Science.gov

Sample records for electrical conductance studies

  1. Thermal and electrical contact conductance studies

    NASA Technical Reports Server (NTRS)

    Vansciver, S. W.; Nilles, M.

    1985-01-01

    Prediction of electrical and thermal contact resistance for pressed, nominally flat contacts is complicated by the large number of variables which influence contact formation. This is reflected in experimental results as a wide variation in contact resistances, spanning up to six orders of magnitude. A series of experiments were performed to observe the effects of oxidation and surface roughness on contact resistance. Electrical contact resistance and thermal contact conductance from 4 to 290 K on OFHC Cu contacts are reported. Electrical contact resistance was measured with a 4-wire DC technique. Thermal contact conductance was determined by steady-state longitudinal heat flow. Corrections for the bulk contribution ot the overall measured resistance were made, with the remaining resistance due solely to the presence of the contact.

  2. Electrical Conductivity.

    ERIC Educational Resources Information Center

    Allen, Philip B.

    1979-01-01

    Examines Drude's classical (1900) theory of electrical conduction, details the objections to and successes of the 1900 theory, and investigates the Quantum (1928) theory of conduction, reviewing its successes and limitations. (BT)

  3. DC electrical conductivity study of cerium doped conducting glass systems

    NASA Astrophysics Data System (ADS)

    Barde, R. V.; Waghuley, S. A.

    2013-06-01

    The glass samples of composition 60V2O5-5P2O5-(35-x)B2O3-xCeO2, (1 ≤ x ≤ 5) were prepared by the conventional melt quench method. The samples were characterized by X-ray diffraction and thermo gravimetric-differential thermal analysis. The glass transition temperature and crystallization temperature determined from TG-DTA analysis. The DC electrical conductivity has been carried out in the temperature range 303-473 K. The maximum conductivity and minimum activation energy were found to be 0.039 Scm-1 and 0.15 eV at 473 K for x=1, respectively.

  4. Electrical Conductivity.

    ERIC Educational Resources Information Center

    Hershey, David R.; Sand, Susan

    1993-01-01

    Explains how electrical conductivity (EC) can be used to measure ion concentration in solutions. Describes instrumentation for the measurement, temperature dependence and EC, and the EC of common substances. (PR)

  5. A Simulation Study of Electrical Fiber Composite Conductivity

    NASA Astrophysics Data System (ADS)

    Mezdour, D.; Sahli, S.

    2008-11-01

    Percolation concept has been used in this study to estimate the amount of conductive fibers embedded in polymeric matrix, necessary to establish conduction in this kind of composites. The resistance of composite materials is calculated by simulating composite samples with different size, containing conductive fibers with various lengths Calculation is based on detecting conductive pathways through the insulating matrix, these pathways are assumed to be resistances in parallel. Electrical resistance curves showed a percolative behavior of the samples versus volume fraction of filler. Lower conduction thresholds are obtained for fiber aspect ratio of 20 and sample size of 100. The electrical resistivity and the conduction thresholds of the carbon fiber reinforced polycarbonate composites have been characterized. Simulation results are in good agreement with an experimental result found in the literature.

  6. Time resolved strain dependent morphological study of electrically conducting nanocomposites

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Mitchell, Geoffrey; Mateus, Artur; Kamma-Lorger, Christina S.

    2015-10-01

    An efficient and reliable method is introduced to understand the network behaviour of nano-fillers in a polymeric matrix under uniaxial strain coupled with small angle x-ray scattering measurements. The nanoparticles (carbon nanotubes) are conductive and the particles form a percolating network that becomes apparent source of electrical conduction and consequently the samples behave as a bulk conductor. Polyurethane based nanocomposites containing 2% w/w multiwall carbon nanotubes are studied. The electrical conductivity of the nanocomposite was (3.28×10-5s/m).The sample was able to be extended to an extension ratio of 1.7 before fracture. A slight variation in the electrical conductivity is observed under uniaxial strain which we attribute to the disturbance of conductive pathways. Further, this work is coupled with in- situ time resolved small angle x-ray scattering measurements using a synchrotron beam line to enable its measurements to be made during the deformation cycle. We use a multiscale structure to model the small angle x-ray data. The results of the analysis are interpreted as the presence of aggregates which would also go some way towards understanding why there is no alignment of the carbon nanotubes.

  7. Electrical studies on silver based fast ion conducting glassy materials

    SciTech Connect

    Rao, B. Appa Kumar, E. Ramesh Kumari, K. Rajani Bhikshamaiah, G.

    2014-04-24

    Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO{sub 2} as well as with temperature. The conductivity of the present glass system is found to be of the order of 10{sup −2} S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries.

  8. Conductivity and electrical studies of plasticized carboxymethyl cellulose based proton conducting solid biopolymer electrolytes

    NASA Astrophysics Data System (ADS)

    Isa, M. I. N.; Noor, N. A. M.

    2015-12-01

    In this paper, a proton conducting solid biopolymer electrolytes (SBE) comprises of carboxymethyl cellulose (CMC) as polymer host, ammonium thiocyanate (NH4SCN) as doping salt and ethylene carbonate (EC) as plasticizer has been prepared via solution casting technique. Electrical Impedance Spectroscopy (EIS) was carried out to study the conductivity and electrical properties of plasticized CMC-NH4SCN SBE system over a wide range of frequency between 50 Hz and 1 MHz at temperature range of 303 to 353 K. Upon addition of plasticizer into CMC-NH4SCN SBE system, the conductivity increased from 10-5 to 10-2 Scm-1. The highest conductivity was obtained by the electrolyte containing 10 wt.% of EC. The conductivity of plasticized CMC-NH4SCN SBE system by various temperatures obeyed Arrhenius law where the ionic conductivity increased as the temperature increased. The activation energy, Ea was found to decrease with enhancement of EC concentration. Dielectric studies for the highest conductivity electrolyte obeyed non-Debye behavior. The conduction mechanism for the highest conductivity electrolyte was determined by employing Jonsher's universal power law and thus, can be represented by the quantum mechanical tunneling (QMT) model.

  9. Electrical Conductivity and Dielectric Studies of Hydraulic Cements

    NASA Astrophysics Data System (ADS)

    Pena, Marianela Perez

    Electrical properties of portland cements and other non-portland cementitious materials have been studied at two different stages of hydration. The following relationships have been observed:. Higher water/cement (w/c) ratio (0.5 compared to 0.4) resulted in an increase of the relative permittivity and electrical conductivity of early stage hydrating materials. The relative permittivity values were close to 10('7). The phenomena giving rise to changes in electrical conductivity have been related to the heat of hydration. Higher alkali ion concentration resulted in higher electrical conductivity and relative permittivity values in cement pastes. Cations of inorganic admixtures were found to increase maximum peak of electrical conductivity and relative permittivity in the order: Ca('++) > Mg('++) > Sr('++) and K('+) (TURNEQ) Na('+) > Li('+). Dielectric properties of pressed hardened materials cured over water for 1 day with w/c = 0.20 and heat treated to 500(DEGREES)C prepared with type I, type III, and a microfine calcium silicate (MC500) cement have been compared as a function of temperature and frequency. The relative permittivity for type I hardened materials at 30(DEGREES)C was found to range from 12.5 to 9.4 at frequencies from 1 KHz to 2 MHz. The dissipation factor was found to range from 0.122 to 0.014. The relative permittivity and dissipation factors for type III hardened materials were found to range from 17.8 to 13.0 and from 0.035 to 0.071, respectively, and for MC500 hardened materials were determined to range from 7.6 to 6.9 and from 0.033 to 0.002, respectively. The activation energies determined from Arrhenius plots for the relaxation mechanism operating in these materials correspond to 0.33, 0.30, and 0.46 eV for type I, type III, and MC500 densified hardened materials, respectively. Cement/polymer composites have been prepared using 1.76 wt.% methyl cellulose polymer and a w/c ratio of 0.17. The relative permittivity and loss factor the samples

  10. Electrical Conductivity in Insulator

    NASA Astrophysics Data System (ADS)

    Sinha, Anil Kumar

    2003-03-01

    ABSTRACT In insulating solid(Plastic Sheet)of 0.73mm thickness, the conduction process was ohmic at low D.C. electric feilds, but the feild strength increased the conductivity became feild dependent at high feilds and it exhibited some conductivity and the variation in conduction current was none-ohmic.The mechanism of electron transfer between two metallic electrodes separated by insulating material has received considerable attention. The electron transfer current was studied on 0.73mm plastic sheet and(I-V),(log I-log V),(log J-E^1/2)and (log o- 1/T) relations have been studied and the value of slope,electronic dielectric constant and activation energy for nature of conduction mechanism and process have been determined.The electrical conductivity measurements were carried out at room temperature (32.5 celcius)under high D.C. electric feilds of the order of 10^6 volt/meter.The sample of insulator(plastic sheet) was sandwiched between the aluminium electrodes of designed experimental cell,The effect of very high varying feilds at 32.5 celcius temperature,the electrical conduction has been proposed on the data obtained.The non-ohmic behavior in the sample seemed to start at an electric feild 3x10^6 volt/meter.In this case on data obtained it was concluded that "SCHOTTKY EMISSION MECHANISM" has been proposed. The activation energy was calculated by plotting(log o-1/T)characterstics at running temperature and it was found 0.325ev which is less than 1.0,It confirms predominance of Electronic Conduction. I=current in ampere V=volt T=temperature O=conductivity

  11. Study of AC electrical conduction mechanisms in an epoxy polymer

    NASA Astrophysics Data System (ADS)

    Jilani, Wissal; Mzabi, Nissaf; Gallot-Lavallée, Olivier; Fourati, Najla; Zerrouki, Chouki; Zerrouki, Rachida; Guermazi, Hajer

    2015-11-01

    The AC conductivity of an epoxy resin was investigated in the frequency range 10^{-1} - 106 Hz at temperatures ranging from -100 to 120 °C. The frequency dependence of σ_{ac} was described by the law: σ_{ac}=ω \\varepsilon0\\varepsilon^''_{HN}+Aωs. The study of temperature variation of the exponent (s) reveals two conduction models: the AC conduction dependence upon temperature is governed by the small polaron tunneling mechanism (SPTM) at low temperature (-100 -60 °C) and the correlated barrier hopping (CHB) model at high temperature (80-120 °C).

  12. Electrically conductive cellulose composite

    DOEpatents

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  13. Electrically conductive diamond electrodes

    DOEpatents

    Swain, Greg; Fischer, Anne ,; Bennett, Jason; Lowe, Michael

    2009-05-19

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  14. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  15. Electrically conductive composite material

    SciTech Connect

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  16. Electrically conductive composite material

    DOEpatents

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  17. Electrical Characterization and Morphological Studies of Conducting Polymer Nanofibers

    NASA Technical Reports Server (NTRS)

    Pinto, N. J.; Zhou, Y. X.; Freitag, M.; Johnson, A. T.; MacDiarmid, A. G.; Mueller, C. H.; Theofylaktos, N.; Robinson, D. C.; Miranda, F. A.

    2003-01-01

    Doped polyaniline blended with poly(ethylene oxide) has been electrospun in air to give fibers with diameters in the range 3 nm 200 nm. These fibers were captured on wafers of degenerately doped Si/SiO2 by placing the wafer in the path of the fiber jet formed during the electrospinning process. Individual fibers were contacted using shadow mask evaporation and were also captured on prepatterned wafers. Fibers having diameters greater than 100 nm show a slight increase in the conductivity as compared to the bulk film, while fibers with diameters less than 30 nm had lower conductivity than the bulk. Data on Scanning Conductance Microscopy along the length of individual fibers will be presented. For fibers where the diameter was not uniform, we found that below a certain diameter ( approx.15 nm) the fiber was less conducting as compared to thicker diameter fibers. Dependence of the fiber conductivity on a gate bias is underway and these results will also be presented.

  18. Electrically conductive material

    DOEpatents

    Singh, Jitendra P.; Bosak, Andrea L.; McPheeters, Charles C.; Dees, Dennis W.

    1993-01-01

    An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

  19. Electrically conductive material

    DOEpatents

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  20. Electrical Conductivity in Textiles

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Copper is the most widely used electrical conductor. Like most metals, though, it has several drawbacks: it is heavy, expensive, and can break. Fibers that conduct electricity could be the solutions to these problems, and they are of great interest to NASA. Conductive fibers provide lightweight alternatives to heavy copper wiring in a variety of settings, including aerospace, where weight is always a chief concern. This is an area where NASA is always seeking improved materials. The fibers are also more cost-effective than metals. Expenditure is another area where NASA is always looking to make improvements. In the case of electronics that are confined to small spaces and subject to severe stress, copper is prone to breaking and losing connection over time. Flexible conductive fibers eliminate that problem. They are more supple and stronger than brittle copper and, thus, find good use in these and similar situations. While clearly a much-needed material, electrically conductive fibers are not readily available. The cost of new technology development, with all the pitfalls of troubleshooting production and the years of testing, and without the guarantee of an immediate market, is often too much of a financial hazard for companies to risk. NASA, however, saw the need for electrical fibers in its many projects and sought out a high-tech textile company that was already experimenting in this field, Syscom Technology, Inc., of Columbus, Ohio. Syscom was founded in 1993 to provide computer software engineering services and basic materials research in the areas of high-performance polymer fibers and films. In 1999, Syscom decided to focus its business and technical efforts on development of high-strength, high-performance, and electrically conductive polymer fibers. The company developed AmberStrand, an electrically conductive, low-weight, strong-yet-flexible hybrid metal-polymer YARN.

  1. Vapor sensing mechanism of acid on copper phthalocyanine thin films studied by electrical conductivity

    NASA Astrophysics Data System (ADS)

    Singh, Sukhwinder; Saini, G. S. S.; Tripathi, S. K.

    2013-06-01

    The electrical conductivity of thin films of iron phthalocyanine on glass substrates by thermal evaporation technique have been investigated. The electrical conductivity of thin films of these complexes changes when exposed to oxidizing and reducing gases such as halogens, ammonia, water and NOX. Thermal activation energy in the intrinsic region and impurity scattering region can be calculated by using Arrhenius plot. The dark conductivity and photoconductivity have been taken at different temperatures in the range 312-389 K. These films have been studied as chemical sensors for dilute sulphuric acid.

  2. Electric properties of carbon nano-onion/polyaniline composites: a combined electric modulus and ac conductivity study

    NASA Astrophysics Data System (ADS)

    Papathanassiou, Anthony N.; Mykhailiv, Olena; Echegoyen, Luis; Sakellis, Ilias; Plonska-Brzezinska, Marta E.

    2016-07-01

    The complex electric modulus and the ac conductivity of carbon nano-onion/polyaniline composites were studied from 1 mHz to 1 MHz at isothermal conditions ranging from 15 K to room temperature. The temperature dependence of the electric modulus and the dc conductivity analyses indicate a couple of hopping mechanisms. The distinction between thermally activated processes and the determination of cross-over temperature were achieved by exploring the temperature dependence of the fractional exponent of the dispersive ac conductivity and the bifurcation of the scaled ac conductivity isotherms. The results are analyzed by combining the granular metal model (inter-grain charge tunneling of extended electron states located within mesoscopic highly conducting polyaniline grains) and a 3D Mott variable range hopping model (phonon assisted tunneling within the carbon nano-onions and clusters).

  3. Electrically Conductive Porous Membrane

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth Alan (Inventor)

    2014-01-01

    The present invention relates to an electrically conductive membrane that can be configured to be used in fuel cell systems to act as a hydrophilic water separator internal to the fuel cell, or as a water separator used with water vapor fed electrolysis cells, or as a water separator used with water vapor fed electrolysis cells, or as a capillary structure in a thin head pipe evaporator, or as a hydrophobic gas diffusion layer covering the fuel cell electrode surface in a fuel cell.

  4. Analytical study on two-phase MHD flow of electrically conducting magnetic fluid

    SciTech Connect

    Okubo, Masaaki; Ishimoto, Jun; Nishiyama, Hideya; Kamiyama, Shinichi

    1994-01-01

    An energy conversion system using magnetic fluids proposed by Resler and Rosensweig was based on the principle that the magnetization of magnetic fluids changes with temperature. However, significant results have not been obtained up to the present. To overcome this limit and to increase the acceleration of fluid flow the authors have contributed a new energy conversion system using two-phase flow produced by heat addition. This idea came from the two-phase liquid-metal MHD power generation system proposed by Petrick and Branover. If temperature sensitive magnetic fluids are used, such a system can produce a larger force than conventional systems because the properties of apparent magnetization change not only by temperature rise but also by gas inclusion. In the present paper, an analytical study is extended to the case of electrically conducting magnetic fluid as a basic study for demonstrating the possibility of application of electrically conducting magnetic fluid to working fluid in a liquid-metal MHD power generation system. Electrically conducting magnetic fluid is usually prepared by dispersing fine iron particles into a liquid metal such as mercury. To prevent a solidification of particles and keep a homogeneous dispersion, a thin film of tin is attached to the particle`s surface. Thus the electrically conducting liquid behaves as fluid itself having magnetization. The equations governing a one-dimensional boiling two-phase duct flow of such an electrically conducting magnetic fluid in a traverse magnetic field are numerically solved. The analytical results of the two-phase flow characteristics of the magnetic fluid are compared with ones of an electrically conducting nonmagnetic fluid.

  5. Electrical and Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Ventura, Guglielmo; Perfetti, Mauro

    After a Sect. 1.1 devoted to electrical conductivity and a section that deals with magnetic and dielectric losses ( 1.2 ), this chapter explores the theory of thermal conduction in solids. The examined categories of solids are: metals Sect. 1.3.2 , Dielectrics Sects. 1.3.3 and 1.3.4 and Nanocomposites Sect. 1.3.5 . In Sect. 1.3.6 the problem of thermal and electrical contact between materials is considered because contact resistance occurring at conductor joints in magnets or other high power applications can lead to undesirable electrical losses. At low temperature, thermal contact is also critical in the mounting of temperature sensors, where bad contacts can lead to erroneous results, in particular when superconductivity phenomena are involved.

  6. Electrical conductivity of activated carbon-metal oxide nanocomposites under compression: a comparison study.

    PubMed

    Barroso-Bogeat, A; Alexandre-Franco, M; Fernández-González, C; Macías-García, A; Gómez-Serrano, V

    2014-12-07

    From a granular commercial activated carbon (AC) and six metal oxide (Al2O3, Fe2O3, SnO2, TiO2, WO3 and ZnO) precursors, two series of AC-metal oxide nanocomposites were prepared by wet impregnation, oven-drying at 120 °C, and subsequent heat treatment at 200 or 850 °C in an inert atmosphere. Here, the electrical conductivity of the resulting products was studied under moderate compression. The influence of the applied pressure, sample volume, mechanical work, and density of the hybrid materials was thoroughly investigated. The DC electrical conductivity of the compressed samples was measured at room temperature by the four-probe method. Compaction assays suggest that the mechanical properties of the nanocomposites are largely determined by the carbon matrix. Both the decrease in volume and the increase in density were relatively small and only significant at pressures lower than 100 kPa for AC and most nanocomposites. In contrast, the bulk electrical conductivity of the hybrid materials was strongly influenced by the intrinsic conductivity, mean crystallite size, content and chemical nature of the supported phases, which ultimately depend on the metal oxide precursor and heat treatment temperature. The supported nanoparticles may be considered to act as electrical switches either hindering or favouring the effective electron transport between the AC cores of neighbouring composite particles in contact under compression. Conductivity values as a rule were lower for the nanocomposites than for the raw AC, all of them falling in the range of semiconductor materials. With the increase in heat treatment temperature, the trend is toward the improvement of conductivity due to the increase in the crystallite size and, in some cases, to the formation of metals in the elemental state and even metal carbides. The patterns of variation of the electrical conductivity with pressure and mechanical work were slightly similar, thus suggesting the predominance of the pressure

  7. Experimental and theoretical study of AC electrical conduction mechanisms of semicrystalline parylene C thin films.

    PubMed

    Kahouli, Abdelkader; Sylvestre, Alain; Jomni, Fethi; Yangui, Béchir; Legrand, Julien

    2012-01-26

    The electrical conduction mechanisms of semicrystalline thermoplastic parylene C (-H(2)C-C(6)H(3)Cl-CH(2)-)(n) thin films were studied in large temperature and frequency regions. The alternative current (AC) electrical conduction in parylene C is governed by two processes which can be ascribed to a hopping transport mechanism: correlated barrier hopping (CBH) model at low [77-155 K] and high [473-533 K] temperature and the small polaron tunneling mechanism (SPTM) from 193 to 413 K within the framework of the universal law of dielectric response. The conduction mechanism is explained with the help of Elliot's theory, and the Elliot's parameters are determined. From frequency- and temperature-conductivity characteristics, the activation energy is found to be 1.27 eV for direct current (DC) conduction interpreted in terms of ionic conduction mechanism. The power law dependence of AC conductivity is interpreted in terms of electron hopping with a density N(E(F)) (~10(18) eV cm(-3)) over a 0.023-0.03 eV high barrier across a distance of 1.46-1.54 Å.

  8. Study of Electrical Conduction Mechanism of Organic Double-Layer Diode Using Electric Field Induced Optical Second Harmonic Generation Measurement.

    PubMed

    Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-04-01

    By using electric field induced optical second harmonic generation (EFISHG) and current voltage (I-V) measurements, we studied the electrical transport mechanism of organic double-layer diodes with a structure of Au/N, N'-di-[(1-naphthyl)-N, N'-diphenyl]-(1,1'-biphenyl)-4,4'-diamine (a-NPD)/poly(methyl methacrylate) (PMMA)/indium zinc oxide (IZO). Here the α-NPD is a carrier transport layer and the PMMA is an electrical insulating layer. The current level was very low, but the I-V characteristics showed a rectifying behavior. The EFISHG measurement selectively and directly probed the electric field across the α-NPD layer, and showed that the electric field across the a-NPD layer is completely relaxed owing to the charge accumulation at the a-NPD/PMMA interface in the region V > 0, whereas the carrier accumulation was not significant in the region V < 0. On the basis of these experimental results, we proposed a model of the rectification. Further, by coupling the I-V characteristics with the EFISHG measurement, the I-V characteristics of the diodes were well converted into the current-electric field (I-E) characteristics of the α-NPD layer and the PMMA layer. The I-E characteristics suggested the Schottky-type conduction governs the carrier transport. We conclude that the I-V measurement coupled with the EFISHG measurement is very useful to study carrier transport mechanism of the organic double-layer diodes.

  9. Electrically Conductive Paints for Satellites

    NASA Technical Reports Server (NTRS)

    Gilligan, J. E.; Wolf, R. E.; Ray, C.

    1977-01-01

    A program was conducted to develop and test electrically conductive paint coatings for spacecraft. A wide variety of organic and inorganic coatings were formulated using conductive binders, conductive pigments, and similar approaches. Z-93, IITRI's standard specification inorganic thermal control coating, exhibits good electrical properties and is a very space-stable coating system. Several coatings based on a conductive pigment (antimony-doped tin oxide) in silicone and silicate binders offer considerable promise. Paint systems using commercially available conductive polymers also appear to be of interest, but will require substantial development. Evaluations were made based on electrical conductivity, paint physical properties, and the stability of spectral reflectance in space environment testing.

  10. Carbon nanotubes filled polymer composites: A comprehensive study on improving dispersion, network formation and electrical conductivity

    NASA Astrophysics Data System (ADS)

    Chakravarthi, Divya Kannan

    In this dissertation, we determine how the dispersion, network formation and alignment of carbon nanotubes in polymer nanocomposites affect the electrical properties of two different polymer composite systems: high temperature bismaleimide (BMI) and polyethylene. The knowledge gained from this study will facilitate optimization of the above mentioned parameters, which would further enhance the electrical properties of polymer nanocomposites. BMI carbon fiber composites filled with nickel-coated single walled carbon nanotubes (Ni-SWNTs) were processed using high temperature vacuum assisted resin transfer molding (VARTM) to study the effect of lightning strike mitigation. Coating the SWNTs with nickel resulted in enhanced dispersions confirmed by atomic force microscopy (AFM) and dynamic light scattering (DLS). An improved interface between the carbon fiber and Ni-SWNTs resulted in better surface coverage on the carbon plies. These hybrid composites were tested for Zone 2A lightning strike mitigation. The electrical resistivity of the composite system was reduced by ten orders of magnitude with the addition of 4 weight percent Ni-SWNTs (calculated with respect to the weight of a single carbon ply). The Ni-SWNTs - filled composites showed a reduced amount of damage to simulated lightning strike compared to their unfilled counterparts indicated by the minimal carbon fiber pull out. Methods to reduce the electrical resistivity of 10 weight percent SWNTs --- medium density polyethylene (MDPE) composites were studied. The composites processed by hot coagulation method were subjected to low DC electric fields (10 V) at polymer melt temperatures to study the effect of viscosity, nanotube welding, dispersion and, resultant changes in electrical resistivity. The electrical resistivity of the composites was reduced by two orders of magnitude compared to 10 wt% CNT-MDPE baseline. For effective alignment of SWNTs, a new process called Electric field Vacuum Spray was devised to

  11. A study of rock matrix diffusion properties by electrical conductivity measurements

    SciTech Connect

    Ohlsson, Y.; Neretnieks, I.

    1999-07-01

    Traditional rock matrix diffusion experiments on crystalline rock are very time consuming due to the low porosity and extensive analysis requirements. Electrical conductivity measurements are, on the other hand, very fast and larger samples can be used than are practical in ordinary diffusion experiments. The effective diffusivity of a non-charged molecule is readily evaluated from the measurements, and influences from surface conductivity on diffusion of cations can be studied. A large number of samples of varying thickness can be measured within a short period, and the changes in transport properties with position in a rock core can be examined. In this study the formation factor of a large number of Aespoe diorite samples is determined by electrical conductivity measurements. The formation factor is a geometric factor defined as the ratio between the effective diffusivity of a non-charged molecule, to that of the same molecule in free liquid. The variation of this factor with position among a borecore and with sample length, and its coupling to the porosity of the sample is studied. Also the surface conductivity is studied. This was determined as the residual conductivity after leaching of the pore solution ions. The formation factor of most of the samples is in the range 1E-5 to 1E-4, with a mean value of about 5E-5. Even large samples (4--13 cm) give such values. The formation factor increases with increasing porosity and the change in both formation factor and porosity with position in the borecore can be large, even for samples close to each other. The surface conductivity increases with increasing formation factor for the various samples but the influence on the pore diffusion seems to be higher for samples of lower formation factor. This suggests that the relation between the pore surface area and the pore volume is larger for samples of low formation factor.

  12. Experimental Study on the Electrical Conductivity of Pyroxene Andesite at High Temperature and High Pressure

    NASA Astrophysics Data System (ADS)

    Hui, KeShi; Dai, LiDong; Li, HePing; Hu, HaiYing; Jiang, JianJun; Sun, WenQing; Zhang, Hui

    2016-09-01

    The electrical conductivity of pyroxene andesite was in situ measured under conditions of 1.0-2.0 GPa and 673-1073 K using a YJ-3000t multi-anvil press and Solartron-1260 Impedance/Gain-phase analyzer. Experimental results indicate that the electrical conductivities of pyroxene andesite increase with increasing temperature, and the electrical conductivities decrease with the rise of pressure, and the relationship between electrical conductivity (σ) and temperature (T) conforms to an Arrhenius relation within a given pressure and temperature range. When temperature rises up to 873-923 K, the electrical conductivities of pyroxene andesite abruptly increase, and the activation enthalpy increases at this range, which demonstrates that pyroxene andesite starts to dehydrate. By the virtue of the activation enthalpy (0.35-0.42 eV) and the activation volume (-6.75 ± 1.67 cm3/mole) which characterizes the electrical properties of sample after dehydration, we consider that the conduction mechanism is the small polaron conduction before and after dehydration, and that the rise of carrier concentration is the most important reason of increased electrical conductivity.

  13. Experimental Study on the Electrical Conductivity of Pyroxene Andesite at High Temperature and High Pressure

    NASA Astrophysics Data System (ADS)

    Hui, KeShi; Dai, LiDong; Li, HePing; Hu, HaiYing; Jiang, JianJun; Sun, WenQing; Zhang, Hui

    2017-03-01

    The electrical conductivity of pyroxene andesite was in situ measured under conditions of 1.0-2.0 GPa and 673-1073 K using a YJ-3000t multi-anvil press and Solartron-1260 Impedance/Gain-phase analyzer. Experimental results indicate that the electrical conductivities of pyroxene andesite increase with increasing temperature, and the electrical conductivities decrease with the rise of pressure, and the relationship between electrical conductivity ( σ) and temperature ( T) conforms to an Arrhenius relation within a given pressure and temperature range. When temperature rises up to 873-923 K, the electrical conductivities of pyroxene andesite abruptly increase, and the activation enthalpy increases at this range, which demonstrates that pyroxene andesite starts to dehydrate. By the virtue of the activation enthalpy (0.35-0.42 eV) and the activation volume (-6.75 ± 1.67 cm3/mole) which characterizes the electrical properties of sample after dehydration, we consider that the conduction mechanism is the small polaron conduction before and after dehydration, and that the rise of carrier concentration is the most important reason of increased electrical conductivity.

  14. Electrically conductive anodized aluminum coatings

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  15. Electrical conductivity and dielectric studies of MnO2 doped V2O5

    NASA Astrophysics Data System (ADS)

    Tan, Foo Khoon; Hassan, Jumiah; Wahab, Zaidan Abd.; Azis, Raba'ah Syahidah

    The investigation on electrical conductivity and dielectric properties of mixed oxide of manganese (Mn) and vanadium (V) was carried out to study the mixed oxides response to different frequencies and different measuring temperatures. The frequency and temperature dependence of AC conductivity, dielectric constant and dielectric loss factor of mixed oxides were studied in the frequency range of 40 Hz-1 MHz and a temperature range of 30-250 °C. Since the mixed oxides are multi phase materials, hence the properties of the pure oxides are also presented in this study to discuss the multi phase behaviour of the mixed oxides. The XRD pattern shows the Mn-V oxide is multiphase and quantitative phase analysis was performed to determine the relative phases. The overall results indicate that with increasing temperature, the AC conductivity, dielectric constant, dielectric loss factor and loss tangent of the Mn-V mixed oxide increases. However, it shows an overlap in the dielectric constant at 225 °C and 250 °C due to the V2O5 phase in the mixed oxide. From the AC activation energy, the mixed oxides underwent conduction mechanism transition from band to hopping in the investigated frequency range. The MnV2O6 has relatively good resistivity, therefore the mixed oxide sintered at 550 °C with the highest composition of MnV2O6 gives the highest dielectric constant of 9845 at 1 kHz, and at 250 °C.

  16. Electrically Conductive Anodized Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to < or = 10(exp 9) Omega-cm. The present treatment does this. The treatment is a direct electrodeposition process in which the outer anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic

  17. Electrical conduction in polymer dielectrics

    NASA Technical Reports Server (NTRS)

    Cotts, D. B.

    1985-01-01

    The use of polymer dielectrics with moderate resistivities could reduce or eliminate problems associated with spacecraft charging. The processes responsible for conduction and the properties of electroactive polymers are reviewed, and correlations drawn between molecular structure and electrical conductivity. These structure-property relationships led to the development of several new electroactive polymer compositions and the identification of several systems that have the requisite thermal, mechanical, environmental and electrical properties for use in spacecraft.

  18. Laboratory studies of the electrical conductivity of silicate perovskites at high pressures and temperatures

    NASA Technical Reports Server (NTRS)

    Li, Xiaoyuan; Jeanloz, Raymond

    1990-01-01

    The electrical conductivities of two silicate perovskites and a perovskite-magnesiowuestite assemblage, all having an atomic ratio of Mg to Fe equal to 0.88/0.12, have been measured with alternating current and direct current (dc) techniques at simultaneously high pressures and temperatures. Measurements up to pressures of 80 GPa and temperatures of 3500 K, using a laser-heated diamond anvil cell, demonstrate that the electrical conductivity of these materials remains below 10-3 S/m at lower mantle conditions. The activation energies for electrical conduction are between 0.1 and 0.4 eV from the data, and the conduction in these perovskites is ascribed to an extrinsic electronic process. The new measurements are in agreement with a bound that was previously obtained from dc measurements for the high-PT conductivity of perovskite-dominated assemblages. The results show that the electrical conductivity of (Mg/0.88/Fe/0.12)SiO3 perovskite differs significantly from that of the earth's deep mantle, as inferred from geophysical observations.

  19. Study of single-nucleotide polymorphisms by means of electrical conductance measurements

    NASA Astrophysics Data System (ADS)

    Hihath, Joshua; Xu, Bingqian; Zhang, Peiming; Tao, Nongjian

    2005-11-01

    Understanding the complexities of DNA has been a hallmark of science for over a half century, and one of the important topics in DNA research is recognizing the occurrence of mutations in the base-stack. In this article, we present a study of SNPs by direct-contact electrical measurements to a single DNA duplex. We have used short, 11- and 12-bp dsDNA to investigate the change in conductance that occurs if a single base pair, a single base, or two separate bases in the stack are modified. All measurements are carried out in aqueous solution with the DNA chemically bound to the electrodes. These measurements demonstrate that the presence of a single base pair mismatch can be identified by the conductance of the molecule and can cause a change in the conductance of dsDNA by as much as an order of magnitude, depending on the specific details of the double helix and the single nucleotide polymorphism. molecular electronics | scanning tunneling microscope break junction

  20. A theoretical computerized study for the electrical conductivity of arterial pulsatile blood flow by an elastic tube model.

    PubMed

    Shen, Hua; Zhu, Yong; Qin, Kai-Rong

    2016-12-01

    The electrical conductivity of pulsatile blood flow in arteries is an important factor for the application of the electrical impedance measurement system in clinical settings. The electrical conductivity of pulsatile blood flow depends not only on blood-flow-induced red blood cell (RBC) orientation and deformation but also on artery wall motion. Numerous studies have investigated the conductivity of pulsatile blood based on a rigid tube model, in which the effects of wall motion on blood conductivity are not considered. In this study, integrating Ling and Atabek's local flow theory and Maxwell-Fricke theory, we develop an elastic tube model to explore the effects of wall motion as well as blood flow velocity on blood conductivity. The simulation results suggest that wall motion, rather than blood flow velocity, is the primary factor that affects the conductivity of flowing blood in arteries.

  1. Mixed ionic and electronic conducting electrode studies for an alkali metal thermal to electric converter

    NASA Astrophysics Data System (ADS)

    Guo, Yuyan

    This research focuses on preparation, kinetics, and performance studies of mixed ionic and electronic conducting electrodes (MIEE) applied in an alkali metal thermal to electric converter (AMTEC). Two types of MIEE, metal/sodium titanate and metal/beta″-alumina were investigated, using Ni, Cu, Co and W as the metal components. Pure metal electrodes (PME) were also studied, including Ta, Ni, Nb, Ir, W and MoRe electrodes. The stability of MIEE/beta″-alumina solid electrolyte (BASE) interface was studied in terms of the chemical potential of Na-Al-Ti-O system at 1100K (typical AMTEC operating temperature). Ni metal was compatible with sodium titanate and BASE and displayed the best initial performance among all tested PMEs. Ni/sodium titanate electrodes with 4/1 mass ratios of metal/ceramic performed best among all tested electrodes. Scanning Electron Microscope (SEM) observations showed that grain agglomeration, which is the main mechanism for electrode degradation, occurred in all tested electrodes. Ceramic components were able to effectively limit the growth of metal grains and resulted in a long lifetime for MIEEs. Ni particles in the MIEE formed a network microstructure that was close to the theoretical morphology of the ideal electrode. A model based on percolation theory was constructed to interpret and predict the performance of MIEEs. The electrode kinetics was studied and a theoretical expression for the interface impedance was derived for both PME and MIEE, using electrochemical impedance spectroscopy (EIS). The conductivity of the Na2Ti 3O7 and Na2Ti6O13 mixture was measured. The average activation energy for the bulk conductivity was 0.87ev. Finally, theoretical analysis clarified that the transfer coefficient alpha value change would cause at most a few percent change in the electrode performance parameter B.

  2. Conduction block in novel cardiomyocyte electrical conduction line by photosensitization reaction.

    PubMed

    Kurotsu, Mariko; Ogawa, Emiyu; Arai, Tsunenori

    2014-01-01

    We developed a novel cardiomyocyte electrical conduction line. We studied electrical conduction block by extra-cellular photosensitization reaction with this conduction line to study electrical blockade by the photosensitization reaction in vitro.

  3. Electrical and Nonlinear Optical Studies of Specific Organic Molecular and Nonconjugated Conductive Polymeric Systems

    NASA Astrophysics Data System (ADS)

    Narayanan, Ananthakrishnan

    In this research, structural, electrical and nonlinear optical characteristics of: (a) single crystal films involving a noncentrosymmetric molecule DAST and a laser dye IR125 and (b) specific nonconjugated conducting polymers including poly(beta-pinene) and polynorbornene have been studied. 4'-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) is a well known second order nonlinear optical material. This material has exceptionally high electro-optic coefficients, high thermal stability and ultrafast response time. In this work single crystal films involving a combination of DAST and IR125 have been prepared using modified shear method and the films have been characterized using polarized optical microscopy, X-ray diffraction, polarization dependent optical absorption and photoluminescence spectroscopy. The electro-optic coefficient of these films measured at 633nm was found to be 300pm/V. Since IR-125 has a strong absorption band from 500nm to 800nm, these films are promising for various applications in nonlinear optics at longer wavelength and for light emission. Nonconjugated conducting polymers are a class of polymers that have at least one double bond in their repeat units. 1,4-cis polyisoprene, polyalloocimene, styrene butadiene rubber, poly(ethylenepyrrolediyl) derivatives, and poly(beta-pinene) are some of the well known examples of nonconjugated conducting polymers. In this work, polynorborne, a new addition to the class of nonconjugated conducting polymers is discussed. Like other polymers in this class, polynorbornene exhibits increase in electrical conductivity by many orders of magnitude upon doping with iodine. The maximum electrical conductivity of this material is 0.01 S/cm. As shown by using FTIR microscopy, the C=C bonds are transformed into cation radicals when polynorborne is doped. This is due to the charge-transfer from the double bond to the dopant (iodine). These materials like other nonconjugated conducting polymers have significant

  4. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1990-03-13

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  5. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

  6. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  7. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, T.E.; Spieker, D.A.

    1983-12-08

    A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  8. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, Thomas E.; Spieker, David A.

    1985-03-19

    A rigid, polyurethane foam comprises about 2-10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  9. Electrical Conductivity in Transition Metals

    ERIC Educational Resources Information Center

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  10. Electrical Conduction in Thin Insulators

    NASA Astrophysics Data System (ADS)

    Sinha, Anil Kumar, , Dr.

    2003-10-01

    ABSTRACT: The study of Conduction mechanism in Insulator(Mica)of thickness from 20-80 microns has been carried out.The effect of varying electrical fields upto 50 MV/m at room temperature were studied.A sample of thickness 80 microns exibits non-linear behavior at fields beyond 24 MV/m. Other sample of thickness 50 microns,40 microns and 20 microns exibit linear behavior at low fields.On increasing the field furthur a sharp rise in current is obersved. Eventually at fields beyond 20 MV/m,the current does not continue to rise sharply and the rate of increase slow down very much.The log J-log V characterstics were obtained for various samples.For a sample of thickness of 20 microns,there are three distinct regions were found, having different slopes.The slope the second region indicates a square law dependence.The studies with these Mica films indicated different conduction processes at different field strenght.At field,ranging from(10-20)MV/m, the current was found to be SPACE-CHARGE LIMITED,due to shallow trapping of electrons.Beyond this field,however,at room temperature,the current did not show as sharp a rise as it should in case of an insulator caontaining shallow traps.This behavior has been attributed to the electron- phonon interactions.At higher temperature the current increased with fields as in the case of an insulator contaning shallow traps.A SPACE-CHARGE LIMITED CONDUCTION MECHANISM due to shallow traping of electrons has been suggested.This has been undertaken in view of growing interest and application of integrated circuitry.

  11. An Experimental Study of the Effects of A Rotating Magnetic Field on Electrically Conducting Aqueous Solutions

    NASA Technical Reports Server (NTRS)

    Ramachandran Narayanan; Mazuruk, Konstantin

    1998-01-01

    The use of a rotating magnetic field for stirring metallic melts has been a commonly adopted practice for a fairly long period. The elegance of the technique stems from its non-intrusive nature and the intense stirring it can produce in an electrically conducting medium. A further application of the method in recent times has been in the area of crystal growth from melts (e.g. germanium). The latter experiments have been mainly research oriented in order to understand the basic physics of the process and to establish norms for optimizing such a technique for the commercial production of crystals. When adapted for crystal growth applications, the rotating magnetic field is used to induce a slow flow or rotation in the melt which in effect significantly curtails temperature field oscillations in the melt. These oscillations are known to cause dopant striations and thereby inhomogeneities in the grown crystal that essentially degrades the crystal quality. The applied field strength is typically of the order of milli-Teslas with a frequency range between 50-400 Hz. In this investigation, we report findings from experiments that explore the feasibility of applying a rotating magnetic field to aqueous salt solutions, that are characterized by conductivities that are several orders of magnitude smaller than semi-conductor melts. The aim is to study the induced magnetic field and consequently the induced flow in such in application. Detailed flow field description obtained through non-intrusive particle displacement tracking will be reported along with an analytical assessment of the results. It is anticipated that the obtained results will facilitate in establishing a parameter range over which the technique can be applied to obtain a desired flow field distribution. This method can find applicability in the growth of crystals from aqueous solutions and give an experimenter another controllable parameter towards improving the quality of the grown crystal.

  12. Electrically conductive reticulated carbon composites

    SciTech Connect

    Sylwester, A.P.; Clough, R.L.

    1988-01-01

    This paper reports a new type of electrically conductive composite which offers advantageous properties and controlled processing. These new composites consist of a conductive open-celled, low-density, microcellular, carbonized foam filled with a nonconductive polymer or resin. The open-celled nature of the carbon foam provides a porous three-dimensional reticulated carbon structure. The large continuous-void volume can be readily filled with an insulating polymer or resin resulting in a three-dimensional conductive composite material. 9 refs., 3 figs.

  13. Electrically conductive black optical paint

    NASA Technical Reports Server (NTRS)

    Birnbaum, M. M.; Metzler, E. C.; Cleland, E. L.

    1983-01-01

    An electrically conductive flat black paint has been developed for use on the Galileo spacecraft which will orbit Jupiter in the late 1980s. The paint, designed for equipment operating in high-energy radiation fields, has multipurpose functions. Its electrical conductivity keeps differential charging of the spacecraft external surfaces and equipment to a minimum, preventing the buildup of electrostatic fields and arcing. Its flat black aspect minimizes the effects of stray light and unwanted reflectances, when used in optical instruments and on sunshades. Its blackness is suitable, also, for thermal control, when the paint is put on spacecraft surfaces. The paint has good adherence properties, as measured by tape tests, when applied properly to a surface. The electrically conductive paint which was developed has the following characteristics: an electrical resistivity of 5 x 10 to the 7th ohms per square; a visual light total reflectance of approximately 5 percent; an infrared reflectance of 0.13 measured over a spectrum from 10 to the (-5.5) power to 0.001 meter; a solar absorptivity, alpha-s, of 0.93, and a thermal emissivity, epsilon, of 0.87, resulting in an alpha-s/epsilon of 1.07. The formula for making the paint and the process for applying it are described.

  14. Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution.

    PubMed

    Inoue, Tohru; Ebina, Hayato; Dong, Bin; Zheng, Liqiang

    2007-10-01

    Electrical conductivity was measured for aqueous solutions of long-chain imidazolium ionic liquids (IL), 1-alkyl-3-methylimidazolium bromides with C(12)-C(16) alkyl chains. The break points appeared in specific conductivity (kappa) vs concentration (c) plot indicates that the molecular aggregates, i.e., micelles, are formed in aqueous solutions of these IL species. The critical micelle concentration (cmc) determined from the kappa vs c plot is somewhat lower than those for typical cationic surfactants, alkyltrimethylammonium bromides with the same hydrocarbon chain length. The electrical conductivity data were analyzed according to the mixed electrolyte model of micellar solution, and the aggregation number, n, and the degree of counter ion binding, beta, were estimated. The n values of the present ILs are somewhat smaller than those reported for alkyltrimethylammonium bromides, which may be attributed to bulkiness of the cationic head group of the IL species. The thermodynamic parameters for micelle formation of the present ILs were estimated using the values of cmc and beta as a function of temperature. The contribution of entropy term to the micelle formation is superior to that of enthalpy term below about 30 degrees C, and it becomes opposite at higher temperature. This coincides with the picture drawn for the micelle formation of conventional ionic surfactants.

  15. Electrical conductivity studies of graphene wrapped nanocrystalline LiMnPO{sub 4} composite

    SciTech Connect

    Cheruku, Rajesh; D, Surya Bhaskaram; Govindaraj, G.; Vijayan, Lakshmi

    2015-06-24

    Nanocrystalline LiMnPO{sub 4} material was synthesized by template free sucrose assisted hydrothermal method. The material possesses the orthorhombic crystal structure with Pnma, space group having four formula units. The GO was prepared by the hummer’s method and it was reduced graphene oxide (rGO) with hydrazine hydrate in the presence of nitrogen atmosphere. LiMnPO{sub 4} material was wrapped by the rGO to increase its conductivity. The structural characterization was accomplished through X-ray diffraction, FT-IR and Raman spectroscopy. Morphology was identified by the SEM, Electrical characterization was done through impedance spectroscopy and the results were reported.

  16. Electrical conductivity of ice VII

    PubMed Central

    Okada, Taku; Iitaka, Toshiaki; Yagi, Takehiko; Aoki, Katsutoshi

    2014-01-01

    It was discovered that a peak appears near a pressure of Pc = 10 GPa in the electrical conductivity of ice VII as measured through impedance spectroscopy in a diamond anvil cell (DAC) during the process of compression from 2 GPa to 40 GPa at room temperature. The activation energy for the conductivity measured in the cooling/heating process between 278 K and 303 K reached a minimum near Pc. Theoretical modelling and molecular dynamics simulations suggest that the origin of this unique peak is the transition of the major charge carriers from the rotational defects to the ionic defects. PMID:25047728

  17. Manganese olivine I: Electrical conductivity

    NASA Astrophysics Data System (ADS)

    Bai, Quan; Wang, Z.-C.; Kohlstedt, D. L.

    1995-12-01

    To investigate the point defect chemistry and the kinetic properties of manganese olivine Mn2SiO4, electrical conductivity ( ’) of single crystals was measured along either the [100] or the [010] direction. The experiments were carried out at temperatures T=850 1200 °C and oxygen fugacities f_{{text{O}}_{text{2}} } = 10^{ - 11} - 10^2 atm under both Mn oxide ( MO) buffered and MnSiO3 ( MS) buffered conditions. Under the same thermodynamic conditions, charge transport along [100] is 2.5 3.0 times faster than along [010]. At high oxygen fugacities, the electrical conductivity of samples buffered against MS is ˜1.6 times larger than that of samples buffered against MO; while at low oxygen fugacities, the electrical conductivity is nearly identical for the two buffer cases. The dependencies of electrical conductivity on oxygen fugacity and temperature are essentially the same for conduction along the [100] and [010] directions, as well as for samples coexisting with a solid-state buffer of either MO or MS. Hence, it is proposed that the same conduction mechanisms operate for samples of either orientation in contact with either solid-state buffer. The electrical conductivity data lie on concave upward curves on a log-log plot of σ vs f_{{text{O}}_{text{2}} } , giving rise to two f_{{text{O}}_{text{2}} } = 10^{ - 11} - 10^2 regimes with different oxygen fugacity exponents. In the low-f_{{text{O}}_{text{2}} } = 10^{ - 11} - 10^2 regime left( {f_{{text{O}}_{text{2}} } < 10^{ - 7} {text{atm}}} right), the f_{{text{O}}_{text{2}} } = 10^{ - 11} - 10^2 exponent, m, is 0, the MnSiO3-activity exponent, q, is ˜0, and the activation energy, Q, is 45 kJ/mol. In the high f_{{text{O}}_{text{2}} } = 10^{ - 11} - 10^2 regime left( {f_{{text{O}}_{text{2}} } > 10^{ - 7} {text{atm}}} right), m=1/6, q=1/4 1/3, and Q=45 and 200 kJ/mol for T<1100 °C and T>1100 °C, respectively. Based on a comparison of experimental data with results from point defect chemistry calculations, it is

  18. [Comparative study on hyperspectral inversion accuracy of soil salt content and electrical conductivity].

    PubMed

    Peng, Jie; Wang, Jia-Qiang; Xiang, Hong-Ying; Teng, Hong-Fen; Liu, Wei-Yang; Chi, Chun-Ming; Niu, Jian-Long; Guo, Yan; Shi, Zhou

    2014-02-01

    The objective of the present article is to ascertain the mechanism of hyperspectral remote sensing monitoring for soil salinization, which is of great importance for improving the accuracy of hyperspectral remote sensing monitoring. Paddy soils in Wensu, Hetian and Baicheng counties of the southern Xinjiang were selected. Hyperspectral data of soils were obtained. Soil salt content (S(t)) an electrical conductivity of 1:5 soil-to-water extracts (EC(1:5)) were determined. Relationships between S(t) and EC(1:5) were studied. Correlations between hyperspectral indices and S(t), and EC(1:5) were analyzed. The inversion accuracy of S(t) using hyperspectral technique was compared with that of EC(1:5). Results showed that: significant (p<0.01) relationships were found between S(t) and EC(1:5) for soils in Wensu and Hetian counties, and correlation coefficients were 0.86 and 0.45, respectively; there was no significant relationship between S(t) and EC(1:5) for soils in Baicheng county. Therefore, the correlations between S(t) and EC(1:5) varied with studied sites. S(t) and EC(1:5) were significantly related with spectral reflectance, first derivative reflectance and continuum-removed reflectance, respectively; but correlation coefficients between S(t) and spectral indices were higher than those between EC(1:5) and spectral indices, which was obvious in some sensitive bands for soil salinization such as 660, 35, 1229, 1414, 1721, 1738, 1772, 2309 nm, and so on. Prediction equations of St and EC(1:5) were established using multivariate linear regression, principal component regression and partial least-squares regression methods, respectively. Coefficients of determination, determination coefficients of prediction, and relative analytical errors of these equations were analyzed. Coefficients of determination and relative analytical errors of equations between S(t) and spectral indices were higher than those of equations between EC(1:5) and spectral indices. Therefore, the

  19. Electrical conduction through DNA molecule.

    PubMed

    Abdalla, S

    2011-09-01

    Several disorder parameters, inside the DNA molecule, lead to localization of charge carriers inside potential wells in the lowest unoccupied and highest occupied molecular orbits (LUMO and HOMO) which affects drastically the electrical conduction through the molecule, and demonstrates that the band carriers play an essential role in the conduction mechanism. So, a model is presented to shed light on the role of electrons of the LUMO in the electrical conduction through the DNA molecule. DC-, AC-conductivity and dielectric permittivity experimental data are well fitted with the presented model giving evidence that the free carriers in the LUMO and HOMO are responsible to make the DNA molecule conductor, insulator or semiconductor. The obtained results show that the localized charge carriers in the DNA molecule are characterized by four different types of relaxation phenomena which are thermally activated by corresponding four activation energies at 0.56 eV, 0.33 eV, 0.24 eV, and 0.05 eV respectively. Moreover, the calculations after the model, at room temperature, show that the time of the relaxation times of the current carriers are in the order of 5 × 10(-2)s, 1.74 × 10(-4)s, 5 × 10(-7)s, and 1.6 × 10(-10)s, respectively.

  20. Electrical conductivity, optical property and ammonia sensing studies on HCl Doped Au@polyaniline nanocomposites

    NASA Astrophysics Data System (ADS)

    Hasan, Mudassir; Ansari, Mohd Omaish; Cho, Moo Hwan; Lee, Moonyong

    2015-01-01

    This paper reports the synthesis of HCl-doped Au@polyaniline (Pani) nanocomposite fibers by the in situ oxidative polymerization of aniline in the presence of gold nanoparticles. Thus prepared nanocomposite fibers were characterized by SEM, TEM, XRD, Raman spectroscopy, XPS, UV-visible diffused reflectance spectroscopy, TGA, and DSC. The Au@Pani nanocomposite fibers showed superior DC electrical conductivity to HCl-doped Pani, which might be due to the increased mobility of the charge carriers after the incorporation of gold nanoparticle in Pani. Au@Pani also exhibited a better ammonia sensing and recovery response than Pani, which might be due to the increase in the surface area of Pani after the incorporation of gold nanoparticles.

  1. Studying the Performance of Conductive Polymer Films as Textile Electrodes for Electrical Bioimpedance Measurements

    NASA Astrophysics Data System (ADS)

    Cunico, F. J.; Marquez, J. C.; Hilke, H.; Skrifvars, M.; Seoane, F.

    2013-04-01

    With the goal of finding novel biocompatible materials suitable to replace silver in the manufacturing of textile electrodes for medical applications of electrical bioimpedance spectroscopy, three different polymeric materials have been investigated. Films have been prepared from different polymeric materials and custom bracelets have been confectioned with them. Tetrapolar total right side electrical bioimpedance spectroscopy (EBIS) measurements have been performed with polymer and with standard gel electrodes. The performance of the polymer films was compared against the performance of the gel electrodes. The results indicated that only the polypropylene 1380 could produce EBIS measurements but remarkably tainted with high frequency artefacts. The influence of the electrode mismatch, stray capacitances and large electrode polarization impedance are unclear and they need to be clarified with further studies. If sensorized garments could be made with such biocompatible polymeric materials the burden of considering textrodes class III devices could be avoided.

  2. Structural, magnetic, DC-AC electrical conductivities and thermo electric studies of MgCuZn Ferrites for microinductor applications.

    PubMed

    Varalaxmi, N; Sivakumar, K V

    2013-01-01

    Multilayer chip inductors (MLCIs) have been rapidly developed for electromagnetic applications. NiCuZn ferrites are the most preferred ferrite materials to produce MLCIs. MgCuZn ferrites have similar properties to those of NiCuZn ferrites. MgCuZn ferrites owing to their superior properties like low magnetostriction, environmental stability, low stress sensitivity, high resistivity and low cost can replace NiCuZn ferrites, which have a wide range of electronic applications. In view of this, a series of polycrystalline MgCuZn ferrites with generic formula MgxCu0.5Zn0.5-xFe2O4 (X=0.0 0.1, 0.2, 0.3, 0.4 and 0.5) are successfully synthesized by conventional double sintering technique. The samples were then characterized by the X-ray diffraction patterns (XRD) microstructural studies and the grain size was estimated using SEM micrographs. The sintered ferrites have been investigated in their magnetic, electrical and thermoelectric effect studies, which were carried out in the temperature range from 30 °C to 490 °C. The investigated ferrites are found to exhibit excellent properties that are suitable for the core materials in multilayer chip inductors, and the results are discussed.

  3. Study on synthesis of ultrafine Cu-Ag core-shell powders with high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Peng, Yu-hsien; Yang, Chih-hao; Chen, Kuan-ting; Popuri, Srinivasa R.; Lee, Ching-Hwa; Tang, Bo-Shin

    2012-12-01

    Cu-Ag composite powders with high electrical conductivity were synthesized by electroless plating of silver sulfate, copper powders with eco-friendly sodium citrate as reducing agent, dispersant and chelating agent in an aqueous system. The influences of sodium citrate/Ag ratio on Ag coatings of Cu powders were investigated. Ag was formed a dense coating on the surface of Cu powders at a molar ratio of sodium citrate/Ag = 0.07/1. SEM showed an uniformity of Ag coatings on Cu powders. SEM-EDX also revealed that Cu cores were covered by Ag shells on the whole. The surface composition analysis by XPS indicated that without Cu or Ag atoms in the surface were oxidized. The resistivity measurements of Cu-Ag paste shows that they have closer resistivity as the pure silver paste's after 250 °C for 30 min heat-treatment (2.55 × 10-4 Ω cm) and 350 °C for 30 min heat-treatment (1.425 × 10-4 Ω cm).

  4. Electrical conductivity of hot QCD matter.

    PubMed

    Cassing, W; Linnyk, O; Steinert, T; Ozvenchuk, V

    2013-05-03

    We study the electric conductivity of hot QCD matter at various temperatures T within the off-shell parton-hadron-string dynamics transport approach for interacting partonic, hadronic or mixed systems in a finite box with periodic boundary conditions. The response of the strongly interacting system in equilibrium to an external electric field defines the electric conductivity σ(0). We find a sizable temperature dependence of the ratio σ(0)/T well in line with calculations in a relaxation time approach for T(c)electric conductor than Cu or Ag (at room temperature).

  5. Electrical Conductivity of Hot QCD Matter

    NASA Astrophysics Data System (ADS)

    Cassing, W.; Linnyk, O.; Steinert, T.; Ozvenchuk, V.

    2013-05-01

    We study the electric conductivity of hot QCD matter at various temperatures T within the off-shell parton-hadron-string dynamics transport approach for interacting partonic, hadronic or mixed systems in a finite box with periodic boundary conditions. The response of the strongly interacting system in equilibrium to an external electric field defines the electric conductivity σ0. We find a sizable temperature dependence of the ratio σ0/T well in line with calculations in a relaxation time approach for Tcelectric conductor than Cu or Ag (at room temperature).

