence, the capacitance becomes positive again. The persistence of the negative capacitance state is therefore limited by the speed of domain wall motion. By changing the applied electric field, capacitor area or external resistance, this domain wall velocity can be varied predictably over several orders of magnitude. Additionally, detailed insights into the intrinsic material properties of the ferroelectric are obtainable through these measurements. A new method for reliable extraction of the average negative capacitance of the ferroelectric is presented. Furthermore, a simple analytical model is developed, which accurately describes the negative capacitance transient time as a function of the material properties and the experimental boundary conditions.

  6. Electro-mechanical characterization of structural supercapacitors

    NASA Astrophysics Data System (ADS)

    Gallagher, T.; LaMaster, D.; Ciocanel, C.; Browder, C.

    2012-04-01

    The paper presents electrical and mechanical properties of structural supercapacitors and discusses limitations associated with the approach taken for the electrical properties evaluation. The structural supercapacitors characterized in this work had the electrodes made of carbon fiber weave, separator made of several cellulose based products, and the solid electrolyte made as PEGDGE based polymer blend. The reported electrical properties include capacitance and leakage resistance; the former was measured using cyclic voltammetry. Mechanical properties have been evaluated thorough tensile and three point bending tests performed on structural supercapacitor coupons. The results indicate that the separator material plays an important role on the electrical as well as mechanical properties of the structural capacitor, and that Celgard 3501 used as separator leads to most benefits for both mechanical and electrical properties. Specific capacitance and leakage resistance as high as 1.4kF/m3 and 380kΩ, respectively, were achieved. Two types of solid polymer electrolytes were used in fabrication, with one leading to higher and more consistent leakage resistance values at the expense of a slight decrease in specific capacitance when compared to the other SPE formulation. The ultimate tensile strength and modulus of elasticity of the developed power storage composite were evaluated at 466MPa and 18.9MPa, respectively. These values are 58% and 69% of the tensile strength and modulus of elasticity values measured for a single layer composite material made with the same type of carbon fiber and with a West System 105 epoxy instead of solid polymer electrolyte.

  7. Electrocapillarity and zero-frequency differential capacitance at the interface between mercury and ionic liquids measured using the pendant drop method.

    PubMed

    Nishi, Naoya; Hashimoto, Atsunori; Minami, Eiji; Sakka, Tetsuo

    2015-02-21

    The structure of ionic liquids (ILs) at the electrochemical IL|Hg interface has been studied using the pendant drop method. From the electrocapillarity (potential dependence of interfacial tension) differential capacitance (Cd) at zero frequency (in other words, static differential capacitance or differential capacitance in equilibrium) has been evaluated. The potential dependence of zero-frequency Cd at the IL|Hg interface exhibits one or two local maxima near the potential of zero charge (Epzc), depending on the cation of the ILs. For 1-ethyl-3-methylimidazolium tetrafluoroborate, an IL with the cation having a short alkyl chain, the Cdvs. potential curve has one local maximum whereas another IL, 1-octyl-3-methylimidazolium tetrafluoroborate, with the cation having a long alkyl chain, shows two maxima. These behaviors of zero-frequency Cd agree with prediction by recent theoretical and simulation studies for the electrical double layer in ILs. At negative and positive potentials far from Epzc, the zero-frequency Cd increases for both the ILs studied. The increase in zero-frequency Cd is attributable to the densification of ionic layers in the electrical double layer.

  8. Impurity effects on ionic-liquid-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Lian, Cheng; Henderson, Douglas; Wu, Jianzhong

    2017-02-01

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface of a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. By comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.

  9. Structure and capacitance of an electric double layer of an asymmetric valency dimer electrolyte: A comparison of the density functional theory with Monte Carlo simulations

    DOE PAGES

    Henderson, Douglas; Silvestre-Alcantara, Whasington; Kaja, Monika; ...

    2016-08-18

    Here, the density functional theory is applied to a study of the structure and differential capacitance of a planar electric double layer formed by a valency asymmetric mixture of charged dimers and monomers. The dimer consists of two tangentially tethered hard spheres of equal diameters of which one is charged and the other is neutral, while the monomer is a charged hard sphere of the same size. The dimer electrolyte is next to a uniformly charged, smooth planar electrode. The electrode-particle singlet distributions, the mean electrostatic potential, and the differential capacitance for the model double layer are evaluated for amore » 2:1/1:2 valency electrolyte at a given concentration. Important consequences of asymmetry in charges and in ion shapes are (i) a finite, non-zero potential of zero charge, and (ii) asymmetric shaped 2:1 and 1:2 capacitance curves which are not mirror images of each other. Comparisons of the density functional results with the corresponding Monte Carlo simulations show the theoretical predictions to be in good agreement with the simulations overall except near zero surface charge.« less

  10. Influence of deposition conditions on electrical and mechanical properties of Sm2O3-doped CeO2 thin films prepared by EB-PVD (+IBAD) methods. Part 1: Effective relative permittivity

    NASA Astrophysics Data System (ADS)

    Hartmanová, Mária; Nádaždy, Vojtech; Kundracik, František; Mansilla, Catina

    2013-03-01

    Study is devoted to the effective relative permittivity ɛr of CeO2 + x. Sm2O3 thin films prepared by electron-beam physical vapour deposition and ionic beam-assisted deposition methods; ɛr was investigated by three independent ways from the bulk parallel capacitance Cp, impedance capacitance Cimp, and accumulation capacitance Cacc in dependence on the deposition conditions (deposition temperature, dopant amount x and Ar+ ion bombardment during the film deposition) used. Investigations were performed using impedance spectroscopy, capacitance-voltage and current-voltage characteristics as well as deep level transient spectroscopy. Results obtained are described and discussed.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faraby, H.; DiBattista, M.; Bandaru, P. R., E-mail: pbandaru@ucsd.edu

    The electrical impedance (both the resistive and capacitive aspects) of focused ion beam (FIB) deposited SiO{sub 2} has been correlated to the specific composition of the ion beam, in Ga- and Xe-based FIB systems. The presence of electrically percolating Ga in concert with carbon (inevitably found as the product of the hydrocarbon precursor decomposition) has been isolated as a major cause for the observed decrease in the resistivity of the deposited SiO{sub 2}. Concomitant with the decreased resistivity, an increased capacitance and effective dielectric constant was observed. Our study would be useful to understand the constraints to the deposition ofmore » high quality insulator films through FIB based methodologies.« less

  12. Three-dimensionally arrayed and mutually connected 1.2-nm nanopores for high-performance electric double layer capacitor.

    PubMed

    Itoi, Hiroyuki; Nishihara, Hirotomo; Kogure, Taichi; Kyotani, Takashi

    2011-02-09

    Zeolite-templated carbon is a promising candidate as an electrode material for constructing an electric double layer capacitor with both high-power and high-energy densities, due to its three-dimensionally arrayed and mutually connected 1.2-nm nanopores. This carbon exhibits both very high gravimetric (140-190 F g(-1)) and volumetric (75-83 F cm(-3)) capacitances in an organic electrolyte solution. Moreover, such a high capacitance can be well retained even at a very high current up to 20 A g(-1). This extraordinary high performance is attributed to the unique pore structure.

  13. Optical interferometry study of film formation in lubrication of sliding and/or rolling contacts

    NASA Technical Reports Server (NTRS)

    Stejskal, E. O.; Cameron, A.

    1972-01-01

    Seventeen fluids of widely varying physical properties and molecular structure were chosen for study. Film thickness and traction were measured simultaneously in point contacts by interferometry, from which a new theory of traction was proposed. Film thickness was measured in line contacts by interferometry and electrical capacitance to establish correlation between these two methods. An interferometric method for the absolute determination of refractive index in the contact zone was developed and applied to point contact fluid entrapments. Electrical capacitance was used to study the thickness and properties of the soft surface film which sometimes forms near a metal-fluid interface.

  14. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres

    NASA Astrophysics Data System (ADS)

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A.; Tao, Lu; Gao, Faming

    2015-09-01

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm-3 in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g-1. This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems.

  15. Effect of captopril treatment on total and central vascular capacitance in dogs with chronic heart failure.

    PubMed

    Ogilvie, R I; Zborowska-Sluis, D

    1994-09-01

    Chronic rapid right ventricular pacing (RRVP) at 250 beats/min produces low cardiac output (CO) heart failure, marked reduction in total vascular capacitance, and a shift in volume centrally. The effect of converting enzyme inhibition with captopril on cardiac preload was investigated in this model of heart failure. Eight splenectomized dogs were treated with captopril (6.4 mg/kg daily) for 3 days before and 35 +/- 3 days (mean +/- SEM) after continuous RRVP was initiated and the outcome was compared with that of 5 untreated dogs subjected to RRVP for 32 +/- 3 days. Similar reductions in systemic arterial pressure (Psa) and CO and increases in right atrial pressure (Pra) and total peripheral resistance (TPR) were noted in both groups, however, pulmonary capillary wedge pressure (Ppcw) was higher in the untreated group (18.4 +/- 1.6 vs. 12.1 +/- 2.0 mm Hg). Total vascular compliance and capacitance was estimated from mean circulatory filling pressures (Pmcf) at different blood volumes (TBV) during transitory cardiac arrests with acetylcholine (ACh). Pmcf after chronic RRVP was higher in untreated animals (12.6 +/- 1.9 vs. 8.4 +/- 0.7 mm Hg) and compliance was lower (1.9 +/- 0.2 vs. 2.6 +/- 0.2 ml/mm Hg/kg). Total vascular capacitance at a Pmcf of 6 mm Hg was lower in untreated animals (50 +/- 6 vs. 68 +/- 3 ml/kg). Central vascular capacitance was also lower in untreated animals because Ppcw was higher and central blood volume (CBV) as a proportion of TBV was higher (21 +/- 3 vs. 15 +/- 2%). Four of 5 untreated and 1 of 8 treated dogs had severe ascites.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Capacitive Behavior of Single Gallium Oxide Nanobelt

    PubMed Central

    Cai, Haitao; Liu, Hang; Zhu, Huichao; Shao, Pai; Hou, Changmin

    2015-01-01

    In this research, monocrystalline gallium oxide (Ga2O3) nanobelts were synthesized through oxidation of metal gallium at high temperature. An electronic device, based on an individual Ga2O3 nanobelt on Pt interdigital electrodes (IDEs), was fabricated to investigate the electrical characteristics of the Ga2O3 nanobelt in a dry atmosphere at room temperature. The current-voltage (I-V) and I/V-t characteristics show the capacitive behavior of the Ga2O3 nanobelt, indicating the existence of capacitive elements in the Pt/Ga2O3/Pt structure. PMID:28793506

  17. Analysis of Fluid Gauge Sensor for Zero or Microgravity Conditions using Finite Element Method

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Doiron, Terence a.

    2007-01-01

    In this paper the Finite Element Method (FEM) is presented for mass/volume gauging of a fluid in a tank subjected to zero or microgravity conditions. In this approach first mutual capacitances between electrodes embedded inside the tank are measured. Assuming the medium properties the mutual capacitances are also estimated using FEM approach. Using proper non-linear optimization the assumed properties are updated by minimizing the mean square error between estimated and measured capacitances values. Numerical results are presented to validate the present approach.

  18. Large-deformation electrohydrodynamics of an elastic capsule in a DC electric field

    NASA Astrophysics Data System (ADS)

    Das, Sudip; Thaokar, Rochish M.

    2018-04-01

    The dynamics of a spherical elastic capsule, containing a Newtonian fluid bounded by an elastic membrane and immersed in another Newtonian fluid, in a uniform DC electric field is investigated. Discontinuity of electrical properties such as conductivities of the internal and external fluid media as well as capacitance and conductance of the membrane lead to a net interfacial Maxwell stress which can cause the deformation of such an elastic capsule. We investigate this problem considering well established membrane laws for a thin elastic membrane, with fully resolved hydrodynamics in the Stokes flow limit and describe the electrostatics using the capacitor model. In the limit of small deformation, the analytical theory predicts the dynamics fairly satisfactorily. Large deformations at high capillary number though necessitate a numerical approach (Boundary element method in the present case) to solve this highly non-linear problem. Akin to vesicles, at intermediate times, highly nonlinear biconcave shapes along with squaring and hexagon like shapes are observed when the outer medium is more conducting. The study identifies the essentiality of parameters such as high membrane capacitance, low membrane conductance, low hydrodynamic time scales and high capillary number for observation of these shape transitions. The transition is due to large compressive Maxwell stress at the poles at intermediate times. Thus such shape transition can be seen in spherical globules admitting electrical capacitance, possibly, irrespective of the nature of the interfacial restoring force.

  19. Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes.

    PubMed

    Li, Peixu; Kong, Chuiyan; Shang, Yuanyuan; Shi, Enzheng; Yu, Yuntao; Qian, Weizhong; Wei, Fei; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Cao, Anyuan; Wu, Dehai

    2013-09-21

    Developing flexible and deformable supercapacitor electrodes based on porous materials is of high interest in energy related fields. Here, we show that carbon nanotube sponges, consisting of highly porous conductive networks, can serve as compressible and deformation-tolerant supercapacitor electrodes in aqueous or organic electrolytes. In aqueous electrolytes, the sponges maintain a similar specific capacitance (>90% of the original value) under a predefined compressive strain of 50% (corresponding to a volume reduction of 50%), and retain more than 70% of the original capacitance under 80% strain while the volume normalized capacitance increases by 3-fold. The sponge electrode maintains a stable performance after 1000 large strain compression cycles. A coin-shaped cell assembled with these sponges shows excellent stability over 15,000 charging cycles with negligible degradation after 500 cycles. Our results indicate that carbon nanotube sponges have the potential to fabricate deformable supercapacitor electrodes with stable performance.

  20. Adding Resistances and Capacitances in Introductory Electricity

    NASA Astrophysics Data System (ADS)

    Efthimiou, C. J.; Llewellyn, R. A.

    2005-09-01

    All introductory physics textbooks, with or without calculus, cover the addition of both resistances and capacitances in series and in parallel as discrete summations. However, none includes problems that involve continuous versions of resistors in parallel or capacitors in series. This paper introduces a method for solving the continuous problems that is logical, straightforward, and within the mathematical preparation of students at the introductory level.

  1. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    DOE PAGES

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; ...

    2018-01-01

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. In this paper, we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is inmore » sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm -3 and high areal capacitances over 20 F cm -2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. In conclusion, these promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.« less

  2. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. In this paper, we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is inmore » sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm -3 and high areal capacitances over 20 F cm -2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. In conclusion, these promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.« less

  3. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    NASA Astrophysics Data System (ADS)

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; Park, Jihye; Huang, Zhehao; Lee, Minah; Shaw, Leo; Chen, Shucheng; Yakovenko, Andrey A.; Kulkarni, Ambarish; Xiao, Jianping; Fredrickson, Kurt; Tok, Jeffrey B.; Zou, Xiaodong; Cui, Yi; Bao, Zhenan

    2018-01-01

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. Here we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is in sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm-3 and high areal capacitances over 20 F cm-2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. These promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.

  4. Applying the Network Simulation Method for testing chaos in a resistively and capacitively shunted Josephson junction model

    NASA Astrophysics Data System (ADS)

    Bellver, Fernando Gimeno; Garratón, Manuel Caravaca; Soto Meca, Antonio; López, Juan Antonio Vera; Guirao, Juan L. G.; Fernández-Martínez, Manuel

    In this paper, we explore the chaotic behavior of resistively and capacitively shunted Josephson junctions via the so-called Network Simulation Method. Such a numerical approach establishes a formal equivalence among physical transport processes and electrical networks, and hence, it can be applied to efficiently deal with a wide range of differential systems. The generality underlying that electrical equivalence allows to apply the circuit theory to several scientific and technological problems. In this work, the Fast Fourier Transform has been applied for chaos detection purposes and the calculations have been carried out in PSpice, an electrical circuit software. Overall, it holds that such a numerical approach leads to quickly computationally solve Josephson differential models. An empirical application regarding the study of the Josephson model completes the paper.

  5. Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies.

    PubMed

    Yashchenok, Alexey M; Gorin, Dmitry A; Badylevich, Mikhail; Serdobintsev, Alexey A; Bedard, Matthieu; Fedorenko, Yanina G; Khomutov, Gennady B; Grigoriev, Dmitri O; Möhwald, Helmuth

    2010-09-21

    Optical and electrical properties of polyelectrolyte/iron oxide nanocomposite planar films on silicon substrates were investigated for different amount of iron oxide nanoparticles incorporated in the films. The nanocomposite assemblies prepared by the layer-by-layer assembly technique were characterized by ellipsometry, atomic force microscopy, and secondary ion mass-spectrometry. Absorption spectra of the films reveal a shift of the optical absorption edge to higher energy when the number of deposited layers decreases. Capacitance-voltage and current-voltage measurements were applied to study the electrical properties of metal-oxide-semiconductor structures prepared by thermal evaporation of gold electrodes on nanocomposite films. The capacitance-voltage measurements show that the dielectric constant of the film increases with the number of deposited layers and the fixed charge and the trapped charge densities have a negative sign.

  6. The Impact of Harness Impedance on Hall Thruster Discharge Oscillations

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.

    2017-01-01

    Hall thrusters exhibit characteristic discharge voltage and current oscillations during steady-state operation. The lower frequency breathing-mode current oscillations are inherent to each thruster and could impact thruster operation and power processing unit (PPU) design. The design of the discharge output filter, in particular, the output capacitor is important because it supplies the high peak current oscillations that the thruster demands. However, space-rated, high-voltage capacitors are not readily available and can have significant mass and volume. So, it is important for a PPU designer to know what is the minimum amount of capacitance required to operate a thruster. Through Simulation Program with Integrated Circuit Emphasis modeling and electrical measurements on the Hall Effect Rocket with Magnetic Shielding thruster, it was shown that the harness impedance between the power supply and the thruster is the main contributor towards generating voltage ripple at the thruster. Also, increasing the size of the discharge filter capacitor, as previously implemented during thruster tests, does not reduce the voltage oscillations. The electrical characteristics of the electrical harness between the discharge supply and the thruster is crucial to system performance and could have a negative impact on performance, life and operation.

  7. The Impact of Harness Impedance on Hall Thruster Discharge Oscillations

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.

    2017-01-01

    Hall thrusters exhibit characteristic discharge voltage and current oscillations during steady-state operation. The lower frequency breathing-mode current oscillations are inherent to each thruster and could impact thruster operation and PPU design. The design of the discharge output filter, in particular, the output capacitor is important because it supplies the high peak current oscillations that the thruster demands. However, space-rated, high-voltage capacitors are not readily available and can have significant mass and volume. So, it is important for a PPU designer to know what is the minimum amount of capacitance required to operate a thruster. Through SPICE modeling and electrical measurements on the Hall Effect Rocket with Magnetic Shielding (HERMeS) thruster, it was shown that the harness impedance between the power supply and the thruster is the main contributor towards generating voltage ripple at the thruster. Also, increasing the size of the discharge filter capacitor, as previously implemented during thruster tests, does not reduce the voltage oscillations. The electrical characteristics of the electrical harness between the discharge supply and the thruster is crucial to system performance and could have a negative impact on performance, life and operation.

  8. Classical electrical and hydraulic Windkessel models validate physiological calculations of Windkessel (reservoir) pressure.

    PubMed

    Sridharan, Sarup S; Burrowes, Lindsay M; Bouwmeester, J Christopher; Wang, Jiun-Jr; Shrive, Nigel G; Tyberg, John V

    2012-05-01

    Our "reservoir-wave approach" to arterial hemodynamics holds that measured arterial pressure should be considered to be the sum of a volume-related pressure (i.e., reservoir pressure, P(reservoir)) and a wave-related pressure (P(excess)). Because some have questioned whether P(reservoir) (and, by extension, P(excess)) is a real component of measured physiological pressure, it was important to demonstrate that P(reservoir) is implicit in Westerhof's classical electrical and hydraulic models of the 3-element Windkessel. To test the validity of our P(reservoir) determinations, we studied a freeware simulation of the electrical model and a benchtop recreation of the hydraulic model, respectively, measuring the voltage and the pressure distal to the proximal resistance. These measurements were then compared with P(reservoir), as calculated from physiological data. Thus, the first objective of this study was to demonstrate that respective voltage and pressure changes could be measured that were similar to calculated physiological values of P(reservoir). The second objective was to confirm previous predictions with respect to the specific effects of systematically altering proximal resistance, distal resistance, and capacitance. The results of this study validate P(reservoir) and, thus, the reservoir-wave approach.

  9. Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Guang; Jiang, Deen; Cummings, Peter T

    Recent experiments have revealed that onion-like carbons (OLCs) offer high energy density and charging/discharging rates when used as the electrodes in supercapacitors. To understand the physical origin of this phenomenon, molecular dynamics simulations were performed for a room-temperature ionic liquid near idealized spherical OLCs with radii ranging from 0.356 to 1.223 nm. We find that the surface charge density increases almost linearly with the potential applied on electric double layers (EDLs) near OLCs. This leads to a nearly flat shape of the differential capacitance versus the potential, unlike the bell or camel shape observed on planar electrodes. Moreover, our simulationsmore » reveal that the capacitance of EDLs on OLCs increases with the curvature or as the OLC size decreases, in agreement with experimental observations. The curvature effect is explained by dominance of charge overscreening over a wide potential range and increased ion density per unit area of electrode surface as the OLC becomes smaller.« less

  10. Electrical Properties and Power Considerations of a Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jordan, T.; Ounaies, Z.; Tripp, J.; Tcheng, P.

    1999-01-01

    This paper assesses the electrical characteristics of piezoelectric wafers for use in aeronautical applications such as active noise control in aircraft. Determination of capacitive behavior and power consumption is necessary to optimize the system configuration and to design efficient driving electronics. Empirical relations are developed from experimental data to predict the capacitance and loss tangent of a PZT5A ceramic as nonlinear functions of both applied peak voltage and driving frequency. Power consumed by the PZT is the rate of energy required to excite the piezoelectric system along with power dissipated due to dielectric loss and mechanical and structural damping. Overall power consumption is thus quantified as a function of peak applied voltage and driving frequency. It was demonstrated that by incorporating the variation of capacitance and power loss with voltage and frequency, satisfactory estimates of power requirements can be obtained. These relations allow general guidelines in selection and application of piezoelectric actuators and driving electronics for active control applications.

  11. Exceptionally High Electric Double Layer Capacitances of Oligomeric Ionic Liquids.

    PubMed

    Matsumoto, Michio; Shimizu, Sunao; Sotoike, Rina; Watanabe, Masayoshi; Iwasa, Yoshihiro; Itoh, Yoshimitsu; Aida, Takuzo

    2017-11-15

    Electric double layer (EDL) capacitors are promising as next-generation energy accumulators if their capacitances and operation voltages are both high. However, only few electrolytes can simultaneously fulfill these two requisites. Here we report that an oligomeric ionic liquid such as IL4 TFSI with four imidazolium ion units in its structure provides a wide electrochemical window of ∼5.0 V, similar to monomeric ionic liquids. Furthermore, electrochemical impedance measurements using Au working electrodes demonstrated that IL4 TFSI exhibits an exceptionally high EDL capacitance of ∼66 μF/cm 2 , which is ∼6 times as high as those of monomeric ionic liquids so far reported. We also found that an EDL-based field effect transistor (FET) using IL4 TFSI as a gate dielectric material and SrTiO 3 as a channel material displays a very sharp transfer curve with an enhanced carrier accumulation capability of ∼64 μF/cm 2 , as determined by Hall-effect measurements.

  12. Electrical response of Pt/Ru/PbZr0.52Ti0.48O3/Pt capacitor as function of lead precursor excess

    NASA Astrophysics Data System (ADS)

    Gueye, Ibrahima; Le Rhun, Gwenael; Renault, Olivier; Defay, Emmanuel; Barrett, Nicholas

    2017-11-01

    We investigated the influence of the surface microstructure and chemistry of sol-gel grown PbZr0.52Ti0.48O3 (PZT) on the electrical performance of PZT-based metal-insulator-metal (MIM) capacitors as a function of Pb precursor excess. Using surface-sensitive, quantitative X-ray photoelectron spectroscopy and scanning electron microscopy, we confirm the presence of ZrOx surface phase. Low Pb excess gives rise to a discontinuous layer of ZrOx on a (100) textured PZT film with a wide band gap reducing the capacitance of PZT-based MIMs whereas the breakdown field is enhanced. At high Pb excess, the nanostructures disappear while the PZT grain size increases and the film texture becomes (111). Concomitantly, the capacitance density is enhanced by 8.7%, and both the loss tangent and breakdown field are reduced by 20 and 25%, respectively. The role of the low permittivity, dielectric interface layer on capacitance and breakdown is discussed.

  13. On the hydrophilicity of electrodes for capacitive energy extraction

    NASA Astrophysics Data System (ADS)

    Lian, Cheng; Kong, Xian; Liu, Honglai; Wu, Jianzhong

    2016-11-01

    The so-called Capmix technique for energy extraction is based on the cyclic expansion of electrical double layers to harvest dissipative energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the electrical potentials for the charging and discharging processes, which must be matched with the pore characteristics of the electrode materials. While a number of recent studies have examined the effects of the electrode pore size and geometry on the capacitive energy extraction processes, there is little knowledge on how the surface properties of the electrodes affect the thermodynamic efficiency. In this work, we investigate the Capmix processes using the classical density functional theory for a realistic model of electrolyte solutions. The theoretical predictions allow us to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different surface hydrophobicity. In agreement with recent experiments, we find that the thermodynamic efficiency can be much improved by using most hydrophilic electrodes.

  14. Image reconstruction algorithms for electrical capacitance tomography based on ROF model using new numerical techniques

    NASA Astrophysics Data System (ADS)

    Chen, Jiaoxuan; Zhang, Maomao; Liu, Yinyan; Chen, Jiaoliao; Li, Yi

    2017-03-01

    Electrical capacitance tomography (ECT) is a promising technique applied in many fields. However, the solutions for ECT are not unique and highly sensitive to the measurement noise. To remain a good shape of reconstructed object and endure a noisy data, a Rudin-Osher-Fatemi (ROF) model with total variation regularization is applied to image reconstruction in ECT. Two numerical methods, which are simplified augmented Lagrangian (SAL) and accelerated alternating direction method of multipliers (AADMM), are innovatively introduced to try to solve the above mentioned problems in ECT. The effect of the parameters and the number of iterations for different algorithms, and the noise level in capacitance data are discussed. Both simulation and experimental tests were carried out to validate the feasibility of the proposed algorithms, compared to the Landweber iteration (LI) algorithm. The results show that the SAL and AADMM algorithms can handle a high level of noise and the AADMM algorithm outperforms other algorithms in identifying the object from its background.

  15. Layered conductive polymer on nylon membrane templates for high performance, thin-film supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Shi, HaoTian Harvey; Naguib, Hani E.

    2016-04-01

    Flexible Thin-film Electrochemical Capacitors (ECs) are emerging technology that plays an important role as energy supply for various electronics system for both present era and the future. Intrinsically conductive polymers (ICPs) are promising pseudo-capacitive materials as they feature both good electrical conductivity and high specific capacitance. This study focuses on the construction and characterization of ultra-high surface area porous electrodes based on coating of nano-sized conductive polymer materials on nylon membrane templates. Herein, a novel nano-engineered electrode material based on nylon membranes was presented, which allows the creation of super-capacitor devices that is capable of delivering competitive performance, while maintaining desirable mechanical characteristics. With the formation of a highly conductive network with the polyaniline nano-layer, the electrical conductivity was also increased dramatically to facilitate the charge transfer process. Cyclic voltammetry and specific capacitance results showed promising application of this type of composite materials for future smart textile applications.

  16. On the hydrophilicity of electrodes for capacitive energy extraction

    DOE PAGES

    Lian, Cheng; East China Univ. of Science and Technology, Shanghai; Kong, Xian; ...

    2016-09-14

    The so-called Capmix technique for energy extraction is based on the cyclic expansion of electrical double layers to harvest dissipative energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the electrical potentials for the charging and discharging processes, which must be matched with the pore characteristics of the electrode materials. While a number of recent studies have examined the effects of the electrode pore size and geometry on the capacitive energy extraction processes, there is little knowledge on how the surface properties of the electrodes affect the thermodynamic efficiency. In thismore » paper, we investigate the Capmix processes using the classical density functional theory for a realistic model of electrolyte solutions. The theoretical predictions allow us to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different surface hydrophobicity. Finally, in agreement with recent experiments, we find that the thermodynamic efficiency can be much improved by using most hydrophilic electrodes.« less

  17. Study of Method for Designing the Power and the Capacitance of Fuel Cells and Electric Double-Layer Capacitors of Hybrid Railway Vehicle

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Kondo, Keiichiro

    A hybrid railway traction system with fuel cells (FCs) and electric double layer-capacitors (EDLCs) is discussed in this paper. This system can save FC costs and absorb the regenerative energy. A method for designing FCs and EDLCs on the basis of the output power and capacitance, respectively, has not been reported, even though their design is one of the most important technical issues encountered in the design of hybrid railway vehicles. Such design method is presented along with a train load profile and an energy management strategy. The design results obtained using the proposed method are verified by performing numerical simulations of a running train. These results reveal that the proposed method for designing the EDLCs and FCs on the basis of the capacitance and power, respectively, and by using a method for controlling the EDLC voltage is sufficiently effective in designing efficient EDLCs and FCs of hybrid railway traction systems.

  18. Electric double layer capacitors employing nitrogen and sulfur co-doped, hierarchically porous graphene electrodes with synergistically enhanced performance

    NASA Astrophysics Data System (ADS)

    Kannan, Aravindaraj G.; Samuthirapandian, Amaresh; Kim, Dong-Won

    2017-01-01

    Hierarchically porous graphene nanosheets co-doped with nitrogen and sulfur are synthesized via a simple hydrothermal method, followed by a pore activation step. Pore architectures are controlled by varying the ratio of chemical activation agents to graphene, and its influence on the capacitive performance is evaluated. The electric double layer capacitor (EDLC) assembled with optimized dual-doped graphene delivers a high specific capacitance of 146.6 F g-1 at a current density of 0.8 A g-1, which is higher than that of cells with un-doped and single-heteroatom doped graphene. The EDLC with dual-doped graphene electrodes exhibits stable cycling performance with a capacitance retention of 94.5% after 25,000 cycles at a current density of 3.2 A g-1. Such a good performance can be attributed to synergistic effects due to co-doping of the graphene nanosheets and the presence of hierarchical porous structures.

  19. Energy storage mechanism in aqueous fiber-shaped Li-ion capacitors based on aligned hydrogenated-Li4Ti5O12 nanowires.

    PubMed

    Zhao, Hao; Ma, Xiangwen; Bai, Jinglong; Yang, Zhenyu; Sun, Gengzhi; Zhang, Zhenxing; Pan, Xiaojun; Lan, Wei; Zhou, Jin Yuan; Xie, Erqing

    2017-06-22

    It is reported that Li ions can contribute a lot to the capacitance of aqueous Li-ion capacitors (LICs), which might be due to the intercalation/de-intercalation processes of Li + ions that also occur at the anodes. However the energy storage mechanism in the aqueous LIC system still requires further proof. In this work, a type of aqueous fiber-shaped LIC has been designed and developed using hydrogenated Li 4 Ti 5 O 12 (H-LTO) anodes, active carbon (AC) cathodes, and LiCl/PVA gel electrolytes with a double-helical structure. The obtained single LTO wire electrode exhibits a high specific capacitance in volume (34.1 F cm -3 ) and superior cycling stabilities (∼100% over 100 000 cycles), both of which are due to the formed amorphous layers at the surface of the electrodes. Moreover, it is found via sweep voltammetry analysis that most of the energy stored in an aqueous fiber-shaped capacitor electrode is attributed to the Li ions' intercalation, whose content exceeds 85% at a low scan rate and gradually decreases with increasing scan rate; while the energy stored by the double electric layers remains almost unchanged with different scan rates. Furthermore, the well-matched wearable fiber-shaped LICs show high capacitive behaviors (18.44 μW h cm -2 ) and superior static/dynamic cycling stabilities. This research would provide some insight into the charge storage mechanism in electrodes in the aqueous system, and give more suggestions to develop high-energy-density fiber-shaped energy storage devices.

  20. DBD tranformerless power supplies: impact of the parasitic capacitances on the power transfer.

    NASA Astrophysics Data System (ADS)

    Diop, M. A.; Belinger, A.; Piquet, H.

    2017-04-01

    A new transformerless power supply for DBD application is presented here. The power supply is built with 10kV SiC MOSFET. This high voltage switches allow holding the high voltage required by the DBD. An analytical study of the converter’s operation is presented to deduce the power transmitted to the DBD. A comparison between the experimental and theoretical electrical waveforms is shown. The experimental waveforms are particularly affected by all the parasitic capacitances. When all the switches are in OFF state, oscillations cause over-voltages across the switches. An analysis of the effect of each capacitance is presented and demonstrates that the parasitic capacitances of the switches and of the inductance play a key role in the actual power transfer.

  1. ac impedance analysis of a Ni-Nb-Zr-H glassy alloy with femtofarad capacitance tunnels

    NASA Astrophysics Data System (ADS)

    Fukuhara, M.; Seto, M.; Inoue, A.

    2010-01-01

    A Nyquist diagram of a (Ni0.36Nb0.24Zr0.40)90H10 glassy alloy shows a semitrue circle, indicating that it is a conducting material with a total capacitance of 17.8 μF. The Bode plots showing the dependencies of its real and imaginary impedances, and phase on frequency suggest a simpler equivalent circuit having a resistor in parallel with a capacitor. Dividing the total capacitance (17.8 μF) by the capacitance of a single tunnel (0.9 fF), we deduced that this material has a high number of dielectric tunnels, which can be regarded as regular prisms separated from the electric-conducting distorted icosahedral Zr5Ni5Nb3 clusters by an average of 0.225 nm.

  2. Evaluation of electrical capacitance tomography sensor based on the coupling of fluid field and electrostatic field

    NASA Astrophysics Data System (ADS)

    Ye, Jiamin; Wang, Haigang; Yang, Wuqiang

    2016-07-01

    Electrical capacitance tomography (ECT) is based on capacitance measurements from electrode pairs mounted outside of a pipe or vessel. The structure of ECT sensors is vital to image quality. In this paper, issues with the number of electrodes and the electrode covering ratio for complex liquid-solids flows in a rotating device are investigated based on a new coupling simulation model. The number of electrodes is increased from 4 to 32 while the electrode covering ratio is changed from 0.1 to 0.9. Using the coupling simulation method, real permittivity distributions and the corresponding capacitance data at 0, 0.5, 1, 2, 3, 5, and 8 s with a rotation speed of 96 rotations per minute (rpm) are collected. Linear back projection (LBP) and Landweber iteration algorithms are used for image reconstruction. The quality of reconstructed images is evaluated by correlation coefficient compared with the real permittivity distributions obtained from the coupling simulation. The sensitivity for each sensor is analyzed and compared with the correlation coefficient. The capacitance data with a range of signal-to-noise ratios (SNRs) of 45, 50, 55 and 60 dB are generated to evaluate the effect of data noise on the performance of ECT sensors. Furthermore, the SNRs of experimental data are analyzed for a stationary pipe with permittivity distribution. Based on the coupling simulation, 16-electrode ECT sensors are recommended to achieve good image quality.