  6. Study of the electrical conductivity at finite temperature in 2D Si- MOSFETs

    SciTech Connect

    Limouny, L. Kaaouachi, A. El Tata, O.; Daoudi, E.; Errai, M.; Dlimi, S.; Idrissi, H. El; Zatni, A.

    2014-01-27

    We investigate the low temperature density dependent conductivity of two dimensional electron systems in zero magnetic field for sample Si-15 MOSFETs. The first purpose of this paper is to establish that the knee of the conductivity σ{sub 0} (σ{sub 0} is the T = 0.3 conductivity obtained by linear extrapolation of the curves of σ (T) for different values of electron density, n{sub s}) as a function of the carrier densities n{sub s} for T = 0.3 K, observed by Lai et al. and Limouny et al. in previous work for two different samples, is independent of temperature. The second aim is the determination of the critical density, n{sub c}, of the metal-insulator transition. Many methods are used in this investigation of n{sub c} which have been already used for other samples. The motivation behind this last study is the observation of many values of n{sub c} that have been obtained from different methods and that are slightly different. We will use in this study three methods with the intention to infer which one is more appropriate to obtain n{sub c}.

  7. 76 FR 75875 - Plan for Conduct of 2012 Electric Transmission Congestion Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... document makes a correction to that notice. FOR FURTHER INFORMATION CONTACT: David Meyer, DOE Office of Electricity Delivery and Energy Reliability, (202) 586-1411, david.meyer@hq.doe.gov . Correction The...

  8. The study of electrical conductivity and diffusion behavior of water-based and ferro/ferricyanide-electrolyte-based alumina nanofluids.

    PubMed

    Liu, Chang; Lee, Hyeonseok; Chang, Ya-Huei; Feng, Shien-Ping

    2016-05-01

    Nanofluids are liquids containing suspensions of solid nanoparticles and have attracted considerable attention because they undergo substantial mass transfer and have many potential applications in energy technologies. Most studies on nanofluids have used low-ionic-strength solutions, such as water and ethanol. However, very few studies have used high-ionic-strength solutions because the aggregation and sedimentation of nanoparticles cause a stability problem. In this study, a stable water-based alumina nanofluid was prepared using stirred bead milling and exhibits a high electrical conductivity of 2420 μS/cm at 23 °C and excellent stability after five severe freezing-melting cycles. We then developed a process for mixing the water-based nanofluid with a high-ionic-strength potassium ferro/ferricyanide electrolyte and sodium dodecyl sulfate by using stirred bead milling and ultrasonication, thus forming a stable electrolyte-based nanofluid. According to the rotating disk electrode study, the electrolyte-based alumina nanofluid exhibits an unusual increase in the limiting current at high angular velocities, resulting from a combination of local percolation behavior and shear-induced diffusion. The electrolyte-based alumina nanofluid was demonstrated in a possible thermogalvanic application, since it is considered to be an alternative electrolyte for thermal energy harvesters because of the increased electrical conductivity and confined value of thermal conductivity.

  9. Pulsed electrical discharge in conductive solution

    NASA Astrophysics Data System (ADS)

    Panov, V. A.; Vasilyak, L. M.; Vetchinin, S. P.; Pecherkin, V. Ya; Son, E. E.

    2016-09-01

    Electrical discharge in a conductive solution of isopropyl alcohol in tap water (330 μ S cm-1) has been studied experimentally applying high voltage millisecond pulses (rise time  ˜0.4 μ \\text{s} , amplitude up to 15 kV, positive polarity) to a pin anode electrode. Dynamic current-voltage characteristics synchronized with high-speed images of the discharge were studied. The discharge was found to develop from high electric field region in the anode vicinity where initial conductive current with density  ˜100 A cm-2 results in fast heating and massive nucleation of vapor bubbles. Discharges in nucleated bubbles then produce a highly conductive plasma region and facilitate overheating instability development with subsequent formation of a thermally ionized plasma channel. The measured plasma channel propagation speed was 3-15 m s-1. A proposed thermal model of plasma channel development explains the low observed plasma channel propagation speed.

  10. Preparation of Electrically Conductive Polymeric Membranes

    NASA Astrophysics Data System (ADS)

    Encinas, J. C.; Castillo-Ortega, M. M.; Rodríguez, F.; Castaño, V. M.

    2015-10-01

    Cellulose acetate porous membranes, coated with polyaniline, were chemically modified with polyelectrolytes to produce films of varying and controlled porosity and electrical conductivity. The highest electrical conductivity was obtained in membranes prepared with poly(styrene sulfonate) with large pore sizes. The electrical properties as well as scanning electron microscopy (SEM) images are discussed.

  11. Electric Conductivity in a Beam, Plasma System.

    DTIC Science & Technology

    1977-09-15

    internal processes such as the temperature gradient and stress tensor in fluids . He also distinguishes between two 6...processes in fluids , a macroscopic process which is represented by hydrodynamic equations and a microscopic process which allows for local...thermodynamic equilibrum . The electric conduction problem studied by Kubo16 is analogous to the macroscopic process in fluids studied by Mori)7 A study of plasma

  12. Electrical Conductivity of Ferritin Proteins by Conductive AFM

    NASA Technical Reports Server (NTRS)

    Xu, Degao; Watt, Gerald D.; Harb, John N.; Davis, Robert C.

    2005-01-01

    Electrical conductivity measurements were performed on single apoferritin and holoferritin molecules by conductive atomic force microscopy. Conductivity of self-assembled monolayer films of ferritin molecules on gold surfaces was also measured. Holoferritin was 5-25 times more conductive than apoferritin, indicating that for holoferritin most electron-transfer goes through the ferrihydrite core. With 1 V applied, the average electrical currents through single holoferritin and apoferritin molecules were 2.6 PA and 0.19 PA, respectively.

  13. Study on Exploding Wire Compression for Evaluating Electrical Conductivity in Warm-Dense Diamond-Like-Carbon

    NASA Astrophysics Data System (ADS)

    Sasaki, Toru; Takahashi, Kazumasa; Kudo, Takahiro; Kikuchi, Takashi; Aso, Tsukasa; Harada, Nob.; Fujioka, Shinsuke; Horioka, Kazuhiko

    2016-03-01

    To improve a coupling efficiency for the fast ignition scheme of the inertial confinement fusion, fast electron behaviors as a function of an electrical conductivity are required. To evaluate the electrical conductivity for low-Z materials as a diamond-like-carbon (DLC), we have proposed a concept to investigate the properties of warm dense matter (WDM) by using pulsed-power discharges. The concept of the evaluation of DLC for WDM is a shock compression driven by an exploding wire discharge with confined by a rigid capillary. The qualitatively evaluation of the electrical conductivity for the WDM DLC requires a small electrical conductivity of the exploding wire. To analyze the electrical conductivity of exploding wire, we have demonstrated an exploding wire discharge in water for gold. The results indicated that the electrical conductivity of WDM gold for 5000 K of temperature has an insulator regime. It means that the shock compression driven by the exploding wire discharge with confined by the rigid capillary is applied for the evaluation of electrical conductivity for WDM DLC.

  14. Study of electrical conductivity and phase transition in Bi2O3-V2O5 system

    NASA Astrophysics Data System (ADS)

    Beg, Saba; Haneef, Sadaf; Al-Areqi, Niyazi A. S.

    2010-12-01

    The solid solutions of bismuth-vanadate were prepared by the conventional solid-state reaction. The sample characterization and the study of phase transition were done by using FT-IR, X-ray diffraction (XRD) and DSC measurements. AC impedance measurements proved that the oxide ion conductivity predominantly arises from the grain and grain boundary contributions as two well-defined semicircles are clearly seen along with an inclined spike. The electrical conductivity of Bi2O3-V2O5 has been studied at different temperatures for various molar ratios. The isothermal conductivity increases with an increase in the concentration of V2O5 due to the vacancy migration phenomenon. It has been found that the conductivity of different compositions of Bi2O3-V2O5 increases and shows a jump in the temperature range 230-260°C due to the phase transition of BiVO4 from monoclinic scheelite type to that of tetragonal scheelite type. The endothermic peak in DSC at around 260°C reveals the phase transition, which is also confirmed by the XRD and FT-IR analysis. The XRD patterns confirmed the monoclinic structure of BiVO4.

  15. Study on the Effects of Adipic Acid on Properties of Dicyandiamide-Cured Electrically Conductive Adhesive and the Interaction Mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Wan, Chao; Fu, Yonggao; Chen, Hongtao; Liu, Xiaojian; Li, Mingyu

    2014-01-01

    A small quantity of adipic acid was found to improve the performance of dicyandiamide-cured electrically conductive adhesive (ECA) by enhancing its electrical conductivity and mechanical properties. The mechanism of action of the adipic acid and its effects on the ECA were examined. The results indicated that adipic acid replaced the electrically insulating lubricant on the surface of the silver flakes, which significantly improved the electrical conductivity. Specifically, one of the acidic functional groups in adipic acid reacted with the silver flakes, and an amidation reaction occurred between the other acidic functional group in adipic acid and the dicyandiamide, which participated in the curing reaction. Therefore, adipic acid may act as a coupling agent to improve the overall ECA performance.

  16. Study on low temperature DC electrical conductivity of SnO{sub 2} nanomaterial synthesized by simple gel combustion method

    SciTech Connect

    P, Rajeeva M.; S, Naveen C.; Lamani, Ashok R.; Jayanna, H. S.; Bothla, V Prasad

    2015-06-24

    Nanocrystalline tin oxide (SnO{sub 2}) material of different particle size was synthesized using gel combustion method by varying oxidizer (HNO{sub 3}) and keeping fuel as a constant. The prepared samples were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Analysis X-ray Spectroscope (EDAX). The effect of oxidizer in the gel combustion method was investigated by inspecting the particle size of nano SnO{sub 2} powder. The particle size was found to be increases with the increase of oxidizer from 8 to 12 moles. The X-ray diffraction patterns of the calcined product showed the formation of high purity tetragonal tin (IV) oxide with the particle size in the range of 17 to 31 nm which was calculated by Scherer’s formula. The particles and temperature dependence of direct (DC) electrical conductivity of SnO{sub 2} nanomaterial was studied using Keithley source meter. The DC electrical conductivity of SnO{sub 2} nanomaterial increases with the temperature from 80 to 300K and decrease with the particle size at constant temperature.

  17. Electrically conductive connection for an electrode

    DOEpatents

    Hornack, Thomas R.; Chilko, Robert J.

    1986-01-01

    An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask.

  18. Electrical conductivity of ferritin proteins by conductive AFM.

    PubMed

    Xu, Degao; Watt, Gerald D; Harb, John N; Davis, Robert C

    2005-04-01

    Electrical conductivity measurements were performed on single apoferritin and holoferritin molecules by conductive atomic force microscopy. Conductivity of self-assembled monolayer films of ferritin molecules on gold surfaces was also measured. Holoferritin was 5-15 times more conductive than apoferritin, indicating that for holoferritin most electron-transfer goes through the ferrihydrite core. With 1 V applied, the average electrical currents through single holoferritin and apoferritin molecules were 2.6 pA and 0.19 pA, respectively.

  19. Electrical performance of conductive suits. Final report

    SciTech Connect

    Hotte, P.W.; Gela, G.

    1995-03-01

    Conductive suits are used in live working to shield the wearer from electric field and to prevent currents from flowing in the wearer`s body. This report is an account of work performed in 1986--1987 to explore the performance characteristics of conductive suits, to investigate suit resistance measuring methods, to analyze the mechanisms responsible for unexpected variations in suit resistance, to relate actual in-service conditions with the test conditions, and to propose appropriate test methods. The mechanisms of suit and body current generation are described. Suit and body current magnitudes are evaluated and applied to a suit and body resistance model to predict the dependence of body current on suit resistance. The properties of present-day conductive suit materials are studied in relation to previous findings that their resistance reduces as measuring current increases. The suit resistance is also affected by movement, exhibits hysteresis-type characteristics, and is sensitive to the method of making electrical contact with the suit during measurement. A mechanism is proposed to explain these properties. It is suggested that acceptable resistance measurements could be obtained by using appropriate methods. The results of tests conducted to investigate the behavior of the effective resistance when a suit is exposed to a strong electric field, are reported. These results show that the resistance of high resistance suits can be drastically reduced in strong fields. Although the original work was conducted several years ago, little additional fundamental research progress has been made since. At the time of publication of this report, the entire work was reviewed, and findings and conclusions which are still applicable to present-day suits are summarized. Recommendations for future work are also presented.

  20. Electrically conductive polyimides containing silver trifluoroacetylacetonate

    NASA Technical Reports Server (NTRS)

    Rancourt, James D. (Inventor); Stoakley, Diane M. (Inventor); Caplan, Maggie L. (Inventor); St. Clair, Anne K. (Inventor); Taylor, Larry T. (Inventor)

    1996-01-01

    Polyimides with enhanced electrical conductivity are produced by adding a silver ion-containing additive to the polyamic acid resin formed by the condensation of an aromatic dianhydride with an aromatic diamine. After thermal treatment the resulting polyimides had surface conductivities in the range of 1.7.times.10.sup.-3 4.5 .OMEGA..sup.-1 making them useful in low the electronics industry as flexible, electrically conductive polymeric films and coatings.

  1. Calibration-free electrical conductivity measurements for highly conductive slags

    SciTech Connect

    MACDONALD,CHRISTOPHER J.; GAO,HUANG; PAL,UDAY B.; VAN DEN AVYLE,JAMES A.; MELGAARD,DAVID K.

    2000-05-01

    This research involves the measurement of the electrical conductivity (K) for the ESR (electroslag remelting) slag (60 wt.% CaF{sub 2} - 20 wt.% CaO - 20 wt.% Al{sub 2}O{sub 3}) used in the decontamination of radioactive stainless steel. The electrical conductivity is measured with an improved high-accuracy-height-differential technique that requires no calibration. This method consists of making continuous AC impedance measurements over several successive depth increments of the coaxial cylindrical electrodes in the ESR slag. The electrical conductivity is then calculated from the slope of the plot of inverse impedance versus the depth of the electrodes in the slag. The improvements on the existing technique include an increased electrochemical cell geometry and the capability of measuring high precision depth increments and the associated impedances. These improvements allow this technique to be used for measuring the electrical conductivity of highly conductive slags such as the ESR slag. The volatilization rate and the volatile species of the ESR slag measured through thermogravimetric (TG) and mass spectroscopy analysis, respectively, reveal that the ESR slag composition essentially remains the same throughout the electrical conductivity experiments.

  2. Electrically conductive proppant and methods for detecting, locating and characterizing the electrically conductive proppant

    DOEpatents

    Cannan, Chad; Bartel, Lewis; Palisch, Terrence; Aldridge, David

    2015-01-13

    Electrically conductive proppants and methods for detecting, locating, and characterizing same are provided. The electrically conductive proppant can include a substantially uniform coating of an electrically conductive material having a thickness of at least 500 nm. The method can include injecting a hydraulic fluid into a wellbore extending into a subterranean formation at a rate and pressure sufficient to open a fracture therein, injecting into the fracture a fluid containing the electrically conductive proppant, electrically energizing the earth at or near the fracture, and measuring three dimensional (x, y, and z) components of electric and magnetic field responses at a surface of the earth or in an adjacent wellbore.

  3. Electrical and thermal conductivities in dense plasmas

    SciTech Connect

    Faussurier, G. Blancard, C.; Combis, P.; Videau, L.

    2014-09-15

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  4. Electrically Conductive Polyimide Films Containing Gold Surface

    NASA Technical Reports Server (NTRS)

    Caplan, Maggie L.; Stoakley, Diane M.; St. Clair, Anne K.

    1994-01-01

    Polyimide films exhibiting high thermo-oxidative stability and including electrically conductive surface layers containing gold made by casting process. Many variations of basic process conditions, ingredients, and sequence of operations possible, and not all resulting versions of process yield electrically conductive films. Gold-containing layer formed on film surface during cure. These metallic gold-containing polyimides used in film and coating applications requiring electrical conductivity, high reflectivity, exceptional thermal stability, and/or mechanical integrity. They also find commercial potential in areas ranging from thin films for satellite antennas to decorative coatings and packaging.

  5. Electrically conducting polymers for aerospace applications

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Gaier, James R.; Good, Brian S.; Sharp, G. R.; Meador, Michael A.

    1991-01-01

    Current research on electrically conducting polymers from 1974 to the present is reviewed focusing on the development of materials for aeronautic and space applications. Problems discussed include extended pi-systems, pyrolytic polymers, charge-transfer systems, conductive matrix resins for composite materials, and prospects for the use of conducting polymers in space photovoltaics.

  6. Electrically Conductive Metal Nanowire Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Luo, Xiaoxiong

    This thesis investigates electrically conductive polymer nanocomposites formulated with metal nanowires for electrostatic discharge and electromagnetic interference shielding. Copper nanowires (CuNWs) of an average length of 1.98 mum and diameter of 25 +/- 4 nm were synthesized. The oxidation reaction of the CuNWs in air can be divided into two stages at weight of 111.2% on TGA curves. The isoconversional activation energies determined by Starink method were used to fit the different master plots. Johnson-Mehl-Avrami (JMA) equation gave the best fit. The surface atoms of the CuNWs are the sites for the random nucleation and the crystallite strain in the CuNWs is the driving force for the growth of nuclei mechanism during the oxidation process. To improve the anti-oxidation properties of the CuNWs, silver was coated onto the surface of the CuNWs in Ag-amine solution. The prepared silver coated CuNWs (AgCuNWs) with silver content of 66.52 wt. %, diameter of 28--33 nm exhibited improved anti-oxidation behavior. The electrical resistivity of the AgCuNW/low density polyethylene (LDPE) nanocomposites is lower than that of the CuNW/LDPE nanocomposites with the same volume percentage of fillers. The nanocomposites formulated with CuNWs and polyethylenes (PEs) were compared to study the different interaction between the CuNWs and the different types of PE matrices. The electrical conductivity of the different PE matrices filled with the same concentrations of CuNWs correlated well with the level of the CuNW dispersion. The intermolecular force and entanglement resulting from the different macromolecular structures such as molecular weight and branching played an important role in the dispersion, electrical properties and rheological behaviour of the CuNW/PE nanocomposites. Ferromagnetic polycrystalline nickel nanowires (NiNWs) were synthesized with uniform diameter of ca. 38 nm and an average length of 2.68 mum. The NiNW linear low density polyethylene (LLDPE

  7. Anomalous electrical conductivity of nanoscale colloidal suspensions.

    PubMed

    Chakraborty, Suman; Padhy, Sourav

    2008-10-28

    The electrical conductivity of colloidal suspensions containing nanoscale conducting particles is nontrivially related to the particle volume fraction and the electrical double layer thickness. Classical electrochemical models, however, tend to grossly overpredict the pertinent effective electrical conductivity values, as compared to those obtained under experimental conditions. We attempt to address this discrepancy by appealing to the complex interconnection between the aggregation kinetics of the nanoscale particles and the electrodynamics within the double layer. In particular, we model the consequent alterations in the effective electrophoretic mobility values of the suspension by addressing the fundamentals of agglomeration-deagglomeration mechanisms through the pertinent variations in the effective particulate dimensions, solid fractions, as well as the equivalent suspension viscosity. The consequent alterations in the electrical conductivity values provide a substantially improved prediction of the corresponding experimental findings and explain the apparent anomalous behavior predicted by the classical theoretical postulates.

  8. [Myocardial infarction after conduction electrical weapon shock].

    PubMed

    Ben Ahmed, H; Bouzouita, K; Selmi, K; Chelli, M; Mokaddem, A; Ben Ameur, Y; Boujnah, M R

    2013-04-01

    Controversy persists over the safety of conducted electrical weapons, which are increasingly used by law enforcement agencies around the world. We report a case of 33-year-old man who had an acute inferior myocardial infarction after he was shot in the chest with an electrical weapon.

  9. NOVEL GRAPHITE SALTS AND THEIR ELECTRICAL CONDUCTIVITIES

    SciTech Connect

    Bartlett, N.; McCarron, E.M.; McQuillan, B.W.; Thompson, T.E.

    1980-02-01

    A set of novel first stage graphite salts of general formula C{sub 8}{sup +}MF{sub 6}{sup -} has been prepared (M = Os, Ir, As). Single crystal X-ray diffraction studies indicate that these salts are hexagonal with a {approx} 4.9 and c {approx} 8.1 {angstrom}. The unit cell volume indicates that the anions are closely packed in the galleries. Platinum hexafluoride, which is the most powerful oxidizer of the third transition series, forms a first stage compound, which analytical, structural, and magnetic studies establish as C{sub 12}{sup 2+}PtF{sub 6}{sup 2-}. In this salt the anions are not close packed, but the electron withdrawal from the graphite planes is greater than for the C{sub 8}{sup +}MF{sub 6}{sup -} series. The variation in the electrical conductivity (in the a-b plane), as a function of composition, has been investigated with the OsF{sub 6}, IrF{sub 6}, PtF{sub 6} and AsF{sub 5} intercalates. For OsF{sub 6} and IrF{sub 6}, the conductance per plane of graphite is found to be a maximum at approximately C{sub 24}MF{sub 6} (second stage); the conductivity being an order of magnitude greater than that of the parent material. Intercalation beyond C{sub 24}MF{sub 6} leads to a marked decrease in conductivity. C{sub 8}MF{sub 6} is comparable in conductivity with the parent graphite. This behavior contrasts with the graphite/AsF{sub 5} system in which a steady increase in conductance per graphite plane with increasing AsF{sub 5} content is observed. For the PtF{sub 6} system, the second as well as the first stage materials are poorly conducting.

  10. Electrically conductive connection for an electrode

    DOEpatents

    Hornack, T.R.; Chilko, R.J.

    1986-09-02

    An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask. 2 figs.

  11. Contact-independent electrical conductance measurement

    DOEpatents

    Mentzel, Tamar S.; MacLean, Kenneth; Kastner, Marc A.; Ray, Nirat

    2017-01-24

    Electrical conductance measurement system including a one-dimensional semiconducting channel, with electrical conductance sensitive to electrostatic fluctuations, in a circuit for measuring channel electrical current. An electrically-conductive element is disposed at a location at which the element is capacitively coupled to the channel; a midpoint of the element aligned with about a midpoint of the channel, and connected to first and second electrically-conductive contact pads that are together in a circuit connected to apply a changing voltage across the element. The electrically-conductive contact pads are laterally spaced from the midpoint of the element by a distance of at least about three times a screening length of the element, given in SI units as (K.di-elect cons..sub.0/e.sup.2D(E.sub.F)).sup.1/2, where K is the static dielectric constant, .di-elect cons..sub.0 is the permittivity of free space, e is electron charge, and D(E.sub.F) is the density of states at the Fermi energy for the element.

  12. Electrical conductivity of the continental crust

    SciTech Connect

    Glover, P.W.J.; Vine, F.J. |

    1994-11-01

    Geophysical measurements indicate that the Earth`s continental lower crust has a high electrical conductivity for which no simple cause has been found. Explanation usually relies on either saline fluids saturating the pores, or interconnected highly conducting minerals such as graphite, Fe/Ti oxides and sulfides, providing conducting pathways. Attempts in the laboratory to clarify the problem have, hitherto, been unable to recreate conditions likely to be present at depth by controlling the confining pressure and pore fluid pressure applied to a rock saturated with saline fluids at temperatures between 270 C and 1000 C. Here we report conductivity data obtained using a cell designed to make such measurements on rocks saturated with saline fluids. Our results show that the conductivity of saturated samples of acidic rocks is explicable entirely in terms of conduction through the pore fluid whereas the conductivity of saturated basic rocks requires the presence of an additional conduction mechanism(s). We have used the experimental data to construct electrical conductivity/depth profiles for the continental crust, which, when compared with profiles obtained from magnetotelluric observations, demonstrate that a mid to lower crust composed of amphibolite saturated with 0.5 M NaCl shows electrical conductivities sufficient to explain conductivity/depth profiles for the continental crust inferred from geophysical measurements.

  13. Contactless electrical conductivity measurement of metallic submicron-grain material: Application to the study of aluminum with severe plastic deformation.

    PubMed

    Mito, M; Matsui, H; Yoshida, T; Anami, T; Tsuruta, K; Deguchi, H; Iwamoto, T; Terada, D; Miyajima, Y; Tsuji, N

    2016-05-01

    We measured the electrical conductivity σ of aluminum specimen consisting of submicron-grains by observing the AC magnetic susceptibility resulting from the eddy current. By using a commercial platform for magnetic measurement, contactless measurement of the relative electrical conductivity σn of a nonmagnetic metal is possible over a wide temperature (T) range. By referring to σ at room temperature, obtained by the four-terminal method, σn(T) was transformed into σ(T). This approach is useful for cylinder specimens, in which the estimation of the radius and/or volume is difficult. An experiment in which aluminum underwent accumulative roll bonding, which is a severe plastic deformation process, validated this method of evaluating σ as a function of the fraction of high-angle grain boundaries.

  14. Electrical conductivity of acidic chloride solutions

    NASA Astrophysics Data System (ADS)

    Majima, Hiroshi; Peters, Ernest; Awakura, Yasuhiro; Park, Sung Kook; Aoki, Masami

    1988-02-01

    The electrical conductivities of aqueous solutions in the system HCl-MCln (where M = K, Na, Mg, Ni, or Cd) were measured at different temperatures. The equivalent electrical conductivity of H+ was calculated on the basis of simple assumptions for these solutions, and show an inverse relationship with water activity in these solutions. The results obtained by varying temperatures, solute ratios, and ionic strength on the electrical conductivity were found to be consistent with a proton jump mechanism for the H+ ion, where the activity of water is the most significant parameter affecting its equivalent conductance, and a viscous (Stokes’ law) drag mechanism (i.e., Walden’s rule is obeyed) for other ions found in acidic solutions.

  15. Making Complex Electrically Conductive Patterns on Cloth

    NASA Technical Reports Server (NTRS)

    Chu, Andrew; Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Scully, Robert C.; Trevino, Robert

    2008-01-01

    A method for automated fabrication of flexible, electrically conductive patterns on cloth substrates has been demonstrated. Products developed using this method, or related prior methods, are instances of a technology known as 'e-textiles,' in which electrically conductive patterns ar formed in, and on, textiles. For many applications, including high-speed digital circuits, antennas, and radio frequency (RF) circuits, an e-textile method should be capable of providing high surface conductivity, tight tolerances for control of characteristic impedances, and geometrically complex conductive patterns. Unlike prior methods, the present method satisfies all three of these criteria. Typical patterns can include such circuit structures as RF transmission lines, antennas, filters, and other conductive patterns equivalent to those of conventional printed circuits. The present method overcomes the limitations of the prior methods for forming the equivalent of printed circuits on cloth. A typical fabrication process according to the present method involves selecting the appropriate conductive and non-conductive fabric layers to build the e-textile circuit. The present method uses commercially available woven conductive cloth with established surface conductivity specifications. Dielectric constant, loss tangent, and thickness are some of the parameters to be considered for the non-conductive fabric layers. The circuit design of the conductive woven fabric is secured onto a non-conductive fabric layer using sewing, embroidery, and/or adhesive means. The portion of the conductive fabric that is not part of the circuit is next cut from the desired circuit using an automated machine such as a printed-circuit-board milling machine or a laser cutting machine. Fiducials can be used to align the circuit and the cutting machine. Multilayer circuits can be built starting with the inner layer and using conductive thread to make electrical connections between layers.

  16. Wet method for measuring starch gelatinization temperature using electrical conductivity.

    PubMed

    Morales-Sanchez, E; Figueroa, J D C; Gaytan-Martínez, M

    2009-09-01

    The objective of the present study was to develop a method for obtaining the gelatinization temperature of starches by using electrical conductivity. Native starches from corn, rice, potato, and wheat were prepared with different proportions of water and heated from room temperature to 90 degrees C, in a device especially designed for monitoring the electrical conductivity as a function of temperature. The results showed a linear trend of the electrical conductivity with the temperature until it reaches the onset gelatinization temperature. After that point, the electrical conductivity presented an increment or decrement depending on the water content in the sample and it was related to starch swelling and gelatinization phenomena. At the end gelatinization temperature, the conductivity becomes stable and linear, indicating that there are no more changes of phase. The starch gelatinization parameter, which was evaluated in the 4 types of starches using the electrical conductivity, was compared with those obtained by using differential scanning calorimeter (DSC). The onset temperature at which the electrical conductivity increased or decreased was found to be similar to that obtained by DSC. Also, the final temperature at which the electrical conductivity returned to linearity matched the end gelatinization temperature of the DSC. Further, a wet method for measuring the onset, peak, and end gelatinization temperatures as a function of temperature using the electrical conductivity curves is presented for a starch-water suspension.

  17. Anisotropy of electrical conductivity in dry olivine

    SciTech Connect

    Du Frane, W L; Roberts, J J; Toffelmier, D A; Tyburczy, J A

    2005-04-13

    [1] The electrical conductivity ({sigma}) was measured for a single crystal of San Carlos olivine (Fo{sub 89.1}) for all three principal orientations over oxygen fugacities 10{sup -7} < fO{sub 2} < 10{sup 1} Pa at 1100, 1200, and 1300 C. Fe-doped Pt electrodes were used in conjunction with a conservative range of fO{sub 2}, T, and time to reduce Fe loss resulting in data that is {approx}0.15 log units higher in conductivity than previous studies. At 1200 C and fO{sub 2} = 10{sup -1} Pa, {sigma}{sub [100]} = 10{sup -2.27} S/m, {sigma}{sub [010]} = 10{sup -2.49} S/m, {sigma}{sub [001]} = 10{sup -2.40} S/m. The dependences of {sigma} on T and fO{sub 2} have been simultaneously modeled with undifferentiated mixed conduction of small polarons and Mg vacancies to obtain steady-state fO{sub 2}-independent activation energies: Ea{sub [100]} = 0.32 eV, Ea{sub [010]} = 0.56 eV, Ea{sub [001]} = 0.71 eV. A single crystal of dry olivine would provide a maximum of {approx}10{sup 0.4} S/m azimuthal {sigma} contrast for T < 1500 C. The anisotropic results are combined to create an isotropic model with Ea = 0.53 eV.

  18. Electrically conductive containment vessel for molten aluminum

    DOEpatents

    Holcombe, C.E.; Scott, D.G.

    1984-06-25

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal 10 borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  19. Electrically conductive containment vessel for molten aluminum

    DOEpatents

    Holcombe, Cressie E.; Scott, Donald G.

    1985-01-01

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  20. Electrical conductivity measurements of nanofluids and development of new correlations.

    PubMed

    Konakanchi, Hanumantharao; Vajjha, Ravikanth; Misra, Debasmita; Das, Debendra

    2011-08-01

    In this study the electrical conductivity of aluminum oxide (Al2O3), silicon dioxide (SiO2) and zinc oxide (ZnO) nanoparticles dispersed in propylene glycol and water mixture were measured in the temperature range of 0 degrees C to 90 degrees C. The volumetric concentration of nanoparticles in these fluids ranged from 0 to 10% for different nanofluids. The particle sizes considered were from 20 nm to 70 nm. The electrical conductivity measuring apparatus and the measurement procedure were validated by measuring the electrical conductivity of a calibration fluid, whose properties are known accurately. The measured electrical conductivity values agreed within +/- 1% with the published data reported by the manufacturer. Following the validation, the electrical conductivities of different nanofluids were measured. The measurements showed that electrical conductivity of nanofluids increased with an increase in temperature and also with an increase in particle volumetric concentration. For the same nanofluid at a fixed volumetric concentration, the electrical conductivity was found to be higher for smaller particle sizes. From the experimental data, empirical models were developed for three nanofluids to express the electrical conductivity as functions of temperature, volumetric concentration and the size of the nanoparticles.

  1. Pressure dependence of electrical conductivity in forsterite

    NASA Astrophysics Data System (ADS)

    Yoshino, Takashi; Zhang, Baohua; Rhymer, Brandon; Zhao, Chengcheng; Fei, Hongzhan

    2017-01-01

    Electrical conductivity of dry forsterite has been measured in muli-anvil apparatus to investigate the pressure dependence of ionic conduction in forsterite. The starting materials for the conductivity experiments were a synthetic forsterite single crystal and a sintered forsterite aggregate synthesized from oxide mixture. Electrical conductivities were measured at 3.5, 6.7, 9.6, 12.1, and 14.9 GPa between 1300 and 2100 K. In the measured temperature range, the conductivity of single crystal forsterite decreases in the order of [001], [010], and [100]. In all cases, the conductivity decreases with increasing pressure and then becomes nearly constant for [100] and [001] and slightly increases above 7 GPa for [010] orientations and a polycrystalline forsterite sample. Pressure dependence of forsterite conductivity was considered as a change of the dominant conduction mechanism composed of migration of both magnesium and oxygen vacancies in forsterite. The activation energy (ΔE) and activation volume (ΔV) for ionic conduction due to migration of Mg vacancy were 1.8-2.7 eV and 5-19 cm3/mol, respectively, and for that due to O vacancy were 2.2-3.1 eV and -1.1 to 0.3 cm3/mol, respectively. The olivine conductivity model combined with small polaron conduction suggests that the most part of the upper mantle is controlled by ionic conduction rather than small polaron conduction. The previously observed negative pressure dependence of the conductivity of olivine with low iron content (Fo90) can be explained by ionic conduction due to migration of Mg vacancies, which has a large positive activation volume.

  2. Electrical conductivity studies in (Ag3AsS3)x(As2S3)1-x superionic glasses and composites

    NASA Astrophysics Data System (ADS)

    Studenyak, I. P.; Neimet, Yu. Yu.; Kranjčec, M.; Solomon, A. M.; Orliukas, A. F.; Kežionis, A.; Kazakevičius, E.; Šalkus, T.

    2014-01-01

    Compositional, frequency, and temperature studies of impedance and electrical conductivity in (Ag3AsS3)x(As2S3)1-x superionic glasses and composites were performed. Frequency range from 10 Hz to 3 × 109 Hz and temperature interval 300-400 K were used for the measurements. Compositional dependences of electrical conductivity and activation energy are analyzed; the most substantial changes are observed with the transition from (Ag3AsS3)0.4(As2S3)0.6 glass to (Ag3AsS3)0.5(As2S3)0.5 composite. With increase of Ag3AsS3 content, the investigated materials are found to have crystalline inclusions and show the two-phase composite nature. Addition of Ag3AsS3 leads to the increase of electrical conductivity whereas the activation energy decreases.

  3. Sintering, Microstructure, and Electrical Conductivity of Zirconia-Molybdenum Cermet

    NASA Astrophysics Data System (ADS)

    Guo, Yanling; Tang, Lei; Zhang, Jieyu

    2015-08-01

    Monolithic zirconia-molybdenum ( m-ZrO2/Mo) cermets of different compositions (5-40 vol.% Mo) and different initial Mo particles sizes (0.08-13 μm) were prepared by traditional powder metallurgy process. The influences of metal content and initial particle sizes on the densification behavior, microstructure, and electrical conductivity of the cermets were studied. A percolation threshold value was obtained about 17.1 vol.% molybdenum fraction, above which a sharp increase in the electrical conductivity was observed. The temperature dependence of the electrical conductivity of cermets was studied. The cermet containing 5 vol.% Mo showed the ionic nature of the conductivity, while the metallic nature was observed in the samples of Mo fraction up to 16 vol.%. The activation of conductivity for ionic type of conductivity and the temperature coefficient of resistivity as well as the effect of porosity on electronic type conductivity are discussed.

  4. Electrical conduction of a XLPE nanocomposite

    NASA Astrophysics Data System (ADS)

    Park, Yong-Jun; Sim, Jae-Yong; Lim, Kee-Joe; Nam, Jin-Ho; Park, Wan-Gi

    2014-07-01

    The resistivity, breakdown strength, and formation of space charges are very important factors for insulation design of HVDC cable. It is known that a nano-sized metal-oxide inorganic filler reduces the formation of space charges in the polymer nanocomposite. Electrical conduction of cross-linked polyethylene(XLPE) nanocomposite insulating material is investigated in this paper. The conduction currents of two kinds of XLPE nanocomposites and XLPE without nano-filler were measured at temperature of 303 ~ 363 K under the applied electric fields of 10 ~ 50 kV/mm. The current of the nanocomposite specimen is smaller than that of XLPE specimen without nano-filler. The conduction mechanism may be explained in terms of Schottky emission and multi-core model.

  5. Imaging of cardiac electrical excitation conduction.

    PubMed

    Zhou, D F; Jiang, S Q; Zhu, J C; Zhao, C; Yan, Y R; Gronemeyer, D; Van Leeuwen, P

    2015-08-01

    We present a multiple time windows beamformer (MTWB) method of solving the inverse problem of magnetic field and non-invasively imaging the cardiac electrical excitation conduction using the magnetocardiac signals acquired by a 61-channel superconducting quantum interference device (SQUID). The MTWB constructs spatial filters for each location in source space, one for each component of the source moment based on the distributed source model, and estimates the cardiac equivalent current sources. The output of spatial filters is the source strength estimated in three-dimensional space and the weight matrix calculated with magnetocardiac signals in multiple time windows. A signal subspace projection technique is used to suppress noise. Then, the characteristics of cardiac electrical excitation conduction among two healthy subjects and two coronary vessel stenosis (CVS) patients are extracted from reconstructed current sources with maximum strength at each instant during QRS complex and ST-T segment, and a series of two-dimensional cardiac electrical excitation conduction maps (EECM) are obtained. It is demonstrated that two healthy subjects are of similar and the stronger electrical activities than those of two CVS patients. This technique can be used as an effective tool for the diagnosis of heart diseases.

  6. Local electric conductive property of Si nanowire models

    NASA Astrophysics Data System (ADS)

    Ikeda, Yuji; Senami, Masato; Tachibana, Akitomo

    2012-12-01

    Local electric conductive properties of Si nanowire models are investigated by using two local electric conductivity tensors, {{σ }limits^{leftrArr }}_{ext}(r) and {{σ }limits^{leftrArr }}_{int}(r), defined in Rigged QED. It is emphasized that {{σ }limits^{leftrArr }}_{int}(r) is defined as the response of electric current to the actual electric field at a specific point and does not have corresponding macroscopic physical quantity. For the Si nanowire models, there are regions which show complicated response of electric current density to electric field, in particular, opposite and rotational ones. Local conductivities are considered to be available for the study of a negative differential resistance (NDR), which may be related to this opposite response. It is found that {{σ }limits^{leftrArr }}_{int}(r) shows quite different pattern from {{σ }limits^{leftrArr }}_{ext}(r), local electric conductivity defined for the external electric field. The effects of impurities are also studied by using the model including a Ge atom, in terms of the local response to electric field. It is found that the difference from the pristine model is found mainly around the Ge atom.

  7. Temperature dependent DC electrical conductivity studies of ZnO nanoparticle thick films prepared by simple solution combustion method

    SciTech Connect

    Naveen, C. S. Jayanna, H. S. Lamani, Ashok R. Rajeeva, M. P.

    2014-04-24

    ZnO nanoparticles of different size were prepared by varying the molar ratio of glycine and zinc nitrate hexahydrate as fuel and oxidizer (F/O = 0.8, 1.11, 1.7) by simple solution combustion method. Powder samples were characterized by UV-Visible spectrophotometer, X-ray diffractometer, Scanning electron microscope (SEM). DC electrical conductivity measurements at room temperature and in the temperature range of 313-673K were carried out for the prepared thick films and it was found to increase with increase of temperature which confirms the semiconducting nature of the samples. Activation energies were calculated and it was found that, F/O molar ratio 1.7 has low E{sub AL} (Low temperature activation energy) and high E{sub AH} (High temperature activation energy) compared to other samples.

  8. Experimental and theoretical study of AC electrical conduction mechanisms of Organic-inorganic hybrid compound Bis (4-acetylanilinium) tetrachlorocadmiate (II)

    NASA Astrophysics Data System (ADS)

    Jellibi, A.; Chaabane, I.; Guidara, K.

    2016-06-01

    A new organic-inorganic bis (4-acetylaniline) tetrachlorocadmate [C8H10NO]2[CdCl4] can be obtained by slow evaporation at room temperature and characterized by X-ray powder diffraction. It crystallized in an orthorhombic system (Cmca space group). The material electrical properties were characterized by impedance spectroscopy technique in the frequency range from 209 Hz-5 MHz and temperature 413 to 460 K. Besides, the impedance plots show semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to interpret the impedance results. The circuits consist of the parallel combination of a resistance (R), capacitance (C) and fractal capacitance (CPE). The variation of the exponent s as a function of temperature suggested that the conduction mechanism in Bis (4-acetylanilinium) tetrachlorocadmiate compound is governed by two processes which can be ascribed to a hopping transport mechanism: correlated barrier hopping (CBH) model below 443 K and the small polaron tunneling (SPT) model above 443 K.

  9. Electrically conductive palladium containing polyimide films

    NASA Technical Reports Server (NTRS)

    Taylor, L. T.; St.clair, A. K.; Carver, V. C.; Furtsch, T. A. (Inventor)

    1982-01-01

    Lightweight, high temperature resistant, electrically conductive, palladium containing polyimide films and methods for their preparation are described. A palladium (II) ion-containing polyamic acid solution is prepared by reacting an aromatic dianhydride with an equimolar quantity of a palladium II ion-containing salt or complex and the reactant product is cast as a thin film onto a surface and cured at approximately 300 C to produce a flexible electrically conductive cyclic palladium containing polyimide. The source of palladium ions is selected from the group of palladium II compounds consisting of LiPdCl4, PdS(CH3)2Cl2Na2PdCl4, and PdCl2. The films have application to aerodynamic and space structures and in particular to the relieving of space charging effects.

  10. Electrically conducting polyimide film containing tin complexes

    NASA Technical Reports Server (NTRS)

    St. Clair, Anne K. (Inventor); Ezzell, Stephen A. (Inventor); Taylor, Larry T. (Inventor); Boston, Harold G. (Inventor)

    1996-01-01

    Disclosed is a thermally-stable SnO.sub.2 -surfaced polyimide film wherein the electrical conductivity of the SnO.sub.2 surface is within the range of about 3.0.times.10.sup.-3 to about 1.times.10.sup.-2 ohms.sup.-1,. Also disclosed is a method of preparing this film from a solution containing a polyamic acid and SnCl.sub.4 (DMSO).sub.2.

  11. Electric conductance of highly selective nanochannels

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Yariv, Ehud

    2013-05-01

    We consider electric conductance through a narrow nanochannel in the thick-double-layer limit, where the space-charge Debye layers adjacent to the channel walls overlap. At moderate surface-charge densities the electrolyte solution filling the channel comprises mainly of counterions. This allows to derive an analytic closed-form approximation for the channel conductance, independent of the salt concentration in the channel reservoirs. The derived expression consists of two terms. The first, representing electromigratory transport, is independent of the channel depth. The second, representing convective transport, depends upon it weakly.

  12. Effect of Crystallinity on Electrical Conduction in Polypropylene

    NASA Astrophysics Data System (ADS)

    Ikezaki, Kazuo; Kaneko, Takanobu; Sakakibara, Toshio

    1981-03-01

    The electrical conduction of 20 μm thick polypropylene films with different crystallinities has been studied at 72°C below 400 kV/cm. The field dependence of the current shows that the conduction mechanism in this polymer is ion hopping. The estimated ionic jump distance strongly depends on the polymer crystallinity, and it decreases from 100 Å to 45 Å as the crystallinity increases from 50.5% to 78%. Preheating of samples seriously affects the electrical conduction in polypropylene, so differences in conductivity, activation energy and jump distance obtained by different authors can be explained partly by differences in the thermal history of the samples used.

  13. Electrical conductivity of rocks at high pressures and temperatures

    NASA Technical Reports Server (NTRS)

    Parkhomenko, E. I.; Bondarenko, A. T.

    1986-01-01

    The results of studies of the electrical conductivity in the most widely distributed types of igneous rocks, at temperatures of up to 1200 C, at atmospheric pressure, and also at temperatures of up to 700 C and at pressures of up to 20,000 kg/sq cm are described. The figures of electrical conductivity, of activaation energy and of the preexponential coefficient are presented and the dependence of these parameters on the petrochemical parameters of the rocks are reviewed. The possible electrical conductivities for the depository, granite and basalt layers of the Earth's crust and of the upper mantle are presented, as well as the electrical conductivity distribution to the depth of 200 to 240 km for different geological structures.

  14. The electrical conductivity of sodium polysulfide melts

    SciTech Connect

    Meihui Wang

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na{sub 2}S{sub 4} and Na{sub 2}S{sub 5} were measured as a function of temperature (range: 300 to 360{degree}C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  15. Electrical conductivity of water-bearing magmas

    NASA Astrophysics Data System (ADS)

    Gaillard, F.

    2003-04-01

    Phase diagrams and chemical analyzes of crystals and glass inclusions of erupted lavas tell us that most explosive volcanic eruptions were caused by extremely water-rich pre-eruptive conditions. Volcanologists estimate volcanic hazards by the pre-eruptive water content of lavas erupted in the past and they hypothesize that future eruptions should show similar features. Alternatively, the development of methods allowing direct estimation of water content of magmas stored in the Earth’s interior would have the advantage of providing direct constraints about upcoming rather than past eruptions. Geoelectrical sounding, being the most sensitive probe to the chemical state of the Earth’s interior, seems a promising tool providing that its interpretation is based on relevant laboratory constraints. However, the current database of electrical conductivity of silicate melt merely constrains anhydrous composition. We have therefore undertaken an experimental program aiming at elucidating the effect of water on the electrical conductivity of natural magmas. Measurements (impedance spectroscopy) are performed using a two electrodes set-up in an internally heated pressure vessel. The explored temperature and pressure range is 25-1350°C and 0.1-400MPa. The material used is a natural rhyolitic obsidian. Hydration of this rhyolite is first performed in Pt capsules with 0.5, 1, 2 and 6wt% of water. In a second step, the conductivity measurements are performed at pressure and temperature in a modified Pt capsule. One end of the capsule is arc-welded whereas the other end is closed with the help of a BN cone and cement through which an inner electrode is introduced in the form a Pt wire. The capsule is used as outer electrode. The electrical cell has therefore a radial geometry. The rhyolite is introduced in the cell in the form of a cylinder drilled in the previously hydrated glass. At dwell condition, the melt is sandwiched between two slices of quartz avoiding any deformation

  16. Universality of DC electrical conductivity from holography

    NASA Astrophysics Data System (ADS)

    Ge, Xian-Hui; Sin, Sang-Jin; Wu, Shao-Feng

    2017-04-01

    We propose a universal formula of dc electrical conductivity in rotational- and translational-symmetries breaking systems via the holographic duality. This formula states that the ratio of the determinant of the dc electrical conductivities along any spatial directions to the black hole area density in zero-charge limit has a universal value. As explicit illustrations, we give several examples elucidating the validation of this formula: We construct an anisotropic black brane solution, which yields linear in temperature for the in-plane resistivity and insulating behavior for the out-of-plane resistivity; We also construct a spatially isotropic black brane solution that both the linear-T and quadratic-T contributions to the resistivity can be realized. 1). For Z (ϕ) = 1 and d ≥ 3, isotropic black branes in the AdS space cannot be utilized to realize linear temperature resistivity in the zero-charges limit. Nevertheless, anisotropic black branes are good candidates in model-building of holographic strange metals. 2). For d + 1-dimensional spatially isotropic Lifshitz black holes with Z (ϕ) = 1 in the absence of hyperscaling violation, this relation indicates that σii|qi=0 =[ 4 π / (d + z - 1) ] d - 3T (d - 3) / z, which is consistent with what obtained in Refs. [23,24] based on a universal scaling relation hypothesis: σ (ω = 0) =T (d - 3) / z Θ (0), where z is a dynamical critical exponent and Θ (ω) is a frequency dependent function. 3). This relation applies to shear viscosity-bound and electrical conductivity-bound violated systems, for example, systems considered in [20,25,26]. In [27], the authors conjectured that for the case d = 3, there exists a lower bound of dc electrical conductivity ∏iσii > 1. But it was soon found that this bound can be violated by a special coupling between the linear axion fields and the U (1) gauge field [25,26]. The structure of this paper is organized as follows. In section 2, we present our main results by writing

  17. Study of adsorption of detergent-dispersion additives on solid particles dispersed in oil using the method of electrical conductivity measurement

    SciTech Connect

    Waligora, B.; Buczak, H.; Olszewska, A.; Szeglowski, Z.

    1984-01-01

    By measuring electrical conductivity of paraffin oil solutions in isooctane (1:1 by volume) the variation in concentration of detergent-dispersant additives is studied; this variation is caused by their adsorption on solid particles (carbon black, aluminum powder). It is shown that dispersants have an improved ability to undergo adsorption, compared with detergents. Studies of adsorption of additives on model sorbents may be used to develop tests for evaluating additive properties. 7 references, 4 figures.

  18. Electrical Conductivity of the Lower-Mantle Ferropericlase

    SciTech Connect

    Lin, J F; Weir, S T; Jackson, D D; Evans, W J; Vohra, Y K; Qiu, W; Yoo, C S

    2007-04-19

    Electrical conductivity of the lower-mantle ferropericlase-(Mg{sub 0.75},Fe{sub 0.25})O has been studied using designer diamond anvils to pressures over one megabar and temperatures up to 500 K. The electrical conductivity of (Mg{sub 0.75},Fe{sub 0.25})O gradually rises by an order of magnitude up to 50 GPa but decreases by a factor of approximately three between 50 to 70 GPa. This decrease in the electrical conductivity is attributed to the electronic high-spin to low-spin transition of iron in ferropericlase. That is, the electronic spin transition of iron results in a decrease in the mobility and/or density of the charge transfer carriers in the low-spin ferropericlase. The activation energy of the low-spin ferropericlase is 0.27 eV at 101 GPa, similar to that of the high-spin ferropericlase at relatively low temperatures. Our results indicate that low-spin ferropericlase exhibits lower electrical conductivity than high-spin ferropericlase, which needs to be considered in future geomagnetic models for the lower mantle. The extrapolated electrical conductivity of the low-spin ferropericlase, together with that of silicate perovskite, at the lower mantle pressure-temperature conditions is consistent with the model electrical conductivity profile of the lower mantle.

  19. Numerical recovery of certain discontinuous electrical conductivities

    NASA Technical Reports Server (NTRS)

    Bryan, Kurt

    1991-01-01

    The inverse problem of recovering an electrical conductivity of the form Gamma(x) = 1 + (k-1)(sub Chi(D)) (Chi(D) is the characteristic function of D) on a region omega is a subset of 2-dimensional Euclid space from boundary data is considered, where D is a subset of omega and k is some positive constant. A linearization of the forward problem is formed and used in a least squares output method for approximately solving the inverse problem. Convergence results are proved and some numerical results presented.

  20. Electrical Conductivity Calculations from the Purgatorio Code

    SciTech Connect

    Hansen, S B; Isaacs, W A; Sterne, P A; Wilson, B G; Sonnad, V; Young, D A

    2006-01-09

    The Purgatorio code [Wilson et al., JQSRT 99, 658-679 (2006)] is a new implementation of the Inferno model describing a spherically symmetric average atom embedded in a uniform plasma. Bound and continuum electrons are treated using a fully relativistic quantum mechanical description, giving the electron-thermal contribution to the equation of state (EOS). The free-electron density of states can also be used to calculate scattering cross sections for electron transport. Using the extended Ziman formulation, electrical conductivities are then obtained by convolving these transport cross sections with externally-imposed ion-ion structure factors.

  1. Thermal conductivity, electrical conductivity and specific heat of copper-carbon fiber composite

    NASA Technical Reports Server (NTRS)

    Kuniya, Keiichi; Arakawa, Hideo; Kanai, Tsuneyuki; Chiba, Akio

    1988-01-01

    A new material of copper/carbon fiber composite is developed which retains the properties of copper, i.e., its excellent electrical and thermal conductivity, and the property of carbon, i.e., a small thermal expansion coefficient. These properties of the composite are adjustable within a certain range by changing the volume and/or the orientation of the carbon fibers. The effects of carbon fiber volume and arrangement changes on the thermal and electrical conductivity, and specific heat of the composite are studied. Results obtained are as follows: the thermal and electrical conductivity of the composite decrease as the volume of the carbon fiber increases, and were influenced by the fiber orientation. The results are predictable from a careful application of the rule of mixtures for composites. The specific heat of the composite was dependent, not on fiber orientation, but on fiber volume. In the thermal fatigue tests, no degradation in the electrical conductivity of this composite was observed.

  2. Electrical-conductivity testing of latex gloves

    SciTech Connect

    Stampfer, J.F.; Salazar, J.A.; Trujillo, A.G.; Harris, T.; Berardinelli, S.P.

    1994-11-01

    There is an increasing awareness in the healthcare field that gloves worn for protection from hazards associated with body fluids do not always afford the protection desired. Gloves may have defects, such as holes, as they come from the manufacturer or distributor, or they may become defective during storage or use. While the numbers vary widely, failure rates for new gloves, defined as detectable holes in gloves prior to use, for unused examination gloves are reported as high as 58%. Rates as high as 7% have been reported for sterile latex gloves. Incidences of breaching the latex barrier during use vary with procedure but have been reported as high as 50%. In recent years, a number of devices have been developed to detect holes in latex gloves as they are being worn. Detection of increased electrical conductivity that takes place through the holes in the gloves is used to activate an audible alarm. The primary purpose of this research was to investigate the validity of this method for hole detection. This evaluation was accomplished with both basic laboratory equipment and commercially available instruments. We did not evaluate or critically compare the individual devices. We also investigated the use of electrical conductivity as a quality assurance (QA) procedure, and the degradation of latex gloves due to storage and exposure to laboratory atmospheres and disinfectants.

  3. Conductive network formation of carbon nanotubes in elastic polymer microfibers and its effect on the electrical conductance: Experiment and simulation.

    PubMed

    Cho, Hyun Woo; Kim, Sang Won; Kim, Jeongmin; Kim, Un Jeong; Im, Kyuhyun; Park, Jong-Jin; Sung, Bong June

    2016-05-21

    We investigate how the electrical conductance of microfibers (made of polymers and conductive nanofillers) decreases upon uniaxial deformation by performing both experiments and simulations. Even though various elastic conductors have been developed due to promising applications for deformable electronic devices, the mechanism at a molecular level for electrical conductance change has remained elusive. Previous studies proposed that the decrease in electrical conductance would result from changes in either distances or contact numbers between conductive fillers. In this work, we prepare microfibers of single walled carbon nanotubes (SWCNTs)/polyvinyl alcohol composites and investigate the electrical conductance and the orientation of SWCNTs upon uniaxial deformation. We also perform extensive Monte Carlo simulations, which reproduce experimental results for the relative decrease in conductance and the SWCNTs orientation. We investigate the electrical networks of SWCNTs in microfibers and find that the decrease in the electrical conductance upon uniaxial deformation should be attributed to a subtle change in the topological structure of the electrical network.

  4. Study of pressure induced polyamorphic transition in Ce-based ternary BMG using in situ x-ray scattering and electrical conductivity measurement

    NASA Astrophysics Data System (ADS)

    Chen, J.; Ma, C.; Tang, R.; Li, L.; Liu, H.; Gao, C.; Yang, W.

    2015-12-01

    In situ high energy x-ray scattering and electrical conductivity measurements on Ce70Al10Cu20 bulk metallic glass have been conducted using a diamond anvil cell (DAC) in conjunction with synchrotron x-rays or a laboratory electrical measurement system. The relative volumetric change (V/V0) as a function of pressure is inferred using the first sharp diffraction peak (FSDP) and the universal fractional noncubic power law[1]. The result indicates a pressure-induced polyamorphic transition at about 4 GPa in the ternary system. While the observed pressure of such polyamorphic transition in the Ce-base binary BMG is not very sensitive to its composition based on some of the previous studies[2, 3], this study indicates that such transition pressure increases considerably when a new component is added to the system. In the electrical conductivity measurement, a significant resistance change was observed in the pressure range coupled to polyamorphic transition. More discussions will be given regarding the electrical conductivity behavior of this system under high pressure to illustrate the delocalization of 4f electrons as the origin of the observed polyamorphic transition. References: 1. Zeng Q, Kono Y, Lin Y, Zeng Z, Wang J, Sinogeikin SV, Park C, Meng Y, Yang W, Mao H-K (2014) Universal fractional noncubic power law for density of metallic glasses. Physical Review Letters 112: 185502-185502 2. Zeng Q-S, Ding Y, Mao WL, Yang W, Sinogeikin SV, Shu J, Mao H-K, Jiang JZ (2010) Origin of pressure-induced polyamorphism in Ce75Al25 metallic glass. Physical Review Letters 104: 105702-105702 3. Sheng HW, Liu HZ, Cheng YQ, Wen J, Lee PL, Luo WK, Shastri SD, Ma E (2007) Polyamorphism in a metallic glass. Nature Materials DOI: 10.1038/nmat1839.

  5. Electrical conductance between multi-walled carbon nanotube and Cu

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Qu, Jianmin; Yao, Matthew

    2011-04-01

    Vertical MWCNT interconnects have already been investigated for vias, or even for through-wafer 3D interconnects. Several studies have been done to understand the electrical conductance of MWCNT itself. The electrical conductance at a junction between MWCNT and metals has not been studied yet. Here we reported the intershell interaction effect on the electrical conductance at the Cu/MWCNT/Cu junctions by quantum mechanics calculations. Both end- and side-contacts between MWCNT and Cu electrodes were studied. In the end-contact junction, each individual CNT in the MWCNT acts as if it is a single wave CNT. The total conductance is almost the sum of the contributions from each individual nanotube. However, in the side-contact junction, the conductance between the outermost CNT and Cu electrode is dominant, whereas the intershell interaction leads to a reduction of the total electrical conductance. This is attributed to the enhanced localization of density of states in the vicinity of Fermi level by inner tube. The authors acknowledge the financial support from Rockwell Collins Inc.

  6. Sintering Behavior and Effect of Silver Nanowires on the Electrical Conductivity of Electrically Conductive Adhesives.

    PubMed

    Xie, H; Xiong, N N; Wang, Y H; Zhao, Y Z; Li, J Z

    2016-01-01

    In this paper, two kinds of silver nanowires with a 160 nm average diameter ranging from 30 to 90 µm length and a 450 nm average diameter up to 100 µm length were successfully synthesized by a polyol process with FeCl3 and Na₂S as reaction inhibitor, respectively. The experimental results indicate that the morphologies and sintering behaviors of both of silver nanowires are impacted by glutaric acid and sintering temperature. The isotropically conductive adhesives (ICAs) filled with micro-sized silver flakes and silver nanowires as hybrid fillers were fabricated and the electrical properties were investigated based on the fraction of the silver nanowires of the total of silver fillers and the curing temperature, etc. The in situ monitoring the variation in electrical resistance of the ICAs explores that silver nanowires have influence on the curing behavior of the ICAs. Silver nanowires synthesized with Na2S as reaction inhibitor and treated with glutaric acid can significantly improve the electrical conductivity of the ICAs in the case of the low loading of silver fillers in the appropriate proportion range of the weight ratio of micro-sized silver flakes and silver nanowires, primarily as a result of connecting effect. When the loading of silver fillers in the ICAs is high, the electrical conductivity is also enhanced slightly in the case of the proper fraction of silver nanowires of the total of silver fillers. The effect of the curing temperature on the electrical conductivity relates to the fraction of silver nanowires and the total loading of silver fillers. The electrical conductivity of the ICAs filled with micro-sized silver flakes and silver nanowires synthesized with FeCl₃ as reaction inhibitor is greatly damaged, indicating that the size of silver nanowires also is one of main factor to impact the electrical conductivity of the ICAs doped with silver nanowires. The electrical property of the ICAs filled with micro-sized silver flakes and silver

  7. A Random Network Model of Electrical Conduction in Hydrous Rock

    NASA Astrophysics Data System (ADS)

    Fujita, K.; Seki, M.; Katsura, T.; Ichiki, M.

    2011-12-01

    To evaluate the variation in conductivity of hydrous rock during the dehydration, it is essential to comprehend the mechanism of electrical conduction network in rock. In the recent past, several attempts have been made to demonstrate the mechanism of electrical conduction network in hydrous rock. However, realistic conduction mechanism within the crustal rock and mineral is unknown and relevant theories have not been successful. The aim of our study is to quantify the electrical conduction network in the rock and/or mineral. We developed a cell-type lattice network model to evaluate the electrical conduction mechanism of fluid-mineral interaction. Using cell-type lattice model, we simulated the various electrical paths and connectivity in the rock and/or mineral sample. First, we assumed a network model consists of 100 by 100 elementary cells as matrix configuration. We also settled the current input and output layers at the edge of the lattice model. Second, we randomly generated and put the conductive and resistive cells using the scheme of Mersenne Twister. Third, we applied the current for this model and performed a great number of realization on each mineral distribution patterns explaining realistic conduction network model. Considering fractal dimensions, our model has been compared with images from Electron Probe Micro Analysis. To evaluate the distribution pattern of conductive and resistive cells quantitatively, we have determined fractal dimensions by box-counting method. Assessing the bulk conductivity change as a function of conductor ratio in the hydrous rock, the model has been examined successfully both against simulated data and experimental data.

  8. Electrical conductivity and impedance spectroscopy studies of cerium based aeschynite type semiconducting oxides: CeTiMO6 (M=Nb or Ta)

    NASA Astrophysics Data System (ADS)

    Sumi, S.; Rao, P. Prabhakar; Deepa, M.; Koshy, Peter

    2010-09-01

    Complex ceramic oxides, CeTiMO6 (M=Nb or Ta) having aeschynite type mineral structure were prepared by the conventional ceramic route. Complex impedance analysis in the frequency range 10 Hz-1 MHz over a wide temperature range (30-600 °C) indicates the presence of grain boundary effect along with the bulk contribution and also confirms the presence of non-Debye type of multiple relaxations in the material. The frequency dependent conductivity plots exhibit double power law dependence suggesting three types of conduction mechanisms: low frequency (10 Hz-1 kHz) conductivity owing to long range translational motion of electrons (frequency independent), mid-frequency conductivity (1-10 kHz) due to short-range hopping, and high frequency (10 kHz-1 MHz) conduction due to localized orientation hopping mechanism. The hopping model can explain the nature of the conduction mechanism completely. The electrical conductivity measurements with temperature suggest the negative temperature coefficient of resistance behavior. The activation energy studies allow insight into the nature of the conduction mechanisms.

  9. Electrical conductivity of PFPA functionalized graphene

    NASA Astrophysics Data System (ADS)

    Plachinda, P.; Evans, D.; Solanki, R.

    2013-01-01

    Chemical modification of graphene by covalently functionalizing its surface potentially allows a wider flexibility in engineering electronic structure, in particular the local density of states of the carbon atoms bound to the modifier that can result in opening of the band gap. Such binding can involve covalent hydrogenation of graphene to modify hybridization of carbon atoms from sp2 to sp3 geometry [1-3]. Methods have also been developed to functionalize graphene covalently with molecular species [4-8]. Among these, perfluorophenylazide (PFPA) functionalization of graphene is well-developed using a nitrene intermediate. Films of this molecule also act as adhesion layers that allow production of long ribbons of exfoliated graphene [7-9]. We have developed a theory to predict electrical properties of PFPA functionalized graphene and compared it to experimental results. Conductivity of these PFPA functionalized ribbons of exfoliated graphene show good agreement with our theory.

  10. Laboratory-based electrical conductivity at Martian mantle conditions

    NASA Astrophysics Data System (ADS)

    Verhoeven, Olivier; Vacher, Pierre

    2016-12-01

    Information on temperature and composition of planetary mantles can be obtained from electrical conductivity profiles derived from induced magnetic field analysis. This requires a modeling of the conductivity for each mineral phase at conditions relevant to planetary interiors. Interpretation of iron-rich Martian mantle conductivity profile therefore requires a careful modeling of the conductivity of iron-bearing minerals. In this paper, we show that conduction mechanism called small polaron is the dominant conduction mechanism at temperature, water and iron content conditions relevant to Mars mantle. We then review the different measurements performed on mineral phases with various iron content. We show that, for all measurements of mineral conductivity reported so far, the effect of iron content on the activation energy governing the exponential decrease in the Arrhenius law can be modeled as the cubic square root of the iron content. We recast all laboratory results on a common generalized Arrhenius law for iron-bearing minerals, anchored on Earth's mantle values. We then use this modeling to compute a new synthetic profile of Martian mantle electrical conductivity. This new profile matches perfectly, in the depth range [100,1000] km, the electrical conductivity profile recently derived from the study of Mars Global Surveyor magnetic field measurements.

  11. Computational analysis of electrical conduction in hybrid nanomaterials with embedded non-penetrating conductive particles

    NASA Astrophysics Data System (ADS)

    Cai, Jizhe; Naraghi, Mohammad

    2016-08-01

    In this work, a comprehensive multi-resolution two-dimensional (2D) resistor network model is proposed to analyze the electrical conductivity of hybrid nanomaterials made of insulating matrix with conductive particles such as CNT reinforced nanocomposites and thick film resistors. Unlike existing approaches, our model takes into account the impenetrability of the particles and their random placement within the matrix. Moreover, our model presents a detailed description of intra-particle conductivity via finite element analysis, which to the authors’ best knowledge has not been addressed before. The inter-particle conductivity is assumed to be primarily due to electron tunneling. The model is then used to predict the electrical conductivity of electrospun carbon nanofibers as a function of microstructural parameters such as turbostratic domain alignment and aspect ratio. To simulate the microstructure of single CNF, randomly positioned nucleation sites were seeded and grown as turbostratic particles with anisotropic growth rates. Particle growth was in steps and growth of each particle in each direction was stopped upon contact with other particles. The study points to the significant contribution of both intra-particle and inter-particle conductivity to the overall conductivity of hybrid composites. Influence of particle alignment and anisotropic growth rate ratio on electrical conductivity is also discussed. The results show that partial alignment in contrast to complete alignment can result in maximum electrical conductivity of whole CNF. High degrees of alignment can adversely affect conductivity by lowering the probability of the formation of a conductive path. The results demonstrate approaches to enhance electrical conductivity of hybrid materials through controlling their microstructure which is applicable not only to carbon nanofibers, but also many other types of hybrid composites such as thick film resistors.

  12. Photovoltaic device having light transmitting electrically conductive stacked films

    DOEpatents

    Weber, Michael F.; Tran, Nang T.; Jeffrey, Frank R.; Gilbert, James R.; Aspen, Frank E.

    1990-07-10

    A light transmitting electrically conductive stacked film, useful as a light transmitting electrode, including a first light transmitting electrically conductive layer, having a first optical thickness, a second light transmitting layer, having a second optical thickness different from the optical thickness of the first layer, and an electrically conductive metallic layer interposed between and in initimate contact with the first and second layers.

  13. Cross Kelvin force microscopy and conductive atomic force microscopy studies of organic bulk heterojunction blends for local morphology and electrical behavior analysis

    SciTech Connect

    Villeneuve-Faure, C.; Le Borgne, D.; Bedel-Pereira, E.; Séguy, I.; Moineau Chane-Ching, K. I.; Hernandez-Maldonado, D.

    2015-02-07

    Bulk Heterojunction (BHJ) organic photovoltaic devices performances depend on the relative organization and physical properties of the electron-donor and -acceptor materials. In this paper, BHJs of poly(3-hexyl-thiophene) (P3HT) associated with an electron acceptor material, 1-(3-methoxycarbonyl)-propyl-1-phenyl[6,6]C6 (PCBM) or [Ni(4dodpedt){sub 2}], are studied in terms of morphology, ordering, and electrical properties. First, comparison between the two BHJs performed by Atomic Force Microscopy (AFM) and Raman characterizations shows that P3HT structuration is improved by blending with [Ni(4dodpedt){sub 2}]. Then, the relationship between charges trapping, electrical properties, and film morphology is investigated using conductive AFM and Kelvin Force Microscopy. Measurements in dark condition and under solar cell simulator provide complementary information on electrical phenomena in these organic nanostructures. Finally, time dependent measurement highlights the influence of charges stacking on conduction. Specifically, we demonstrate that charge accumulation initiated by illumination remains valid after switching off the light, and induces the modification in current versus voltage characteristic of P3HT: PCBM blend. Finally, we observe a current increasing which can be attributed to the energy barrier decreasing due to charges trapping in PCBM.

  14. Study of the Mechanism of Electrical Conductivity in Molecular Beam- Deposited Polymer Films of Ethylene on Silicon Substrates

    DTIC Science & Technology

    1988-05-25

    the He cryostat.... 10 Figure 7. Van der Pauw sample geometry and connections: a) basic electrical circuit for measuring sample resistivity; b) high...dictated by the Van der Pauw method ............................ 20 v viv vl0 ABSTRACT 4 he following report describes experiments performed on a molecular...function of sample and electrode geometry, a four-probe method was used, based on a technique described by Van der Pauw .3 The method consists of

  15. Chapter A6. Section 6.3. Specific Electrical Conductance

    USGS Publications Warehouse

    Radtke, Dean B.; Davis, Jerri V.; Wilde, Franceska D.

    2005-01-01

    Electrical conductance is a measure of the capacity of a substance to conduct an electrical current. The specific electrical conductance (conductivity) of water is a function of the types and quantities of dissolved substances it contains, normalized to a unit length and unit cross section at a specified temperature. This section of the National Field Manual (NFM) describes U.S. Geological Survey (USGS) guidance and protocols for measurement of conductivity in ground and surface waters.

  16. New method for electrical conductivity temperature compensation.

    PubMed

    McCleskey, R Blaine

    2013-09-03

    Electrical conductivity (κ) measurements of natural waters are typically referenced to 25 °C (κ25) using standard temperature compensation factors (α). For acidic waters (pH < 4), this can result in a large κ25 error (δκ25). The more the sample temperature departs from 25 °C, the larger the potential δκ25. For pH < 4, the hydrogen ion transport number becomes substantial and its mode of transport is different from most other ions resulting in a different α. A new method for determining α as a function of pH and temperature is presented. Samples with varying amounts of H2SO4 and NaCl were used to develop the new α, which was then applied to 65 natural water samples including acid mine waters, geothermal waters, seawater, and stream waters. For each sample, the κ and pH were measured at several temperatures from 5 to 90 °C and κ25 was calculated. The δκ25 ranged from -11 to 9% for the new method as compared to -42 to 25% and -53 to 27% for the constant α (0.019) and ISO-7888 methods, respectively. The new method for determining α is a substantial improvement for acidic waters and performs as well as or better than the standard methods for circumneutral waters.

  17. Magnetic flowmeter for electrically conductive liquid

    DOEpatents

    Skladzien, Stanley B.; Raue, Donald J.

    1982-01-01

    A magnetic flowmeter includes first and second tube sections each having ls of non-magnetic material. The first tube is suitably connected to a process for passing a flow of an electrically conductive fluid to be measured. The second tube is established as a reference containing a still medium and is maintained at the same temperature as the first tube. A rotatable magnet assembly is disposed between the two tubes with at least two magnets attached to radially extending arms from a central shaft. Each magnet includes an air gap suitably sized to pass astraddle the diameter along a portion of the length of each of the two tubes. The magnets are provided in matched pairs spaced 180.degree. apart such that signals will be simultaneously generated in signal leads attached to each of the two tubes. By comparing the signals from the two tubes and varying the rotating speed of the magnet assembly until the signals are equal, or attain a maximum, the flow velocity of the fluid within the first tube can be determined. Through temperature monitoring and appropriate heaters, the two tubes are maintained at the same temperature.

  18. Magnetic flowmeter for electrically conductive liquid

    DOEpatents

    Skladzien, S.B.; Raue, D.J.

    1980-08-18

    A magnetic flowmeter includes first and second tube sections each having walls of non-magnetic material. The first tube is suitably connected to a process for passing a flow of an electrically conductive fluid to be measured. The second tube is established as a reference containing a still medium and is maintained at the same temperature as the first tube. A rotatable magnet assembly is disposed between the two tubes with at least two magnets attached to radially extending arms from a central shaft. Each magnet includes an air gap suitably sized to pass astraddle the diameter along a portion of the length of each of the two tubes. Two magnets are provided in matched pairs spaced 180/sup 0/ apart such that signals will be simultaneously generated in signal leads attached to each of the two tubes. By comparing the signals from the two tubes and varying the rotating speed of the magnet assembly until the signals are equal, or attain a maximum, the flow velocity of the fluid within the first tube can be determined. Through temperature monitoring and appropriate heaters, the two tubes are maintained at the same temperature.

  19. Temporal stability of electrical conductivity in a sandy soil

    NASA Astrophysics Data System (ADS)

    Pedrera-Parrilla, Aura; Brevik, Eric C.; Giráldez, Juan V.; Vanderlinden, Karl

    2016-07-01

    Understanding of soil spatial variability is needed to delimit areas for precision agriculture. Electromagnetic induction sensors which measure the soil apparent electrical conductivity reflect soil spatial variability. The objectives of this work were to see if a temporally stable component could be found in electrical conductivity, and to see if temporal stability information acquired from several electrical conductivity surveys could be used to better interpret the results of concurrent surveys of electrical conductivity and soil water content. The experimental work was performed in a commercial rainfed olive grove of 6.7 ha in the `La Manga' catchment in SW Spain. Several soil surveys provided gravimetric soil water content and electrical conductivity data. Soil electrical conductivity values were used to spatially delimit three areas in the grove, based on the first principal component, which represented the time-stable dominant spatial electrical conductivity pattern and explained 86% of the total electrical conductivity variance. Significant differences in clay, stone and soil water contents were detected between the three areas. Relationships between electrical conductivity and soil water content were modelled with an exponential model. Parameters from the model showed a strong effect of the first principal component on the relationship between soil water content and electrical conductivity. Overall temporal stability of electrical conductivity reflects soil properties and manifests itself in spatial patterns of soil water content.

  20. A model of electrical conduction in cardiac tissue including fibroblasts.

    PubMed

    Sachse, Frank B; Moreno, A P; Seemann, G; Abildskov, J A

    2009-05-01

    Fibroblasts are abundant in cardiac tissue. Experimental studies suggested that fibroblasts are electrically coupled to myocytes and this coupling can impact cardiac electrophysiology. In this work, we present a novel approach for mathematical modeling of electrical conduction in cardiac tissue composed of myocytes, fibroblasts, and the extracellular space. The model is an extension of established cardiac bidomain models, which include a description of intra-myocyte and extracellular conductivities, currents and potentials in addition to transmembrane voltages of myocytes. Our extension added a description of fibroblasts, which are electrically coupled with each other and with myocytes. We applied the extended model in exemplary computational simulations of plane waves and conduction in a thin tissue slice assuming an isotropic conductivity of the intra-fibroblast domain. In simulations of plane waves, increased myocyte-fibroblast coupling and fibroblast-myocyte ratio reduced peak voltage and maximal upstroke velocity of myocytes as well as amplitudes and maximal downstroke velocity of extracellular potentials. Simulations with the thin tissue slice showed that inter-fibroblast coupling affected rather transversal than longitudinal conduction velocity. Our results suggest that fibroblast coupling becomes relevant for small intra-myocyte and/or large intra-fibroblast conductivity. In summary, the study demonstrated the feasibility of the extended bidomain model and supports the hypothesis that fibroblasts contribute to cardiac electrophysiology in various manners.

  1. The electrical conductivity of polycrystalline metallic films

    NASA Astrophysics Data System (ADS)

    Moraga, Luis; Arenas, Claudio; Henriquez, Ricardo; Bravo, Sergio; Solis, Basilio

    2016-10-01

    We calculate the electrical conductivity of polycrystalline metallic films by means of a semi-numerical procedure that provides solutions of the Boltzmann transport equation, that are essentially exact, by summing over classical trajectories according to Chambers' method. Following Mayadas and Shatzkes (MS), grain boundaries are modeled as an array of parallel plane barriers situated perpendicularly to the direction of the current. Alternatively, according to Szczyrbowski and Schmalzbauer (SS), the model consists in a triple array of these barriers in mutual perpendicular directions. The effects of surface roughness are described by means of Fuchs' specularity parameters. Following SS, the scattering properties of grain boundaries are taken into account by means of another specularity parameter and a probability of coherent passage. The difference between the sum of these and one is the probability of diffuse scattering. When this formalism is compared with the approximate formula of Mayadas and Shatzkes (Phys. Rev. B 1, 103 (1986)) it is shown that the latter greatly overestimates the film resistivity over most values of the reflectivity of the grain boundaries. The dependence of the conductivity of thin films on the probability of coherent passage and grain diameters is examined. In accordance with MS we find that the effects of disorder in the distribution of grain diameters is quite small. Moreover, we find that it is not safe to neglect the effects of the scattering by the additional interfaces created by stacked grains. However, when compared with recent resitivity-thickness data, it is shown that all three formalisms can provide accurate fits to experiment. In addition, it is shown that, depending on the respective reflectivities and distance from a surface, some of these interfaces may increase or diminish considerably the conductivity of the sample. As an illustration of this effect, we show a tentative fit of resistivity data of gold films measured by

  2. Measuring Changes in Electrical Conductivity of Fractures from DC Resistivity Data in an Active Oilfield Environment: A Model Study for Surface-Based Data.

    NASA Astrophysics Data System (ADS)

    Weiss, C. J.; Aldridge, D. F.; Knox, H. A.; Schramm, K. A.; Bartel, L. C.

    2015-12-01

    Presented here are preliminary results of a numerical modeling study on the feasibility of using DC resistivity data to make useful inferences on depth, size and orientation of subsurface fracture systems in an active oilfield environment. Specifically, we consider an experiment where the steel-cased borehole (consisting of a shallow, vertical section and deep, horizontal section) is one electrode of the DC source, with the other source electrode grounded at the Air/Earth interface some distance away. For simplicity, the fractures are modeled as short sequence of vertical sheets intersecting the horizontal section of the well casing. Finite element analysis of this system shows that as fracture conductivity is elevated, two effects (at least) are observed: a local perturbation in the electric potential in the vicinity of the fracture set, with limited far-field expression; and, an overall change in the electric potential of the entire borehole casing due to current leakage at the site of the fractures. Under ideal conditions, our results suggest that far-field, time-lapse measurements of DC potentials surrounding a borehole casing can be reliably interpreted by simple, linear inversion for a Coulomb charge distribution along the borehole path, including a local charge perturbation due to the fractures. In contrast to regularized, nonlinear 3D inversion of broadband EM or DC data, this approach offers an inexpensive method for detecting and monitoring the time-evolution of electrically conducting fractures while ultimately providing an estimate of their effective conductivity - the latter providing an important measure independent of seismic methods on fracture shape, size, and hydraulic connectivity.

  3. Motor nerve conduction study in cauda equina with high-voltage electrical stimulation in multifocal motor neuropathy and amyotrophic lateral sclerosis.

    PubMed

    Akaza, Miho; Kanouchi, Tadashi; Inaba, Akira; Numasawa, Yoshiyuki; Irioka, Takashi; Mizusawa, Hidehiro; Yokota, Takanori

    2011-02-01

    In this study we aim to establish a motor nerve conduction study (NCS) for the cauda equina and examine its usefulness in multifocal motor neuropathy (MMN) and amyotrophic lateral sclerosis (ALS). NCS of the tibial nerve proximal to the knee was performed with an optimized high-voltage electrical stimulation (HV-ES) method in 21 normal subjects, 5 with MMN, and 11 with ALS. HV-ES, but not magnetic stimulation, could supramaximally stimulate the cauda equina. Cauda equina motor conduction time determined by HV-ES, but not that with F-waves, correlated well with cauda equina length on magnetic resonance imaging. HV-ES revealed proximal lesions in 4 MMN patients but in none of the ALS patients. Importantly, 1 patient with "MMN without conduction block (CB)" had a CB in the cauda equina. Cauda equina motor conduction is better evaluated by HV-ES than with F-wave study or magnetic stimulation. HV-ES can help to distinguish MMN and "MMN without CB" from ALS.

  4. Complex impedance, dielectric relaxation and electrical conductivity studies of Ba1-xSrxTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Elbasset, A.; Sayouri S, S.; Abdi, F.; Lamcharfi, T.; Mrharrab, L.

    2017-03-01

    In this work, we prepared series of Ba1-xSrxTiO3 (BSxT) powders, with different strontium concentrations (x = 0, 0.025, 0.75, 0.10, 0.125 and 0.15), by the sol-gel method. The variation of structure in the Ba1-xSrxTiO3 system was analyzed using XRD and Raman techniques. The field dependence of dielectric relaxation and conductivity was measured over a wide frequency range from room temperature to 400 °C. The activation energy, calculated from the thermal variation of the conductivity for different frequencies, showed that the Sr has significant effects on the properties of BaTiO3. Relaxation times extracted using the imaginary part of the complex impedance (Z’’(ω)) and the modulus (M’’(ω)) were also found to follow the Arrhenius law and showed an anomaly around the phase transition temperature.

  5. Studies on oxygen chemical surface exchange and electrical conduction in thin film nanostructured titania at high temperatures and varying oxygen pressure.

    PubMed

    Ko, Changhyun; Karthikeyan, Annamalai; Ramanathan, Shriram

    2011-01-07

    We report on oxygen surface exchange studies in ∼450-nm-thick nanocrystalline titania films with an average grain size of ∼13 nm by electrical conductivity relaxation along with the conductivity measurements at varying temperatures and oxygen partial pressures (pO(2)s). By electrochemical impedance spectroscopy technique, the high temperature conductivity was measured in the pO(2) range from ∼10(-16) to ∼10(-6) Pa at temperatures from 973 to 1223 K and activation energy, ΔE(a), for conduction was estimated as ∼3.23 eV at pO(2) ∼10(-11) Pa. Under reducing atmosphere (pO(2) < 10(-6) Pa), two distinct n-type conduction regimes were observed and corresponding predominant defects are discussed while, at high pO(2) regime (pO(2) >10(-6) Pa), ionic conduction appears dominant leading to a conductivity plateau. The surface relaxation was observed to have two independent time constants likely originating from microstructural effects. The surface exchange coefficients are measured as ∼10(-8)-10(-7) m∕s and ∼10(-9)-10(-8) m∕s for each contribution with ΔE(a)s of 2.79 and 1.82 eV, respectively, without much pO(2) dependence across several orders of pO(2) range of ∼10(-16)-10(-6) Pa in the temperature range between 973 and 1223 K. The results are of potential relevance to understanding the near-surface chemical phenomena in nanocrystalline titania which is of great interest for energy and environmental studies.

  6. Magnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation.

    PubMed

    Kranjc, M; Bajd, F; Serša, I; Miklavčič, D

    2014-06-01

    The electroporation effect on tissue can be assessed by measurement of electrical properties of the tissue undergoing electroporation. The most prominent techniques for measuring electrical properties of electroporated tissues have been voltage-current measurement of applied pulses and electrical impedance tomography (EIT). However, the electrical conductivity of tissue assessed by means of voltage-current measurement was lacking in information on tissue heterogeneity, while EIT requires numerous additional electrodes and produces results with low spatial resolution and high noise. Magnetic resonance EIT (MREIT) is similar to EIT, as it is also used for reconstruction of conductivity images, though voltage and current measurements are not limited to the boundaries in MREIT, hence it yields conductivity images with better spatial resolution. The aim of this study was to investigate and demonstrate the feasibility of the MREIT technique for assessment of conductivity images of tissues undergoing electroporation. Two objects were investigated: agar phantoms and ex vivo liver tissue. As expected, no significant change of electrical conductivity was detected in agar phantoms exposed to pulses of all used amplitudes, while a considerable increase of conductivity was measured in liver tissue exposed to pulses of different amplitudes.

  7. Radiation Fluence dependent variation in Electrical conductivity of Cu nanowires

    SciTech Connect

    Gehlawat, Devender; Chauhan, R. P.; Sonkawade, R. G.

    2011-07-15

    Electrical conductivity of Cu nanowires varies with diameter of nanowires. However, keeping the diameter of nanowires constant, a variation in their electrical conductivity is observed after they irradiated with gamma rays and neutrons. On the basis of I-V characteristics drawn at room temperature, decrease in the conductivity of Cu nanowires is observed, as compared to that of pristine nanowires.

  8. Geo-electrical investigation of near surface conductive structures suitable for groundwater accumulation in a resistive crystalline basement environment: A case study of Isuada, southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Kayode, J. S.; Adelusi, A. O.; Nawawi, M. N. M.; Bawallah, M.; Olowolafe, T. S.

    2016-07-01

    This paper presents a geophysical surveying for groundwater identification in a resistive crystalline basement hard rock in Isuada area, Southwestern Nigeria. Very low frequency (VLF) electromagnetic and electrical resistivity geophysical techniques combined with well log were used to characterize the concealed near surface conductive structures suitable for groundwater accumulation. Prior to this work; little was known about the groundwater potential of this area. Qualitative and semi-quantitative interpretations of the data collected along eight traverses at 20 m spacing discovered conductive zones suspected to be fractures, faults, and cracks which were further mapped using Vertical Electrical Sounding (VES) technique. Forty VES stations were utilized using Schlumberger configurations with AB/2 varying from 1 to 100 m. Four layers i.e. the top soil, the weathered layer, the partially weathered/fractured basement and the fresh basement were delineated from the interpreted resistivity curves. The weathered layers constitute the major aquifer unit in the area and are characterized by moderately low resistivity values which ranged between about 52 Ωm and 270 Ωm while the thickness varied from 1 to 35 m. The depth to the basement and the permeable nature of the weathered layer obtained from both the borehole and the hand-dug wells was used to categorize the groundwater potential of the study area into high, medium and low ratings. The groundwater potential map revealed that about 45% of the study area falls within the low groundwater potential rating while about 10% constitutes the medium groundwater potential and the remaining 45% constitutes high groundwater potential. The low resistivity, thick overburden, and fractured bedrock constitute the aquifer units and the series of basement depressions identified from the geoelectric sections as potential conductive zones appropriate for groundwater development.

  9. A study of the properties of beryllium doped silicon with particular emphasis on diffusion mechanisms: Profiles of depth dependent conductivity as determined by electrical surface probes

    NASA Technical Reports Server (NTRS)

    Franks, R. K.; Robertson, J. B.

    1972-01-01

    Very large diffusion coefficients were encountered and required the determination of impurity profiles for samples approximately 1 cm thick. Since conductivity values are readily converted into concentrations of electrically active impurities, the major problem became that of accurately determining the conductivity profiles of beryllium diffused silicon samples. Four-point probe measurements on samples having depth conductivities are interpreted in terms of conductivity profiles, based on an exact solution of the problem of exponentially depth dependent conductivity. Applications include surface conductivity determination where the form of the conductivity profile is known, and conductivity profile determination from probe measurements taken as the sample surface is progressively lapped away. The application is limited to samples having conductivity monotonically decreasing with depth from the probed surface.

  10. Computer simulation of electrical conductivity of colloidal dispersions during aggregation.

    PubMed

    Lebovka, N I; Tarafdar, S; Vygornitskii, N V

    2006-03-01

    The computation approach to the simulation of electrical conductivity of colloidal dispersions during aggregation is considered. We use the two-dimensional diffusion-limited aggregation model with multiple-seed growth. The particles execute a random walk, but lose their mobility after contact with the growing clusters or seeds. The two parameters that control the aggregation are the initial concentration of free particles in the system p and the concentration of seeds psi. The case of psi=1, when all the particles are the immobile seeds, corresponds with the usual random percolation problem. The other limiting case of psi=0, when all the particles walk randomly, corresponds to the dynamical percolation problem. The calculation of electrical conductivity and cluster analysis were done with the help of the algorithms of Frank-Lobb and Hoshen-Kopelman. It is shown that the percolation concentration phi c decreases from 0.5927 at psi=1 to 0 at psi --> 0. Scaling analysis was applied to study exponents of correlation length v and of conductivity t. For all psi>0 this model shows universal behavior of classical 2d random percolation with v approximately t approximately 4/3. The electrical conductivity sigma of the system increases during aggregation reaching up to a maximum at the final stage. The concentration dependence of conductivity sigma(phi) obeys the general effective medium equation with apparent exponent ta(psi) that exceeds t. The kinetics of electrical conductivity changes during the aggregation is discussed. In the range of concentration Pc(phi)

  11. Durable Microstructured Surfaces: Combining Electrical Conductivity with Superoleophobicity.

    PubMed

    Pan, Zihe; Wang, Tianchang; Sun, Shaofan; Zhao, Boxin

    2016-01-27

    In this study, electrically conductive and superoleophobic polydimethylsiloxane (PDMS) has been fabricated through embedding Ag flakes (SFs) and Ag nanowires (SNWs) into microstructures of the trichloroperfluorooctylsilane (FDTS)-blended PDMS elastomer. Microstructured PDMS surfaces became conductive at the percolation surface coverage of 3.0 × 10(-2) mg/mm(2) for SFs; the highest conductivity was 1.12 × 10(5) S/m at the SFs surface coverage of 6.0 × 10(-2) mg/mm(2). A significant improvement of the conductivity (increased 3 times at the SNWs fraction of 11%) was achieved by using SNWs to replace some SFs because of the conductive pathways from the formed SNWs networks and its connections with SFs. These conductive fillers bonded strongly with microstructured FDTS-blended PDMS and retained surface properties under the sliding preload of 8.0 N. Stretching tests indicated that the resistance increased with the increasing strains and returned to its original state when the strain was released, showing highly stretchable and reversible electrical properties. Compared with SFs embedded surfaces, the resistances of SFs/SNWs embedded surfaces were less dependent on the strain because of bridging effect of SNWs. The superoleophobicity was achieved by the synergetic effect of surface modification through blending FDTS and the microstructures transferred from sand papers. The research findings demonstrate a simple approach to make the insulating elastomer to have the desired surface oleophobicity and electrical conductivity and help meet the needs for the development of conductive devices with microstructures and multifunctional properties.

  12. Method of forming an electrically conductive cellulose composite

    DOEpatents

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Woodward, Jonathan [Ashtead, GB

    2011-11-22

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  13. Non-Contact Electrical Conductivity Measurement Technique for Molten Metals

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Ishikawa, T.

    1998-01-01

    A non-contact technique of measuring the electrical conductivity (or resistivity) of conducting liquids while they are levitated by the high temperature electrostatic levitator in a high vacuum is reported.

  14. Electrically Conductive Chitosan/Carbon Scaffolds for Cardiac Tissue Engineering

    PubMed Central

    2015-01-01

    In this work, carbon nanofibers were used as doping material to develop a highly conductive chitosan-based composite. Scaffolds based on chitosan only and chitosan/carbon composites were prepared by precipitation. Carbon nanofibers were homogeneously dispersed throughout the chitosan matrix, and the composite scaffold was highly porous with fully interconnected pores. Chitosan/carbon scaffolds had an elastic modulus of 28.1 ± 3.3 KPa, similar to that measured for rat myocardium, and excellent electrical properties, with a conductivity of 0.25 ± 0.09 S/m. The scaffolds were seeded with neonatal rat heart cells and cultured for up to 14 days, without electrical stimulation. After 14 days of culture, the scaffold pores throughout the construct volume were filled with cells. The metabolic activity of cells in chitosan/carbon constructs was significantly higher as compared to cells in chitosan scaffolds. The incorporation of carbon nanofibers also led to increased expression of cardiac-specific genes involved in muscle contraction and electrical coupling. This study demonstrates that the incorporation of carbon nanofibers into porous chitosan scaffolds improved the properties of cardiac tissue constructs, presumably through enhanced transmission of electrical signals between the cells. PMID:24417502

  15. Electrically conducting ternary amorphous fully oxidized materials and their application

    NASA Technical Reports Server (NTRS)

    Giauque, Pierre (Inventor); Nicolet, Marc (Inventor); Gasser, Stefan M. (Inventor); Kolawa, Elzbieta A. (Inventor); Cherry, Hillary (Inventor)

    2004-01-01

    Electrically active devices are formed using a special conducting material of the form Tm--Ox mixed with SiO2 where the materials are immiscible. The immiscible materials are forced together by using high energy process to form an amorphous phase of the two materials. The amorphous combination of the two materials is electrically conducting but forms an effective barrier.

  16. Electrically conductive lines on cellulose nanopaper for flexible electrical devices

    NASA Astrophysics Data System (ADS)

    Hsieh, Ming-Chun; Kim, Changjae; Nogi, Masaya; Suganuma, Katsuaki

    2013-09-01

    Highly conductive circuits are fabricated on nanopapers composed of densely packed 15-60 nm wide cellulose nanofibers. Conductive materials are deposited on the nanopaper and mechanically sieved through the densely packed nanofiber networks. As a result, their conductivity is enhanced to the level of bulk silver and LED lights are successfully illuminated via these metallic conductive lines on the nanopaper. Under the same deposition conditions, traditional papers consisting of micro-sized pulp fibers produced very low conductivity lines with non-uniform boundaries because of their larger pore structures. These results indicate that advanced, lightweight and highly flexible devices can be realized on cellulose nanopaper using continuous deposition processes. Continuous deposition on nanopaper is a promising approach for a simple roll-to-roll manufacturing process.

  17. Synthesis of novel electrically conducting polymers: Potential conducting Langmuir-Blodgett films and conducting polymers on defined surfaces

    NASA Technical Reports Server (NTRS)

    Zimmer, Hans

    1993-01-01

    Based on previous results involving thiophene derived electrically conducting polymers in which it was shown that thiophene, 3-substituted thiophenes, furans, and certain oligomers of these compounds showed electrical conductivity after polymerization. The conductivity was in the order of up to 500 S/cm. In addition, these polymers showed conductivity without being doped and most of all they were practically inert toward ambient conditions. They even could be used in aqueous media. With these findings as a guide, a number of 3-long-chain-substituted thiophenes and 1-substituted-3-long-chain substituted pyrrols were synthesized as monomers for potential polymeric electrically conducting Langmuir-Blodgett films.

  18. Electrical conductivity of a methane–air burning plasma under the action of weak electric fields

    NASA Astrophysics Data System (ADS)

    Colonna, G.; Pietanza, L. D.; D’Angola, A.; Laricchiuta, A.; Di Vita, A.

    2017-02-01

    This paper focuses on the calculation of the electrical conductivity of a methane–air flame in the presence of weak electric fields, solving the Boltzmann equation for free electrons self-consistently coupled with chemical kinetics. The chemical model GRI-Mech 3.0 has been completed with chemi-ionization reactions to model ionization in the absence of fields, and a database of cross sections for electron-impact-induced processes to account for reactions and transitions activated in the flame during discharge. The dependence of plasma properties on the frequency of an oscillating field has been studied under different pressure and gas temperature conditions. Fitting expressions of the electrical conductivity as a function of gas temperature and methane consumption are provided for different operational conditions in the Ansaldo Energia burner.

  19. Beyond KTB - electrical conductivity of the deep continental crust

    NASA Astrophysics Data System (ADS)

    Glover, Paul W. J.; Vine, F. J.

    1995-01-01

    Great strides have been made in understanding the upper part of the crust by in-situ logging in, and laboratory experiments on core recovered from super-deep bore-holes such as the KTB. These boreholes do not extend into the lower crust, and can contribute little to the elucidation of mechanisms that produce the high electrical conductivities that are commonly observed therein by magneto-telluric (MT) methods. Laboratory studies at simulated lower crustal conditions of temperature, pressure and saturation, on electrolyte saturated rocks thought to have been derived from the lower crust, have not been possible up until now due to their experimental difficulty. It is necessary to subject electrolyte-saturated rock samples to independently controlled confining and pore-fluid pressure, which implies that the rock be sleeved in some impermeable but deformable material, that can withstand the very high temperatures required. Metals are the only materials capable of being used, but these cause great difficulties for cell sealing and conductivity measurement. In this paper we describe recent breakthroughs in experimental work, specifically the development of two new types of sophisticated metal/ceramic seal, and a conductivity measurement technique that enables the measurement of saturated rock conductivity in the presence of a highly conducting metallic sleeve. The advances in experimental technique have enabled us to obtain data on the electrical conductivity of brine saturated basic, acidic and graphite-bearing rocks at lower crustal temperatures and raised pressures. These data have facilitated the comparison of MT derived crustal electrical conductivity profiles with profiles obtained from laboratory experiments for the first time. Initial modelling shows a good agreement between laboratory derived and MT derived profiles only if the mid-crust is composed of amphibolite pervaded by aqueous fluids, and the lower crust is composed of granulite that is saturated with

  20. Dielectric properties and study of AC electrical conduction mechanisms by non-overlapping small polaron tunneling model in Bis(4-acetylanilinium) tetrachlorocuprate(II) compound

    NASA Astrophysics Data System (ADS)

    Abkari, A.; Chaabane, I.; Guidara, K.

    2016-09-01

    In the present work, the synthesis and characterization of the Bis(4-acetylanilinium) tetrachlorocuprate(II) compound are presented. The structure of this compound is analyzed by X-ray diffraction which confirms the formation of single phase and is in good agreement the literature. Indeed, the Thermo gravimetric Analysis (TGA) shows that the decomposition of the compound is observed in the range of 420-520 K. However, the differential thermal analysis (DTA) indicates the presence of a phase transition at T=363 k. Furthermore, the dielectric properties and AC conductivity were studied over a temperature range (338-413 K) and frequency range (200 Hz-5 MHz) using complex impedance spectroscopy. Dielectric measurements confirmed such thermal analyses by exhibiting the presence of an anomaly in the temperature range of 358-373 K. The complex impedance plots are analyzed by an electrical equivalent circuit consisting of resistance, constant phase element (CPE) and capacitance. The activation energy values of two distinct regions are obtained from log σT vs 1000/T plot and are found to be E=1.27 eV (T<363 K) and E=1.09 eV (363 Kconductivity, σac, has been analyzed by Jonscher's universal power law σ(ω)=σdc+Aωs. The value of s is to be temperature-dependent, which has a tendency to increase with temperature and the non-overlapping small polaron tunneling (NSPT) model is the most applicable conduction mechanism in the title compound. Complex impedance spectra of [C8H10NO]2CuCl4 at different temperatures.

  1. Assembly for electrical conductivity measurements in the piston cylinder device

    DOEpatents

    Watson, Heather Christine [Dublin, CA; Roberts, Jeffrey James [Livermore, CA

    2012-06-05

    An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.

  2. Simulation of partial discharges in conducting and non-conducting electrical tree structures

    NASA Astrophysics Data System (ADS)

    Champion, J. V.; Dodd, S. J.

    2001-04-01

    Electrical treeing is of interest to the electrical generation, transmission and distribution industries as it is one of the causes of insulation failure in electrical machines, switchgear and transformer bushings. Previous experimental investigations of electrical treeing in epoxy resins have found evidence that the tree structures formed were either electrically conducting or non-conducting, depending on whether the epoxy resin was in a flexible state (above its glass transition temperature) or in the glassy state (below its glass transition temperature). In this paper we extend an existing model, of partial discharges within an arbitrarily defined non-conducting electrical tree structure, to the case of electrical conducting trees. With the inclusion of tree channel conductivity, the partial discharge model could simulate successfully the experimentally observed partial discharge activity occurring in trees grown in both the flexible and glassy epoxy resins. This modelling highlights a fundamental difference in the mechanism of electrical tree growth in flexible and glassy epoxy resins. The much lower resistivities of the tree channels grown in the glassy epoxy resins may be due to conducting decomposition (carbonized) products condensing on the side walls of the existing channels, whereas, in the case of non-conducting tree channels, subsequent discharges within the main branches lead to side-wall erosion and a consequent widening of the tubules. The differing electrical characteristics of the tree tubules also have consequences for the development of diagnostic tools for the early detection of pre-breakdown phenomena.

  3. The electrical conductivity of CO2-bearing pore waters at elevated pressure and temperature: a laboratory study and its implications in CO2 storage monitoring and leakage detection

    NASA Astrophysics Data System (ADS)

    Börner, Jana H.; Herdegen, Volker; Repke, Jens-Uwe; Spitzer, Klaus

    2015-11-01

    The electrical rock conductivity is a sensitive indicator for carbon dioxide (CO2) injection and migration processes. For a reliable balancing of the free CO2 in pore space with petrophysical models such as Archie's law or for the detection of migrating CO2, detailed knowledge of the pore water conductivity during interaction with CO2 is essential but not available yet. Contrary to common assumptions, pore water conductivity cannot be assumed constant since CO2 is a reactive gas that dissolves into the pore water in large amounts and provides additional charge carriers due to the dissociation of carbonic acid. We consequently carried out systematic laboratory experiments to quantify and analyse the changes in saline pore water conductivity caused by CO2 at thermodynamic equilibrium. Electrical conductivity is measured on pore water samples for pressures up to 30 MPa and temperatures up to 80 °C. The parameter range covers the gaseous, liquid and supercritical state of the CO2 involved. Pore water salinities from 0.006 up to 57.27 g L-1 sodium chloride were investigated as well as selective other ion species. At the same time, the CO2 concentration in the salt solution was determined by a wet-chemical procedure. A two-regime behaviour appears: for small salinities, we observe an increase of up to more than factor 3 in the electrical pore water conductivity, which strongly depends on the solution salinity (low-salinity regime). This is an expected behaviour, since the additional ions originating from the dissociation of carbonic acid positively contribute to the solution conductivity. However, when increasing salinities are considered this effect is completely diminished. For highly saline solutions, the increased mutual impeding causes the mobility of all ions to decrease, which may result in a significant reduction of conductivity by up to 15 per cent despite the added CO2 (high-salinity regime). We present the data set covering the pressure, temperature, salinity

  4. Effect of Ligament Morphology on Electrical Conductivity of Porous Silver

    NASA Astrophysics Data System (ADS)

    Zuruzi, Abu Samah; Mazulianawati, Majid Siti

    2016-12-01

    We investigate the effect of ligament morphology on electrical conductivity of open cell porous silver (Ag). Porous Ag was formed when silver nanoparticles in an organic phase were annealed at 150°C for durations ranging from 1 to 5 min. Electrical conductivity of porous Ag was about 20% of bulk value after 5 min annealing. Porous Ag was modeled as a collection of Kelvin cell (truncated octahedrons) structures comprised of conjoined conical ligaments and spherical vertices. An analytical expression for electrical conductivity was obtained. Electrical conductivity normal to hexagonal faces of the unit cell was computed. Our model indicates contribution of grain boundary to electrical resistance increases significantly after the first minute of annealing and plateaus thereafter. Using experimental electrical conductivity data as an input, the model suggests that the ratio, n, of surfaces of one half of a conjoined cone ligament is between 0.7 and 1.0. Average deviation from experimentally determined relative electrical conductivity, Δ σ r, was minimal when n = 0.9.

  5. Using electrical impedance tomography to map subsurface hydraulic conductivity

    DOEpatents

    Berryman, James G.; Daily, William D.; Ramirez, Abelardo L.; Roberts, Jeffery J.

    2000-01-01

    The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.

  6. Manipulating connectivity and electrical conductivity in metallic nanowire networks.

    PubMed

    Nirmalraj, Peter N; Bellew, Allen T; Bell, Alan P; Fairfield, Jessamyn A; McCarthy, Eoin K; O'Kelly, Curtis; Pereira, Luiz F C; Sorel, Sophie; Morosan, Diana; Coleman, Jonathan N; Ferreira, Mauro S; Boland, John J

    2012-11-14

    Connectivity in metallic nanowire networks with resistive junctions is manipulated by applying an electric field to create materials with tunable electrical conductivity. In situ electron microscope and electrical measurements visualize the activation and evolution of connectivity within these networks. Modeling nanowire networks, having a distribution of junction breakdown voltages, reveals universal scaling behavior applicable to all network materials. We demonstrate how local connectivity within these networks can be programmed and discuss material and device applications.

  7. Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder

    NASA Astrophysics Data System (ADS)

    Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong

    2016-12-01

    The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service.

  8. Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder.

    PubMed

    Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong

    2016-12-22

    The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service.

  9. Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder

    PubMed Central

    Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong

    2016-01-01

    The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service. PMID:28004839

  10. Electrically conductive nano graphite-filled bacterial cellulose composites.

    PubMed

    Erbas Kiziltas, Esra; Kiziltas, Alper; Rhodes, Kevin; Emanetoglu, Nuri W; Blumentritt, Melanie; Gardner, Douglas J

    2016-01-20

    A unique three dimensional (3D) porous structured bacterial cellulose (BC) can act as a supporting material to deposit the nanofillers in order to create advanced BC-based functional nanomaterials for various technological applications. In this study, novel nanocomposites comprised of BC with exfoliated graphite nanoplatelets (xGnP) incorporated into the BC matrix were prepared using a simple particle impregnation strategy to enhance the thermal properties and electrical conductivity of the BC. The flake-shaped xGnP particles were well dispersed and formed a continuous network throughout the BC matrix. The temperature at 10% weight loss, thermal stability and residual ash content of the nanocomposites increased at higher xGnP loadings. The electrical conductivity of the composites increased with increasing xGnP loading (attaining values 0.75 S/cm with the addition of 2 wt.% of xGnP). The enhanced conductive and thermal properties of the BC-xGnP nanocomposites will broaden applications (biosensors, tissue engineering, etc.) of BC and xGnP.

  11. Electrical Conductivity and Dielectrical Properties of Bulk Methylene Green

    NASA Astrophysics Data System (ADS)

    El-Menyawy, E. M.; Zedan, I. T.; Mansour, A. M.

    2017-03-01

    Thermal stability, direct current electrical conductivity (σ DC), alternating current electrical conductivity (σ AC) and dielectric properties of bulk methylene green (MG) have been investigated. The thermal stability of MG was studied by differential scanning calorimetry and thermogravimetry techniques. Temperature dependence of σ DC showed that the MG has semiconductor behavior with two activation energies determined as 0.12 eV and 0.31 eV in the temperature range 303-343 K and 363-463 K, respectively. The σ AC of bulk MG was performed in the frequency range 150 Hz-5 MHz and temperature range 303-463 K. The dependence of AC conductivity on frequency for MG is found to satisfy Jonscher's universal power law, especially at high frequencies. The correlated barrier hopping model is found to be applicable in which the density of localized states is determined. The σ AC is thermally activated and the activation energy decreases with the increases in frequency. The variation of the real and imaginary parts of the dielectric constant with the frequency and temperature is explained.

  12. Temperature-dependent electrical conductivity of soda-lime glass

    NASA Technical Reports Server (NTRS)

    Bunnell, L. Roy; Vertrees, T. H.

    1993-01-01

    The objective of this educational exercise was to demonstrate the difference between the electrical conductivity of metals and ceramics. A list of the equipment and supplies and the procedure for the experiment are presented.

  13. Measurement of Electrical Conductivity for a Biomass Fire

    PubMed Central

    Mphale, Kgakgamatso; Heron, Mal

    2008-01-01

    A controlled fire burner was constructed where various natural vegetation species could be used as fuel. The burner was equipped with thermocouples to measure fuel surface temperature and used as a cavity for microwaves with a laboratory quality 2-port vector network analyzer to determine electrical conductivity from S-parameters. Electrical conductivity for vegetation material flames is important for numerical prediction of flashover in high voltage power transmission faults research. Vegetation fires that burn under high voltage transmission lines reduce flashover voltage by increasing air electrical conductivity and temperature. Analyzer determined electrical conductivity ranged from 0.0058 - 0.0079 mho/m for a fire with a maximum temperature of 1240 K. PMID:19325812

  14. Electrical Circuit Analogues of Thermal Conduction and Diffusion

    ERIC Educational Resources Information Center

    Tomlin, D. H.; Fullarton, G. K.

    1978-01-01

    After briefly reviewing equations of conduction and diffusion, and voltage and charge in electrical circuits, a simple experiment is given that allows students practical experience in a theoretical realm of physics. (MDR)

  15. Electrical conductivity of highly concentrated electrolytes near the critical consolute point: A study of tetra-n-butylammonium picrate in alcohols of moderate dielectric constant

    NASA Astrophysics Data System (ADS)

    Oleinikova, A.; Bonetti, M.

    2001-12-01

    The electrical conductivity of highly concentrated solutions of tetra-n-butylammonium picrate (TBAP) in 1-dodecanol (dielectric constant ɛ=4.6) and 1,4-butanediol (ɛ=25.9), and in mixtures of both alcohols, is measured in an extended temperature range ≈10-5<τ<≈10-1, where τ=(T-Tc)/Tc is the reduced temperature with Tc, the critical temperature. The electrical conductivity Λ(T) obeys the Vogel-Fulcher-Tammann (VFT) law for the temperatures far from the critical one. In the temperature range τ<10-2 a systematic deviation of the electrical conductivity from the regular VFT behavior is observed. This deviation is attributed to a critical anomaly. At the critical point the amplitude of the critical anomaly is finite with a value which varies between ≈0.4 and ≈2.7% of Λ(Tc), depending on the solvent. The (1-α) critical exponent describes well the conductivity anomaly, α being the exponent of the specific heat anomaly at constant pressure. The value of the Walden product (Λeqvη), with Λeqv, the equivalent conductivity and η, the shear viscosity, allows the degree of dissociation αdiss of TBAP to be determined at the critical point. αdiss becomes larger for increasing values of ɛ: for TBAP in 1-dodecanol αdiss≈0.25 and in 1,4-butanediol αdiss≈0.73. When the degree of dissociation of the salt is accounted for the Debye screening length is found almost independent on ɛ.

  16. The thermal conductivity of electrically-conducting liquids at high pressures

    NASA Astrophysics Data System (ADS)

    Wakeham, W. A.; Zalaf, M.

    1986-05-01

    The paper describes a new instrument for the measurement of the thermal conductivity of electrically-conducting liquids at pressures up to 700 MPa with an accuracy of ±0.3%. The instrument is based upon the transient hot-wire principle and the novel features that make it applicable to electrically-conducting fluids are described. In particular a new automatic bridge for the direct measurement of the temperature rise of the hot-wires is discussed.

  17. Electrical Switchability and Dry-Wash Durability of Conductive Textiles

    NASA Astrophysics Data System (ADS)

    Wu, Bangting; Zhang, Bowu; Wu, Jingxia; Wang, Ziqiang; Ma, Hongjuan; Yu, Ming; Li, Linfan; Li, Jingye

    2015-06-01

    There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions.

  18. Electrical Switchability and Dry-Wash Durability of Conductive Textiles

    PubMed Central

    Wu, Bangting; Zhang, Bowu; Wu, Jingxia; Wang, Ziqiang; Ma, Hongjuan; Yu, Ming; Li, Linfan; Li, Jingye

    2015-01-01

    There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions. PMID:26066704

  19. Software optimization for electrical conductivity imaging in polycrystalline diamond cutters

    SciTech Connect

    Bogdanov, G.; Ludwig, R.; Wiggins, J.; Bertagnolli, K.

    2014-02-18

    We previously reported on an electrical conductivity imaging instrument developed for measurements on polycrystalline diamond cutters. These cylindrical cutters for oil and gas drilling feature a thick polycrystalline diamond layer on a tungsten carbide substrate. The instrument uses electrical impedance tomography to profile the conductivity in the diamond table. Conductivity images must be acquired quickly, on the order of 5 sec per cutter, to be useful in the manufacturing process. This paper reports on successful efforts to optimize the conductivity reconstruction routine, porting major portions of it to NVIDIA GPUs, including a custom CUDA kernel for Jacobian computation.

  20. Stimulation of Neurite Outgrowth Using an Electrically Conducting Polymer

    NASA Astrophysics Data System (ADS)

    Schmidt, Christine E.; Shastri, Venkatram R.; Vacanti, Joseph P.; Langer, Robert

    1997-08-01

    Damage to peripheral nerves often cannot be repaired by the juxtaposition of the severed nerve ends. Surgeons have typically used autologous nerve grafts, which have several drawbacks including the need for multiple surgical procedures and loss of function at the donor site. As an alternative, the use of nerve guidance channels to bridge the gap between severed nerve ends is being explored. In this paper, the electrically conductive polymer--oxidized polypyrrole (PP)--has been evaluated for use as a substrate to enhance nerve cell interactions in culture as a first step toward potentially using such polymers to stimulate in vivo nerve regeneration. Image analysis demonstrates that PC-12 cells and primary chicken sciatic nerve explants attached and extended neurites equally well on both PP films and tissue culture polystyrene in the absence of electrical stimulation. In contrast, PC-12 cells interacted poorly with indium tin oxide (ITO), poly(L-lactic acid) (PLA), and poly(lactic acid-coglycolic acid) surfaces. However, PC-12 cells cultured on PP films and subjected to an electrical stimulus through the film showed a significant increase in neurite lengths compared with ones that were not subjected to electrical stimulation through the film and tissue culture polystyrene controls. The median neurite length for PC-12 cells grown on PP and subjected to an electrical stimulus was 18.14 μ m (n = 5643) compared with 9.5 μ m (n = 4440) for controls. Furthermore, animal implantation studies reveal that PP invokes little adverse tissue response compared with poly(lactic acid-coglycolic acid).

  1. Fluctuations electrical conductivity in a granular s-wave superconductor

    NASA Astrophysics Data System (ADS)

    Salehi, H.; Yousefvand, A.; Zargar Shoushtari, M.

    2017-01-01

    The present study tries to evaluate the fluctuation electrical conductivity in a granular s-wave superconductor at the temperature near to the critical temperature. The evaluation is conducted under the condition of limited tunneling conductance between the grains and small impurity concentration. All the first order fluctuation corrections, involving the nonlocal scattered electron in a granular s-wave superconductor, are calculated in three dimensions and in the limit of clean. Using Green's function theory initially, the Cooperon (impurity vertex), λ (q , ε1 , ε2) , and the fluctuation propagator, Lk (q , Ωk) , are calculated in the presence of impurities. Then, the three distinct contributions of Aslamazov-Larkin, Maki-Thompson, and Density of states are calculated by means of the Kubo formula. Analysis shows that the terms of Aslamazov-Larkin and anomalous Maki-Thompson have positive contributions to the conductivity in the clean limit, whereas the terms of Density of state and the regular Maki-Thompson have negative signs, leading to the reduction of total fluctuation conductivity.

  2. Thermal and Electrical Conductivity Measurements of CDA 510 Phosphor Bronze

    NASA Technical Reports Server (NTRS)

    Tuttle, James E.; Canavan, Edgar; DiPirro, Michael

    2009-01-01

    Many cryogenic systems use electrical cables containing phosphor bronze wire. While phosphor bronze's electrical and thermal conductivity values have been published, there is significant variation among different phosphor bronze formulations. The James Webb Space Telescope (JWST) will use several phosphor bronze wire harnesses containing a specific formulation (CDA 510, annealed temper). The heat conducted into the JWST instrument stage is dominated by these harnesses, and approximately half of the harness conductance is due to the phosphor bronze wires. Since the JWST radiators are expected to just keep the instruments at their operating temperature with limited cooling margin, it is important to know the thermal conductivity of the actual alloy being used. We describe an experiment which measured the electrical and thermal conductivity of this material between 4 and 295 Kelvin.