  3. Redundancy Analysis of Capacitance Data of a Coplanar Electrode Array for Fast and Stable Imaging Processing

    PubMed Central

    Wen, Yintang; Zhang, Zhenda; Zhang, Yuyan; Sun, Dongtao

    2017-01-01

    A coplanar electrode array sensor is established for the imaging of composite-material adhesive-layer defect detection. The sensor is based on the capacitive edge effect, which leads to capacitance data being considerably weak and susceptible to environmental noise. The inverse problem of coplanar array electrical capacitance tomography (C-ECT) is ill-conditioning, in which a small error of capacitance data can seriously affect the quality of reconstructed images. In order to achieve a stable image reconstruction process, a redundancy analysis method for capacitance data is proposed. The proposed method is based on contribution rate and anti-interference capability. According to the redundancy analysis, the capacitance data are divided into valid and invalid data. When the image is reconstructed by valid data, the sensitivity matrix needs to be changed accordingly. In order to evaluate the effectiveness of the sensitivity map, singular value decomposition (SVD) is used. Finally, the two-dimensional (2D) and three-dimensional (3D) images are reconstructed by the Tikhonov regularization method. Through comparison of the reconstructed images of raw capacitance data, the stability of the image reconstruction process can be improved, and the quality of reconstructed images is not degraded. As a result, much invalid data are not collected, and the data acquisition time can also be reduced. PMID:29295537

  4. Capacitive Energy Extraction by Few-Layer Graphene Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Cheng; Zhan, Cheng; Jiang, De-en

    Capacitive double-layer expansion is a promising technology to harvest energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the operation potentials and electrode materials. While carbonaceous materials such as graphene and various forms of activated carbons are routinely used as the electrodes, there is little knowledge on how the quantum capacitance and the electric double-layer (EDL) capacitance, which are on the same order of magnitude, affect the capacitive performance. Toward understanding that from a theoretical perspective, here we study the capacitive energy extraction with graphene electrodes as a function of themore » number of graphene layers. The classical density functional theory is joined with the electronic density functional theory to obtain the EDL and the quantum capacitance, respectively. The theoretical results show that the quantum capacitance contribution plays a dominant role in extracting energy using the single-layer graphene, but its effect diminishes as the number of graphene layers increases. The overall extracted energy is dominated by the EDL contribution beyond about four graphene layers. Electrodes with more graphene layers are able to extract more energy at low charging potential. Here, because many porous carbons have nanopores with stacked graphene layers, our theoretical predictions are useful to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different wall thickness.« less

  5. Capacitive Energy Extraction by Few-Layer Graphene Electrodes

    DOE PAGES

    Lian, Cheng; Zhan, Cheng; Jiang, De-en; ...

    2017-06-09

    Capacitive double-layer expansion is a promising technology to harvest energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the operation potentials and electrode materials. While carbonaceous materials such as graphene and various forms of activated carbons are routinely used as the electrodes, there is little knowledge on how the quantum capacitance and the electric double-layer (EDL) capacitance, which are on the same order of magnitude, affect the capacitive performance. Toward understanding that from a theoretical perspective, here we study the capacitive energy extraction with graphene electrodes as a function of themore » number of graphene layers. The classical density functional theory is joined with the electronic density functional theory to obtain the EDL and the quantum capacitance, respectively. The theoretical results show that the quantum capacitance contribution plays a dominant role in extracting energy using the single-layer graphene, but its effect diminishes as the number of graphene layers increases. The overall extracted energy is dominated by the EDL contribution beyond about four graphene layers. Electrodes with more graphene layers are able to extract more energy at low charging potential. Here, because many porous carbons have nanopores with stacked graphene layers, our theoretical predictions are useful to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different wall thickness.« less

  6. Effect of reducing system on capacitive behavior of reduced graphene oxide film: Application for supercapacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbi, Hamdane; Yu, Lei; Wang, Bin

    2015-01-15

    To determine the best chemical reduction of graphene oxide film with hydriodic acid that gives maximum energy and power density, we studied the effect of two reducing systems, hydriodic acid/water and hydriodic acid/acetic acid, on the morphology and electrochemical features of reduced graphene oxide film. Using acetic acid as solvent results in high electrical conductivity (5195 S m{sup −1}), excellent specific capacitance (384 F g{sup −1}) and good cyclic stability (about 98% of its initial response after 4000 cycles). Using water as a solvent, results in an ideal capacitive behavior and excellent cyclic stability (about 6% increase of its initialmore » response after 2100 cycles). - Graphical abstract: The choice of reducing system determines the morphology and structure of the chemically reduced graphene film and, as a result, affects largely the capacitive behavior. - Highlights: • The structure of the graphene film has a pronounced effect on capacitive behavior. • The use of water/HI as reducing system results in an ideal capacitive behavior. • The use of acetic acid/HI as reducing system results in a high specific capacitance.« less

  7. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control

    PubMed Central

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph

    2017-01-01

    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved. PMID:28368344

  8. Statistical Modelling of the Soil Dielectric Constant

    NASA Astrophysics Data System (ADS)

    Usowicz, Boguslaw; Marczewski, Wojciech; Bogdan Usowicz, Jerzy; Lipiec, Jerzy

    2010-05-01

    The dielectric constant of soil is the physical property being very sensitive on water content. It funds several electrical measurement techniques for determining the water content by means of direct (TDR, FDR, and others related to effects of electrical conductance and/or capacitance) and indirect RS (Remote Sensing) methods. The work is devoted to a particular statistical manner of modelling the dielectric constant as the property accounting a wide range of specific soil composition, porosity, and mass density, within the unsaturated water content. Usually, similar models are determined for few particular soil types, and changing the soil type one needs switching the model on another type or to adjust it by parametrization of soil compounds. Therefore, it is difficult comparing and referring results between models. The presented model was developed for a generic representation of soil being a hypothetical mixture of spheres, each representing a soil fraction, in its proper phase state. The model generates a serial-parallel mesh of conductive and capacitive paths, which is analysed for a total conductive or capacitive property. The model was firstly developed to determine the thermal conductivity property, and now it is extended on the dielectric constant by analysing the capacitive mesh. The analysis is provided by statistical means obeying physical laws related to the serial-parallel branching of the representative electrical mesh. Physical relevance of the analysis is established electrically, but the definition of the electrical mesh is controlled statistically by parametrization of compound fractions, by determining the number of representative spheres per unitary volume per fraction, and by determining the number of fractions. That way the model is capable covering properties of nearly all possible soil types, all phase states within recognition of the Lorenz and Knudsen conditions. In effect the model allows on generating a hypothetical representative of the soil type, and that way it enables clear comparing to results from other soil type dependent models. The paper is focused on proper representing possible range of porosity in commonly existing soils. This work is done with aim of implementing the statistical-physical model of the dielectric constant to a use in the model CMEM (Community Microwave Emission Model), applicable to SMOS (Soil Moisture and Ocean Salinity ESA Mission) data. The input data to the model clearly accepts definition of soil fractions in common physical measures, and in opposition to other empirical models, does not need calibrating. It is not dependent on recognition of the soil by type, but instead it offers the control of accuracy by proper determination of the soil compound fractions. SMOS employs CMEM being funded only by the sand-clay-silt composition. Common use of the soil data, is split on tens or even hundreds soil types depending on the region. We hope that only by determining three element compounds of sand-clay-silt, in few fractions may help resolving the question of relevance of soil data to the input of CMEM, for SMOS. Now, traditionally employed soil types are converted on sand-clay-silt compounds, but hardly cover effects of other specific properties like the porosity. It should bring advantageous effects in validating SMOS observation data, and is taken for the aim in the Cal/Val project 3275, in the campaigns for SVRT (SMOS Validation and Retrieval Team). Acknowledgements. This work was funded in part by the PECS - Programme for European Cooperating States, No. 98084 "SWEX/R - Soil Water and Energy Exchange/Research".

  9. Detection of Fatigue Crack in Basalt FRP Laminate Composite Pipe using Electrical Potential Change Method

    NASA Astrophysics Data System (ADS)

    Altabey, Wael A.; Noori, Mohammed

    2017-05-01

    Novel modulation electrical potential change (EPC) method for fatigue crack detection in a basalt fibre reinforced polymer (FRP) laminate composite pipe is carried out in this paper. The technique is applied to a laminate pipe with an embedded crack in three layers [0º/90º/0º]s. EPC is applied for evaluating the dielectric properties of basalt FRP pipe by using an electrical capacitance sensor (ECS) to discern damages in the pipe. Twelve electrodes are mounted on the outer surface of the pipe and the changes in the modulation dielectric properties of the piping system are analyzed to detect damages in the pipe. An embedded crack is created by a fatigue internal pressure test. The capacitance values, capacitance change and node potential distribution of ECS electrodes are calculated before and after crack initiates using a finite element method (FEM) by ANSYS and MATLAB, which are combined to simulate sensor characteristics and fatigue behaviour. The crack lengths of the basalt FRP are investigated for various number of cycles to failure for determining crack growth rate. Response surfaces are adopted as a tool for solving inverse problems to estimate crack lengths from the measured electric potential differences of all segments between electrodes to validate the FEM results. The results show that, the good convergence between the FEM and estimated results. Also the results of this study show that the electrical potential difference of the basalt FRP laminate increases during cyclic loading, caused by matrix cracking. The results indicate that the proposed method successfully provides fatigue crack detection for basalt FRP laminate composite pipes.

  10. Conductive MOF electrodes for stable supercapacitors with high areal capacitance.

    PubMed

    Sheberla, Dennis; Bachman, John C; Elias, Joseph S; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea

    2017-02-01

    Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni 3 (2,3,6,7,10,11-hexaiminotriphenylene) 2 (Ni 3 (HITP) 2 ), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.

  11. Conductive MOF electrodes for stable supercapacitors with high areal capacitance

    NASA Astrophysics Data System (ADS)

    Sheberla, Dennis; Bachman, John C.; Elias, Joseph S.; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea

    2017-02-01

    Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.

  12. Preparation of porous carbon spheres from 2-keto-l-gulonic acid mother liquor by oxidation and activation for electric double-layer capacitor application.

    PubMed

    Hao, Zhi-Qiang; Cao, Jing-Pei; Zhao, Xiao-Yan; Wu, Yan; Zhu, Jun-Sheng; Dang, Ya-Li; Zhuang, Qi-Qi; Wei, Xian-Yong

    2018-03-01

    A novel strategy is proposed for the increase of specific surface area (SSA) of porous carbon sphere (PCS) by oxidation and activation. 2-keto-l-gulonic acid mother liquor (GAML) as a high-pollution waste has a relatively high value of reutilization. For its high value-added utilization, GAML is used as the precursor for preparation of PCS as carbon-based electrode materials for electric double-layer capacitor. PCS is prepared by hydrothermal carbonization, carbonization and KOH activation, and Fe(NO 3 ) 3 9H 2 O is used as an oxidizing agent during carbonization. The as-prepared PCS has excellent porosity and high SSA of 2478 m 2  g -1 . Meanwhile, the pore structure of PCS can be controlled by the adjustment of carbonization parameters (carbonization temperature and the loading of Fe(NO 3 ) 3 9H 2 O). Besides, the SSA and specific capacitance of PCS can be increased remarkably when Fe(NO 3 ) 3 9H 2 O is added in carbonization. The specific capacitance of PCS can reach 303.7 F g -1 at 40 mA g -1 . PCSs as electrode material have superior electrochemical stability. After 8000 cycles, the capacitance retention is 98.3% at 2 A g -1 . The electric double-layer capacitance of PCS is improved when CS is carbonized with Fe(NO 3 ) 3 9H 2 O, and the economic and environmental benefits are achieved by the effective recycle of GAML. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Transient electrokinetic transport in a finite length microchannel: currents, capacitance, and an electrical analogy.

    PubMed

    Mansouri, Ali; Bhattacharjee, Subir; Kostiuk, Larry W

    2007-11-08

    Numerical simulations with the fluid mechanics based on the unsteady Navier-Stokes equations and the Poisson-Nernst-Planck formulation of electrostatics and ion transport were used to explore the transient transport of charge through a finite length cylindrical microchannel that is driven by a pressure difference. The evolution of the transcapillary potential from a no-flow equilibrium to the steady-state-steady-flow streaming potential was analyzed by following the convection, migration, and net currents. Observations of the unsteady characteristics of the streaming current, electrical resistance, and capacitance led to an electrical analogy. This electrical analogy was made from a current source (to represent convection current), which was placed in parallel with a capacitor (to allow the accumulation of charge) and a resistor (to permit a migration current). A parametric study involving a range of geometries, fluid mechanics, electrostatics, and mass transfer states allowed predictive submodels for the current source, capacitor, and resistor to be developed based on a dimensional analysis.

  14. Experimental investigation on electrical characteristics and dose measurement of dielectric barrier discharge plasma device used for therapeutic application

    NASA Astrophysics Data System (ADS)

    Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun

    2017-04-01

    In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.

  15. Experimental investigation on electrical characteristics and dose measurement of dielectric barrier discharge plasma device used for therapeutic application.

    PubMed

    Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun

    2017-04-01

    In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.

  16. Influence of the internal wall thickness of electrical capacitance tomography sensors on image quality

    NASA Astrophysics Data System (ADS)

    Liang, Shiguo; Ye, Jiamin; Wang, Haigang; Wu, Meng; Yang, Wuqiang

    2018-03-01

    In the design of electrical capacitance tomography (ECT) sensors, the internal wall thickness can vary with specific applications, and it is a key factor that influences the sensitivity distribution and image quality. This paper will discuss the effect of the wall thickness of ECT sensors on image quality. Three flow patterns are simulated for wall thicknesses of 2.5 mm to 15 mm on eight-electrode ECT sensors. The sensitivity distributions and potential distributions are compared for different wall thicknesses. Linear back-projection and Landweber iteration algorithms are used for image reconstruction. Relative image error and correlation coefficients are used for image evaluation using both simulation and experimental data.

  17. Dynamically Babinet-invertible metasurface: a capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Urade, Yoshiro; Nakata, Yosuke; Okimura, Kunio; Nakanishi, Toshihiro; Miyamaru, Fumiaki; Takeda, Mitsuo W.; Kitano, Masao

    2016-03-01

    This paper proposes a reconfigurable planar metamaterial that can be switched between capacitive and inductive responses using local changes in the electrical conductivity of its constituent material. The proposed device is based on Babinet's principle and exploits the singular electromagnetic responses of metallic checkerboard structures, which are dependent on the local electrical conductivity. Utilizing the heating-induced metal-insulator transition of vanadium dioxide ($\\mathrm{VO}_2$), the proposed metamaterial is designed to compensate for the effect of the substrate and is experimentally characterized in the terahertz regime. This reconfigurable metamaterial can be utilized as a switchable filter and as a switchable phase shifter for terahertz waves.

  18. Dynamically Babinet-invertible metasurface: a capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition.

    PubMed

    Urade, Yoshiro; Nakata, Yosuke; Okimura, Kunio; Nakanishi, Toshihiro; Miyamaru, Fumiaki; Takeda, Mitsuo W; Kitano, Masao

    2016-03-07

    This paper proposes a reconfigurable planar metamaterial that can be switched between capacitive and inductive responses using local changes in the electrical conductivity of its constituent material. The proposed device is based on Babinet's principle and exploits the singular electromagnetic responses of metallic checkerboard structures, which are dependent on the local electrical conductivity. Utilizing the heating-induced metal-insulator transition of vanadium dioxide (VO 2 ), the proposed meta-material is designed to compensate for the effect of the substrate and is experimentally characterized in the terahertz regime. This reconfigurable metamaterial can be utilized as a switchable filter and as a switchable phase shifter for terahertz waves.

  19. MIS capacitor studies on silicon carbide single crystals

    NASA Technical Reports Server (NTRS)

    Kopanski, J. J.

    1990-01-01

    Cubic SIC metal-insulator-semiconductor (MIS) capacitors with thermally grown or chemical-vapor-deposited (CVD) insulators were characterized by capacitance-voltage (C-V), conductance-voltage (G-V), and current-voltage (I-V) measurements. The purpose of these measurements was to determine the four charge densities commonly present in an MIS capacitor (oxide fixed charge, N(f); interface trap level density, D(it); oxide trapped charge, N(ot); and mobile ionic charge, N(m)) and to determine the stability of the device properties with electric-field stress and temperature. The section headings in the report include the following: Capacitance-voltage and conductance-voltage measurements; Current-voltage measurements; Deep-level transient spectroscopy; and Conclusions (Electrical characteristics of SiC MIS capacitors).

  20. Macroscopic fibres of CNTs as electrodes for multifunctional electric double layer capacitors: from quantum capacitance to device performance.

    PubMed

    Senokos, E; Reguero, V; Palma, J; Vilatela, J J; Marcilla, Rebeca

    2016-02-14

    In this work we present a combined electrochemical and mechanical study of mesoporous electrodes based on CNT fibres in the context of electric double layer capacitors. We show that through control of the synthetic and assembly processes of the fibres, it is possible to obtain an active material that combines a surface area of 250 m(2) g(-1), high electrical conductivity (3.5 × 10(5) S m(-1)) and mechanical properties in the high-performance range including toughness (35 J g(-1)) comparable to that of aramid fibre (e.g. Kevlar). These properties are a consequence of the predominant orientation of the CNTs, observed by wide- and small-angle X-ray diffraction, and to the exceptionally long CNT length on the millimetre scale. Cyclic voltammetry measurements in a three-electrode configuration and using 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR14TFSI) ionic liquid electrolyte, show that the CNT fibres have a large quantum capacitance, evidenced by the near linear dependence of geometric capacitance (and conductivity) on potential bias. This reflects the low dimensionality of the CNT building blocks, which were purposely synthesised to have 1-5 layers and a high degree of graphitization. From the charge-discharge measurements of supercapacitor devices with symmetric CNT fibre electrodes we obtain power and energy densities as high as 58 kW kg(-1) and 14 Wh kg(-1), respectively. These record-high values for CNT fibre-based supercapacitors, are a consequence of the low equivalent series resistance due to the high conductivity of the fibres, the large contribution from quantum capacitance, and the wide stability window of the ionic liquid (3.5 V). Cycle life experiments demonstrate stable capacitance and energy retention over 10,000 cycles of charge-discharge at 3.5 V.

  1. Puncture detecting barrier materials

    DOEpatents

    Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

    1998-03-31

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

  2. Puncture detecting barrier materials

    DOEpatents

    Hermes, Robert E.; Ramsey, David R.; Stampfer, Joseph F.; Macdonald, John M.

    1998-01-01

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  3. Memristor-integrated voltage-stabilizing supercapacitor system.

    PubMed

    Liu, Bin; Liu, Boyang; Wang, Xianfu; Wu, Xinghui; Zhao, Wenning; Xu, Zhimou; Chen, Di; Shen, Guozhen

    2014-08-06

    Voltage-stabilized supercapacitors: A single supercapacitor formed with PCBM/Pt/IPS nanorod-array electrodes is designed and delivers enhanced areal capacitance, capacitance retention, and excellent electrical stability under bending, while a significant voltage-decrease is observed during the discharging process. Once integrated with the memristor, the memristor-integrated supercapacitor systems deliver an extremely low voltage-drop, indicating greatly enhanced voltage-stabilizing features. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Interface and permittivity simultaneous reconstruction in electrical capacitance tomography based on boundary and finite-elements coupling method

    PubMed Central

    Ren, Shangjie; Dong, Feng

    2016-01-01

    Electrical capacitance tomography (ECT) is a non-destructive detection technique for imaging the permittivity distributions inside an observed domain from the capacitances measurements on its boundary. Owing to its advantages of non-contact, non-radiation, high speed and low cost, ECT is promising in the measurements of many industrial or biological processes. However, in the practical industrial or biological systems, a deposit is normally seen in the inner wall of its pipe or vessel. As the actual region of interest (ROI) of ECT is surrounded by the deposit layer, the capacitance measurements become weakly sensitive to the permittivity perturbation occurring at the ROI. When there is a major permittivity difference between the deposit and the ROI, this kind of shielding effect is significant, and the permittivity reconstruction becomes challenging. To deal with the issue, an interface and permittivity simultaneous reconstruction approach is proposed. Both the permittivity at the ROI and the geometry of the deposit layer are recovered using the block coordinate descent method. The boundary and finite-elements coupling method is employed to improve the computational efficiency. The performance of the proposed method is evaluated with the simulation tests. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185960

  5. Impurity effects on ionic-liquid-based supercapacitors

    DOE PAGES

    Liu, Kun; Lian, Cheng; Henderson, Douglas; ...

    2016-12-27

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface ofmore » a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. As a result, by comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.« less

  6. Capacitive charge storage at an electrified interface investigated via direct first-principles simulations

    NASA Astrophysics Data System (ADS)

    Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen; Otani, Minoru; Wood, Brandon C.

    2015-03-01

    Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic "quantum capacitance" of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulating charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.

  7. Investigation of gas-solids flow in a circulating fluidized bed using 3D electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang

    2016-09-01

    The hydrodynamics of gas-solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s-1 to 3.0 m s-1 with a step of 0.2 m s-1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas-solids bubbling flows.

  8. Carbon supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delnick, F.M.

    1993-11-01

    Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

  9. Aviation Maintenance Technology. General. G105 Aviation Electricity and Electronics. Instructor Material.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    These instructor materials for an aviation maintenance technology course contain five instructional modules. The modules cover the following topics: determining the relationship of voltage, current, resistance, and power in electrical circuits; computing and measuring capacitance and inductance; measuring voltage, current, resistance, and…

  10. Macroscopic fibres of CNTs as electrodes for multifunctional electric double layer capacitors: from quantum capacitance to device performance

    NASA Astrophysics Data System (ADS)

    Senokos, E.; Reguero, V.; Palma, J.; Vilatela, J. J.; Marcilla, Rebeca

    2016-02-01

    In this work we present a combined electrochemical and mechanical study of mesoporous electrodes based on CNT fibres in the context of electric double layer capacitors. We show that through control of the synthetic and assembly processes of the fibres, it is possible to obtain an active material that combines a surface area of 250 m2 g-1, high electrical conductivity (3.5 × 105 S m-1) and mechanical properties in the high-performance range including toughness (35 J g-1) comparable to that of aramid fibre (e.g. Kevlar). These properties are a consequence of the predominant orientation of the CNTs, observed by wide- and small-angle X-ray diffraction, and to the exceptionally long CNT length on the millimetre scale. Cyclic voltammetry measurements in a three-electrode configuration and using 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR14TFSI) ionic liquid electrolyte, show that the CNT fibres have a large quantum capacitance, evidenced by the near linear dependence of geometric capacitance (and conductivity) on potential bias. This reflects the low dimensionality of the CNT building blocks, which were purposely synthesised to have 1-5 layers and a high degree of graphitization. From the charge-discharge measurements of supercapacitor devices with symmetric CNT fibre electrodes we obtain power and energy densities as high as 58 kW kg-1 and 14 Wh kg-1, respectively. These record-high values for CNT fibre-based supercapacitors, are a consequence of the low equivalent series resistance due to the high conductivity of the fibres, the large contribution from quantum capacitance, and the wide stability window of the ionic liquid (3.5 V). Cycle life experiments demonstrate stable capacitance and energy retention over 10 000 cycles of charge-discharge at 3.5 V.In this work we present a combined electrochemical and mechanical study of mesoporous electrodes based on CNT fibres in the context of electric double layer capacitors. We show that through control of the synthetic and assembly processes of the fibres, it is possible to obtain an active material that combines a surface area of 250 m2 g-1, high electrical conductivity (3.5 × 105 S m-1) and mechanical properties in the high-performance range including toughness (35 J g-1) comparable to that of aramid fibre (e.g. Kevlar). These properties are a consequence of the predominant orientation of the CNTs, observed by wide- and small-angle X-ray diffraction, and to the exceptionally long CNT length on the millimetre scale. Cyclic voltammetry measurements in a three-electrode configuration and using 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR14TFSI) ionic liquid electrolyte, show that the CNT fibres have a large quantum capacitance, evidenced by the near linear dependence of geometric capacitance (and conductivity) on potential bias. This reflects the low dimensionality of the CNT building blocks, which were purposely synthesised to have 1-5 layers and a high degree of graphitization. From the charge-discharge measurements of supercapacitor devices with symmetric CNT fibre electrodes we obtain power and energy densities as high as 58 kW kg-1 and 14 Wh kg-1, respectively. These record-high values for CNT fibre-based supercapacitors, are a consequence of the low equivalent series resistance due to the high conductivity of the fibres, the large contribution from quantum capacitance, and the wide stability window of the ionic liquid (3.5 V). Cycle life experiments demonstrate stable capacitance and energy retention over 10 000 cycles of charge-discharge at 3.5 V. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07697h

  11. Effect of the Matching Circuit on the Electromechanical Characteristics of Sandwiched Piezoelectric Transducers.

    PubMed

    Lin, Shuyu; Xu, Jie

    2017-02-10

    The input electrical impedance behaves as a capacitive when a piezoelectric transducer is excited near its resonance frequency. In order to increase the energy transmission efficiency, a series or parallel inductor should be used to compensate the capacitive impedance of the piezoelectric transducer. In this paper, the effect of the series matching inductor on the electromechanical characteristics of the piezoelectric transducer is analyzed. The dependency of the resonance/anti-resonance frequency, the effective electromechanical coupling coefficient, the electrical quality factor and the electro-acoustical efficiency on the matching inductor is obtained. It is shown that apart from compensating the capacitive impedance of the piezoelectric transducer, the series matching inductor can also change the electromechanical characteristics of the piezoelectric transducer. When series matching inductor is increased, the resonance frequency is decreased and the anti-resonance unchanged; the effective electromechanical coupling coefficient is increased. For the electrical quality factor and the electroacoustic efficiency, the dependency on the matching inductor is different when the transducer is operated at the resonance and the anti-resonance frequency. The electromechanical characteristics of the piezoelectric transducer with series matching inductor are measured. It is shown that the theoretically predicted relationship between the electromechanical characteristics and the series matching inductor is in good agreement with the experimental results.

  12. Effect of the Matching Circuit on the Electromechanical Characteristics of Sandwiched Piezoelectric Transducers

    PubMed Central

    Lin, Shuyu; Xu, Jie

    2017-01-01

    The input electrical impedance behaves as a capacitive when a piezoelectric transducer is excited near its resonance frequency. In order to increase the energy transmission efficiency, a series or parallel inductor should be used to compensate the capacitive impedance of the piezoelectric transducer. In this paper, the effect of the series matching inductor on the electromechanical characteristics of the piezoelectric transducer is analyzed. The dependency of the resonance/anti-resonance frequency, the effective electromechanical coupling coefficient, the electrical quality factor and the electro-acoustical efficiency on the matching inductor is obtained. It is shown that apart from compensating the capacitive impedance of the piezoelectric transducer, the series matching inductor can also change the electromechanical characteristics of the piezoelectric transducer. When series matching inductor is increased, the resonance frequency is decreased and the anti-resonance unchanged; the effective electromechanical coupling coefficient is increased. For the electrical quality factor and the electroacoustic efficiency, the dependency on the matching inductor is different when the transducer is operated at the resonance and the anti-resonance frequency. The electromechanical characteristics of the piezoelectric transducer with series matching inductor are measured. It is shown that the theoretically predicted relationship between the electromechanical characteristics and the series matching inductor is in good agreement with the experimental results. PMID:28208583

  13. Origin of flatband voltage shift and unusual minority carrier generation in thermally grown GeO2/Ge metal-oxide-semiconductor devices

    NASA Astrophysics Data System (ADS)

    Hosoi, Takuji; Kutsuki, Katsuhiro; Okamoto, Gaku; Saito, Marina; Shimura, Takayoshi; Watanabe, Heiji

    2009-05-01

    Improvement in electrical properties of thermally grown GeO2/Ge metal-oxide-semiconductor (MOS) capacitors, such as significantly reduced flatband voltage (VFB) shift, small hysteresis, and minimized minority carrier response in capacitance-voltage (C-V) characteristics, has been demonstrated by in situ low temperature vacuum annealing prior to gate electrode deposition. Thermal desorption analysis has revealed that not only water but also hydrocarbons are easily infiltrated into GeO2 layers during air exposure and desorbed at around 300 °C, indicating that organic molecules within GeO2/Ge MOS structures are possible origins of electrical defects. The inversion capacitance, indicative of minority carrier generation, increases with air exposure time for Au/GeO2/Ge MOS capacitors, while maintaining an interface state density (Dit) of about a few 1011 cm-2 eV-1. Unusual increase in inversion capacitance was found to be suppressed by Al2O3 capping (Au/Al2O3/GeO2/Ge structures). This suggests that electrical defects induced outside the Au electrode by infiltrated molecules may enhance the minority carrier generation, and thus acting as a minority carrier source just like MOS field-effect transistors.

  14. Capacitive Neutralization Dialysis for Direct Energy Generation.

    PubMed

    Liu, Yue; Zhang, Yi; Ou-Yang, Wei; Bastos Sales, Bruno; Sun, Zhuo; Liu, Fei; Zhao, Ran

    2017-08-15

    Capacitive neutralization dialysis energy (CNDE) is proposed as a novel energy-harvesting technique that is able to utilize waste acid and alkaline solutions to produce electrical energy. CNDE is a modification based on neutralization dialysis. It was found that a higher NaCl concentration led to a higher open-circuit potential when the concentrations of acid and alkaline solutions were fixed. Upon closing of the circuit, the membrane potential was used as a driving force to move counter ions into the electrical double layers at the electrode-liquid interface, thereby creating an ionic current. Correspondingly, in the external circuit, electrons flow through an external resistor from one electrode to the other, thereby generating electrical energy directly. The influence of external resistances was studied to achieve greater energy extraction, with the maximum output of 110 mW/m 2 obtained by employing an external resistance of 5 Ω together with the AC-coated electrode.

  15. A Magnetic Field Response Recorder: A New Tool for Measurement Acquisition

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2006-01-01

    A magnetic field response recorder was developed to facilitate a measurement acquisition method that uses magnetic fields to power and to interrogate all sensors. Sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic field responses when electrically activated by oscillating magnetic fields. When electrically activated, the sensor's magnetic field response attributes (frequency, amplitude and bandwidth) correspond to the one or more physical states that each sensor measures. The response recorder makes it possible to simultaneously measure two unrelated physical properties using this class of sensors. The recorder is programmable allowing it to analyze one or more response attributes simultaneously. A single sensor design will be used to demonstrate that the acquisition method and the sensor example can be used to for all phases of a component's life from manufacturing to damage that can destroy it.

  16. Electrical hysteresis in p-GaN metal-oxide-semiconductor capacitor with atomic-layer-deposited Al2O3 as gate dielectric

    NASA Astrophysics Data System (ADS)

    Zhang, Kexiong; Liao, Meiyong; Imura, Masataka; Nabatame, Toshihide; Ohi, Akihiko; Sumiya, Masatomo; Koide, Yasuo; Sang, Liwen

    2016-12-01

    The electrical hysteresis in current-voltage (I-V) and capacitance-voltage characteristics was observed in an atomic-layer-deposited Al2O3/p-GaN metal-oxide-semiconductor capacitor (PMOSCAP). The absolute minimum leakage currents of the PMOSCAP for forward and backward I-V scans occurred not at 0 V but at -4.4 and +4.4 V, respectively. A negative flat-band voltage shift of 5.5 V was acquired with a capacitance step from +4.4 to +6.1 V during the forward scan. Mg surface accumulation on p-GaN was demonstrated to induce an Mg-Ga-Al-O oxidized layer with a trap density on the order of 1013 cm-2. The electrical hysteresis is attributed to the hole trapping and detrapping process in the traps of the Mg-Ga-Al-O layer via the Poole-Frenkel mechanism.

  17. Design of capacitive sensor for water level measurement

    NASA Astrophysics Data System (ADS)

    Qurthobi, A.; Iskandar, R. F.; Krisnatal, A.; Weldzikarvina

    2016-11-01

    Capacitive sensor for water level detection has been fabricated. It has, typically, high-impedance sensor, particularly at low frequencies, as clear from the impedance (reactance) expression for a capacitor. Also, capacitive sensor is a noncontacting device in the common usage. In this research, water level sensor based on capacitive principal created using two copper plates with height (h), width (b), and distance (l) between two plates, respectively, 0.040 m, 0.015 m, and 0.010 m. 5 V pp 3 kHz AC signal is used as input signal for the system. Dielectric constant between two plates is proportional to water level. Hence, it can be used to determine water level from electrical characteristic as it inversely proportional to sensor impedance. Linearization, inverting amplifier, and rectifier circuits are used as signal conditioning for the system. Based on conducted experiment, the relationship between water level (x), capacitance (C), and output voltage (Vdc ) can be expressed as C(x) = 2.756x + 0.333 nF and Vdc (x) = 15.755 + 0.316 V.

  18. Self-Activating, Capacitive Anion Intercalation Enables High-Power Graphite Cathodes.

    PubMed

    Wang, Gang; Yu, Minghao; Wang, Jungang; Li, Debao; Tan, Deming; Löffler, Markus; Zhuang, Xiaodong; Müllen, Klaus; Feng, Xinliang

    2018-05-01

    Developing high-power cathodes is crucial to construct next-generation quick-charge batteries for electric transportation and grid applications. However, this mainly relies on nanoengineering strategies at the expense of low scalability and high battery cost. Another option is provided herein to build high-power cathodes by exploiting inexpensive bulk graphite as the active electrode material, where anion intercalation is involved. With the assistance of a strong alginate binder, the disintegration problem of graphite cathodes due to the large volume variation of >130% is well suppressed, making it possible to investigate the intrinsic electrochemical behavior and to elucidate the charge storage kinetics of graphite cathodes. Ultrahigh power capability up to 42.9 kW kg -1 at the energy density of >300 Wh kg -1 (based on graphite mass) and long cycling life over 10 000 cycles are achieved, much higher than those of conventional cathode materials for Li-ion batteries. A self-activating and capacitive anion intercalation into graphite is discovered for the first time, making graphite a new intrinsic intercalation-pseudocapacitance cathode material. The finding highlights the kinetical difference of anion intercalation (as cathode) from cation intercalation (as anode) into graphitic carbon materials, and new high-power energy storage devices will be inspired. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nanoporous carbon materials with enhanced supercapacitance performance and non-aromatic chemical sensing with C1/C2 alcohol discrimination

    NASA Astrophysics Data System (ADS)

    Shrestha, Lok Kumar; Adhikari, Laxmi; Shrestha, Rekha Goswami; Adhikari, Mandira Pradhananga; Adhikari, Rina; Hill, Jonathan P.; Pradhananga, Raja Ram; Ariga, Katsuhiko

    2016-01-01

    We have investigated the textural properties, electrochemical supercapacitances and vapor sensing performances of bamboo-derived nanoporous carbon materials (NCM). Bamboo, an abundant natural biomaterial, was chemically activated with phosphoric acid at 400 °C and the effect of impregnation ratio of phosphoric acid on the textural properties and electrochemical performances was systematically investigated. Fourier transform-infrared (FTIR) spectroscopy confirmed the presence of various oxygen-containing surface functional groups (i.e. carboxyl, carboxylate, carbonyl and phenolic groups) in NCM. The prepared NCM are amorphous in nature and contain hierarchical micropores and mesopores. Surface areas and pore volumes were found in the range 218-1431 m2 g-1 and 0.26-1.26 cm3 g-1, respectively, and could be controlled by adjusting the impregnation ratio of phosphoric acid and bamboo cane powder. NCM exhibited electrical double-layer supercapacitor behavior giving a high specific capacitance of c.256 F g-1 at a scan rate of 5 mV s-1 together with high cyclic stability with capacitance retention of about 92.6% after 1000 cycles. Furthermore, NCM exhibited excellent vapor sensing performance with high sensitivity for non-aromatic chemicals such as acetic acid. The system would be useful to discriminate C1 and C2 alcohol (methanol and ethanol).