  3. Thermal and Electrical Conductivity Measurements of Cda 510 Phosphor Bronze

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; Canavan, E.; DiPirro, M.

    2010-04-01

    Many cryogenic systems use electrical cables containing phosphor bronze wire. While phosphor bronze's electrical and thermal conductivity values have been published, results vary among different phosphor bronze formulations. The James Webb Space Telescope (JWST) will use several phosphor bronze wire harnesses containing a specific formulation (CDA 510, annealed temper). These harnesses dominate the heat conducted into the JWST instrument stage, and approximately half of the harness conductance is due to the phosphor bronze wires. Since the JWST radiators are expected to keep the instruments at their operating temperature with limited cooling margin, it is important to know the thermal conductivity of the actual alloy being used. We describe an experiment that measured its electrical and thermal conductivity between 4 and 295 Kelvin.

  4. A Method for Measuring the Specific Electrical Conductivity of an Anisotropically Conductive Medium

    NASA Astrophysics Data System (ADS)

    Ašmontas, S.; Kleiza, V.; Kleiza, J.

    2008-06-01

    The paper deals with the ways of finding an electrical conductivity tensor of a plane and anisotropically conductive sample. Application of the Van der Pauw method to investigate the conductivity of anisotropically conductive media makes the basis of research. Several models of distribution of the electric field potential are presented, their merits and demerits are discussed, and the necessary physical measurements are indicated. On the basis of these models, the respective calculation expressions of the specific conductivity tensor are derived and algorithms for their realization and error calculation are developed.

  5. Electrically conductive resinous bond and method of manufacture

    DOEpatents

    Snowden, Jr., Thomas M.; Wells, Barbara J.

    1987-01-01

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40.degree. to 365.degree. C. to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  6. Electrically conductive resinous bond and method of manufacture

    DOEpatents

    Snowden, T.M. Jr.; Wells, B.J.

    1985-01-01

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40 to 365/sup 0/C to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  7. Electric field enhanced conductivity in strongly coupled dense metal plasma

    SciTech Connect

    Stephens, J.; Neuber, A.

    2012-06-15

    Experimentation with dense metal plasma has shown that non-negligible increases in plasma conductivity are induced when a relatively low electric field ({approx}6 kV/cm) is applied. Existing conductivity models assume that atoms, electrons, and ions all exist in thermal equilibrium. This assumption is invalidated by the application of an appreciable electric field, where electrons are accelerated to energies comparable to the ionization potential of the surrounding atoms. Experimental data obtained from electrically exploded silver wire is compared with a finite difference hydrodynamic model that makes use of the SESAME equation-of-state database. Free electron generation through both thermal and electric field excitations, and their effect on plasma conductivity are applied and discussed.

  8. Electric field enhanced conductivity in strongly coupled dense metal plasma

    NASA Astrophysics Data System (ADS)

    Stephens, J.; Neuber, A.

    2012-06-01

    Experimentation with dense metal plasma has shown that non-negligible increases in plasma conductivity are induced when a relatively low electric field (˜6 kV/cm) is applied. Existing conductivity models assume that atoms, electrons, and ions all exist in thermal equilibrium. This assumption is invalidated by the application of an appreciable electric field, where electrons are accelerated to energies comparable to the ionization potential of the surrounding atoms. Experimental data obtained from electrically exploded silver wire is compared with a finite difference hydrodynamic model that makes use of the SESAME equation-of-state database. Free electron generation through both thermal and electric field excitations, and their effect on plasma conductivity are applied and discussed.

  9. Deep electrical conductivity structure of the Rio Grande Rift in Colorado and New Mexico: Early results from a two-year magnetotelluric study

    NASA Astrophysics Data System (ADS)

    Feucht, D. W.; Bedrosian, P.; Sheehan, A. F.

    2013-12-01

    A wideband and long-period magnetotelluric experiment is underway across the Rio Grande Rift in Colorado and New Mexico in order to provide constraints on the thermal and rheological state of the lithosphere beneath this region of intra-continental extension. Magnetotellurics is a passive source electromagnetic technique that at long periods has depth penetration into the deep crust and upper mantle. Important questions about continental rifting remain unresolved, including the role of magmatism, volatiles and inherited lithospheric structure in the initiation and development of rifting. Recent seismic imaging studies show thinned crust and low seismic wavespeeds in the crust and upper mantle beneath the Rio Grande Rift. New and ongoing geodetic work confirms the low strain-rate environment of the region yet shows surprisingly uniform deformation over an area far wider than the rift's physiographic expression. Electrical conductivity models from this experiment will provide information complementary to these studies and can be used to determine the relative contributions of thermal and compositional heterogeneity in the crust and upper mantle to processes of continental extension. Over the past two years, magnetotelluric data has been collected at ~100 site locations along three 450 km long east-west transects of the rift axis. These three profiles extend across the northern, central, and southern portions of the rift and include sites in the High Plains, Colorado Front Range, southern Rocky Mountains, San Juan Basin, Sangre de Cristo Mountains, and southern Basin and Range along the New Mexico/Mexico border. A comparison of results from these segments will be used to examine along-strike variation in the spatial extent of rifting and associated modification of the lithosphere. Data assessment shows high-quality signal to periods in excess of 10 000 s, which corresponds to upper-mantle depths in this region of high upper-crustal conductivity and low crustal

  10. Electric conductivity of polymer films filled with magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Rumyantsev, B. M.; Bibikov, S. B.; Bychkova, A. V.; Leontiev, V. G.; Berendyaev, V. I.; Sorokina, O. N.; Kovarskii, A. L.

    2016-12-01

    The conductivity of polymer composites with magnetic nanoparticles (MNP) containing magnetite and other MNP (Ni, Cu-Ni) in the layers and planar cells with Al electrodes is studied. For soluble polymers (polyvinylpyrrolidone and polyvinyl alcohol) containing 1-10 wt % of magnetite MNP, a substantial effect of MNP on surface conductivity is detected over a wide range (from 10-10 to 10-3 Ω-1). It is shown that the addition of magnetite MNP not only results in a considerable change in cell conductivity, but also leads to its partially irreversible variation (by an order of magnitude or more) via minor modifications of the experimental conditions (temperature, electric field). For high-resistance samples with low probabilities of conducting chain formation, temperature current peaks are observed upon moderate heating (up to 350 K). These peaks are similar to the maxima observed upon polymer electret thermodischarges when the charges are captured by the deep centers associated with separate MNP or MNP aggregates. The type and position of the maxima are determined by the characteristics of the polymer matrix. For polyvinylpyrrolidone composites, the maxima are observed some time after heating (the echo effect). With composites based on solventborne polymers (polyalkanesterimides, soluble polyimide) and Ni, Cu-Ni MNP, no change in film conductivity measured electrophotographically is observed, due to the formation of a dielectric coating formed by polymer macromolecules adsorbed on the MNP surface. An explanation based on the possible formation of magnetic aggregates of magnetite MNP and conducting chains is proposed. Magnetic aggregation IPM is proposed as one way of controlling cell conductivity.

  11. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    DOEpatents

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  12. Electric Drive Study

    DTIC Science & Technology

    1987-03-01

    Track-Laying Combat Vehicles , and (3) Parametric Study of Electric Drive Component Technologies. The technology survey results are given in a separate...and projections of future electric drive system improvements relative to combat vehicle applications. Unclassified SECURITY CLASSIFICATION OF THIS...273 5.7.2.3.1 DC Homopolar Drum Machine, Design and Performance 5-278 APPENDIX A 19.5 TON AND 40.0 TON VEHICLE SPECIFICATION APPENDIX B ELECTRIC

  13. Synthesis and electrical conductivity of nanocrystalline tetragonal FeS

    NASA Astrophysics Data System (ADS)

    Zeng, Shu-Lin; Wang, Hui-Xian; Dong, Cheng

    2014-08-01

    A convenient method for synthesis of tetragonal FeS using iron powder as iron source, is reported. Nanocrystalline tetragonal FeS samples were successfully synthesized by reacting metallic iron powder with sodium sulfide in acetate buffer solution. The obtained sample is single-phase tetragonal FeS with lattice parameters a = 0.3767 nm and c = 0.5037 nm, as revealed by X-ray diffraction. The sample consists of flat nanosheets with lateral dimensions from 20 nm up to 200 nm and average thickness of about 20 nm. We found that tetragonal FeS is a fairly good conductor from the electrical resistivity measurement on a pellet of the nanosheets. The temperature dependence of conductivity of the pellet was well fitted using an empirical equation wherein the effect of different grain boundaries was taken into consideration. This study provides a convenient, economic way to synthesize tetragonal FeS in a large scale and reports the first electrical conductivity data for tetragonal FeS down to liquid helium temperature.

  14. KTB and the electrical conductivity of the crust

    NASA Astrophysics Data System (ADS)

    Haak, V.; Simpson, F.; Bahr, Karsten; Bigalke, J.; Eisel, M.; Harms, U.; Hirschmann, G.; Huenges, E.; Jödicke, H.; Kontny, A.; Kück, J.; Nover, G.; Rauen, A.; Stoll, J.; Walther, J.; Winter, H.; Zulauf, G.; Wolfgang, J.

    1997-08-01

    The German Continental Deep Drilling Program (KTB) drilled two holes through crystalline rocks which are rich in both high-salinity fluids and graphite accumulated along shear zones. Analyses of a large number of borehole measurements yield models for the electrical resistivity of the upper and middle crust in the vicinity of the KTB holes. High observed resistivity, of more than 105Ωm in the lowermost part of the 9000 m deep main hole, in a rather ``wet'' crust, indicates that effective mechanisms exist to cut down connections between fluid accumulations and therefore that fluids are not the likely cause of high-conductivity anomalies. On the other hand, graphite accumulations appear to be connected along shear lineaments over hundreds of meters or more. Structural, mineralogical, and geochemical studies suggest a tectonic model which explains the deposition of graphite as the relic and witness of a shearing process that occurred during the late Variscan (Upper Carboniferous) thrusting. This process took place while this part of the crust resided at temperatures between 240° and 380°C. Subsequent independent reverse faulting lifted this part to the Earth's surface. Our conclusion is that the KTB case indicates how high electrical conductivities in the upper crust, which originated from the middle to lower crust, are caused by graphite accumulations, rather than by fluids, and that these anomalies are related to shearing processes. Such graphite accumulations may exist elsewhere and may be of relevance in the context of present-day midcrustal conductors.

  15. Measuring the local electrical conductivity of human brain tissue

    NASA Astrophysics Data System (ADS)

    Akhtari, M.; Emin, D.; Ellingson, B. M.; Woodworth, D.; Frew, A.; Mathern, G. W.

    2016-02-01

    The electrical conductivities of freshly excised brain tissues from 24 patients were measured. The diffusion-MRI of the hydrogen nuclei of water molecules from regions that were subsequently excised was also measured. Analysis of these measurements indicates that differences between samples' conductivities are primarily due to differences of their densities of solvated sodium cations. Concomitantly, the sample-to-sample variations of their diffusion constants are relatively small. This finding suggests that non-invasive in-vivo measurements of brain tissues' local sodium-cation density can be utilized to estimate its local electrical conductivity.

  16. Electrical conductivity in the precambrian lithosphere of western canada

    PubMed

    Boerner; Kurtz; Craven; Ross; Jones; Davis

    1999-01-29

    The subcrustal lithosphere underlying the southern Archean Churchill Province (ACP) in western Canada is at least one order of magnitude more electrically conductive than the lithosphere beneath adjacent Paleoproterozoic crust. The measured electrical properties of the lithosphere underlying most of the Paleoproterozoic crust can be explained by the conductivity of olivine. Mantle xenolith and geological mapping evidence indicate that the lithosphere beneath the southern ACP was substantially modified as a result of being trapped between two nearly synchronous Paleoproterozoic subduction zones. Tectonically induced metasomatism thus may have enhanced the subcrustal lithosphere conductivity of the southern ACP.

  17. Electric pulp tester conductance through various interface media.

    PubMed

    Mickel, André K; Lindquist, Kimberly A D; Chogle, Sami; Jones, Jefferson J; Curd, Francis

    2006-12-01

    A conducting media is necessary when using an electric pulp tester (EPT). The objective of this study was to observe differences in conductance through various media. We hypothesized that variations in current conductance through different media exist. The pulp chamber of a freshly extracted premolar was exposed, and the cathode of a voltmeter was inserted into the pulpal tissue. The anode was coupled to the EPT handpiece. The measurement taken during dry (no interface media) EPT tip-to-tooth contact was 0 V, which served as negative control. EPT tip directly touching the cathode measured 3.9V and served as positive control. A number of media readily available in the dental office were tested. Data was analyzed using single factor ANOVA. Listerine (3.3) conducted the most voltage (p<0.5). Of nonliquids, K-Y Brand UltraGel and Crest Baking Soda & Peroxide Whitening Tartar Control toothpaste recorded significantly (p<0.05) higher voltage readings (1.4 V).

  18. A Structural Electrical Conductivity Model for Oxide Melts

    NASA Astrophysics Data System (ADS)

    Thibodeau, Eric; Jung, In-Ho

    2016-02-01

    A structural electrical conductivity model for oxide melts was developed based on the Nernst-Einstein relationship of ionic conductivity. In the description of ionic conductivity, the effective diffusivities of cations in oxide slags were described as a function of the polymerization of the melt. The polymerization of oxide melts was calculated from the Modified Quasichemical Model, taking into account the short-range ordering in slags. The parameters of this conductivity model were fixed to reproduce the electrical conductivity data in unary and binary melts, and the model can well predict the conductivity data in ternary and higher order system without any additional model parameters. The model is successfully applied to the CaO-MgO-MnO-PbO-Al2O3-SiO2 system.

  19. Synthesis and applications of electrically conducting polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Ku, Bon-Cheol

    This research focuses on the synthesis and applications of electrically conducting polymer nanocomposites through molecular self-assembly. Two different classes of polymers, polyaniline (PANI) and polyacetylenes have been synthesized by biomimetic catalysis and spontaneous polymerization method. For gas barrier materials, commercially available polymers, poly(allylamine hydrochloride) (PAH) and poly (acrylic acid) (PAA), have also been used and thermally cross-linked. The morphological, optical and electrical properties of amphiphilic polyacetylenes have been studied. Furthermore, barrier properties, permselectivity, pervaporation properties of polyacetylenes/aluminosilicate nanocomposites have been investigated. For processability and electrical properties of carbon nanotube and conducting polymers, substituted ionic polyacetylenes (SIPA) have been covalently incorporated onto single-walled carbon nanotubes (SWNT) using the "grafting-from" technique. In the first study, a nanocomposite film catalyst has been prepared by electrostatic layer-by-layer (ELBL) self-assembly of a polyelectrolyte and a biomimetic catalyst for synthesis of polyaniline. Poly(dimethyl diallylammonium chloride) (PDAC) and hematin have been used as polycation and counter anions, respectively. The absorption spectra by UV-vis-NIR spectroscopy showed that conductive form polyaniline was formed not only as a coating on the surface of the ELBL composites but was also formed in solution. Furthermore, it was found that the reaction rate was affected by pH and concentration of hematin in the multilayers. The feasibility of controlled desorption of hematin molecules from the LBL assembly was explored and demonstrated by changing the pH and hematin concentration. The polymerization rate of aniline in solution was enhanced with decreasing pH of the solutions due to increased desorption of hematin nanoparticles from the multilayers. These ELBL hematin assemblies demonstrated both a way to functionalize

  20. Electric and thermal conductivities of quenched neutron star crusts

    NASA Technical Reports Server (NTRS)

    Ogata, Shuji; Ichimaru, Setsuo

    1990-01-01

    The electric and thermal conductivities in the outer crustal matter of a neutron star quenched into a solid state by cooling are estimated using a Monte Carlo simulation of freezing transition for dense plasmas. The conductivities are calculated by the precise evaluation of the scattering integrals, using the procedure of Ichimaru et al. (1983) and Iyetomi and Ichimaru (1983). The results predict the conductivities lower, by a factor of about 3, than those with the single-phonon approximation.

  1. Anisotropy of synthetic quartz electrical conductivity at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Wang, Duojun; Li, Heping; Yi, Li; Matsuzaki, Takuya; Yoshino, Takashi

    2010-09-01

    AC measurements of the electrical conductivity of synthetic quartz along various orientations were made between 0.1 and 1 MHz, at ˜855˜1601 K and at 1.0 GPa. In addition, the electrical conductivity of quartz along the c axis has been studied at 1.0-3.0 GPa. The impedance arcs representing bulk conductivity occur in the frequency range of 103-106 Hz, and the electrical responses of the interface between the sample and the electrode occur in the 0.1˜103 Hz range. The pressure has a weak effect on the electrical conductivity. The electrical conductivity experiences no abrupt change near the α - β phase transition point. The electrical conductivity of quartz is highly anisotropic; the electrical conductivity along the c axis is strongest and several orders of magnitude larger than in other directions. The activation enthalpies along various orientations are determined to be 0.6 and 1.2 eV orders of magnitude, respectively. The interpretation of the former is based on the contribution of alkali ions, while the latter effect is attributed to additional unassociated aluminum ions. Comparison of determined anisotropic conductivity of quartz determined with those from field geophysical models shows that the quartz may potentially provide explanations for the behavior of electrical conductivity of anisotropy in the crust that are inferred from the transverse magnetic mode.

  2. Impurity effects on electrical conductivity of doped bilayer graphene in the presence of a bias voltage

    NASA Astrophysics Data System (ADS)

    E, Lotfi; H, Rezania; B, Arghavaninia; M, Yarmohammadi

    2016-07-01

    We address the electrical conductivity of bilayer graphene as a function of temperature, impurity concentration, and scattering strength in the presence of a finite bias voltage at finite doping, beginning with a description of the tight-binding model using the linear response theory and Green’s function approach. Our results show a linear behavior at high doping for the case of high bias voltage. The effects of electron doping on the electrical conductivity have been studied via changing the electronic chemical potential. We also discuss and analyze how the bias voltage affects the temperature behavior of the electrical conductivity. Finally, we study the behavior of the electrical conductivity as a function of the impurity concentration and scattering strength for different bias voltages and chemical potentials respectively. The electrical conductivity is found to be monotonically decreasing with impurity scattering strength due to the increased scattering among electrons at higher impurity scattering strength.

  3. Acidosis slows electrical conduction through the atrio-ventricular node

    PubMed Central

    Nisbet, Ashley M.; Burton, Francis L.; Walker, Nicola L.; Craig, Margaret A.; Cheng, Hongwei; Hancox, Jules C.; Orchard, Clive H.; Smith, Godfrey L.

    2014-01-01

    Acidosis affects the mechanical and electrical activity of mammalian hearts but comparatively little is known about its effects on the function of the atrio-ventricular node (AVN). In this study, the electrical activity of the epicardial surface of the left ventricle of isolated Langendorff-perfused rabbit hearts was examined using optical methods. Perfusion with hypercapnic Tyrode's solution (20% CO2, pH 6.7) increased the time of earliest activation (Tact) from 100.5 ± 7.9 to 166.1 ± 7.2 ms (n = 8) at a pacing cycle length (PCL) of 300 ms (37°C). Tact increased at shorter PCL, and the hypercapnic solution prolonged Tact further: at 150 ms PCL, Tact was prolonged from 131.0 ± 5.2 to 174.9 ± 16.3 ms. 2:1 AVN block was common at shorter cycle lengths. Atrial and ventricular conduction times were not significantly affected by the hypercapnic solution suggesting that the increased delay originated in the AVN. Isolated right atrial preparations were superfused with Tyrode's solutions at pH 7.4 (control), 6.8 and 6.3. Low pH prolonged the atrial-Hisian (AH) interval, the AVN effective and functional refractory periods and Wenckebach cycle length significantly. Complete AVN block occurred in 6 out of 9 preparations. Optical imaging of conduction at the AV junction revealed increased conduction delay in the region of the AVN, with less marked effects in atrial and ventricular tissue. Thus acidosis can dramatically prolong the AVN delay, and in combination with short cycle lengths, this can cause partial or complete AVN block and is therefore implicated in the development of brady-arrhythmias in conditions of local or systemic acidosis. PMID:25009505

  4. Acidosis slows electrical conduction through the atrio-ventricular node.

    PubMed

    Nisbet, Ashley M; Burton, Francis L; Walker, Nicola L; Craig, Margaret A; Cheng, Hongwei; Hancox, Jules C; Orchard, Clive H; Smith, Godfrey L

    2014-01-01

    Acidosis affects the mechanical and electrical activity of mammalian hearts but comparatively little is known about its effects on the function of the atrio-ventricular node (AVN). In this study, the electrical activity of the epicardial surface of the left ventricle of isolated Langendorff-perfused rabbit hearts was examined using optical methods. Perfusion with hypercapnic Tyrode's solution (20% CO2, pH 6.7) increased the time of earliest activation (Tact) from 100.5 ± 7.9 to 166.1 ± 7.2 ms (n = 8) at a pacing cycle length (PCL) of 300 ms (37°C). Tact increased at shorter PCL, and the hypercapnic solution prolonged Tact further: at 150 ms PCL, Tact was prolonged from 131.0 ± 5.2 to 174.9 ± 16.3 ms. 2:1 AVN block was common at shorter cycle lengths. Atrial and ventricular conduction times were not significantly affected by the hypercapnic solution suggesting that the increased delay originated in the AVN. Isolated right atrial preparations were superfused with Tyrode's solutions at pH 7.4 (control), 6.8 and 6.3. Low pH prolonged the atrial-Hisian (AH) interval, the AVN effective and functional refractory periods and Wenckebach cycle length significantly. Complete AVN block occurred in 6 out of 9 preparations. Optical imaging of conduction at the AV junction revealed increased conduction delay in the region of the AVN, with less marked effects in atrial and ventricular tissue. Thus acidosis can dramatically prolong the AVN delay, and in combination with short cycle lengths, this can cause partial or complete AVN block and is therefore implicated in the development of brady-arrhythmias in conditions of local or systemic acidosis.

  5. Thermal conductivity and electrical resistivity of porous material

    NASA Technical Reports Server (NTRS)

    Koh, J. C. Y.; Fortini, A.

    1971-01-01

    Thermal conductivity and electrical resistivity of porous materials, including 304L stainless steel Rigimesh, 304L stainless steel sintered spherical powders, and OFHC sintered spherical powders at different porosities and temperatures are reported and correlated. It was found that the thermal conductivity and electrical resistivity can be related to the solid material properties and the porosity of the porous matrix regardless of the matrix structure. It was also found that the Wiedermann-Franz-Lorenz relationship is valid for the porous materials under consideration. For high conductivity materials, the Lorenz constant and the lattice component of conductivity depend on the material and are independent of the porosity. For low conductivity, the lattice component depends on the porosity as well.

  6. Electrical Conductivity of HgTe at High Temperatures

    NASA Technical Reports Server (NTRS)

    Li, C.; Lehoczky, S. L.; Su, C.-H.; Scripa, R. N.

    2004-01-01

    The electrical conductivity of HgTe was measured using a rotating magnetic field method from 300 K to the melting point (943 K). A microscopic theory for electrical conduction was used to calculate the expected temperature dependence of the HgTe conductivity. A comparison between the measured and calculated conductivities was used to obtain the estimates of the temperature dependence of Gamma(sub 6)-Gamma(sub 8) energy gap from 300 K to 943 K. The estimated temperature coefficient for the energy gap was comparable to the previous results at lower temperatures (less than or equal to 300 K). A rapid increase in the conductivity just above 300 K and a subsequent decrease at 500 K is attributed to band crossover effects. This paper describes the experimental approach and some of the theoretical calculation details.

  7. Shear induced electrical behaviour of conductive polymer composites

    NASA Astrophysics Data System (ADS)

    Starý, Zdeněk; Krückel, Johannes; Schubert, Dirk W.

    2013-04-01

    The time-dependent electrical resistance of polymethylmethacrylate containing carbon black was measured under oscillatory shear in the molten state. The electrical signal was oscillating exactly at the doubled frequency of the oscillatory shear deformation. Moreover, the experimental results gave a hint to the development of conductive structures in polymer melts under shear deformation. It was shown that the flow induced destruction of conductive paths dominates over the flow induced build-up in the beginning of the shear deformations. However, for longer times both competitive effects reach a dynamic equilibrium and only the thermally induced build-up of pathways influences the changes in the composite resistance during the shear. Furthermore, the oscillating electrical response depends clearly on the deformation amplitude applied. A simple physical model describing the behaviour of conductive pathways under shear deformation was derived and utilized for the description of the experimental data.

  8. Electrical conductivity of rigid polyurethane foam at high temperature

    NASA Astrophysics Data System (ADS)

    Johnson, R. T., Jr.

    1982-08-01

    The electrical conductivity of rigid polyurethane foam, used for electronic encapsulation, was measured during thermal decomposition to 3400 C. At higher temperatures the conductance continues to increase. With pressure loaded electrical leads, sample softening results in eventual contact between electrodes which produces electrical shorting. Air and nitrogen environments show no significant dependence of the conductivity on the atmosphere over the temperature range. The insulating characteristics of polyurethane foam below approx. 2700 C are similar to those for silicone based materials used for electronic case housings and are better than those for phenolics. At higher temperatures (greater than or equal to 2700 C) the phenolics appear to be better insulators to approx. 5000 C and the silicones to approx. 6000 C. It is concluded that the Sylgard 184/GMB encapsulant is a significantly better insulator at high temperature than the rigid polyurethane foam.

  9. Electrically conducting porphyrin and porphyrin-fullerene electropolymers

    DOEpatents

    Gust, Jr., John Devens; Liddell, Paul Anthony; Gervaldo, Miguel Andres; Bridgewater, James Ward; Brennan, Bradley James; Moore, Thomas Andrew; Moore, Ana Lorenzelli

    2014-03-11

    Compounds with aryl ring(s) at porphyrin meso position(s) bearing an amino group in position 4 relative to the porphyrin macrocycle, and at least one unsubstituted 5 (hydrogen-bearing) meso position with the 10-, 15-, and/or 20-relationship to the aryl ring bearing the amino group, and metal complexes thereof, feature broad spectral absorption throughout the visible region. These compounds are electropolymerized to form electrically conducting porphyrin and porphyrin-fullerene polymers that are useful in photovoltaic applications. The structure of one such electrically conducting porphyrin polymer is shown below. ##STR00001##

  10. Contamination from electrically conductive silicone tubing during aerosol chemical analysis

    SciTech Connect

    Yu, Yong; Alexander, M. L.; Perraud, Veronique; Bruns, Emily; Johnson, Stan; Ezell, Michael J.; Finlayson-Pitts, Barbara J.

    2009-06-01

    Electrically conductive silicone tubing is used to minimize losses in sampling lines during the analysis of airborne particle size distributions and number concentrations. We report contamination from this tubing using gas chromatography-mass spectrometry (GC-MS) of filter-collected samples as well as by particle mass spectrometry. Comparison of electrically conductive silicone and stainless steel tubing showed elevated siloxanes only for the silicone tubing. The extent of contamination increased with length of tubing to which the sample was exposed, and decreased with increasing relative humidity.

  11. Corrosion-protective coatings from electrically conducting polymers

    NASA Technical Reports Server (NTRS)

    Thompson, Karen Gebert; Bryan, Coleman J.; Benicewicz, Brian C.; Wrobleski, Debra A.

    1991-01-01

    In a joint effort between NASA Kennedy and LANL, electrically conductive polymer coatings were developed as corrosion protective coatings for metal surfaces. At NASA Kennedy, the launch environment consist of marine, severe solar, and intermittent high acid and/or elevated temperature conditions. Electrically conductive polymer coatings were developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  12. Corrosion-protective coatings from electrically conducting polymers

    SciTech Connect

    Thompson, K.G.; Bryan, C.J.; Benicewicz, B.C.; Wrobleski, D.A.

    1991-12-31

    In a joint research effort involving the Kennedy Space Center and the Los Alamos National Laboratory, electrically conductive polymer coatings have been developed as corrosion-protective coatings for metal surfaces. At the Kennedy Space Center, the launch environment consists of marine, severe solar, and intermittent high acid/elevated temperature conditions. Electrically conductive polymer coatings have been developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  13. Electrically conductive doped block copolymer of polyacetylene and polyisoprene

    DOEpatents

    Aldissi, Mahmoud

    1985-01-01

    An electrically conductive block copolymer of polyisoprene and polyacetyl and a method of making the same are disclosed. The polymer is prepared by first polymerizing isoprene with n-butyllithium in a toluene solution to form an active isoprenyllithium polymer. The active polymer is reacted with an equimolar amount of titanium butoxide and subsequently exposed to gaseous acetylene. A block copolymer of polyisoprene and polyacetylene is formed. The copolymer is soluble in common solvents and may be doped with I.sub.2 to give it an electrical conductivity in the metallic regime.

  14. Lunar magnetic permeability, magnetic fields, and electrical conductivity temperature

    NASA Technical Reports Server (NTRS)

    Parkin, C. W.

    1978-01-01

    In the time period 1969-1972 a total of five magnetometers were deployed on the lunar surface during four Apollo missions. Data from these instruments, along with simultaneous measurements from other experiments on the moon and in lunar orbit, were used to study properties of the lunar interior and the lunar environment. The principal scientific results from analyses of the magnetic field data are discussed. The results are presented in the following main categories: (1) lunar electrical conductivity, temperature, and structure; (2) lunar magnetic permeability, iron abundance, and core size limits; (3) the local remnant magnetic fields, their interaction with the solar wind, and a thermoelectric generator model for their origin. Relevant publications and presented papers are listed.

  15. High performance heat curing copper-silver powders filled electrically conductive adhesives

    NASA Astrophysics Data System (ADS)

    Cui, Hui-Wang; Jiu, Jin-Ting; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki; Uchida, Hiroshi

    2015-03-01

    In this study, high performance electrically conductive adhesives were fabricated from a vinyl ester resin, a thermal initiator, silver coated copper powders, and pure silver powders, without using any other coupling agent, dispersing agent, and reducing agent. The heat cured copper-silver powders filled electrically conductive adhesives presented low bulk resistivity (e.g., 4.53 × 10-5 Ω·cm) due to the silver powders that had given high electrical conductivity to the adhesives, and high shear strength (e.g., 16.22 MPa) provided by the crosslinked structures of vinyl ester resin. These high performance copper-silver powders filled electrically conductive adhesives have lower cost than those filled by pure silver powders, which can be well used in the electronic packaging and can enlarge the application prospects of electrically conductive adhesives. [Figure not available: see fulltext.

  16. Electric Propulsion Study

    DTIC Science & Technology

    1990-08-01

    DTIC FILE COPY AL-TR-89-040 AD: AD-A227 121 Final Report forteprod Electric Propulsion Study 21 Sep 1988 to 30 Nov 1989 DTIC ’ELECTE0OCT 0c 41990u... Electric Propulsion Study (U) 12. PERSONAL AUTHOR(S) Cravens, Dennis J. 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE...identif bv block number) FIELD GROUP SUB-GROUP Inductive theories, electric propulsion, unified field 21 0- theories, Conservatc!±,n Laws, Dynamic

  17. Electrical conductivity of a bulk metallic glass composite

    NASA Astrophysics Data System (ADS)

    Wang, K.; Fujita, T.; Chen, M. W.; Nieh, T. G.; Okada, H.; Koyama, K.; Zhang, W.; Inoue, A.

    2007-10-01

    The authors report the electrical conductivity of a bulk metallic glass (BMG) based composite fabricated by warm extrusion of a mixture of gas-atomized glassy powders and ductile α-brass powders. The conductivity of the BMG composite can be well modeled by the percolation theory and the critical percolation threshold volume of the high-conductive brass phase was estimated to be about 10%. It was found that the short irregular brass fibers can dramatically reduce the resistivity of the BMG, leading to an improved material with both high strength and good conductivity for functional applications.

  18. Estimating Upper Mantle Hydration from In Situ Electrical Conductivity

    NASA Astrophysics Data System (ADS)

    Behrens, J.; Constable, S.; Heinson, G.; Everett, M.; Weiss, C.; Key, K.

    2004-12-01

    The electrical conductivity of 35-40 Ma Pacific plate has been measured in situ; one robust result is the presence of bulk anisotropy in the lithospheric upper mantle. We interpret this anisotropy to be a result of hydrothermal circulation into the upper mantle along spreading-ridge-parallel normal faults: the associated zones of serpentinized peridotite provide the pathways of enhanced electrical conductivity required by the data. Our modeling bounds the range of possible anisotropic ratios, which are then used to estimate the amount of water required to serpentinize the requisite amounts of peridotite. These data sets, however, do not indicate anisotropy in the bulk conductivity of the crust, nor in the asthenospheric mantle. This second point is significant, as recent measurements of sub-continental asthenospheric conductivity have been interpreted to indicate anisotropy aligned with present plate motion, with the diffusion of hydrogen through olivine advanced as an explanation.

  19. Carbonatite melts and electrical conductivity in the asthenosphere.

    PubMed

    Gaillard, Fabrice; Malki, Mohammed; Iacono-Marziano, Giada; Pichavant, Michel; Scaillet, Bruno

    2008-11-28

    Electrically conductive regions in Earth's mantle have been interpreted to reflect the presence of either silicate melt or water dissolved in olivine. On the basis of laboratory measurements, we show that molten carbonates have electrical conductivities that are three orders of magnitude higher than those of molten silicate and five orders of magnitude higher than those of hydrated olivine. High conductivities in the asthenosphere probably indicate the presence of small amounts of carbonate melt in peridotite and can therefore be interpreted in terms of carbon concentration in the upper mantle. We show that the conductivity of the oceanic asthenosphere can be explained by 0.1 volume percent of carbonatite melts on average, which agrees with the carbon dioxide content of mid-ocean ridge basalts.

  20. Self-healable electrically conducting wires for wearable microelectronics.

    PubMed

    Sun, Hao; You, Xiao; Jiang, Yishu; Guan, Guozhen; Fang, Xin; Deng, Jue; Chen, Peining; Luo, Yongfeng; Peng, Huisheng

    2014-09-01

    Electrically conducting wires play a critical role in the advancement of modern electronics and in particular are an important key to the development of next-generation wearable microelectronics. However, the thin conducting wires can easily break during use, and the whole device fails to function as a result. Herein, a new family of high-performance conducting wires that can self-heal after breaking has been developed by wrapping sheets of aligned carbon nanotubes around polymer fibers. The aligned carbon nanotubes offer an effective strategy for the self-healing of the electric conductivity, whereas the polymer fiber recovers its mechanical strength. A self-healable wire-shaped supercapacitor fabricated from a wire electrode of this type maintained a high capacitance after breaking and self-healing.

  1. Tuning Electrical Conductivity of Inorganic Minerals with Carbon Nanomaterials.

    PubMed

    Kovalchuk, Anton A; Tour, James M

    2015-12-02

    Conductive powders based on Barite or calcium carbonate with chemically converted graphene (CCG) were successfully synthesized by adsorption of graphene oxide (GO) or graphene oxide nanoribbons (GONRs) onto the mineral surfaces and subsequent chemical reduction with hydrazine. The efficient adsorption of GO or GONRs on the surface of Barite and calcium carbonate-based mineral particles results in graphene-wrapped hybrid materials that demonstrate a concentration dependent electrical conductivity that increases with the GO or GONR loading.

  2. Electrical conductivity in shaly sands with geophysical applications

    NASA Astrophysics Data System (ADS)

    Revil, A.; Cathles, L. M., III; Losh, S.; Nunn, J. A.

    1998-10-01

    We develop a new electrical conductivity equation based on Bussian's model and accounting for the different behavior of ions in the pore space. The tortuosity of the transport of anions is independent of the salinity and corresponds to the bulk tortuosity of the pore space which is given by the product of the electrical formation factor F and the porosity ϕ. For the cations, the situation is different. At high salinities, the dominant paths for the electromigration of the cations are located in the interconnected pore space, and the tortuosity for the transport of cations is therefore the bulk tortuosity. As the salinity decreases, the dominant paths for transport of the cations shift from the pore space to the mineral water interface and consequently are subject to different tortuosities. This shift occurs at salinities corresponding to ξ/t(+)f ˜ 1, where ξ is the ratio between the surface conductivity of the grains and the electrolyte conductivity, and t(+)f is the Hittorf transport number for cations in the electrolyte. The electrical conductivity of granular porous media is determined as a function of pore fluid salinity, temperature, water and gas saturations, shale content, and porosity. The model provides a very good explanation for the variation of electrical conductivity with these parameters. Surface conduction at the mineral water interface is described with the Stern theory of the electrical double layer and is shown to be independent of the salinity in shaly sands above 10-3 mol L-1. The model is applied to in situ salinity determination in the Gulf Coast, and it provides realistic salinity profiles in agreement with sampled pore water. The results clearly demonstrate the applicability of the equations to well log interpretation of shaly sands.

  3. Electrical Conductivity, Thermal Behavior, and Seebeck Coefficient of Conductive Films for Printed Thermoelectric Energy Harvesting Systems

    NASA Astrophysics Data System (ADS)

    Ankireddy, Krishnamraju; Menon, Akanksha K.; Iezzi, Brian; Yee, Shannon K.; Losego, Mark D.; Jur, Jesse S.

    2016-11-01

    Printed electronics is being explored as a rapid, facile means for manufacturing thermoelectric generators (TEGs) that can recover useful electrical energy from waste heat. This work examines the relevant electrical conductivity, thermal resistance, thermovoltage, and Seebeck coefficient of printed films for use in such printed flexible TEGs. The thermoelectric performance of TEGs printed using commercially relevant nickel, silver, and carbon inks is evaluated. The microstructure of the printed films is investigated to better understand why the electrical conductivity and Seebeck coefficient are degraded. Thermal conduction is shown to be relatively insensitive to the type of metalized coating and nearly equivalent to that of an uncoated polymer substrate. Of the commercially available conductive ink materials examined, carbon-nickel TEGs are shown to exhibit the highest thermovoltage, with a value of 10.3 μV/K. However, silver-nickel TEGs produced the highest power generation of 14.6 μW [from 31 junctions with temperature difference (Δ T) of 113°C] due to their low electrical resistance. The voltage generated from the silver-nickel TEG was stable under continuous operation at 275°C for 3 h. We have also demonstrated that, after a year of storage in ambient conditions, these devices retain their performance. Notably, the electrical conductivity and Seebeck coefficient measured for individual materials were consistent with those measured from actual printed TEG device structures, validating the need for further fundamental materials characterization to accelerate flexible TEG device optimization.

  4. Development of Tailorable Electrically Conductive Thermal Control Material Systems

    NASA Technical Reports Server (NTRS)

    Deshpande, M. S.; Harada, Y.

    1997-01-01

    The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and have been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties as well as mechanical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has added to already existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The objective of this program was to develop two types of passive electrically conductive TCMS. The first was a highly absorbing/emitting black surface and the second was a low (alpha(sub s)/epsilon(sub N)) type white surface. The surface resistance goals for the black absorber was 10(exp 4) to 10(exp 9) Omega/square, and for the white surfaces it was 10(exp 6) to 10(exp 10) Omega/square. Several material system concepts were suggested and evaluated for space environment stability and electrical performance characterization. Our efforts in designing and evaluating these material systems have resulted in several developments. New concepts, pigments and binders have been developed to provide new engineering quality TCMS. Some of these have already found application on space hardware, some are waiting to be recognized by thermal designers, and some require further detailed studies to become state-of-the-art for future space hardware and space structures. Our studies on baseline state-of-the-art materials and

  5. Reduction Kinetics and Electrical Conductivity in Lead Disilicate Glasses.

    NASA Astrophysics Data System (ADS)

    Kumar, Sajal

    Reduced lead silicate based glasses constitute the active element in night vision devices. The thermochemical reduction of these glasses is necessary to render them electronically conducting. In this thesis some of the more important reduction parameters and their influence on the post-reduction have been identified. The aim of this work was to establish the conduction mechanism(s) responsible in these glasses. The samples were reduced in hydrogen of varying moisture content, in the temperature range of 330-500 ^circC for various times. X-ray diffraction and thermogravimetric measurements clearly established that the reduction resulted in the formation of metallic lead islands with a diameter of ~4 nm, with an inter-island spacing of ~ 3.4 nm. In contrast to the electrical conductivity, the microstructure was found to be a weak function of reduction parameters. No coarsening of the microstructure was observed even after extended anneals at high temperatures, strongly suggesting that the final lead-island size was dictated by the size of the holes either present in the parent glass or formed as a result of reduction, in an otherwise rigid glass network. The electronic conductivity was found to go through a minimum with reduction temperature. Increasing the moisture content of the reducing gas resulted in an increase in the post-reduction resistance and in the sharpness of the minimum. The post-reduction activation energies were measured to be ~0.09 eV and found to be independent of all reduction variables, indicating that a single conduction mechanism was operative in all cases. The variation in conductivity was ascribed to variation in the number of mobile carriers. The mechanism of conduction was proposed to be that of a bipolaron hopping between Pb^{4+} and Pb ^{2+} ions, the former forming as a result of a disproportionation reaction that takes place during reduction and/or cooling of the samples from the reduction temperature. The electron transport is believed

  6. Investigation of the electrical conductivity of propylene glycol-based ZnO nanofluids

    PubMed Central

    2011-01-01

    Electrical conductivity is an important property for technological applications of nanofluids that has not been widely studied. Conventional descriptions such as the Maxwell model do not account for surface charge effects that play an important role in electrical conductivity, particularly at higher nanoparticle volume fractions. Here, we perform electrical characterizations of propylene glycol-based ZnO nanofluids with volume fractions as high as 7%, measuring up to a 100-fold increase in electrical conductivity over the base fluid. We observe a large increase in electrical conductivity with increasing volume fraction and decreasing particle size as well as a leveling off of the increase at high volume fractions. These experimental trends are shown to be consistent with an electrical conductivity model previously developed for colloidal suspensions in salt-free media. In particular, the leveling off of electrical conductivity at high volume fractions, which we attribute to counter-ion condensation, represents a significant departure from the "linear fit" models previously used to describe the electrical conductivity of nanofluids. PMID:21711869

  7. Detection of internally infested popcorn using electrically conductive roller mills

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To detect popcorn kernels infested by the internal feeding stored-product insect pest Sitophilus zeamais, maize weevil, a laboratory roller mill was modified so that the electrical conductivity of the grain is measured while the kernels are milled between the rolls. When a kernel with a S. zeamais l...

  8. Soil water sensor response to bulk electrical conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...

  9. Electrically conductive polycrystalline diamond and particulate metal based electrodes

    DOEpatents

    Swain, Greg M.; Wang, Jian

    2005-04-26

    An electrically conducting and dimensionally stable diamond (12, 14) and metal particle (13) electrode produced by electrodepositing the metal on the diamond is described. The electrode is particularly useful in harsh chemical environments and at high current densities and potentials. The electrode is particularly useful for generating hydrogen, and for reducing oxygen and oxidizing methanol in reactions which are of importance in fuel cells.

  10. Evaluation of DC electric field distribution of PPLP specimen based on the measurement of electrical conductivity in LN2

    NASA Astrophysics Data System (ADS)

    Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Lee, Jong-Geon; Cho, Jeon-Wook; Ryoo, Hee-Suk; Lee, Bang-Wook

    2013-11-01

    High temperature superconducting (HTS) cable has been paid much attention due to its high efficiency and high current transportation capability, and it is also regarded as eco-friendly power cable for the next generation. Especially for DC HTS cable, it has more sustainable and stable properties compared to AC HTS cable due to the absence of AC loss in DC HTS cable. Recently, DC HTS cable has been investigated competitively all over the world, and one of the key components of DC HTS cable to be developed is a cable joint box considering HVDC environment. In order to achieve the optimum insulation design of the joint box, analysis of DC electric field distribution of the joint box is a fundamental process to develop DC HTS cable. Generally, AC electric field distribution depends on relative permittivity of dielectric materials but in case of DC, electrical conductivity of dielectric material is a dominant factor which determines electric field distribution. In this study, in order to evaluate DC electric field characteristics of the joint box for DC HTS cable, polypropylene laminated paper (PPLP) specimen has been prepared and its DC electric field distribution was analyzed based on the measurement of electrical conductivity of PPLP in liquid nitrogen (LN2). Electrical conductivity of PPLP in LN2 has not been reported yet but it should be measured for DC electric field analysis. The experimental works for measuring electrical conductivity of PPLP in LN2 were presented in this paper. Based on the experimental works, DC electric field distribution of PPLP specimen was fully analyzed considering the steady state and the transient state of DC. Consequently, it was possible to determine the electric field distribution characteristics considering different DC applying stages including DC switching on, DC switching off and polarity reversal conditions.

  11. Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure

    NASA Astrophysics Data System (ADS)

    Pommier, A.; Gaillard, F.; Pichavant, M.; Scaillet, B.

    2008-05-01

    Quantitative interpretation of MT anomalies in volcanic regions requires laboratory measurements of electrical conductivities of natural magma compositions. The electrical conductivities of three lava compositions from Mount Vesuvius (Italy) have been measured using an impedance spectrometer. Experiments were conducted on both glasses and melts between 400 and 1300°C, at both ambient pressure in air and high pressures (up to 400 MPa). Both dry and hydrous (up to 5.6 wt % H2O) melt compositions were investigated. A change of the conduction mechanism corresponding to the glass transition was systematically observed. The conductivity data were fitted by sample-specific Arrhenius laws on either side of Tg. The electrical conductivity increases with temperature and is higher in the order tephrite, phonotephrite to phonolite. For the three investigated compositions, increasing pressure decreases the conductivity, although the effect of pressure is relatively small. The three investigated compositions have similar activation volumes (ΔV = 16-24 cm3 mol-1). Increasing the water content of the melt increases the conductivity. Comparison of activation energies (Ea) from conductivity and sodium diffusion and use of the Nernst-Einstein relation allow sodium to be identified as the main charge carrier in our melts and presumably also in the corresponding glasses. Our data and those of previous studies highlight the correlation between the Arrhenius parameters Ea and σ0. A semiempirical method allowing the determination of the electrical conductivity of natural magmatic liquids is proposed, in which the activation energy is modeled on the basis of the Anderson-Stuart model, σ0 being obtained from the compensation law and ΔV being fitted from our experimental data. The model enables the electrical conductivity to be calculated for the entire range of melt compositions at Mount Vesuvius and also satisfactorily predicts the electrical response of other melt compositions

  12. Observations and parameterization of the stratospheric electrical conductivity

    NASA Astrophysics Data System (ADS)

    Hu, Hua; Holzworth, Robert H.

    1996-12-01

    Simultaneous in situ measurements of the stratospheric electrical conductivity, made from multiple balloon platforms during the 1992-1993 Extended Life Balloon-Borne Observatories (ELBBO) experiment, have yielded the most comprehensive data set on the stratospheric electrical conductivity. The ELBBO project involved launches of five superpressure balloons into the stratosphere from Dunedin, New Zealand, beginning November 10, 1992, and lasting through March 18, 1993. Most of the balloons floated at a constant altitude of 26 km for over 3 months, covered a wide range of latitudes from the South Pole to 28°S, and circled around the southern hemisphere several times. On average, the positive polar conductivity (conductivity of positive ions alone) was about 15% higher than that of the negative conductivity, suggesting that differences may exist between the mobilities of positive and negative ions. Data from each polarity of polar conductivity also indicate persistent, apparently organized, short-term and localized variations, with amplitude within 30% of the mean value. In corrected geomagnetic (CGM) coordinates the conductivity variations were found to be a function of latitude but not of longitude. The total conductivity can increase 150% from low latitude to high latitude, and does remain nearly constant at latitudes above 55° (namely, the cosmic ray knee latitude). Calculations based on ionization theory demonstrate that the latitudinal variations in the conductivity measurements were mainly due to the latitudinal variations in incident galactic cosmic ray intensity, with only little effect from the air temperature variations. The calculations shown here also suggest that small ions (as opposed to large ions) provide the main contribution to the stratospheric conductivity. The comparisons between conductivity measurements and models show that commonly used models can underestimate the latitudinal variation by a factor of 2. In this paper the stratospheric

  13. Electric field induced percolation in microemulsions: simulation of the electric conductivity

    NASA Astrophysics Data System (ADS)

    Ilgenfritz, G.; Runge, F.

    1992-02-01

    Structure changes can be induced by high electric fields in microemulsions which bring the system from a nonconducting state to a highly conducting state. We report conductivity and electric birefringence measurements in a microemulsion, stabilized by the nonionic surfactant Igepal CO-520 (10 wt% 0.01 M KCl/40% n-hexane, 40% c-hexane/ 10% Igepal). Based on the experimental findings we investigate two models which may be relevant for understanding the field induced percolation behavior. Computer simulations of the electric conductivity, using the random walk approach, are performed with the following heterogeneous systems: (a) statistically distributed conducting Ising chains in a nonconducting matrix, (b) nonconducting overlapping spheres in a conducting medium. Both systems are capable of modelling certain aspects of the observed percolation. The continuum percolation with overlapping spheres puts special emphasis on the Bruggeman equation of the conductivity in dispersed systems, which is found to be valid in a much wider range than might have been thought before.

  14. Dielectric constants and electrical conductivities of sodium dodecyl sulfate in aqueous solutions

    SciTech Connect

    Abe, M.; Ogino, K.

    1981-03-01

    Dielectric properties of sodium dodecyl sulfate in aqueous solution have been studied. The dielectric constant and ac electrical conductivity were measured in the frequency range 30 Hz to 6 MHz. At lower frequencies, with increasing concentrations of sodium dodecyl sulfate, dielectric properties were greatly affected by polarization on the surfaces of the electrode, the so-called space charge polarization. ac electrical conductivities were dependent on the concentration of sodium dodecyl sulfate at all frequencies. The activation energies of dc electrical conduction were much larger in the molecular state than in the aggregation state. The radius of a spherical particle with an electric double layer could be calculated through the measurement of dielectric constant and dc electrical conductivity. 18 references.

  15. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.

    PubMed

    Randeniya, Lakshman K; Bendavid, Avi; Martin, Philip J; Tran, Canh-Dung

    2010-08-16

    Unique macrostructures known as spun carbon-nanotube fibers (CNT yarns) can be manufactured from vertically aligned forests of multiwalled carbon nanotubes (MWCNTs). These yarns behave as semiconductors with room-temperature conductivities of about 5 x 10(2) S cm(-1). Their potential use as, for example, microelectrodes in medical implants, wires in microelectronics, or lightweight conductors in the aviation industry has hitherto been hampered by their insufficient electrical conductivity. In this Full Paper, the synthesis of metal-CNT composite yarns, which combine the unique properties of CNT yarns and nanocrystalline metals to obtain a new class of materials with enhanced electrical conductivity, is presented. The synthesis is achieved using a new technique, self-fuelled electrodeposition (SFED), which combines a metal reducing agent and an external circuit for transfer of electrons to the CNT surface, where the deposition of metal nanoparticles takes place. In particular, the Cu-CNT and Au-CNT composite yarns prepared by this method have metal-like electrical conductivities (2-3 x 10(5) S cm(-1)) and are mechanically robust against stringent tape tests. However, the tensile strengths of the composite yarns are 30-50% smaller than that of the unmodified CNT yarn. The SFED technique described here can also be used as a convenient means for the deposition of metal nanoparticles on solid electrode supports, such as conducting glass or carbon black, for catalytic applications.

  16. Consequences of electrical conductivity in an orb spider's capture web

    NASA Astrophysics Data System (ADS)

    Vollrath, Fritz; Edmonds, Donald

    2013-12-01

    The glue-coated and wet capture spiral of the orb web of the garden cross spider Araneus diadematus is suspended between the dry silk radial and web frame threads. Here, we experimentally demonstrate that the capture spiral is electrically conductive because of necks of liquid connecting the droplets even if the thread is stretched. We examine how this conductivity of the capture spiral may lead to entrapment of charged airborne particles such as pollen, spray droplets and even insects. We further describe and model how the conducting spiral will also locally distort the Earth's ambient electric field. Finally, we examine the hypothesis that such distortion could be used by potential prey to detect the presence of a web but conclude that any effect would probably be too small to allow an insect to take evasive action.

  17. Contactless electrical conductivity measurement of electromagnetically levitated metallic melts

    SciTech Connect

    Richardsen, T.; Lohoefer, G.

    1999-07-01

    The electrical conductivity {sigma} of metallic liquids is of obvious importance to many liquid metal processing operations, because it controls the melt flow under the influence of electromagnetic fields, e.g. during casting processes, or in crystal growth furnaces. A facility for noninvasive measurements of the electrical conductivity of liquid metals above and below the melting temperature is presented. It combines the containerless positioning method of electromagnetic levitation with the contactless technique of inductive conductivity measurement. Contrary to the conventional measurement method, the sample is freely suspended within the measuring field and, thus, has no exactly predefined shape. This made a new theoretical basis necessary with implications on the measurement and levitation fields. Furthermore, the problem of the mutual inductive interactions between the levitation and the measuring coils had to be solved.

  18. Electrical conductivity of hydrous mantle minerals, with implications for the conductivity structure of the mantle transition zone

    NASA Astrophysics Data System (ADS)

    Guo, X.; Yoshino, T.

    2011-12-01

    range of 2.2-14.4 GPa. Electrical conductivity of brucite polycrystals was enhanced around one order of magnitude with increasing pressure from 2.2 GPa to 14.4 GPa. The pre-exponential factor, activation energy and the activation volume were determined to be 55 S/m, 0.45 eV and -0.35 cm3/mol. If we extrapolate the results of suB to a condition of 18 GPa and 1500 K (within the stability field of suB, but much lower than the normal mantle geotherm), the conductivity is 5X10-1 S/m, which is higher than currently available 1-D conductivity-depth profiles obtained from geoelectromagnetic studies (Kuvshinov et al., 2005). If the dense hydrous magnesium silicates have the negative activation volume as well as brucite, the electrical conductivity of super hydrous phase B, phase E and phase D at higher pressure would become higher. The high conductivity of the cold mantle transition zone, such as stagnant slab, can be well explained by the presence of dense hydrous magnesium silicate.

  19. Effect of gamma irradiation on DC electrical conductivity of ZnO nanoparticles

    SciTech Connect

    Swaroop, K.; Somashekarappa, H. M.; Naveen, C. S.; Jayanna, H. S.

    2015-06-24

    The temperature dependent dc electrical conductivity of gamma irradiated Zinc oxide (ZnO) nanoparticles is presented in this paper. The X-ray diffraction (XRD) pattern shows hexagonal wurtzite structure of ZnO. Fourier Transform Infrared Spectroscopy (FTIR) confirms Zn-O stretching vibrations. UV-Visible spectroscopy studies show that the energy band gap (E{sub g}) of the prepared ZnO nanoparticles increases with respect to gamma irradiation dose, which can be related to room temperature dc electrical conductivity. The result shows significant variation in the high temperature dc electrical conductivity of ZnO nanoparticles due to gamma irradiation.

  20. Nanostructured Cu-Cr alloy with high strength and electrical conductivity

    SciTech Connect

    Islamgaliev, R. K. Nesterov, K. M.; Bourgon, J.; Champion, Y.; Valiev, R. Z.

    2014-05-21

    The influence of nanostructuring by high pressure torsion (HPT) on strength and electrical conductivity in the Cu-Cr alloy has been investigated. Microstructure of HPT samples was studied by transmission electron microscopy with special attention on precipitation of small chromium particles after various treatments. Effect of dynamic precipitation leading to enhancement of strength and electrical conductivity was observed. It is shown that nanostructuring leads to combination of high ultimate tensile strength of 790–840 MPa, enhanced electrical conductivity of 81%–85% IACS and thermal stability up to 500 °C. The contributions of grain refinement and precipitation to enhanced properties of nanostructured alloy are discussed.

  1. Method for electrically isolating an electrically conductive member from another such member

    DOEpatents

    Tsang, K.L.; Chen, Y.

    1984-02-09

    The invention relates to methods for electrically isolating a first electrically conductive member from another such member by means of an electrically insulating medium. In accordance with the invention, the insulating medium is provided in the form of MgO which contains a dopant selected from lithium, copper, cobalt, sodium, silver, gold and hydrogen. The dopant is present in the MgO in an amount effective to suppress dielectric breakdown of the MgO, even at elevated temperatures and in the presence of electrical fields.

  2. Synthesis of Conductive Nanofillers/Nanofibers and Electrical Properties of their Conductive Polymer Composites

    NASA Astrophysics Data System (ADS)

    Sarvi, Ali

    Thanks to their corrosion resistance, light weight, low cost, and ease of processing, electrically conducting polymer composites (CPCs) have received significant attention for the replacement of metals and inorganic materials for sensors, actuators, supercapacitors, and electromagnetic interference (EMI) shields. In this PhD thesis, high aspect ratio conductive nanofillers namely copper nanowires (CuNWs) and multiwall carbon nanotubes (MWCNTs) were coated with polyaniline (PANi) using solution mixing and in-situ polymerization method, respectively. Transmission electron microscopy (TEM) showed a smooth polyaniline nano-coating between 5--18 nm in thickness on the nanofillers' surface. The coating thickness and; consequently, electrical conductivity was controlled and tuned by polyaniline/aniline concentration in solution. Composites with tunable conductivity may be used as chemisensors, electronic pressure sensors and switches. Coated nanofillers demonstrated better dispersion in polystyrene (PS) and provided lower electrical percolation threshold. Dispersion of nanofillers in PS was investigated using rheological measurements and confirmed with electron micrographs and nano-scale images of CPCs. Polyaniline (PANi), when used as a coating layer, was able to attenuate electromagnetic (EM) waves via absorption and store electrical charges though pseudocapacitance mechanism. The dielectric measurements of MWCNT-PANi/PS composites showed one order of magnitude increase in real electrical permittivity compared to that of MWCNT/PS composites making them suitable for charge storage purposes. Incorporation of PANi also brought a new insight into conductive network formation mechanism in electrospun mats where the orientation of conductive high aspect ratio nanofillers is a major problem. Conductive nanofibers of poly(vinylidene fluoride) (PVDF) filled with coated multiwall carbon nanotubes (MWCNTs) were fabricated using electrospinning. These highly oriented PVDF

  3. Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids

    NASA Astrophysics Data System (ADS)

    Kole, Madhusree; Dey, T. K.