  20. A new class of variable capacitance generators based on the dielectric fluid transducer

    NASA Astrophysics Data System (ADS)

    Duranti, Mattia; Righi, Michele; Vertechy, Rocco; Fontana, Marco

    2017-11-01

    This paper introduces the novel concept of dielectric fluid transducer (DFT), which is an electrostatic variable capacitance transducer made by compliant electrodes, solid dielectrics and a dielectric fluid with variable volume and/or shape. The DFT can be employed in actuator mode and generator mode. In this work, DFTs are studied as electromechanical generators able to convert oscillating mechanical energy into direct current electricity. Beside illustrating the working principle of dielectric fluid generators (DFGs), we introduce different architectural implementations and provide considerations on limitations and best practices for their design. Additionally, the proposed concept is demonstrated in a preliminary experimental test campaign conducted on a first DFG prototype. During experimental tests a maximum energy per cycle of 4.6 {mJ} and maximum power of 0.575 {mW} has been converted, with a conversion efficiency up to 30%. These figures correspond to converted energy densities of 63.8 {mJ} {{{g}}}-1 with respect to the displaced dielectric fluid and 179.0 {mJ} {{{g}}}-1 with respect to the mass of the solid dielectric. This promising performance can be largely improved through the optimization of device topology and dimensions, as well as by the adoption of more performing conductive and dielectric materials.

  1. Freestanding polyaniline nanorods grown on graphene for highly capacitive energy storage

    NASA Astrophysics Data System (ADS)

    Li, Zijiong; Qin, Zhen; Yang, Baocheng; Guo, Jian; Wang, Haiyan; Zhang, Weiyang; Lv, Xiaowei; Stack, Alison

    2015-02-01

    Freestanding polyaniline (PANI) nanorods grown in situ on microwave-expanded graphene oxide (MEGO) sheets were prepared through a facile solution method. The morphological characterization indicates that large quantity of free-standing PANI nanorods with average diameter of 50 nm were uniformly deposited onto the double sides of the MEGO nanosheets to form a sandwich structure. The hybrid of PANI/MEGO (GPANI) exhibit high specific surface area and high electrical conductivity, compared with pristine PANI nanorods. When evaluated as electrodes for supercapacitors, the GPANI demonstrate high specific capacitance of 628 F g-1 at a current density of 1.1 A g-1, high-rate performance, and excellent cycle stability compared to individual component. Such excellent electrochemical performance should be attributed to the combined double-layer capacitance and pseudo -capacitance mechanisms from the MEGO sheets and PANI nanorods.

  2. Extraction of the gate capacitance coupling coefficient in floating gate non-volatile memories: Statistical study of the effect of mismatching between floating gate memory and reference transistor in dummy cell extraction methods

    NASA Astrophysics Data System (ADS)

    Rafhay, Quentin; Beug, M. Florian; Duane, Russell

    2007-04-01

    This paper presents an experimental comparison of dummy cell extraction methods of the gate capacitance coupling coefficient for floating gate non-volatile memory structures from different geometries and technologies. These results show the significant influence of mismatching floating gate devices and reference transistors on the extraction of the gate capacitance coupling coefficient. In addition, it demonstrates the accuracy of the new bulk bias dummy cell extraction method and the importance of the β function, introduced recently in [Duane R, Beug F, Mathewson A. Novel capacitance coupling coefficient measurement methodology for floating gate non-volatile memory devices. IEEE Electr Dev Lett 2005;26(7):507-9], to determine matching pairs of floating gate memory and reference transistor.

  3. Embedded Touch Sensing Circuit Using Mutual Capacitance for Active-Matrix Organic Light-Emitting Diode Display

    NASA Astrophysics Data System (ADS)

    Park, Young-Ju; Seok, Su-Jeong; Park, Sang-Ho; Kim, Ohyun

    2011-03-01

    We propose and simulate an embedded touch sensing circuit for active-matrix organic light-emitting diode (AMOLED) displays. The circuit consists of three thin-film transistors (TFTs), one fixed capacitor, and one variable capacitor. AMOLED displays do not have a variable capacitance characteristic, so we realized a variable capacitor to detect touches in the sensing pixel by exploiting the change in the mutual capacitance between two electrodes that is caused by touch. When a dielectric substance approaches two electrodes, the electric field is shunted so that the mutual capacitance decreases. We use the existing TFT process to form the variable capacitor, so no additional process is needed. We use advanced solid-phase-crystallization TFTs because of their stability and uniformity. The proposed circuit detects multi-touch points by a scanning process.

  4. Distributed electrical time domain reflectometry (ETDR) structural sensors: design models and proof-of-concept experiments

    NASA Astrophysics Data System (ADS)

    Stastny, Jeffrey A.; Rogers, Craig A.; Liang, Chen

    1993-07-01

    A parametric design model has been created to optimize the sensitivity of the sensing cable in a distributed sensing system. The system consists of electrical time domain reflectometry (ETDR) signal processing equipment and specially designed sensing cables. The ETDR equipment sends a high-frequency electric pulse (in the giga hertz range) along the sensing cable. Some portion of the electric pulse will be reflected back to the ETDR equipment as a result of the variation of the cable impedance. The electric impedance variation in the sensing cable can be related to its mechanical deformation, such as cable elongation (change in the resistance), shear deformation (change in the capacitance), corrosion of the cable or the materials around the cable (change in inductance and capacitance), etc. The time delay, amplitude, and shape of the reflected pulse provides the means to locate, determine the magnitude, and indicate the nature of the change in the electrical impedance, which is then related to the distributed structural deformation. The sensing cables are an essential part of the health-monitoring system. By using the parametric design model, the optimum cable parameters can be determined for specific deformation. Proof-of-concept experiments also are presented in the paper to demonstrate the utility of an electrical TDR system in distributed sensing applications.

  5. Self-Paced Physics, Segments 24-27.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    Four study segments of the Self-Paced Physics Course materials are presented in this fifth problems and solutions book used as a part of student course work. The subject matter is related to work in electric fields, potential differences, parallel plates, electric potential energies, potential gradients, capacitances, and capacitor circuits.…

  6. Sensor system for web inspection

    DOEpatents

    Sleefe, Gerard E.; Rudnick, Thomas J.; Novak, James L.

    2002-01-01

    A system for electrically measuring variations over a flexible web has a capacitive sensor including spaced electrically conductive, transmit and receive electrodes mounted on a flexible substrate. The sensor is held against a flexible web with sufficient force to deflect the path of the web, which moves relative to the sensor.

  7. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance

    DOE PAGES

    Ghidiu, Michael; Lukatskaya, Maria R.; Zhao, Meng-Qiang; ...

    2014-11-26

    Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors—in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made ofmore » two-dimensional titanium carbide (Ti 3C 2, a member of the ‘MXene’ family), produced by etching aluminium from titanium aluminium carbide (Ti 3AlC 2, a ‘MAX’ phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. In this paper, we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide ‘clay’ have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. In addition, this capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.« less

  8. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M. (Inventor); Hancock, Bruce R. (Inventor)

    2017-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  9. Silicon base plate with low parasitic electrical interference for sensors

    NASA Technical Reports Server (NTRS)

    Tang, Tony K. (Inventor); Gutierrez, Roman C. (Inventor)

    2002-01-01

    A microgyroscope has a baseplate made of the same material as the rest of the microgyroscope. The baseplate is a silicon baseplate having a heavily p-doped epilayer covered by a thick dielectric film and metal electrodes. The metal electrodes are isolated from the ground plane by the dielectric. This provides very low parasitic capacitive coupling between the electrodes. The thick dielectric reduces the capacitance between the electrodes and the ground plane.

  10. Superconductivity for Electromagnetic Guns

    DTIC Science & Technology

    1984-03-01

    greater than that for a pulsed homopolar machine when the time constant is less than 0.1 sec (ref 32) (See fig. 18). Since the energy density in a...transferred from the capacitor to the induct- or. If the capacitor is replaced by a homopolar machine, then, as is well-known, the kinetic energy of the...rotor plays the role of an "electrical" capacitance and the two arrangements (capacitance and homopolar ) are functionally equivalent. Group 3. In

  11. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Smith, Roger M (Inventor); Hancock, Bruce R. (Inventor); Cole, David (Inventor); Seshadri, Suresh (Inventor)

    2013-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  12. Project FOOTPRINT: Substation modeling and simulations for E1 pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Scott D.; Larson, D. J.; Kirkendall, B. A.

    This report includes a presentation with an: Introduction to CW coupling; Introduction to single-pulse coupling; Description of E1 waveforms; Structures in a substation yard --articulated (as part of the substation's defined electrical functionality)--unarticulated (not as part of the substation's defined electrical functionality); Coupling --electrical coupling (capacitive coupling) --magnetic coupling (inductive coupling); Connectivity to long-line transmission lines; Control infrastructure; Summary; and References.

  13. Controlling dielectric and relaxor-ferroelectric properties for energy storage by tuning Pb0.92La0.08Zr0.52Ti0.48O3 film thickness.

    PubMed

    Brown, Emery; Ma, Chunrui; Acharya, Jagaran; Ma, Beihai; Wu, Judy; Li, Jun

    2014-12-24

    The energy storage properties of Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films grown via pulsed laser deposition were evaluated at variable film thickness of 125, 250, 500, and 1000 nm. These films show high dielectric permittivity up to ∼1200. Cyclic I-V measurements were used to evaluate the dielectric properties of these thin films, which not only provide the total electric displacement, but also separate contributions from each of the relevant components including electric conductivity (D1), dielectric capacitance (D2), and relaxor-ferroelectric domain switching polarization (P). The results show that, as the film thickness increases, the material transits from a linear dielectric to nonlinear relaxor-ferroelectric. While the energy storage per volume increases with the film thickness, the energy storage efficiency drops from ∼80% to ∼30%. The PLZT films can be optimized for different energy storage applications by tuning the film thickness to optimize between the linear and nonlinear dielectric properties and energy storage efficiency.

  14. Controlling Dielectric and Relaxor-Ferroelectric Properties for Energy Storage by Tuning Pb 0.92La 0.08Zr 0.52Ti 0.48O 3 Film Thickness

    DOE PAGES

    Brown, Emery; Ma, Chunrui; Acharya, Jagaran; ...

    2014-12-24

    The energy storage properties of Pb 0.92La 0.08Zr 0.52Ti 0.48O 3 (PLZT) films grown via pulsed laser deposition were evaluated at variable film thickness of 125, 250, 500, and 1000 nm. These films show high dielectric permittivity up to ~1200. Cyclic I–V measurements were used to evaluate the dielectric properties of these thin films, which not only provide the total electric displacement, but also separate contributions from each of the relevant components including electric conductivity (D1), dielectric capacitance (D2), and relaxor-ferroelectric domain switching polarization (P). Our results show that, as the film thickness increases, the material transits from a linearmore » dielectric to nonlinear relaxor-ferroelectric. And while the energy storage per volume increases with the film thickness, the energy storage efficiency drops from ~80% to ~30%. The PLZT films can be optimized for different energy storage applications by tuning the film thickness to optimize between the linear and nonlinear dielectric properties and energy storage efficiency.« less

  15. Design analysis of levitation facility for space processing applications. [Skylab program, space shuttles

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Kornrumpf, W. P.; Napaluch, L. J.; Harden, J. D., Jr.; Walden, J. P.; Stockhoff, E. H.; Wouch, G.; Walker, L. H.

    1974-01-01

    Containerless processing facilities for the space laboratory and space shuttle are defined. Materials process examples representative of the most severe requirements for the facility in terms of electrical power, radio frequency equipment, and the use of an auxiliary electron beam heater were used to discuss matters having the greatest effect upon the space shuttle pallet payload interfaces and envelopes. Improved weight, volume, and efficiency estimates for the RF generating equipment were derived. Results are particularly significant because of the reduced requirements for heat rejection from electrical equipment, one of the principal envelope problems for shuttle pallet payloads. It is shown that although experiments on containerless melting of high temperature refractory materials make it desirable to consider the highest peak powers which can be made available on the pallet, total energy requirements are kept relatively low by the very fast processing times typical of containerless experiments and allows consideration of heat rejection capabilities lower than peak power demand if energy storage in system heat capacitances is considered. Batteries are considered to avoid a requirement for fuel cells capable of furnishing this brief peak power demand.

  16. Environmental impact of the use of radiofrequency electromagnetic fields in physiotherapeutic treatment.

    PubMed

    Gryz, Krzysztof; Karpowicz, Jolanta

    2014-01-01

    Electromagnetic fields used in physiotherapeutic treatment affect not only patients, but also physiotherapists, patients not undergoing treatment and electronic medical equipment. The aim of the work was to study the parameters of the electromagnetic fields of physiotherapeutic devices with respect to requirements regarding the protection of electronic devices, including medical implants, against electromagnetic intererence, and the protection of the general public (patients not undergoing treatment and bystanders), as well as medical personnel, against the health hazards caused by electromagnetic exposure. The spatial distribution of electric and magnetic field strength was investigated near 3 capacitive short-wave and 3 long-wave diathermies and 3 ultrasound therapy units, as along with the capacitive electric currents caused by electromagnetic field interaction in the upper limbs of the physiotherapists operating these devices. The physiotherapists' exposure to electromagnetic fields depends on the spatial organisation of the workspace and their location during treatment. Electric fields able to interfere with the function of electronic medical implants and in whic anyone not undergoing treatment should not be present were measured up to 150-200 cm away from active applicators of short-wave diathermy, and up to 40-45 cm away from long-wave diathermy ones. Electric fields in which workers should not be present were measured up to 30-40 cm away from the applicators and cables of active short-wave diathermy devices. A capacitive electric current with a strength exceeding many times the international recommendations regarding workers protection was measured in the wrist while touching applicators and cables of active short-wave diathermy devices. The strongest environmental electromagnetic hazards occur near short-wave diathermy devices, and to a lesser degree near long-wave diathermy devices, but were not found near ultrasound therapy units.

  17. Regularization iteration imaging algorithm for electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Tong, Guowei; Liu, Shi; Chen, Hongyan; Wang, Xueyao

    2018-03-01

    The image reconstruction method plays a crucial role in real-world applications of the electrical capacitance tomography technique. In this study, a new cost function that simultaneously considers the sparsity and low-rank properties of the imaging targets is proposed to improve the quality of the reconstruction images, in which the image reconstruction task is converted into an optimization problem. Within the framework of the split Bregman algorithm, an iterative scheme that splits a complicated optimization problem into several simpler sub-tasks is developed to solve the proposed cost function efficiently, in which the fast-iterative shrinkage thresholding algorithm is introduced to accelerate the convergence. Numerical experiment results verify the effectiveness of the proposed algorithm in improving the reconstruction precision and robustness.

  18. Full-range electrical characteristics of WS{sub 2} transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Jatinder; Bellus, Matthew Z.; Chiu, Hsin-Ying, E-mail: chiu@ku.edu

    We fabricated transistors formed by few layers to bulk single crystal WS{sub 2} to quantify the factors governing charge transport. We established a capacitor network to analyze the full-range electrical characteristics of the channel, highlighting the role of quantum capacitance and interface trap density. We find that the transfer characteristics are mainly determined by the interplay between quantum and oxide capacitances. In the OFF-state, the interface trap density (<10{sup 12} cm{sup –2}) is a limiting factor for the subthreshold swing. Furthermore, the superior crystalline quality and the low interface trap density enabled the subthreshold swing to approach the theoretical limit onmore » a back-gated device on SiO{sub 2}/Si substrate.« less

  19. Nanostructured bilayer anodic TiO2/Al2O3 metal-insulator-metal capacitor.

    PubMed

    Karthik, R; Kannadassan, D; Baghini, Maryam Shojaei; Mallick, P S

    2013-10-01

    This paper presents the fabrication of high performance bilayer TiO2/Al2O3 Metal-Insulator-Metal capacitor using anodization technique. A high capacitance density of 7 fF/microm2, low quadratic voltage coefficient of capacitance of 150 ppm/V2 and a low leakage current density of 9.1 nA/cm2 at 3 V are achieved which are suitable for Analog and Mixed signal applications. The influence of anodization voltage on structural and electrical properties of dielectric stack is studied in detail. At higher anodization voltages, we have observed the transformation of amorphous to crystalline state of TiO2/Al2O3 and improvement of electrical properties.

  20. Plasma ignition and steady state simulations of the Linac4 H- ion source

    NASA Astrophysics Data System (ADS)

    Mattei, S.; Ohta, M.; Yasumoto, M.; Hatayama, A.; Lettry, J.; Grudiev, A.

    2014-02-01

    The RF heating of the plasma in the Linac4 H- ion source has been simulated using a particle-in-cell Monte Carlo collision method. This model is applied to investigate the plasma formation starting from an initial low electron density of 1012 m-3 and its stabilization at 1018 m-3. The plasma discharge at low electron density is driven by the capacitive coupling with the electric field generated by the antenna, and as the electron density increases the capacitive electric field is shielded by the plasma and induction drives the plasma heating process. Plasma properties such as e-/ion densities and energies, sheath formation, and shielding effect are presented and provide insight to the plasma properties of the hydrogen plasma.

  1. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, James W.

    1991-01-01

    A method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources.

  2. Unrivaled combination of surface area and pore volume in micelle-templated carbon for supercapacitor energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokrzywinski, Jesse; Keum, Jong K.; Ruther, Rose E.

    Here, we created Immense Surface Area Carbons (ISACs) by a novel heat treatment that stabilized the micelle structure in a biological based precursor prior to high temperature combined activation – pyrolysis. While displaying a morphology akin to that of commercial activated carbon, ISACs contain an unparalleled combination of electrochemically active surface area and pore volume (up to 4051 m 2 g –1, total pore volume 2.60 cm 3 g –1, 76% small mesopores). The carbons also possess the benefit of being quite pure (combined O and N: 2.6–4.1 at%), thus allowing for a capacitive response that is primarily EDLC. Testedmore » at commercial mass loadings (~10 mg cm –2) ISACs demonstrate exceptional specific capacitance values throughout the entire relevant current density regime, with superior rate capability primarily due to the large fraction of mesopores. In the optimized ISAC, the specific capacitance ( C g) is 540 F g –1 at 0.2 A g –1, 409 F g –1 at 1 A g –1 and 226 F g –1 at a very high current density of 300 A g –1 (~0.15 second charge time). At intermediate and high currents, such capacitance values have not been previously reported for any carbon. Tested with a stable 1.8 V window in a 1 M Li 2SO 4 electrolyte, a symmetric supercapacitor cell yields a flat energy–power profile that is fully competitive with those of organic electrolyte systems: 29 W h kg –1 at 442 W kg –1 and 17 W h kg –1 at 3940 W kg –1. The cyclability of symmetric ISAC cells is also exceptional due to the minimization of faradaic reactions on the carbon surface, with 80% capacitance retention over 100 000 cycles in 1 M Li 2SO 4 and 75 000 cycles in 6 M KOH.« less

  3. Unrivaled combination of surface area and pore volume in micelle-templated carbon for supercapacitor energy storage

    DOE PAGES

    Pokrzywinski, Jesse; Keum, Jong K.; Ruther, Rose E.; ...

    2017-05-23

    Here, we created Immense Surface Area Carbons (ISACs) by a novel heat treatment that stabilized the micelle structure in a biological based precursor prior to high temperature combined activation – pyrolysis. While displaying a morphology akin to that of commercial activated carbon, ISACs contain an unparalleled combination of electrochemically active surface area and pore volume (up to 4051 m 2 g –1, total pore volume 2.60 cm 3 g –1, 76% small mesopores). The carbons also possess the benefit of being quite pure (combined O and N: 2.6–4.1 at%), thus allowing for a capacitive response that is primarily EDLC. Testedmore » at commercial mass loadings (~10 mg cm –2) ISACs demonstrate exceptional specific capacitance values throughout the entire relevant current density regime, with superior rate capability primarily due to the large fraction of mesopores. In the optimized ISAC, the specific capacitance ( C g) is 540 F g –1 at 0.2 A g –1, 409 F g –1 at 1 A g –1 and 226 F g –1 at a very high current density of 300 A g –1 (~0.15 second charge time). At intermediate and high currents, such capacitance values have not been previously reported for any carbon. Tested with a stable 1.8 V window in a 1 M Li 2SO 4 electrolyte, a symmetric supercapacitor cell yields a flat energy–power profile that is fully competitive with those of organic electrolyte systems: 29 W h kg –1 at 442 W kg –1 and 17 W h kg –1 at 3940 W kg –1. The cyclability of symmetric ISAC cells is also exceptional due to the minimization of faradaic reactions on the carbon surface, with 80% capacitance retention over 100 000 cycles in 1 M Li 2SO 4 and 75 000 cycles in 6 M KOH.« less

  4. Twistable and Stretchable Sandwich Structured Fiber for Wearable Sensors and Supercapacitors.

    PubMed

    Choi, Changsoon; Lee, Jae Myeong; Kim, Shi Hyeong; Kim, Seon Jeong; Di, Jiangtao; Baughman, Ray H

    2016-12-14

    Twistable and stretchable fiber-based electrochemical devices having high performance are needed for future applications, including emerging wearable electronics. Weavable fiber redox supercapacitors and strain sensors are here introduced, which comprise a dielectric layer sandwiched between functionalized buckled carbon nanotube electrodes. On the macroscopic scale, the sandwiched core rubber of the fiber acts as a dielectric layer for capacitive strain sensing and as an elastomeric substrate that prevents electrical shorting and irreversible structural changes during severe mechanical deformations. On the microscopic scale, the buckled CNT electrodes effectively absorb tensile or shear stresses, providing an essentially constant electrical conductance. Consequently, the sandwich fibers provide the dual functions of (1) strain sensing, by generating approximately 115.7% and 26% capacitance changes during stretching (200%) and giant twist (1700 rad·m -1 or 270 turns·m -1 ), respectively, and (2) electrochemical energy storage, providing high linear and areal capacitances (2.38 mF·cm -1 and 11.88 mF·cm -2 ) and retention of more than 95% of initial energy storage capability under large mechanical deformations.

  5. Prognostic monitoring of aircraft wiring using electrical capacitive tomography

    NASA Astrophysics Data System (ADS)

    McKenzie, G.; Record, P.

    2011-12-01

    Electrical capacitive tomography (ECT) has been used to monitor sections of aircraft wiring, as a tool for prognostic analysis. To apply the principles of ECT across a cross section of only 4 mm, modification of the basic circuit was required. Additionally, a more novel method of placing the necessary electrodes was needed, this being accomplished by etching them from flexible copper sheeting and wrapping them inside the perimeter of an enclosure. Results showed that at this small scale, it was possible to determine the position of a wire-under-test inside the 4 mm diameter enclosure to about 0.1 mm, and that by measuring capacitance between pairs, it was also possible to determine whether or not the insulation of wire passed between the electrodes was damaged. With more than one wire-under-test present, it was possible to determine whether or not damage was present, and if so, which wire was damaged. By detecting insulation damage in this way, ECT has proven to be a useful tool in prognostic monitoring, helping faults to be found before they become safety-critical onboard an aircraft.

  6. Prognostic monitoring of aircraft wiring using electrical capacitive tomography.

    PubMed

    McKenzie, G; Record, P

    2011-12-01

    Electrical capacitive tomography (ECT) has been used to monitor sections of aircraft wiring, as a tool for prognostic analysis. To apply the principles of ECT across a cross section of only 4 mm, modification of the basic circuit was required. Additionally, a more novel method of placing the necessary electrodes was needed, this being accomplished by etching them from flexible copper sheeting and wrapping them inside the perimeter of an enclosure. Results showed that at this small scale, it was possible to determine the position of a wire-under-test inside the 4 mm diameter enclosure to about 0.1 mm, and that by measuring capacitance between pairs, it was also possible to determine whether or not the insulation of wire passed between the electrodes was damaged. With more than one wire-under-test present, it was possible to determine whether or not damage was present, and if so, which wire was damaged. By detecting insulation damage in this way, ECT has proven to be a useful tool in prognostic monitoring, helping faults to be found before they become safety-critical onboard an aircraft.

  7. Supercapacitor electrode materials with hierarchically structured pores from carbonization of MWCNTs and ZIF-8 composites.

    PubMed

    Li, Xueqin; Hao, Changlong; Tang, Bochong; Wang, Yue; Liu, Mei; Wang, Yuanwei; Zhu, Yihua; Lu, Chenguang; Tang, Zhiyong

    2017-02-09

    Due to their high specific surface area and good electric conductivity, nitrogen-doped porous carbons (NPCs) and carbon nanotubes (CNTs) have attracted much attention for electrochemical energy storage applications. In the present work, we firstly prepared MWCNT/ZIF-8 composites by decoration of zeolitic imidazolate frameworks (ZIF-8) onto the surface of multi-walled CNTs (MWCNTs), then obtained MWCNT/NPCs by the direct carbonization of MWCNT/ZIF-8. By controlling the reaction conditions, MWCNT/ZIF-8 with three different particle sizes were synthesized. The effect of NPCs size on capacitance performance has been evaluated in detail. The MWCNT/NPC with large-sized NPC (MWCNT/NPC-L) displayed the highest specific capacitance of 293.4 F g -1 at the scan rate of 5 mV s -1 and only lost 4.2% of capacitance after 10 000 cyclic voltammetry cycles, which was attributed to the hierarchically structured pores, N-doping and high electrical conductivity. The studies of symmetric two-electrode supercapacitor cells also confirmed MWCNT/NPC-L as efficient electrode materials that have good electrochemical performance, especially for high-rate applications.

  8. Measurement strategy for rectangular electrical capacitance tomography sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Jiamin; Ge, Ruihuan; Qiu, Guizhi

    2014-04-11

    To investigate the influence of the measurement strategy for the rectangular electrical capacitance tomography (ECT) sensor, a Finite Element Method (FEM) is utilized to create the model for simulation. The simulation was carried out using COMSOL Multiphysics(trade mark, serif) and Matlab(trade mark, serif). The length-width ratio of the rectangular sensing area is 5. Twelve electrodes are evenly arranged surrounding the pipe. The covering ratio of the electrodes is 90%. The capacitances between different electrode pairs are calculated for a bar distribution. The air of the relative permittivity 1.0 and the material of the permittivity 3.0 are used for the calibration.more » The relative permittivity of the second phase is 3.0. The noise free and noise data are used for the image reconstruction using the Linear Back Projection (LBP). The measurement strategies with 1-, 2- and 4- electrode excitation are compared using the correlation coefficient. Preliminary results show that the measurement strategy with 2-electrode excitation outperforms other measurement strategies with 1- or 4-electrode excitation.« less

  9. Imaging wet granules with different flow patterns by electrical capacitance tomography and microwave tomography

    NASA Astrophysics Data System (ADS)

    Wang, H. G.; Zhang, J. L.; Ramli, M. F.; Mao, M. X.; Ye, J. M.; Yang, W. Q.; Wu, Z. P.

    2016-11-01

    The moisture content of granules in fluidised bed drying, granulation and coating processes can typically be between 1%~25%, resulting in the change of permittivity and conductivity during the processes. Electrical capacitance tomography (ECT) has been used for this purpose, but has a limit because too much water can cause a problem in capacitance measurement. Considering that microwave tomography (MWT) has a wide range of frequency (1~2.5 GHz) and can be used to measure materials with high permittivity and conductivity, the objective of this research is to combine ECT and MWT together to investigate the solids concentration with different moisture content and different flow patterns. The measurement results show that both ECT and MWT are functions of moisture content as well as flow patterns, and their measurements are complementary to each other. This is the first time that these two tomography modalities have been combined together and applied to image the complex solids distribution. The obtained information may be used for the process control of fluidised bed drying, granulation and coating to improve operation efficiency.

  10. Method of recording bioelectrical signals using a capacitive coupling

    NASA Astrophysics Data System (ADS)

    Simon, V. A.; Gerasimov, V. A.; Kostrin, D. K.; Selivanov, L. M.; Uhov, A. A.

    2017-11-01

    In this article a technique for the bioelectrical signals acquisition by means of the capacitive sensors is described. A feedback loop for the ultra-high impedance biasing of the input instrumentation amplifier, which provides receiving of the electrical cardiac signal (ECS) through a capacitive coupling, is proposed. The mains 50/60 Hz noise is suppressed by a narrow-band stop filter with an independent notch frequency and quality factor tuning. Filter output is attached to a ΣΔ analog-to-digital converter (ADC), which acquires the filtered signal with a 24-bit resolution. Signal processing board is connected through universal serial bus interface to a personal computer, where ECS in a digital form is recorded and processed.

  11. Perspectives on MEMS in bioengineering: a novel capacitive position microsensor.

    PubMed

    Pedrocchi, A; Hoen, S; Ferrigno, G; Pedotti, A

    2000-01-01

    We describe a novel capacitive position sensor using micromachining to achieve high sensitivity and large range of motion. These sensors require a new theoretical framework to describe and optimize their performance. Employing a complete description of the electrical fields, the sensor should deviate from the standard geometries used for capacitive sensors. By this optimization, the sensor gains a twofold increase in sensitivity. Results on a PC board 10x model imply that the micromachined sensor should achieve a sensitivity of less than 10 nm over 500-micron range of travel. Some bioengineering applications are addressed, including positioning of micromirrors for laser surgery and dose control for implantable drug delivery systems.

  12. Anomalous change in dielectric constant of CaCu3Ti4O12 under violet-to-ultraviolet irradiation

    NASA Astrophysics Data System (ADS)

    Masingboon, C.; Eknapakul, T.; Suwanwong, S.; Buaphet, P.; Nakajima, H.; Mo, S.-K.; Thongbai, P.; King, P. D. C.; Maensiri, S.; Meevasana, W.

    2013-05-01

    The influence of light illumination on the dielectric constant of CaCu3Ti4O12 (CCTO) polycrystals is studied in this work. When exposed to 405-nm laser light, a reversible enhancement in the room temperature capacitance as high as 22% was observed, suggesting application of light-sensitive capacitance devices. To uncover the microscopic mechanisms mediating this change, we performed electronic structure measurements, using photoemission spectroscopy, and measured the electrical conductivity of the CCTO samples under different conditions of light exposure and oxygen partial pressure. Together, these results suggest that the large capacitance enhancement is driven by oxygen vacancies induced by the irradiation.

  13. MEMS for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Li, Lin; Zhang, Yangjian; San, Haisheng; Guo, Yinbiao; Chen, Xuyuan

    2008-03-01

    In this paper, a capacitive vibration-to-electrical energy harvester was designed. An integrated process flow for fabricating the designed capacitive harvester is presented. For overcoming the disadvantage of depending on external power source in capacitive energy harvester, two parallel electrodes with different work functions are used as the two electrodes of the capacitor to generate a build-in voltage for initially charging the capacitor. The device is a sandwich structure of silicon layer in two glass layers with area of about 1 cm2. The silicon structure is fabricated by using silicon-on-insulator (SOI) wafer. The glass wafers are anodic bonded on to both sides of the SOI wafer to create a vacuum sealed package.

  14. A microfluidic device with multi-valves system to enable several simultaneous exposure tests on Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Jung, Jaehoon; Nakajima, Masahiro; Masaru, Takeuchi; Huang, Qiang; Fukuda, Toshio

    2014-03-01

    In this paper, we report on a microfluidic device with a multi-valve system to conduct several exposure tests on Caenorhabditis elegans (C. elegans) simultaneously. It has pneumatic valves and no-moving-parts (NMP) valves. An NMP valve is incorporated with a chamber and enables the unidirectional movement of C. elegans in the chamber; once worms are loaded into the chamber, they cannot exit, regardless of the flow direction. To demonstrate the ability of the NMP valve to handle worms, we made a microfluidic device with three chambers. Each chamber was used to expose worms to Cd and Cu solutions, and K-medium. A pair of electrodes was installed in the device and the capacitance in-between the electrode was measured. When a C. elegans passed through the electrodes, the capacitance was changed. The capacitance change was proportional to the body volume of the worm, thus the body volume change by the heavy metal exposure was measured in the device. Thirty worms were divided into three groups and exposed to each solution. We confirmed that the different solutions induced differences in the capacitance changes for each group. These results indicate that our device is a viable method for simultaneously analyzing the effect of multiple stimuli on C. elegans.

  15. Tailoring graphene-based electrodes from semiconducting to metallic to increase the energy density in supercapacitors

    NASA Astrophysics Data System (ADS)

    Vatamanu, Jenel; Ni, Xiaojuan; Liu, Feng; Bedrov, Dmitry

    2015-11-01

    The semiconducting character of graphene and some carbon-based electrodes can lead to noticeably lower total capacitances and stored energy densities in electric double layer (EDL) capacitors. This paper discusses the chemical and electronic structure modifications that enhance the available energy bands, density of states and quantum capacitance of graphene substrates near the Fermi level, therefore restoring the conducting character of these materials. The doping of graphene with p or n dopants, such as boron and nitrogen atoms, or the introduction of vacancy defects that introduce zigzag edges, can significantly increase the quantum capacitance within the potential range of interest for the energy storage applications by either shifting the Dirac point away from the Fermi level or by eliminating the Dirac point. We show that a combination of doping and vacancies at realistic concentrations is sufficient to increase the capacitance of a graphene-based electrode to within 1 μF cm-2 from that of a metallic surface. Using a combination of ab initio calculations and classical molecular dynamics simulations we estimate how the changes in the quantum capacitance of these electrode materials affect the total capacitance stored by the open structure EDL capacitors containing room temperature ionic liquid electrolytes.

  16. Observation of non-linear biomass-capacitance correlations: reasons and implications for bioprocess control.

    PubMed

    Maskow, Thomas; Röllich, Anita; Fetzer, Ingo; Yao, Jun; Harms, Hauke

    2008-09-15

    Electrical capacitance has been discussed as a real time measure for living biomass concentration in technical bioreactors such as brewery (fermentation) tanks. Commonly, a linear correlation between biomass concentration and capacitance is assumed. While following the growth and subsequent lipid formation of the yeast Arxula adeninivorans we observed non-linearity between biomass concentration and capacitance. Capacitance deviation from linearity coincided with incipient lipid formation and depended on the intracellular lipid content. As the extent of deviation between capacitance and biomass concentration was proportional to the lipid concentration, it was considered as a quantitative measure of intracellular product formation. The correlation between shifts in dielectric relaxation (summarized as characteristic frequency of the Cole-Cole equation) and lipid content could not be explained by interfacial polarization on the lipid droplets alone. However, the parameters of the Cole-Cole equation were found to be a clear indicator for different phases of growth and lipid production. Integrating all results in a redundancy analysis (RDA), we were able to accurately describe the formation of cellular lipid inclusions. Our measurements are thus potentially valuable as components of future bioprocess control strategies targeting intracellular products such as proteins or biopolyesters.