    2013-02-01

    Stable and well dispersed functionalized graphene-ethylene glycol (EG) + distilled water nanofluids having graphene nano-sheets (GnS) volume concentration between 0.041 and 0.395 vol. % are prepared without any surfactant. Graphene nano-sheets are prepared from high purity graphite powder by Hummers method followed by exfoliation and reduction by hydrogen gas. Thus, obtained hydrogen exfoliated graphene (HEG) is then functionalized using acid. The graphene nano-sheets are characterized using XRD, TEM, Raman spectroscopy, and FTIR spectroscopy. Thermal conductivity and viscosity measurements are performed both as a function of graphene loading and temperature between 10 and 70 °C. Thermal conductivity enhancement of ˜15% for a loading of 0.395 vol. % f-HEG is observed at room temperature. The measured nanofluid's thermal conductivity is explained well in terms of the expression derived by Nan et al. (J. Appl. Phys. 81, 6692 (1997)), which considers matrix-additive interface contact resistance of mis-oriented ellipsoidal particles. The viscosity of the prepared f-HEG nanofluids and the base fluid (EG + distilled water) displays non-Newtonian behaviour with the appearance of shear thinning and nearly 100% enhancement compared to the base fluid (EG + DI water) with f-HEG loading of 0.395 vol. %. Known theoretical models for nanofluid's viscosity fail to explain the observed f-HEG volume concentration dependence of the nanofluid's viscosity. Temperature dependence of the studied nanofluid between 10 and 70 °C is explained well by the correlations proposed earlier for nanofluids with spherical nanoparticles. Electrical conductivity of the f-HEG nanofluids shows significant enhancement of ˜8620% for 0.395 vol. % loading of f-HEG in a base fluid of 70:30 mixture of EG and distilled water.

  4. EFFECTS OF TRITIUM GAS EXPOSURE ON ELECTRICALLY CONDUCTING POLYMERS

    SciTech Connect

    Kane, M.; Clark, E.; Lascola, R.

    2009-12-16

    Effects of beta (tritium) and gamma irradiation on the surface electrical conductivity of two types of conducting polymer films are documented to determine their potential use as a sensing and surveillance device for the tritium facility. It was shown that surface conductivity was significantly reduced by irradiation with both gamma and tritium gas. In order to compare the results from the two radiation sources, an approximate dose equivalence was calculated. The materials were also sensitive to small radiation doses (<10{sup 5} rad), showing that there is a measurable response to relatively small total doses of tritium gas. Spectroscopy was also used to confirm the mechanism by which this sensing device would operate in order to calibrate this sensor for potential use. It was determined that one material (polyaniline) was very sensitive to oxidation while the other material (PEDOT-PSS) was not. However, polyaniline provided the best response as a sensing material, and it is suggested that an oxygen-impermeable, radiation-transparent coating be applied to this material for future device prototype fabrication. A great deal of interest has developed in recent years in the area of conducting polymers due to the high levels of conductivity that can be achieved, some comparable to that of metals [Gerard 2002]. Additionally, the desirable physical and chemical properties of a polymer are retained and can be exploited for various applications, including light emitting diodes (LED), anti-static packaging, electronic coatings, and sensors. The electron transfer mechanism is generally accepted as one of electron 'hopping' through delocalized electrons in the conjugated backbone, although other mechanisms have been proposed based on the type of polymer and dopant [Inzelt 2000, Gerard 2002]. The conducting polymer polyaniline (PANi) is of particular interest because there are extensive studies on the modulation of the conductivity by changing either the oxidation state of the

  5. Electrical conductivity of electrolytes applicable to natural waters from 0 to 100 degrees C

    USGS Publications Warehouse

    McCleskey, R. Blaine

    2011-01-01

    The electrical conductivities of 34 electrolyte solutions found in natural waters ranging from (10-4 to 1) mol•kg-1 in concentration and from (5 to 90) °C have been determined. High-quality electrical conductivity data for numerous electrolytes exist in the scientific literature, but the data do not span the concentration or temperature ranges of many electrolytes in natural waters. Methods for calculating the electrical conductivities of natural waters have incorporated these data from the literature, and as a result these methods cannot be used to reliably calculate the electrical conductivity over a large enough range of temperature and concentration. For the single-electrolyte solutions, empirical equations were developed that relate electrical conductivity to temperature and molality. For the 942 molar conductivity determinations for single electrolytes from this study, the mean relative difference between the calculated and measured values was 0.1 %. The calculated molar conductivity was compared to literature data, and the mean relative difference for 1978 measurements was 0.2 %. These data provide an improved basis for calculating electrical conductivity for most natural waters.

  6. Graphene oxide with improved electrical conductivity for supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Li, Z. J.; Yang, B. C.; Zhang, S. R.; Zhao, C. M.

    2012-02-01

    Predominant few-layer graphene (FLG) sheets of high electrical conductivity have been synthesized by a multi-step intercalation and reduction method. The electrical conductivity of the as-synthesized FLG is measured to be ∼3.2 × 104 S m-1, comparable to that of pristine graphite. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman analysis reveal that the as-synthesized FLG sheets have large areas with single and double layers. The specific capacitance of 180 F g-1 is obtained for the FLG in a 1 M Na2SO4 aqueous electrolyte by integrating the cyclic voltammogram. The good capacitive behavior of the FLG is very promising for the application for next-generation high-performance electrochemical supercapacitors.

  7. Electrically Conductive Thick Film Made from Silver Alkylcarbamates

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Li, Xiangyou; Wang, Xiaoye; Zeng, Xiaoyan

    2010-10-01

    A homogeneous electrically conductive silver paste without solid or particle phase was developed using silver alkylcarbamates [(C n H2 n-1NHCOO)2Ag, n ≤ 4] as the precursor of the functional phase. The silver alkylcarbamates were light insensitive and had a low decomposition temperature (below 200°C). The paste was a non-Newtonian fluid with viscosity significantly depending on the content of the thickening agent ethyl cellulose. Array patterns with a resolution of 20 μm were obtained using this paste by a micropen direct-writing method. After the paste with about 48 wt.% silver methylcarbamate [(CH3NHCOO)2Ag] precursor was sintered at 180°C for 15 min, an electrically conductive network consisting of more than 95 wt.% silver was formed, and was found to have a volume electrical resistivity on the order of 10-5 Ω cm and a sheet electrical resistivity on the order of 10-2-10-3 Ω/□. The cohesion strength within the sintered paste and the adhesion strength between the sintered paste layer and the alumina ceramic substrate were tested according to test method B of the American Society for Testing and Materials standard D3359-08. None of the sintered paste layer was detached under the test conditions, and the cohesion and adhesion strengths met the highest grade according to the standard.

  8. Rearrangement of 1D Conducting Nanomaterials towards Highly Electrically Conducting Nanocomposite Fibres for Electronic Textiles

    NASA Astrophysics Data System (ADS)

    Han, Joong Tark; Choi, Sua; Jang, Jeong In; Seol, Seung Kwon; Woo, Jong Seok; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2015-03-01

    Nanocarbon-based conducting fibres have been produced using solution- or dry-spinning techniques. Highly conductive polymer-composite fibres containing large amounts of conducting nanomaterials have not been produced without dispersants, however, because of the severe aggregation of conducting materials in high-concentration colloidal solutions. Here we show that highly conductive (electrical conductivity ~1.5 × 105 S m-1) polymer-composite fibres containing carbon nanotubes and silver nanowires can be fabricated via a conventional solution-spinning process without any other treatment. Spinning dopes were fabricated by a simple mixing of a polyvinyl alcohol solution in dimethylsulfoxide with a paste of long multi-walled carbon nanotubes dispersed in organic solvents, assisted by quadruple hydrogen-bonding networks and an aqueous silver nanowire dispersion. The high electrical conductivity of the fibre was achieved by rearrangement of silver nanowires towards the fibre skin during coagulation because of the selective favourable interaction between the silver nanowires and coagulation solvents. The prepared conducting fibres provide applications in electronic textiles such as a textile interconnector of light emitting diodes, flexible textile heaters, and touch gloves for capacitive touch sensors.

  9. Rearrangement of 1D conducting nanomaterials towards highly electrically conducting nanocomposite fibres for electronic textiles.

    PubMed

    Han, Joong Tark; Choi, Sua; Jang, Jeong In; Seol, Seung Kwon; Woo, Jong Seok; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2015-03-20

    Nanocarbon-based conducting fibres have been produced using solution- or dry-spinning techniques. Highly conductive polymer-composite fibres containing large amounts of conducting nanomaterials have not been produced without dispersants, however, because of the severe aggregation of conducting materials in high-concentration colloidal solutions. Here we show that highly conductive (electrical conductivity ~1.5 × 10(5) S m(-1)) polymer-composite fibres containing carbon nanotubes and silver nanowires can be fabricated via a conventional solution-spinning process without any other treatment. Spinning dopes were fabricated by a simple mixing of a polyvinyl alcohol solution in dimethylsulfoxide with a paste of long multi-walled carbon nanotubes dispersed in organic solvents, assisted by quadruple hydrogen-bonding networks and an aqueous silver nanowire dispersion. The high electrical conductivity of the fibre was achieved by rearrangement of silver nanowires towards the fibre skin during coagulation because of the selective favourable interaction between the silver nanowires and coagulation solvents. The prepared conducting fibres provide applications in electronic textiles such as a textile interconnector of light emitting diodes, flexible textile heaters, and touch gloves for capacitive touch sensors.

  10. Rearrangement of 1D Conducting Nanomaterials towards Highly Electrically Conducting Nanocomposite Fibres for Electronic Textiles

    PubMed Central

    Han, Joong Tark; Choi, Sua; Jang, Jeong In; Seol, Seung Kwon; Woo, Jong Seok; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2015-01-01

    Nanocarbon-based conducting fibres have been produced using solution- or dry-spinning techniques. Highly conductive polymer-composite fibres containing large amounts of conducting nanomaterials have not been produced without dispersants, however, because of the severe aggregation of conducting materials in high-concentration colloidal solutions. Here we show that highly conductive (electrical conductivity ~1.5 × 105 S m−1) polymer-composite fibres containing carbon nanotubes and silver nanowires can be fabricated via a conventional solution-spinning process without any other treatment. Spinning dopes were fabricated by a simple mixing of a polyvinyl alcohol solution in dimethylsulfoxide with a paste of long multi-walled carbon nanotubes dispersed in organic solvents, assisted by quadruple hydrogen-bonding networks and an aqueous silver nanowire dispersion. The high electrical conductivity of the fibre was achieved by rearrangement of silver nanowires towards the fibre skin during coagulation because of the selective favourable interaction between the silver nanowires and coagulation solvents. The prepared conducting fibres provide applications in electronic textiles such as a textile interconnector of light emitting diodes, flexible textile heaters, and touch gloves for capacitive touch sensors. PMID:25792333

  11. Low-density lipoprotein density determination by electric conductivity.

    PubMed

    Fernández-Higuero, José A; Salvador, Ana M; Arrondo, José L R; Milicua, José Carlos G

    2011-10-15

    The predominance of small dense low-density lipoprotein (LDL) particles is associated with an increased risk of coronary heart disease. A simple but precise method has been developed, based on electrical conductivity of an isopycnic gradient of KBr, to obtain density values of human LDL fraction. The results obtained can distinguish LDL density populations and their subfractions from different patients. These data were corroborated by Fourier transform infrared spectroscopy (FTIR) (structure) and light-scattering analyses (size).

  12. Alternative methods for determining the electrical conductivity of core samples.

    PubMed

    Lytle, R J; Duba, A G; Willows, J L

    1979-05-01

    Electrode configurations are described that can be used in measuring the electrical conductivity of a core sample and that do not require access to the core end faces. The use of these configurations eliminates the need for machining the core ends for placement of end electrodes. This is because the conductivity in the cases described is relatively insensitive to the length of the sample. We validated the measurement technique by comparing mathematical models with actual measurements that were made perpendicular and paralled to the core axis of granite samples.

  13. The electrical conductivity of silicate liquids at extreme conditions

    NASA Astrophysics Data System (ADS)

    Scipioni, R.; Stixrude, L. P.

    2015-12-01

    Could the Earth have had a silicate dynamo early in its history? One requirement is that the electrical conductivity of silicate liquids be sufficiently high. However, very little is known about this property at the extreme conditions of pressure and temperature that prevailed in the magma ocean. We have computed from first principles molecular dynamics simulations the dc conductivity of liquid Silica SiO2 at pressure and temperature conditions spanning those of the magma ocean and super-Earth interiors. We find semi-metallic values of the conductivity at conditions typical of the putative basal magma ocean in the Early Earth. The variation of the conductivity with pressure and temperature displays interesting behavior that we rationalize on the basis of the closing the pseudo-gap at the Fermi level. For temperatures lower than T < 20,000 K electrical conductivity exhibits a maximum at intermediate compressions. We further explain this behavior in terms of stuctural changes that occur in silica liquid at high pressure; we find that the structure approaches that of the iso-electronic rare earth element Ne. We compare with Hugoniot data, including the equation of state, heat capacity, and reflectivity. The behavior of the heat capacity is different to that inferred from multiple Hugoniot experiments. These differences and the effect of including exact exchange on the calculations are discussed. Our results have important consequences for magnetic field generation in the early Earth and super-Earths.

  14. The Thermal Electrical Conductivity Probe (TECP) for Phoenix

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Hecht, Michael H.; Cobos, Doug R.; Campbell, Gaylon S.; Campbell, Colin S.; Cardell, Greg; Foote, Marc C.; Wood, Stephen E.; Mehta, Manish

    2009-01-01

    The Thermal and Electrical Conductivity Probe (TECP) is a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) payload on the Phoenix Lander. TECP will measure the temperature, thermal conductivity and volumetric heat capacity of the regolith. It will also detect and quantify the population of mobile H2O molecules in the regolith, if any, throughout the polar summer, by measuring the electrical conductivity of the regolith, as well as the dielectric permittivity. In the vapor phase, TECP is capable of measuring the atmospheric H2O vapor abundance, as well as augment the wind velocity measurements from the meteorology instrumentation. TECP is mounted near the end of the 2.3 m Robotic Arm, and can be placed either in the regolith material or held aloft in the atmosphere. This paper describes the development and calibration of the TECP. In addition, substantial characterization of the instrument has been conducted to identify behavioral characteristics that might affect landed surface operations. The greatest potential issue identified in characterization tests is the extraordinary sensitivity of the TECP to placement. Small gaps alter the contact between the TECP and regolith, complicating data interpretation. Testing with the Phoenix Robotic Arm identified mitigation techniques that will be implemented during flight. A flight model of the instrument was also field tested in the Antarctic Dry Valleys during the 2007-2008 International Polar year. 2

  15. On the electrical conductivity of Ti-implanted alumina

    SciTech Connect

    Salvadori, M. C.; Teixeira, F. S.; Cattani, M.; Nikolaev, A.; Savkin, K. P.; Oks, E. M.; Park, H.-K.; Phillips, L.; Yu, K. M.; Brown, I. G.

    2012-03-15

    Ion implantation of metal species into insulators provides a tool for the formation of thin, electrically conducting, surface layers with experimenter-controlled resistivity. High energy implantation of Pt and Ti into alumina accelerator components has been successfully employed to control high voltage surface breakdown in a number of cases. In the work described here we have carried out some basic investigations related to the origin of this phenomenon. By comparison of the results of alumina implanted with Ti at 75 keV with the results of prior investigations of polymers implanted with Pt at 49 eV and Au at 67 eV, we describe a physical model of the effect based on percolation theory and estimate the percolation parameters for the Ti-alumina composite. We estimate that the percolation dose threshold is about 4 x 10{sup 16} cm{sup -2} and the maximum dose for which the system remains an insulator-conductor composite is about 10 x 10{sup 16} cm{sup -2}. The saturation electrical conductivity is estimated to be about 50 S/m. We conclude that the observed electrical conductivity properties of Ti-implanted alumina can be satisfactorily described by percolation theory.

  16. Electrical Conductivity of Molten CdCl2 at Temperatures as High as 1474 K

    NASA Astrophysics Data System (ADS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2016-07-01

    The electrical conductivity of molten CdCl2 was measured across a wide temperature range (ΔT=628 K), from 846 K to as high as 1474 K, i.e. 241° above the normal boiling point of the salt. In previous studies, a maximum temperature of 1201 K was reached, this being 273° lower than in the present work. The activation energy of electrical conductivity was calculated.

  17. Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration.

    PubMed

    Zhang, Ze; Rouabhia, Mahmoud; Wang, Zhaoxu; Roberge, Christophe; Shi, Guixin; Roche, Phillippe; Li, Jiangming; Dao, Lê H

    2007-01-01

    Normal and electrically stimulated PC12 cell cultures and the implantation of nerve guidance channels were performed to evaluate newly developed electrically conductive biodegradable polymer composites. Polypyrrole (PPy) doped by butane sulfonic acid showed a significantly higher number of viable cells compared with PPy doped by polystyrenesulfonate after a 6-day culture. The PC12 cells were left to proliferate for 6 days, and the PPy-coated membranes, showing less initial cell adherence, recorded the same proliferation rate as did the noncoated membranes. Direct current electricity at various intensities was applied to the PC12 cell-cultured conductive membranes. After 7 days, the greatest number of neurites appeared on the membranes with a current intensity approximating 1.7-8.4 microA/cm. Nerve guidance channels made of conductive biodegradable composite were implanted into rats to replace 8 mm of sciatic nerve. The implants were harvested after 2 months and analyzed with immunohistochemistry and transmission electron microscopy. The regenerated nerve tissue displayed myelinated axons and Schwann cells that were similar to those in the native nerve. Electrical stimulation applied through the electrically conductive biodegradable polymers therefore enhanced neurite outgrowth in a current-dependent fashion. The conductive polymers also supported sciatic nerve regeneration in rats.

  18. Measurement of Electrical Conductivity into Tomato Cultivation Beds using Small Insertion Type Electrical Conductivity Sensor Designed for Agriculture

    NASA Astrophysics Data System (ADS)

    Kawashima, Kazuko; Futagawa, Masato; Ban, Yoshihiro; Asano, Yoshiyuki; Sawada, Kazuaki

    Our group has studied on-site monitoring sensor for agricultural field. An electrical conductivity (EC) sensor had been fabricated using Si integrated circuit technology. EC information of solutions shows ion concentrations dissolving in water, and can be used as the index of nutrient concentration for plants. So, it is important to measure EC in real time and on site. Because our EC sensor (5mm×5mm in size) is smaller than other commercial ones (several centimeters), it is easy to insert and achieve measurement in rock wool. In this study, our sensor measured long term EC values in tomato cultivation soil and rock wool medium. At first, we calibrated a relationship between output voltages and EC values on the sensor. The sensor was confirmed about enough EC measurement range from 8 to 969mS/m. In long period measurement, the sensor was confirmed about continuous operation for over five months, and intermittent measurement for over a year. In measurement in the cultivation soil, the sensor indicated that water was kept and diffused in the soil. In contrast, it was found that water diffused without keeping in it in rock wool medium. We confirmed our small EC sensor is useful for on-site monitoring and analysis of solution concentration distribution in several kinds of cultivation bed in real time.

  19. High temperature electrically conducting ceramic heating element and control system

    NASA Technical Reports Server (NTRS)

    Halbach, C. R.; Page, R. J.

    1975-01-01

    Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.

  20. Electrical conductivity of polyazomethine/fullerene C60 nanocomposites

    NASA Astrophysics Data System (ADS)

    Bronnikov, Sergei; Podshivalov, Aleksandr; Kostromin, Sergei; Asandulesa, Mihai; Cozan, Vasile

    2017-02-01

    We prepared the polyazomethine/fullerene C60 nanocomposites varying in C60 loading. With a broadband dielectric relaxation spectrometer, we measured their electrical conductivity σm being a sum of dc conductivity σdc and ac conductivity σac. A small C60 content (0.25 and 0.5 wt.%) was shown to decrease σdc, whereas a larger amount of C60 (2.5 wt.%) was found to increase σdc of the nanocomposite. The temperature dependences of σac were described with the Arrhenius equation, while the frequency dependences of σac were characterized with a power function. The correlated barrier hopping was accepted as the most suitable mechanism to explain the σac behavior of the nanocomposites.

  1. Joining Mixed Conducting Oxides Using an Air-Fired Electrically Conductive Braze

    SciTech Connect

    Hardy, John S.; Kim, Jin Yong Y.; Weil, K. Scott

    2004-10-01

    Due to their mixed oxygen ion and electron conducting properties, ceramics such as lanthanum strontium cobalt ferrites (LSCF) are attractive materials for use in active electrochemical devices such as solid oxide fuel cells (SOFC) and oxygen separation membranes. However, to take full advantage of the unique properties of these materials, reliable joining techniques need to be developed. If such a joining technique yields a ceramic-to-metal junction that is also electrically conductive, the hermetic seals in the device could provide the added function of either drawing current from the mixed conducting oxide, in the case of SOFC applications, or carrying it to the oxide to initate ionic conduction, in the case of oxygen separation and electrocatalysis applications. This would greatly reduce the need for complex interconnect design, thereby simplifying one of the major challenges faced in SOFC development. A process referred to as reactive air brazing (RAB) has been developed in which firing a Ag-CuO filler material in air creates a functional ceramic-to-metal junction, in which the silver-based matrix of the braze affords both metallic ductility and conductivity in the joint. Investigating a range of Ag-CuO alloy combinations determined that compositions containing between 1.4 and 16 mol% CuO appear to offer the best combination of wettability, joint strength, and electrical conductivity.

  2. Electrically conductive gold- and copper-metallized DNA origami nanostructures.

    PubMed

    Geng, Yanli; Pearson, Anthony C; Gates, Elisabeth P; Uprety, Bibek; Davis, Robert C; Harb, John N; Woolley, Adam T

    2013-03-12

    This work demonstrates the use of a circuit-like DNA origami structure as a template to fabricate conductive gold and copper nanostructures on Si surfaces. We improved over previous results by using multiple Pd seeding steps to increase seed uniformity and density. Our process has also been characterized through atomic force microscopy, particle size distribution analysis, and scanning electron microscopy. We found that four successive Pd seeding steps yielded the best results for electroless metal plating on DNA origami. Electrical resistance measurements were done on both Au- and Cu-metallized nanostructures, with each showing ohmic behavior. Gold-plated DNA origami structures made under optimal conditions had an average resistivity of 7.0 × 10(-5) Ω·m, whereas copper-metallized structures had a resistivity as low as 3.6 × 10(-4) Ω·m. Importantly, this is the first demonstration of electrically conductive Cu nanostructures fabricated on either DNA or DNA origami templates. Although resistivities for both gold and copper samples were larger than those of the bulk metal, these metal nanostructures have the potential for use in electrically connecting small structures. In addition, these metallized objects might find use in surface-enhanced Raman scattering experiments.

  3. Testing and Optimization of Electrically Conductive Spacecraft Coatings

    NASA Technical Reports Server (NTRS)

    Mell, R. J.; Wertz, G. E.; Edwards, D. L. (Technical Monitor)

    2001-01-01

    This is the final report discussing the work done for the Space Environments and Effects (SEE) Program. It discusses test chamber design, coating research, and test results on electrically thermal control coatings. These thermal control coatings are being developed to have several orders of magnitude higher electrical conductivity than most available thermal control coatings. Most current coatings tend to have a range in surface resistivity from 1,011 to 1,013 ohms/sq. Historically, spacecraft have had thermal control surfaces composed of dielectric materials of either polymers (paints and metalized films) or glasses (ceramic paints and optical solar reflectors). Very seldom has the thermal control surface of a spacecraft been a metal where the surface would be intrinsically electrically conductive. The poor thermal optical properties of most metals have, in most cases, stopped them from being used as a thermal control surface. Metals low infrared emittance (generally considered poor for thermal control surfaces) and/or solar absorptance, have resulted in the use of various dielectric coatings or films being applied over the substrate materials in order to obtain the required optical properties.

  4. Phase Diagrams of Electric-Fduced Aggregation in Conducting Colloids

    NASA Technical Reports Server (NTRS)

    Khusid, B.; Acrivos, A.

    1999-01-01

    Under the application of a sufficiently strong electric field, a suspension may undergo reversible phase transitions from a homogeneous random arrangement of particles into a variety of ordered aggregation patterns. The surprising fact about electric-field driven phase transitions is that the aggregation patterns, that are observed in very diverse systems of colloids, display a number of common structural features and modes of evolution thereby implying that a universal mechanism may exist to account for these phenomena. It is now generally believed that this mechanism emanates from the presence of the long-range anisotropic interactions between colloidal particles due to their polarization in an applied field. But, in spite of numerous applications of the electric-field-driven phenomena in biotechnology, separation, materials engineering, chemical analysis, etc. our understanding of these phenomena is far from complete. Thus, it is the purpose of the proposed research to develop a theory and then test experimentally, under normal- and low-gravity conditions, the accuracy of the theoretical predictions regarding the effect of the synergism of the interparticle electric and hydrodynamic interactions on the phase diagram of a suspension. The main results from our theoretical studies performed to-date enable one to trace how the variations of the electrical properties of the constituent materials influence the topology of the suspension phase diagram and then, by using an appropriate phase diagram, to evaluate how the electric-field-induced transformations will depend on the frequency and the strength of the applied field.

  5. Electrical Conductivity Measurements in Strongly Coupled Metal Plasmas

    NASA Astrophysics Data System (ADS)

    Desilva, Alan

    1998-11-01

    The coupling parameter Γ=e^2/akT, where a is the mean ion-ion separation, expresses the ratio of the mean potential energy of ions in a plasma to their mean kinetic energy. Plasma is said to be strongly coupled when Γ is greater than unity. Transport properties of strongly coupled plasmas are of interest in the study of the structure of dense astrophysical objects and gaseous planetary interiors, as well as in arcs and laser-produced plasmas. We are attempting to measure the electrical conductivity of strongly coupled metal plasmas (copper, tungsten and aluminum) in the temperature range 8-30 kK, in a density range from about 1/2 solid density down to about 10-3 times solid density. They may have coupling parameters Γ ranging from as high as 100 down to unity Plasmas are created by rapid vaporization of metal wire in a glass capillary or in a water bath which act as a tamper, slowing the expansion rate. The effect of the tamper is to force the interior pressure of the plasma to be fairly uniform. Streak photography serves to determine the growth of the plasma radius in time, allowing determination of mean density. Temperature is deduced from the measured energy input in conjunction with an equation of state from the LANL sesame database(SESAME: The Los Alamos National Laboratory Equation of State Database, Report No. LA-UR-92-3407, Ed. S. P. Lyon and J. D. Johnson, Group T-1 (unpublished)), and a brightness temperature may be obtained from radiation measurements. The column resistance is simply determined from time-resolved voltage and current measurements. For temperatures less than about 14,000K, as density decreases from the highest values measured, the conductivity falls roughly as the cube of density, reaches a minimum, and subsequently rises to approach the Spitzer prediction at low density. The rate of change of conductivity with density becomes less rapid as temperature increases, and the minimum becomes less pronounced, disappearing altogether above

  6. Illuminating the electrical conductivity of the lowermost mantle from below

    NASA Astrophysics Data System (ADS)

    Jault, Dominique

    2015-07-01

    The magnetic field that originates in the earth's core is transformed across the electrically conducting mantle before being observed, at the earth's surface or above. Assuming that the conductivity depends only on radius, it has been customary to treat the mantle as a linear time-invariant filter for the core magnetic field, with properties (as a function of the frequency ω) specified by the transfer function Γ(ω). An high-frequency approximation to Γ(ω), which is derived from a three terms WKBJ expansion with ω-1/2 as small parameter, is found here to reproduce adequately, for low harmonic degrees and/or thin conducting layers, the exact solution, which is evaluated numerically. It is contrasted with the low-frequency estimation of Γ, which consists in a perturbation procedure and in writing Γ(ω) as a series in powers of ω (ω → 0). The low-frequency theory is applied to the magnetic variations produced by the geostrophic core flows with about 6 yr period as the phase of these flows is independently determined from their effect on the length of the day. Apart from that, the low-frequency approximation overestimates the screening by the mantle of high-frequency signals, especially the low harmonic degree ones. In practice, the attenuating factor defined from the O(ω2) term in the expansion of Γ as ω → 0 cannot be retrieved from analyses of geomagnetic time-series. Application of the mantle filter theory hinges on our knowledge about the time spectrum of the magnetic field at the core surface. The low-frequency theory had been previously applied to observatory series on the assumption that geomagnetic jerks occurring in the core are rare and isolated events. Rather than following up these earlier studies, I note that the spectral density function for the second time derivative of the main magnetic field coefficients is approximately independent of ω in a frequency range for which the mantle has undoubtedly negligible influence. In the absence of

  7. Measurements of middle-atmosphere electric fields and associated electrical conductivities

    NASA Technical Reports Server (NTRS)

    Hale, L. C.; Croskey, C. L.; Mitchell, J. D.

    1981-01-01

    A simple antenna for measuring the vertical electric field in the 'middle atmosphere' has been flown on a number of rocket-launched parachute-borne payloads. The data from the first nine such flights, launched under a variety of geophysical conditions, are presented, along with electrical conductivities measured simultaneously. The data include indications of layered peaks of several volts per meter in the mesospheric field at high and low latitudes in situations of relatively low conductivity. During an auroral 'REP' event the electric field reversed direction in the lower stratosphere, accompanied by a substantial enhancement in conductivity. The data generally do not confirm speculations based only on the extension of the thunderstorm circuit from below or the mapping of ionospheric and magnetospheric fields from above, but seem to require, in addition, internal generation processes in the middle atmosphere.

  8. Assessment of cytoplasm conductivity by nanosecond pulsed electric fields.

    PubMed

    Denzi, Agnese; Merla, Caterina; Palego, Cristiano; Paffi, Alessandra; Ning, Yaqing; Multari, Caroline R; Cheng, Xuanhong; Apollonio, Francesca; Hwang, James C M; Liberti, Micaela

    2015-06-01

    The aim of this paper is to propose a new method for the better assessment of cytoplasm conductivity, which is critical to the development of electroporation protocols as well as insight into fundamental mechanisms underlying electroporation. For this goal, we propose to use nanosecond electrical pulses to bypass the complication of membrane polarization and a single cell to avoid the complication of the application of the "mixing formulas." Further, by suspending the cell in a low-conductivity medium, it is possible to force most of the sensing current through the cytoplasm for a more direct assessment of its conductivity. For proof of principle, the proposed technique was successfully demonstrated on a Jurkat cell by comparing the measured and modeled currents. The cytoplasm conductivity was best assessed at 0.32 S/m and it is in line with the literature. The cytoplasm conductivity plays a key role in the understanding of the basis mechanism of the electroporation phenomenon, and in particular, a large error in the cytoplasm conductivity determination could result in a correspondingly large error in predicting electroporation. Methods for a good estimation of such parameter become fundamental.

  9. The effect of electrical conductivity on pore resistance and electroporation

    NASA Astrophysics Data System (ADS)

    Li, Jianbo; Lin, Hao

    2008-11-01

    Electroporation is an elegant means to gain access to the cytoplasm, and to deliver molecules into the cell while simultaneously maintaining viability and functionality. In this technique, an applied electric pulse transiently permeabilizes the cell membrane, through which biologically active agents such as DNA, RNA, and amino acids can enter the cell, and perform tasks such as gene and cancer therapy. Despite wide applications, current electroporation technologies fall short of desired efficiency and reliability, in part due to the lack of fundamental understanding and quantitative modeling tools. This work focuses on the modeling of cell membrane conductance due to the formation of aqueous conducting pores. An analytical expression is developed to determine effective pore resistance as a function of the membrane thickness, pore size, and intracellular and extracellular conductivities. The availability of this expression avoids empirical or ad hoc specification of the conductivity of the pore-filling solution which was adopted in previous works. Such pore resistance model is then incorporated into a whole-cell electroporation simulation to investigate the effect of conductivity ratio on membrane permeabilization. The results reveal that the degree of permeabilization strongly depends on the specific values of the extracellular and intracellular conductivities.

  10. Transparent electrical conducting films by activated reactive evaporation

    DOEpatents

    Bunshah, R.; Nath, P.

    1982-06-22

    Process and apparatus for producing transparent electrical conducting thin films by activated reactive evaporation is disclosed. Thin films of low melting point metals and alloys, such as indium oxide and indium oxide doped with tin, are produced by physical vapor deposition. The metal or alloy is vaporized by electrical resistance heating in a vacuum chamber, oxygen and an inert gas such as argon are introduced into the chamber, and vapor and gas are ionized by a beam of low energy electrons in a reaction zone between the resistance heater and the substrate. There is a reaction between the ionized oxygen and the metal vapor resulting in the metal oxide which deposits on the substrate as a thin film which is ready for use without requiring post deposition heat treatment. 1 fig.

  11. Development of Tailorable Electrically Conductive Thermal Control Material Systems

    NASA Technical Reports Server (NTRS)

    Deshpande, M. S.; Harada, Y.

    1998-01-01

    The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has already added to the existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The object of this program was to develop two types of passive electrically conductive TCMS.

  12. Transparent electrical conducting films by activated reactive evaporation

    DOEpatents

    Bunshah, Rointan; Nath, Prem

    1982-01-01

    Process and apparatus for producing transparent electrical conducting thin films by activated reactive evaporation. Thin films of low melting point metals and alloys, such as indium oxide and indium oxide doped with tin, are produced by physical vapor deposition. The metal or alloy is vaporized by electrical resistance heating in a vacuum chamber, oxygen and an inert gas such as argon are introduced into the chamber, and vapor and gas are ionized by a beam of low energy electrons in a reaction zone between the resistance heater and the substrate. There is a reaction between the ionized oxygen and the metal vapor resulting in the metal oxide which deposits on the substrate as a thin film which is ready for use without requiring post deposition heat treatment.

  13. Electrical Conductivity in Polymer Blends/ Multiwall Carbon Nanotubes

    SciTech Connect

    Kulkarni, Ajit R.; Bose, Suryasarathi; Bhattacharyya, Arup R.

    2008-10-23

    Carbon nanotubes (CNT) based polymer composites have emerged as the future multifunctional materials in view of its exceptional mechanical, thermal and electrical properties. One of the major interests is to develop conductive polymer composites preferably at low concentration of CNT utilizing their high aspect ratio (L/D) for numerous applications, which include antistatic devices, capacitors and materials for EMI shielding. In this context, polymer blends have emerged as a potential candidate in lowering the percolation thresholds further by the utilization of 'double-percolation' which arises from the synergistic improvements in blend properties associated with the co-continuous morphology. Due to strong inter-tube van der Waals' forces, they often tend to aggregate and uniform dispersion remains a challenge. To overcome this challenge, we exploited sodium salt of 6-aminohexanoic acid (Na-AHA) which was able to assist in debundlling the multiwall carbon nanotubes (MWNT) through 'cation-{pi}' interactions during melt-mixing leading to percolative 'network-like' structure of MWNT within polyamide6 (PA6) phase in co-continuous PA6/acrylonitrile butadiene styrene (ABS) blends. The composite exhibited low electrical percolation thresholds of 0.25 wt% of MWNT, the lowest reported value in this system so far. Retention of 'network-like structure' in the solid state with significant refinement was observed even at lower MWNT concentration in presence Na-AHA, which was assessed through AC electrical conductivity measurements. Reactive coupling was found to be a dominant factor besides 'cation-{pi}' interactions in achieving low electrical percolation in PA6/ABS+MWNT composites.

  14. Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering.

    PubMed

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Ramakrishna, Seeram

    2009-11-01

    Fabrication of scaffolds with suitable chemical, mechanical, and electrical properties is critical for the success of nerve tissue engineering. Electrical stimulation was directly applied to electrospun conductive nanofibrous scaffolds to enhance the nerve regeneration process. In the present study, electrospun conductive nanofibers were prepared by mixing 10 and 15 wt% doped polyaniline (PANI) with poly (epsilon-caprolactone)/gelatin (PG) (70:30) solution (PANI/PG) by electrospinning. The fiber diameter, pore size, hydrophilicity, tensile properties, conductivity, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy spectra of nanofibers were determined, and the in vitro biodegradability of the different nanofibrous scaffolds was also evaluated. Nanofibrous scaffolds containing 15% PANI was found to exhibit the most balanced properties to meet all the required specifications for electrical stimulation for its enhanced conductivity and is used for in vitro culture and electrical stimulation of nerve stem cells. 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and scanning electron microscopy results showed that conductive nanofibrous scaffolds are suitable substrates for the attachment and proliferation of nerve stem cells. Electrical stimulation through conductive nanofibrous PANI/PG scaffolds showed enhanced cell proliferation and neurite outgrowth compared to the PANI/PG scaffolds that were not subjected to electrical stimulation.

  15. Multifunctional conducting fibres with electrically controlled release of ciprofloxacin.

    PubMed

    Esrafilzadeh, Dorna; Razal, Joselito M; Moulton, Simon E; Stewart, Elise M; Wallace, Gordon G

    2013-08-10

    We hereby present a new method of producing coaxial conducting polymer fibres loaded with an antibiotic drug that can then be subsequently released (or sustained) in response to electrical stimulation. The method involves wet-spinning of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) fibre, which served as the inner core to the electropolymerised outer shell layer of polypyrrole (Ppy). Ciprofloxacin hydrochloride (Cipro) was selected as the model drug and as the dopant in the Ppy synthesis. The release of Cipro in phosphate buffered saline (PBS) from the fibres was controlled by switching the redox state of Ppy.Cipro layer. Released Cipro under passive and stimulated conditions were tested against Gram positive (Streptococcus pyogenes) and Gram negative (Escherichia coli) bacteria. Significant inhibition of bacterial growth was observed against both strains tested. These results confirm that Cipro retains antibacterial properties during fibre fabrication and electrochemically controlled release. In vitro cytotoxicity testing utilising the neural B35 cell line confirmed the cytocompatibility of the drug loaded conducting fibres. Electrical conductivity, cytocompatibility and tuning release profile from this flexible fibre can lead to promising bionic applications such as neuroprosthetics and localised drug delivery.

  16. DNA sequencing using electrical conductance measurements of a DNA polymerase

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Shiun; Lee, Chia-Hui; Hung, Meng-Yen; Pan, Hsu-An; Chiou, Jin-Chern; Huang, G. Steven

    2013-06-01

    The development of personalized medicine--in which medical treatment is customized to an individual on the basis of genetic information--requires techniques that can sequence DNA quickly and cheaply. Single-molecule sequencing technologies, such as nanopores, can potentially be used to sequence long strands of DNA without labels or amplification, but a viable technique has yet to be established. Here, we show that single DNA molecules can be sequenced by monitoring the electrical conductance of a phi29 DNA polymerase as it incorporates unlabelled nucleotides into a template strand of DNA. The conductance of the polymerase is measured by attaching it to a protein transistor that consists of an antibody molecule (immunoglobulin G) bound to two gold nanoparticles, which are in turn connected to source and drain electrodes. The electrical conductance of the DNA polymerase exhibits well-separated plateaux that are ~3 pA in height. Each plateau corresponds to an individual base and is formed at a rate of ~22 nucleotides per second. Additional spikes appear on top of the plateaux and can be used to discriminate between the four different nucleotides. We also show that the sequencing platform works with a variety of DNA polymerases and can sequence difficult templates such as homopolymers.

  17. Lunar electrical conductivity, permeability and temperature from Apollo magnetometer experiments

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1977-01-01

    Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. The measured lunar remanent fields range from 3 gammas minimum at the Apollo 15 site to 327 gammas maximum at the Apollo 16 site. Simultaneous magnetic field and solar plasma pressure measurements show that the remanent fields at the Apollo 12 and 16 sites interact with, and are compressed by, the solar wind. Remanent fields at Apollo 12 and Apollo 16 are increased 16 gammas and 32 gammas, respectively, by a solar plasma bulk pressure increase of 1.5 X 10 to the -7th power dynes/sq cm. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients, were analyzed to calculate an electrical conductivity profile for the moon. From nightside magnetometer data in the solar wind it was found that deeper than 170 km into the moon the conductivity rises from .0003 mhos/m to .10 mhos/m at 100 km depth. Recent analysis of data obtained in the geomagnetic tail, in regions free of complicating plasma effects, yields results consistent with nightside values.

  18. Miniatuization of the flowing fluid electric conductivity loggingtec hnique

    SciTech Connect

    Su, Grace W.; Quinn, Nigel W.T.; Cook, Paul J.; Shipp, William

    2005-10-19

    An understanding of both the hydraulic properties of the aquifer and the depth distribution of salts is critical for evaluating the potential of groundwater for conjunctive water use and for maintaining suitable groundwater quality in agricultural regions where groundwater is used extensively for irrigation and drinking water. The electrical conductivity profiles recorded in a well using the flowing fluid electric conductivity logging (FEC logging) method can be analyzed to estimate interval specific hydraulic conductivity and estimates of the salinity concentration with depth. However, irrigation wells that are common in agricultural regions have limited access into them because these wells are still in operation, and the traditional equipment used for FEC logging cannot fit through the small access pipe intersecting the well. A modified, miniaturized FEC logging technique was developed such that this logging method could be used in wells with limited access. In addition, a new method for injecting water over the entire screened interval of the well was developed to reduce the time required to perform FEC logging. Results of FEC logging using the new methodology and miniaturized system in two irrigation wells are also summarized.

  19. Electrical Conductivity Mechanism in Unconventional Lead Vanadate Glasses

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, F.; Merazga, A.; Montaser, A. A.

    2017-03-01

    Lead vanadate glasses of the system (V2O5)_{1-x}(PbO)x with x = 0.4, 0.45, 0.5, 0.55, 0.6 have been prepared by the press-quenching technique. The dc (σ (0)) and ac (σ (ω )) electrical conductivities were measured in the temperature range from 150 to 420 K and the frequency range from 102 to 106 Hz. The electrical properties are shown to be sensitive to composition. The experimental results have been analyzed within the framework of different models. The dc conductivity is found to be proportional to Tp with the exponent p ranging from 8.2 to 9.8, suggesting that the transport is determined by a multi-phonon process of weak electron-lattice coupling. The ac conductivity is explained by the percolation path approximation (PPA). In this model, σ (ω ) is closely related to the σ (0) and fitting the experimental data produces a dielectric relaxation time τ in good agreement with the expected value in both magnitude and temperature dependence.

  20. Gas-Tolerant Device Senses Electrical Conductivity of Liquid

    NASA Technical Reports Server (NTRS)

    O'Connor, Edward W.

    2005-01-01

    The figure depicts a device for measuring the electrical conductivity of a flowing liquid. Unlike prior such devices, this one does not trap gas bubbles entrained in the liquid. Usually, the electrical conductivity of a liquid is measured by use of two electrodes immersed in the liquid. A typical prior device based on this concept contains large cavities that can trap gas. Any gas present between or near the electrodes causes a significant offset in the conductivity reading and, if the gas becomes trapped, then the offset persists. Extensive tests on two-phase (liquid/ gas) flow have shown that in the case of liquid flowing along a section of tubing, gas entrained in the liquid is not trapped in the section as long as the inner wall of the section is smooth and continuous, and the section is the narrowest tubing section along the flow path. The design of the device is based on the foregoing observation: The electrodes and the insulators separating the electrodes constitute adjacent parts of the walls of a tube. The bore of the tube is machined to make the wall smooth and to provide a straight flow path from the inlet to the outlet. The diameter of the electrode/insulator tube assembly is less than the diameter of the inlet or outlet tubing. An outer shell contains the electrodes and insulators and constitutes a leak and pressure barrier. Any gas bubble flowing through this device causes only a momentary conductivity offset that is filtered out by software used to process the conductivity readings.

  1. Pore connectivity, electrical conductivity, and partial water saturation: Network simulations

    NASA Astrophysics Data System (ADS)

    Li, M.; Tang, Y. B.; Bernabé, Y.; Zhao, J. Z.; Li, X. F.; Bai, X. Y.; Zhang, L. H.

    2015-06-01

    The electrical conductivity of brine-saturated rock is predominantly dependent on the geometry and topology of the pore space. When a resistive second phase (e.g., air in the vadose zone and oil/gas in hydrocarbon reservoirs) displaces the brine, the geometry and topology of the pore space occupied by the electrically conductive phase are changed. We investigated the effect of these changes on the electrical conductivity of rock partially saturated with brine. We simulated drainage and imbibition as invasion and bond percolation processes, respectively, in pipe networks assumed to be perfectly water-wet. The simulations included the formation of a water film in the pipes invaded by the nonwetting fluid. During simulated drainage/imbibition, we measured the changes in resistivity index as well as a number of relevant microstructural parameters describing the portion of the pore space saturated with water. Except Euler topological number, all quantities considered here showed a significant level of "universality," i.e., insensitivity to the type of lattice used (simple cubic, body-centered cubic, or face-centered cubic). Hence, the coordination number of the pore network appears to be a more effective measure of connectivity than Euler number. In general, the simulated resistivity index did not obey Archie's simple power law. In log-log scale, the resistivity index curves displayed a substantial downward or upward curvature depending on the presence or absence of a water film. Our network simulations compared relatively well with experimental data sets, which were obtained using experimental conditions and procedures consistent with the simulations. Finally, we verified that the connectivity/heterogeneity model proposed by Bernabé et al. (2011) could be extended to the partial brine saturation case when water films were not present.

  2. Analyzing bank filtration by deconvoluting time series of electric conductivity.

    PubMed

    Cirpka, Olaf A; Fienen, Michael N; Hofer, Markus; Hoehn, Eduard; Tessarini, Aronne; Kipfer, Rolf; Kitanidis, Peter K

    2007-01-01

    Knowing the travel-time distributions from infiltrating rivers to pumping wells is important in the management of alluvial aquifers. Commonly, travel-time distributions are determined by releasing a tracer pulse into the river and measuring the breakthrough curve in the wells. As an alternative, one may measure signals of a time-varying natural tracer in the river and in adjacent wells and infer the travel-time distributions by deconvolution. Traditionally this is done by fitting a parametric function such as the solution of the one-dimensional advection-dispersion equation to the data. By choosing a certain parameterization, it is impossible to determine features of the travel-time distribution that do not follow the general shape of the parameterization, i.e., multiple peaks. We present a method to determine travel-time distributions by nonparametric deconvolution of electric-conductivity time series. Smoothness of the inferred transfer function is achieved by a geostatistical approach, in which the transfer function is assumed as a second-order intrinsic random time variable. Nonnegativity is enforced by the method of Lagrange multipliers. We present an approach to directly compute the best nonnegative estimate and to generate sets of plausible solutions. We show how the smoothness of the transfer function can be estimated from the data. The approach is applied to electric-conductivity measurements taken at River Thur, Switzerland, and five wells in the adjacent aquifer, but the method can also be applied to other time-varying natural tracers such as temperature. At our field site, electric-conductivity fluctuations appear to be an excellent natural tracer.

  3. Electric convection of low-conductivity liquid in a horizontal capacitor in the presence of unipolar charge injection

    NASA Astrophysics Data System (ADS)

    Il'in, V. A.

    2017-01-01

    Electric convection of low-conductivity liquid in a horizontal plane capacitor is analyzed with allowance for unipolar charge injection. Dynamics of charge transfer through stationary isothermal liquid in the presence of modulated electric field is studied. Effect of modulation amplitude and frequency on the spatiotemporal distribution of charge density and electric potential is considered. Nonlinear electric convection of nonisothermal low-conductivity liquid is studied in the presence of static electric field in a 2D system. Hysteresis transitions between two different (with respect to intensity) regimes of electric convection are analyzed.

  4. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges

    PubMed Central

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-01-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10−3 S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10−1 S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front. PMID:27386526

  5. The electrical conductivity and longitudinal magnetoresistance of metallic nanotubes

    NASA Astrophysics Data System (ADS)

    Moraga, Luis; Henriquez, Ricardo; Bravo, Sergio; Solis, Basilio

    2017-03-01

    Proceeding from exact solutions of the Boltzmann transport equation in the relaxation time approximation, we present formulas for the electrical conductivity and longitudinal magnetoresistance of single-crystalline cylindrical nanotubes. The effects of surface scattering are taken into account by introducing different specularity parameters at the inner and outer surfaces. For small values of the inner diameter, these formulas reduce to the respective expressions for cylindrical nanowires. It is found that the existing measurements of the resistivity of nanotubes (Venkata Kamalakar and Raychaudhuri, New J. Phys. 14, 043032 (2012)) can be accurately described by this formalism.

  6. The Wilkes subglacial basin eastern margin electrical conductivity anomaly

    NASA Astrophysics Data System (ADS)

    Rizzello, Daniele; Armadillo, Egidio; Ferraccioli, Fausto; Caneva, Giorgio

    2014-05-01

    We have analyzed the deep conductivity structure at the transition between the Transantarctic Mountains (TAM) and the eastern margin of the WSB in NVL, by means of the GDS (Geomagnetic Deep Sounding) technique, in order to constrain the geodynamical interpretation of this antarctic sector. The TAM form the uplifted flank of the Mesozoic and Cenozoic West Antarctic Rift System. Structure of the TAM rift flank has been partially investigated with different geophysical approaches.The Wilkes Subglacial Basin is a broad depression over 400 km wide at the George V Coast and 1200 km long. Geology, lithospheric structure and tectonics of the Basin are only partially known because the Basin is buried beneath the East Antarctic Ice Sheet and is located in a remote region which makes geophysical exploration logistically challenging. Different authors have proposed contrasting hypothesis regarding the origin of the WSB: it could represent a region of rifted continental crust, or it may have a flexural origin or might represent an "extended terrane". Recently aerogeophysical investigations have demonstrated a strong structural control on the margin. Magnetovariational studies carried out at high geomagnetic latitudes are often hampered by source effects, mainly due to the closeness to the Polar Electrojet currents systems (PEJ). Its presence, in fact, makes the uniform magnetic field assumption, on which the magnetovariational methods are based on, often invalid, which outcome is a bias in the GDS transfer functions and to compromise the reliability of the inverted models. Data from the aforementioned campaigns have been then processed under the ISEE project (Ice Sheet Electromagnetic Experiment), aimed at evaluate and mitigate the bias effect of the PEJ on geomagnetic an magnetotelluric transfer functions at high geomagnetic latitudes, by means of suitable processing algorithms, developed upon a statistical analysis study on PEJ effects (Rizzello et al. 2013). Recent results

  7. Electrical conductivity of condensed molecular hydrogen in the giant planets

    NASA Technical Reports Server (NTRS)

    Smoluchowski, R.

    1972-01-01

    Theoretical interpretation of several phenomena concerning Jupiter and Saturn depends upon the electrical conductivity of molecular hydrogen which, according to present models, forms the outermost layer of both planets. The layer starts at the transition pressure between the metallic and the molecular form of hydrogen, that is around 1 Mbar, and extends to the outside limits of the atmosphere. Whether at the highest pressures (and temperatures) this layer is a solid or a dense fluid is not certain. In any case, the fluid is in supercritical condition so that there is only a gradual transition from dense liquid to a gaseous form. The two theories which require specific values of the conductivity of the condensed molecular hydrogen are those pertaining to the generation of a magnetic field in the liquid hydrogen rather than in the deep metallic interior (HIDE, 1967), and those concerned with the electromagnetic coupling and exchange of angular momentum between the liquid core and the solid molecular hydrogen mantle.

  8. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films

    PubMed Central

    Worfolk, Brian J.; Andrews, Sean C.; Park, Steve; Reinspach, Julia; Liu, Nan; Toney, Michael F.; Mannsfeld, Stefan C. B.; Bao, Zhenan

    2015-01-01

    With consumer electronics transitioning toward flexible products, there is a growing need for high-performance, mechanically robust, and inexpensive transparent conductors (TCs) for optoelectronic device integration. Herein, we report the scalable fabrication of highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thin films via solution shearing. Specific control over deposition conditions allows for tunable phase separation and preferential PEDOT backbone alignment, resulting in record-high electrical conductivities of 4,600 ± 100 S/cm while maintaining high optical transparency. High-performance solution-sheared TC PEDOT:PSS films were used as patterned electrodes in capacitive touch sensors and organic photovoltaics to demonstrate practical viability in optoelectronic applications. PMID:26515096

  9. Electrical conduction in nanodomains in congruent lithium tantalate single crystal

    SciTech Connect

    Cho, Yasuo

    2014-01-27

    The electrical current flow behavior was investigated for nanodomains formed in a thin congruent lithium tantalate (LiTaO{sub 3}) single-crystal plate. When the nanodomains were relatively large, with diameters of about 100 nm, current flow was detected along the domain wall. However, when they were about 40 nm or smaller, the current flowed through the entire nanodomain. Schottky-like rectifying behavior was observed. Unlike the case of LiNbO{sub 3}, optical illumination was not required for current conduction in LiTaO{sub 3}. A clear temperature dependence of the current was found indicating that the conduction mechanism for nanodomains in LiTaO{sub 3} may involve thermally activated carrier hopping.

  10. Influence of the growth and annealing atmosphere on the electrical conductivity of LTG crystals

    NASA Astrophysics Data System (ADS)

    Alani, M.; Batis, N.; Laroche, T.; Nehari, A.; Cabane, H.; Lebbou, K.; Boy, J. J.

    2017-03-01

    We present the electrical conductivity measurements of La3Ga5.5Ta0.5O14 (LGT) crystals grown by Czochralski (Cz) technique in Ir crucibles and N2 atmosphere containing few percent of O2. In addition, we have studied the effect of thermal annealing on the stability and the thermal conductivity. The electrical conductivity depends on the stoichiometry, the inhomogeneous impurities levels, the growth atmosphere and the post-growth annealing conditions. Furthermore, we recorded the UV-Vis transmission spectra of the LGT samples and we note that the less resistive LGT samples have an edge of the intrinsic absorption at the highest wavelengths.

  11. Magnetoresistance, electrical conductivity, and Hall effect of glassy carbon

    SciTech Connect

    Baker, D.F.

    1983-02-01

    These properties of glassy carbon heat treated for three hours between 1200 and 2700/sup 0/C were measured from 3 to 300/sup 0/K in magnetic fields up to 5 tesla. The magnetoresistance was generally negative and saturated with reciprocal temperature, but still increased as a function of magnetic field. The maximum negative magnetoresistance measured was 2.2% for 2700/sup 0/C material. Several models based on the negative magnetoresistance being proportional to the square of the magnetic moment were attempted; the best fit was obtained for the simplest model combining Curie and Pauli paramagnetism for heat treatments above 1600/sup 0/C. Positive magnetoresistance was found only in less than 1600/sup 0/C treated glassy carbon. The electrical conductivity, of the order of 200 (ohm-cm)/sup -1/ at room temperature, can be empirically written as sigma = A + Bexp(-CT/sup -1/4) - DT/sup -1/2. The Hall coefficient was independent of magnetic field, insensitive to temperature, but was a strong function of heat treatment temperature, crossing over from negative to positive at about 1700/sup 0/C and ranging from -0.048 to 0.126 cm/sup 3//coul. The idea of one-dimensional filaments in glassy carbon suggested by the electrical conductivity is compatible with the present consensus view of the microstructure.

  12. Thermophysical Properties of Liquid Te: Density, Electrical Conductivity, and Viscosity

    NASA Technical Reports Server (NTRS)

    Li, C.; Su, C.; Lehoczky, S. L.; Scripa, R. N.; Ban, H.; Lin, B.

    2004-01-01

    The thermophysical properties of liquid Te, namely, density, electrical conductivity, and viscosity, were determined using the pycnometric and transient torque methods from the melting point of Te (723 K) to approximately 1150 K. A maximum was observed in the density of liquid Te as the temperature was increased. The electrical conductivity of liquid Te increased to a constant value of 2.89 x 10(exp 5 OMEGA-1m-1) as the temperature was raised above 1000 K. The viscosity decreased rapidly upon heating the liquid to elevated temperatures. The anomalous behaviors of the measured properties are explained as caused by the structural transitions in the liquid and discussed in terms of Eyring's and Bachiskii's predicted behaviors for homogeneous liquids. The Properties were also measured as a function of time after the liquid was coded from approximately 1173 or 1123 to 823 K. No relaxation phenomena were observed in the properties after the temperature of liquid Te was decreased to 823 K, in contrast to the relaxation behavior observed for some of the Te compounds.