  17. Nanostructured mesophase electrode materials: modulating charge-storage behavior by thermal treatment.

    PubMed

    Kong, Hye Jeong; Kim, Saerona; Le, Thanh-Hai; Kim, Yukyung; Park, Geunsu; Park, Chul Soon; Kwon, Oh Seok; Yoon, Hyeonseok

    2017-11-16

    3D nanostructured carbonaceous electrode materials with tunable capacitive phases were successfully developed using graphene/particulate polypyrrole (PPy) nanohybrid (GPNH) precursors without a separate process for incorporating heterogeneous species. The electrode material, namely carbonized GPNHs (CGPNHs) featured a mesophase capacitance consisting of both electric double-layer (EDL) capacitive and pseudocapacitive elements at the molecular level. The ratio of EDL capacitive element to pseudocapacitive element (E-to-P) in the mesophase electrode materials was controlled by varying the PPy-to-graphite weight (P w /G w ) ratio and by heat treatment (T H ), which was demonstrated by characterizing the CGPNHs with elemental analysis, cyclic voltammetry, and a charge/discharge test. The concept of the E-to-P ratio (EPR) index was first proposed to easily identify the capacitive characteristics of the mesophase electrode using a numerical algorithm, which was reasonably consistent with the experimental findings. Finally, the CGPNHs were integrated into symmetric two-electrode capacitor cells, which rendered excellent energy and power densities in both aqueous and ionic liquid electrolytes. It is anticipated that our approach could be widely extended to fabricating versatile hybrid electrode materials with estimation of their capacitive characteristics.

  18. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy.

    PubMed

    Wang, Huanlei; Xu, Zhanwei; Kohandehghan, Alireza; Li, Zhi; Cui, Kai; Tan, Xuehai; Stephenson, Tyler James; King'ondu, Cecil K; Holt, Chris M B; Olsen, Brian C; Tak, Jin Kwon; Harfield, Don; Anyia, Anthony O; Mitlin, David

    2013-06-25

    We created unique interconnected partially graphitic carbon nanosheets (10-30 nm in thickness) with high specific surface area (up to 2287 m(2) g(-1)), significant volume fraction of mesoporosity (up to 58%), and good electrical conductivity (211-226 S m(-1)) from hemp bast fiber. The nanosheets are ideally suited for low (down to 0 °C) through high (100 °C) temperature ionic-liquid-based supercapacitor applications: At 0 °C and a current density of 10 A g(-1), the electrode maintains a remarkable capacitance of 106 F g(-1). At 20, 60, and 100 °C and an extreme current density of 100 A g(-1), there is excellent capacitance retention (72-92%) with the specific capacitances being 113, 144, and 142 F g(-1), respectively. These characteristics favorably place the materials on a Ragone chart providing among the best power-energy characteristics (on an active mass normalized basis) ever reported for an electrochemical capacitor: At a very high power density of 20 kW kg(-1) and 20, 60, and 100 °C, the energy densities are 19, 34, and 40 Wh kg(-1), respectively. Moreover the assembled supercapacitor device yields a maximum energy density of 12 Wh kg(-1), which is higher than that of commercially available supercapacitors. By taking advantage of the complex multilayered structure of a hemp bast fiber precursor, such exquisite carbons were able to be achieved by simple hydrothermal carbonization combined with activation. This novel precursor-synthesis route presents a great potential for facile large-scale production of high-performance carbons for a variety of diverse applications including energy storage.

  19. Vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) on commercial carbon coated aluminum foil as enhanced electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Tong, Linyue; Skorenko, Kenneth H.; Faucett, Austin C.; Boyer, Steven M.; Liu, Jian; Mativetsky, Jeffrey M.; Bernier, William E.; Jones, Wayne E.

    2015-11-01

    Laminar composite electrodes are prepared for application in supercapacitors using a catalyzed vapor-phase polymerization (VPP) of 3,4-ethylenedioxythiophene (EDOT) on the surface of commercial carbon coated aluminum foil. These highly electrically conducting polymer films provide for rapid and stable power storage per gram at room temperature. The chemical composition, surface morphology and electrical properties are characterized by Raman spectroscopy, scanning electron microscopy (SEM), and conducting atomic force microscopy (C-AFM). A series of electrical measurements including cyclic voltammetry (CV), charge-discharge (CD) and electrochemical impedance spectroscopy are also used to evaluate electrical performance. The processing temperature of VPP shows a significant effect on PEDOT morphology, the degree of orientation and its electrical properties. The relatively high temperature leads to high specific area and large conductive domains of PEDOT layer which benefits the capacitive behavior greatly according to the data presented. Since the substrate is already highly conductive, the PEDOT based composite can be used as electrode materials directly without adding current collector. By this simple and efficient process, PEDOT based composites exhibit specific capacitance up to 134 F g-1 with the polymerization temperature of 110 °C.

  20. Research on Stabilization Properties of Inductive-Capacitive Transducers Based on Hybrid Electromagnetic Elements

    NASA Astrophysics Data System (ADS)

    Konesev, S. G.; Khazieva, R. T.; Kirllov, R. V.; Konev, A. A.

    2017-01-01

    Some electrical consumers (the charge system of storage capacitor, powerful pulse generators, electrothermal systems, gas-discharge lamps, electric ovens, plasma torches) require constant power consumption, while their resistance changes in the limited range. Current stabilization systems (CSS) with inductive-capacitive transducers (ICT) provide constant power, when the load resistance changes over a wide range and increaseы the efficiency of high-power loads’ power supplies. ICT elements are selected according to the maximum load, which leads to exceeding a predetermined value of capacity. The paper suggests carrying load power by the ICT based on multifunction integrated electromagnetic components (MIEC) to reduce the predetermined capacity of ICT elements and CSS weights and dimensions. The authors developed and patented ICT based on MIEC that reduces the CSS weights and dimensions by reducing components number with the possibility of device’s electric energy transformation and resonance frequency changing. An ICT mathematical model was produced. The model determines the width of the load stabilization range. Electromagnetic processes study model was built with the MIEC integral parameters (full inductance of the electrical lead, total capacity, current of electrical lead). It shows independence of the load current from the load resistance for different ways of MIEC connection.

  1. Electric Double-Layer Structure in Primitive Model Electrolytes. Comparing Molecular Dynamics with Local-Density Approximations

    DOE PAGES

    Giera, Brian; Lawrence Livermore National Lab.; Henson, Neil; ...

    2015-02-27

    We evaluate the accuracy of local-density approximations (LDAs) using explicit molecular dynamics simulations of binary electrolytes comprised of equisized ions in an implicit solvent. The Bikerman LDA, which considers ions to occupy a lattice, poorly captures excluded volume interactions between primitive model ions. Instead, LDAs based on the Carnahan–Starling (CS) hard-sphere equation of state capture simulated values of ideal and excess chemical potential profiles extremely well, as is the relationship between surface charge density and electrostatic potential. Excellent agreement between the EDL capacitances predicted by CS-LDAs and computed in molecular simulations is found even in systems where ion correlations drivemore » strong density and free charge oscillations within the EDL, despite the inability of LDAs to capture the oscillations in the detailed EDL profiles.« less

  2. Battery with a microcorrugated, microthin sheet of highly porous corroded metal

    DOEpatents

    LaFollette, Rodney M.

    2005-09-27

    Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (i) higher capacities (A.multidot.hr); and (j) high specific capacitance.

  3. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films

    NASA Astrophysics Data System (ADS)

    Ge, Jun; Cheng, Guanghui; Chen, Liwei

    2011-08-01

    Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm-2 and 59 wt% PANI gives a specific capacitance of 55.0 F g-1 at a current density of 2.6 A g-1, showing its possibility for transparent and flexible energy storage.

  4. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films.

    PubMed

    Ge, Jun; Cheng, Guanghui; Chen, Liwei

    2011-08-01

    Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm(-2) and 59 wt% PANI gives a specific capacitance of 55.0 F g(-1) at a current density of 2.6 A g(-1), showing its possibility for transparent and flexible energy storage. This journal is © The Royal Society of Chemistry 2011

  5. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Lee, Hae-Min; Jeong, Gyoung Hwa; Kim, Sang-Wook; Kim, Chang-Koo

    2017-04-01

    Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2-5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  6. "Virtual Feel" Capaciflectors

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    2006-01-01

    The term "virtual feel" denotes a type of capaciflector (an advanced capacitive proximity sensor) and a methodology for designing and using a sensor of this type to guide a robot in manipulating a tool (e.g., a wrench socket) into alignment with a mating fastener (e.g., a bolt head) or other electrically conductive object. A capaciflector includes at least one sensing electrode, excited with an alternating voltage, that puts out a signal indicative of the capacitance between that electrode and a proximal object.

  7. Perfume Fragrance Discrimination Using Resistance And Capacitance Responses Of Polymer Sensors

    NASA Astrophysics Data System (ADS)

    Lima, John Paul Hempel; Vandendriessche, Thomas; Fonseca, Fernando J.; Lammertyn, Jeroen; Nicolai, Bart M.; de Andrade, Adnei Melges

    2009-05-01

    This work shows a comparison between electrical resistance and capacitance responses of ethanol and five different fragrances using an electronic nose based on conducting polymers. Gas chromatography—mass spectrometry (GC-MS) measurements were performed to evaluate the main differences between the analytes. It is shown that although the fragrances are quite similar in their compositions the sensors are able to discriminate them through PCA (Principal Component Analysis) and ANNs (Artificial Neural Network) analysis.

  8. Sensitive Precise p H Measurement with Large-Area Graphene Field-Effect Transistors at the Quantum-Capacitance Limit

    NASA Astrophysics Data System (ADS)

    Fakih, Ibrahim; Mahvash, Farzaneh; Siaj, Mohamed; Szkopek, Thomas

    2017-10-01

    A challenge for p H sensing is decreasing the minimum measurable p H per unit bandwidth in an economical fashion. Minimizing noise to reach the inherent limit imposed by charge fluctuation remains an obstacle. We demonstrate here graphene-based ion-sensing field-effect transistors that saturate the physical limit of sensitivity, defined here as the change in electrical response with respect to p H , and achieve a precision limited by charge-fluctuation noise at the sensing layer. We present a model outlining the necessity for maximizing the device carrier mobility, active sensing area, and capacitive coupling in order to minimize noise. We encapsulate large-area graphene with an ultrathin layer of parylene, a hydrophobic polymer, and deposit an ultrathin, stoichiometric p H -sensing layer of either aluminum oxide or tantalum pentoxide. With these structures, we achieve gate capacitances ˜0.6 μ F /cm2 , approaching the quantum-capacitance limit inherent to graphene, along with a near-Nernstian p H response of ˜55 ±2 mV /p H . We observe field-effect mobilities as high as 7000 cm2 V-1 s-1 with minimal hysteresis as a result of the parylene encapsulation. A detection limit of 0.1 m p H in a 60-Hz electrical bandwidth is observed in optimized graphene transistors.

  9. Capacitive charge storage at an electrified interface investigated via direct first-principles simulations [Direct Simulation of Capacitive Charging of Graphene and Implications for Supercapacitor Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen

    Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic “quantum capacitance” of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulatingmore » charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Lastly, our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.« less

  10. Capacitive charge storage at an electrified interface investigated via direct first-principles simulations [Direct Simulation of Capacitive Charging of Graphene and Implications for Supercapacitor Design

    DOE PAGES

    Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen; ...

    2015-03-11

    Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic “quantum capacitance” of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulatingmore » charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Lastly, our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.« less

  11. Adsorption of cetyltrimethylammonium bromide and/or cetyldimethylbenzylammonium chloride on partly covered hanging mercury drop electrode.

    PubMed

    Koniari, Argyri; Avranas, Antonis

    2011-10-01

    Adsorbed cetyldimethylbenzylammonium chloride (CDBACl) or cetyltrimethylammonium bromide (CTAB) on mercury is used as template for the adsorption of CTAB, CDBACl, or their equimolar mixture at 20 °C. Adsorptive stripping voltammetry with the two step procedure is used. The results are compared with previously published results on the adsorption of CTAB and CDBACl on mercury and then transferred in base electrolyte. A surfactant is preadsorbed. The adsorption of the second does not remove away from the mercury the first one, as evidenced by the capacitance measurements and the repeated scans. The surfactants were maintained close to each other and in the vicinity of the electrode by the applied electric field. In all cases studied, there was a decrease in the capacitance in the potential range -0.8 to -1 V to very low capacitance values forming condensed film. Mixed films and synergy effects were observed. The already adsorbed CTAB on mercury did not permit the desorption-reorientation peaks of CDBACl. Shifts of the capacitance peaks were observed to more positive potentials and were attributed to the occurrence of a slow change in the organization of the monolayer. The electrical state of the preadsorbed surfactant would be of critical importance in the formation of the various structures. The results suggested that the ordering and arrangement of molecules could be controlled by appropriate selection of templates. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  13. Digital model of a vacuum circuit breaker for the analysis of switching waveforms in electrical circuits

    NASA Astrophysics Data System (ADS)

    Budzisz, Joanna; Wróblewski, Zbigniew

    2016-03-01

    The article presents a method of modelling a vaccum circuit breaker in the ATP/EMTP package, the results of the verification of the correctness of the developed digital circuit breaker model operation and its practical usefulness for analysis of overvoltages and overcurrents occurring in commutated capacitive electrical circuits and also examples of digital simulations of overvoltages and overcurrents in selected electrical circuits.

  14. Industrially benign super-compressible piezoresistive carbon foams with predefined wetting properties: from environmental to electrical applications

    NASA Astrophysics Data System (ADS)

    Pham, Tung Ngoc; Samikannu, Ajaikumar; Kukkola, Jarmo; Rautio, Anne-Riikka; Pitkänen, Olli; Dombovari, Aron; Lorite, Gabriela Simone; Sipola, Teemu; Toth, Geza; Mohl, Melinda; Mikkola, Jyri-Pekka; Kordas, Krisztian

    2014-11-01

    In the present work electrically conductive, flexible, lightweight carbon sponge materials derived from open-pore structure melamine foams are studied and explored. Hydrophobic and hydrophilic surface properties - depending on the chosen treatment conditions - allow the separation and storage of liquid chemical compounds. Activation of the carbonaceous structures substantially increases the specific surface area from ~4 m2g-1 to ~345 m2g-1, while retaining the original three-dimensional, open-pore structure suitable for hosting, for example, Ni catalyst nanoparticles. In turn the structure is rendered suitable for hydrogenating acetone to 2-propanol and methyl isobutyl ketone as well for growing hierarchical carbon nanotube structures used as electric double-layer capacitor electrodes with specific capacitance of ~40 F/g. Mechanical stress-strain analysis indicates the materials are super-compressible (>70% volume reduction) and viscoelastic with excellent damping behavior (loss of 0.69 +/- 0.07), while piezoresistive measurements show very high gauge factors (from ~20 to 50) over a large range of deformations. The cost-effective, robust and scalable synthesis - in conjunction with their fascinating multifunctional utility - makes the demonstrated carbon foams remarkable competitors with other three-dimensional carbon materials typically based on pyrolyzed biopolymers or on covalently bonded graphene and carbon nanotube frameworks.

  15. Industrially benign super-compressible piezoresistive carbon foams with predefined wetting properties: from environmental to electrical applications.

    PubMed

    Pham, Tung Ngoc; Samikannu, Ajaikumar; Kukkola, Jarmo; Rautio, Anne-Riikka; Pitkänen, Olli; Dombovari, Aron; Lorite, Gabriela Simone; Sipola, Teemu; Toth, Geza; Mohl, Melinda; Mikkola, Jyri-Pekka; Kordas, Krisztian

    2014-11-06

    In the present work electrically conductive, flexible, lightweight carbon sponge materials derived from open-pore structure melamine foams are studied and explored. Hydrophobic and hydrophilic surface properties - depending on the chosen treatment conditions - allow the separation and storage of liquid chemical compounds. Activation of the carbonaceous structures substantially increases the specific surface area from ~4 m(2)g(-1) to ~345 m(2)g(-1), while retaining the original three-dimensional, open-pore structure suitable for hosting, for example, Ni catalyst nanoparticles. In turn the structure is rendered suitable for hydrogenating acetone to 2-propanol and methyl isobutyl ketone as well for growing hierarchical carbon nanotube structures used as electric double-layer capacitor electrodes with specific capacitance of ~40 F/g. Mechanical stress-strain analysis indicates the materials are super-compressible (>70% volume reduction) and viscoelastic with excellent damping behavior (loss of 0.69 ± 0.07), while piezoresistive measurements show very high gauge factors (from ~20 to 50) over a large range of deformations. The cost-effective, robust and scalable synthesis - in conjunction with their fascinating multifunctional utility - makes the demonstrated carbon foams remarkable competitors with other three-dimensional carbon materials typically based on pyrolyzed biopolymers or on covalently bonded graphene and carbon nanotube frameworks.

  16. Energy Harvesting from the Stray Electromagnetic Field around the Electrical Power Cable for Smart Grid Applications

    PubMed Central

    2016-01-01

    For wireless sensor node (WSN) applications, this paper presents the harvesting of energy from the stray electromagnetic field around an electrical power line. Inductive and capacitive types of electrodynamic energy harvesters are developed and reported. For the produced energy harvesters, solid core and split-core designs are adopted. The inductive energy harvester comprises a copper wound coil which is produced on a mild steel core. However, the capacitive prototypes comprise parallel, annular discs separated by Teflon spacers. Moreover, for the inductive energy harvesters' wound coil and core, the parametric analysis is also performed. A Teflon housing is incorporated to protect the energy harvester prototypes from the harsh environmental conditions. Among the inductive energy harvesters, prototype-5 has performed better than the other harvesters and produces a maximum rms voltage of 908 mV at the current level of 155 A in the power line. However, at the same current flow, the capacitive energy harvesters produce a maximum rms voltage of 180 mV. The alternating output of the prototype-5 is rectified, and a super capacitor (1 F, 5.5 V) and rechargeable battery (Nickel-Cadmium, 3.8 V) are charged with it. Moreover, with the utilization of a prototype-5, a self-powered wireless temperature sensing and monitoring system for an electrical transformer is also developed and successfully implemented. PMID:27579343

  17. Electronic hardware design of electrical capacitance tomography systems.

    PubMed

    Saied, I; Meribout, M

    2016-06-28

    Electrical tomography techniques for process imaging are very prominent for industrial applications, such as the oil and gas industry and chemical refineries, owing to their ability to provide the flow regime of a flowing fluid within a relatively high throughput. Among the various techniques, electrical capacitance tomography (ECT) is gaining popularity due to its non-invasive nature and its capability to differentiate between different phases based on their permittivity distribution. In recent years, several hardware designs have been provided for ECT systems that have improved its resolution of measurements to be around attofarads (aF, 10(-18) F), or the number of channels, that is required to be large for some applications that require a significant amount of data. In terms of image acquisition time, some recent systems could achieve a throughput of a few hundred frames per second, while data processing time could be achieved in only a few milliseconds per frame. This paper outlines the concept and main features of the most recent front-end and back-end electronic circuits dedicated for ECT systems. In this paper, multiple-excitation capacitance polling, a front-end electronic technique, shows promising results for ECT systems to acquire fast data acquisition speeds. A highly parallel field-programmable gate array (FPGA) based architecture for a fast reconstruction algorithm is also described. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  18. Frequency and voltage dependent electrical responses of poly(triarylamine) thin film-based organic Schottky diode

    NASA Astrophysics Data System (ADS)

    Anuar Mohamad, Khairul; Tak Hoh, Hang; Alias, Afishah; Ghosh, Bablu Kumar; Fukuda, Hisashi

    2017-11-01

    A metal-organic-metal (MOM) type Schottky diode based on poly (triarylamine) (PTAA) thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f) and capacitance-voltage (C-V-f) characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit). Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz) but decreases at high frequency (1 - 10 kHz). The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV-1cm-2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC) signal.

  19. Energy Harvesting from the Stray Electromagnetic Field around the Electrical Power Cable for Smart Grid Applications.

    PubMed

    Khan, Farid Ullah

    For wireless sensor node (WSN) applications, this paper presents the harvesting of energy from the stray electromagnetic field around an electrical power line. Inductive and capacitive types of electrodynamic energy harvesters are developed and reported. For the produced energy harvesters, solid core and split-core designs are adopted. The inductive energy harvester comprises a copper wound coil which is produced on a mild steel core. However, the capacitive prototypes comprise parallel, annular discs separated by Teflon spacers. Moreover, for the inductive energy harvesters' wound coil and core, the parametric analysis is also performed. A Teflon housing is incorporated to protect the energy harvester prototypes from the harsh environmental conditions. Among the inductive energy harvesters, prototype-5 has performed better than the other harvesters and produces a maximum rms voltage of 908 mV at the current level of 155 A in the power line. However, at the same current flow, the capacitive energy harvesters produce a maximum rms voltage of 180 mV. The alternating output of the prototype-5 is rectified, and a super capacitor (1 F, 5.5 V) and rechargeable battery (Nickel-Cadmium, 3.8 V) are charged with it. Moreover, with the utilization of a prototype-5, a self-powered wireless temperature sensing and monitoring system for an electrical transformer is also developed and successfully implemented.

  20. Avoiding Resistance Limitations in High-Performance Transparent Supercapacitor Electrodes Based on Large-Area, High-Conductivity PEDOT:PSS Films.

    PubMed

    Higgins, Thomas M; Coleman, Jonathan N

    2015-08-05

    This work describes the potential of thin, spray-deposited, large-area poly(3,4-ethylenedioxythiophene)/poly(styrene-4-sulfonate) ( PSS) conducting polymer films for use as transparent supercapacitor electrodes. To facilitate this, we provide a detailed explanation of the factors limiting the performance of such electrodes. These films have a very low optical conductivity of σop = 24 S/cm (at 550 nm), crucial for this application, and a reasonable volumetric capacitance of CV = 41 F/cm(3). Secondary doping with formic acid gives these films a DC conductivity of σDC = 936 S/cm, allowing them to perform both as a transparent conductor/current collector and transparent supercapacitor electrode. Small-area films (A ∼ 1 cm(2)) display measured areal capacitance as high as 1 mF/cm(2), even for reasonably transparent electrodes (T ∼ 80%). However, in real devices, the absolute capacitance will be maximized by increasing the device area. As such, here, we measure the electrode performance as a function of its length and width. We find that the measured areal capacitance falls dramatically with scan rate and sample length but is independent of width. We show that this is because the measured areal capacitance is limited by the electrical resistance of the electrode. We have derived an equation for the measured areal capacitance as a function of scan rate and electrode lateral dimensions that fits the data extremely well up to scan rates of ∼1000 mV/s (corresponding to charge/discharge times > 0.6 s). These results are self-consistent with independent analysis of the electrical and impedance properties of the electrodes. These results can be used to find limiting combinations of electrode length and scan rate, beyond which electrode performance falls dramatically. We use these insights to build large-area (∼100 cm(2)) supercapacitors using electrodes that are 95% transparent, providing a capacitance of ∼12 mF (at 50 mV/s), significantly higher than that of any previously reported transparent supercapacitor.

  1. Optimization of Design Parameters and Operating Conditions of Electrochemical Capacitors for High Energy and Power Performance

    NASA Astrophysics Data System (ADS)

    Ike, Innocent S.; Sigalas, Iakovos; Iyuke, Sunny E.

    2017-03-01

    Theoretical expressions for performance parameters of different electrochemical capacitors (ECs) have been optimized by solving them using MATLAB scripts as well as via the MATLAB R2014a optimization toolbox. The performance of the different kinds of ECs under given conditions was compared using theoretical equations and simulations of various models based on the conditions of device components, using optimal values for the coefficient associated with the battery-kind material ( K BMopt) and the constant associated with the electrolyte material ( K Eopt), as well as our symmetric electric double-layer capacitor (EDLC) experimental data. Estimation of performance parameters was possible based on values for the mass ratio of electrodes, operating potential range ratio, and specific capacitance of electrolyte. The performance of asymmetric ECs with suitable electrode mass and operating potential range ratios using aqueous or organic electrolyte at appropriate operating potential range and specific capacitance was 2.2 and 5.56 times greater, respectively, than for the symmetric EDLC and asymmetric EC using the same aqueous electrolyte, respectively. This enhancement was accompanied by reduced cell mass and volume. Also, the storable and deliverable energies of the asymmetric EC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 12.9 times greater than those of the symmetric EDLC using aqueous electrolyte, again with reduced cell mass and volume. The storable energy, energy density, and power density of the asymmetric EDLC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 5.56 times higher than for a similar symmetric EDLC using aqueous electrolyte, with cell mass and volume reduced by a factor of 1.77. Also, the asymmetric EDLC with the same type of electrode and suitable electrode mass ratio, working potential range ratio, and proper organic electrolyte showed enhanced performance compared with the conventional symmetric EDLC using aqueous electrolyte, with reduced cell mass and volume. These results can obviously reduce the number of experiments required to determine the optimum manufacturing design for ECs and also demonstrate that use of an asymmetric electrode and organic electrolyte was very successful for improving the performance of the EC, with reduced cell mass and volume. These results can also act as guidelines for design, fabrication, and operation of electrochemical capacitors with outstanding storable energy, energy density, and power density.

  2. The Influence of Materials of Electrodes of Sensitized Solar Cells on Their Capacitive and Electrical Characteristics

    NASA Astrophysics Data System (ADS)

    Lazarenko, P. I.; Kozyukhin, S. A.; Mokshina, A. I.; Sherchenkov, A. A.; Patrusheva, T. N.; Irgashev, R. A.; Lebedev, E. A.; Kozik, V. V.

    2018-05-01

    An estimation is made of the internal capacitance of sensitized solar cells (SSCs) manufactured by the method of extraction pyrolysis. The structures under study are characterized by a hysteresis in the current-voltage characteristic obtained in the direct and reverse modes of voltage variation. The investigations of SSCs demonstrate a high inertness of the parameters under connection and disconnection of the light source. The use of a transparent conductive ITO-electrode, manufactured by the extraction pyrolysis, increases the external capacitance of the cell and decelerates the processes of current decay after the light source connection compared to the commercial FTO-electrode. The values of charges, capacitances, and SSC charge conservation efficiencies are calculated and the internal resistance of the SSCs under study is estimated. According to the estimations performed, the specimen with an ITO-layer possesses a capacitance equal to C1 = 1.23·10-3 F, which is by two orders of magnitude higher than that of the specimen with a FTO-layer (C2 = 2.06·10-5 F).

  3. Self-assembly of monodisperse starburst carbon spheres into hierarchically organized nanostructured supercapacitor electrodes.

    PubMed

    Kim, Sung-Kon; Jung, Euiyeon; Goodman, Matthew D; Schweizer, Kenneth S; Tatsuda, Narihito; Yano, Kazuhisa; Braun, Paul V

    2015-05-06

    We report a three-dimensional (3D) porous carbon electrode containing both nanoscale and microscale porosity, which has been hierarchically organized to provide efficient ion and electron transport. The electrode organization is provided via the colloidal self-assembly of monodisperse starburst carbon spheres (MSCSs). The periodic close-packing of the MSCSs provides continuous pores inside the 3D structure that facilitate ion and electron transport (electrode electrical conductivity ∼0.35 S m(-1)), and the internal meso- and micropores of the MSCS provide a good specific capacitance. The capacitance of the 3D-ordered porous MSCS electrode is ∼58 F g(-1) at 0.58 A g(-1), 48% larger than that of disordered MSCS electrode at the same rate. At 1 A g(-1) the capacitance of the ordered electrode is 57 F g(-1) (95% of the 0.24 A g(-1) value), which is 64% greater than the capacitance of the disordered electrode at the same rate. The ordered electrode preserves 95% of its initial capacitance after 4000 charging/discharging cycles.

  4. Low-voltage electric-double-layer paper transistors gated by microporous SiO2 processed at room temperature

    NASA Astrophysics Data System (ADS)

    Sun, Jia; Wan, Qing; Lu, Aixia; Jiang, Jie

    2009-11-01

    Battery drivable low-voltage SnO2-based paper thin-film transistors with a near-zero threshold voltage (Vth=0.06 V) gated by microporous SiO2 dielectric with electric-double-layer (EDL) effect are fabricated at room temperature. The operating voltage is found to be as low as 1.5 V due to the huge gate specific capacitance (1.34 μF/cm2 at 40 Hz) related to EDL formation. The subthreshold gate voltage swing and current on/off ratio is found to be 82 mV/decade and 2.0×105, respectively. The electron field-effect mobility is estimated to be 47.3 cm2/V s based on the measured gate specific capacitance at 40 Hz.

  5. Analysis of amorphous indium-gallium-zinc-oxide thin-film transistor contact metal using Pilling-Bedworth theory and a variable capacitance diode model

    NASA Astrophysics Data System (ADS)

    Kiani, Ahmed; Hasko, David G.; Milne, William I.; Flewitt, Andrew J.

    2013-04-01

    It is widely reported that threshold voltage and on-state current of amorphous indium-gallium-zinc-oxide bottom-gate thin-film transistors are strongly influenced by the choice of source/drain contact metal. Electrical characterisation of thin-film transistors indicates that the electrical properties depend on the type and thickness of the metal(s) used. Electron transport mechanisms and possibilities for control of the defect state density are discussed. Pilling-Bedworth theory for metal oxidation explains the interaction between contact metal and amorphous indium-gallium-zinc-oxide, which leads to significant trap formation. Charge trapping within these states leads to variable capacitance diode-like behavior and is shown to explain the thin-film transistor operation.

  6. The surface chemical properties of multi-walled carbon nanotubes modified by thermal fluorination for electric double-layer capacitor

    NASA Astrophysics Data System (ADS)

    Jung, Min-Jung; Jeong, Euigyung; Lee, Young-Seak

    2015-08-01

    The surfaces of multi-walled carbon nanotubes (MWCNTs) were thermally fluorinated at various temperatures to enhance the electrochemical properties of the MWCNTs for use as electric double-layer capacitor (EDLC) electrodes. The fluorine functional groups were added to the surfaces of the MWCNTs via thermal fluorination. The thermal fluorination exposed the Fe catalyst on MWCNTs, and the specific surface area increased due to etching during the fluorination. The specific capacitances of the thermally fluorinated at 100 °C, MWCNT based electrode increased from 57 to 94 F/g at current densities of 0.2 A/g, respectively. This enhancement in capacitance can be attributed to increased polarization of the thermally fluorinated MWCNT surface, which increased the affinity between the electrode surface and the electrolyte ions.

  7. Electrical characterization of γ-Al2O3 thin film parallel plate capacitive sensor for trace moisture detection

    NASA Astrophysics Data System (ADS)

    Kumar, Lokesh; Kumar, Shailesh; Khan, S. A.; Islam, Tariqul

    2012-10-01

    A moisture sensor was fabricated based on porous thin film of γ-Al2O3 formed between the parallel gold electrodes. The sensor works on capacitive technique. The sensing film was fabricated by dipcoating of aluminium hydroxide sol solution obtained from the sol-gel method. The porous structure of the film of γ-Al2O3 phase was obtained by sintering the film at 450 °C for 1 h. The electrical parameters of the sensor have been determined by Agilent 4294A impedance analyzer. The sensor so obtained is found to be sensitive in moisture range 100-600 ppmV. The response time of the sensor in ppmV range moisture is very low ~ 24 s and recovery time is ~ 37 s.

  8. A novel metal flow imaging using electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Wondrak, Thomas; Soleimani, Manuchehr

    2017-06-01

    The measurement of gas-liquid metal two phase flow is a challenging task due to the opaqueness and the high temperatures. For instance, during continuous casting of steel the distribution of argon gas and liquid steel in the submerged entry nozzle is of high interest, since it influences the quality of the produced steel. In this paper we present the results of a feasibility study for applying the electrical capacitance tomography (ECT) to detect the outer surface of a liquid metal stream. The results of this study are the basis for the development of a new contactless sensor which should be able to detect the outer shape of a liquid metal jet using ECT and the bubbles inside the jet at the same time with mutual inductance tomography.

  9. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, J.W.

    1991-09-10

    Disclosed are a method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources. 18 figures.

  10. Electromagnetic receiver with capacitive electrodes and triaxial induction coil for tunnel exploration

    NASA Astrophysics Data System (ADS)

    Kai, Chen; Sheng, Jin; Wang, Shun

    2017-09-01

    A new type of electromagnetic (EM) receiver has been developed by integrating four capacitive electrodes and a triaxial induction coil with an advanced data logger for tunnel exploration. The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of surface-tunnel-borehole EM detection for deep ore deposit mapping. The use of capacitive electrodes enables us to record the electrical field (E-field) signals from hard rock surfaces, which are high-resistance terrains. A compact triaxial induction coil integrates three independent induction coils for narrow-tunnel exploration applications. A low-time-drift-error clock source is developed for tunnel applications where GPS signals are unavailable. The three main components of our tunnel EM receiver are: (1) four capacitive electrodes for measuring the E-field signal without digging in hard rock regions; (2) a triaxial induction coil sensor for audio-frequency magnetotelluric and controlled-source audio-frequency magnetotelluric signal measurements; and (3) a data logger that allows us to record five-component MT signals with low noise levels, low time-drift-error for the clock source, and high dynamic range. The proposed tunnel EM receiver was successfully deployed in a mine that exhibited with typical noise characteristics. [Figure not available: see fulltext. Caption: The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of the surface-tunnel-borehole EM (STBEM) detection for deep ore deposit mapping. The use of a capacitive electrode enables us to record the electrical field (E-field) signals from hard rock surfaces. A compact triaxial induction coil integrated three induction coils, for narrow-tunnel applications.

  11. Synergistic interaction between pseudocapacitive Fe3O4 nanoparticles and highly porous silicon carbide for high-performance electrodes as electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Myeongjin; Kim, Jooheon

    2017-05-01

    Composites of micro- and mesoporous SiC flakes (SiCF) and ferroferric oxide (Fe3O4), SiCF/Fe3O4, were prepared via the chemical deposition of Fe3O4 on SiCF by the chemical reduction of an Fe precursor. The SiCF/Fe3O4 electrodes were fabricated at different Fe3O4 feeding ratios to determine the optimal Fe3O4 content that can maintain a high total surface area of SiCF/Fe3O4 composites as well as cause a vigorous redox reaction, thereby maximizing the synergistic effect between the electric double-layer capacitive effects of SiCF and the pseudo-capacitive effects of Fe3O4. The SiCF/Fe3O4 electrode fabricated with a Fe3O4/SiCF feeding ratio of 1.5:1 (SiCF/Fe3O4(1.5)) exhibited the highest charge storage capacity, showing a specific capacitance of 423.2 F g-1 at a scan rate of 5 mV s-1 with a rate performance of 81.8% from 5 to 500 mV s-1 in an aqueous 1 M KOH electrolyte. The outstanding capacitive performance of the SiCF/Fe3O4(1.5) electrode could be attributed to the harmonious synergistic effect between the electric double-layer capacitive contribution of the SiCF and the pseudocapacitive contribution of the Fe3O4 nanoparticles introduced on the SiCF surface. These encouraging results demonstrate that the SiCF/Fe3O4(1.5) electrode is a promising high-performance electrode material for use in supercapacitors.

  12. Synergistic interaction between pseudocapacitive Fe3O4 nanoparticles and highly porous silicon carbide for high-performance electrodes as electrochemical supercapacitors.