  13. Electrical conductivity of Icelandic deep geothermal reservoirs: insight from HT-HP laboratory experiments

    NASA Astrophysics Data System (ADS)

    Nono, Franck; Gibert, Benoit; Loggia, Didier; Parat, Fleurice; Azais, Pierre; Cichy, Sarah

    2016-04-01

    Although the Icelandic geothermal system has been intensively investigated over the years, targeting increasingly deeper reservoirs (i.e. under supercritical conditions) requires a good knowledge of the behaviour of physical properties of the host rock in order to better interpret large scale geophysical observations. In particular, the interpretation of deep electrical soundings remains controversial as only few studies have investigated the influence of altered minerals and pore fluid properties on electrical properties of rocks at high temperature and pressure. In this study, we investigate the electrical conductivity of drilled samples from different Icelandic geothermal fields at elevated temperature, confining pressure and pore pressure conditions (100°C < T < 600°C, confining pressure up to 100 MPa and pore pressure up to 35 MPa). The investigated rocks are composed of hyaloclastites, dolerites and basalts taken from depths of about 800 m for the hyaloclastites, to almost 2500 m for the dolerites. They display different porosity structures, from vuggy and intra-granular to micro-cracked porosities, and have been hydrothermally alterated in the chlorite to amphibolite facies. Electrical conductivity measurements are first determined at ambient conditions as a function of pore fluid conductivity in order to establish their relationships with lithology and pore space topology, prior to the high pressure and temperature measurements. Cementation factor varies from 1.5 for the dolerites to 2.83 for the basalt, reflecting changes in the shape of the conductive channels. The surface conductivities, measured at very low fluid conductivity, increases with the porosity and is correlated with the cation exchange capacity. At high pressure and temperature, we used the two guard-ring electrodes system. Measurements have been performed in dry and saturated conditions as a function of temperature and pore pressure. The supercritical conditions have been investigated and

  14. Tuning the electrical conductance of metalloporphyrin supramolecular wires

    NASA Astrophysics Data System (ADS)

    Noori, Mohammed; Aragonès, Albert C.; di Palma, Giuseppe; Darwish, Nadim; Bailey, Steven W. D.; Al-Galiby, Qusiy; Grace, Iain; Amabilino, David B.; González-Campo, Arántzazu; Díez-Pérez, Ismael; Lambert, Colin J.

    2016-11-01

    In contrast with conventional single-molecule junctions, in which the current flows parallel to the long axis or plane of a molecule, we investigate the transport properties of M(II)-5,15-diphenylporphyrin (M-DPP) single-molecule junctions (M=Co, Ni, Cu, or Zn divalent metal ions), in which the current flows perpendicular to the plane of the porphyrin. Novel STM-based conductance measurements combined with quantum transport calculations demonstrate that current-perpendicular-to-the-plane (CPP) junctions have three-orders-of-magnitude higher electrical conductances than their current-in-plane (CIP) counterparts, ranging from 2.10‑2 G0 for Ni-DPP up to 8.10‑2 G0 for Zn-DPP. The metal ion in the center of the DPP skeletons is strongly coordinated with the nitrogens of the pyridyl coated electrodes, with a binding energy that is sensitive to the choice of metal ion. We find that the binding energies of Zn-DPP and Co-DPP are significantly higher than those of Ni-DPP and Cu-DPP. Therefore when combined with its higher conductance, we identify Zn-DPP as the favoured candidate for high-conductance CPP single-molecule devices.

  15. Tuning the electrical conductance of metalloporphyrin supramolecular wires

    PubMed Central

    Noori, Mohammed; Aragonès, Albert C.; Di Palma, Giuseppe; Darwish, Nadim; Bailey, Steven W. D.; Al-Galiby, Qusiy; Grace, Iain; Amabilino, David B.; González-Campo, Arántzazu; Díez-Pérez, Ismael; Lambert, Colin J.

    2016-01-01

    In contrast with conventional single-molecule junctions, in which the current flows parallel to the long axis or plane of a molecule, we investigate the transport properties of M(II)-5,15-diphenylporphyrin (M-DPP) single-molecule junctions (M=Co, Ni, Cu, or Zn divalent metal ions), in which the current flows perpendicular to the plane of the porphyrin. Novel STM-based conductance measurements combined with quantum transport calculations demonstrate that current-perpendicular-to-the-plane (CPP) junctions have three-orders-of-magnitude higher electrical conductances than their current-in-plane (CIP) counterparts, ranging from 2.10−2 G0 for Ni-DPP up to 8.10−2 G0 for Zn-DPP. The metal ion in the center of the DPP skeletons is strongly coordinated with the nitrogens of the pyridyl coated electrodes, with a binding energy that is sensitive to the choice of metal ion. We find that the binding energies of Zn-DPP and Co-DPP are significantly higher than those of Ni-DPP and Cu-DPP. Therefore when combined with its higher conductance, we identify Zn-DPP as the favoured candidate for high-conductance CPP single-molecule devices. PMID:27869128

  16. DNA-templated nanowires: morphology and electrical conductivity

    NASA Astrophysics Data System (ADS)

    Watson, Scott M. D.; Pike, Andrew R.; Pate, Jonathan; Houlton, Andrew; Horrocks, Benjamin R.

    2014-03-01

    DNA-templating has been used to create nanowires from metals, compound semiconductors and conductive polymers. The mechanism of growth involves nucleation at binding sites on the DNA followed by growth of spherical particles and then, under favourable conditions, a slow transformation to a smooth nanowire. The final transformation is favoured by restricting the amount of templated material per unit length of template and occurs most readily for materials of low surface tension. Electrical measurements on DNA-templated nanowires can be facilitated using three techniques: (i) standard current-voltage measurements with contact electrodes embedded in a dielectric so that there is a minimal step height at the dielectric/electrode boundary across which nanowires may be aligned by molecular combing, (ii) the use of a dried droplet technique and conductive AFM to determine contact resistance by moving the tip along the length of an individual nanowire and (iii) non-contact assessment of conductivity by scanned conductance microscopy on Si/SiO2 substrates.

  17. Electrical conductivity studies of Bi{sub 2}O{sub 3}-Li{sub 2}O-ZnO-B{sub 2}O{sub 3} glasses

    SciTech Connect

    Bale, Shashidhar; Rahman, Syed

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Ac conductivity measurements and its analysis has been performed on Bi{sub 2}O{sub 3}-Li{sub 2}O-ZnO-B{sub 2}O{sub 3} glasses in the temperature range 30-300 Degree-Sign C and a frequency range of 100 Hz to 1 MHz. Black-Right-Pointing-Pointer The dc conductivity increased and the activation energy decreased with lithium content. Black-Right-Pointing-Pointer The frequency dependent conductivity has been analyzed employing conductivity and modulus formalisms. Black-Right-Pointing-Pointer The onset of conductivity relaxation shifts towards higher frequencies with temperature. Black-Right-Pointing-Pointer The Almond-West conductivity formalism is used to explain the scaling behavior, and the relaxation mechanism is independent of temperature. -- Abstract: Ac conductivity measurements and its analysis has been performed on xBi{sub 2}O{sub 3}-(65-x)Li{sub 2}O-20ZnO-15B{sub 2}O{sub 3} (0 {<=} x {<=} 20) glasses in the temperature range 30-300 Degree-Sign C and a frequency range of 100 Hz to 1 MHz. The dc conductivity increased and the activation energy decreased with lithium content. The frequency dependent conductivity has been analyzed employing conductivity and modulus formalisms. The onset of conductivity relaxation shifts towards higher frequencies with temperature. The Almond-West conductivity formalism is used to explain the scaling behavior, and the relaxation mechanism is independent of temperature.

  18. Electrical conductivity of nanocomposites based on carbon nanotubes: a 3D multiscale modeling approach

    NASA Astrophysics Data System (ADS)

    Grabowski, Krzysztof; Zbyrad, Paulina; Staszewski, Wieslaw J.; Uhl, Tadeusz; Wiatr, Kazimierz; Packo, Pawel

    2016-04-01

    Remarkable electrical properties of carbon nanotubes (CNT) have lead to increased interest in studying CNT- based devices. Many of current researches are devoted to using all kinds of carbon nanomaterials in the con- struction of sensory elements. One of the most common applications is the development of high performance, large scale sensors. Due to the remarkable conductivity of CNT's such devices represent very high sensitivity. However, there are no sufficient tools for studying and designing such sensors. The main objective of this paper is to develop and validate a multiscale numerical model for a carbon nanotubes based sensor. The device utilises the change of electrical conductivity of a nanocomposite material under applied deformation. The nanocomposite consists of a number of CNTs dispersed in polymer matrix. The paper is devoted to the analysis of the impact of spatial distribution of carbon nanotubes in polymer matrix on electrical conductivity of the sensor. One of key elements is also to examine the impact of strain on electric charge ow in such anisotropic composite structures. In the following work a multiscale electro-mechanical model for CNT - based nanocomposites is proposed. The model comprises of two length scales, namely the meso- and the macro-scale for mechanical and electrical domains. The approach allows for evaluation of macro-scale mechanical response of a strain sensor. Electrical properties of polymeric material with certain CNT fractions were derived considering electrical properties of CNTs, their contact and the tunnelling effect.

  19. Conducting Simulation Studies in Psychometrics

    ERIC Educational Resources Information Center

    Feinberg, Richard A.; Rubright, Jonathan D.

    2016-01-01

    Simulation studies are fundamental to psychometric discourse and play a crucial role in operational and academic research. Yet, resources for psychometricians interested in conducting simulations are scarce. This Instructional Topics in Educational Measurement Series (ITEMS) module is meant to address this deficiency by providing a comprehensive…

  20. Measurement of electrical conduction properties of intact embryonic murine hearts by extracellular microelectrode arrays.

    PubMed

    Taylor, David G; Natarajan, Anupama

    2012-01-01

    The study of the embryonic development of the cardiac conduction system and its congenital and toxicological defects requires protocols to measure electrical conduction through the myocardium. However, available methods either lack spatial information, necessitate the hearts to be sliced and mounted, or require specialized equipment. Microelectrode arrays (MEAs) are plates with embedded surface electrodes to measure localized extracellular ionic currents (field potentials) created by the depolarization and repolarization of cultured cells and tissue slices. Here we describe a protocol using MEAs to examine electrical conduction through intact and beating cultured hearts isolated from mouse embryos at 10.5 days postcoitus. This method allows measurements of conduction time, estimates of conduction velocity, atrioventricular conduction delay and block, and heart rate and rhythmicity.

  1. Electrical conductivity of a silicone network upon electron irradiation: influence of formulation

    NASA Astrophysics Data System (ADS)

    Roggero, A.; Dantras, E.; Paulmier, T.; Tonon, C.; Lewandowski, S.; Dagras, S.; Payan, D.

    2016-12-01

    In this study, the electrical conductivity of a silicone elastomer filled with inorganic fillers was investigated upon electron irradiation. Neat samples consisting of the isolated polysiloxane matrix (with no fillers) were studied in parallel to identify the filler contribution to this evolution. It was shown that exposure to 400 keV electron doses induced a decrease in electrical conductivity for both the filled and neat materials. This decrease was much more pronounced with the filled samples than with the neat ones. Moreover, the activation energy of electrical conductivity (Arrhenius behaviour) doubled in the filled case, while it varied only weakly for the neat case. In light of these results, structure-property relationships were proposed on the basis of the radiation-induced crosslink processes to which this material is subject. In the framework of electronic percolation theory, it is suggested that the radiation-induced formation of SiO3 crosslinks in the polysiloxane network and SiO4 crosslinks at filler-matrix interfaces affects the percolation path of the material, which can be simply modelled by a network of resistors in series. On one hand, their densification increases the overall resistance of the percolation path, which results in the observed decrease of effective electrical conductivity. On the other hand, the steep increase in activation energy in the filled material attributes to the SiO4 crosslinks becoming the most restrictive barrier along the percolation path. In spite of the misleading likeness of electrical conductivities in the pristine state, this study presented evidence that silicone formulation can affect the evolution of electrical properties in radiative environments. To illustrate this conclusion, the use of this material in space applications, especially when directly exposed to the radiative space environment, was discussed. The decrease in electrical conductivity was associated with a progressively increasing risk for the

  2. Nerve conduction block using combined thermoelectric cooling and high frequency electrical stimulation.

    PubMed

    Ackermann, D Michael; Foldes, Emily L; Bhadra, Niloy; Kilgore, Kevin L

    2010-10-30

    Conduction block of peripheral nerves is an important technique for many basic and applied neurophysiology studies. To date, there has not been a technique which provides a quickly initiated and reversible "on-demand" conduction block which is both sustainable for long periods of time and does not generate activity in the nerve at the onset of the conduction block. In this study we evaluated the feasibility of a combined method of nerve block which utilizes two well established nerve blocking techniques in a rat and cat model: nerve cooling and electrical block using high frequency alternating currents (HFAC). This combined method effectively makes use of the contrasting features of both nerve cooling and electrical block using HFAC. The conduction block was initiated using nerve cooling, a technique which does not produce nerve "onset response" firing, a prohibitive drawback of HFAC electrical block. The conduction block was then readily transitioned into an electrical block. A long-term electrical block is likely preferential to a long-term nerve cooling block because nerve cooling block generates large amounts of exhaust heat, does not allow for fiber diameter selectivity and is known to be unsafe for prolonged delivery.

  3. Imaging in electrically conductive porous media without frequency encoding

    NASA Astrophysics Data System (ADS)

    Lehmann-Horn, J. A.; Walbrecker, J. O.

    2012-07-01

    Understanding multi-phase fluid flow and transport processes under various pressure, temperature, and salinity conditions is a key feature in many remote monitoring applications, such as long-term storage of carbon dioxide (CO2) or nuclear waste in geological formations. We propose a low-field NMR tomographic method to non-invasively image the water-content distribution in electrically conductive formations in relatively large-scale experiments (˜1 m3 sample volumes). Operating in the weak magnetic field of Earth entails low Larmor frequencies at which electromagnetic fields can penetrate electrically conductive material. The low signal strengths associated with NMR in Earth's field are enhanced by pre-polarization before signal recording. To localize the origin of the NMR signal in the sample region we do not employ magnetic field gradients, as is done in conventional NMR imaging, because they can be difficult to control in the large sample volumes that we are concerned with, and may be biased by magnetic materials in the sample. Instead, we utilize the spatially dependent inhomogeneity of fields generated by surface coils that are installed around the sample volume. This relatively simple setup makes the instrument inexpensive and mobile (it can be potentially installed in remote locations outside of a laboratory), while allowing spatial resolution of the order of 10 cm. We demonstrate the general feasibility of our approach in a simulated CO2 injection experiment, where we locate and quantify the drop in water content following gas injection into a water-saturated cylindrical sample of 0.45 m radius and 0.9 m height. Our setup comprises four surface coils and an array consisting of three volume coils surrounding the sample. The proposed tomographic NMR methodology provides a more direct estimate of fluid content and properties than can be achieved with acoustic or electromagnetic methods alone. Therefore, we expect that our proposed method is relevant for

  4. Electrical Conductivity Measurements in Strongly Coupled Metal Plasmas

    NASA Astrophysics Data System (ADS)

    Desilva, Alan; Katsouros, Joseph

    1999-11-01

    We measure the electrical conductivity of strongly coupled plasmas of various metals, including aluminum, iron, copper, and tungsten, in the temperature range 6-30 kK, in a density range from about 1/2 solid density down to about 10-3 times solid density. These plasmas may have coupling parameters (ratio of mean interparticle Coulomb energy to mean kinetic energy) ranging from as high as 50 down to unity. Plasmas are created by rapid vaporization of metal wire in a water bath which act as a tamper. Streak photography serves to determine the growth of the plasma radius in time, allowing determination of mean density. Temperature is deduced from the measured energy input in conjunction with an equation of state from the LANL SESAME database [1], and a brightness temperature may be obtained from radiation measurements. The column resistance is determined from time-resolved voltage and current measurements. Results of conductivity measurements will be shown and compared with the predictions of conductivity theories. 1.SESAME: The Los Alamos National Laboratory Equation of State Database, Report LA-UR-92-3407, ed. S. P. Lyon and J. D. Johnson, Group T-1.

  5. Proton Conductivity Studies on Biopolymer Electrolytes

    SciTech Connect

    Harun, N. I.; Sabri, N. S.; Rosli, N. H. A.; Taib, M. F. M.; Saaid, S. I. Y.; Kudin, T. I. T.; Ali, A. M. M.; Yahya, M. Z. A.

    2010-07-07

    Proton conducting solid biopolymer electrolyte membranes consisting of methyl cellulose (MC) and different wt.% of ammonium nitrate (NH{sub 4}NO{sub 3}) were prepared by solution cast technique. Impedance spectroscopy was carried out to study electrical characteristics of bulk materials. The ionic conductivity of the prepared samples was calculated using the bulk resistance (R{sub b}) obtained from impedance spectroscopy plot. The highest ionic conductivity obtained was 1.17x10{sup -4} Scm{sup -1} for the sample with composition ratio of MC(50): NH{sub 4}NO{sub 3}(50). To enhance the ionic conductivity, propylene carbonate (PC) and ethylene carbonate (EC) plasticizers were introduced. It was found that the ionic conductivity of polymer electrolyte membranes increased with the increase in plasticizers concentration. The ionic conductivities of solid polymer electrolytes based on MC-NH{sub 4}NO{sub 3}-PC was enhanced up to 4.91x10{sup -3} Scm{sup -1} while for the MC-NH{sub 4}NO{sub 3}-EC system, the highest conductivity was 1.74x10{sup -2} Scm{sup -1}. The addition of more plasticizer however decreases in mechanical stability of the membranes.

  6. Physical Techniques for the Study of Sorption, Diffusion, Electrical Properties, and Interfacial Effects in Ordered Polymers: Charge Transport and Conduction Mechanisms in Polymer Fibers.

    DTIC Science & Technology

    1986-07-26

    Schematic Representation of Band Structure and Band Gap for (a) Metal, (b) Semiconductor and (c) Insulator .................................. 12 2.3...and the "energy gap " iS 3 4]7 *between the conduction and valence bands . These cases are shown in Figure 2.2. For semiconductors, the jumping of...semiconductors lack long range order and conduction occurs because the band edges are smeared. This leads to a "mobility gap " rather than an energy gap and

  7. A Chemically Polymerized Electrically Conducting Composite of Polypyrrole Nanoparticles and Polyurethane for Tissue Engineering

    PubMed Central

    Broda, Christopher R.; Lee, Jae Y.; Sirivisoot, Sirinrath; Schmidt, Christine E.; Harrison, Benjamin S.

    2011-01-01

    A variety of cell types respond to electrical stimuli, accordingly many conducting polymers (CPs) have been used as tissue engineering (TE) scaffolds, one such CP is polypyrrole (PPy). PPy is a well studied biomaterial with potential TE applications due to its electrical conductivity and many other beneficial properties. Combining its characteristics with an elastomeric material, such as polyurethane (PU), may yield a hybrid scaffold with electrical activity and significant mechanical resilience. Pyrrole was in situ polymerized within a PU emulsion mixture in weight ratios of 1:100, 1:20, 1:10 and 1:5, respectively. Morphology, electrical conductivity, mechanical properties and cytocompatibility with C2C12 myoblast cells were characterized. The polymerization resulted in a composite with a principle base of PU interspersed with an electrically percolating network of PPy nanoparticles. As the mass ratio of PPy to PU increased so did electrical conductivity of the composites. In addition, as the mass ratio of PPy to PU increased, stiffness of the composite increased while maximum elongation length decreased. Ultimate tensile strength was reduced by approximately 47% across all samples with the addition of PPy to the PU base. Cytocompatibility assay data indicated no significant cytotoxic effect from the composites. Static cellular seeding of C2C12 cells and subsequent differentiation showed myotube formation on the composite materials. PMID:21681943

  8. Responses of atmospheric electric field and air-earth current to variations of conductivity profiles

    NASA Astrophysics Data System (ADS)

    Makino, M.; Ogawa, T.

    1984-05-01

    A global circuit model is constructed to study responses of air-earth current and electric field to a variation of atmospheric electrical conductivity profile. The model includes the orography and the global distribution of thunderstorm generators. The conductivity varies with latitude and exponentially with altitude. The thunderstorm cloud is assumed to be a current generator with a positive source at the top and a negative one at the bottom. The UT diurnal variations of the global current and the ionospheric potential are evaluated considering the local-time dependence of thunderstorm activity. The global distribution of the electric field and the air-earth current are affected by the orography and latitudinal effects. Assuming a variation of conductivity profile, responses of atmospheric electrical parameters are investigated. The nonuniform decrement of the conductivity with altitude increases both the electric field and the air-earth current. The result suggests a possibility that the increment of the electric field and the air-earth current after a solar flare may be caused by this scheme, due to Forbush decrease.

  9. Influence of NaCl Concentrations on Coagulation, Temperature, and Electrical Conductivity Using a Perfusion Radiofrequency Ablation System: An Ex Vivo Experimental Study

    SciTech Connect

    Aube, Christophe Schmidt, Diethard; Brieger, Jens; Schenk, Martin; Kroeber, Stefan; Vielle, Bruno; Claussen, Claus D.; Goldberg, S. Nahum; Pereira, Philippe L.

    2007-02-15

    Purpose. To determine, by means of an ex vivo study, the effect of different NaCl concentrations on the extent of coagulation obtained during radiofrequency (RF) ablation performed using a digitally controlled perfusion device. Method. Twenty-eight RF ablations were performed with 40 W for 10 min using continuous NaCl infusion in fresh excised bovine liver. For perfusion, NaCl concentrations ranging from 0 (demineralized water) to 25% were used. Temperature, the amount of energy, and the dimensions of thermal-induced white coagulation were assessed for each ablation. These parameters were compared using the nonparametric Mann-Whitney test. Correlations were calculated according to the Spearman test. Results. RF ablation performed with 0.9% to 25% concentrations of NaCl produced a mean volume of coagulation of 30.7 {+-} 3.8 cm{sup 3}, with a mean short-axis diameter of 3.6 {+-} 0.2 cm. The mean amount of energy was 21,895 {+-} 1,674 W and the mean temperature was 85.4 {+-} 12.8 deg. C. Volume of coagulation, short-axis diameter, and amount of energy did not differ significantly among NaCl concentrations (p > 0.5). A correlation was found between the NaCl concentration and the short-axis diameter of coagulation (r = 0.64) and between the NaCl concentration and the mean temperature (r = 0.67), but not between the NaCl concentration and volume of coagulation. Conclusion. In an ex vivo model, continuous perfusion with high NaCl concentrations does not significantly improve the volume of thermal-induced coagulation. This may be because the use of a low-power generator cannot sufficiently exploit the potential advantage of better tissue conductivity provided by NaCl perfusion.

  10. Polymeric salt bridges for conducting electric current in microfluidic devices

    DOEpatents

    Shepodd, Timothy J.; Tichenor, Mark S.; Artau, Alexander

    2009-11-17

    A "cast-in-place" monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.

  11. Electrically conductive and optically active porous silicon nanowires.

    PubMed

    Qu, Yongquan; Liao, Lei; Li, Yujing; Zhang, Hua; Huang, Yu; Duan, Xiangfeng

    2009-12-01

    We report the synthesis of vertical silicon nanowire array through a two-step metal-assisted chemical etching of highly doped n-type silicon (100) wafers in a solution of hydrofluoric acid and hydrogen peroxide. The morphology of the as-grown silicon nanowires is tunable from solid nonporous nanowires, nonporous/nanoporous core/shell nanowires, to entirely nanoporous nanowires by controlling the hydrogen peroxide concentration in the etching solution. The porous silicon nanowires retain the single crystalline structure and crystallographic orientation of the starting silicon wafer and are electrically conductive and optically active with visible photoluminescence. The combination of electronic and optical properties in the porous silicon nanowires may provide a platform for novel optoelectronic devices for energy harvesting, conversion, and biosensing.

  12. Theoretic analysis on electric conductance of nano-wire transistors

    NASA Astrophysics Data System (ADS)

    Tsai, N.-C.; Chiang, Y.-R.; Hsu, S.-L.

    2010-01-01

    By employing the commercial software nanoMos and Vienna ab Initio Simulation Package ( VASP), the performance of nano-wire field-effect transistors is investigated. In this paper, the Density-Gradient Model (DG Model) is used to describe the carrier transport behavior of the nano-wire transistor under quantum effects. The analysis of the drain current with respect to channel length, body dielectric constant and gate contact work function is presented. In addition, Fermi energy and DOS (Density of State) are introduced to explore the relative stability of carrier transport and electrical conductance for the silicon crystal with dopants. Finally, how the roughness of the surface of the silicon-based crystal is affected by dopants and their allocation can be illuminated by a few broken bonds between atoms near the skin of the crystal.

  13. Electrically conductive, optically transparent polymer/carbon nanotube composites

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Jr., Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  14. System and method for determining velocity of electrically conductive fluid

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A. (Inventor); Korman, Valentin (Inventor); Markusic, Thomas E. (Inventor); Stanojev, Boris Johann (Inventor)

    2008-01-01

    A flowing electrically-conductive fluid is controlled between an upstream and downstream location thereof to insure that a convection timescale of the flowing fluid is less than a thermal diffusion timescale of the flowing fluid. First and second nodes of a current-carrying circuit are coupled to the fluid at the upstream location. A current pulse is applied to the current-carrying circuit so that the current pulse travels through the flowing fluid to thereby generate a thermal feature therein at the upstream location. The thermal feature is convected to the downstream location where it is monitored to detect a peak associated with the thermal feature so-convected. The velocity of the fluid flow is determined using a time-of-flight analysis.

  15. Facile synthesis of boron nitride nanotubes and improved electrical conductivity.

    PubMed

    Chen, Yongjun; Luo, Lijie; Zhou, Longchang; Mo, Libin; Tong, Zhangfa

    2010-02-01

    A layer of catalyst film on substrate is usually required during the vapor-liquid-solid (VLS) growth of one-dimensional (1D) nanomaterials. In this work, however, a novel approach for synthesizing high-purity bamboo-like boron nitride (BN) nanotubes directly on commercial stainless steel foils was demonstrated. Synthesis was realized by heating boron and zinc oxide (ZnO) powders at 1200 degrees C under a mixture gas flow of nitrogen and hydrogen. The stainless steel foils played an additional role of catalyst besides the substrate during the VLS growth of the nanotubes. In addition, the electrical conductivity of the BN nanotubes was efficiently improved in a simple way by coating with Au and Pd nanoparticles. The decorated BN nanotubes may find potential applications in catalysts, sensors and nanoelectronics.

  16. Bioconversion study conducted by JPL

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J.

    1978-01-01

    The Jet Propulsion Laboratory (JPL) of Caltech conducted a study of bioconversion as a means of identifying the role of biomass for meeting the national energy fuel and chemical requirements and the role and means for JPL-Caltech involvement in bioconversion. The bioconversion study included the following categories; biomass sources, chemicals from biomass, thermochemical conversion of biomass to fuels, biological conversion of biomass to fuels and chemicals, and basic bioconversion sciences. A detailed review is included of the bioconversion fields cited with specific conclusions and recommendations given for future research and development and overall biomass system engineering and economic studies.

  17. Surface electrical conductivity of single crystal spinel in cesium vapor. Final report

    SciTech Connect

    Agnew, P.; Ing, J.L.

    1995-04-02

    The operation of a thermionic fuel element (TFE) requires the maintenance of good electrical resistance between the anode and cathode, and between the electrodes and the TFE body. A program of research was established as part of the TOPAZ International Program (TIP) with the purpose of investigating the degradation of TFE electrical insulators. The major emphasis of this research has been on the interactions of oxide ceramics with cesium (Cs) vapor, and the resurfacing decrease of surface resistivity. Previous work has studied the surface electrical conductivity of sapphire exposed to Cs. In this report the authors describe the results of an experimental investigation of the surface electrical conductivity of single crystal magnesium aluminate spinel at temperatures ranging from 573K to 923K, in the presence of cesium vapor at pressures up to 1 Torr. The interest in spinel has arisen in view of its apparent resistance to radiation damage.

  18. Interpretation of magnetic resonance soundings in rocks with high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Legchenko, A.; Ezersky, M.; Girard, J.-F.; Baltassat, J.-M.; Boucher, M.; Camerlynck, C.; Al-Zoubi, A.

    2008-12-01

    Magnetic resonance sounding (MRS) is an electromagnetic method designed for groundwater investigations. MRS can be applied not only for studying fresh-water aquifers, but also in areas where intrusion of saline water is rendering the subsurface electrically conductive. In the presence of rocks with a high electrical-conductivity attenuation and a phase shift of the MRS signal may influence the efficiency of the MRS method. We investigated the performance of MRS for allowing us to propose a procedure for interpreting MRS data under these conditions. For numerical modeling, we considered a subsurface with a resistivity between 0.5 and 10 Ω m. The results show that the depth of investigation with MRS depends upon the electrical conductivity of groundwater and surrounding rocks, on the depth of the saline water layer, and on the amount of fresh water above the saline water. For interpreting MRS measurements, the electrical conductivity of the subsurface is routinely measured with an electrical or electromagnetic method. However, due to the equivalence problem, the result obtained with these methods may be not unique. Hence, we investigated the influence of the uncertainty in conductivity distribution provided by transient electromagnetic measurements (TEM) on MRS results. It was found that the uncertainty in TEM results has an insignificant effect on MRS.

  19. In vivo measurements of electrical conductivity of porcine organs at low frequency: new method of measurement.

    PubMed

    Spottorno, J; Multigner, M; Rivero, G; Alvarez, L; de la Venta, J; Santos, M

    2012-10-01

    Calculations of the induced currents created in the human body by external electromagnetic fields would be more accurate provided that more realistic experimental values of the electrical properties of the body were available. The purpose of this work is to experimentally obtain values for the conductivity of living organs in conditions close to the real situation. Two-electrode in vivo measurements of the bioimpedance of some porcine organs have been performed. From these measurements and taking into account geometrical considerations, the electrical conductivity for the kidney, liver, heart, and spinal cord has been obtained and were found to be higher than the values reported in the literature. Furthermore, a new experimental procedure is proposed where the conductivity is determined from the values of the electrical potential and currents that are induced by an external electromagnetic field created by a coil placed close to the organ under study.

  20. Electrical conductivity of α-LiIO 3 acid type crystals at 1 kHz

    NASA Astrophysics Data System (ADS)

    Galez, C.; Rosso, C.; Teisseyre, Y.; Crettez, J. M.; Bourson, P.; Medeiros-Ribeiro, G.; Righi, A.; Moreira, R. L.

    1995-03-01

    The temperature dependence of the electrical conductivity of α-LiIO 3 acid type crystals is studied. By applying a very low amplitude electric field at 1 kHz and performing a continuous sampling of measurements, differences, reproducible for all the investigated samples, appeared between the first and subsequent heatings The anomalies occurring during the first heating are attributed mainly to inclusions of mother liquor, HIO 3 and Li 1-xH xIO 3. The 'intrinsic' conductivity is measured after a first annealing at about 470 K; the activation energies are then calculated.

  1. Lustrous copper nanoparticle film: Photodeposition with high quantum yield and electric conductivity

    NASA Astrophysics Data System (ADS)

    Miyagawa, Masaya; Yonemura, Mari; Tanaka, Hideki

    2016-11-01

    Cu nanoparticle (NP) film has attracted much attention due to its high electric conductivity. In the present study, we prepared a Cu NP film on a TiO2-coated substrate by photoreduction of copper acetate solution. The obtained film showed high electric conductivity and metallic luster by the successive deposition of Cu NP. Moreover, the film was decomposed on exposure to fresh air, and its decomposition reaction mechanisms were proposed. Hence, we concluded that the obtained lustrous film was composed of Cu NP, even though its physical properties was similar to bulk copper.

  2. Dielectric Relaxation Behavior and AC Electrical Conductivity Study of 2-(1,2-Dihydro-7-Methyl-2-Oxoquinoline-5-yl) Malononitrile (DMOQMN)

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; El-Zaidia, E. F. M.; Darwish, A. A. A.; Salem, G. F.

    2017-02-01

    Dielectric relaxation and alternative current conductivity of a new organic compound 2-(1,2-dihydro-7-methyl-2-oxoquinoline-5-yl) malononitrile (DMOQMN) have been investigated. X-ray diffraction (XRD) at room temperature reveals that DMOQMN samples have a polycrystalline structure of the triclinic system. The analysis of the dielectric constant and dielectric loss index suggested the dominant polarization is performed and the Maxwell-Wagner-Sillar type polarization is dominating at low frequency and high temperature. These results have been confirmed by the XRD and dielectric modulus. The estimated relaxation time and the activation energy are 9 × 10-13 s and 0.43 eV, respectively. Our results indicated that the conduction mechanism of DMOQMN is controlled by the correlation barrier hopping (CBH) model.

  3. Electrically-conductive proppant and methods for making and using same

    DOEpatents

    Cannan, Chad; Roper, Todd; Savoy, Steve; Mitchell, Daniel R.

    2016-09-06

    Electrically-conductive sintered, substantially round and spherical particles and methods for producing such electrically-conductive sintered, substantially round and spherical particles from an alumina-containing raw material. Methods for using such electrically-conductive sintered, substantially round and spherical particles in hydraulic fracturing operations.

  4. Thermal and electrical conductivity of iron at Earth's core conditions.

    PubMed

    Pozzo, Monica; Davies, Chris; Gubbins, David; Alfè, Dario

    2012-04-11

    The Earth acts as a gigantic heat engine driven by the decay of radiogenic isotopes and slow cooling, which gives rise to plate tectonics, volcanoes and mountain building. Another key product is the geomagnetic field, generated in the liquid iron core by a dynamo running on heat released by cooling and freezing (as the solid inner core grows), and on chemical convection (due to light elements expelled from the liquid on freezing). The power supplied to the geodynamo, measured by the heat flux across the core-mantle boundary (CMB), places constraints on Earth's evolution. Estimates of CMB heat flux depend on properties of iron mixtures under the extreme pressure and temperature conditions in the core, most critically on the thermal and electrical conductivities. These quantities remain poorly known because of inherent experimental and theoretical difficulties. Here we use density functional theory to compute these conductivities in liquid iron mixtures at core conditions from first principles--unlike previous estimates, which relied on extrapolations. The mixtures of iron, oxygen, sulphur and silicon are taken from earlier work and fit the seismologically determined core density and inner-core boundary density jump. We find both conductivities to be two to three times higher than estimates in current use. The changes are so large that core thermal histories and power requirements need to be reassessed. New estimates indicate that the adiabatic heat flux is 15 to 16 terawatts at the CMB, higher than present estimates of CMB heat flux based on mantle convection; the top of the core must be thermally stratified and any convection in the upper core must be driven by chemical convection against the adverse thermal buoyancy or lateral variations in CMB heat flow. Power for the geodynamo is greatly restricted, and future models of mantle evolution will need to incorporate a high CMB heat flux and explain the recent formation of the inner core.

  5. Nonlinear electrical conductivity in a 1D granular medium

    NASA Astrophysics Data System (ADS)

    Falcon, E.; Castaing, B.; Creyssels, M.

    2004-04-01

    We report on observations of the electrical transport within a chain of metallic beads (slightly oxidized) under an applied stress. A transition from an insulating to a conductive state is observed as the applied current is increased. The voltage-current ( U- I) characteristics are nonlinear and hysteretic, and saturate to a low voltage per contact (0.4 V). Our 1D experiment allows us to understand phenomena (such as the “Branly effect”) related to this conduction transition by focusing on the nature of the contacts instead of the structure of the granular network. We show that this transition comes from an electro-thermal coupling in the vicinity of the microcontacts between each bead - the current flowing through these contact points generates their local heating which leads to an increase of their contact areas, and thus enhances their conduction. This current-induced temperature rise (up to 1050 ^{circ}C) results in the microsoldering of the contact points (even for voltages as low as 0.4 V). Based on this self-regulated temperature mechanism, an analytical expression for the nonlinear U- I back trajectory is derived, and is found to be in very good agreement with the experiments. In addition, we can determine the microcontact temperature with no adjustable parameters. Finally, the stress dependence of the resistance is found to be strongly non-hertzian due to the presence of the surface films. This dependence cannot be usually distinguished from the one due to the disorder of the granular contact network in 2D or 3D experiments.

  6. Electrical conductivity and modulus formulation in zinc modified bismuth boro-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Dhankhar, Sunil; Kundu, R. S.; Dult, Meenakshi; Murugavel, S.; Punia, R.; Kishore, N.

    2016-09-01

    The ac conductivity of zinc modified tellurium based quaternary glasses having composition 60 TeO2-10 B2O3-(30 - x) Bi2O3-x ZnO; x = 10, 15, 20, 25 and 30 has been investigated in the frequency range 10-1-105 Hz and in temperature range 483-593 K. Frequency and temperature dependent ac conductivity found to obey Jonscher power law modified by Almond-West. DC conductivity, crossover frequency and frequency exponent have been estimated from the fitting of the experimental data of conductivity with Jonscher power law modified by Almond-West. The ac conductivity and its frequency exponent have been analyzed by various theoretical models. In presently studied glasses ac conduction takes place via tunneling of overlapping large polaron tunneling. Activation energy is found to be increased with increase in zinc content and dc conduction takes place via variable range hopping proposed by Mott with some modification suggested by Punia et al. The value of the stretched exponent ( β) obtained by fitting of M^' ' }} reveals the presence of non-Debye type relaxation. Scaling spectra of ac conductivity and electric modulus collapse into a single master curve for all compositions and temperatures, reveals the presence of composition and temperature independent conduction and relaxation process in these glasses. Activation energy of conduction ( W) and electric modulus ( E R ) are nearly equal, indicating that polaron have to overcome the same energy barrier during conduction as well as relaxation processes.

  7. NASA Electric Propulsion System Studies

    NASA Technical Reports Server (NTRS)

    Felder, James L.

    2015-01-01

    An overview of NASA efforts in the area of hybrid electric and turboelectric propulsion in large transport. This overview includes a list of reasons why we are looking at transmitting some or all of the propulsive power for the aircraft electrically, a list of the different types of hybrid-turbo electric propulsion systems, and the results of 4 aircraft studies that examined different types of hybrid-turbo electric propulsion systems.

  8. Acoustic patterning for 3D embedded electrically conductive wire in stereolithography

    NASA Astrophysics Data System (ADS)

    Erdem Yunus, Doruk; Sohrabi, Salman; He, Ran; Shi, Wentao; Liu, Yaling

    2017-04-01

    In this paper, we reported a new approach for particle assembly with acoustic tweezers during three-dimensional (3D) printing, for the fabrication of embedded conductive wires with 3D structures. A hexagon shaped acoustic tweezer was incorporated with a digital light processing based stereolithography printer to pattern conductive lines via aligning and condensing conductive nanoparticles. The effect of filler content on electrical resistivity and pattern thickness were studied for copper, magnetite nanoparticles, and carbon nanofiber reinforced nanocomposite samples. The obtained data was later used to produce examples of conductive 3D microstructures and embedded electronic components by using the suggested method.

  9. The influence of strong electric fields on the DC conductivity of the composite cellulose, insulating oil, and water nanoparticles

    NASA Astrophysics Data System (ADS)

    Kierczyński, Konrad; Żukowski, Paweł

    2016-12-01

    The paper presents investigated the dependencies of DC conductivity electrical pressboard impregnated insolating oil of moisture content and electric field strength. The studies were conducted for measuring temperature in the range of 20 °C to 80 °C and the electric field intensity in the range of 10 kV/m to 1000 kV/m. With approximate waveforms in double logarithmic coordinates conductivity depending on the intensity of the electric field exponential function determined coefficients of determination R2. The value of this ratio is close to unity, which provides high accuracy measurements of conductivity and the exact stability and temperature measurements. It was found that changes in the electric field intensity will decrease the activation energy of conductivity of about 0.01 eV, thus increasing the DC conductivity of about 1.5 times.

  10. NOAA's hydrolab conducts reef studies

    NASA Astrophysics Data System (ADS)

    This summer, scuba-diving scientists operating from Hydrolab, NOAA's undersea laboratory, are carrying out four experiments aimed at producing better management of coral reefs and their fishery resources. Hydrolab is located at a depth of 50 feet, near the mouth of the Salt River, off St. Croix, U.S. Virgin Islands. The lab houses four scientists for up to 2 weeks at a time, permitting them to swim out into the water to conduct research. The projects make use of both the natural coral reef near Hydrolab and the nearby artificial reef constructed for comparison studies.

  11. Analysis of variance on thickness and electrical conductivity measurements of carbon nanotube thin films

    NASA Astrophysics Data System (ADS)

    Li, Min-Yang; Yang, Mingchia; Vargas, Emily; Neff, Kyle; Vanli, Arda; Liang, Richard

    2016-09-01

    One of the major challenges towards controlling the transfer of electrical and mechanical properties of nanotubes into nanocomposites is the lack of adequate measurement systems to quantify the variations in bulk properties while the nanotubes were used as the reinforcement material. In this study, we conducted one-way analysis of variance (ANOVA) on thickness and conductivity measurements. By analyzing the data collected from both experienced and inexperienced operators, we found some operation details users might overlook that resulted in variations, since conductivity measurements of CNT thin films are very sensitive to thickness measurements. In addition, we demonstrated how issues in measurements damaged samples and limited the number of replications resulting in large variations in the electrical conductivity measurement results. Based on this study, we proposed a faster, more reliable approach to measure the thickness of CNT thin films that operators can follow to make these measurement processes less dependent on operator skills.

  12. Spin-dependent electrical conduction in a pentacene Schottky diode explored by electrically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Fukuda, Kunito; Asakawa, Naoki

    2017-02-01

    Reported is the observation of dark spin-dependent electrical conduction in a Schottky barrier diode with pentacene (PSBD) using electrically detected magnetic resonance at room temperature. It is suggested that spin-dependent conduction exists in pentacene thin films, which is explored by examining the anisotropic linewidth of the EDMR signal and current density-voltage (J-V) measurements. The EDMR spectrum can be decomposed to Gaussian and Lorentzian components. The dependency of the two signals on the applied voltage was consistent with the current density-voltage (J-V) of the PSBD rather than that of the electron-only device of Al/pentacene/Al, indicating that the spin-dependent conduction is due to bipolaron formation associated with hole polaronic hopping processes. The applied-voltage dependence of the ratio of intensity of the Gaussian line to the Lorentzian may infer that increasing current density should make conducting paths more dispersive, thereby resulting in an increased fraction of the Gaussian line due to the higher dispersive g-factor.

  13. Comparison of electrical and thermal conductivities for soils from five states

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arrangement of soil particles, particle size, mineralogy, solute concentration, and bulk density affect electrical (EC) and thermal (TC) conductivities. The purpose of this study was to compare how EC and TC change as a function of water content, for soils under different vegetation and with differe...

  14. EPRI studies Legionella in electric water heaters

    SciTech Connect

    1995-11-01

    Home electric water heaters were found not to be a major risk factor for Legionnaires` disease in a 2-year study conducted recently in Ohio. EPRI has published the final report of the project, and a scientific paper on the study will soon appear in a major medical journal. The research was sponsored by EPRI`s Environmental and Health Sciences business Unit and the Federal Centers for Disease Control and Prevention (CDC), with cofunding from the Canadian Electrical Association.

  15. Microstructure, electrical conductivity and modulus spectra of CdI2 doped nanocomposite-electrolytes

    NASA Astrophysics Data System (ADS)

    Kundu, Ranadip; Roy, Debasish; Bhattacharya, Sanjib

    2017-02-01

    Ionic conductivity and dielectric behavior of Ag2O-CdI2-CdO nanocomposite system have been studied. X-ray diffraction has been carried out to obtain the crystallite sizes and the growth of CdO dispersed in glass-matrices. Total conductivity of them shows thermally activated nature. It is observed that total conductivity decreases and corresponding activation energy for conduction follows opposite behavior. The high-frequency ac conductivity may correspond to a nonrandom, correlated and sub-diffusive motion of Ag+ ions. Conductivity relaxation time is found to increase. The nature of scaling of the conductivity as well as modulus spectra indicates that the electrical relaxation of Ag+ is temperature independent but depends upon composition.

  16. Quantum Interference Effects and Electrical Conduction in Disordered Metals.

    NASA Astrophysics Data System (ADS)

    Meisenheimer, Timothy Lee

    We have conducted a series of experiments on thin, disordered metallic films made from a number of different materials, which were aimed at investigating for time dependent conductance fluctuations at low temperatures. The materials included in our survey were Pt, AuPd, Sb, Ag and Bi. Values of the phase breaking length, L_{phi }, which is important in theoretical calculations, were determined from weak localization theory in conjunction with magneto-resistance measurements. Large co-deposited films (typically 50 μm times 10,000 μm) were used as references for system noise and other systematic effects. Samples used in the fluctuation studies were as small as 0.5 μm times 0.5 μm and were made with photo-lithography. The temperature range for this survey was from ~50 mK to ~10K. We have observed conductance fluctuations in samples of Pt, Ag and Bi. Two types of phenomenon were found: single, discrete jumps in the resistance of possibly long duration time (many hours), similar to random telegraph noise, and much faster broad band noise. Comparisons with theories by Feng, Lee, and Stone, and Al'tshuler and co -workers show excellent agreement. Significant conductance fluctuations were not observed in AuPd and Sb samples. However, more extensive experiments are needed with these two materials to show conclusively that no mechanisms are available for producing conductance fluctuations.

  17. Effects of Extremity Elevation and Health Factors On Soft Tissue Electrical Conductivity

    NASA Astrophysics Data System (ADS)

    Feldkamp, J. R.; Heller, J.

    2009-01-01

    Two clinical studies were completed using an auto-tuned induction coil conductivity sensor (ICCS) to determine the effects of a variety of factors on the electrical conductivity of soft tissue. In addition to fifteen "subject variables" such as blood pressure and others, we have specifically focused on considering the role of such factors as gender, age, BMI, smoking and elevation of extremities. Measurements were made at seven sites on either side of the body for a total of fourteen. Higher conductivities were obtained for women than men at all sites. At five sites, where age was a significant factor, conductivity was found to decline with increased age. Interestingly, smokers as a group tended to have reduced conductivity, suggesting that aging and smoking have similar effects on the microvasculature of soft tissue. Generally speaking, electrical conductivity is observed to increase in response to increased elevation at sites located on extremities. Considering just healthy adults, a definite pattern of elevation-induced electrical conductivity displacement emerges when subjects are flagged according to high, low or moderate blood pressure. We suggest that violations of this pattern may provide a method for identifying those individuals in an early stage of peripheral vascular disease.

  18. Electrical and thermal conduction in ultra-thin freestanding atomic layer deposited W nanobridges.

    PubMed

    Eigenfeld, Nathan T; Gertsch, Jonas C; Skidmore, George D; George, Steven M; Bright, Victor M

    2015-11-14

    Work presented here measures and interprets the electrical and thermal conductivities of atomic layer deposited (ALD) free-standing single film and periodic tungsten and aluminum oxide nanobridges with thicknesses from ∼5-20 nm and ∼3-13 nm, respectively. Electrical conductivity of the W films is reduced by up to 99% from bulk, while thermal conductivity is reduced by up to 91%. Results indicate phonon contribution to thermal conductivity is dominant in these ALD films and may be substantially reduced by the incorporation of periodicity in the ALD W/Al2O3 nanolaminates. Additionally, thin film conduction modeling demonstrates nano-structured grain features largely dictate electron and phonon conduction in ALD W. New fabrication methods have allowed for the development of free-standing ultra-thin structures with layers on the order of several nanometers utilizing ALD. While the literature contains diverse studies of the physical properties of thin films prepared by traditional micro-fabrication sputtering or chemical vapor deposition techniques, there remains little data on freestanding structures containing ALD generated materials. Specifically, knowledge of the electrical and thermal conductivity of ALD generated materials will aid in the future development of ultra-thin nano-devices.

  19. Electrical conductivity of orthopyroxene: Implications for the water content of the asthenosphere

    PubMed Central

    Dai, Lidong; Karato, Shun-ichiro

    2009-01-01

    Electrical conductivity of minerals is sensitive to water content and hence can be used to infer the water content in the mantle. However, previous studies to infer the water content in the upper mantle were based on pure olivine model of the upper mantle. Influence of other minerals particularly that of orthopyroxene needs to be included to obtain a better estimate of water content in view of the high water solubility in this mineral. Here we report new results of electrical conductivity measurements on orthopyroxene, and apply these results to estimate the water content of the upper mantle of Earth. We found that the electrical conductivity of orthopyroxene is enhanced by the addition of water in a similar way as other minerals such as olivine and pyrope garnet. Using these new results, we calculate the electrical conductivity of pyrolite mantle as a function of water content and temperature incorporating the temperature and water fugacity-dependent hydrogen partitioning. Reported values of asthenosphere conductivity of 4 × 10−2−10−1 S/m corresponds to the water content of 0.01–0.04 wt%, a result in good agreement with the petrological model of the upper mantle. PMID:20009379

  20. Electrical and thermal conduction in atomic layer deposition nanobridges down to 7 nm thickness.

    PubMed

    Yoneoka, Shingo; Lee, Jaeho; Liger, Matthieu; Yama, Gary; Kodama, Takashi; Gunji, Marika; Provine, J; Howe, Roger T; Goodson, Kenneth E; Kenny, Thomas W

    2012-02-08

    While the literature is rich with data for the electrical behavior of nanotransistors based on semiconductor nanowires and carbon nanotubes, few data are available for ultrascaled metal interconnects that will be demanded by these devices. Atomic layer deposition (ALD), which uses a sequence of self-limiting surface reactions to achieve high-quality nanolayers, provides an unique opportunity to study the limits of electrical and thermal conduction in metal interconnects. This work measures and interprets the electrical and thermal conductivities of free-standing platinum films of thickness 7.3, 9.8, and 12.1 nm in the temperature range from 50 to 320 K. Conductivity data for the 7.3 nm bridge are reduced by 77.8% (electrical) and 66.3% (thermal) compared to bulk values due to electron scattering at material and grain boundaries. The measurement results indicate that the contribution of phonon conduction is significant in the total thermal conductivity of the ALD films.

  1. Inductive Measurement of Plasma Jet Electrical Conductivity (MSFC Center Director's discretionary Fund). Part 2

    NASA Technical Reports Server (NTRS)

    Turner, M. W.; Hawk, C. W.; Litchford, R. J.

    2001-01-01

    Measurement of plasma jet electrical conductivity has utility in the development of explosively driven magnetohydrodynamic (MHD) energy converters as well as magnetic flux compression reaction chambers for nuclear/chemical pulse propulsion and power. Within these types of reactors, the physical parameter of critical importance to underlying MHD processes is the magnetic Reynolds number, the value of which depends upon the product of plasma electrical conductivity and velocity. Therefore, a thorough understanding of MHD phenomena at high magnetic Reynolds number is essential, and methods are needed for the accurate and reliable measurement of electrical conductivity in high-speed plasma jets. It is well known that direct measurements using electrodes suffer from large surface resistance, and an electrodeless technique is desired. To address this need, an inductive probing scheme, originally developed for shock tube studies, has been adapted. In this method, the perturbation of an applied magnetic field by a plasma jet induces a voltage in a search coil, which, in turn, can be used to infer electrical conductivity through the inversion of a Fredholm integral equation of the first kind. A 1-in.-diameter probe using a light-gas gun. Exploratory laboratory experiments were carried out using plasma jets expelled from 15-g shaped charges. Measured conductivities were in the range of 4 kS/m for unseeded octol charges and 26 kS/m for seeded octol charges containing 2-percent potassium carbonate by mass.

  2. Reversible switching of electrical conductivity in an AOT-isooctane-water microemulsion via photoisomerization of azobenzene.

    PubMed

    Bufe, Markus; Wolff, Thomas

    2009-07-21

    The electrical conductivity of microemulsions composed of aerosol OT (AOT), isooctane, and water as a function of temperature was studied in the absence and presence of azobenzene, and consequences of an in situ trans-cis photoisomerization of azobenzene were investigated. A conductivity onset upon raising the temperature of a water-in-oil microemulsion indicates percolation. Small amounts (0.1-5% w/w) of solubilized azobenzene induce higher percolation temperatures T(p) (by up to 19 K), and photoisomerization of azobenzene shifts T(p) back to values that may be below T(p) in the absence of azobenzene. Consequently, the microemulsion can be switched from nonconducting to conducting by exposing samples to UV-light at lambda > 310 nm, without varying temperature or composition. The effect reverts within several minutes after turning off the irradiation lamp through thermal reisomerization. By that, reversible switching of electrical conductivity is brought about.

  3. Highly Electrically Conducting Glass-Graphene Nanoplatelets Hybrid Coatings.

    PubMed

    Garcia, E; Nistal, A; Khalifa, A; Essa, Y; Martín de la Escalera, F; Osendi, M I; Miranzo, P

    2015-08-19

    Hybrid coatings consisting of a heat resistant Y2O3-Al2O3-SiO2 (YAS) glass containing 2.3 wt % of graphene nanoplatelets (GNPs) were developed by flame spraying homogeneous ceramic powders-GNP granules. Around 40% of the GNPs survived the high spraying temperatures and were distributed along the splat-interfaces, forming a percolated network. These YAS-GNP coatings are potentially interesting in thermal protection systems and electromagnetic interference shields for aerospace applications; therefore silicon carbide (SiC) materials at the forefront of those applications were employed as substrates. Whereas the YAS coatings are nonconductive, the YAS-GNP coatings showed in-plane electrical conductivity (∼10(2) S·m(-1)) for which a low percolation limit (below 3.6 vol %) is inferred. Indentation tests revealed the formation of a highly damaged indentation zone showing multiple shear displacements between adjacent splats probably favored by the graphene sheets location. The indentation radial cracks typically found in brittle glass coatings are not detected in the hybrid coatings that are also more compliant.

  4. Electrical conductivity as a test for the integrity of latex gloves

    SciTech Connect

    Stampfer, J.F.; Kissane, R.J.; Schauer, S.M.

    1993-02-01

    Surgical latex gloves have been used to protect patients against bacterial infections introduced by health-care workers. As a result of the Acquired Immune Deficiency Syndrome (AIDS) epidemic, the concern has shifted, with more emphasis on the protection of the health-care worker from the patient. These gloves often have defects, holes, which allow bacteria to penetrate. There are a number of methods to test the integrity of these gloves before they are donned. The present standard test is to fill the glove with 1000 ml of water and visually inspect the exterior for water leaks. Another method allows the gloves to be tested while being worn. This is done by measuring the electrical conductivity through the latex, from the hand to an external conductive solution. We have investigated the use of electrical conductivity to test sterile latex gloves, both with and without holes. We have studied various phenomena associated with this testing and conducted simultaneous electrical and viral penetration tests. Our conclusions are as follows. (1) Electrical conductivity test method for gloves while they are being worn is very dependent on the specific glove being tested, primarily on the conductivity of the intact glove. (2) In the best of cases, reliable results could be expected for only about one hour of wear and for holes larger than 10s of {mu}ms. (3) There are practical problems that may disqualify the electrical conductivity test for routine use. (4) The test may prove to be valuable as a QA test procedure for nonconductive materials and garments made from these materials because it has greater sensitivity than presently used methods. (5) The effective sizes of holes in latex increase much faster when the latex is stretched than would be predicted from the elongation of the latex.

  5. Electrical conductivity as a test for the integrity of latex gloves

    SciTech Connect

    Stampfer, J.F.; Kissane, R.J.; Schauer, S.M.

    1993-02-01

    Surgical latex gloves have been used to protect patients against bacterial infections introduced by health-care workers. As a result of the Acquired Immune Deficiency Syndrome (AIDS) epidemic, the concern has shifted, with more emphasis on the protection of the health-care worker from the patient. These gloves often have defects, holes, which allow bacteria to penetrate. There are a number of methods to test the integrity of these gloves before they are donned. The present standard test is to fill the glove with 1000 ml of water and visually inspect the exterior for water leaks. Another method allows the gloves to be tested while being worn. This is done by measuring the electrical conductivity through the latex, from the hand to an external conductive solution. We have investigated the use of electrical conductivity to test sterile latex gloves, both with and without holes. We have studied various phenomena associated with this testing and conducted simultaneous electrical and viral penetration tests. Our conclusions are as follows. (1) Electrical conductivity test method for gloves while they are being worn is very dependent on the specific glove being tested, primarily on the conductivity of the intact glove. (2) In the best of cases, reliable results could be expected for only about one hour of wear and for holes larger than 10s of [mu]ms. (3) There are practical problems that may disqualify the electrical conductivity test for routine use. (4) The test may prove to be valuable as a QA test procedure for nonconductive materials and garments made from these materials because it has greater sensitivity than presently used methods. (5) The effective sizes of holes in latex increase much faster when the latex is stretched than would be predicted from the elongation of the latex.

  6. Water chemistry and electrical conductivity database for rivers in Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Clor, Laura E.; McCleskey, R. Blaine; Huebner, Mark A.; Lowenstern, Jacob B.; Heasler, Henry P.; Mahony, Dan L.; Maloney, Tim; Evans, William C.

    2012-01-01

    This study aims to quantify relations between solute concentrations (especially chloride) and electrical conductivity for several rivers in Yellowstone National Park (YNP), by using automated samplers and conductivity meters. Norton and Friedman (1985) found that chloride concentrations and electrical conductivity have a good correlation in the Falls, Snake, Madison, and Yellowstone Rivers. However, their results are based on limited sampling and hydrologic conditions and their relation with other solutes was not determined. Once the correlations are established, conductivity measurements can then be used as a proxy for chloride concentrations, thereby enabling continuous heat-flow estimation on a much finer timescale and at lower cost than is currently possible with direct sampling. This publication serves as a repository for all data collected during the course of the study from May 2010 through July 2011, but it does not include correlations between solutes and conductivity or recommendations for quantification of chloride through continuous electrical conductivity measurements. This will be the object of a future document.

  7. Analytic electrical-conductivity tensor of a nondegenerate Lorentz plasma

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Gerdin, G. A.; Fehl, D. L.

    2002-10-01

    We have developed explicit quantum-mechanical expressions for the conductivity and resistivity tensors of a Lorentz plasma in a magnetic field. The expressions are based on a solution to the Boltzmann equation that is exact when the electric field is weak, the electron-Fermi-degeneracy parameter Θ>>1, and the electron-ion Coulomb-coupling parameter Γ/Z<<1. (Γ is the ion-ion coupling parameter and Z is the ion charge state.) Assuming a screened 1/r electron-ion scattering potential, we calculate the Coulomb logarithm in the second Born approximation. The ratio of the term obtained in the second approximation to that obtained in the first is used to define the parameter regime over which the calculation is valid. We find that the accuracy of the approximation is determined by Γ/Z and not simply the temperature, and that a quantum-mechanical description can be required at temperatures orders of magnitude less than assumed by Spitzer [Physics of Fully Ionized Gases (Wiley, New York, 1962)]. When the magnetic field B=0, the conductivity is identical to the Spitzer result except the Coulomb logarithm ln Λ1=(ln χ1- 1/2)+[(2Ze2/λmev2e1)(ln χ1-ln 24/3)], where χ1≡2meve1λ/ħ, me is the electron mass, ve1≡(7kBT/me)1/2, kB is the Boltzmann constant, T is the temperature, λ is the screening length, ħ is Planck's constant divided by 2π, and e is the absolute value of the electron charge. When the plasma Debye length λD is greater than the ion-sphere radius a, we assume λ=λD otherwise we set λ=a. The B=0 conductivity is consistent with measurements when Z>~1, Θ>~2, and Γ/Z<~1, and in this parameter regime appears to be more accurate than previous analytic models. The minimum value of ln Λ1 when Z>=1, Θ>=2, and Γ/Z<=1 is 1.9. The expression obtained for the resistivity tensor (B≠0) predicts that η⊥/η∥ (where η⊥ and η∥ are the resistivities perpendicular and parallel to the magnetic field) can be as much as 40% less than previous analytic

  8. Simultaneous monitoring of electrical conductance and light transmittance during red blood cell aggregation.

    PubMed

    Baskurt, O K; Uyuklu, M; Meiselman, H J

    2009-01-01

    The electrical properties of red blood cell (RBC) suspensions are influenced by flow conditions, and prior studies indicate that electrical properties may reflect the kinetics of RBC aggregation. Changes of conductance and capacitance were monitored and had a time course resembling a "syllectogram" (i.e., temporal change of light reflectance from an RBC suspension after sudden cessation of flow). In the present study, both AC electrical conductance (EC) across and light transmission (LT) through a 1 mm ID glass tube were recorded simultaneously after a sudden stoppage of flow for RBC at various hematocrits in plasma or in isotonic saline (PBS). Preliminary results indicate that EC and LT signals for RBC in plasma have similar time courses, both increasing after an initial decrement of a few seconds duration. Aggregation indexes and aggregation half times calculated using LT and EC showed a similar dependence on hematocrits between 30-50%. Interestingly, RBC in PBS also exhibited a syllectogram time course for conductance, whereas LT continued to decrease after an initial decline reflecting RBC shape recovery. These results suggest that electrical conductance in aggregating and non-aggregating suspensions may be sensitive to phenomena other than RBC aggregation.

  9. A novel approach to model hydraulic and electrical conductivity in fractal porous media

    NASA Astrophysics Data System (ADS)

    Ghanbarian, B.; Daigle, H.; Sahimi, M.

    2014-12-01

    Accurate prediction of conductivity in partially-saturated porous media has broad applications in various phenomena in porous media, and has been studied intensively since the 1940s by petroleum, chemical and civil engineers, and hydrologists. Many of the models developed in the past are based on the bundle of capillary tubes. In addition, pore network models have also been developed for simulating multiphase fluid flow in porous media and computing the conductivity in unsaturated porous media. In this study, we propose a novel approach using concepts from the effective-medium approximation (EMA) and percolation theory to model hydraulic and electrical conductivity in fractal porous media whose pore-size distributions exhibit power-law scaling. In our approach, the EMA, originally developed for predicting electrical conductivity of composite materials, is used to predict the effective conductivity, from complete saturation to some intermediate water content that represents a crossover point. Below the crossover water content, but still above a critical saturation (percolation threshold), a universal scaling predicted by percolation theory, a power law that expresses the dependence of the conductivity on the water content (less a critical water saturation) with an exponent of 2, is invoked to describe the effective conductivity. In order to evaluate the accuracy of the approach, experimental data were used from the literature. The predicted hydraulic conductivities for most cases are in excellent agreement with the data. In a few cases the theory underestimates the hydraulic conductivities, which correspond to porous media with very broad pore-size distribution in which the largest pore radius is more than 7 orders of magnitude greater than the smallest one. The approach is also used to predict the saturation dependence of the electrical conductivity for experiments in which capillary pressure data are available. The results indicate that the universal scaling of

  10. Model simulations of strong atmospheric conductivity disturbances and induced responses of the Global Electric Circuit

    NASA Astrophysics Data System (ADS)

    Baumgaertner, A. J.; Lehto, E.; Neely, R. R.; English, J. M.; Zhu, Y.; Lucas, G.; Thayer, J. P.

    2013-12-01

    Electrical conductivity in the troposphere and stratosphere is an important quantity that determines the distribution of currents in the GEC (Global Electric Circuit), as well as the potential difference between the Earth and the ionosphere. Recently, progress in modeling atmospheric conductivity has been achieved by integrating the conductivity calculation into an AC-GCM (atmospheric chemistry general circulation model), which provides all relevant data. In this study, WACCM (Whole Atmosphere Community Climate Model) is used for conductivity calculations and an analysis of the effects of strong disturbances on the GEC. This includes volcanic eruptions of Pinatubo in 1991 and the super volcano Toba, polar stratospheric clouds, radioactive releases, and the recent strong galactic cosmic ray maximum. In general, there is a decrease in conductivity from enhanced aerosol number densities, resulting from volcanic eruptions or polar stratospheric clouds. Conductivity is increased by additional ionization sources such as radioactive releases, or galactic cosmic ray increases such as during the last solar minimum. The effects of such events on conductivity, column and total resistance, and estimate effects on current distribution and the earth-ionosphere potential difference will be quantified. Percentage change in conductivity at 20 km altitude two months after the Toba volcanic eruption (WACCM model simulation). The enhanced aerosol concentrations lead to a "conductivity hole" between 30°S and 45° N.

  11. New contactless eddy current non-destructive methodology for electric conductivity measurement

    NASA Astrophysics Data System (ADS)

    Bouchala, T.; Abdelhadi, B.; Benoudjit, A.

    2015-01-01

    In this paper, a new method of contactless electric conductivity measurement is developed. This method is essentially based on the association of the coupled electric field forward model, which we have recently developed, with a simple and efficient research algorithm. The proposed method is very fast because 1.3 s are sufficient to calculate electric conductivity, in a CPU of 2 GHz and RAM of 3 GB, for a starting research interval of 1.72-17.2 %IACS and tolerance of 1.72 × 10- 5 %IACS. The study of the calculation time according to mesh density and starting interval width has showed that an optimal choice has to be made in order to improve the rapidity while preserving its precision. Considering its rapidity and its simplicity of implementation, this method is more adapted, in comparison to direct current techniques using Van der Pauw geometry, for automated applications.

  12. Electrical conductivity enhancement in thermoplastic polyurethane-graphene nanoplatelet composites by stretch-release cycles

    NASA Astrophysics Data System (ADS)

    Cataldi, Pietro; Ceseracciu, Luca; Marras, Sergio; Athanassiou, Athanassia; Bayer, Ilker S.

    2017-03-01

    This study shows that electrical conductivity and elastic modulus of conductive thermoplastic elastomers containing graphene nanoplatelets (GnPs) can be significantly enhanced by exposing them to stretch-release cycles, without exceeding 20% of the maximum strain. Although no alignment of GnPs in any specific direction was detected, this enhancement was found to occur due to redistribution of the GnPs within the polymer matrix undergoing repeated stretch-release cycles. Up to 60% of reduction in electrical resistance and 30% enhancement in elastic modulus were measured for certain nanocomposites at the end of 1000 cycles. Processing of such GnP nanocomposites with stretch-release cycles could constitute an innovative approach to enhance their electrical and mechanical properties.

  13. Electric conductive pattern element fabricated using commercial inkjet printer for paper-based analytical devices.

    PubMed

    Matsuda, Yu; Shibayama, Shobu; Uete, Keigo; Yamaguchi, Hiroki; Niimi, Tomohide

    2015-06-02

    Herein, we proposed the addition of an inkjet-printed conductive pattern to paper-based analytical devices (PADs) in order to expand their applications. An electric conductive pattern was easily, quickly, and inexpensively fabricated using a commercial inkjet printer. The addition of a printed electric element will enhance the applications of PADs without the loss of properties such as cost efficiency, disposability, and portability. In this study, we applied an inkjet-printed heater to a piece of paper and investigated its characteristics. The use of the heater as a valve, concentrator, and heat source for chemical reactions on PADs was investigated. Previously, these functions were difficult to realize with PADs. The inkjet-printed heater was used as a valve and concentrator through evaporation of the working fluid and solvent, and was also found to be useful for providing heat for chemical reactions. Thus, the combination of printed electric circuits and PADs has many potential applications.

  14. Electrical conductivity anisotropy of partially molten peridotite under shear deformation

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Yoshino, T.; Yamazaki, D.; Manthilake, G. M.; Katsura, T.

    2013-12-01

    Recent ocean bottom magnetotelluric investigations have revealed a high-conductivity layer (HCL) with high anisotropy characterized by higher conductivity values in the direction parallel to the plate motion beneath the southern East Pacific Rise (Evans et al., 2005) and beneath the edge of the Cocos plate at the Middle America trench offshore of Nicaragua (Naif et al., 2013). These geophysical observations have been attributed to either hydration (water) of mantle minerals or the presence of partial melt. Currently, aligned partial melt has been regarded as the most preferable candidate for explaining the conductivity anisotropy because of the implausibility of proton conduction (Yoshino et al., 2006). In this study, we report development of the conductivity anisotropy between parallel and normal to shear direction on the shear plane in partial molten peridotite as a function of time and shear strain. Starting samples were pre-synthesized partial molten peridotite, showing homogeneous melt distribution. The partially molten peridotite samples were deformed in simple shear geometry at 1 GPa and 1723 K in a DIA-type apparatus with uniaxial deformation facility. Conductivity difference between parallel and normal to shear direction reached one order, which is equivalent to that observed beneath asthenosphere. In contrast, such anisotropic behavior was not found in the melt-free samples, suggesting that development of the conductivity anisotropy was generated under shear stress. Microstructure of the deformed partial molten peridotite shows partial melt tends to preferentially locate grain boundaries parallel to shear direction, and forms continuously thin melt layer sub-parallel to the shear direction, whereas apparently isolated distribution was observed on the section perpendicular to the shear direction. The resultant melt morphology can be approximated by tube like geometry parallel to the shear direction. This observation suggests that the development of

  15. Electroconvection of a poorly conducting fluid under unipolar charge injection in a steady electric field

    SciTech Connect

    Il’in, V. A. Mordvinov, A. N.; Petrov, D. A.

    2015-01-15

    We study the stability of equilibrium and nonlinear regimes of a nonuniformly heated poorly conducting fluid in a horizontal capacitor in the gravity field and in a dc electric field under a unipolar charge injection. A model in which the density of charges injected from the cathode is proportional to the electric field strength in the capacitor is considered. The dependences of critical parameters on the degree of heating and charge injection are determined. The effect of the Prandtl number on the equilibrium instability boundary and on the frequency of neutral vibrations is analyzed. Nonlinear regimes of electroconvection are studied for heating from below.

  16. Microstructural Inhomogeneity of Electrical Conductivity in Subcutaneous Fat Tissue

    PubMed Central

    Kruglikov, Ilja L.

    2015-01-01

    Microscopic peculiarities stemming from a temperature increase in subcutaneous adipose tissue (sWAT) after applying a radio-frequency (RF) current, must be strongly dependent on the type of sWAT. This effect is connected with different electrical conductivities of pathways inside (triglycerides in adipocytes) and outside (extra-cellular matrix) the cells and to the different weighting of these pathways in hypertrophic and hyperplastic types of sWAT. The application of the RF current to hypertrophic sWAT, which normally has a strongly developed extracellular matrix with high concentrations of hyaluronan and collagen in a peri-cellular space of adipocytes, can produce, micro-structurally, a highly inhomogeneous temperature distribution, characterized by strong temperature gradients between the peri-cellular sheath of the extra-cellular matrix around the hypertrophic adipocytes and their volumes. In addition to normal temperature effects, which are generally considered in body contouring, these temperature gradients can produce thermo-mechanical stresses on the cells’ surfaces. Whereas these stresses are relatively small under normal conditions and cannot cause any direct fracturing or damage of the cell structure, these stresses can, under some supportive conditions, be theoretically increased by several orders of magnitude, causing the thermo-mechanical cell damage. This effect cannot be realized in sWAT of normal or hyperplastic types where the peri-cellular structures are under-developed. It is concluded that the results of RF application in body contouring procedures must be strongly dependent on the morphological structure of sWAT. PMID:25734656

  17. Effect of repetitive laser pulses on the electrical conductivity of intervertebral disc tissue

    SciTech Connect

    Omel'chenko, A I; Sobol', E N

    2009-03-31

    The thermomechanical effect of 1.56-{mu}m fibre laser pulses on intervertebral disc cartilage has been studied using ac conductivity measurements with coaxial electrodes integrated with an optical fibre for laser radiation delivery to the tissue. The observed time dependences of tissue conductivity can be interpreted in terms of hydraulic effects and thermomechanical changes in tissue structure. The laserinduced changes in the electrical parameters of the tissue are shown to correlate with the structural changes, which were visualised using shadowgraph imaging. Local ac conductivity measurements in the bulk of tissue can be used to develop a diagnostic/monitoring system for laser regeneration of intervertebral discs. (laser biology and medicine)

  18. Electrical conduction mechanism in annealed and light soaked silver doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Tripathi, S. K.

    2015-08-01

    Thin films of silver (Ag) doped CdSe are prepared on glass substrates by thermal evaporation technique in inert gas atmosphere. SEM micrograph reveals uniform and homogenous distribution of nanoparticles on the glass substrates. The composition of the film is investigated by EDX analysis. Thin films are thermally annealed and light soaked to study the thermally and optically induced effect. Electrical conduction in annealed thin films exhibits different conduction mechanisms in low and high temperature region while conduction in light soaked thin films is single thermally activated process. The activation energies for dark and photoconductivities are also investigated.

  19. Investigation of changes in the electrical properties of novel knitted conductive textiles during cyclic loading.

    PubMed

    Isaia, Cristina; McNally, Donal; McMaster, Simon A; Branson, David T

    2016-08-01

    Combining stainless steel with polyester fibres adds an attractive conductive behaviour to the yarn. Once knitted in such a manner, fabrics develop sensing properties that make the textiles, also known as e-textiles, suitable for smart/wearable applications. Structural deformations of the fibres (e.g. stretching) will cause changes in the conductivity of the fabric. This work investigates changes in the electrical properties exhibited by four knitted conductive textiles made of 20% stainless steel and 80% polyester fibres during cyclic loading. The samples were preconditioned first with 500 hundred cycles of unidirectional elongation and, after a rest interval, tested again for repeatability at the same conditions. In both cases the electrical behaviour stabilises after a few tens of cycles. In particular the repeatability test exhibited a considerably smaller settling time and a larger resistance due to the mechanical stabilisation and the loosening of the fabrics, respectively. It was found that the current provided to the fabrics affects the resistance measurements by decreasing the resistance value at which the samples become electrically stable. The reported findings present a valid method for the electrical characterisation of conductive textiles for use in further studies as a wearable technology.

  20. Density, Electrical Conductivity and Viscosity of Hg(0.8)Cd(0.2)Te Melt

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Su, C.-H.; Lehoczky, S. L.

    2004-01-01

    The density, viscosity, and electrical conductivity of Hg(0.8)Cd(0.2)Te melt were measured as a function of temperature. A pycnometric method was used to measure the melt density in the temperature range of 1072 to 1122 K. The viscosity and electrical conductivity were determined using a transient torque method from 1068 to 1132 K. The density result from this study is within 0.3% of the published data. However, the current viscosity result is approximately 30% lower than the existing data. The electrical conductivity of Hg(0.8)Cd(0.2)Te melt as a function of temperature, which is not available in the literature, is also determined. The analysis of the temperature dependent electrical conductivity and the relationship between the kinematic viscosity and density indicated that the structure of the melt appeared to be homogeneous when the temperature was above 1090 K. A structural transition occurred in the Hg(0.8)Cd(0.2)Te melt as the temperature was decreased to below 1090 K

  1. Application of skin electrical conductance of acupuncture meridians for ureteral calculus: a case report.

    PubMed

    Lin, Wu-Chou; Chen, Yung-Hsiang; Xu, Jian-Ming; Chen, Der-Cherng; Chen, Wen-Chi; Lee, Chao-Te

    2011-01-01

    Renal colic is a common condition seen in the emergency department (ED). Our recent study showed that measures of electrical conductance may be used as supplementary diagnostic methods for patients with acute renal colic. Here, we describe the case of a 30-year-old male subject with a left ureteral calculus who presented with frequency and normal-looking urine. He had already visited the outpatient department, but in vain. Normal urinalysis and nonobstructive urogram were reported at that time. Two days later, he was admitted to the ED because of abdominal pain in the left lower quadrant. The urinalysis did not detect red blood cells. Ultrasonography did not indicate hydronephrosis. The meridian electrical conductance and index of sympathovagal balance were found to be abnormal. High level of electrical conductance on the left bladder meridian was found. An unenhanced helical computed tomography was scheduled to reveal a left ureterovesical stone. Ureteroscopic intervention was later uneventfully performed, and the patient's pain was relieved. The follow-up measurements showed that the meridian parameters had returned to normal one month after treatment. This case suggests that bladder meridian electrical conductance might be used as a supplemental method for ureteral calculus diagnosis.

  2. The Development of Electrically Conductive Polycaprolactone Fumarate-Polypyrrole Composite Materials for Nerve Regeneration

    PubMed Central

    Runge, M. Brett; Dadsetan, Mahrokh; Baltrusaitis, Jonas; Knight, Andrew M.; Ruesink, Terry; Lazcano, Eric; Lu, Lichun; Windebank, Anthony J.; Yaszemski, Michael J.

    2010-01-01

    Electrically conductive polymer composites composed of polycaprolactone fumarate and polypyrrole (PCLF-PPy) have been developed for nerve regeneration applications. Here we report the synthesis and characterization of PCLF-PPy and in vitro studies showing PCLF-PPy materials support both PC12 cell and dorsal root ganglia (DRG) neurite extension. PCLF-PPy composite materials were synthesized by polymerizing pyrrole in pre-formed PCLF scaffolds (Mn 7,000 or 18,000 g mol−1) resulting in interpenetrating networks of PCLF-PPy. Chemical compositions and thermal properties were characterized by ATR-FTIR, XPS, DSC, and TGA. PCLF-PPy materials were synthesized with five different anions (naphthalene-2-sulfonic acid sodium salt (NSA), dodecylbenzenesulfonic acid sodium salt (DBSA), dioctyl sulfosuccinate sodium salt (DOSS), potassium iodide (I), and lysine) to investigate effects on electrical conductivity and to optimize chemical composition for cellular compatibility. PCLF-PPy materials have variable electrical conductivity up to 6 mS cm−1 with bulk compositions ranging from 5 to 13.5 percent polypyrrole. AFM and SEM characterization show microstructures with a root mean squared (RMS) roughness of 1195 nm and nanostructures with RMS roughness of 8 nm. In vitro studies using PC12 cells and DRG show PCLF-PPy materials synthesized with NSA or DBSA support cell attachment, proliferation, neurite extension, and are promising materials for future studies involving electrical stimulation. PMID:20483452

  3. Sub-millimeter resolution electrical conductivity images of brain tissues using magnetic resonance-based electrical impedance tomography

    SciTech Connect

    Oh, Tong In; Jeong, Woo Chul; Sajib, Saurav Z. K.; Kim, Hyung Joong Woo, Eung Je; Kim, Hyun Bum; Kyung, Eun Jung; Kwon, Oh In

    2015-07-13

    Recent magnetic resonance (MR)-based electrical impedance tomography (MREIT) of in vivo animal and human subjects enabled the imaging of electromagnetic properties, such as conductivity and permittivity, on tissue structure and function with a few millimeter pixel size. At those resolutions, the conductivity contrast might be sufficient to distinguish different tissue type for certain applications. Since the precise measurement of electrical conductivity under the tissue levels can provide alternative information in a wide range of biomedical applications, it is necessary to develop high-resolution MREIT technique to enhance its availability. In this study, we provide the experimental evaluation of sub-millimeter resolution conductivity imaging method using a 3T MR scanner combined with a multi-echo MR pulse sequence, multi-channel RF coil, and phase optimization method. From the phantom and animal imaging results, sub-millimeter resolution exhibited similar signal-to-noise ratio of MR magnitude and noise levels in magnetic flux density comparing to the existing millimeter resolution. The reconstructed conductivity images at sub-millimeter resolution can distinguish different brain tissues with a pixel size as small as 350 μm.

  4. Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers.

    PubMed

    Huang, Jinghui; Hu, Xueyu; Lu, Lei; Ye, Zhengxu; Zhang, Quanyu; Luo, Zhuojing

    2010-04-01

    Electrical stimulation (ES) can dramatically enhance neurite outgrowth through conductive polymers and accelerate peripheral nerve regeneration in animal models of nerve injury. Therefore, conductive tissue engineering graft in combination with ES is a potential treatment for neural injuries. Conductive tissue engineering graft can be obtained by seeding Schwann cells on conductive scaffold. However, when ES is applied through the conductive scaffold, the impact of ES on Schwann cells has never been investigated. In this study, a biodegradable conductive composite made of conductive polypyrrole (PPy, 2.5%) and biodegradable chitosan (97.5%) was prepared in order to electrically stimulate Schwann cells. The tolerance of Schwann cells to ES was examined by a cell apoptosis assay. The growth of the cells was characterized using DAPI staining and a MTT assay. mRNA and protein levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in Schwann cells were assayed by RT-PCR and Western blotting, and the amount of NGF and BDNF secreted was determined by an ELISA assay. The results showed that the PPy/chitosan membranes supported cell adhesion, spreading, and proliferation with or without ES. Interestingly, ES applied through the PPy/chitosan composite dramatically enhanced the expression and secretion of NGF and BDNF when compared with control cells without ES. These findings highlight for the first time the possibility of enhancing nerve regeneration in conductive scaffolds through ES-increased neurotrophin secretion.

  5. Influence of Degree of Saturation in the Electric Resistivity-Hydraulic Conductivity Relationship

    NASA Astrophysics Data System (ADS)

    Khalil, Mohamed Ahmed; Monterio Santos, Fernando A.

    2009-11-01

    The relationship between aquifer hydraulic conductivity and aquifer resistivity, either measured on the ground surface by vertical electrical sounding (VES) or from resistivity logs, or measured in core samples have been published for different types of aquifers in different locations. Generally, these relationships are empirical and semi-empirical, and confined in few locations. This relation has a positive correlation in some studies and negative in others. So far, there is no potentially physical law controlling this relation, which is not completely understood. Electric current follows the path of least resistance, as does water. Within and around pores, the model of conduction of electricity is ionic and thus the resistivity of the medium is controlled more by porosity and water conductivity than by the resistivity of the rock matrix. Thus, at the pore level, the electrical path is similar to the hydraulic path and the resistivity should reflect hydraulic conductivity. We tried in this paper to study the effect of degree of groundwater saturation in the relation between hydraulic conductivity and bulk resistivity via a simple numerical analysis of Archie’s second law and a simplified Kozeny-Carmen equation. The study reached three characteristic non-linear relations between hydraulic conductivity and resistivity depending on the degree of saturation. These relations are: (1) An inverse power relation in fully saturated aquifers and when porosity equals water saturation, (2) An inverse polynomial relation in unsaturated aquifers, when water saturation is higher than 50%, higher than porosity, and (3) A direct polynomial relation in poorly saturated aquifers, when water saturation is lower than 50%, lower than porosity. These results are supported by some field scale relationships.

  6. Magnetoacoustic Tomography with Magnetic Induction for Electrical Conductivity based Tissue imaging

    NASA Astrophysics Data System (ADS)

    Mariappan, Leo

    Electrical conductivity imaging of biological tissue has attracted considerable interest in recent years owing to research indicating that electrical properties, especially electrical conductivity and permittivity, are indicators of underlying physiological and pathological conditions in biological tissue. Also, the knowledge of electrical conductivity of biological tissue is of interest to researchers conducting electromagnetic source imaging and in design of devices that apply electromagnetic energy to the body such as MRI. So, the need for a non-invasive, high resolution impedance imaging method is highly desired. To address this need we have studied the magnetoacoustic tomography with magnetic induction (MAT-MI) method. In MAT-MI, the object is placed in a static and a dynamic magnetic field giving rise to ultrasound waves. The dynamic field induces eddy currents in the object, and the static field leads to generation of acoustic vibrations from Lorentz force on the induced currents. The acoustic vibrations are at the same frequency as the dynamic magnetic field, which is chosen to match the ultrasound frequency range. These ultrasound signals can be measured by ultrasound probes and are used to reconstruct MAT-MI acoustic source images using possible ultrasound imaging approaches .The reconstructed high spatial resolution image is indicative of the object's electrical conductivity contrast. We have investigated ultrasound imaging methods to reliably reconstruct the MAT-MI image under the practical conditions of limited bandwidth and transducer geometry. The corresponding imaging algorithm, computer simulation and experiments are developed to test the feasibility of these different methods. Also, in experiments, we have developed a system with the strong static field of an MRI magnet and a strong pulsed magnetic field to evaluate MAT-MI in biological tissue imaging. It can be seen from these simulations and experiments that conductivity boundary images with

  7. Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation

    PubMed Central

    Ghazikhanlou-sani, K.; Firoozabadi, S. M. P.; Agha-ghazvini, L.; Mahmoodzadeh, H.

    2016-01-01

    Introduction There is many ways to assessing the electrical conductivity anisotropy of a tumor. Applying the values of tissue electrical conductivity anisotropy is crucial in numerical modeling of the electric and thermal field distribution in electroporation treatments. This study aims to calculate the tissues electrical conductivity anisotropy in patients with sarcoma tumors using diffusion tensor imaging technique. Materials and Method A total of 3 subjects were involved in this study. All of patients had clinically apparent sarcoma tumors at the extremities. The T1, T2 and DTI images were performed using a 3-Tesla multi-coil, multi-channel MRI system. The fractional anisotropy (FA) maps were performed using the FSL (FMRI software library) software regarding the DTI images. The 3D matrix of the FA maps of each area (tumor, normal soft tissue and bone/s) was reconstructed and the anisotropy matrix was calculated regarding to the FA values. Result The mean FA values in direction of main axis in sarcoma tumors were ranged between 0.475–0.690.  With assumption of isotropy of the electrical conductivity, the FA value of electrical conductivity at each X, Y and Z coordinate axes would be equal to 0.577. The gathered results showed that there is a mean error band of 20% in electrical conductivity, if the electrical conductivity anisotropy not concluded at the calculations. The comparison of FA values showed that there is a significant statistical difference between the mean FA value of tumor and normal soft tissues (P<0.05). Conclusion DTI is a feasible technique for the assessment of electrical conductivity anisotropy of tissues.  It is crucial to quantify the electrical conductivity anisotropy data of tissues for numerical modeling of electroporation treatments. PMID:27672627

  8. MDSC, electrical conductivity and optical absorption studies of 40B 2O 3-20CdO-(40-x)Bi 2O 3-xLi 2O glasses

    NASA Astrophysics Data System (ADS)

    Vijaya Kumar, R.; Srinivasu, Ch.; Siva Kumar, K.

    2011-02-01

    Quaternary glasses with composition 40B 2O 3-20CdO-(40-x)Bi 2O 3-xLi 2O where 0 ≤ x ≤ 40 were prepared by melt quench technique. The density of the glass samples which is evaluated by Archimedes method showed that the density increases with Bi 2O 3 content. The modulated differential scanning calorimetry (MDSC) studies have been done on these samples to evaluate various thermo dynamical parameters. The value of glass transition temperature (T g) decreases with the Li 2O content. The dc electrical conductivity studies revealed that the conductivity in these glass samples increases with Li 2O content, where as the activation energy decreases. Theoretical optical basicity values decreases with Li 2O content. The optical absorption studies revealed that the cutoff wavelength increases while optical band gap energy (E opt) and Urbach energy (Δ E) decreases with increase of Li 2O content. The E opt values of these glasses are found to be in the range 2.848-3.258 eV where as the values of Δ E lies in the range 0.21-0.33 eV.

  9. Modeling geomagnetic induction hazards using a 3-D electrical conductivity model of Australia

    NASA Astrophysics Data System (ADS)

    Wang, Liejun; Lewis, Andrew M.; Ogawa, Yasuo; Jones, William V.; Costelloe, Marina T.

    2016-12-01

    The surface electric field induced by external geomagnetic source fields is modeled for a continental-scale 3-D electrical conductivity model of Australia at periods of a few minutes to a few hours. The amplitude and orientation of the induced electric field at periods of 360 s and 1800 s are presented and compared to those derived from a simplified ocean-continent (OC) electrical conductivity model. It is found that the induced electric field in the Australian region is distorted by the heterogeneous continental electrical conductivity structures and surrounding oceans. On the northern coastlines, the induced electric field is decreased relative to the simple OC model due to a reduced conductivity contrast between the seas and the enhanced conductivity structures inland. In central Australia, the induced electric field is less distorted with respect to the OC model as the location is remote from the oceans, but inland crustal high-conductivity anomalies are the major source of distortion of the induced electric field. In the west of the continent, the lower conductivity of the Western Australia Craton increases the conductivity contrast between the deeper oceans and land and significantly enhances the induced electric field. Generally, the induced electric field in southern Australia, south of latitude -20°, is higher compared to northern Australia. This paper provides a regional indicator of geomagnetic induction hazards across Australia.

  10. Materials and methods for autonomous restoration of electrical conductivity

    DOEpatents

    Blaiszik, Benjamin J; Odom, Susan A; Caruso, Mary M; Jackson, Aaron C; Baginska, Marta B; Ritchey, Joshua A; Finke, Aaron D; White, Scott R; Moore, Jeffrey S; Sottos, Nancy R; Braun, Paul V; Amine, Khalil

    2014-03-25

    An autonomic conductivity restoration system includes a solid conductor and a plurality of particles. The particles include a conductive fluid, a plurality of conductive microparticles, and/or a conductive material forming agent. The solid conductor has a first end, a second end, and a first conductivity between the first and second ends. When a crack forms between the first and second ends of the conductor, the contents of at least a portion of the particles are released into the crack. The cracked conductor and the released contents of the particles form a restored conductor having a second conductivity, which may be at least 90% of the first conductivity.

  11. Differential fiber-specific block of nerve conduction in mammalian peripheral nerves using kilohertz electrical stimulation.

    PubMed

    Patel, Yogi A; Butera, Robert J

    2015-06-01

    Kilohertz electrical stimulation (KES) has been shown to induce repeatable and reversible nerve conduction block in animal models. In this study, we characterized the ability of KES stimuli to selectively block specific components of stimulated nerve activity using in vivo preparations of the rat sciatic and vagus nerves. KES stimuli in the frequency range of 5-70 kHz and amplitudes of 0.1-3.0 mA were applied. Compound action potentials were evoked using either electrical or sensory stimulation, and block of components was assessed through direct nerve recordings and muscle force measurements. Distinct observable components of the compound action potential had unique conduction block thresholds as a function of frequency of KES. The fast component, which includes motor activity, had a monotonically increasing block threshold as a function of the KES frequency. The slow component, which includes sensory activity, showed a nonmonotonic block threshold relationship with increasing KES frequency. The distinct trends with frequency of the two components enabled selective block of one component with an appropriate choice of frequency and amplitude. These trends in threshold of the two components were similar when studying electrical stimulation and responses of the sciatic nerve, electrical stimulation and responses of the vagus nerve, and sensorimotor stimulation and responses of the sciatic nerve. This differential blocking effect of KES on specific fibers can extend the applications of KES conduction block to selective block and stimulation of neural signals for neuromodulation as well as selective control of neural circuits underlying sensorimotor function.

  12. Electrically conducting polymers as templating interfaces for fabrication of copper nanotubes.

    PubMed

    Mushibe, Eliud K; Andala, Dickson; Murphy, Steven C; Raiti-Palazzolo, Kate; Duffy-Matzner, Jetty L; Jones, Wayne E

    2012-04-24

    Submicrometer tubes have been fabricated by a polymer-based template approach using electroless deposition. The copper was deposited on polystyrene fibers functionalized with an interfacial electrically conducting polyaniline thin film layer. Thermal degradation of the functionalized fiber templates resulted in copper tubes of diameter 1600 ± 50 nm with wall thicknesses ranging between 100 and 200 nm. The morphology and elemental analysis of copper coaxial fibers was analyzed using SEM and EDS. Electrical properties were analyzed using FTIR and PXRD was used to study crystal structure of copper nanotubes.

  13. Effect of graphitization on the wettability and electrical conductivity of CVD-carbon nanotubes and films.

    PubMed

    Mattia, D; Rossi, M P; Kim, B M; Korneva, G; Bau, H H; Gogotsi, Y

    2006-05-25

    The use of carbon nanomaterials in various applications requires precise control of their surface and bulk properties. In this paper, we present a strategy for modifying the surface chemistry, wettability, and electrical conductivity of carbon tubes and films through annealing in a vacuum. Experiments were conducted with 60-300 nm nanotubes (nanopipes), produced by noncatalytic chemical vapor deposition (CVD) in a porous alumina template, and with thin films deposited by the same technique on a glassy carbon substrate having the same structure and chemistry of the CNTs. The surface of the as-produced CVD-carbon, treated with sodium hydroxide to remove the alumina template, is hydrophilic, and the bulk electrical conductivity is lower by a factor of 20 than that of fully graphitic multiwalled nanotubes (MWNT) or bulk graphite. The bulk electrical conductivity increases to the conductivity of graphite after annealing at 2000 degrees C in a high vacuum. The analysis of CNTs by transmission electron microscopy (TEM) and Raman spectroscopy shows the ordering of carbon accompanied by an exponential increase of the in-plane crystallite size, L(a), with increasing annealing temperature. Environmental scanning electron microscopy (ESEM) was used to study the interaction of CNT with water, and contact angle measurements performed using the sessile drop method on CVD-carbon films demonstrate that the contact angle increases nearly linearly with increasing annealing temperature.

  14. Lightning path simulation based on the stepped leader: Electrical conductivity effects

    NASA Astrophysics Data System (ADS)

    Mendes, Odim; Domingues, Margarete Oliveira

    2005-09-01

    A numerical simulation for the stepped leader path in the earth atmosphere has been developed to study the influence of the tropospheric electric conductivity on the lightning behaviour. This model is based on the assumption that the leader path follows the gradient of the electric potential. In the model, the charge configuration (amount of charge and location), the variation of the atmospheric conductivity, the charge deposited along the leader channel and the charge at the leader tip are considered. A perfectly conducting ground surface and a curl-free electric field assumption are considered too. The result of the simulation is that the inclusion of an atmospheric conductivity of exponentially increasing value with height alters the percentage of positive cloud-to-ground flashes compared to that percentage obtained assuming a constant conductivity profile. A higher amount of positive flashes occur for high altitude (low latitude) clouds even in the case of little horizontal displacement between the positive and the negative dipole charges in the cloud, that is, with no significant wind shear in the horizontal wind. The simulation has shown that positive lightning, the most dangerous kind, can occur in clear air at great distances from the thundercloud, with safety risk implications.

  15. Tuning Thermal and Electrical Conductivities in Structure-engineered Nanowires for High-efficiency Thermoelectric Devices

    DTIC Science & Technology

    2011-09-30

    materials, which determines the efficiency of thermoelectric devices, because the three parameters such as Seebeck coefficient (S), electrical conductivity...predicted to be enhanced by size effects and quantum confinement effects providing the opportunities to control S, σ and κ independently. In...efficiency of thermoelectric devices, because the three parameters such as Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity

  16. D.C. electrical conductivity and conduction mechanism of some azo sulfonyl quinoline ligands and uranyl complexes.

    PubMed

    El-Ghamaz, N A; Diab, M A; El-Sonbati, A Z; Salem, O L

    2011-12-01

    Supramolecular coordination of dioxouranium(VI) heterochelates 5-sulphono-7-(4'-X phenylazo)-8-hydroxyquinoline HL(n) (n=1, X=CH(3); n=2, X=H; n=3, X=Cl; n=4, X=NO(2)) have been prepared and characterized with various physico-chemical techniques. The infrared spectral studies showed a monobasic bidentate behavior with the oxygen and azonitrogen donor system. The temperature dependence of the D.C. electrical conductivity of HL(n) ligands and their uranyl complexes has been studied in the temperature range 305-415 K. The thermal activation energies E(a) for HL(n) compounds were found to be in the range 0.44-0.9 eV depending on the nature of the substituent X. The complexation process decreased E(a) values to the range 0.043-045 eV. The electrical conduction mechanism has been investigated for all samples under investigation. It was found to obey the variable range hopping mechanism (VRH).

  17. Intercomponent momentum transport and electrical conductivity of collisionless plasma

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1973-01-01

    Based on the Lenard-Balescu equation, the interaction integral for the intercomponent momentum transfer in a two-component, collisionless plasma is evaluated in closed form. The distribution functions of the electrons and ions are represented in the form of nonisothermal, displaced Maxwellians corresponding to the 5-moment approximation. As an application, the transport of electrical current in an electric field is discussed for infrasonic up to sonic electron-ion drift velocities.

  18. Nonlinear optical and electrical conductivity properties of Carbon Nanotubes (CNT) doped in Sol-Gel matrices

    NASA Astrophysics Data System (ADS)

    Pokrass, Mariana; Burshtein, Zeev; Bar, Galit; Gvishi, Raz

    2014-09-01

    Carbon-nanotubes (CNT) are fascinating compounds, exhibiting exceptional electrical, thermal conductivity, mechanical strength, and nonlinear optical (NLO) properties. Their unique structures involve large π-π* electronic clouds. The energy level schemes thus created allow many electronic transitions between the ground and the excited states. The present work involves CNT-doped hybrid organic-inorganic glass composites prepared by a Fast-sol-gel method. Such composite glasses solidify without shrinkage or crack formation, and exhibit promising properties as optical devices. In this work we have studied nonlinear optical and electrical conductivity properties. The CNT composite glasses exhibited enhanced absorption at 532 nm, and saturable absorption at 1064 nm. The enhanced absorption at 532 was attributed to 2-photon absorption; saturable absorption was attributed to depletion of the absorbing ground-state, and was analyzed using the modified Frantz-Nodvik equation. Absorption cross-sections were extracted for the saturable absorption phenomenon. Such CNT composites glasses may be used as "optical limiting" filters in lasers near 532 nm, or as saturable absorbing filters for passive laser Q-switching near 1064 nm. The CNT composites electrical conductivity was studied as a function of the CNT concentration and modeled by a percolation theory. The maximal measured conductivity was σ ≍10-3 (Ωcm)-1 for the CNT composites, representing a conductivity increase of at least 12 orders of magnitude compared to that of pure silica. A quite low percolation threshold was obtained, φc = 0.22 wt.% CNT. Electrostatic Force Microscopy (EFM) and Conductive mode Atomic Force Microscopy (C-AFM) studies revealed that the conductivity occurs at the micro-level among the CNTs dispersed in the matrix.

  19. Rock matrix diffusivity determinations by in-situ electrical conductivity measurements.

    PubMed

    Ohlsson, Y; Löfgren, M; Neretnieks, I

    2001-02-01

    A fast method to determine rock matrix diffusion properties directly in the bedrock would be valuable in the investigation of a possible site for disposal of nuclear waste. An "effective diffusivity borehole log" would provide important information on the variability of this entity over the area studied. As opposed to traditional matrix diffusion laboratory experiments, electrical conductivity measurements are fast, inexpensive and also easy to carry out in-situ. In this study, electrical resistivity data from borehole logging, as well as from measurements on the actual core, is evaluated with the purpose of extracting matrix diffusivity data. The influence of migration of ions in the electrical double layer, which can be of great importance in low ionic strength pore water, is also considered in evaluating the in-situ data to accurately determine the effective pore diffusivity. The in-situ data compare fairly well to those measured in the rock core.

  20. Electrical and thermal conductivity of low temperature CVD graphene: the effect of disorder.

    PubMed

    Vlassiouk, Ivan; Smirnov, Sergei; Ivanov, Ilia; Fulvio, Pasquale F; Dai, Sheng; Meyer, Harry; Chi, Miaofang; Hensley, Dale; Datskos, Panos; Lavrik, Nickolay V

    2011-07-08

    In this paper we present a study of graphene produced by chemical vapor deposition (CVD) under different conditions with the main emphasis on correlating the thermal and electrical properties with the degree of disorder. Graphene grown by CVD on Cu and Ni catalysts demonstrates the increasing extent of disorder at low deposition temperatures as revealed by the Raman peak ratio, IG/ID. We relate this ratio to the characteristic domain size, La, and investigate the electrical and thermal conductivity of graphene as a function of La. The electrical resistivity, ρ, measured on graphene samples transferred onto SiO2/Si substrates shows linear correlation with La(-1). The thermal conductivity, K, measured on the same graphene samples suspended on silicon pillars, on the other hand, appears to have a much weaker dependence on La, close to K∼La1/3. It results in an apparent ρ∼K3 correlation between them. Despite the progressively increasing structural disorder in graphene grown at lower temperatures, it shows remarkably high thermal conductivity (10(2)-10(3) W K(-1) m(-1)) and low electrical (10(3)-3×10(5) Ω) resistivities suitable for various applications.

  1. Conductivity, electric field and electron drift velocity within the equatorial electrojet

    NASA Astrophysics Data System (ADS)

    Rastogi, R. G.; Chandra, H.

    2006-08-01

    Rocket-borne in-situ measurements of electron density and current density made from Thumba, India, on four occasions between 1966 and 1973 and on one flight from Peru in 1965 are studied along with the corresponding ground magnetometer data. The Cowling conductivity is computed using the yearly mean magnetic field values of 1965 and the atmospheric density values from the MSIS 1986 model. The rocket-borne measurements from Thumba cover different geophysical conditions of strong, moderate and partial counter-electrojet events. The vertical profiles of the measured current density and electron density are presented along with the computed Cowling conductivity, electron drift velocity and electric field. The peak current density occurred at 106-107 km over Thumba and at 109 km over Peru compared to 104 km over Brazil. Cowling conductivity peaks occurred at 102 km over Huancayo and 101 km over Thumba, while electron drift velocity and electric field peaks occurred at approximately 105-107 km over Thumba, 108 and 110 km over Huancayo and 104 km over Brazil, respectively. While the electron density near the level of peak current density shows some variability, electron drift velocity and electric field show large variability. We conclude that the local electric field plays an important role in the spatial and temporal variability of the strength of the electrojet.

  2. Controllable magnitude and anisotropy of the electrical conductivity of Hf3C2O2 MXene

    NASA Astrophysics Data System (ADS)

    Zha, Xian-Hu; Zhou, Jie; Luo, Kan; Lang, Jiajian; Huang, Qing; Zhou, Xiaobing; Francisco, Joseph S.; He, Jian; Du, Shiyu

    2017-04-01

    Hf3C2O2, a new MXene member synthesized recently, was predicted to be a semi-metal with high mechanical strength. Based on the unique electronic structure, the energy bands and electrical conductivities of the MXene under various strains are comprehensively investigated in this paper. Biaxial and two orthogonal uniaxial strains in both compressive and tensile manners are studied. Results from this study suggest that Hf3C2O2 shows a transition between semi-metal and semi-conductor under both biaxial and uniaxial strains. A compressive strain generally induces a larger energy overlap between the conduction band minimum and the valance band maximum, while a tensile strain reduces the energy band overlap and even opens a band gap. As a consequence, the magnitude of electrical conductivity decreases drastically from compressive to tensile strains applied. Moreover, the uniaxial strains are determined to be efficient in manipulating the anisotropy of the electrical conductivity. These data imply that the Hf3C2O2 MXene is a promising candidate material for devices such as strain sensors.

  3. Electrical conductivity measurements of bacterial nanowires from Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Maruthupandy, Muthusamy; Anand, Muthusamy; Maduraiveeran, Govindhan; Sait Hameedha Beevi, Akbar; Jeeva Priya, Radhakrishnan

    2015-12-01

    The extracellular appendages of bacteria (flagella) that transfer electrons to electrodes are called bacterial nanowires. This study focuses on the isolation and separation of nanowires that are attached via Pseudomonas aeruginosa bacterial culture. The size and roughness of separated nanowires were measured using transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively. The obtained bacterial nanowires indicated a clear image of bacterial nanowires measuring 16 nm in diameter. The formation of bacterial nanowires was confirmed by microscopic studies (AFM and TEM) and the conductivity nature of bacterial nanowire was investigated by electrochemical techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), which are nondestructive voltammetry techniques, suggest that bacterial nanowires could be the source of electrons—which may be used in various applications, for example, microbial fuel cells, biosensors, organic solar cells, and bioelectronic devices. Routine analysis of electron transfer between bacterial nanowires and the electrode was performed, providing insight into the extracellular electron transfer (EET) to the electrode. CV revealed the catalytic electron transferability of bacterial nanowires and electrodes and showed excellent redox activities. CV and EIS studies showed that bacterial nanowires can charge the surface by producing and storing sufficient electrons, behave as a capacitor, and have features consistent with EET. Finally, electrochemical studies confirmed the development of bacterial nanowires with EET. This study suggests that bacterial nanowires can be used to fabricate biomolecular sensors and nanoelectronic devices.

  4. Electrical conductivity channels in the atmosphere produced by relativistic-electron microbursts from the magnetosphere

    NASA Astrophysics Data System (ADS)

    Borovsky, Joseph E.

    2017-03-01

    The properties of a cylindrical-shaped magnetic-field-aligned channel of electrical conductivity produced by the precipitation of relativistic-electrons into the atmosphere during a spatially localized magnetospheric microburst are estimated. The conducting channel connects the middle atmosphere ( 50 km) to the ionosphere. A channel diameter of 8 km with an electric conductivity of 1.2×10-9 Ω-1m-1 near the bottom and 1.8×10-7 Ω-1m-1 higher up is found. In the fair-weather electric field, the higher-conductivity portions of the channel can carry substantial electrical currents.

  5. Electrical Transport in Semiconductor Nanoparticle Arrays: Conductivity, Sensing and Modeling

    NASA Astrophysics Data System (ADS)

    Hartner, Sonja; Schwesig, Dominik; Plümel, Ingo; Wolf, Dietrich E.; Lorke, Axel; Wiggers, Hartmut

    Electrical properties of nanoparticle ensembles are dominated by interparticle transport processes, mainly due to particle-particle and particle-contact interactions. This makes their electrical properties dependent on the network properties such as porosity and particle size and is a main prerequisite for solid- state gas sensors, as the surrounding gas atmosphere influences the depletion layer surrounding each particle. Different kinds of nanoparticle arrays such as pressed pellets, printed layer, and thin films prepared by molecular beam-assisted deposition are characterized with respect to their electrical transport properties. Experimental results are shown for the electrical and sensing properties of several metal oxide nanoparticle ensembles and the influence of porosity is investigated during compaction of nanoparticle powders exposed to an external force. A model describing these properties is developed and it is shown that for a given material only porosity, geometry, and particle size influence the overall electrical properties. The model developed for the description of current transport in particulate matter can also be utilized to describe current-assisted sintering.

  6. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering.

    PubMed

    Chen, Mei-Chin; Sun, Yu-Chin; Chen, Yuan-Hsiang

    2013-03-01

    Recent trends in scaffold design have focused on materials that can provide appropriate guidance cues for particular cell types to modulate cell behavior. In this study highly aligned and electrically conductive nanofibers that can simultaneously provide topographical and electrical cues for cells were developed. Thereafter their potential to serve as functional scaffolds for skeletal muscle tissue engineering was investigated. Well-ordered nanofibers, composed of polyaniline (PANi) and poly(ε-caprolactone) (PCL), were electrospun by introducing an external magnetic field in the collector region. Incorporation of PANi into PCL fibers significantly increased the electrical conductivity from a non-detectable level for the pure PCL fibers to 63.6±6.6mS cm(-1) for the fibers containing 3wt.% PANi (PCL/PANi-3). To investigate the synergistic effects of topographical and electrical cues using the electrospun scaffolds on skeletal myoblast differentiation, mouse C2C12 myoblasts were cultured on random PCL (R-PCL), aligned PCL (A-PCL), random PCL/PANi-3 (R-PCL/PANi) and aligned PCL/PANi-3 (A-PCL/PANi) nanofibers. Our results showed that the aligned nanofibers (A-PCL and A-PCL/PANi) could guide myoblast orientation and promote myotube formation (i.e. approximately 40% and 80% increases in myotube numbers) compared with R-PCL scaffolds. In addition, electrically conductive A-PCL/PANi nanofibers further enhanced myotube maturation (i.e. approximately 30% and 23% or 15% and 18% increases in the fusion and maturation indices) compared with non-conductive A-PCL scaffolds or R-PCL/PANi. These results demonstrated that a combined effect of both guidance cues was more effective than an individual cue, suggesting a potential use of A-PCL/PANi nanofibers for skeletal muscle regeneration.

  7. Distribution of Dense and Current-Conducting Matter in the Discharge Channel upon Electrical Explosion of Wires in Vacuum

    SciTech Connect

    Tkachenko, Svetlana; Romanova, Vera; Mingaleev, Albert; Ter-Oganesyan, Alexey; Shelkovenko, Tatiana; Pikuz, Sergey

    2009-01-21

    Distribution of dense and current-conducting matter upon electrical wire explosion using electrical, optical, and UV diagnostics was studied. Wires of 25 {mu}m diameter and 12 mm length were exploded in vacuum by 10 kA current pulse having a 50 A/ns rate of current rise.

  8. Spatial relationship between the productivity of cane sugar and soil electrical conductivity measured by electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Siqueira, Glecio; Silva, Jucicléia; Bezerra, Joel; Silva, Enio; Montenegro, Abelardo

    2013-04-01

    The cultivation of sugar cane in Brazil occupies a prominent place in national production chain, because the country is the main world producer of sugar and ethanol. Accordingly, studies are needed that allow an integrated production and technified, and especially that estimates of crops are consistent with the actual production of each region. The objective of this study was to determine the spatial relationship between the productivity of cane sugar and soil electrical conductivity measured by electromagnetic induction. The field experiment was conducted at an agricultural research site located in Goiana municipality, Pernambuco State, north-east of Brazil (Latitude 07 ° 34 '25 "S, Longitude 34 ° 55' 39" W). The surface of the studied field is 6.5 ha, and its mean height 8.5 m a.s.l. This site has been under sugarcane (Saccharum officinarum sp.) monoculture during the last 24 years and it was managed burning the straw each year after harvesting, renewal of plantation was performed every 7 years. Studied the field is located 10 km east from Atlantic Ocean and it is representative of the regional landscape lowlands, whose soils are affected by salinity seawater, sugarcane plantations with the main economical activity. Soil was classified an orthic the Podsol. The productivity of cane sugar and electrical conductivity were measured in 90 sampling points. The productivity of cane sugar was determined in each of the sampling points in plots of 9 m2. The Apparent soil electrical conductivity (ECa, mS m-1) was measured with an electromagnetic induction device EM38-DD (Geonics Limited). The equipment consists of two units of measurement, one in a horizontal dipole (ECa-H) to provide effective measurement distance of 1.5 m approximately and other one in vertical dipole (ECa-V) with an effective measurement depth of approximately 0.75 m. Data were analyzed using descriptive statistics and geostatistical tools. The results showed that productivity in the study area

  9. Effect of porosity on electrical conduction of simulated nanostructures by Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Dariani, R. S.; Abbas Hadi, N.

    2016-09-01

    Electrical conduction of deposited nanostructures is studied by oblique angle deposition. At first, a medium is simulated as nanocolumns by Monte Carlo method, then the effects of porosity on electron transport in 1D and 2D are investigated. The results show that more electrons transfer in media with low porosity, but with increasing porosity, the distance between nanocolumns expands and less electrons transfer. Therefore, the transport current reduces at the surface.

  10. Resolving electrical conductivities from collisionally damped plasmons in isochorically heated warm dense aluminum

    SciTech Connect

    Sperling, P.; Fletcher, L. B.; Chung, H. -K.; Gamboa, E. J.; Lee, H. J.; Omarbakiyeva, Y.; Reinholz, H.; Ropke, G.; Rosmej, S.; Zastrau, U.; Glenzer, S. H.

    2016-03-29

    We measure the highly-resolved inelastic x-ray scattering spectrum of isochorically ultrafast heated aluminum. In the x-ray forward scattering spectra the electron temperature could be measured from the down- and upshifted plasmon, where the electron density of ne = 1:8 1023 cm3 is known a priori. We have studied the plasmon damping by applying electron-particle collision models beyond the Born approximation determining the electrical conductivity of warm dense aluminum.

  11. Electric conductivity for laboratory and field monitoring of induced partial saturation (IPS) in sands

    NASA Astrophysics Data System (ADS)

    Kazemiroodsari, Hadi

    Liquefaction is loss of shear strength in fully saturated loose sands caused by build-up of excess pore water pressure, during moderate to large earthquakes, leading to catastrophic failures of structures. Currently used liquefaction mitigation measures are often costly and cannot be applied at sites with existing structures. An innovative, practical, and cost effective liquefaction mitigation technique titled "Induced Partial Saturation" (IPS) was developed by researchers at Northeastern University. The IPS technique is based on injection of sodium percarbonate solution into fully saturated liquefaction susceptible sand. Sodium percarbonate dissolves in water and breaks down into sodium and carbonate ions and hydrogen peroxide which generates oxygen gas bubbles. Oxygen gas bubbles become trapped in sand pores and therefore decrease the degree of saturation of the sand, increase the compressibility of the soil, thus reduce its potential for liquefaction. The implementation of IPS required the development and validation of a monitoring and evaluation technique that would help ensure that the sands are indeed partially saturated. This dissertation focuses on this aspect of the IPS research. The monitoring system developed was based on using electric conductivity fundamentals and probes to detect the transport of chemical solution, calculate degree of saturation of sand, and determine the final zone of partial saturation created by IPS. To understand the fundamentals of electric conductivity, laboratory bench-top tests were conducted using electric conductivity probes and small specimens of Ottawa sand. Bench-top tests were used to study rate of generation of gas bubbles due to reaction of sodium percarbonate solution in sand, and to confirm a theory based on which degree of saturation were calculated. In addition to bench-top tests, electric conductivity probes were used in a relatively large sand specimen prepared in a specially manufactured glass tank. IPS was

  12. A practical approach to lake water density from electrical conductivity and temperature

    NASA Astrophysics Data System (ADS)

    Moreira, Santiago; Schultze, Martin; Rahn, Karsten; Boehrer, Bertram

    2016-07-01

    Density calculations are essential to study stratification, circulation patterns, internal wave formation and other aspects of hydrodynamics in lakes and reservoirs. Currently, the most common procedure is the use of CTD (conductivity, temperature and depth) profilers and the conversion of measurements of temperature and electrical conductivity into density. In limnic waters, such approaches are of limited accuracy if they do not consider lake-specific composition of solutes, as we show. A new approach is presented to correlate density and electrical conductivity, using only two specific coefficients based on the composition of solutes. First, it is necessary to evaluate the lake-specific coefficients connecting electrical conductivity with density. Once these coefficients have been obtained, density can easily be calculated based on CTD data. The new method has been tested against measured values and the most common equations used in the calculation of density in limnic and ocean conditions. The results show that our new approach can reproduce the density contribution of solutes with a relative error of less than 10 % in lake waters from very low to very high concentrations as well as in lakes of very particular water chemistry, which is better than all commonly implemented density calculations in lakes. Finally, a web link is provided for downloading the corresponding density calculator.

  13. Imaging the deep electrical conductivity structure of the Rennick Graben (North Victoria Land, Antartide)

    NASA Astrophysics Data System (ADS)

    Armadillo, E.; Tabellario, G.; Bozzo, E.; Caneva, G.