    PubMed

    Kim, Myeongjin; Kim, Jooheon

    2017-05-12

    Composites of micro- and mesoporous SiC flakes (SiCF) and ferroferric oxide (Fe 3 O 4 ), SiCF/Fe 3 O 4 , were prepared via the chemical deposition of Fe 3 O 4 on SiCF by the chemical reduction of an Fe precursor. The SiCF/Fe 3 O 4 electrodes were fabricated at different Fe 3 O 4 feeding ratios to determine the optimal Fe 3 O 4 content that can maintain a high total surface area of SiCF/Fe 3 O 4 composites as well as cause a vigorous redox reaction, thereby maximizing the synergistic effect between the electric double-layer capacitive effects of SiCF and the pseudo-capacitive effects of Fe 3 O 4 . The SiCF/Fe 3 O 4 electrode fabricated with a Fe 3 O 4 /SiCF feeding ratio of 1.5:1 (SiCF/Fe 3 O 4 (1.5)) exhibited the highest charge storage capacity, showing a specific capacitance of 423.2 F g -1 at a scan rate of 5 mV s -1 with a rate performance of 81.8% from 5 to 500 mV s -1 in an aqueous 1 M KOH electrolyte. The outstanding capacitive performance of the SiCF/Fe 3 O 4 (1.5) electrode could be attributed to the harmonious synergistic effect between the electric double-layer capacitive contribution of the SiCF and the pseudocapacitive contribution of the Fe 3 O 4 nanoparticles introduced on the SiCF surface. These encouraging results demonstrate that the SiCF/Fe 3 O 4 (1.5) electrode is a promising high-performance electrode material for use in supercapacitors.

  13. First-Principles Molecular Dynamics Study on the Electric-double layer Capacitance of Water-MXene interfaces

    NASA Astrophysics Data System (ADS)

    Ando, Yasunobu; Otani, Minoru

    MXenes are a new, large family of layered materials synthesized from MAX phases by simple chemical treatments. Due to their enormous variations, MXenes have attracted great attention as promising candidates as anode materials for next-generation secondary batteries. Unfortunately, the specific capacitance of MXenes supercapacitors is lower than that of active-carbon ones. Theoretical investigation of the electric-double layer (EDL) at electrode interfaces is necessary to improve their capacitance. First-principles molecular dynamics (FPMD) simulation based on the density functional theory (DFT) is performed to estimate the EDL capacitance from a potential profile V(z) and a charge distribution q(z) induced by the ions at water-Ti2CTx (T =O, F) interfaces. Potential profiles V(z) of both Ti2CO2 and Ti2CF2 decrease about 1.0 eV steeply in a region of only 3 Å from a Ti layer, which is the same profile at the platinum interfaces. On the other hand, induced charge distribution q(z) depends on the species of surface termination. Induced electrons are introduced at Ti layers in the case of O surface termination. However, Ti2CF2 is not capable to store electrons at Ti layers because it is mono-valence anions. It indicates that effective surface-position of MXenes depends on the surface terminations. Our results are revealed that small induced charge leads the low EDL capacitance at MXene interfaces. This is because interface polarization due to strong interaction between water and Ti2CTx induces net charge. The surface net charge hinders the introduction of ion-induced charges.

  14. Formation of polycrystalline-silicon films with hemispherical grains for capacitor structures with increased capacitance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novak, A. V., E-mail: novak-andrei@mail.ru

    2014-12-15

    The effect of formation conditions on the morphology of silicon films with hemispherical grains (HSG-Si) obtained by the method of low-pressure chemical vapor deposition (LPCVD) is investigated by atomic-force microscopy. The formation conditions for HSG-Si films with a large surface area are found. The obtained HSG-Si films make it possible to fabricate capacitor structures, the electric capacitance of which is twice as large in comparison to that of capacitors with “smooth” electrodes from polycrystalline silicon.

  15. Investigation on VOX/CNTS Nanocomposites Act as Electrode of Supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhu, Quanyao; Li, Zhaolong; Zhang, Xiaoyan; Huang, Shengnan; Yu, Yue; Chen, Wen; Zakharova, Galina S.

    2013-07-01

    The VOx/CNTs nanocomposites were synthesized by the hydrothermal method. The structure and morphologies of the nanocomposites were characteristic by XRD, SEM and TEM. The electrochemical properties of the nanocomposites were explored by cyclic voltammetry, constant current charge/discharge testing and electrochemical impedance spectroscopy in 1M KNO3 aqueous solution. The results showed that the nanocomposites perform characteristics of electrical both double-layer capacitance and pseudocapacitance. The specific capacitances were 136.5F/g, when the current density was 0.15A/g.

  16. Colossal internal barrier layer capacitance effect in polycrystalline copper (II) oxide

    NASA Astrophysics Data System (ADS)

    Sarkar, Sudipta; Jana, Pradip Kumar; Chaudhuri, B. K.

    2008-01-01

    Dielectric spectroscopy analysis of the high permittivity (κ˜104) copper (II) oxide (CuO) ceramic shows that the grain contribution plays a major role for the giant-κ value at low temperature, whereas grain boundary (GB) contribution dominates around room temperature and above. Moreover, impedance spectroscopy analysis reveals electrically heterogeneous microstructure in CuO consisting of semiconducting grains and insulating GBs. Finally, the giant dielectric phenomenon exhibited by CuO is attributed to the internal barrier layer (due to GB) capacitance mechanism.

  17. Design and Fabrication of Interdigital Nanocapacitors Coated with HfO2

    PubMed Central

    González, Gabriel; Kolosovas-Machuca, Eleazar Samuel; López-Luna, Edgar; Hernández-Arriaga, Heber; González, Francisco Javier

    2015-01-01

    In this article nickel interdigital capacitors were fabricated on top of silicon substrates. The capacitance of the interdigital capacitor was optimized by coating the electrodes with a 60 nm layer of HfO2. An analytical solution of the capacitance was compared to electromagnetic simulations using COMSOL and with experimental measurements. Results show that modeling interdigital capacitors using Finite Element Method software such as COMSOL is effective in the design and electrical characterization of these transducers. PMID:25602271

  18. Induction powered biological radiosonde

    NASA Technical Reports Server (NTRS)

    Fryer, T. B. (Inventor)

    1980-01-01

    An induction powered implanted monitor for epidurally measuring intracranial pressure and telemetering the pressure information to a remote readout is disclosed. The monitor utilizes an inductance-capacitance (L-C) oscillator in which the C comprises a variable capacitance transducer, one electrode of which is a small stiff pressure responsive diaphragm. The oscillator is isolated from a transmitting tank circuit by a buffer circuit and all electric components in the implanted unit except an input and an output coil are shielded by a metal housing.

  19. Shielded capacitive electrode

    DOEpatents

    Kireeff Covo, Michel

    2013-07-09

    A device is described, which is sensitive to electric fields, but is insensitive to stray electrons/ions and unlike a bare, exposed conductor, it measures capacitively coupled current while rejecting currents due to charged particle collected or emitted. A charged particle beam establishes an electric field inside the beam pipe. A grounded metallic box with an aperture is placed in a drift region near the beam tube radius. The produced electric field that crosses the aperture generates a fringe field that terminates in the back surface of the front of the box and induces an image charge. An electrode is placed inside the grounded box and near the aperture, where the fringe fields terminate, in order to couple with the beam. The electrode is negatively biased to suppress collection of electrons and is protected behind the front of the box, so the beam halo cannot directly hit the electrode and produce electrons. The measured signal shows the net potential (positive ion beam plus negative electrons) variation with time, as it shall be observed from the beam pipe wall.

  20. Capacitively coupled hydrogen plasmas sustained by tailored voltage waveforms: excitation dynamics and ion flux asymmetry

    DOE PAGES

    Bruneau, B.; Diomede, P.; Economou, D. J.; ...

    2016-06-08

    Parallel plate capacitively coupled plasmas in hydrogen at relatively high pressure (~1 Torr) are excited with tailored voltage waveforms containing up to five frequencies. Predictions of a hybrid model combining a particle-in-cell simulation with Monte Carlo collisions and a fluid model are compared to phase resolved optical emission spectroscopy measurements, yielding information on the dynamics of the excitation rate in these discharges. When the discharge is excited with amplitude asymmetric waveforms, the discharge becomes electrically asymmetric, with different ion energies at each of the two electrodes. Unexpectedly, large differences in themore » $$\\text{H}_{2}^{+}$$ fluxes to each of the two electrodes are caused by the different $$\\text{H}_{3}^{+}$$ energies. When the discharge is excited with slope asymmetric waveforms, only weak electrical asymmetry of the discharge is observed. In this case, electron power absorption due to fast sheath expansion at one electrode is balanced by electron power absorption at the opposite electrode due to a strong electric field reversal.« less

  1. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon.

    PubMed

    Pech, David; Brunet, Magali; Durou, Hugo; Huang, Peihua; Mochalin, Vadym; Gogotsi, Yury; Taberna, Pierre-Louis; Simon, Patrice

    2010-09-01

    Electrochemical capacitors, also called supercapacitors, store energy in two closely spaced layers with opposing charges, and are used to power hybrid electric vehicles, portable electronic equipment and other devices. By offering fast charging and discharging rates, and the ability to sustain millions of cycles, electrochemical capacitors bridge the gap between batteries, which offer high energy densities but are slow, and conventional electrolytic capacitors, which are fast but have low energy densities. Here, we demonstrate microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume that are an order of magnitude higher. We also measured discharge rates of up to 200 V s(-1), which is three orders of magnitude higher than conventional supercapacitors. The microsupercapacitors are produced by the electrophoretic deposition of a several-micrometre-thick layer of nanostructured carbon onions with diameters of 6-7 nm. Integration of these nanoparticles in a microdevice with a high surface-to-volume ratio, without the use of organic binders and polymer separators, improves performance because of the ease with which ions can access the active material. Increasing the energy density and discharge rates of supercapacitors will enable them to compete with batteries and conventional electrolytic capacitors in a number of applications.

  2. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon

    NASA Astrophysics Data System (ADS)

    Pech, David; Brunet, Magali; Durou, Hugo; Huang, Peihua; Mochalin, Vadym; Gogotsi, Yury; Taberna, Pierre-Louis; Simon, Patrice

    2010-09-01

    Electrochemical capacitors, also called supercapacitors, store energy in two closely spaced layers with opposing charges, and are used to power hybrid electric vehicles, portable electronic equipment and other devices. By offering fast charging and discharging rates, and the ability to sustain millions of cycles, electrochemical capacitors bridge the gap between batteries, which offer high energy densities but are slow, and conventional electrolytic capacitors, which are fast but have low energy densities. Here, we demonstrate microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume that are an order of magnitude higher. We also measured discharge rates of up to 200 V s-1, which is three orders of magnitude higher than conventional supercapacitors. The microsupercapacitors are produced by the electrophoretic deposition of a several-micrometre-thick layer of nanostructured carbon onions with diameters of 6-7 nm. Integration of these nanoparticles in a microdevice with a high surface-to-volume ratio, without the use of organic binders and polymer separators, improves performance because of the ease with which ions can access the active material. Increasing the energy density and discharge rates of supercapacitors will enable them to compete with batteries and conventional electrolytic capacitors in a number of applications.

  3. Anomalous change in dielectric constant of CaCu{sub 3}Ti{sub 4}O{sub 12} under violet-to-ultraviolet irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masingboon, C.; Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000; Eknapakul, T.

    2013-05-20

    The influence of light illumination on the dielectric constant of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) polycrystals is studied in this work. When exposed to 405-nm laser light, a reversible enhancement in the room temperature capacitance as high as 22% was observed, suggesting application of light-sensitive capacitance devices. To uncover the microscopic mechanisms mediating this change, we performed electronic structure measurements, using photoemission spectroscopy, and measured the electrical conductivity of the CCTO samples under different conditions of light exposure and oxygen partial pressure. Together, these results suggest that the large capacitance enhancement is driven by oxygen vacancies induced by the irradiation.

  4. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  5. Physical and Electrical Characterization of Aluminum Polymer Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, David; Sampson, Michael J.

    2010-01-01

    Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were physically examined and electrically characterized. The physical construction analysis of the capacitors revealed three different capacitor structures, i.e., traditional wound, stacked, and laminated. Electrical characterization results of polymer aluminum capacitors are reported for frequency-domain dielectric response at various temperatures, surge breakdown voltage, and other dielectric properties. The structure-property relations in polymer aluminum capacitors are discussed.

  6. Physical and Electrical Characterization of Polymer Aluminum Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, David; Sampson, Michael J.

    2010-01-01

    Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were physically examined and electrically characterized. The physical construction analysis of the capacitors revealed three different capacitor structures, i.e., traditional wound, stacked, and laminated. Electrical characterization results of polymer aluminum capacitors are reported for frequency-domain dielectric response at various temperatures, surge breakdown voltage, and other dielectric properties. The structure-property relations in polymer aluminum capacitors are discussed.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldridge, David F.; Bartel, Lewis C.

    Program LETS calculates the electric current distribution (in space and time) along an electrically energized steel-cased geologic borehole situated within the subsurface earth. The borehole is modeled as an electrical transmission line that “leaks” current into the surrounding geology. Parameters pertinent to the transmission line current calculation (i.e., series resistance and inductance, shunt capacitance and conductance) are obtained by sampling the electromagnetic (EM) properties of a three-dimensional (3D) geologic earth model along a (possibly deviated) well track.

  8. Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance

    DOE PAGES

    Zhao, Meng-Qiang; Ren, Chang E.; Ling, Zheng; ...

    2014-11-18

    Electrochemical capacitors attract attention because of their high power densities and long cycle lives. Moreover, with increasing demand for portable and wearable electronics, recent research has focused primarily on improving the energy density per unit of volume of electrochemical capacitors. But, the volumetric capacitances of carbon-based electrodes is limited at around 60 F cm -3 for commercial devices, and at best in the range of 300 F cm -3 for low-density porous carbons (<0.5–1 g cm -3 ). Although extremely high capacitances of 1000–1500 F cm -3 can be achieved for hydrated ruthenium oxide, RuO 2 , its highmore » cost limits its wide-spread applications.« less

  9. Design, analysis and test verification of advanced encapsulation systems, phase 2 program results

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Minning, C.; Breen, R. T.; Coakley, J. F.; Duncan, L. B.; Gllaspy, D. M.; Kiewert, R. H.; McKinney, F. G.; Taylor, W. E.; Vaughn, L. E.

    1982-06-01

    Optical, electrical isolation, thermal structural, structural deflection, and thermal tests are reported. The utility of the optical, series capacitance, and structural deflection models was verified.

  10. Design, analysis and test verification of advanced encapsulation systems, phase 2 program results

    NASA Technical Reports Server (NTRS)

    Garcia, A.; Minning, C.; Breen, R. T.; Coakley, J. F.; Duncan, L. B.; Gllaspy, D. M.; Kiewert, R. H.; Mckinney, F. G.; Taylor, W. E.; Vaughn, L. E.

    1982-01-01

    Optical, electrical isolation, thermal structural, structural deflection, and thermal tests are reported. The utility of the optical, series capacitance, and structural deflection models was verified.

  11. Tailoring graphene-based electrodes from semiconducting to metallic to increase the energy density in supercapacitors.

    PubMed

    Vatamanu, Jenel; Ni, Xiaojuan; Liu, Feng; Bedrov, Dmitry

    2015-11-20

    The semiconducting character of graphene and some carbon-based electrodes can lead to noticeably lower total capacitances and stored energy densities in electric double layer (EDL)capacitors. This paper discusses the chemical and electronic structure modifications that enhance the available energy bands, density of states and quantum capacitance of graphene substrates near the Fermi level, therefore restoring the conducting character of these materials. The doping of graphene with p or n dopants, such as boron and nitrogen atoms, or the introduction of vacancy defects that introduce zigzag edges, can significantly increase the quantum capacitance within the potential range of interest for the energy storage applications by either shifting the Dirac point away from the Fermi level or by eliminating the Dirac point. We show that a combination of doping and vacancies at realistic concentrations is sufficient to increase the capacitance of a graphene-based electrode to within 1 μF cm(−2) from that of a metallic surface.Using a combination of ab initio calculations and classical molecular dynamics simulations we estimate how the changes in the quantum capacitance of these electrode materials affect the total capacitance stored by the open structure EDL capacitors containing room temperature ionic liquid electrolytes.

  12. Three-dimensional reduced graphene oxide/polyaniline nanocomposite film prepared by diffusion driven layer-by-layer assembly for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Hong, Xiaodong; Zhang, Binbin; Murphy, Elizabeth; Zou, Jianli; Kim, Franklin

    2017-03-01

    As a simple and versatile method, diffusion driven Layer-by-Layer assembly (dd-LbL) is developed to assemble graphene oxide (GO) into three-dimensional (3D) structure. The assembled GO macrostructure can be reduced through a hydrothermal treatment and used as a high volumetric capacitance electrode in supercapacitors. In this report we use rGO framework created from dd-LbL as a scaffold for in situ polymerization of aniline within the pores of the framework to form rGO/polyaniline (rGO/PANI) composite. The rGO/PANI composite affords a robust and porous structure, which facilitates electrolyte diffusion and exhibits excellent electrochemical performance as binder-free electrodes in a sandwich-configuration supercapacitor. Combining electric double layer capacitance and pseudo-capacitance, rGO/PANI electrodes exhibit a specific capacitance of 438.8 F g-1 at discharge rate of 5 mA (mass of electrodes were 10.0 mg, 0.5 A g-1) in 1 mol L-1 H2SO4 electrolyte; furthermore, the generated PANI nanoparticles in rGO template achieve a higher capacitance of 763 F g-1. The rGO/PANI composite electrodes also show an improved recyclability, 76.5% of capacitance retains after recycled 2000 times.

  13. Numerical correction of the phase error due to electromagnetic coupling effects in 1D EIT borehole measurements

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zimmermann, E.; Huisman, J. A.; Treichel, A.; Wolters, B.; van Waasen, S.; Kemna, A.

    2012-12-01

    Spectral Electrical Impedance Tomography (EIT) allows obtaining images of the complex electrical conductivity for a broad frequency range (mHz to kHz). It has recently received increased interest in the field of near-surface geophysics and hydrogeophysics because of the relationships between complex electrical properties and hydrogeological and biogeochemical properties and processes observed in the laboratory with Spectral Induced Polarization (SIP). However, these laboratory results have also indicated that a high phase accuracy is required for surface and borehole EIT measurements because many soils and sediments are only weakly polarizable and show phase angles between 1 and 20 mrad. In the case of borehole EIT measurements, long cables and electrode chains (>10 meters) are typically used, which leads to undesired inductive coupling between the electric loops for current injection and potential measurement and capacitive coupling between the electrically conductive cable shielding and the soil. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurement to the mHz to Hz range. The aim of this study is i) to develop correction procedures for these coupling effects to extend the applicability of EIT to the kHz range and ii) to validate these corrections using controlled laboratory measurements and field measurements. In order to do so, the inductive coupling effect was modeled using electronic circuit models and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 2 mrad in the frequency range up to 10 kHz was achieved. In a field demonstration using a 25 m borehole chain with 8 electrodes with 1 m electrode separation, the corrections were also applied within a 1D inversion of the borehole EIT measurements. The results show that the correction methods increased the measurement accuracy considerably.

  14. Erosion behavior of CVD 3C silicon carbide in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Brooks, Mitchell R.

    2010-11-01

    An electrostatic, capacitively coupled Planar Ion Flux (PIF) probe has been developed as a sensor for use in high volume reactive ion etch (RIE) chambers. An important factor in the design is the material used for the probe collection area that is exposed to the plasma. For use in inductively coupled plasma chambers, bulk-deposited, 3C silicon carbide (SiC) was chosen. The primary objective of this work was to characterize the erosion behavior of the probe tip throughout repeated cycling for 100 RF hours (RFH). Surface morphology, roughness, and composition were documented at the beginning and end of cycling. In addition, the mass of the probe tip was documented three times throughout the experiment. This was used to calculate the wear rate which averaged ~100 mug/RFH. Although physical and chemical mechanisms were evident, it appears that preferential sputtering at pre-existing surface defects had the greatest influence on the erosion behavior. Additionally, an investigation into the sudden abnormal electrical behavior of the probe yielded the conclusion that the added capacitance of a deposited film reduces the number of data points in the ion saturation region used to fit the experimental data. This results in excessive values for extracted plasma parameters, most notably the electron temperature. However, this is only a temporary condition if the film can be removed.

  15. Volume conductor model of transcutaneous electrical stimulation with kilohertz signals

    PubMed Central

    Medina, Leonel E.; Grill, Warren M.

    2014-01-01

    Objective Incorporating high-frequency components in transcutaneous electrical stimulation (TES) waveforms may make it possible to stimulate deeper nerve fibers since the impedance of tissue declines with increasing frequency. However, the mechanisms of high-frequency TES remain largely unexplored. We investigated the properties of TES with frequencies beyond those typically used in neural stimulation. Approach We implemented a multilayer volume conductor model including dispersion and capacitive effects, coupled to a cable model of a nerve fiber. We simulated voltage- and current-controlled transcutaneous stimulation, and quantified the effects of frequency on the distribution of potentials and fiber excitation. We also quantified the effects of a novel transdermal amplitude modulated signal (TAMS) consisting of a non-zero offset sinusoidal carrier modulated by a square-pulse train. Main results The model revealed that high-frequency signals generated larger potentials at depth than did low frequencies, but this did not translate into lower stimulation thresholds. Both TAMS and conventional rectangular pulses activated more superficial fibers in addition to the deeper, target fibers, and at no frequency did we observe an inversion of the strength-distance relationship. Current regulated stimulation was more strongly influenced by fiber depth, whereas voltage regulated stimulation was more strongly influenced by skin thickness. Finally, our model reproduced the threshold-frequency relationship of experimentally measured motor thresholds. Significance The model may be used for prediction of motor thresholds in TES, and contributes to the understanding of high-frequency TES. PMID:25380254

  16. Volume conductor model of transcutaneous electrical stimulation with kilohertz signals

    NASA Astrophysics Data System (ADS)

    Medina, Leonel E.; Grill, Warren M.

    2014-12-01

    Objective. Incorporating high-frequency components in transcutaneous electrical stimulation (TES) waveforms may make it possible to stimulate deeper nerve fibers since the impedance of tissue declines with increasing frequency. However, the mechanisms of high-frequency TES remain largely unexplored. We investigated the properties of TES with frequencies beyond those typically used in neural stimulation. Approach. We implemented a multilayer volume conductor model including dispersion and capacitive effects, coupled to a cable model of a nerve fiber. We simulated voltage- and current-controlled transcutaneous stimulation, and quantified the effects of frequency on the distribution of potentials and fiber excitation. We also quantified the effects of a novel transdermal amplitude modulated signal (TAMS) consisting of a non-zero offset sinusoidal carrier modulated by a square-pulse train. Main results. The model revealed that high-frequency signals generated larger potentials at depth than did low frequencies, but this did not translate into lower stimulation thresholds. Both TAMS and conventional rectangular pulses activated more superficial fibers in addition to the deeper, target fibers, and at no frequency did we observe an inversion of the strength-distance relationship. Current regulated stimulation was more strongly influenced by fiber depth, whereas voltage regulated stimulation was more strongly influenced by skin thickness. Finally, our model reproduced the threshold-frequency relationship of experimentally measured motor thresholds. Significance. The model may be used for prediction of motor thresholds in TES, and contributes to the understanding of high-frequency TES.

  17. Electrical transport and capacitance characteristics of metal-insulator-metal structures using hexagonal and cubic boron nitride films as dielectrics

    NASA Astrophysics Data System (ADS)

    Teii, Kungen; Kawamoto, Shinsuke; Fukui, Shingo; Matsumoto, Seiichiro

    2018-04-01

    Metal-insulator-metal capacitor structures using thick hexagonal and cubic boron nitride (hBN and cBN) films as dielectrics are produced by plasma jet-enhanced chemical vapor deposition, and their electrical transport and capacitance characteristics are studied in a temperature range of 298 to 473 K. The resistivity of the cBN film is of the order of 107 Ω cm at 298 K, which is lower than that of the hBN film by two orders of magnitude, while it becomes the same order as the hBN film above ˜423 K. The dominant current transport mechanism at high fields (≥1 × 104 V cm-1) is described by the Frenkel-Poole emission and thermionic emission models for the hBN and cBN films, respectively. The capacitance of the hBN film remains stable for a change in alternating-current frequency and temperature, while that of the cBN film has variations of at most 18%. The dissipation factor as a measure of energy loss is satisfactorily low (≤5%) for both films. The origin of leakage current and capacitance variation is attributed to a high defect density in the film and a transition interlayer between the substrate and the film, respectively. This suggests that cBN films with higher crystallinity, stoichiometry, and phase purity are potentially applicable for dielectrics like hBN films.

  18. Designing a Novel Polymer Electrolyte for Improving the Electrode/Electrolyte Interface in Flexible All-Solid-State Electrical Double-Layer Capacitors.

    PubMed

    Wang, Jeng-An; Lu, Yi-Ting; Lin, Sheng-Chi; Wang, Yu-Sheng; Ma, Chen-Chi M; Hu, Chi-Chang

    2018-05-30

    A novel copolymer, polyurethane-poly(acrylic acid) (PAA), is successfully synthesized from poly(acrylic acid) (PAA) backbone cross-linked with waterborne polyurethane (WPU). This sticky polymer, which is neutralized with 1 M KOH and then soaked in 1 M KOH (denoted as WPU-PAAK-K), provides an ionic conductivity greater than 10 -2 S cm -1 and acts as a gel electrolyte perfectly improving the electrode/electrolyte interfaces in a flexible all-solid-state electrical double-layer capacitor (EDLC). The PAA backbone chains in the copolymer increase the amount of carboxyl groups and promote the segmental motion. The carboxyl groups enhance the water-uptake capacity, which facilitates the ion transport and promotes the ionic conductivity. The cross-linked agent, WPU chains, effectively maintains the rich water content and provides mechanical stickiness to bind two electrodes together. An acid-treated carbon paper (denoted as ACP) combining with such a gel polymer electrolyte demonstrates excellent capacitive behavior with a high areal capacitance of 211.6 mF cm -2 at 10 mV s -1 . A full cell consisting of ACP/WPU-PAAK-K/ACP displays a low equivalent series resistance of 0.44 Ω from the electrochemical impedance spectroscopic results. An all-solid-state ACP/WPU-PAAK-K/ACP EDLC provides an areal specific capacitance of 94.6 mF cm -2 at 1 mA cm -2 . This device under 180° bending shows a capacitance retention over 90%, revealing its remarkable flexibility.

  19. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Lang, Xingyou; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2011-04-01

    Electrochemical supercapacitors can deliver high levels of electrical power and offer long operating lifetimes, but their energy storage density is too low for many important applications. Pseudocapacitive transition-metal oxides such as MnO2 could be used to make electrodes in such supercapacitors, because they are predicted to have a high capacitance for storing electrical charge while also being inexpensive and not harmful to the environment. However, the poor conductivity of MnO2 (10-5-10-6 S cm-1) limits the charge/discharge rate for high-power applications. Here, we show that hybrid structures made of nanoporous gold and nanocrystalline MnO2 have enhanced conductivity, resulting in a specific capacitance of the constituent MnO2 (~1,145 F g-1) that is close to the theoretical value. The nanoporous gold allows electron transport through the MnO2, and facilitates fast ion diffusion between the MnO2 and the electrolytes while also acting as a double-layer capacitor. The high specific capacitances and charge/discharge rates offered by such hybrid structures make them promising candidates as electrodes in supercapacitors, combining high-energy storage densities with high levels of power delivery.

  20. High-frequency carbon supercapacitors from polyfurfuryl alcohol

    NASA Astrophysics Data System (ADS)

    Ruiz, V.; Pandolfo, A. G.

    Porous carbons with controllable and narrow pore-size distributions are prepared from the chemical activation of polyfurfuryl alcohol (PFA). High apparent BET surface areas, up to 2600 m 2 g -1 (2611 m 2 g -1 by Density Functional Theory (DFT)), and good electrical conductivities (up to ∼130 S cm -1) are obtained. By varying the potassium hydroxide: carbon precursor ratio, the preparation of carbons with different proportions of micro- and fine mesoporosity (<5 nm) can be tailored to provide an ideal electronic and ionic pore structure for electrochemical energy-storage devices, such as electrical double-layer capacitors. High specific capacitance values are obtained up to 147 F g -1 in a voltage window of 2.5 V using 1 M tetraethyl ammonium tetrafluoroborate in acetonitrile. Moreover, excellent high-current and high-frequency performance is demonstrated: 100 F g -1 at 225 A g -1 (10 Hz) and ∼30 F g -1 at 100 Hz. When comparing the performance with commercial activated carbons (ACs) of similar textural properties, the PFA-derived ACs demonstrated better performance in terms of higher capacitance values and improved rate capabilities. There is a 125% increase in capacitance values at 1 kHz.

  1. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors.

    PubMed

    Lang, Xingyou; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2011-04-01

    Electrochemical supercapacitors can deliver high levels of electrical power and offer long operating lifetimes, but their energy storage density is too low for many important applications. Pseudocapacitive transition-metal oxides such as MnO(2) could be used to make electrodes in such supercapacitors, because they are predicted to have a high capacitance for storing electrical charge while also being inexpensive and not harmful to the environment. However, the poor conductivity of MnO(2) (10(-5)-10(-6) S cm(-1)) limits the charge/discharge rate for high-power applications. Here, we show that hybrid structures made of nanoporous gold and nanocrystalline MnO(2) have enhanced conductivity, resulting in a specific capacitance of the constituent MnO(2) (~1,145 F g(-1)) that is close to the theoretical value. The nanoporous gold allows electron transport through the MnO(2), and facilitates fast ion diffusion between the MnO(2) and the electrolytes while also acting as a double-layer capacitor. The high specific capacitances and charge/discharge rates offered by such hybrid structures make them promising candidates as electrodes in supercapacitors, combining high-energy storage densities with high levels of power delivery.

  2. Humidity effect on organic semiconductor NiPc films deposited at different gravity conditions

    NASA Astrophysics Data System (ADS)

    Fatima, N.; Ahmed, M. M.; Karimov, Kh. S.; Ahmedov, Kh.

    2016-08-01

    In this study, thin films of Nickel Phthalocyanine (NiPc) were deposited by centrifugation at high gravity (70g), and also at normal gravity (1g) conditions to fabricate humidity sensors. Ceramic alumina sheet, coated with silver electrodes, having interelectrode distance of 0.2l mm were used to assess the electrical properties of the sensors. Room temperature capacitance and impedance variations were measured as a function of relative humidity ranging from 25% ∼⃒ 95% at 1 kHz frequency. It was observed that sensors fabricated at 70g were more sensitive compared to sensors fabricated at 1g. Sensors fabricated at 70g exhibited 1.8 times decrease in their impedance and1.5 times increase in their capacitance at peak ambient humidity. SEM images showed more roughness for the films deposited at 70g compared to films deposited at 1g. It was assumed that surface irregularities might have increased active surface area of 70g sensors hence changed the electrical response. Impedance-humidity and capacitance-humidity relationships were modeled and a good agreement was observed between experimental and modeled data. Experimental data showed that NiPc films could be useful for instrumentation industry to fabricate organic humidity sensors.

  3. Transport and charging mechanisms in Ta2O5 thin films for capacitive RF MEMS switches application

    NASA Astrophysics Data System (ADS)

    Persano, A.; Quaranta, F.; Martucci, M. C.; Cretı, P.; Siciliano, P.; Cola, A.

    2010-06-01

    The potential of sputtered Ta2O5 thin films to be used as dielectric layers in capacitive radio frequency microelectromechanical system switches is evaluated by investigating two factors of crucial importance for the performance of these devices which are the transport mechanisms and the charging effects in the dielectric layer. We find that Ta2O5 films show good electrical and dielectrical properties for the considered application in terms of a low leakage current density of 4 nA/cm2 for E =1 MV/cm, a high breakdown field of 4 MV/cm and a high dielectric constant of 32. For electric fields lower than 1 MV/cm the conduction mechanism is found to be variable-range hopping in the temperature range 300-400 K, while nearest-neighbor hopping is observed at higher temperatures. For fields in the range 1-4 MV/cm Poole-Frenkel becomes the dominant conduction mechanism. Current and capacitance transients used to investigate the charging effects show a decay which is well described by the stretched-exponential law, thus providing further insights on capture and emission processes.

  4. Influences of internal resistance and specific surface area of electrode materials on characteristics of electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiyuki; Mizutani, Akitaka; Harigai, Toru; Takikawa, Hirofumi; Ue, Hitoshi; Umeda, Yoshito

    2017-01-01

    We fabricated electric double layer capacitors (EDLCs) using particulate and fibrous types of carbon nanomaterials with a wide range of specific surface areas and resistivity as an active material. The carbon nanomaterials used in this study are carbon nanoballoons (CNBs), onion-like carbon (OLC), and carbon nanocoils (CNCs). A commercially used activated carbon (AC) combined with a conductive agent was used as a comparison. We compared the EDLC performance using cyclic voltammetry (CV), galvanostatic charge/discharge testing, and electrochemical impedance spectroscopy (EIS). OLC showed a poor EDLC performance, although it has the lowest resistivity among the carbon nanomaterials. CNB, which has a 1/16 lower specific surface area than AC but higher specific surface area than CNC and OLC, had a higher specific capacitance than CNC and OLC. Moreover, at current densities of 1.5 Ag-1 and larger, the specific capacitance of the EDLC using CNB was almost the same as that using AC. Electrochemical impedance spectroscopy of the EDLCs revealed that the CNB and CNC electrodes had a much lower internal resistance than the AC electrode, which correlated with a low capacitance maintenance factor as the current density increased.

  5. Ferroelectric, dielectric and electrical behavior of two-dimensional lead sulphide nanosheets

    NASA Astrophysics Data System (ADS)

    Afsar, M. F.; Jamil, Arifa; Rafiq, M. A.

    2017-12-01

    Two-dimensional pure cubic phase lead sulphide (PbS) nanosheets were synthesized using solid state reaction method at ambient pressure and low temperature ~190 °C. From 210 K-300 K, small polaron hopping conduction mechanism was found to be dominant in PbS nanosheets at frequencies 20 Hz-2 MHz. High values of dielectric constant (~200) and electrical conductivity (of the order of 10-3 S m-1 at 300 K) of PbS nanosheets were extracted suggesting that it is a proficient material for capacitive storage devices. A high value of density of states of the order of 1032 eV-1 cm-3 was obtained for PbS nanosheets. The capacitance-voltage (CV) measurements of PbS nanosheets resulted in a stable butterfly loop due to switching of ferroelectric polarization at 300 K. The permittivity calculated at 0 V capacitance was ~150 and the dielectric loss remained below ~0.50. The polarization-voltage (QV) measurements showed a remnant polarization 23 µC cm-2 in PbS nanosheets. The leakage current density was below 0.5 mA cm-2 in the range  ±5 V.

  6. The Influence of Anion Shape on the Electrical Double Layer Microstructure and Capacitance of Ionic Liquids-Based Supercapacitors by Molecular Simulations.

    PubMed

    Chen, Ming; Li, Song; Feng, Guang

    2017-02-16

    Room-temperature ionic liquids (RTILs) are an emerging class of electrolytes for supercapacitors. In this work, we investigate the effects of different supercapacitor models and anion shape on the electrical double layers (EDLs) of two different RTILs: 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Emim][Tf₂N]) and 1-ethyl-3-methylimidazolium 2-(cyano)pyrrolide ([Emim][CNPyr]) by molecular dynamics (MD) simulation. The EDL microstructure is represented by number densities of cations and anions, and the potential drop near neutral and charged electrodes reveal that the supercapacitor model with a single electrode has the same EDL structure as the model with two opposite electrodes. Nevertheless, the employment of the one-electrode model without tuning the bulk density of RTILs is more time-saving in contrast to the two-electrode one. With the one-electrode model, our simulation demonstrated that the shapes of anions significantly imposed effects on the microstructure of EDLs. The EDL differential capacitance vs. potential (C-V) curves of [Emim][CNPyr] electrolyte exhibit higher differential capacitance at positive potentials. The modeling study provides microscopic insight into the EDLs structure of RTILs with different anion shapes.

  7. Effects of osmolarity on human epithelial conjunctival cells using an electrical technique.

    PubMed

    Bellotti, Mariela; Bast, Walter; Berra, Alejandro; Bonetto, Fabian J

    2011-12-01

    The purpose of this study is to report the effect of different media osmolarity on a cell line monolayer of normal human conjunctival epithelia (IOBA-NHC) using Electric Cell-substrate Impedance Sensing (ECIS). We built our own ECIS system. We fabricated biocompatible microelectrodes. We used a monolayer of IOBA-NHC cells with media at different osmolarities (315, 360, 446, and 617 mOsm/l). When there is an increase in hyperosmolarity, there is a slight decrease in the measured resistance of the naked microelectrode (without cells), whereas its capacitance remained practically unchanged. The evaluation of resistance and capacitance of a microelectrode covered by a monolayer of IOBA-NHC in relation to a naked microelectrode showed no difference in the standard media (315 mOsm/l), a small difference with 360 mOsm/l, and significant differences with hyperosmolarities of 446 mOsm/l and 610 mOsm/l. The resistance with a confluent cell monolayer is up to three times greater compared to the value of the resistance of the naked electrode with standard media. Both resistance and capacitance measurements for the cell monolayer were sensitive to changes in osmolarity.

  8. Capacitance-voltage measurement in memory devices using ferroelectric polymer

    NASA Astrophysics Data System (ADS)

    Nguyen, Chien A.; Lee, Pooi See

    2006-01-01

    Application of thin polymer film as storing mean for non-volatile memory devices is investigated. Capacitance-voltage (C-V) measurement of metal-ferroelectric-metal device using ferroelectric copolymer P(VDF-TrFE) as dielectric layer shows stable 'butter-fly' curve. The two peaks in C-V measurement corresponding to the largest capacitance are coincidental at the coercive voltages that give rise to zero polarization in the polarization hysteresis measurement. By comparing data of C-V and P-E measurement, a correlation between two types of hysteresis is established in which it reveals simultaneous electrical processes occurring inside the device. These processes are caused by the response of irreversible and reversible polarization to the applied electric field that can be used to present a memory window. The memory effect of ferroelectric copolymer is further demonstrated for fabricating polymeric non-volatile memory devices using metal-ferroelectric-insulator-semiconductor structure (MFIS). By applying different sweeping voltages at the gate, bidirectional flat-band voltage shift is observed in the ferroelectric capacitor. The asymmetrical shift after negative sweeping is resulted from charge accumulation at the surface of Si substrate caused by the dipole direction in the polymer layer. The effect is reversed for positive voltage sweeping.

  9. Boosting the Performance of Ionic-Liquid-Based Supercapacitors with Polar Additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Kun; Wu, Jianzhong

    Recent years have witnessed growing interests in both the fundamentals and applications of electric double layer capacitors (EDLCs), also known as supercapacitors. A number of strategies have been explored to optimize the device performance in terms of both the energy and power densities. Because the properties of electric double layers (EDL) are sensitive to ion distributions in the close vicinity of the electrode surfaces, the supercapacitor performance is sensitive to both the electrode pore structure and the electrolyte composition. In this paper, we study the effects of polar additives on EDLC capacitance using the classical density functional theory within themore » framework of a coarse-grained model for the microscopic structure of the porous electrodes and room-temperature ionic liquids. The theoretical results indicate that a highly polar, low-molecular-weight additive is able to drastically increase the EDLC capacitance at low bulk concentration. Additionally, the additive is able to dampen the oscillatory dependence of the capacitance on the pore size, thereby boosting the performance of amorphous electrode materials. Finally, the theoretical predictions are directly testable with experiments and provide new insights into the additive effects on EDL properties.« less

  10. Hierarchically structured activated carbon for ultracapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Mok-Hwa; Kim, Kwang-Bum; Park, Sun-Min; Roh, Kwang Chul

    2016-02-01

    To resolve the pore-associated bottleneck problem observed in the electrode materials used for ultracapacitors, which inhibits the transport of the electrolyte ions, we designed hierarchically structured activated carbon (HAC) by synthesizing a mesoporous silica template/carbon composite and chemically activating it to simultaneously remove the silica template and increase the pore volume. The resulting HAC had a well-designed, unique porous structure, which allowed for large interfaces for efficient electric double-layer formation. Given the unique characteristics of the HAC, we believe that the developed synthesis strategy provides important insights into the design and fabrication of hierarchical carbon nanostructures. The HAC, which had a specific surface area of 1,957 m2 g-1, exhibited an extremely high specific capacitance of 157 F g-1 (95 F cc-1), as well as a high rate capability. This indicated that it had superior energy storage capability and was thus suitable for use in advanced ultracapacitors.

  11. Wireless Sensing System Using Open-circuit, Electrically-conductive Spiral-trace Sensor

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2013-01-01

    A wireless sensing system includes a sensor made from an electrical conductor shaped to form an open-circuit, electrically-conductive spiral trace having inductance and capacitance. In the presence of a time-varying magnetic field, the sensor resonates to generate a harmonic response having a frequency, amplitude and bandwidth. A magnetic field response recorder wirelessly transmits the time-varying magnetic field to the sensor and wirelessly detects the sensor's response frequency, amplitude and bandwidth.

  12. A novel analytical description of periodic volume coil geometries in MRI

    NASA Astrophysics Data System (ADS)

    Koh, D.; Felder, J.; Shah, N. J.

    2018-03-01

    MRI volume coils can be represented by equivalent lumped element circuits and for a variety of these circuit configurations analytical design equations have been presented. The unification of several volume coil topologies results in a two-dimensional gridded equivalent lumped element circuit which compromises the birdcage resonator, its multiple endring derivative but also novel structures like the capacitive coupled ring resonator. The theory section analyzes a general two-dimensional circuit by noting that its current distribution can be decomposed into a longitudinal and an azimuthal dependency. This can be exploited to compare the current distribution with a transfer function of filter circuits along one direction. The resonances of the transfer function coincide with the resonance of the volume resonator and the simple analytical solution can be used as a design equation. The proposed framework is verified experimentally against a novel capacitive coupled ring structure which was derived from the general circuit formulation and is proven to exhibit a dominant homogeneous mode. In conclusion, a unified analytical framework is presented that allows determining the resonance frequency of any volume resonator that can be represented by a two dimensional meshed equivalent circuit.

  13. “Capacitive Sensor” to Measure Flow Electrification and Prevent Electrostatic Hazards

    PubMed Central

    Paillat, Thierry; Touchard, Gerard; Bertrand, Yves

    2012-01-01

    At a solid/liquid interface, physico-chemical phenomena occur that lead to the separation of electrical charges, establishing a zone called electrical double layer. The convection of one part of these charges by the liquid flow is the cause of the flow electrification phenomenon which is suspected of being responsible of incidents in the industry. The P' Institute of Poitiers University and CNRS has developed an original sensor called “capacitive sensor” that allows the characterization of the mechanisms involved in the generation, accumulation and transfer of charges. As an example, this sensor included in the design of high power transformers, could easily show the evolution of electrostatic charge generation developed during the operating time of the transformer and, therefore, point out the operations leading to electrostatic hazards and, then, monitor the transformer to prevent such risks. PMID:23202162

  14. Characterization of Window Functions for Regularization of Electrical Capacitance Tomography Image Reconstruction

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Peng, Lihui; Xiao, Deyun

    2007-06-01

    This paper presents a regularization method by using different window functions as regularization for electrical capacitance tomography (ECT) image reconstruction. Image reconstruction for ECT is a typical ill-posed inverse problem. Because of the small singular values of the sensitivity matrix, the solution is sensitive to the measurement noise. The proposed method uses the spectral filtering properties of different window functions to make the solution stable by suppressing the noise in measurements. The window functions, such as the Hanning window, the cosine window and so on, are modified for ECT image reconstruction. Simulations with respect to five typical permittivity distributions are carried out. The reconstructions are better and some of the contours are clearer than the results from the Tikhonov regularization. Numerical results show that the feasibility of the image reconstruction algorithm using different window functions as regularization.

  15. Structural, electrical, and photoelectric properties of p-NiO/n-CdTe heterojunctions

    NASA Astrophysics Data System (ADS)

    Parkhomenko, Hryhorii; Solovan, Mykhaylo; Brus, Viktor; Maystruk, Eduard; Maryanchuk, Pavlo

    2018-01-01

    p-NiO/n-CdTe-photosensitive heterojunctions were prepared by the deposition of nickel oxide thin films onto n-type single-crystal CdTe substrates by DC reactive magnetron sputtering. The analysis of capacitance-voltage (C-V) characteristics, measured at different frequencies of the small amplitude AC signal and corrected by the effect of the series resistance, provided evidence of the presence of electrically charged interface states, which significantly affect the measured capacitance. The dominant current transport mechanisms in the heterojunctions were determined at forward and reverse biases. Using "light" I-V characteristics, we determined the open-circuit voltage Voc=0.42 V, the short-circuit current Isc=57.5 μA/cm2, and the fill factor FF=0.24 under white light illumination with the intensity of 80 mW.

  16. Modulation of strain, resistance, and capacitance of tantalum oxide film by converse piezoelectric effect

    NASA Astrophysics Data System (ADS)

    Jia, Yanmin; Tian, Xiangling; Si, Jianxiao; Huang, Shihua; Wu, Zheng; Zhu, Chenchen

    2011-07-01

    We deposited tantalum oxide film on a laminate structure composed of a Si substrate and a piezoelectric 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 single crystal and achieved in situ modulation of the resistance and capacitance of the Ta2O5 film. The modulation arises from the induced lattice strain in the Ta2O5 film, which is induced by the electric-field-induced strain in the piezoelectric crystal. Under an external electric field of ˜2 kV/cm, the longitudinal gauge factor of the Ta2O5 film is ˜3300. The control of the strain using the converse piezoelectric effect may be further extended to tune the intrinsic strain of other oxide thin films.

  17. Simplifications in modelling of dynamical response of coupled electro-mechanical system

    NASA Astrophysics Data System (ADS)

    Darula, Radoslav; Sorokin, Sergey

    2016-12-01

    The choice of a most suitable model of an electro-mechanical system depends on many variables, such as a scale of the system, type and frequency range of its operation, or power requirements. The article focuses on the model of the electromagnetic element used in passive regime (no feedback loops are assumed) and a general lumped parameter model (a conventional mass-spring-damper system coupled to an electric circuit consisting of a resistance, an inductance and a capacitance) is compared with its simplified version, where the full RLC circuit is replaced with its RL simplification, i.e. the capacitance of the electric system is neglected and just its inductance and the resistance are considered. From the comparison of dynamical responses of these systems, the range of applicability of a simplified model is assessed for free as well as forced vibration.

  18. Dielectric and diamagnetic susceptibilities near percolative superconductor-insulator transitions.

    PubMed

    Loh, Yen Lee; Karki, Pragalv

    2017-10-25

    Coarse-grained superconductor-insulator composites exhibit a superconductor-insulator transition governed by classical percolation, which should be describable by networks of inductors and capacitors. We study several classes of random inductor-capacitor networks on square lattices. We present a unifying framework for defining electric and magnetic response functions, and we extend the Frank-Lobb bond-propagation algorithm to compute these quantities by network reduction. We confirm that the superfluid stiffness scales approximately as [Formula: see text] as the superconducting bond fraction p approaches the percolation threshold p c . We find that the diamagnetic susceptibility scales as [Formula: see text] below percolation, and as [Formula: see text] above percolation. For models lacking self-capacitances, the electric susceptibility scales as [Formula: see text]. Including a self-capacitance on each node changes the critical behavior to approximately [Formula: see text].

  19. Frequency domain analysis of droplet-based electrostatic transducers

    NASA Astrophysics Data System (ADS)

    Allegretto, Graham; Dobashi, Yuta; Dixon, Katelyn; Wyss, Justin; Yao, Dickson; Madden, John D. W.

    2018-07-01

    Squeezing a water droplet between two electrodes can generate a potential difference by converting some of the mechanical energy in vibrations into electrical energy. By utilizing the high capacitance inherent to electric double layers, and the surface charging at a polymer/water interface, we demonstrate a sensor that generates up to 892 mV peak-to-peak between 1 and 100 Hz, in response to a 250 μm deformation. This frequency response is described and explained using a linearized model in which the interfacial charge acts as the priming voltage, removing the need for external charging normally required in capacitive generators. The model suggests how to design the cell for maximum power output and provides an intuitive understanding of the high pass nature of the sensor. It successfully predicts the point of maximum power transfer.

  20. Regional regularization method for ECT based on spectral transformation of Laplacian

    NASA Astrophysics Data System (ADS)

    Guo, Z. H.; Kan, Z.; Lv, D. C.; Shao, F. Q.

    2016-10-01

    Image reconstruction in electrical capacitance tomography is an ill-posed inverse problem, and regularization techniques are usually used to solve the problem for suppressing noise. An anisotropic regional regularization algorithm for electrical capacitance tomography is constructed using a novel approach called spectral transformation. Its function is derived and applied to the weighted gradient magnitude of the sensitivity of Laplacian as a regularization term. With the optimum regional regularizer, the a priori knowledge on the local nonlinearity degree of the forward map is incorporated into the proposed online reconstruction algorithm. Simulation experimentations were performed to verify the capability of the new regularization algorithm to reconstruct a superior quality image over two conventional Tikhonov regularization approaches. The advantage of the new algorithm for improving performance and reducing shape distortion is demonstrated with the experimental data.

  1. The electrical asymmetry effect in a multi frequency geometrically asymmetric capacitively coupled plasma: A study by a nonlinear global model

    NASA Astrophysics Data System (ADS)

    Saikia, P.; Bhuyan, H.; Escalona, M.; Favre, M.; Bora, B.; Kakati, M.; Wyndham, E.; Rawat, R. S.; Schulze, J.

    2018-05-01

    We investigate the electrical asymmetry effect (EAE) and the current dynamics in a geometrically asymmetric capacitively coupled radio frequency plasma driven by multiple consecutive harmonics based on a nonlinear global model. The discharge symmetry is controlled via the EAE, i.e., by varying the total number of harmonics and tuning the phase shifts ( θ k ) between them. Here, we systematically study the EAE in a low pressure (4 Pa) argon discharge with different geometrical asymmetries driven by a multifrequency rf source consisting of 13.56 MHz and its harmonics. We find that the geometrical asymmetry strongly affects the absolute value of the DC self-bias voltage, but its functional dependence on θ k is similar at different values of the geometrical asymmetry. Also, the values of the DC self-bias are enhanced by adding more consecutive harmonics. The voltage drop across the sheath at the powered and grounded electrode is found to increase/decrease, respectively, with the increase in the number of harmonics of the fundamental frequency. For the purpose of validating the model, its outputs are compared with the results obtained in a geometrically and electrically asymmetric 2f capacitively coupled plasmas experiment conducted by Schuengel et al. [J. Appl. Phys. 112, 053302 (2012)]. Finally, we study the self-excitation of nonlinear plasma series resonance oscillations and its dependence on the geometrical asymmetry as well as the phase angles between the driving frequencies.

  2. Tunable, Electrically Small, Inductively Coupled Antenna for Transportable Ionospheric Heating

    NASA Astrophysics Data System (ADS)

    Esser, Benedikt; Mauch, Daniel; Dickens, James; Mankowski, John; Neuber, Andreas

    2018-04-01

    An electrically small antenna is evaluated for use as the principle radiating element in a mobile ionospheric heating array. Consisting of a small loop antenna inductively coupled to a capacitively loaded loop, the electrically small antenna provides high efficiency with the capability of being tuned within the range of ionospheric heating. At a factor 60 smaller in area than a High-Frequency Active Auroral Research Program element, this antenna provides a compact, efficient radiating element for mobile ionospheric heating. A prototype antenna at 10 MHz was built to study large-scale feasibility and possible use with photoconductive semiconductor switch-based drivers. Based on the experimental study, the design has been extrapolated to a small 6 × 4 array of antennas. At a total power input of 16.1 MW this array is predicted to provide 3.6-GW effective radiated power typically required for ionospheric heating. Array cross talk is addressed, including effects upon individual antenna port parameters. Tuning within the range of ionospheric heating, 3-10 MHz, is made possible without the use of lossy dielectrics through a large capacitive area suited to tune the antenna. Considerations for high power operation across the band are provided including a method of driving the antenna with a simple switcher requiring no radio frequency cabling. Source matching may be improved via adjustment of the coupling between small loop antenna and capacitively loaded loop improving |S11| from -1 to -21 dB at 3 MHz.

  3. On hybridising lettuce seedlings with nanoparticles and the resultant effects on the organisms' electrical characteristics.

    PubMed

    Gizzie, Nina; Mayne, Richard; Patton, David; Kendrick, Paul; Adamatzky, Andrew

    2016-09-01

    Lettuce seedlings are attracting interest in the computing world due to their capacity to become hybrid circuit components, more specifically, in the creation of living 'wires'. Previous studies have shown that seedlings can be hybridised with gold nanoparticles and withstand mild electrical currents. In this study, lettuce seedlings were hybridised with a variety of metallic and non-metallic nanomaterials: carbon nanotubes, graphene oxide, aluminium oxide and calcium phosphate. Toxic effects and the following electrical properties were monitored: mean potential, resistance and capacitance. Macroscopic observations revealed only slight deleterious health effects after administration with one variety of particle, aluminium oxide. Mean potential in calcium phosphate-hybridised seedlings showed a considerable increase when compared with the control, whereas those administered with graphene oxide showed a small decrease; there were no notable variations across the remaining treatments. Electrical resistance decreased substantially in graphene oxide-treated seedlings whereas slight increases were shown following calcium phosphate and carbon nanotubes applications. Capacitance showed no considerable variation across treated seedlings. These results demonstrate that use of some nanomaterials, specifically graphene oxide and calcium phosphate, may be towards biohybridisation purposes including the generation of living 'wires'. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Thermal Transients Excite Neurons through Universal Intramembrane Mechanoelectrical Effects

    NASA Astrophysics Data System (ADS)

    Plaksin, Michael; Shapira, Einat; Kimmel, Eitan; Shoham, Shy

    2018-01-01

    Modern advances in neurotechnology rely on effectively harnessing physical tools and insights towards remote neural control, thereby creating major new scientific and therapeutic opportunities. Specifically, rapid temperature pulses were shown to increase membrane capacitance, causing capacitive currents that explain neural excitation, but the underlying biophysics is not well understood. Here, we show that an intramembrane thermal-mechanical effect wherein the phospholipid bilayer undergoes axial narrowing and lateral expansion accurately predicts a potentially universal thermal capacitance increase rate of ˜0.3 % /°C . This capacitance increase and concurrent changes in the surface charge related fields lead to predictable exciting ionic displacement currents. The new MechanoElectrical Thermal Activation theory's predictions provide an excellent agreement with multiple experimental results and indirect estimates of latent biophysical quantities. Our results further highlight the role of electro-mechanics in neural excitation; they may also help illuminate subthreshold and novel physical cellular effects, and could potentially lead to advanced new methods for neural control.

  5. PEDOT-based composites as electrode materials for supercapacitors.

    PubMed

    Zhao, Zhiheng; Richardson, Georgia F; Meng, Qingshi; Zhu, Shenmin; Kuan, Hsu-Chiang; Ma, Jun

    2016-01-29

    Poly (3, 4-ethylenedioxythiophene) (denoted PEDOT) already has a brief history of being used as an active material in supercapacitors. It has many advantages such as low-cost, flexibility, and good electrical conductivity and pseudocapacitance. However, the major drawback is low stability, which means an obvious capacitance drop after a certain number of charge-discharge cycles. Another disadvantage is its limited capacitance and this becomes an issue for industrial applications. To solve these problems, there are several approaches including the addition of conducting nanofillers to increase conductivity, and mixing or depositing metal oxide to enhance capacitance. Furthermore, expanding the surface area of PEDOT is one of the main methods to improve its performance in energy storage applications through special processes; for example using a three-dimensional substrate or preparing PEDOT aerogel through freeze drying. This paper reviews recent techniques and outcomes of PEDOT based composites for supercapacitors, as well as detailed calculations about capacitances. Finally, this paper outlines the new direction and recent challenges of PEDOT based composites for supercapacitor applications.

  6. Capacitance of Nanoporous Carbon-Based Supercapacitors Is a Trade-Off between the Concentration and the Separability of the Ions.

    PubMed

    Burt, Ryan; Breitsprecher, Konrad; Daffos, Barbara; Taberna, Pierre-Louis; Simon, Patrice; Birkett, Greg; Zhao, X S; Holm, Christian; Salanne, Mathieu

    2016-10-06

    Nanoporous carbon-based supercapacitors store electricity through adsorption of ions from the electrolyte at the surface of the electrodes. Room temperature ionic liquids, which show the largest ion concentrations among organic liquid electrolytes, should in principle yield larger capacitances. Here, we show by using electrochemical measurements that the capacitance is not significantly affected when switching from a pure ionic liquid to a conventional organic electrolyte using the same ionic species. By performing additional molecular dynamics simulations, we interpret this result as an increasing difficulty of separating ions of opposite charges when they are more concentrated, that is, in the absence of a solvent that screens the Coulombic interactions. The charging mechanism consistently changes with ion concentration, switching from counterion adsorption in the diluted organic electrolyte to ion exchange in the pure ionic liquid. Contrarily to the capacitance, in-pore diffusion coefficients largely depend on the composition, with a noticeable slowing of the dynamics in the pure ionic liquid.

  7. Electrochemically Active Polyaniline (PANi) Coated Carbon Nanopipes and PANi Nanofibers Containing Composite.

    PubMed

    Ramana, G Venkata; Kumar, P Sampath; Srikanth, Vadali V S S; Padya, Balaji; Jain, P K

    2015-02-01

    A composite constituted by carbon nanopipes (CNPs) and polyaniline nanofibers (PANi NFs) is synthesized using in-situ chemical oxidative polymerization. Owing to its electrochemical activity the composite is found to be suitable as a working electrode material in hybrid type supercapacitors. Microstructural and phase analyses of the composite showed that (i) CNP surfaces are coated with PANi and (ii) PANi coated CNPs are distributed among PANi NFs. The composite shows an excellent electrochemical activity and a high specific capacitance of ~224.39 F/g. The electro-chemical activity of the composite is explicated in correlation with crystallinity, intrinsic oxidation state, and doping degree of PANi in the composite. The electro-chemical activity of the composite is also explicated in correlation with BET surface area and ordered meso-porosity pertaining to the composite. Charge/discharge curves indicate that the specific capacitance of the composite is a result of electric double-layer capacitance offered by CNPs and Faradaic pseudo capacitance offered by PANi NFs.

  8. Closed-Loop Control of Humidification for Artifact Reduction in Capacitive ECG Measurements.

    PubMed

    Leicht, Lennart; Eilebrecht, Benjamin; Weyer, Soren; Leonhardt, Steffen; Teichmann, Daniel

    2017-04-01

    Recording biosignals without the need for direct skin contact offers new opportunities for ubiquitous health monitoring. Electrodes with capacitive coupling have been shown to be suitable for the monitoring of electrical potentials on the body surface, in particular ECG. However, due to triboelectric charge generation and motion artifacts, signal and thus diagnostic quality is inferior to galvanic coupling. Active closed-loop humidification of capacitive electrodes is proposed in this work as a new concept to improve signal quality. A capacitive ECG recording system integrated into a common car seat is presented. It can regulate the micro climate at the interface of electrode and patient by actively dispensing water vapour and monitoring humidity in a closed-loop approach. As a regenerative water reservoir, silica gel is used. The system was evaluated with respect to subjective and objective ECG signal quality. Active humidification was found to have a significant positive effect in case of previously poor quality. Also, it had no diminishing effect in case of already good signal quality.

  9. Assessment of azadirachtin-A, a neem tetranortritarpinoid, on rat spermatozoa during in vitro capacitation.

    PubMed

    Katte, Teesta V; Rajyalakshmi, Malempati; Aladakatti, Ravindranath H

    2018-05-05

    The exploration of the biological assessment of technical azadirachtin, a tetranortritarpinoid from the neem seed kernel, was reviewed. The present study was, therefore, designed to evaluate the dose-dependent in vitro effects of azadirachtin-A, particularly on the functional studies and determination of molecular events, which are critical in the process of sperm capacitation. To assess the effects of the azadirachtin-A on the functional studies, sperm capacitation, the total sperm adenosine triphosphate levels, acrosome reaction (AR), the sperm-egg interaction and the determination of molecular events like cyclic adenosine-3',5'-monophosphate and calcium levels, the appropriate volumes of the sperm suspension were added to the medium to a final concentration of 1×106 sperm/mL and incubated in a humidified atmosphere of 5% CO2 in air at 37°C. The increasing quantities 0.5-2.0 mM/mL and the equivalent volumes of 50% dimethyl sulfoxide were added to the control dishes prior to the addition of spermatozoa and then observed at various time-points for motility and other analyses. Results revealed the dose- and time-dependent decrease in the functional consequence of capacitation, i.e. the percentage of motile spermatozoa, motility score and sperm motility index, levels of molecular events in spermatozoa, followed by declined spontaneous AR leading to lesser binding of the cauda epididymal sperm to the Zona pellucida. The findings confirm the inhibition of rat sperm motility by blocking some biochemical pathways like energy utilization. They also demonstrate that sperm capacitation is associated with the decrease in AR and that the levels of molecular events in spermatozoa can guide us towards the development of a new male contraceptive constituent.

  10. Research and Experiments on a Unipolar Capacitive Voltage Sensor

    PubMed Central

    Zhou, Qiang; He, Wei; Li, Songnong; Hou, Xingzhe

    2015-01-01

    Voltage sensors are an important part of the electric system. In service, traditional voltage sensors need to directly contact a high-voltage charged body. Sensors involve a large volume, complex insulation structures, and high design costs. Typically an iron core structure is adopted. As a result, ferromagnetic resonance can occur easily during practical application. Moreover, owing to the multilevel capacitor divider, the sensor cannot reflect the changes of measured voltage in time. Based on the electric field coupling principle, this paper designs a new voltage sensor; the unipolar structure design solves many problems of traditional voltage sensors like the great insulation design difficulty and high costs caused by grounding electrodes. A differential signal input structure is adopted for the detection circuit, which effectively restrains the influence of the common-mode interference signal. Through sensor modeling, simulation and calculations, the structural design of the sensor electrode was optimized, miniaturization of the sensor was realized, the voltage division ratio of the sensor was enhanced, and the phase difference of sensor measurement was weakened. The voltage sensor is applied to a single-phase voltage class line of 10 kV for testing. According to the test results, the designed sensor is able to meet the requirements of accurate and real-time measurement for voltage of the charged conductor as well as to provide a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system. Therefore, it can satisfy the development demands of the smart power grid. PMID:26307992

  11. Control of strong light-matter coupling using the capacitance of metamaterial nanocavities

    DOE PAGES

    Benz, Alexander; Campione, Salvatore; Klem, John Frederick; ...

    2015-01-27

    Metallic nanocavities with deep subwavelength mode volumes can lead to dramatic changes in the behavior of emitters placed in their vicinity. The resulting collocation and interaction often leads to strong coupling. We present for the first time experimental evidence that the Rabi splitting is directly proportional to the electrostatic capacitance associated with the metallic nanocavity. As a result, the system analyzed consists of different metamaterial geometries with the same resonance wavelength coupled to intersubband transitions in quantum wells.

  12. Radial displacement sensor for non-contact bearings

    NASA Technical Reports Server (NTRS)

    McCormick, John A. (Inventor); Sixsmith, Herbert (Inventor)

    1998-01-01

    A radial position sensor includes four capacitive electrodes oriented about a shaft, arranged in two diametrically opposite pairs. Sensor circuitry generates an output signal in proportion to the capacitance between the electrodes and the shaft; the capacitance between an electrode and the shaft increases as the shaft approaches the electrode and decreases as the shaft recedes from the electrode. The sensor circuitry applies an alternating voltage to one electrode of a pair and a 180 degree out of phase alternating voltage to the other electrode of the pair. The electrical responses of the two electrodes to their respective input signals are summed to form a radial deviation signal which is relatively free from the alternating voltage and accurately represents the position of the shaft relative to the electrodes of the pair.

  13. Capacitive micromachined ultrasonic transducers (CMUTs) with isolation posts.

    PubMed

    Huang, Yongli; Zhuang, Xuefeng; Haeggstrom, Edward O; Ergun, A Sanli; Cheng, Ching-Hsiang; Khuri-Yakub, Butrus T

    2008-03-01

    In this paper, an improved design of a capacitive micromachined ultrasonic transducer (CMUT) is presented. The design improvement aims to address the reliability issues of a CMUT and to extend the device operation beyond the contact (collapse) voltage. The major design novelty is the isolation posts in the vacuum cavities of the CMUT cells instead of full-coverage insulation layers in conventional CMUTs. This eliminates the contact voltage drifting due to charging caused by the insulation layer, and enables repeatable CMUT operation in the post-contact regime. Ultrasonic tests of the CMUTs with isolation posts (PostCMUTs) in air (electrical input impedance and capacitance vs. bias voltage) and immersion (transmission and reception) indicate acoustic performance similar to that obtained from conventional CMUTs while no undesired side effects of this new design is observed.

  14. Integrated TiN coated porous silicon supercapacitor with large capacitance per foot print

    NASA Astrophysics Data System (ADS)

    Grigoras, Kestutis; Grönberg, Leif; Ahopelto, Jouni; Prunnila, Mika

    2017-05-01

    We have fabricated a micro-supercapacitor with porous silicon electrodes coated with TiN by atomic layer deposition technique. The coating provides an efficient surface passivation and high electrical conductivity of the electrodes, resulting in stable and almost ideal electrochemical double layer capacitor behavior with characteristics comparable to the best carbon based micro-supercapacitors. Stability of the supercapacitor is verified by performing 50 000 voltammetry cycles with high capacitance retention obtained. Silicon microfabrication techniques facilitate integration of both supercapacitor electrodes inside the silicon substrate and, in this work, such in-chip supercapacitor is demonstrated. This approach allows realization of very high capacitance per foot print area. The in-chip micro-supercapacitor can be integrated with energy harvesting elements and can be used in wearable and implantable microdevices.

  15. Nitrogen/Sulfur-Codoped Carbon Materials from Chitosan for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Mei; Han, Xianlong; Chang, Xiaoqing; Yin, Wenchao; Ma, Jingyun

    2016-08-01

    d-Methionine and chitosan have been used for fabrication of nitrogen/sulfur-codoped carbon materials by a hydrothermal process followed by carbonization at 750°C for 3 h. The as-prepared carbon materials showed enhanced electrochemical performance, combining electrical double-layer capacitance with pseudocapacitance owing to the doping with sulfur and nitrogen. The specific capacitance of the obtained carbon material reached 135 F g-1 at current density of 1 A g-1, which is much higher than undoped chitosan (67 F g-1). The capacitance retention of the carbon material was almost 97.2% after 5000 cycles at current density of 1 A g-1. With such improved electrochemical performance, the nitrogen/sulfur-codoped carbon material may have promising potential for use in energy-storage electrodes of supercapacitors.

  16. Characterization and modeling of electrostatically actuated polysilicon micromechanical devices

    NASA Astrophysics Data System (ADS)

    Chan, Edward Keat Leem

    Sensors, actuators, transducers, microsystems and MEMS (MicroElertroMechanical Systems) are some of the terms describing technologies that interface information processing systems with the physical world. Electrostatically actuated micromechanical devices are important building blocks in many of these technologies. Arrays of these devices are used in video projection displays, fluid pumping systems, optical communications systems, tunable lasers and microwave circuits. Well-calibrated simulation tools are essential for propelling ideas from the drawing board into production. This work characterizes a fabrication process---the widely-used polysilicon MUMPs process---to facilitate the design of electrostatically actuated micromechanical devices. The operating principles of a representative device---a capacitive microwave switch---are characterized using a wide range of electrical and optical measurements of test structures along with detailed electromechanical simulations. Consistency in the extraction of material properties from measurements of both pull-in voltage and buckling amplitude is demonstrated. Gold is identified as an area-dependent source of nonuniformity in polysilicon thicknesses and stress. Effects of stress gradients, substrate curvature, and film coverage are examined quantitatively. Using well-characterized beams as in-situ surface probes, capacitance-voltage and surface profile measurements reveal that compressible surface residue modifies the effective electrical gap when the movable electrode contacts an underlying silicon nitride layer. A compressible contact surface model used in simulations improves the fit to measurements. In addition, the electric field across the nitride causes charge to build up in the nitride, increasing the measured capacitance over time. The rate of charging corresponds to charge injection through direct tunneling. A novel actuator that can travel stably beyond one-third of the initial gap (a trademark limitation of conventional actuators) is demonstrated. A "folded capacitor" design, requiring only minimal modifications to the layout of conventional devices, reduces the parasitic capacitances and modes of deformation that limit performance. This device, useful for optical applications, can travel almost twice the conventional range before succumbing to a tilting instability.

  17. Novel graphene-like electrodes for capacitive deionization.

    PubMed

    Li, Haibo; Zou, Linda; Pan, Likun; Sun, Zhuo

    2010-11-15

    Capacitive deionization (CDI) is a novel technology that has been developed for removal of charged ionic species from salty water, such as salt ions. The basic concept of CDI, as well as electrosorption, is to force charged ions toward oppositely polarized electrodes through imposing a direct electric field to form a strong electrical double layer and hold the ions. Once the electric field disappears, the ions are instantly released back to the bulk solution. CDI is an alternative low-energy consumption desalination technology. Graphene-like nanoflakes (GNFs) with relatively high specific surface area have been prepared and used as electrodes for capacitive deionization. The GNFs were synthesized by a modified Hummers' method using hydrazine for reduction. They were characterized by atomic force microscopy, N2 adsorption at 77 K and electrochemical workstation. It was found that the ratio of nitric acid and sulfuric acid plays a vital role in determining the specific surface area of GNFs. Its electrosorption performance was much better than commercial activated carbon (AC), suggesting a great potential in capacitive deionisation application. Further, the electrosorptive performance of GNFs electrodes with different bias potentials, flow rates and ionic strengths were measured and the electrosorption isotherm and kinetics were investigated. The results showed that GNFs prepared by this process had the specific surface area of 222.01 m²/g. The specific electrosorptive capacity of the GNFs was 23.18 µmol/g for sodium ions (Na+) when the initial concentration was at 25 mg/L, which was higher than that of previously reported data using graphene and AC under the same experimental condition. In addition, the equilibrium electrosorption capacity was determined as 73.47 µmol/g at 2.0 V by fitting data through the Langmuir isotherm, and the rate constant was found to be 1.01 min⁻¹ by fitting data through pseudo first-order adsorption. The results suggested that the chemically synthesized GNFs can be used as effective electrode materials in CDI process for brackish water desalination.

  18. Molecular dynamics simulation studies of ionic liquid electrolytes for electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Hu, Zongzhi

    Molecular Dynamics (MD) simulation has been performed on various Electric Double Layer Capacitors (EDLCs) systems with different Room Temperature Ionic Liquids (RTILs) as well as different structures and materials of electrodes using a computationally efficient, low cost, united atom (UA)/explicit atom (EA) force filed. MD simulation studies on two 1-butyl-3-methylimidazolium (BMIM) based RTILs, i.e., [BMIM][BF4] and [BMIM][PF6], have been conducted on both atomic flat and corrugated graphite as well as (001) and (011) gold electrode surfaces to understand the correlations between the Electric Double Layer (EDL) structure and their corresponding differential capacitance (DC). Our MD simulations have strong agreement with some experimental data. The structures of electrodes also have a strong effect on the capacitance of EDLCs. MD simulations have been conducted on RTILs of N-methyl-N- propylpyrrolidinium [pyr13] and bis(fluorosulfonyl)imide (FSI) as well as [BMIM][PF6] on both curvature electrodes (fullerenes, nanotube, nanowire) and atomic flat electrode surfaces. It turns out that the nanowire electrode systems have the largest capacitance, following by fullerene systems. Nanotube electrode systems have the smallest capacitance, but they are still larger than that of atomically flat electrode system. Also, RTILs with slightly different chemical structure such as [Cnmim], n = 2, 4, 6, and 8, FSI and bis(trifluoromethylsulfonyl)imide (TFSI), have been examined by MD simulation on both flat and nonflat graphite electrode surfaces to study the effect of cation and anion's chemical structures on EDL structure and DC. With prismatic (nonflat) graphite electrodes, a transition from a bell-shape to a camel-shape DC dependence on electrode potential was observed with increase of the cation alkyl tail length for FSI systems. In contrast, the [Cnmim][TFSI] ionic liquids generated only a camel-shape DC on the rough surface regardless of the length of alkyl tail.

  19. Ignition of Combustible Dust Clouds by Strong Capacitive Electric Sparks of Short Discharge Times

    NASA Astrophysics Data System (ADS)

    Eckhoff, Rolf K.

    2017-10-01

    It has been known for more than half a century that the discharge times of capacitive electric sparks can influence the minimum ignition energies of dust clouds substantially. Experiments by various workers have shown that net electric-spark energies for igniting explosive dust clouds in air were reduced by a factor of the order of 100 when spark discharge times were increased from a few μs to 0.1-1 ms. Experiments have also shown that the disturbance of the dust cloud by the shock/blast wave emitted by "short" spark discharges is a likely reason for this. The disturbance increases with increasing spark energy. In this paper a hitherto unpublished comprehensive study of this problem is presented. The work was performed about 50 years ago, using sparks of comparatively high energies (strong sparks). Lycopodium was used as test dust. The experiments were conducted in a brass vessel of 1 L volume. A transient dust cloud was generated in the vessel by a blast of compressed air. Synchronization of appearance of dust cloud and spark discharge was obtained by breaking the spark gap down by the dust cloud itself. This may in fact also be one possible synchronization mechanism in accidental industrial dust explosions initiated by electrostatic sparks. The experimental results for various spark energies were expressed as the probability of ignition, based on 100 replicate experiments, as a function of the nominal dust concentration. All probabilities obtained were 0%

  20. cAmp activation of apical membrane Cl(-) channels: theoretical considerations for impedance analysis.

    PubMed Central

    Păunescu, T G; Helman, S I

    2001-01-01

    Transepithelial electrical impedance analysis provides a sensitive method to evaluate the conductances and capacitances of apical and basolateral plasma membranes of epithelial cells. Impedance analysis is complicated, due not only to the anatomical arrangement of the cells and their paracellular shunt pathways, but also in particular to the existence of audio frequency-dependent capacitances or dispersions. In this paper we explore implications and consequences of anatomically related Maxwell-Wagner and Cole-Cole dielectric dispersions that impose limitations, approximations, and pitfalls of impedance analysis when tissues are studied under widely ranging spontaneous rates of transport, and in particular when apical membrane sodium and chloride channels are activated by adenosine 3',5'-cyclic monophosphate (cAMP) in A6 epithelia. We develop the thesis that capacitive relaxation processes of any origin lead not only to dependence on frequency of the impedance locus, but also to the appearance of depressed semicircles in Nyquist transepithelial impedance plots, regardless of the tightness or leakiness of the paracellular shunt pathways. Frequency dependence of capacitance precludes analysis of data in traditional ways, where capacitance is assumed constant, and is especially important when apical and/or basolateral membranes exhibit one or more dielectric dispersions. PMID:11463629

  1. 3-Axis Fully-Integrated Capacitive Tactile Sensor with Flip-Bonded CMOS on LTCC Interposer.

    PubMed

    Asano, Sho; Muroyama, Masanori; Nakayama, Takahiro; Hata, Yoshiyuki; Nonomura, Yutaka; Tanaka, Shuji

    2017-10-25

    This paper reports a 3-axis fully integrated differential capacitive tactile sensor surface-mountable on a bus line. The sensor integrates a flip-bonded complementary metal-oxide semiconductor (CMOS) with capacitive sensing circuits on a low temperature cofired ceramic (LTCC) interposer with Au through vias by Au-Au thermo-compression bonding. The CMOS circuit and bonding pads on the sensor backside were electrically connected through Au bumps and the LTCC interposer, and the differential capacitive gap was formed by an Au sealing frame. A diaphragm for sensing 3-axis force was formed in the CMOS substrate. The dimensions of the completed sensor are 2.5 mm in width, 2.5 mm in length, and 0.66 mm in thickness. The fabricated sensor output coded 3-axis capacitive sensing data according to applied 3-axis force by three-dimensional (3D)-printed pins. The measured sensitivity was as high as over 34 Count/mN for normal force and 14 to 15 Count/mN for shear force with small noise, which corresponds to less than 1 mN. The hysteresis and the average cross-sensitivity were also found to be less than 2% full scale and 11%, respectively.

  2. Carbon-polyaniline nanocomposites as supercapacitor materials

    NASA Astrophysics Data System (ADS)

    Sathish Kumar, M.; Yamini Yasoda, K.; Batabyal, Sudip Kumar; Kothurkar, Nikhil K.

    2018-04-01

    Polyaniline-based nanocomposites containing carbon nanotubes (CNT), reduced graphene oxide (rGO) and mixture of CNTs and rGO were synthesized. UV-visible spectroscopy and FT-IR spectroscopy confirmed the presence of polyaniline (PANi) and carbon nanomaterials. Scanning electron microscopy revealed that the neat PANi had a granular morphology, which can lead to increased electrical resistance to high interfacial resistance between domains of PANi. Cyclic voltammetry of PANi, PANi/CNT, PANi/rGO and PANi/CNT/rGO showed that in general, specific capacitance reduces with increasing scan rate within the range (10–100 mV s‑1). Also the specific capacitance values at any given scan rate within the above range, for PANi, PANi/CNT, PANi/rGO and PANi/CNT/rGO were found to be in increasing order. The specific capacitance of the PANi/CNT/rGO nanocomposite as measured by galvanostatic charge-discharge measurements, was found to be 312.5 F g‑1. The introduction of the carbon nanomaterials (CNTs, rGO) in PANi in general leads to improved specific capacitance, while the addition of CNTs and rGO together leads to synergistic improvement in the specific capacitance, owing to a combination of factors.

  3. An in situ trap capacitance measurement and ion-trapping detection scheme for a Penning ion trap facility.

    PubMed

    Reza, Ashif; Banerjee, Kumardeb; Das, Parnika; Ray, Kalyankumar; Bandyopadhyay, Subhankar; Dam, Bivas

    2017-03-01

    This paper presents the design and implementation of an in situ measurement setup for the capacitance of a five electrode Penning ion trap (PIT) facility at room temperature. For implementing a high Q resonant circuit for the detection of trapped electrons/ions in a PIT, the value of the capacitance of the trap assembly is of prime importance. A tunable Colpitts oscillator followed by a unity gain buffer and a low pass filter is designed and successfully implemented for a two-fold purpose: in situ measurement of the trap capacitance when the electric and magnetic fields are turned off and also providing RF power at the desired frequency to the PIT for exciting the trapped ions and subsequent detection. The setup is tested for the in situ measurement of trap capacitance at room temperature and the results are found to comply with those obtained from measurements using a high Q parallel resonant circuit setup driven by a standard RF signal generator. The Colpitts oscillator is also tested successfully for supplying RF power to the high Q resonant circuit, which is required for the detection of trapped electrons/ions.

  4. 3-Axis Fully-Integrated Capacitive Tactile Sensor with Flip-Bonded CMOS on LTCC Interposer †

    PubMed Central

    Asano, Sho; Nakayama, Takahiro; Hata, Yoshiyuki; Tanaka, Shuji

    2017-01-01

    This paper reports a 3-axis fully integrated differential capacitive tactile sensor surface-mountable on a bus line. The sensor integrates a flip-bonded complementary metal-oxide semiconductor (CMOS) with capacitive sensing circuits on a low temperature cofired ceramic (LTCC) interposer with Au through vias by Au-Au thermo-compression bonding. The CMOS circuit and bonding pads on the sensor backside were electrically connected through Au bumps and the LTCC interposer, and the differential capacitive gap was formed by an Au sealing frame. A diaphragm for sensing 3-axis force was formed in the CMOS substrate. The dimensions of the completed sensor are 2.5 mm in width, 2.5 mm in length, and 0.66 mm in thickness. The fabricated sensor output coded 3-axis capacitive sensing data according to applied 3-axis force by three-dimensional (3D)-printed pins. The measured sensitivity was as high as over 34 Count/mN for normal force and 14 to 15 Count/mN for shear force with small noise, which corresponds to less than 1 mN. The hysteresis and the average cross-sensitivity were also found to be less than 2% full scale and 11%, respectively. PMID:29068429

  5. Electric Pulse Discharge Activated Carbon Supercapacitors for Transportation Application

    NASA Astrophysics Data System (ADS)

    Nayak, Subhadarshi; Agrawal, Jyoti

    2012-03-01

    ScienceTomorrow is developing a high-speed, low-cost process for synthesizing high-porosity electrodes for electrochemical double-layer capacitors. Four types of coal (lignite, subbituminous, bituminous, and anthracite) were used as precursor materials for spark discharge activation with multiscale porous structure. The final porosity and pore distribution depended, among other factors, on precursor type. The high gas content in low-grade carbon resulted in mechanical disintegration, whereas high capacitance was attained in higher-grade coal. The properties, including capacitance, mechanical robustness, and internal conductivity, were excellent when the cost is taken into consideration.

  6. Spectral response analysis of PVDF capacitive sensors

    NASA Astrophysics Data System (ADS)

    Reyes-Ramírez, B.; García-Segundo, C.; García-Valenzuela, A.

    2013-06-01

    We investigate the spectral response to ultrasound waves in water of low-noise capacitive sensors based on PVDF polymer piezoelectric films. First, we analyze theoretically the mechanical-to-electrical transduction as a function of the frequency of ultrasonic signals and derive an analytic expression of the sensor's transfer function. Then we present experimental results of the frequency response of a home-made PDVF in water to test signals from 1 to 20 MHz induced by a commercial hydrophone powered by a signal generator and compare with our theoretical model.

  7. Improved Capacitive Liquid Sensor

    NASA Technical Reports Server (NTRS)

    Waldman, Francis A.

    1992-01-01

    Improved capacitive sensor used to detect presence and/or measure thickness of layer of liquid. Electrical impedance or admittance of sensor measured at prescribed frequency, and thickness of liquid inferred from predetermined theoretical or experimental relationship between impedance and thickness. Sensor is basically a three-terminal device. Features interdigitated driving and sensing electrodes and peripheral coplanar ground electrode that reduces parasitic effects. Patent-pending because first to utilize ground plane as "shunting" electrode. System less expensive than infrared, microwave, or refractive-index systems. Sensor successfully evaluated in commercial production plants to characterize emulsions, slurries, and solutions.

  8. Self similarities in desalination dynamics and performance using capacitive deionization.

    PubMed

    Ramachandran, Ashwin; Hemmatifar, Ali; Hawks, Steven A; Stadermann, Michael; Santiago, Juan G

    2018-09-01

    Charge transfer and mass transport are two underlying mechanisms which are coupled in desalination dynamics using capacitive deionization (CDI). We developed simple reduced-order models based on a mixed reactor volume principle which capture the coupled dynamics of CDI operation using closed-form semi-analytical and analytical solutions. We use the models to identify and explore self-similarities in the dynamics among flow rate, current, and voltage for CDI cell operation including both charging and discharging cycles. The similarity approach identifies the specific combination of cell (e.g. capacitance, resistance) and operational parameters (e.g. flow rate, current) which determine a unique effluent dynamic response. We here demonstrate self-similarity using a conventional flow between CDI (fbCDI) architecture, and we hypothesize that our similarity approach has potential application to a wide range of designs. We performed an experimental study of these dynamics and used well-controlled experiments of CDI cell operation to validate and explore limits of the model. For experiments, we used a CDI cell with five electrode pairs and a standard flow between (electrodes) architecture. Guided by the model, we performed a series of experiments that demonstrate natural response of the CDI system. We also identify cell parameters and operation conditions which lead to self-similar dynamics under a constant current forcing function and perform a series of experiments by varying flowrate, currents, and voltage thresholds to demonstrate self-similarity. Based on this study, we hypothesize that the average differential electric double layer (EDL) efficiency (a measure of ion adsorption rate to EDL charging rate) is mainly dependent on user-defined voltage thresholds, whereas flow efficiency (measure of how well desalinated water is recovered from inside the cell) depends on cell volumes flowed during charging, which is determined by flowrate, current and voltage thresholds. Results of experiments strongly support this hypothesis. Results show that cycle efficiency and salt removal for a given flowrate and current are maximum when average EDL and flow efficiencies are approximately equal. We further explored a range of CC operations with varying flowrates, currents, and voltage thresholds using our similarity variables to highlight trade-offs among salt removal, energy, and throughput performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. BaTiO3/PVDF Nanocomposite Film with High Energy Storage Density

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohui

    2016-03-01

    A gradated multilayer BaTiO3/poly(vinylidenefluoride) thin film structure is presented to achieve both a higher breakdown strength and a superior energy-storage capability. Key to the process is the sequential deposition of uniform dispersions of the single component source, which generate a blended PVDF-BTO-PVDF structure prior to full evaporation of solvent, and thermal treatment of the dielectric. The result is like sandwich structure with partial 0-3 character. The central layer designed to provide the high electric displacement, is composed of high volume fraction 6-10 nm BTO nanocrystals produced by a TEG-sol method. The outer layers of the structure are predominantly PVDF, with a significantly lower volume fraction of BTO, taking advantage of the higher dielectric strength for pure PVDF at the electrode-nanocomposite interface. The film is mechanically flexible, and can be removed from the substrate, with total thicknesses in the range 1.2 - 1.5 μm. Parallel plate capacitance devices improved dielectric performances, compared to reported values for BTO-PVDF 0-3 nanocomposites, with a maximal discharged energy density of 19.4J/cm3 and dielectric breakdown strengths of up to 495 kV/mm.

  10. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation.

    PubMed

    Miocinovic, Svjetlana; Lempka, Scott F; Russo, Gary S; Maks, Christopher B; Butson, Christopher R; Sakaie, Ken E; Vitek, Jerrold L; McIntyre, Cameron C

    2009-03-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson's disease and shows great promise for numerous other disorders. While the fundamental purpose of DBS is to modulate neural activity with electric fields, little is known about the actual voltage distribution generated in the brain by DBS electrodes and as a result it is difficult to accurately predict which brain areas are directly affected by the stimulation. The goal of this study was to characterize the spatial and temporal characteristics of the voltage distribution generated by DBS electrodes. We experimentally recorded voltages around active DBS electrodes in either a saline bath or implanted in the brain of a non-human primate. Recordings were made during voltage-controlled and current-controlled stimulation. The experimental findings were compared to volume conductor electric field models of DBS parameterized to match the different experiments. Three factors directly affected the experimental and theoretical voltage measurements: 1) DBS electrode impedance, primarily dictated by a voltage drop at the electrode-electrolyte interface and the conductivity of the tissue medium, 2) capacitive modulation of the stimulus waveform, and 3) inhomogeneity and anisotropy of the tissue medium. While the voltage distribution does not directly predict the neural response to DBS, the results of this study do provide foundational building blocks for understanding the electrical parameters of DBS and characterizing its effects on the nervous system.

  11. Nonlinear dynamics of capacitive charging and desalination by porous electrodes.

    PubMed

    Biesheuvel, P M; Bazant, M Z

    2010-03-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the "supercapacitor regime" of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the "desalination regime" of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.

  12. Nonlinear dynamics of capacitive charging and desalination by porous electrodes

    NASA Astrophysics Data System (ADS)

    Biesheuvel, P. M.; Bazant, M. Z.

    2010-03-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the “supercapacitor regime” of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the “desalination regime” of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.

  13. Performance of Electric Double-Layer Capacitor Simulators

    NASA Astrophysics Data System (ADS)

    Funabiki, Shigeyuki; Kodama, Shinsuke; Yamamoto, Masayoshi

    This paper proposes a simulator of EDLC, which realizes the performance equivalent to electric double-layer capacitors (EDLCs). The proposed simulator consists of an electrolytic capacitor and a two-quadrant chopper working as a current source. Its operation principle is described in the first place. The voltage dependence of capacitance of EDLCs is taken into account. The performance of the proposed EDLC simulator is verified by computer simulations.

  14. A humidity sensing organic-inorganic composite for environmental monitoring.

    PubMed

    Ahmad, Zubair; Zafar, Qayyum; Sulaiman, Khaulah; Akram, Rizwan; Karimov, Khasan S

    2013-03-14

    In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ~200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ~31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved.

  15. A Humidity Sensing Organic-Inorganic Composite for Environmental Monitoring

    PubMed Central

    Ahmad, Zubair; Zafar, Qayyum; Sulaiman, Khaulah; Akram, Rizwan; Karimov, Khasan S.

    2013-01-01

    In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ∼200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ∼31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved. PMID:23493124

  16. Effect of gas properties on the dynamics of the electrical slope asymmetry effect in capacitive plasmas: comparison of Ar, H 2 and CF 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruneau, Bastien; Lafleur, T.; Gans, T.

    2015-12-01

    Tailored voltage excitation waveforms provide an efficient control of the ion energy (through the electrical asymmetry effect) in capacitive plasmas by varying the 'amplitude' asymmetry of the waveform. In this work, the effect of a 'slope' asymmetry of the waveform is investigated by using sawtooth-like waveforms, through which the sheath dynamic can be manipulated. A remarkably different discharge dynamic is found for Ar, H 2, and CF 4 gases, which is explained by the different dominant electron heating mechanisms and plasma chemistries. In comparison to Argon we find that the electrical asymmetry can even be reversed by using an electronegativemore » gas such as CF 4. Phase resolved optical emission spectroscopy measurements, probing the spatiotemporal distribution of the excitation rate show excellent agreement with the results of particle-in-cell simulations, confirming the high degree of correlation between the excitation rates with the dominant heating mechanisms in the various gases. It is shown that, depending on the gas used, sawtooth-like voltage waveforms may cause a strong asymmetry.« less

  17. Electric Field Sensor for Lightning Early Warning System

    NASA Astrophysics Data System (ADS)

    Premlet, B.; Mohammed, R.; Sabu, S.; Joby, N. E.

    2017-12-01

    Electric field mills are used popularly for atmospheric electric field measurements. Atmospheric Electric Field variation is the primary signature for Lightning Early Warning systems. There is a characteristic change in the atmospheric electric field before lightning during a thundercloud formation.A voltage controlled variable capacitance is being proposed as a method for non-contacting measurement of electric fields. A varactor based mini electric field measurement system is developed, to detect any change in the atmospheric electric field and to issue lightning early warning system. Since this is a low-cost device, this can be used for developing countries which are facing adversities. A network of these devices can help in forming a spatial map of electric field variations over a region, and this can be used for more improved atmospheric electricity studies in developing countries.

  18. Nitrogen-doped mesoporous carbons for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Liu, Qiming

    2016-08-01

    The mesoporous carbons have been synthesized by using α-D(+)-Glucose, D-Glucosamine hydrochloride or their mixture as carbon precursors and mesoporous silicas (SBA-15 or MCF) as hard templates. The as-prepared products show a large pore volume (0.59-0.97 cm3 g-1), high surface areas (352.72-1152.67 m2 g-1) and rational nitrogen content (ca. 2.5-3.9 wt.%). The results of electrochemical tests demonstrate that both heteroatom doping and suitable pore structure play a decisive role in the performance of supercapacitors. The representative sample of SBA-15 replica obtained using D-Glucosamine hydrochloride only exhibits high specific capacitance (212.8 F g-1 at 0.5 A g-1) and good cycle durability (86.1% of the initial capacitance after 2000 cycles) in 6 M KOH aqueous electrolyte, which is attributed to the contribution of double layer capacitance and pseudo-capacitance. The excellent electrochemical performance makes it a promising electrode material for supercapacitors.

  19. High capacitance density MIS capacitor using Si nanowires by MACE and ALD alumina dielectric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leontis, I.; Nassiopoulou, A. G., E-mail: A.Nassiopoulou@inn.demokritos.gr; Botzakaki, M. A.

    2016-06-28

    High capacitance density three-dimensional (3D) metal-insulator-semiconductor (MIS) capacitors using Si nanowires (SiNWs) by metal-assisted chemical etching and atomic-layer-deposited alumina dielectric film were fabricated and electrically characterized. A chemical treatment was used to remove structural defects from the nanowire surface, in order to reduce the density of interface traps at the Al{sub 2}O{sub 3}/SiNW interface. SiNWs with two different lengths, namely, 1.3 μm and 2.4 μm, were studied. A four-fold capacitance density increase compared to a planar reference capacitor was achieved with the 1.3 μm SiNWs. In the case of the 2.4 μm SiNWs this increase was ×7, reaching a value of 4.1 μF/cm{sup 2}. Capacitance-voltagemore » (C-V) measurements revealed that, following a two-cycle chemical treatment, frequency dispersion at accumulation regime and flat-band voltage shift disappeared in the case of the 1.3 μm SiNWs, which is indicative of effective removal of structural defects at the SiNW surface. In the case of the 2.4 μm SiNWs, frequency dispersion at accumulation persisted even after the two-step chemical treatment. This is attributed to a porous Si layer at the SiNW tops, which is not effectively removed by the chemical treatment. The electrical losses of MIS capacitors in both cases of SiNW lengths were studied and will be discussed.« less

  20. A voltage-controlled capacitive discharge method for electrical activation of peripheral nerves.

    PubMed

    Rosellini, Will M; Yoo, Paul B; Engineer, Navzer; Armstrong, Scott; Weiner, Richard L; Burress, Chester; Cauller, Larry

    2011-01-01

    A voltage-controlled capacitive discharge (VCCD) method was investigated as an alternative to rectangular stimulus pulses currently used in peripheral nerve stimulation therapies.  In two anesthetized Gottingen mini pigs, the threshold (total charge per phase) for evoking a compound nerve action potential (CNAP) was compared between constant current (CC) and VCCD methods. Electrical pulses were applied to the tibial and posterior cutaneous femoralis nerves using standard and modified versions of the Medtronic 3778 Octad.  In contrast to CC stimulation, the combined application of VCCD pulses with a modified Octad resulted in a marked decrease (-73 ± 7.4%) in the stimulation threshold for evoking a CNAP. This was consistent for different myelinated fiber types and locations of stimulation.  The VCCD method provides a highly charge-efficient means of activating myelinated fibers that could potentially be used within a wireless peripheral nerve stimulator system. © 2011 International Neuromodulation Society.

  1. Transport model of controlled molecular rectifier showing unusual negative differential resistance effect.

    PubMed

    Granhen, Ewerton Ramos; Reis, Marcos Allan Leite; Souza, Fabrício M; Del Nero, Jordan

    2010-12-01

    We investigate theoretically the charge accumulated Q in a three-terminal molecular device in the presence of an external electric field. Our approach is based on ab initio Hartree-Fock and density functional theory methodology contained in Gaussian package. Our main finding is a negative differential resistance (NDR) in the charge Q as a function of an external electric field. To explain this NDR effect we apply a phenomenological capacitive model based on a quite general system composed of many localized levels (that can be LUMOs of a molecule) coupled to source and drain. The capacitance accounts for charging effects that can result in Coulomb blockade (CB) in the transport. We show that this CB effect gives rise to a NDR for a suitable set of phenomenological parameters, like tunneling rates and charging energies. The NDR profile obtained in both ab initio and phenomenological methodologies are in close agreement.

  2. thin film capacitors

    NASA Astrophysics Data System (ADS)

    Bodeux, Romain; Gervais, Monique; Wolfman, Jérôme; Gervais, François

    2014-09-01

    CaCu3Ti4O12 (CCTO) thin films were grown by pulsed laser deposition on Pt and La0.9Sr1.1NiO4 (LSNO) bottom electrodes. The electrical characteristics of the CCTO/Pt and CCTO/LSNO Schottky junctions have been analyzed by impedance spectroscopy, capacitance-voltage (C-V) and current-voltage (I-V) measurements as a function of frequency (40 Hz-1 MHz) and temperature (300-475 K). Similar results were obtained for the two Schottky diodes. The conduction mechanism through the Schottky junctions was described using a thermionic emission model and the electrical parameters were determined. The strong deviation from the ideal I-V characteristics and the increase in capacitance at low frequency for -0.5 V bias are in agreement with the presence of traps near the interfaces. Results point toward the important effect of defects generated at the interface by deposition of CCTO.

  3. Regularization Reconstruction Method for Imaging Problems in Electrical Capacitance Tomography

    NASA Astrophysics Data System (ADS)

    Chu, Pan; Lei, Jing

    2017-11-01

    The electrical capacitance tomography (ECT) is deemed to be a powerful visualization measurement technique for the parametric measurement in a multiphase flow system. The inversion task in the ECT technology is an ill-posed inverse problem, and seeking for an efficient numerical method to improve the precision of the reconstruction images is important for practical measurements. By the introduction of the Tikhonov regularization (TR) methodology, in this paper a loss function that emphasizes the robustness of the estimation and the low rank property of the imaging targets is put forward to convert the solution of the inverse problem in the ECT reconstruction task into a minimization problem. Inspired by the split Bregman (SB) algorithm, an iteration scheme is developed for solving the proposed loss function. Numerical experiment results validate that the proposed inversion method not only reconstructs the fine structures of the imaging targets, but also improves the robustness.

  4. Infrared light excites cells by changing their electrical capacitance

    PubMed Central

    Shapiro, Mikhail G.; Homma, Kazuaki; Villarreal, Sebastian; Richter, Claus-Peter; Bezanilla, Francisco

    2012-01-01

    Optical stimulation has enabled important advances in the study of brain function and other biological processes, and holds promise for medical applications ranging from hearing restoration to cardiac pace making. In particular, pulsed laser stimulation using infrared wavelengths >1.5 μm has therapeutic potential based on its ability to directly stimulate nerves and muscles without any genetic or chemical pre-treatment. However, the mechanism of infrared stimulation has been a mystery, hindering its path to the clinic. Here we show that infrared light excites cells through a novel, highly general electrostatic mechanism. Infrared pulses are absorbed by water, producing a rapid local increase in temperature. This heating reversibly alters the electrical capacitance of the plasma membrane, depolarizing the target cell. This mechanism is fully reversible and requires only the most basic properties of cell membranes. Our findings underscore the generality of pulsed infrared stimulation and its medical potential. PMID:22415827

  5. Characterization of Resistances of a Capacitive Deionization System

    DOE PAGES

    Qu, Yatian; Baumann, Theodore F.; Santiago, Juan G.; ...

    2015-07-27

    Capacitive deionization (CDI) is a promising desalination technology, which operates at low pressure, low temperature, requires little infrastructure, and has the potential to consume less energy for brackish water desalination. However, CDI devices consume significantly more energy than the theoretical thermodynamic minimum, and this is at least partly due to resistive power dissipation. We here report our efforts to characterize electric resistances in a CDI system, with a focus on the resistance associated with the contact between current collectors and porous electrodes. We present an equivalent circuit model to describe resistive components in a CDI cell. We propose measurable figuresmore » of merit to characterize cell resistance. We also show that contact pressure between porous electrodes and current collectors can significantly reduce contact resistance. As a result, we propose and test an alternative electrical contact configuration which uses a pore-filling conductive adhesive (silver epoxy) and achieves significant reductions in contact resistance.« less

  6. Junctionless Thin-Film Transistors Gated by an H₃PO₄-Incorporated Chitosan Proton Conductor.

    PubMed

    Liu, Huixuan; Xun, Damao

    2018-04-01

    We fabricated an H3PO4-incorporated chitosan proton conductor film that exhibited the electric double layer effect and showed a high specific capacitance of 4.42 μF/cm2. Transparent indium tin oxide thin-film transistors gated by H3PO4-incorporated chitosan films were fabricated by sputtering through a shadow mask. The operating voltage was as low as 1.2 V because of the high specific capacitance of the H3PO4-incorporated chitosan dielectrics. The junctionless transparent indium tin oxide thin film transistors exhibited good performance, including an estimated current on/off ratio and field-effect mobility of 1.2 × 106 and 6.63 cm2V-1s-1, respectively. These low-voltage thin-film electric-double-layer transistors gated by H3PO4-incorporated chitosan are promising for next generation battery-powered "see-through" portable sensors.

  7. Elevated central venous pressure: A consequence of exercise training-induced hypervolemia

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.; Mack, Gary W.; Nadel, Ethan R.

    1990-01-01

    Resting plasma volumes, and arterial and central venous pressures (CVP) were measured in 16 men before and after exercise training to determine if training-induced hypervolemia could be explained by a change in total vascular capacitance. In addition, resting levels of plasma vasopressin (AVP), atrial natriuretic peptide (ANP), aldosterone (ALD), and norepinephrine (NE) were measured before and after training. The same measurements of vacular volume, pressures, and plasma hormones were measured in 8 subjects who did not undergo exercise and acted as controls. The exercise training program consisted of 10 weeks of controlled cycle exercise for 30 min/d, 4 d/wk at 75 to 80 percent of maximal oxygen uptake (VO2max). A training effect was verified by a 20 percent increase in VO2max, a resting bradycardia, and a 370 ml (9 percent) increase in blood volume. Mean arterial blood pressure was unaltered by exercise training, but resting CVP increased. The percent change in blood volume from before to after training was linearly related to the percent change in CVP. As a consequence of elevations in both blood volume and CVP, the volume-to-pressure ratio was essentially unchanged following exercise training. Plasma AVP, ANP, ALD, and NE were unaltered. Results indicate that elevated CVP is a consequence of training-induced hypervolemia without alteration in total effective venous capacitance. This may represent a resetting of the pressure-volume stimulus-response relation for regulation of blood volume.

  8. Combined electrical transport and capacitance spectroscopy of a MoS2-LiNbO3 field effect transistor

    NASA Astrophysics Data System (ADS)

    Michailow, Wladislaw; Schülein, Florian J. R.; Möller, Benjamin; Preciado, Edwin; Nguyen, Ariana E.; von Son, Gretel; Mann, John; Hörner, Andreas L.; Wixforth, Achim; Bartels, Ludwig; Krenner, Hubert J.

    2017-01-01

    We have measured both the current-voltage ( ISD - VGS ) and capacitance-voltage (C- VGS ) characteristics of a MoS2-LiNbO3 field effect transistor. From the measured capacitance, we calculate the electron surface density and show that its gate voltage dependence follows the theoretical prediction resulting from the two-dimensional free electron model. This model allows us to fit the measured ISD - VGS characteristics over the entire range of VGS . Combining this experimental result with the measured current-voltage characteristics, we determine the field effect mobility as a function of gate voltage. We show that for our device, this improved combined approach yields significantly smaller values (more than a factor of 4) of the electron mobility than the conventional analysis of the current-voltage characteristics only.

  9. Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors.

    PubMed

    Zhu, Jiayi; He, Junhui

    2012-03-01

    Graphene-wrapped MnO(2) nanocomposites were first fabricated by coassembly between honeycomb MnO(2) nanospheres and graphene sheets via electrostatic interaction. The materials were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and thermogravimetric analysis. The novel MnO(2)/graphene hybrid materials were used for investigation of electrochemical capacitive behaviors. The hybrid materials displayed enhanced capacitive performance (210 F/g at 0.5 A/g). Additionally, over 82.4% of the initial capacitance was retained after repeating the cyclic voltammetry test for 1000 cycles. The improved electrochemical performance might be attributed to the combination of the pesudocapacitance of MnO(2) nanospheres with the honeycomb-like "opened" structure and good electrical conductivity of graphene sheets. © 2012 American Chemical Society

  10. Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage.

    PubMed

    Xu, Fei; Xu, Hong; Chen, Xiong; Wu, Dingcai; Wu, Yang; Liu, Hao; Gu, Cheng; Fu, Ruowen; Jiang, Donglin

    2015-06-01

    Ordered π-columns and open nanochannels found in covalent organic frameworks (COFs) could render them able to store electric energy. However, the synthetic difficulty in achieving redox-active skeletons has thus far restricted their potential for energy storage. A general strategy is presented for converting a conventional COF into an outstanding platform for energy storage through post-synthetic functionalization with organic radicals. The radical frameworks with openly accessible polyradicals immobilized on the pore walls undergo rapid and reversible redox reactions, leading to capacitive energy storage with high capacitance, high-rate kinetics, and robust cycle stability. The results suggest that channel-wall functional engineering with redox-active species will be a facile and versatile strategy to explore COFs for energy storage. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. 3D Graphene Functionalized by Covalent Organic Framework Thin Film as Capacitive Electrode in Alkaline Media.

    PubMed

    Zha, Zeqi; Xu, Lirong; Wang, Zhikui; Li, Xiaoguang; Pan, Qinmin; Hu, Pingan; Lei, Shengbin

    2015-08-19

    To harness the electroactivity of anthraquinone as an electrode material, a great recent effort have been invested to composite anthraquinone with carbon materials to improve the conductivity. Here we report on a noncovalent way to modify three-dimensional graphene with anthraquinone moieties through on-surface synthesis of two-dimensional covalent organic frameworks. We incorporate 2,6-diamino-anthraquinone moieties into COF through Schiff-base reaction with benzene-1,3,5-tricarbaldehyde. The synthesized COF -graphene composite exhibits large specific capacitance of 31.7 mF/cm(2). Long-term galvanostatic charge/discharge cycling experiments revealed a decrease of capacitance, which was attributed to the loss of COF materials and electrostatic repulsion accumulated during charge-discharge circles which result in the poor electrical conductivity between 2D COF layers.

  12. Architecture engineering of supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Chen, Kunfeng; Li, Gong; Xue, Dongfeng

    2016-02-01

    The biggest challenge for today’s supercapacitor systems readily possessing high power density is their low energy density. Their electrode materials with controllable structure, specific surface area, electronic conductivity, and oxidation state, have long been highlighted. Architecture engineering of functional electrode materials toward powerful supercapacitor systems is becoming a big fashion in the community. The construction of ion-accessible tunnel structures can microscopically increase the specific capacitance and materials utilization; stiff 3D structures with high specific surface area can macroscopically assure high specific capacitance. Many exciting findings in electrode materials mainly focus on the construction of ice-folded graphene paper, in situ functionalized graphene, in situ crystallizing colloidal ionic particles and polymorphic metal oxides. This feature paper highlights some recent architecture engineering strategies toward high-energy supercapacitor electrode systems, including electric double-layer capacitance (EDLC) and pseudocapacitance.

  13. Frequency dependent ac transport of films of close-packed carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Endo, A.; Katsumoto, S.; Matsuda, K.; Norimatsu, W.; Kusunoki, M.

    2018-03-01

    We have measured low-temperature ac impedance of films of closely-packed, highly-aligned carbon nanotubes prepared by thermal decomposition of silicon carbide wafers. The measurement was performed on films with the thickness (the length of the nanotubes) ranging from 6.5 to 65 nm. We found that the impedance rapidly decreases with the frequency. This can be interpreted as resulting from the electric transport via capacitive coupling between adjacent nanotubes. We also found numbers of sharp spikes superposed on frequency vs. impedance curves, which presumably represent resonant frequencies seen in the calculated conductivity of random capacitance networks. Capacitive coupling between the nanotubes was reduced by the magnetic field perpendicular to the films at 8.2 mK, resulting in the transition from negative to positive magnetoresistance with an increase of the frequency.

  14. Electron series resonance in a magnetized 13.56 MHz symmetric capacitive coupled discharge

    NASA Astrophysics Data System (ADS)

    Joshi, J. K.; Binwal, S.; Karkari, S. K.; Kumar, Sunil

    2018-03-01

    A 13.56 MHz capacitive coupled radio-frequency (RF) argon discharge under transverse magnetic field has been investigated. The discharge is operated in a push-pull mode using a 1:1 isolation transformer with its centre tap grounded to a RF generator. The power delivered to the plasma has been calculated from phase-calibrated RF current/voltage waveforms measured on the secondary side of the isolation transformer. An equivalent electrical circuit of the discharge has been described to determine the net plasma impedance. It is found that in the presence of magnetic field, the discharge impedance exhibits a series resonance as the RF power level is increased gradually. However, in the un-magnetized case, the discharge remains entirely capacitive. A qualitative discussion has been given to explain the role of external magnetic field in achieving the series resonance.

  15. Investigation and Modeling of Capacitive Human Body Communication.

    PubMed

    Zhu, Xiao-Qi; Guo, Yong-Xin; Wu, Wen

    2017-04-01

    This paper presents a systematic investigation of the capacitive human body communication (HBC). The measurement of HBC channels is performed using a novel battery-powered system to eliminate the effects of baluns, cables and instruments. To verify the measured results, a numerical model incorporating the entire HBC system is established. Besides, it is demonstrated that both the impedance and path gain bandwidths of HBC channels is affected by the electrode configuration. Based on the analysis of the simulated electric field distribution, an equivalent circuit model is proposed and the circuit parameters are extracted using the finite element method. The transmission capability along the human body is also studied. The simulated results using the numerical and circuit models coincide very well with the measurement, which demonstrates that the proposed circuit model can effectively interpret the operation mechanism of the capacitive HBC.

  16. Electrospun mulberry-like hierarchical carbon fiber web for high-performance supercapacitors.

    PubMed

    Liu, Chao; Liu, Jizi; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2018-02-15

    In this work, we have fabricated a kind of N-doped hierarchal carbon fiber web by electrospinning hollow mesoporous carbon spheres (HMCSs) into fibrous structure. The as-synthesized carbon fiber web with novel mulberry-like morphology, thus denoted as MC-FW, possesses micro/meso/macroporous porosity, large surface area, high conductivity and multi-level structure, which are highly desired for supercapacitor electrode materials. The electrochemical measurements demonstrate that the designed MC-FW shows high capacitance (298.6 F g -1 ), favorable capacitance retention (71.0%) and long cycle life (97.3% capacitance retention after 5000 cycles). Notably, the capacitance of 298.6 F g -1 for MC-FW is higher than the capacitance reported so far for many hollow carbon spheres and carbon fibers, which may contribute to the synergistic effect between the merits of HMCSs (e.g. micro/meso/macroporous hierarchal structure, large surface area, high pore volume) and advantages of 1D carbon fiber (e.g. large aspect ratio and high conductivity). It is believed that this distinctive carbon fiber web may show promising prospects as advanced energy storage materials and catalyst. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Ultrafast electric phase control of a single exciton qubit

    NASA Astrophysics Data System (ADS)

    Widhalm, Alex; Mukherjee, Amlan; Krehs, Sebastian; Sharma, Nandlal; Kölling, Peter; Thiede, Andreas; Reuter, Dirk; Förstner, Jens; Zrenner, Artur

    2018-03-01

    We report on the coherent phase manipulation of quantum dot excitons by electric means. For our experiments, we use a low capacitance single quantum dot photodiode which is electrically controlled by a custom designed SiGe:C BiCMOS chip. The phase manipulation is performed and quantified in a Ramsey experiment, where ultrafast transient detuning of the exciton energy is performed synchronous to double pulse π/2 ps laser excitation. We are able to demonstrate electrically controlled phase manipulations with magnitudes up to 3π within 100 ps which is below the dephasing time of the quantum dot exciton.

  18. A 3D Faraday Shield for Interdigitated Dielectrometry Sensors and Its Effect on Capacitance

    PubMed Central

    Risos, Alex; Long, Nicholas; Hunze, Arvid; Gouws, Gideon

    2016-01-01

    Interdigitated dielectrometry sensors (IDS) are capacitive sensors investigated to precisely measure the relative permittivity (ϵr) of insulating liquids. Such liquids used in the power industry exhibit a change in ϵr as they degrade. The IDS ability to measure ϵr in-situ can potentially reduce maintenance, increase grid stability and improve safety. Noise from external electric field sources is a prominent issue with IDS. This paper investigates the novelty of applying a Faraday cage onto an IDS as a 3D shield to reduce this noise. This alters the spatially distributed electric field of an IDS affecting its sensing properties. Therefore, dependency of the sensor’s signal with the distance to a shield above the IDS electrodes has been investigated experimentally and theoretically via a Green’s function calculation and FEM. A criteria of the shield’s distance s = s0 has been defined as the distance which gives a capacitance for the IDS equal to 1 − e−2=86.5% of its unshielded value. Theoretical calculations using a simplified geometry gave a constant value for s0/λ = 1.65, where λ is the IDS wavelength. In the experiment, values for s0 were found to be lower than predicted as from theory and the ratio s0/λ variable. This was analyzed in detail and it was found to be resulting from the specific spatial structure of the IDS. A subsequent measurement of a common insulating liquid with a nearby noise source demonstrates a considerable reduction in the standard deviation of the relative permittivity from σunshielded=±9.5% to σshielded=±0.6%. The presented findings enhance our understanding of IDS in respect to the influence of a Faraday shield on the capacitance, parasitic capacitances of the IDS and external noise impact on the measurement of ϵr. PMID:28042868

  19. A 3D Faraday Shield for Interdigitated Dielectrometry Sensors and Its Effect on Capacitance.

    PubMed

    Risos, Alex; Long, Nicholas; Hunze, Arvid; Gouws, Gideon

    2016-12-31

    Interdigitated dielectrometry sensors (IDS) are capacitive sensors investigated to precisely measure the relative permittivity ( ϵ r ) of insulating liquids. Such liquids used in the power industry exhibit a change in ϵ r as they degrade. The IDS ability to measure ϵ r in-situ can potentially reduce maintenance, increase grid stability and improve safety. Noise from external electric field sources is a prominent issue with IDS. This paper investigates the novelty of applying a Faraday cage onto an IDS as a 3D shield to reduce this noise. This alters the spatially distributed electric field of an IDS affecting its sensing properties. Therefore, dependency of the sensor's signal with the distance to a shield above the IDS electrodes has been investigated experimentally and theoretically via a Green's function calculation and FEM. A criteria of the shield's distance s = s 0 has been defined as the distance which gives a capacitance for the IDS equal to 1 - e - 2 = 86.5 % of its unshielded value. Theoretical calculations using a simplified geometry gave a constant value for s 0 / λ = 1.65, where λ is the IDS wavelength. In the experiment, values for s 0 were found to be lower than predicted as from theory and the ratio s 0 / λ variable. This was analyzed in detail and it was found to be resulting from the specific spatial structure of the IDS. A subsequent measurement of a common insulating liquid with a nearby noise source demonstrates a considerable reduction in the standard deviation of the relative permittivity from σ unshielded = ± 9.5% to σ shielded = ± 0.6%. The presented findings enhance our understanding of IDS in respect to the influence of a Faraday shield on the capacitance, parasitic capacitances of the IDS and external noise impact on the measurement of ϵ r .

  20. Dielectric behavior of beef meat in the 1-1500kHz range: Simulation with the Fricke/Cole-Cole model.

    PubMed

    Damez, Jean-Louis; Clerjon, Sylvie; Abouelkaram, Saïd; Lepetit, Jacques

    2007-12-01

    The electrical properties of biological tissues have been researched for many years. Impedance measurements observed with increasing frequencies are mainly attributed to changes in membrane conductivity and ion and charged-molecule mobility (mainly Na(+), K(+), CL(-) ions). Equivalent circuits with passive electrical components are frequently used as a support model for presentation and analyses of the behavior of tissues submitted to electrical fields. Fricke proposed an electrical model where the elements are resistive and capacitive. The model is composed of a resistive element (Rp) representing extracellular fluids (ECF) placed in parallel with a capacitive element (Cs) representing insulating membranes in series and a resistive element (Rs) representing intracellular fluids (ICF). This model is able to describe impedance measurements: at lower frequencies, most of the current flows around the cells without being able to penetrate them, while at higher frequencies the membranes lose their insulating properties and the current flows through both the extracellular and intracellular compartments. Since meat ageing induces structural change, particularly in membrane integrity, the insulating properties of membranes decrease, and intracellular and extracellular electrolytes mix, thus driving changes in their electrical properties. We report a method combining the Fricke and Cole-Cole models that was developed to monitor and explain tissues conductivity changes in preferential directions during beef meat ageing.

  1. Numerical simulation of electromagnetic fields and impedance of CERN LINAC4 H(-) source taking into account the effect of the plasma.

    PubMed

    Grudiev, A; Lettry, J; Mattei, S; Paoluzzi, M; Scrivens, R

    2014-02-01

    Numerical simulation of the CERN LINAC4 H(-) source 2 MHz RF system has been performed taking into account a realistic geometry from 3D Computer Aided Design model using commercial FEM high frequency simulation code. The effect of the plasma has been added to the model by the approximation of a homogenous electrically conducting medium. Electric and magnetic fields, RF power losses, and impedance of the circuit have been calculated for different values of the plasma conductivity. Three different regimes have been found depending on the plasma conductivity: (1) Zero or low plasma conductivity results in RF electric field induced by the RF antenna being mainly capacitive and has axial direction; (2) Intermediate conductivity results in the expulsion of capacitive electric field from plasma and the RF power coupling, which is increasing linearly with the plasma conductivity, is mainly dominated by the inductive azimuthal electric field; (3) High conductivity results in the shielding of both the electric and magnetic fields from plasma due to the skin effect, which reduces RF power coupling to plasma. From these simulations and measurements of the RF power coupling on the CERN source, a value of the plasma conductivity has been derived. It agrees well with an analytical estimate calculated from the measured plasma parameters. In addition, the simulated and measured impedances with and without plasma show very good agreement as well demonstrating validity of the plasma model used in the RF simulations.

  2. Direct in situ measurement of specific capacitance, monolayer tension, and bilayer tension in a droplet interface bilayer

    DOE PAGES

    Taylor, Graham J.; Venkatesan, Guru A.; Collier, C. Patrick; ...

    2015-08-05

    In this study, thickness and tension are important physical parameters of model cell membranes. However, traditional methods to measure these quantities require multiple experiments using separate equipment. This work introduces a new multi-step procedure for directly accessing in situ multiple physical properties of droplet interface bilayers (DIB), including specific capacitance (related to thickness), lipid monolayer tension in the Plateau-Gibbs border, and bilayer tension. The procedure employs a combination of mechanical manipulation of bilayer area followed by electrowetting of the capacitive interface to examine the sensitivities of bilayer capacitance to area and contact angle to voltage, respectively. These data allow formore » determining the specific capacitance of the membrane and surface tension of the lipid monolayer, which are then used to compute bilayer thickness and tension, respectively. The use of DIBs affords accurate optical imaging of the connected droplets in addition to electrical measurements of bilayer capacitance, and it allows for reversibly varying bilayer area. After validating the accuracy of the technique with diphytanoyl phosphatidylcholine (DPhPC) DIBs in hexadecane, the method is applied herein to quantify separately the effects on membrane thickness and tension caused by varying the solvent in which the DIB is formed and introducing cholesterol into the bilayer. Because the technique relies only on capacitance measurements and optical images to determine both thickness and tension, this approach is specifically well-suited for studying the effects of peptides, biomolecules, natural and synthetic nanoparticles, and other species that accumulate within membranes without altering bilayer conductance.« less

  3. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF{sub 6} electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azam, M.A., E-mail: asyadi@utem.edu.my; Jantan, N.H.; Dorah, N.

    2015-09-15

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF{sub 6} non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g{sup −1}. - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, amongmore » others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g{sup −1} at a scan rate of 1 mV s{sup −1}.« less

  4. A two-axis micromachined silicon actuator with micrometer range electrostatic actuation and picometer sensitive capacitive detection

    NASA Astrophysics Data System (ADS)

    Ayela, F.; Bret, J. L.; Chaussy, J.; Fournier, T.; Ménégaz, E.

    2000-05-01

    This article presents an innovative micromachined silicon actuator. A 50-μm-thick silicon foil is anodically bonded onto a broached Pyrex substrate. A free standing membrane and four coplanar electrodes in close proximity are then lithographied and etched. The use of phosphorus doped silicon with low electrical resistivity allows the application of an electrostatic force between one electrode and the moving diaphragm. This plane displacement and the induced interelectrode variation are capacitively detected. Due to the very low electrical resistivity of the doped silicon, there is no need to metallize the vertical trenches of the device. No piezoelectric transducer takes place so that the mechanical device is free from any hysteretic or temperature dependance. The range of the possible actuation along the x and y axis is around 5 μm. The actual sensitivity is xn=0.54 Å/Hz1/2 and yn=0.14 Å/Hz1/2. The microengineering steps and the electronic setup devoted to design the actuator and to perform relative capacitive measurements ΔC/C=10-6 from an initial value C≈10-13 F are described. The elaborated tests and performances of the device are presented. As a conclusion, some experimental projects using this subnanometric sensitive device are mentioned.

  5. Three-Dimensional Networked Metal-Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors.

    PubMed

    Xu, Xingtao; Tang, Jing; Qian, Huayu; Hou, Shujin; Bando, Yoshio; Hossain, Md Shahriar A; Pan, Likun; Yamauchi, Yusuke

    2017-11-08

    Metal-organic frameworks (MOFs) with high porosity and a regular porous structure have emerged as a promising electrode material for supercapacitors, but their poor electrical conductivity limits their utilization efficiency and capacitive performance. To increase the overall electrical conductivity as well as the efficiency of MOF particles, three-dimensional networked MOFs are developed via using preprepared conductive polypyrrole (PPy) tubes as the support for in situ growth of MOF particles. As a result, the highly conductive PPy tubes that run through the MOF particles not only increase the electron transfer between MOF particles and maintain the high effective porosity of the MOFs but also endow the MOFs with flexibility. Promoted by such elaborately designed MOF-PPy networks, the specific capacitance of MOF particles has been increased from 99.2 F g -1 for pristine zeolitic imidazolate framework (ZIF)-67 to 597.6 F g -1 for ZIF-PPy networks, indicating the importance of the design of the ZIF-PPy continuous microstructure. Furthermore, a flexible supercapacitor device based on ZIF-PPy networks shows an outstanding areal capacitance of 225.8 mF cm -2 , which is far above other MOFs-based supercapacitors reported up to date, confirming the significance of in situ synthetic chemistry as well as the importance of hybrid materials on the nanoscale.

  6. Structure of electric double layers in capacitive systems and to what extent (classical) density functional theory describes it

    NASA Astrophysics Data System (ADS)

    Härtel, Andreas

    2017-10-01

    Ongoing scientific interest is aimed at the properties and structure of electric double layers (EDLs), which are crucial for capacitive energy storage, water treatment, and energy harvesting technologies like supercapacitors, desalination devices, blue engines, and thermocapacitive heat-to-current converters. A promising tool to describe their physics on a microscopic level is (classical) density functional theory (DFT), which can be applied in order to analyze pair correlations and charge ordering in the primitive model of charged hard spheres. This simple model captures the main properties of ionic liquids and solutions and it predicts many of the phenomena that occur in EDLs. The latter often lead to anomalous response in the differential capacitance of EDLs. This work constructively reviews the powerful theoretical framework of DFT and its recent developments regarding the description of EDLs. It explains to what extent current approaches in DFT describe structural ordering and in-plane transitions in EDLs, which occur when the corresponding electrodes are charged. Further, the review briefly summarizes the history of modeling EDLs, presents applications, and points out limitations and strengths in present theoretical approaches. It concludes that DFT as a sophisticated microscopic theory for ionic systems is expecting a challenging but promising future in both fundamental research and applications in supercapacitive technologies.

  7. Enhanced performance of dicationic ionic liquid electrolytes by organic solvents.

    PubMed

    Li, Song; Zhang, Pengfei; Fulvio Pasquale, F; Hillesheim Patrick, C; Feng, Guang; Dai, Sheng; Cummings Peter, T

    2014-07-16

    The use of dicationic ionic liquid (DIL) electrolytes in supercapacitors is impeded by the slow dynamics of DILs, whereas the addition of organic solvents into DIL electrolytes improves ion transport and then enhances the power density of supercapacitors. In this work, the influences of organic solvents on the conductivity of DILs and the electrical double layer (EDL) of DIL-based supercapacitors are investigated using classical molecular dynamics simulation. Two types of organic solvents, acetonitrile (ACN) and propylene carbonate (PC), were used to explore the effects of different organic solvents on the EDL structure and capacitance of DIL/organic solvent-based supercapacitors. Firstly, it was found that the conductivity of DIL electrolytes was greatly enhanced in the presence of the organic solvent ACN. Secondly, a stronger adsorption of PC on graphite results in different EDL structures formed by DIL/ACN and DIL/PC electrolytes. The expulsion of co-ions from EDLs was observed in DIL/organic solvent electrolytes rather than neat DILs and this feature is more evident in DIL/PC. Furthermore, the bell-shaped differential capacitance-electric potential curve was not essentially changed by the presence of organic solvents. Comparing DIL/organic solvent electrolytes with neat DILs, the capacitance is slightly increased by organic solvents, which is in agreement with experimental observation.

  8. Processing-optimised imaging of analog geological models by electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Ortiz Alemán, C.; Espíndola-Carmona, A.; Hernández-Gómez, J. J.; Orozco Del Castillo, MG

    2017-06-01

    In this work, the electrical capacitance tomography (ECT) technique is applied in monitoring internal deformation of geological analog models, which are used to study structural deformation mechanisms, in particular for simulating migration and emplacement of allochtonous salt bodies. A rectangular ECT sensor was used for internal visualization of analog geologic deformation. The monitoring of analog models consists in the reconstruction of permittivity images from the capacitance measurements obtained by introducing the model inside the ECT sensor. A simulated annealing (SA) algorithm is used as a reconstruction method, and is optimized by taking full advantage of some special features in a linearized version of this inverse approach. As a second part of this work our SA image reconstruction algorithm is applied to synthetic models, where its performance is evaluated in comparison to other commonly used algorithms such as linear back-projection and iterative Landweber methods. Finally, the SA method is applied to visualise two simple geological analog models. Encouraging results were obtained in terms of the quality of the reconstructed images, as interfaces corresponding to main geological units in the analog model were clearly distinguishable in them. We found reliable results quite useful for real time non-invasive monitoring of internal deformation of analog geological models.

  9. Influence of ion pairing in ionic liquids on electrical double layer structures and surface force using classical density functional approach.

    PubMed

    Ma, Ke; Forsman, Jan; Woodward, Clifford E

    2015-05-07

    We explore the influence of ion pairing in room temperature ionic liquids confined by planar electrode surfaces. Using a coarse-grained model for the aromatic ionic liquid [C4MIM(+)][BF4 (-)], we account for an ion pairing component as an equilibrium associating species within a classical density functional theory. We investigated the resulting structure of the electrical double layer as well as the ensuing surface forces and differential capacitance, as a function of the degree of ion association. We found that the short-range structure adjacent to surfaces was remarkably unaffected by the degree of ion pairing, up to several molecular diameters. This was even the case for 100% of ions being paired. The physical implications of ion pairing only become apparent in equilibrium properties that depend upon the long-range screening of charges, such as the asymptotic behaviour of surface forces and the differential capacitance, especially at low surface potential. The effect of ion pairing on capacitance is consistent with their invocation as a source of the anomalous temperature dependence of the latter. This work shows that ion pairing effects on equilibrium properties are subtle and may be difficult to extract directly from simulations.

  10. Enhancing the performance of green solid-state electric double-layer capacitor incorporated with fumed silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Chong, Mee Yoke; Numan, Arshid; Liew, Chiam-Wen; Ng, H. M.; Ramesh, K.; Ramesh, S.

    2018-06-01

    Solid polymer electrolyte (SPE) based on fumed silica nanoparticles as nanofillers, hydroxylethyl cellulose (HEC) as host polymer, magnesium trifluoromethanesulfonate salt and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid is prepared by solution casting technique. The ionic conductivity, interactions of adsorbed ions on the host polymer, structural crystallinity and thermal stability are evaluated by electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Ionic conductivity studies at room temperature reveals that the SPE with 2 wt. % of fumed silica nanoparticles gives the highest conductivity compared to its counterpart. The XRD and FTIR studies confirm the dissolution of salt, ionic liquid and successful incorporation of fumed silica nanoparticles with host polymer. In order to examine the performance of SPEs, electric double-layer capacitor (EDLC) are fabricated by using activated carbon electrodes. EDLC studies demonstrate that SPE incorporated with 2 wt. % fumed silica nanoparticles gives high specific capacitance (25.0 F/g) at a scan rate of 5 mV/s compared to SPE without fumed silica. Additionally, it is able to withstand 71.3% of capacitance from its initial capacitance value over 1600 cycles at a current density of 0.4 A/g.

  11. Voltage and frequency dependence of prestin-associated charge transfer

    PubMed Central

    Sun, Sean X.; Farrell, Brenda; Chana, Matthew S.; Oster, George; Brownell, William E.; Spector, Alexander A.

    2009-01-01

    Membrane protein prestin is a critical component of the motor complex that generates forces and dimensional changes in cells in response to changes in the cell membrane potential. In its native cochlear outer hair cell, prestin is crucial to the amplification and frequency selectivity of the mammalian ear up to frequencies of tens of kHz. Other cells transfected with prestin acquire voltage-dependent properties similar to those of the native cell. The protein performance is critically dependent on chloride ions, and intrinsic protein charges also play a role. We propose an electro-diffusion model to reveal the frequency and voltage dependence of electric charge transfer by prestin. The movement of the combined charge (i.e., anion and protein charges) across the membrane is described with a Fokker-Planck equation coupled to a kinetic equation that describes the binding of chloride ions to prestin. We found a voltage-and frequency-dependent phase shift between the transferred charge and the applied electric field that determines capacitive and resistive components of the transferred charge. The phase shift monotonically decreases from zero to -90 degree as a function of frequency. The capacitive component as a function of voltage is bell-shaped, and decreases with frequency. The resistive component is bell-shaped for both voltage and frequency. The capacitive and resistive components are similar to experimental measurements of charge transfer at high frequencies. The revealed nature of the transferred charge can help reconcile the high-frequency electrical and mechanical observations associated with prestin, and it is important for further analysis of the structure and function of this protein. PMID:19490917

  12. Hysteretic Characteristics of Pulsed Laser Deposited 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3/ZnO Bilayers.

    PubMed

    Silva, J P B; Wang, J; Koster, G; Rijnders, G; Negrea, R F; Ghica, C; Sekhar, K C; Moreira, J Agostinho; Gomes, M J M

    2018-05-02

    In the present work, we study the hysteretic behavior in the electric-field-dependent capacitance and the current characteristics of 0.5Ba(Zr 0.2 Ti 0.8 )O 3 -0.5(Ba 0.7 Ca 0.3 )TiO 3 (BCZT)/ZnO bilayers deposited on 0.7 wt % Nb-doped (001)-SrTiO 3 (Nb:STO) substrates in a metal-ferroelectric-semiconductor (MFS) configuration. The X-ray diffraction measurements show that the BCZT and ZnO layers are highly oriented along the c-axis and have a single perovskite and wurtzite phases, respectively, whereas high-resolution transmission electron microscopy revealed very sharp Nb:STO/BCZT/ZnO interfaces. The capacitance-electric field ( C- E) characteristics of the bilayers exhibit a memory window of 47 kV/cm and a capacitance decrease of 22%, at a negative bias. The later result is explained by the formation of a depletion region in the ZnO layer. Moreover, an unusual resistive switching (RS) behavior is observed in the BCZT films, where the RS ratio can be 500 times enhanced in the BCZT/ZnO bilayers. The RS enhancement can be understood by the barrier potential profile modulation at the depletion region, in the BCZT/ZnO junction, via ferroelectric polarization switching of the BCZT layer. This work builds a bridge between the hysteretic behavior observed either in the C- E and current-electric field characteristics on a MFS structure.

  13. An Introduced Hybrid Graphene/Polyaniline Composites for Improvement of Supercapacitor

    NASA Astrophysics Data System (ADS)

    Tayel, Mazhar B.; Soliman, Moataz M.; Ebrahim, Shaker; Harb, Mohamed E.

    2016-01-01

    Supercapacitors represent an attractive alternative for portable electronics and automotive applications due to their high capacitance, specific power and extended life. In fact, the growing demand of portable systems and hybrid electric vehicles, memory protection in complementary metal-oxide-semiconductor (CMOS), logic circuit, videocassette recorders (VCRs), compact disc (CD) players, personal computers (PCs), uninterruptible power supply (UPS) in security alarm systems, remote sensing, smoke detectors, etc. require high power in short-term pulses. Therefore, in the last 20 years, supercapacitors have been required for the development of large and small devices driven by electrical power. In this paper, graphene oxide (GO) was synthesized by improved Hummers method. Two polyaniline (PANI)/graphene oxide nanocomposites electrode materials were prepared from aniline, GO and ammoniumpersulfate (APS) by in situ chemical polymerization with the mass ratios (mGO:mAniline) 10:90 and 30: 70 in ice bath. The crystal structure and the surface topography of all materials were characterized by means of x-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), Raman spectroscopy and scanning electron microscopy (SEM). The electrochemical properties of the composites were evaluated by cyclic voltammetry (CV), charge-discharge measurements and electrical impedance spectroscopy (EIS), respectively. The results show that the composites have similar and enhanced cyclic voltammetry performance compared with pure PANI based electrode material. The graphene/PANI composite synthesized with the mass ratio (mANI:mGO) 90:10 possessed good capacitive behavior with a specific capacitance as high as 1509.35 F/g at scan rate of 1 mV/s in scanning potential window from -0.8 V to 0.8 V.

  14. Elevated central venous pressure: a consequence of exercise training-induced hypervolemia?

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Mack, G. W.; Nadel, E. R.

    1991-01-01

    Resting blood volumes and arterial and central venous pressures (CVP) were measured in 14 men before and after exercise training to determine whether training-induced hypervolemia is accompanied by a change in total vascular capacitance. In addition, resting levels of plasma arginine vasopressin (AVP), atrial natriuretic peptide (ANP), aldosterone (Ald), and norepinephrine (NE) were measured. The same measurements were conducted in seven subjects who did not undergo exercise and acted as controls. Exercise training consisted of 10 wk of controlled cycle exercise for 30 min/day, 4 days/wk at 75-80% of maximal O2 uptake (VO2max). A training effect was verified by a 20% increase in VO2max, a resting bradycardia, and a 9% increase in blood volume. Mean arterial blood pressure was unaltered by exercise training, but resting CVP increased by 16% (P less than 0.05). The percent change in blood volume from before to after training was linearly related to the percent change in CVP (r = 0.903, P less than 0.05). As a consequence of elevations in both blood volume and CVP, the volume-to-pressure ratio was unchanged after exercise training. Plasma AVP, ANP, Ald, and NE were unaltered. Our results indicate that elevated CVP is a consequence of training-induced hypervolemia without alteration in total effective venous capacitance.

  15. Capacitive Sensors for Measuring Masses of Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Youngquist, Robert

    2003-01-01

    An effort is under way to develop capacitive sensors for measuring the masses of cryogenic fluids in tanks. These sensors are intended to function in both microgravitational and normal gravitational settings, and should not be confused with level sensors, including capacitive ones. A sensor of this type is conceptually simple in the sense that (1) it includes only one capacitor and (2) if properly designed, its single capacitance reading should be readily convertible to a close approximation of the mass of the cryogenic fluid in the tank. Consider a pair of electrically insulated electrodes used as a simple capacitive sensor. In general, the capacitance is proportional to the permittivity of the dielectric medium (in this case, a cryogenic fluid) between the electrodes. The success of design and operation of a sensor of the present type depends on the accuracy of the assumption that to a close approximation, the permittivity of the cryogenic fluid varies linearly with the density of the fluid. Data on liquid nitrogen, liquid oxygen, and liquid hydrogen, reported by the National Institute of Standards and Technology, indicate that the permittivities and densities of these fluids are, indeed, linearly related to within a few tenths of a percent over the pressure and temperature regions of interest. Hence, ignoring geometric effects for the moment, the capacitance between two electrodes immersed in the fluid should vary linearly with the density, and, hence, with the mass of the fluid. Of course, it is necessary to take account of the tank geometry. Because most cryogenic tanks do not have uniform cross sections, the readings of level sensors, including capacitive ones, are not linearly correlated with the masses of fluids in the tanks. In a sensor of the present type, the capacitor electrodes are shaped so that at a given height, the capacitance per unit height is approximately proportional to the cross-sectional area of the tank in the horizontal plane at that height (see figure).

  16. Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zimmermann, E.; Huisman, J. A.; Treichel, A.; Wolters, B.; van Waasen, S.; Kemna, A.

    2013-08-01

    Electrical impedance tomography (EIT) is gaining importance in the field of geophysics and there is increasing interest for accurate borehole EIT measurements in a broad frequency range (mHz to kHz) in order to study subsurface properties. To characterize weakly polarizable soils and sediments with EIT, high phase accuracy is required. Typically, long electrode cables are used for borehole measurements. However, this may lead to undesired electromagnetic coupling effects associated with the inductive coupling between the double wire pairs for current injection and potential measurement and the capacitive coupling between the electrically conductive shield of the cable and the electrically conductive environment surrounding the electrode cables. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range. The aim of this paper is to develop numerical corrections for these phase errors. To this end, the inductive coupling effect was modeled using electronic circuit models, and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 0.8 mrad in the frequency range up to 10 kHz was achieved. The corrections were also applied to field EIT measurements made using a 25 m long EIT borehole chain with eight electrodes and an electrode separation of 1 m. The results of a 1D inversion of these measurements showed that the correction methods increased the measurement accuracy considerably. It was concluded that the proposed correction methods enlarge the bandwidth of the field EIT measurement system, and that accurate EIT measurements can now be made in the mHz to kHz frequency range. This increased accuracy in the kHz range will allow a more accurate field characterization of the complex electrical conductivity of soils and sediments, which may lead to the improved estimation of saturated hydraulic conductivity from electrical properties. Although the correction methods have been developed for a custom-made EIT system, they also have potential to improve the phase accuracy of EIT measurements made with commercial systems relying on multicore cables.

  17. Integration of a Capacitive EIS Sensor into a FIA System for pH and Penicillin Determination

    PubMed Central

    Rolka, David; Poghossian, Arshak; Schöning, Michael J.

    2004-01-01

    A field-effect based capacitive EIS (electrolyte-insulator-semiconductor) sensor with a p-Si-SiO2-Ta2O5 structure has been successfully integrated into a commercial FIA (flow-injection analysis) system and system performances have been proven and optimised for pH and penicillin detection. A flow-through cell was designed taking into account the requirement of a variable internal volume (from 12 μl up to 48 μl) as well as an easy replacement of the EIS sensor. FIA parameters (sample volume, flow rate, distance between the injection valve and the EIS sensor) have been optimised in terms of high sensitivity and reproducibility as well as a minimum dispersion of the injected sample zone. An acceptable compromise between different FIA parameters has been found. For the cell design used in this study, best results have been achieved with a flow rate of 1.4 ml/min, distance between the injection valve and the EIS sensor of 6.5 cm, probe volume of 0.75 ml, cell internal volume of 12 μl. A sample throughput of at least 15 samples/h was typically obtained.

  18. Electrical screening procedure for solid ionic conductors

    NASA Technical Reports Server (NTRS)

    Kautz, H. E.; Singer, J.; Fielder, W. L.; Fordyce, J. S.

    1973-01-01

    An electrical screening method has been developed for preliminary evaluation of polycrystalline specimens of candidates for use as solid ionic conductive electrolytes in batteries. The procedure measures dielectric loss and capacitance, from which are calculated an ac conductivity attributed provisionally to ions and an activation energy for that conductivity. Electronic conductivity is directly measured. The screening procedure applied to sodium beta-alumina yielded acceptable values for conductivity and activation energy.

  19. Electrical detection of cellular penetration during microinjection with carbon nanopipettes.

    PubMed

    Anderson, Sean E; Bau, Haim H

    2014-06-20

    The carbon nanopipette (CNP) is comprised of a pulled-glass pipette terminating with a nanoscale (tens to hundreds of nm) diameter carbon pipe. The entire inner glass surface of the CNP is coated with a carbon film, providing an electrically conductive path from the carbon tip to the distal, macroscopic end of the pipette. The CNP can double as a nanoelectrode, enabling electrical measurements through its carbon lining, and as a nanoinjector, facilitating reagent injection through its hollow bore. With the aid of a lock-in amplifier, we measured, in real time and with millisecond resolution, variations in impedance and interfacial capacitance as the CNP penetrated into the cytoplasm and nucleus of adherent human osteosarcoma (U20S) cells during microinjection. The capacitance change associated with nucleus penetration was, on average, 1.5 times greater than the one associated with cell membrane penetration. The experimental data was compared and favorably agreed with theoretical predictions based on a simple electrical network model. As a proof of concept, the cytoplasm and nucleus were transfected with fluorescent tRNA, enabling real-time monitoring of tRNA trafficking across the nuclear membrane. The CNP provides a robust and reliable means to detect cell and nucleus penetration, and trigger injection, thereby enabling the automation of cell injection.

  20. Hole transport characteristics in phosphorescent dye-doped NPB films by admittance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Chen, Jiangshan; Huang, Jinying; Dai, Yanfeng; Zhang, Zhiqiang; Liu, Su; Ma, Dongge

    2014-05-01

    Admittance spectroscopy is a powerful tool to determine the carrier mobility. The carrier mobility is a significant parameter to understand the behavior or to optimize the organic light-emitting diode or other organic semiconductor devices. Hole transport in phosphorescent dye, bis[2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1Hbenzoimidazol-N,C3] iridium(acetylacetonate [(fbi)2Ir(acac)]) doped into N,N-diphenyl-N,N-bis(1-naphthylphenyl)-1,1-biphenyl-4,4-diamine (NPB) films was investigated by admittance spectroscopy. The results show that doped (fbi)2Ir(acac) molecules behave as hole traps in NPB, and lower the hole mobility. For thicker films(≳300 nm), the electric field dependence of hole mobility is as expected positive, i.e., the mobility increases exponentially with the electric field. However, for thinner films (≲300 nm), the electric field dependence of hole mobility is negative, i.e., the hole mobility decreases exponentially with the electric field. Physical mechanisms behind the negative field dependence of hole mobility are discussed. In addition, three frequency regions were divided to analyze the behaviors of the capacitance in the hole-only device and the physical mechanism was explained by trap theory and the parasitic capacitance effect.

Top