    2003-04-01

    A preliminary interpretation of the electrical conductivity structures beneath the Rennick Graben is presented based on Geomagnetic Depth Soundings (GDS) carried out the BACKTAM expedition (1999/2000). The Rennick Graben is the most important Cenozoic tectonics structure of NVL, a region of dominating NW-SE trending dextral slip. Its formation is framed in the contest of Austalia-Antarctica spreading and its study is fundamental to understanding the recent Meso-Cenozoic tectonics. The GDS provides a view on the internal conductivity distribution, of a region of interest, from measurements of the geomagnetic transient variations at discrete geographical points. In the initial stages of data processing, an advanced robust regression technique proposed by Egbert and Booker (1986), is applied to derive transfer functions used to diagnose the lateral conductivity distribution in the study region. The presentation of the transfer functions in the form of induction arrow helps to identify regions of enhanced conductivity. In this study we have considered the shorter periods, in the range 20-170 s, that are suitable to crustal investigations. The qualitative analysis of the induction arrows reveals an approximately 2D regional electrical conductivity pattern with a clear differentation between the three Terrains crossed by the GDS transect: the Robertson Bay, the Bowers and the Wilson Terrain. For the two dimensional inversion of our data set we have adopted the efficient variant of Siripunvaraporn and Egbert (2000) of the Occam inversion approach. Two dimensional models reveal a deep electrical conductivity anomaly (approximately 20-50 km) on the east side of the Rennick. Lateral discontinuities seem to be related with the Leap Year Fault and the Lanterman Fault on the east and the Daniels Range on the west.

  14. On the correlation of electrical conductivity and heat flow in Middle Valley, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Webb, Spahr C.; Edwards, R. Nigel

    1995-11-01

    The near-surface electrical conductivity has been mapped within an area of Middle Valley, a sediment-filled axial valley at the northern end of the Juan de Fuca ridge. The conductivity in the uppermost 20 m of sediment was determined by analyzing the magnetic field signal transmitted between a source coil and a receiver that were towed along the seafloor. The instrument is a version of a time domain electromagnetic (TDEM) sounding system. The heat flow pattern within Middle Valley, with a large central anomaly above a basement high, is reproduced by the conductivity measurements, the result of enhanced pore fluid electrical conductivity due to higher near-surface temperatures in the high heat flow regions. The high correlation between heat flow and conductivity requires that porosity as inferred from Archie's law must be nearly uniform in the central part of the study area. Porosities derived from the conductivity measurements are in close agreement with measurements from the Ocean Drilling Project (ODP) boreholes. Higher near-surface porosities are required in the eastern part of the valley to match the observed heat flow, consistent with the higher porosity seen at ODP site 855. A small region of apparently lower porosity was detected to the west of the center of the valley.

  15. 3D imaging of soil apparent electrical conductivity from VERIS data using a 1D spatially constrained inversion algorithm

    NASA Astrophysics Data System (ADS)

    Jesús Moral García, Francisco; Rebollo Castillo, Francisco Javier; Monteiro Santos, Fernando

    2016-04-01

    Maps of apparent electrical conductivity of the soil are commonly used in precision agriculture to indirectly characterize some important properties like salinity, water, and clay content. Traditionally, these studies are made through an empirical relationship between apparent electrical conductivity and properties measured in soil samples collected at a few locations in the experimental area and at a few selected depths. Recently, some authors have used not the apparent conductivity values but the soil bulk conductivity (in 2D or 3D) calculated from measured apparent electrical conductivity through the application of an inversion method. All the published works used data collected with electromagnetic (EM) instruments. We present a new software to invert the apparent electrical conductivity data collected with VERIS 3100 and 3150 (or the more recent version with three pairs of electrodes) using the 1D spatially constrained inversion method (1D SCI). The software allows the calculation of the distribution of the bulk electrical conductivity in the survey area till a depth of 1 m. The algorithm is applied to experimental data and correlations with clay and water content have been established using soil samples collected at some boreholes. Keywords: Digital soil mapping; inversion modelling; VERIS; soil apparent electrical conductivity.

  16. Different clinical electrodes achieve similar electrical nerve conduction block

    NASA Astrophysics Data System (ADS)

    Boger, Adam; Bhadra, Narendra; Gustafson, Kenneth J.

    2013-10-01

    Objective. We aim to evaluate the suitability of four electrodes previously used in clinical experiments for peripheral nerve electrical block applications. Approach. We evaluated peripheral nerve electrical block using three such clinical nerve cuff electrodes (the Huntington helix, the Case self-sizing Spiral and the flat interface nerve electrode) and one clinical intramuscular electrode (the Memberg electrode) in five cats. Amplitude thresholds for the block using 12 or 25 kHz voltage-controlled stimulation, onset response, and stimulation thresholds before and after block testing were determined. Main results. Complete nerve block was achieved reliably and the onset response to blocking stimulation was similar for all electrodes. Amplitude thresholds for the block were lowest for the Case Spiral electrode (4 ± 1 Vpp) and lower for the nerve cuff electrodes (7 ± 3 Vpp) than for the intramuscular electrode (26 ± 10 Vpp). A minor elevation in stimulation threshold and reduction in stimulus-evoked urethral pressure was observed during testing, but the effect was temporary and did not vary between electrodes. Significance. Multiple clinical electrodes appear suitable for neuroprostheses using peripheral nerve electrical block. The freedom to choose electrodes based on secondary criteria such as ease of implantation or cost should ease translation of electrical nerve block to clinical practice.

  17. Electrochemical intercalation and electrical conductivity of graphite fibers

    NASA Technical Reports Server (NTRS)

    Besenhard, J. O.; Fritz, H. P.; Moehwald, H.; Nickl, J. J.

    1982-01-01

    Lamellar compounds of graphite fibers were prepared by electrochemical intercalation. The dependence of the electrical resistance on the intercalate concentration was determined by a quasi simultaneous method. A factor 30 decrease of the relative fiber resistance was obtained with fluorosulfuric acid.

  18. Multi-organ effects of Conducted Electrical Weapons (CEW) -- a review.

    PubMed

    Biria, Mazda; Bommana, Sudharani; Kroll, Mark; Panescu, Dorin; Lakkireddy, Dhanunjaya

    2010-01-01

    Since the introduction of the Conducted Electrical Weapons (CEW) several studies have been conducted and multiple reports have been published on safety of these devices from a medical point of view. Use of these devices in different situations and reported deaths attracts media attention and causes general anxiety around these devices. These devices have several limitations- such as rate of fire or maximum effective range in comparison to fire arms. Here we wish to review medical publications regarding the safety of these devices based on different systems.

  19. Evaluation of electrical conductivity and equations of state of non-ideal plasma through microsecond timescale underwater electrical wire explosion

    SciTech Connect

    Sheftman, D.; Krasik, Ya. E.

    2011-09-15

    Experimental and simulation results of underwater electrical Cu, Al, and W wire explosions in the microsecond timescale are presented. It was shown that the electrical conductivity results for Cu and Al agree well with modified Lee-More and quantum molecular dynamic models for temperatures above 10 kK. The equation of state (EOS) values based on SESAME tables for Cu and Al were slightly modified for intermediate temperatures in order to obtain fitting between experimental and simulated exploding wire radial expansion. Also, it was shown that the electrical conductivity results and the EOS evaluation differ significantly from the results obtained in nanosecond timescale experiments. Finally, it was found that underwater electrical W wire explosion is characterized by the appearance of non-uniformities along the z-axis of the wire. This phenomena adds uncertainty to the possibility of applying this type of experiments for evaluation of the electrical conductivity and EOS of W.

  20. Evaluation of electrical conductivity and equations of state of non-ideal plasma through microsecond timescale underwater electrical wire explosion

    NASA Astrophysics Data System (ADS)

    Sheftman, D.; Krasik, Ya. E.

    2011-09-01

    Experimental and simulation results of underwater electrical Cu, Al, and W wire explosions in the microsecond timescale are presented. It was shown that the electrical conductivity results for Cu and Al agree well with modified Lee-More and quantum molecular dynamic models for temperatures above 10 kK. The equation of state (EOS) values based on SESAME tables for Cu and Al were slightly modified for intermediate temperatures in order to obtain fitting between experimental and simulated exploding wire radial expansion. Also, it was shown that the electrical conductivity results and the EOS evaluation differ significantly from the results obtained in nanosecond timescale experiments. Finally, it was found that underwater electrical W wire explosion is characterized by the appearance of non-uniformities along the z-axis of the wire. This phenomena adds uncertainty to the possibility of applying this type of experiments for evaluation of the electrical conductivity and EOS of W.

  1. Enhancement of local electrical conductivities in SiC by femtosecond laser modification

    NASA Astrophysics Data System (ADS)

    Deki, Manato; Ito, Takuto; Yamamoto, Minoru; Tomita, Takuro; Matsuo, Shigeki; Hashimoto, Shuichi; Kitada, Takahiro; Isu, Toshiro; Onoda, Shinobu; Ohshima, Takeshi

    2011-03-01

    Enhancement of local electric conductivities induced by femtosecond laser modification in silicon carbide was studied. Current-voltage (I-V) characteristics of the laser-modified regions were measured between the ion-implanted metal contacts. Interestingly, the resistance sharply decreased in the fluence range from 5.0 to 6.7 J/cm2. The resistance at the irradiation fluence of 53 J/cm2 decreased by more than six orders of magnitude compared with the nonirradiated one. From the I-V characteristics and the scanning electron microscope observations, we conclude that the phase separation associate with the formation of classical laser induced periodic structure causes the drastic increase in electric conductivity.

  2. Enhancement of local electrical conductivities in SiC by femtosecond laser modification

    SciTech Connect

    Deki, Manato; Ito, Takuto; Yamamoto, Minoru; Tomita, Takuro; Matsuo, Shigeki; Hashimoto, Shuichi; Kitada, Takahiro; Isu, Toshiro; Onoda, Shinobu; Ohshima, Takeshi

    2011-03-28

    Enhancement of local electric conductivities induced by femtosecond laser modification in silicon carbide was studied. Current-voltage (I-V) characteristics of the laser-modified regions were measured between the ion-implanted metal contacts. Interestingly, the resistance sharply decreased in the fluence range from 5.0 to 6.7 J/cm{sup 2}. The resistance at the irradiation fluence of 53 J/cm{sup 2} decreased by more than six orders of magnitude compared with the nonirradiated one. From the I-V characteristics and the scanning electron microscope observations, we conclude that the phase separation associate with the formation of classical laser induced periodic structure causes the drastic increase in electric conductivity.

  3. Electrical conductivity measurements of aqueous electrolyte solutions at high temperatures and high pressures

    SciTech Connect

    Ho, P.C.; Palmer, D.A.

    1995-02-01

    In aqueous solutions all electrolytes tend to associate at high temperatures (low dielectric constants). Ion association results in the formation of uncharged substrates, which are substantially more volatile than their precursor ions. Thus knowledge of the association constants is important in interpreting the thermodynamics of the partitioning of electrolytes to the vapor phase in a fully speciated approach. Electrical conductance measurements provide a unique window into ionic interactions of solutions at high temperatures and pressures. In this study, the electrical conductivities of dilute (<0.1 molal) aqueous solutions of NaCl (100-600{degrees}C to 300 MPa) and sodium and potassium hydroxides (0-600 and 100-600{degrees}C, respectively, and to 300 MPa) were measured. The results show that the extent of association of Na{sup +} and Cl{sup -} is similar to those for Na{sup +} and K{sup +} with OH{sup -} in solution from subcritical to supercritical conditions.

  4. Electrical conductivity of diopside: evidence for oxygen vacancies

    USGS Publications Warehouse

    Huebner, J.S.; Voigt, D.E.

    1988-01-01

    Impedance spectra for two natural single crystals of diopside were obtained at 800 to 1300??C and 1-bar pressure over the frequency range 0.001 Hz to 100 kHz in a system closed to all components but oxygen. At both higher and lower fO2 values, no fO2 dependence of conductivity was observed, indicating the presence of different conduction mechanisms. At temperatures less than 1000??C, the activation energy is 1.3 eV, also suggesting a different conduction mechanism. Thus, at least four regimes are necessary to describe the conductivity of this diopside in T-fO2 space. The approximately -1/(7 ?? 1) value of d(log ??)/d(log fO2) in a high-temperature geologic region suggests a reaction by which oxygen vacancies control the conductivity. This relatively pure diopside is much less conducting than olivine or orthopyroxene. A second diopside with greater Fe content but otherwise similar in composition to the near-end-member diopside, is more conducting, has a smaller activation energy (1.0 eV) over the range 1050 to 1225??C, and shows only a weak negative fO2 dependence; suggesting that oxygen vacancies are present but are not the dominant defect in controlling the conductivity. -from Authors

  5. Preparation of Electrically Conductive Polystyrene/Carbon Nanofiber Nanocomposite Films

    ERIC Educational Resources Information Center

    Sun, Luyi; O'Reilly, Jonathan Y.; Tien, Chi-Wei; Sue, Hung-Jue

    2008-01-01

    A simple and effective approach to prepare conductive polystyrene/carbon nanofiber (PS/CNF) nanocomposite films via a solution dispersion method is presented. Inexpensive CNF, which has a structure similar to multi-walled carbon nanotubes, is chosen as a nanofiller in this experiment to achieve conductivity in PS films. A good dispersion is…

  6. Electrical Conduction Mechanism in Chemical Vapour Deposition Grown Multi-Wall Carbon Nanotubes Film.

    PubMed

    Al-Hazmi, F S

    2015-07-01

    Multi-walled carbon nanotubes are interesting systems where different aspects of conduction are observed, mostly due to their low dimensionalities and small dimensions. Electrical conduction mechanism in multi wall carbon nanotubes film is studied. The studied multi-walled nanotubes are grown by a low pressure chemical vapour deposition system. To understand the conduction mechanism in these nanotubes, temperature dependence of conductivity of the multi wall nanotubes film over a temperature range of (400-200 K) is studied. On the basis of the results, one may suggest the thermally activated conduction mechanism for the temperature range (400-300 K). The low temperature data is fitted with the hopping conduction for the transport of charge carriers in the temperature range of 300-200 K. This hopping conduction mechanism is characterized by variable range hopping (VRH), which shows complete agreement with the Mott's type of VRH mechanism. Applying this model, a number of Mott's parameters such as density of states, hopping distance, hopping energy are calculated. The calculated values of all the studied parameters matches well the reported results on other multi-wall nanotubes film.

  7. Conducting and Reporting Case Studies.

    ERIC Educational Resources Information Center

    Lichtman, Merilyn; Taylor, Satomi Izumi

    Issues and elements of case study research are explored and illustrated with the example of a case study of a kindergarten in a suburb of Tokyo (Japan). Case study research is a type of qualitative research that concentrates on a single unit or entity, with boundaries established by the researcher. The case is an example drawn from a larger class,…

  8. Mechanical tension and electrical conductivity of liquid crystal filaments

    NASA Astrophysics Data System (ADS)

    Kress, Oliver H.

    During the NSF funded IRES internship at the Otto-von-Geuricke Univeristy in Magdeburg, Germany, I studied the optical properties and mechanical behavior in the form of line tension of bent-core liquid crystal fiber bundles and verified previously published tension values and temperature dependent behavior. Then, carbon nanotubes were added and it as found that the tension in the fibers decreased by a factor of two instead of increasing as was hoped. A new device for pulling fibers and measuring tension by deflection due to the adhesion of glass beads was built at the LCI. The device was meant to improve upon the device used at O.v.G. Improvements included a smaller heating chamber with better insulation, temperature control, large viewing windows, more stable mounting interface, easier disassembly and the option to quickly modify the device in order to perform a variety of other experiments such as observing behavior due to acoustic driving (based on previous literature), observing optical behavior under a polarizing microscope and introducing probes to measure the electrical properties of fibers. The platform remains modular and makes the addition of new components for carrying out new experiments very simple and straightforward. The addition of carbon nanotubes has scattered results regarding the modulation of fiber tension. It seems that the addition of CNTs to BLC1571 may slightly be decreasing tension while the addition to BLC1688 may be increasing it. In both mesogens, 10wt% CNT yielded the highest tension value above the theoretical surface tension contribution. A reversal of temperature dependence was observed for fibers containing CNT; their tension increased with temperature instead of decreased. A driving rod attached to a speaker was used to acoustically drive a filament of pure BLC1571 in an attempt to replicate the tension values in a different way. The movement of the fiber and the driving rod were captured using a high-speed camera and MATLAB code

  9. Effect of Samarium Oxide on the Electrical Conductivity of Plasma-Sprayed SOFC Anodes

    NASA Astrophysics Data System (ADS)

    Panahi, S. N.; Samadi, H.; Nemati, A.

    2016-10-01

    Solid oxide fuel cells (SOFCs) are rapidly becoming recognized as a new alternative to traditional energy conversion systems because of their high energy efficiency. From an ecological perspective, this environmentally friendly technology, which produces clean energy, is likely to be implemented more frequently in the future. However, the current SOFC technology still cannot meet the demands of commercial applications due to temperature constraints and high cost. To develop a marketable SOFC, suppliers have tended to reduce the operating temperatures by a few hundred degrees. The overall trend for SOFC materials is to reduce their service temperature of electrolyte. Meanwhile, it is important that the other components perform at the same temperature. Currently, the anodes of SOFCs are being studied in depth. Research has indicated that anodes based on a perovskite structure are a more promising candidate in SOFCs than the traditional system because they possess more favorable electrical properties. Among the perovskite-type oxides, SrTiO3 is one of the most promising compositions, with studies demonstrating that SrTiO3 exhibits particularly favorable electrical properties in contrast with other perovskite-type oxides. The main purpose of this article is to describe our study of the effect of rare-earth dopants with a perovskite structure on the electrical behavior of anodes in SOFCs. Sm2O3-doped SrTiO3 synthesized by a solid-state reaction was coated on substrate by atmospheric plasma spray. To compare the effect of the dopant on the electrical conductivity of strontium titanate, different concentrations of Sm2O3 were used. The samples were then investigated by x-ray diffraction, four-point probe at various temperatures (to determine the electrical conductivity), and a scanning electron microscope. The study showed that at room temperature, nondoped samples have a higher electrical resistance than doped samples. As the temperature was increased, the electrical

  10. ITO/ATO bilayer transparent electrodes with enhanced light scattering, thermal stability and electrical conductance

    NASA Astrophysics Data System (ADS)

    Guillén, C.; Montero, J.; Herrero, J.

    2016-10-01

    Transparent electrodes based on In2O3:Sn (ITO) and SnO2:Sb (ATO) thin films have been deposited by sputtering at room temperature on soda lime glass (SLG) substrates. The preparation conditions were adjusted to obtain 250 nm-thick ITO layers with high conductivity and textured ATO coatings with various thicknesses from 80 to 200 nm. These ITO and ATO films have been combined to enhance the optical scattering and the electrical conductivity of the bilayer electrodes. Besides, a suitable ATO coating can prevent the oxidation of the ITO underlayer, thus increasing the stability of the overall electrical performance. With this purpose the structure, morphology, optical and electrical properties have been analysed comparatively for SLG/ITO, SLG/ATO and SLG/ITO/ATO samples after heating in air at 500 °C, studying the influence of the ATO layer thickness on the light scattering and thermal stability of the electrodes. In this way, a minimum sheet resistance of 8 Ω/sq has been achieved with a 120 nm-thick ATO film deposited on the 250 nm-thick ITO layer; such stacked electrode has visible transmittance near 80% and average haze HT = 10%, showing superior stability, light scattering and electrical performance than the isolated ITO and ATO films.

  11. Electrical and Hydraulic Properties of Humified Bog Peat as a Function of Pore-fluid Conductivity

    NASA Astrophysics Data System (ADS)

    Comas, X.; Slater, L.

    2003-12-01

    The electrical properties of organic sediments and their relationship to physical properties are poorly understood. A simple approach to relate electrical properties to physical properties commonly applied to inorganic sediments is to model the electrolytic conductivity and the surface conductivity as parallel conduction paths. Low-frequency electrical measurements were made in conjunction with hydraulic conductivity measurements on peat samples from an 11 m section collected in a large freshwater peatland. The electrical and hydraulic measurements were made as a function of NaCl concentration and depth of burial. In all cases, the electrical conductivity of the peat was not well modeled by the parallel conduction path model, with the model yielding formation factor values close to one. Sample measurements along the section suggest a slight increase in the formation factor and surface conductivity values with depth. Hydraulic conductivity measured by constant head method shows a marked increase with increasing NaCl concentration, which we believe results from expansion of macropore porosity by chemical dilation as proposed by others. Attempts to return the samples to their original conditions by decreasing the salinity only partially restored the hydraulic conductivity values, indicating a permanent disruption of the hydraulic properties of the peat. The increase of surface electrical conductivity and hydraulic conductivity with depth may indicate a close correlation with the high cation exchange capacity of organic matter and its tendency for chemical dilation as decomposition of organic matter increases with depth. We propose that the electrical conductivity of peat cannot be modeled by an electrolytic and a surface conduction path in parallel. The increase in the electrolytic conduction causes ionic accumulation and dispersion processes, expanding the macropore porosity and hence inducing a decrease in the formation factor values. A proper electrical model for

  12. Conducting pilot and feasibility studies.

    PubMed

    Cope, Diane G

    2015-03-01

    Planning a well-designed research study can be tedious and laborious work. However, this process is critical and ultimately can produce valid, reliable study findings. Designing a large-scale randomized, controlled trial (RCT)-the gold standard in quantitative research-can be even more challenging. Even the most well-planned study potentially can result in issues with research procedures and design, such as recruitment, retention, or methodology. One strategy that may facilitate sound study design is the completion of a pilot or feasibility study prior to the initiation of a larger-scale trial. This article will discuss pilot and feasibility studies, their advantages and disadvantages, and implications for oncology nursing research. 
.

  13. Soil permittivity response to bulk electrical conductivity for selected soil water sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bulk electrical conductivity can dominate the low frequency dielectric loss spectrum in soils, masking changes in the real permittivity and causing errors in estimated water content. We examined the dependence of measured apparent permittivity (Ka) on bulk electrical conductivity in contrasting soil...

  14. Sensing the water content of honey from temperature-dependent electrical conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to predict water content in honey, electrical conductivity was measured on blossom honey types of milk-vetch, jujube and yellow-locust with water content of 18%-37% between 5-40ºC. Regression models of electrical conductivity were developed as functions of water content and temperature. The...

  15. Effects of temperature dependence of electrical and thermal conductivities on the Joule heating of a one dimensional conductor

    NASA Astrophysics Data System (ADS)

    Antoulinakis, F.; Chernin, D.; Zhang, Peng; Lau, Y. Y.

    2016-10-01

    We examine the effects of temperature dependence of the electrical and thermal conductivities on Joule heating of a one-dimensional conductor by solving the coupled non-linear steady state electrical and thermal conduction equations. The spatial temperature distribution and the maximum temperature and its location within the conductor are evaluated for four cases: (i) constant electrical conductivity and linear temperature dependence of thermal conductivity, (ii) linear temperature dependence of both electrical and thermal conductivities, (iii) the Wiedemann-Franz relation for metals, and (iv) polynomial fits to measured data for carbon nanotube fibers and for copper. For (i) and (ii), it is found that there are conditions under which no steady state solution exists, which may indicate the possibility of thermal runaway. For (i), analytical solutions are constructed, from which explicit expressions for the parameter bounds for the existence of steady state solutions are obtained. The shifting of these bounds due to the introduction of linear temperature dependence of electrical conductivity (case (ii)) is studied numerically. These results may provide guidance in the design of circuits and devices in which the effects of coupled thermal and electrical conduction are important.

  16. Electrical and thermal conductivities of rapidly crystallized Cu-Zr alloys: The effect of anharmonicity

    NASA Astrophysics Data System (ADS)

    Uporov, S.; Bykov, V.; Estemirova, S.

    2016-10-01

    We present a comprehensive study of electrical and thermal conductivities, specific heat and magnetic susceptibility of rapidly crystallized Cu100-xZrx (x = 20-90) alloys. X-ray diffraction analysis has revealed that all the prepared compositions had strongly textured and distorted crystal structures. Different monoclinic and other non-equilibrium phases were detected in the case of glass-forming samples, whereas the alloys without a tendency to form glassy state show almost equilibrium phase content. Metallic type of electrical conductivity and the Kondo anomaly were observed for all the examined samples. It was found that the electrical resistance data cannot be adequately described within the standard Bloch-Grüneisen theory. We use the Debye characteristic temperature as a linear function to fit the electrical conductivity accurately. The composition dependence of the electron density of states at the Fermi level (DOS) has been extracted from room temperature magnetic susceptibility. We found that the glass-forming alloys are characterized by abnormally large values of DOS, which are comparable to those of glassy analogues. Noticeable anharmonic contribution in total specific heat has been revealed for all the studied compositions. In order to estimate the effect of anharmonicity in the system under consideration, we analyzed composition and temperature dependencies of the studied thermal characteristics related to the Grüneisen coefficient. Basing on the results obtained in this study we propose a phenomenological concept to explain abnormal behavior of physical properties of glass-forming Cu-Zr alloys within the standard solid state theory taking into account anharmonic effects.

  17. Analysis of conductive target influence in plasma jet experiments through helium metastable and electric field measurements

    NASA Astrophysics Data System (ADS)

    Darny, T.; Pouvesle, J.-M.; Puech, V.; Douat, C.; Dozias, S.; Robert, Eric

    2017-04-01

    The use of cold atmospheric pressure plasma jets for in vivo treatments implies most of the time plasma interaction with conductive targets. The effect of conductive target contact on the discharge behavior is studied here for a grounded metallic target and compared to the free jet configuration. In this work, realized with a plasma gun, we measured helium metastable HeM (23S1) concentration (by laser absorption spectroscopy) and electric field (EF) longitudinal and radial components (by electro-optic probe). Both diagnostics were temporally and spatially resolved. Mechanisms after ionization front impact on the target surface have been identified. The remnant conductive ionized channel behind the ionization front electrically transiently connects the inner high voltage electrode to the target. Due to impedance mismatching between the ionized channel and the target, a secondary ionization front is initiated and rapidly propagates from the target surface to the inner electrode through this ionized channel. This leads to a greatly enhanced HeM production inside the plasma plume and the capillary. Forward and reverse dynamics occur with further multi reflections of more or less damped ionization fronts between the inner electrode and the target as long as the ionized channel is persisting. This phenomenon is very sensitive to parameters such as target distance and ionized channel conductivity affecting electrical coupling between these two and evidenced using positive or negative voltage polarity and nitrogen admixture. In typical operating conditions for the plasma gun used in this work, it has been found that after the secondary ionization front propagation, when the ionized channel is conductive enough, a glow like discharge occurs with strong conduction current. HeM production and all species excitation, especially reactive ones, are then driven by high voltage pulse evolution. The control of forward and reverse dynamics, impacting on the production of the glow

  18. The effect of longitudinal conductance variations on the ionospheric prompt penetration electric fields

    NASA Astrophysics Data System (ADS)

    Sazykin, S.; Wolf, R.; Spiro, R.; Fejer, B.

    Ionospheric prompt penetration electric fields of magnetospheric origin, together with the atmospheric disturbance dynamo, represent the most important parameters controlling the storm-time dynamics of the low and mid-latitude ionosphere. These prompt penetration fields result from the disruption of region-2 field-aligned shielding currents during geomagnetically disturbed conditions. Penetration electric fields con- trol, to a large extent, the generation and development of equatorial spread-F plasma instabilities as well as other dynamic space weather phenomena in the ionosphere equatorward of the auroral zone. While modeling studies typically agree with average patterns of prompt penetration fields, experimental results suggest that longitudinal variations of the ionospheric con- ductivities play a non-negligible role in controlling spread-F phenomena, an effect that has not previously been modeled. We present first results of modeling prompt pene- tration electric fields using a version of the Rice Convection Model (RCM) that allows for longitudinal variations in the ionospheric conductance tensor. The RCM is a first- principles numerical ionosphere-magnetosphere coupling model that solves for the electric fields, field-aligned currents, and particle distributions in the ionosphere and inner/middle magnetosphere. We compare these new theoretical results with electric field observations.

  19. Short-term disruption in regional left ventricular electrical conduction patterns increases interstitial matrix metalloproteinase activity

    PubMed Central

    Zavadzkas, Juozas A.; Rivers, William T.; McLean, Julie E.; Chang, Eileen I.; Bouges, Shenikqua; Matthews, Robert G.; Koval, Christine N.; Stroud, Robert E.; Spinale, Francis G.

    2010-01-01

    Increased matrix metalloproteinase (MMP) abundance occurs with adverse left ventricular (LV) remodeling in a number of cardiac disease states, including those induced by long-standing arrhythmias. However, whether regionally contained aberrant electrical activation of the LV, with consequent dyskinesia, alters interstitial MMP activation remained unknown. Electrical activation of the LV of pigs (n = 10, 30–35 kg) was achieved by pacing (150 beats/min) at left atrial and LV sites such that normal atrioventricular activation (60 min) was followed by regional early LV activation for 60 min within 1.5 cm of the paced site and restoration of normal atrioventricular pacing for 120 min. Regional shortening (piezoelectric crystals) and interstitial MMP activity (microdialysis with MMP fluorogenic substrate) at the LV pacing site and a remote LV site were monitored at 30-min intervals. During aberrant electrical stimulation, interstitial MMP activity at the paced site was increased (122 ± 4%) compared with the remote region (100%, P < 0.05). Restoration of atrioventricular pacing after the 60-min period of aberrant electrical activation normalized segmental shortening (8.5 ± 0.4%), but MMP activity remained elevated (121 ± 6%, P < 0.05). This study demonstrates that despite the restoration of mechanical function, disturbances in electrical conduction, in and of itself, can cause acute increases in regional in vivo MMP activation and, therefore, contribute to myocardial remodeling. PMID:20472759

  20. Short-term disruption in regional left ventricular electrical conduction patterns increases interstitial matrix metalloproteinase activity.

    PubMed

    Mukherjee, Rupak; Zavadzkas, Juozas A; Rivers, William T; McLean, Julie E; Chang, Eileen I; Bouges, Shenikqua; Matthews, Robert G; Koval, Christine N; Stroud, Robert E; Spinale, Francis G

    2010-07-01

    Increased matrix metalloproteinase (MMP) abundance occurs with adverse left ventricular (LV) remodeling in a number of cardiac disease states, including those induced by long-standing arrhythmias. However, whether regionally contained aberrant electrical activation of the LV, with consequent dyskinesia, alters interstitial MMP activation remained unknown. Electrical activation of the LV of pigs (n = 10, 30-35 kg) was achieved by pacing (150 beats/min) at left atrial and LV sites such that normal atrioventricular activation (60 min) was followed by regional early LV activation for 60 min within 1.5 cm of the paced site and restoration of normal atrioventricular pacing for 120 min. Regional shortening (piezoelectric crystals) and interstitial MMP activity (microdialysis with MMP fluorogenic substrate) at the LV pacing site and a remote LV site were monitored at 30-min intervals. During aberrant electrical stimulation, interstitial MMP activity at the paced site was increased (122 +/- 4%) compared with the remote region (100%, P < 0.05). Restoration of atrioventricular pacing after the 60-min period of aberrant electrical activation normalized segmental shortening (8.5 +/- 0.4%), but MMP activity remained elevated (121 +/- 6%, P < 0.05). This study demonstrates that despite the restoration of mechanical function, disturbances in electrical conduction, in and of itself, can cause acute increases in regional in vivo MMP activation and, therefore, contribute to myocardial remodeling.

  1. Electrical Properties of Conductive Cotton Yarn Coated with Eosin Y Functionalized Reduced Graphene Oxide.

    PubMed

    Kim, Eunju; Arul, Narayanasamy Sabari; Han, Jeong In

    2016-06-01

    This study reports the fabrication and investigation of the electrical properties of two types of conductive cotton yarns coated with eosin Y or eosin B functionalized reduced graphene (RGO) and bare graphene oxide (GO) using dip-coating method. The surface morphology of the conductive cotton yarn coated with reduced graphene oxide was observed by Scanning Electron Microscope (SEM). Due to the strong electrostatic attractive forces, the negatively charged surface such as the eosin Y functionalized reduced graphene oxide or bare GO can be easily coated to the positively charged polyethyleneimine (PEI) treated cotton yarn. The maximum current for the conductive cotton yarn coated with eosin Y functionalized RGO and bare GO with 20 cycles repetition of (5D + R) process was found to be 793.8 μA and 3482.8 μA. Our results showed that the electrical conductivity of bare GO coated conductive cotton yarn increased by approximately four orders of magnitude with the increase in the dipping cycle of (5D+R) process.

  2. Electrical conductivity of sulfonated poly(ether ether ketone) based composite membranes containing sulfonated polyhedral oligosilsesquioxane

    NASA Astrophysics Data System (ADS)

    Celso, Fabricio; Mikhailenko, Serguei D.; Rodrigues, Marco A. S.; Mauler, Raquel S.; Kaliaguine, Serge

    2016-02-01

    Composite proton exchange membranes (PEMs) intended for fuel cell applications were prepared by embedding of various amounts of dispersed tri-sulfonic acid ethyl POSS (S-Et-POSS) and tri-sulfonic acid butyl POSS (S-Bu-POSS) in thin films of sulfonated poly ether-ether ketone. The electrical properties of the PEMs were studied by Impedance spectroscopy and it was found that their conductivity σ changes with the filler content following a curve with a maximum. The water uptake of these PEMs showed the same dependence. The investigation of initial isolated S-POSS substances revealed the properties of typical electrolytes, which however in both cases possessed low conductivities of 1. 17 × 10-5 S cm-1 (S-Et-POSS) and 3.52 × 10-5 S cm-1 (S-Bu-POSS). At the same time, the insoluble in water S-POSS was found forming highly conductive interface layer when wetted with liquid water and hence producing a strong positive impact on the conductivity of the composite PEM. Electrical properties of the composites were analysed within the frameworks of effective medium theory and bounding models, allowing to evaluate analytically the range of possible conductivity values. It was found that these approaches produced quite good approximation of the experimental data and constituted a fair basis for interpretation of the observed relationship.

  3. Electrical conductivity and physical properties of surimi-potato starch under ohmic heating.

    PubMed

    Pongviratchai, P; Park, J W

    2007-11-01

    Electrical conductivities of Alaska pollock surimi mixed with native and pregelled potato starch at different concentrations (0%, 3%, and 9%) were measured at different moisture contents (75% and 81%) using a multifrequency ohmic heating system. Surimi-starch paste was tested up to 80 degrees C at frequencies from 55 Hz to 20 KHz and at alternating currents of 4.3 and 15.5 V/cm voltage gradient. Electrical conductivity increased when moisture content, applied frequency, and applied voltage increased, but decreased when starch concentration increased. Electrical conductivity was correlated linearly with temperature (R(2) approximately 0.99). Electrical conductivity pattern (magnitude) changed when temperature increased, which was clearly seen after 55 degrees C in the native potato starch system, especially at high concentration. This confirms that starch gelatinization that occurred during heating affects the electrical conductivity. Whiteness and texture properties decreased with an increase of starch concentration and a decrease of moisture content.

  4. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering.

    PubMed

    Baei, Payam; Jalili-Firoozinezhad, Sasan; Rajabi-Zeleti, Sareh; Tafazzoli-Shadpour, Mohammad; Baharvand, Hossein; Aghdami, Nasser

    2016-06-01

    Injectable hydrogels that resemble electromechanical properties of the myocardium are crucial for cardiac tissue engineering prospects. We have developed a facile approach that uses chitosan (CS) to generate a thermosensitive conductive hydrogel with a highly porous network of interconnected pores. Gold nanoparticles (GNPs) were evenly dispersed throughout the CS matrix in order to provide electrical cues. The gelation response and electrical conductivity of the hydrogel were controlled by different concentrations of GNPs. The CS-GNP hydrogels were seeded with mesenchymal stem cells (MSCs) and cultivated for up to 14 days in the absence of electrical stimulations. CS-GNP scaffolds supported viability, metabolism, migration and proliferation of MSCs along with the development of uniform cellular constructs. Immunohistochemistry for early and mature cardiac markers showed enhanced cardiomyogenic differentiation of MSCs within the CS-GNP compared to the CS matrix alone. The results of this study demonstrate that incorporation of nanoscale electro-conductive GNPs into CS hydrogels enhances the properties of myocardial constructs. These constructs could find utilization for regeneration of other electroactive tissues.

  5. Facet-dependent electrical conductivity properties of Cu2O crystals.

    PubMed

    Tan, Chih-Shan; Hsu, Shih-Chen; Ke, Wei-Hong; Chen, Lih-Juann; Huang, Michael H

    2015-03-11

    It is interesting to examine facet-dependent electrical properties of single Cu2O crystals, because such study greatly advances our understanding of various facet effects exhibited by semiconductors. We show a Cu2O octahedron is highly conductive, a cube is moderately conductive, and a rhombic dodecahedron is nonconductive. The conductivity differences are ascribed to the presence of a thin surface layer having different degrees of band bending. When electrical connection was made on two different facets of a rhombicuboctahedron, a diode-like response was obtained, demonstrating the potential of using single polyhedral nanocrystals as functional electronic components. Density of state (DOS) plots for three layers of Cu2O (111), (100), and (110) planes show respective metallic, semimetal, and semiconducting band structures. By examining DOS plots for varying number of planes, the surface layer thicknesses responsible for the facet-dependent electrical properties of Cu2O crystals have been determined to be below 1.5 nm for these facets.

  6. Effect of silicates and electrical conductivity on Fusarium wilt of hydroponically grown lettuce.

    PubMed

    Chitarra, W; Pugliese, M; Gilardi, G; Gullino, M L; Garibaldi, A

    2013-01-01

    Silicon can stimulate natural defense mechanisms in plants, reducing foliar diseases like powdery arid downy mildew on several crops, including lettuce. The effect of silicate on Fusarium wilt, caused by Fusarium oxysporum f. sp. lactucae was evaluated under greenhouse conditions on lettuce grown in soilless systems. Silicon, as potassium silicate, was added at 100 mg L(-1) of nutrient solution at three levels of electrical conductivity; 1.5-1.6 mS cm(-1) (E.C.1), 3.0-3.2 mS cm(-1) (E.C.2) and 4-4.2 mS cm(-1) (E.C.3). Pots containing lettuce plants were first inoculated with F. oxysporum f. sp. lactucae (3x10(5) chlamidospores ml(-1)) 15-20 days before transplanting. Disease severity and physiological parameters, including chlorophyll content, were analyzed weekly after transplanting. The addition of potassium silicate slightly reduced Fusarium wilt, at all levels of electrical conductivity under study, compared to the control. On the contrary, the increase of electrical conductivity of the nutrient solution showed no effect on the disease. The use of silicon was previously demonstrated to significantly reduce downy mildew on lettuce in soilless systems, and in this trial it demonstrated to slightly reduce disease severity of an important soil-borne pathogen like F. oxysporum f. sp. lactucae, suggesting the possibility to apply it successfully in soilless crops.

  7. Local electrical conduction in polycrystalline La-doped BiFeO₃ thin films.

    PubMed

    Zhou, Ming-Xiu; Chen, Bo; Sun, Hai-Bin; Wan, Jian-Guo; Li, Zi-Wei; Liu, Jun-Ming; Song, Feng-Qi; Wang, Guang-Hou

    2013-06-07

    Local electrical conduction behaviors of polycrystalline La-doped BiFeO3 thin films have been investigated by combining conductive atomic force microscopy and piezoelectric force microscopy. Nanoscale current measurements were performed as a function of bias voltage for different crystal grains. Completely distinct conducting processes and resistive switching effects were observed in the grain boundary and grain interior. We have revealed that local electric conduction in a grain is dominated by both the grain boundary and ferroelectric domain, and is closely related to the applied electric field and the as-grown state of the grain. At lower voltages the electrical conduction is dominated by the grain boundary and is associated with the redistribution of oxygen vacancies in the grain boundary under external electric fields. At higher voltages both the grain boundary and ferroelectric domain are responsible for the electrical conduction of grains, and the electrical conduction gradually extends from the grain boundary into the grain interior due to the extension of the ferroelectric domain towards the grain interior. We have also demonstrated that the conduction dominated by the grain boundary exhibits a much small switching voltage, while the conduction of the ferroelectric domain causes a much high switching voltage in the grain interior.

  8. Electrical conductivity and magnetic field dependent current-voltage characteristics of nanocrystalline nickel ferrite

    NASA Astrophysics Data System (ADS)

    Ghosh, P.; Bhowmik, R. N.; Das, M. R.; Mitra, P.

    2017-04-01

    We have studied the grain size dependent electrical conductivity, dielectric relaxation and magnetic field dependent current voltage (I - V) characteristics of nickel ferrite (NiFe2O4) . The material has been synthesized by sol-gel self-combustion technique, followed by ball milling at room temperature in air environment to control the grain size. The material has been characterized using X-ray diffraction (refined with MAUD software analysis) and Transmission electron microscopy. Impedance spectroscopy and I - V characteristics in the presence of variable magnetic fields have confirmed the increase of resistivity for the fine powdered samples (grain size 5.17±0.6 nm), resulted from ball milling of the chemical routed sample. Activation energy of the material for electrical charge hopping process has increased with the decrease of grain size by mechanical milling of chemical routed sample. The I - V curves showed many highly non-linear and irreversible electrical features, e.g., I - V loop and bi-stable electronic states (low resistance state-LRS and high resistance state-HRS) on cycling the electrical bias voltage direction during I-V curve measurement. The electrical dc resistance for the chemically routed (without milled) sample in HRS (∼3.4876×104 Ω) at 20 V in presence of magnetic field 10 kOe has enhanced to ∼3.4152×105 Ω for the 10 h milled sample. The samples exhibited an unusual negative differential resistance (NDR) effect that gradually decreased on decreasing the grain size of the material. The magneto-resistance of the samples at room temperature has been found substantially large (∼25-65%). The control of electrical charge transport properties under magnetic field, as observed in the present ferrimagnetic material, indicate the magneto-electric coupling in the materials and the results could be useful in spintronics applications.

  9. Electrical studies of D%AgI-(100-D)%[0.667Ag2O- 0.333{(0.4)B2O3-(0.6)TeO2}] fast ion conducting glasses

    NASA Astrophysics Data System (ADS)

    Kumar, E. Ramesh; Nageswar Rao, P.; Appa Rao, B.

    2016-09-01

    Super ion conducting glasses of composition D%AgI-(100-D)%[MAg2O-F{(F1)B2O3- (F2)TeO2}]; D=10.0 to 60.0 in steps of 10.0 for a fixed values of F1 (0.4), F2 (0.6) which are glass network formers, fixed values of modifier M(0.667), F (0.333) and D is dopant salt which was varied. These glasses were prepared by melt quenching technique. XRD spectra taken for all the samples. Electrical characterization was done in terms of AC and DC conductivities. DC and AC conductivities at room temperature increased from 10-5 to 10-1 scm-1 and DC activation energy (Edc) found to decrease from 0.36 to 0.19eV with increase in D% ratio. Measurements are performed over the frequency range 1 kHz to 3 MHz at different temperatures. From the impedance spectroscopy real and imaginary parts of impedances (Z', Z"), conductivities were calculated and plotted, and equivalent R-C circuit parameters were obtained from Cole-Cole plots. With the increase in D%, AC conductivity is observed to increase whereas the AC activation energy (Eac) is observed to decrease from 0.23 to 0.14 eV. The quantitative analysis of these results indicates that the electrical conductivity of silver borate glasses is enhanced with increase in D% ratio. Based on conductivity values these glasses are ionic conductors, in which conduction is by hopping mechanism. An attempt is made to understand the charge transportation process.

  10. Lateral electrical conductivity of mica-supported lipid bilayer membranes measured by scanning tunneling microscopy.

    PubMed Central

    Heim, M.; Cevc, G.; Guckenberger, R.; Knapp, H. F.; Wiegräbe, W.

    1995-01-01

    Lateral electric conductivity of mica-supported lipid monolayers and of the corresponding lipid bilayers has been studied by means of scanning tunneling microscopy (STM). The surface of freshly cleaved mica itself was found to be conductive when exposed to humid air. Lipid monolayers were transferred onto such a surface by means of the Langmuir-Blodgett technique, which makes the mica surface hydrophobic and suppresses the electric current along the surface in the experimentally accessible humidity (5-80%) and applied voltage (0-10 V) range. This is true for dipalmitoylphosphatidylethanolamine (DPPE) as well as dipalmitoylphosphatidylcholine (DPPC) monolayers. Repeated deposition of DPPC layers by means of the Langmuir-Blodgett LB technique does not lead to the formation of a stable surface-supported bilayer because of the high hydrophilicity of the phosphatidylcholine headgroups that causes DPPC/DPPC bilayers to peel off the supporting surface during the sample preparation. In contrast to this, a DPPE or a DPPC monolayer on top of a DPPE monolayer gives rise to a rather stable mica-supported bilayer that can be studied by STM. Electric currents between 10 and 100 fA, depending on the ambient humidity, flow along the DPPE bilayer surface, in the humidity range between 35 and 60%. The DPPC surface, which is more hydrophilic, is up to 100 times more conductive under comparable conditions. Anomalous high lateral conductivity thus depends on, and probably proceeds via, the surface-adsorbed water layers. The prominence of ambient humidity and surface hydrophilicity on the measured lateral currents suggests this. The combination of our STM data and previously published water adsorption isotherms as a function of the relative humidity indicate that one layer or less of adsorbed water suffices for mediating the measurable lateral currents. The fact that similar observations are also made for other hydrophilic substrates supports the conclusion that lateral conductivity via

  11. Transparent electrically conducting thin films for spacecraft temperature control applications

    NASA Technical Reports Server (NTRS)

    Hass, G.; Heaney, J. B.; Toft, A. R.

    1979-01-01

    Thin transparent films of In2O3 or In2O3 + SnO2 prepared by evaporation or sputtering have been tested for use as surface layers for spacecraft temperature control coatings. The films are intended to prevent nonuniform electric charge buildup on the spacecraft exterior. Film thicknesses of 300 to 500 A were found to be optimal in terms of durability and minimum impact on the solar absorptance and the thermal emissivity of the underlayers. As a verification of their suitability for long-duration space missions, the films were subjected to simulated solar UV plus proton irradiation in a vacuum.

  12. System protection from atmospheric electricity for aerostats with conducting tethers

    NASA Astrophysics Data System (ADS)

    Wheeler, M. S.; Beach, G. R.; Jakubowski, P. R.; Fisher, F. A.

    1988-04-01

    Aerostat power tethers have demonstrated survival of lightning strikes, but they usually have to be reterminated or replaced afterward. Two requirements are given for the prevention of lightning damage to the tether to about 100 kA: installation of a metal-to-metal contact on the outer tether surface to ground the tether at the base flying sheave at typical flying positions; and installation of a shielding band within the outer tether jacket with a weight of about 0.05 lb/ft for a half-inch tether. This determination was made in part by high current tests and in part by electrical modeling.

  13. The Electrical Properties of Seawater (Including Conductivity Relaxation)

    DTIC Science & Technology

    1984-07-01

    expression for the carrier mobility can be obtained from the following equations (Reference 2) S•- <v> "and i d~v> m d•v + mg <v>= eE (3) where <v> is...electric field. Let <v> and E be time harmonic as ejft The solution of Equation (3) results in the following S- - e (4) 1+ J 1 4’ 59 Substituting this...constructed for this purpose. The following describes the experi- mental apparatus used and presents the results of the experiment. 4 21 - I

  14. Electrical conductivity of the dusty plasma in the Enceladus plume

    NASA Astrophysics Data System (ADS)

    Yaroshenko, V. V.; Lühr, H.

    2016-11-01

    The plasma conductivity is an important issue for understanding the magnetic field structure registered by Cassini in the Enceladus proximity. We have revise the conductivity mechanism to incorporate the plume nanograins as a new plasma species and take into account the relevant collisional processes including those accounting for the momentum exchange between the charged dust and co-rotating ions. It is concluded that in the Enceladus plume the dust dynamics affects the Pedersen and Hall conductivity more efficiently than the electron depletion associated with the presence of the negatively charged dust as has been suggested by Simon et al. (Simon, S., Saur, J., Kriegel, H., Neubauer, F. M., Motschmann, U., and Dougherty, U. [2011] J. Geophys. Res., 116, A04221, doi:10.1029/2010JA016338). The electron depletion remains a decisive factor for only the parallel conductivity. In the parameter regime relevant for the Enceladus plume, one finds increase of the Pedersen and decrease of the parallel components, whereas for the Hall conductivity the charged dust changes both - its value and the sign. The associated reversed Hall effect depends significantly upon the local dust-to-plasma density ratio. An onset of the reversed Hall effect appears to be restricted to outer parts of the Enceladus plume. The results obtained can significantly modify Enceladus' Alfvén wing structure and thus be useful for interpretations of the magnetic field perturbations registered by the Cassini Magnetometer during the close Enceladus flybys.

  15. Sea salt dependent electrical conduction in polar ice

    SciTech Connect

    Moore, J.; Paren, J. ); Oerter, H. )

    1992-12-10

    A 45 m length of ice core from Dolleman Island, Antarctic Peninsula has been dielectrically analyzed at 5 cm resolution using the dielectric profiling (DEP) technique. The core has also been chemically analyzed for major ionic impurities. A statistical analysis of the measurements shows that the LF (low frequency) conductivity is determined both by neutral salt and acid concentrations. The statistical relationships have been compared with results from laboratory experiments on ice doped with HF (hydrogen fluoride). Salts (probably dispersed throughout the ice fabric) determine the dielectric conductivity. The salt conduction mechanism is probably due to Bjerrum L defects alone, created by the incorporation of chloride ions in the lattice. Samples of ice from beneath the Filchner-Ronne Ice Shelf were also measured and display a similar conduction mechanism below a solubility limit of about 400 [mu]M of chloride. The temperature dependence of the neutral salt, acid and pure ice contributions to the LF conductivity of natural ice between [approximately] 70[degrees]C and 0[degrees]C is discussed. These results allow a comprehensive comparison of dielectric and chemical data from natural ice.

  16. DROPOUT STUDIES, DESIGN AND CONDUCT.

    ERIC Educational Resources Information Center

    SCHRIEBER, DANIEL; AND OTHERS

    ALTHOUGH THE DROPOUT PROBLEM IS ONE OF GREAT CONCERN AT BOTH LOCAL AND NATIONAL LEVELS, IT IS READILY APPARENT THAT THE PROBLEM IS NOT THE SAME EVERYWHERE IN THE COUNTRY. DROPOUT RATES VARY CONSIDERABLY FROM ONE COMMUNITY TO ANOTHER, AND EVEN DIFFER BETWEEN HIGH SCHOOLS IN THE SAME SCHOOL SYSTEM. LIMITATIONS IN PREVIOUS STUDIES OF THE PROBLEM HAVE…

  17. Intrinsic electrical conductivity of nanostructured metal-organic polymer chains

    PubMed Central

    Hermosa, Cristina; Vicente Álvarez, Jose; Azani, Mohammad-Reza; Gómez-García, Carlos J.; Fritz, Michelle; Soler, Jose M.; Gómez-Herrero, Julio; Gómez-Navarro, Cristina; Zamora, Félix

    2013-01-01

    One-dimensional conductive polymers are attractive materials because of their potential in flexible and transparent electronics. Despite years of research, on the macro- and nano-scale, structural disorder represents the major hurdle in achieving high conductivities. Here we report measurements of highly ordered metal-organic nanoribbons, whose intrinsic (defect-free) conductivity is found to be 104 S m−1, three orders of magnitude higher than that of our macroscopic crystals. This magnitude is preserved for distances as large as 300 nm. Above this length, the presence of structural defects (~ 0.5%) gives rise to an inter-fibre-mediated charge transport similar to that of macroscopic crystals. We provide the first direct experimental evidence of the gapless electronic structure predicted for these compounds. Our results postulate metal-organic molecular wires as good metallic interconnectors in nanodevices. PMID:23591876

  18. Increase of electrical conductivity with pressure as an indicator of conduction through a solid phase in midcrustal rocks

    SciTech Connect

    Shankland, T.J.; Duba, A.G.; Mathez, E.A.; Peach, C.L.

    1997-07-01

    Rocks freshly cored from depth at the German continental scientific drilling site (KTB) offer an opportunity to study transport properties in relatively unaltered samples resembling material in situ. Electrical conductivity {sigma} was measured to 250 MPa pressure, and room temperature on 1 M NaCl-saturated amphibolites from 4 to 5 km depth. An unexpected feature was an increase of {sigma} with pressure P that appeared (anisotropically) in most samples. To characterize this behavior, we fitted the linear portion of log{sigma} versus P to obtain two parameters: the slope d log {sigma}/dP (of order 10{sup {minus}3}MPa{sup {minus}1}) and the zero-pressure intercept {sigma}{sub 0}. Samples of positive and negative slopes behave differently. Those having negative slopes show strong correlation of {sigma}{sub 0} with a fluid property (permeability). This behavior indicates that fluids exert the dominant control on {sigma}{sub 0} at low pressure when {sigma}{sub 0} is greatest, which is typical behavior observed in previous studies. In contrast, samples with positive slopes lack a correlation of {sigma}{sub 0} with permeability, indicating that fluids are less important to positive pressure behavior. Another result is that samples of negative d log {sigma}/dP have uncorrelated slopes and initial conductivities. In significant contrast, samples of positive slopes have the greatest P dependence for lowest initial conductivity {sigma}{sub 0}, that is, the less fluid, the more positive d log {sigma}/dP. Hence positive d log {sigma}/dP is consistent with reconnection of solid phases into a conductive texture better resembling that of rock at depth. Detailed examination of one sample by electron probe and scanning electron microscope reveals the presence of carbon on internal cleavage surfaces in amphibole, the most abundant mineral present. Thus carbon probably dominates the reconnection, but total {sigma} still involves fluids as well as Fe-Ti oxides. (Abstract Truncated)

  19. Design of electrical conductive composites: tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends.

    PubMed

    Mao, Cui; Zhu, Yutian; Jiang, Wei

    2012-10-24

    Polystyrene (PS) and poly(methyl methacrylate) (PMMA) blends filled with octadecylamine-functionalized graphene (GE-ODA) have been fabricated to obtain conductive composites with a lower electrical percolation threshold according to the concept of double percolation. The dependence of the electrical properties of the composites on the morphology is examined by changing the proportion of PS and PMMA. Our results reveal that the electrical conductivity of the composites can be optimal when PS and PMMA phases form a cocontinuous structure and GE-ODA nanosheets are selectively located and percolated in the PS phase. For the PS/PMMA blend (50w/50w), the composites exhibit an extremely low electrical percolation threshold (0.5 wt %) because of the formation of a perfect double percolated structure. Moreover, the rheological properties of the composites are also measured to gain a fundamental understanding of the relationship between microstructure and electrical properties.

  20. Electrical conductivity and Equation of State from Measurements of a Tamped Electrically Exploded Foil

    NASA Astrophysics Data System (ADS)

    Ruden, Edward; Amdahl, David; Cooksey, Rufus; Domonkos, Matthew; Robinson, Paul; Analla, Francis; Brown, Darwin; Kostora, Mark; Camacho, Frank

    2013-10-01

    Results are presented for an experiment that produces and diagnoses dynamic surface conditions of homogeneous warm dense matter (WDM) to infer intrinsic bulk properties such as density, pressure, temperature, specific energy, electrical conductivity, and emissivity in the ranges of up to few eV and down to 0.1 solid density-typical of those encountered in single shot pulsed power device electrodes. The goal is to validate ab initio models of matter encountered for predictive modeling of such devices. In the test whose results are presented here, the WDM is produced by Ohmically heating and exploding an 80 μm Al foil placed between two fused quartz tampers by the discharge of a 36 μF capacitor bank charged to 30.1 kV and discharged in 2.55 μs to a peak load current of 460 kA. Measurements are presented from two division of amplitude polarimeters which operate at 532 nm and 1064 nm, a complementary pyrometer which measures the spectral radiance ratio at those wavelengths, a long-range 660 nm photonic Doppler velocimeter, and a B-dot probe array from which the aforementioned intrinsic properties may be inferred. Available results are compared to a 3-D MHD ALEGRA simulation of the full dynamic load and return conductor geometry with a two-loop external coupled circuit.

  1. Conducting a wind sensing study

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1985-01-01

    Signal-to-noise requirements, and how signal-to-noise determines wind velocity measurement accuracy were studied. A Nd:YAG-based system was found to be competitive with a CO2-based system. Hardware was developed for a coherent Nd:YAG LIDAR system, and is being integrated into a functioning system. A diode-pumped monolithic rod laser to be used as a reference oscillator, a high-power, single-mode ring laser, for use as a master oscillator, and a high-gain, multipass amplifier were constructed.

  2. Highly electrically conductive nanocomposites based on polymer-infused graphene sponges.

    PubMed

    Li, Yuanqing; Samad, Yarjan Abdul; Polychronopoulou, Kyriaki; Alhassan, Saeed M; Liao, Kin

    2014-04-11

    Conductive polymer composites require a three-dimensional 3D network to impart electrical conductivity. A general method that is applicable to most polymers for achieving a desirable graphene 3D network is still a challenge. We have developed a facile technique to fabricate highly electrical conductive composite using vacuum-assisted infusion of epoxy into graphene sponge GS scaffold. Macroscopic GSs were synthesized from graphene oxide solution by a hydrothermal method combined with freeze drying. The GS/epoxy composites prepared display consistent isotropic electrical conductivity around 1 S/m, and it is found to be close to that of the pristine GS. Compared with neat epoxy, GS/epoxy has a 12-orders-of-magnitude increase in electrical conductivity, attributed to the compactly interconnected graphene network constructed in the polymer matrix. This method can be extended to other materials to fabricate highly conductive composites for practical applications such as electronic devices, sensors, actuators, and electromagnetic shielding.

  3. Electrically Conductive Bulk Composites through a Contact-Connected Aggregate

    PubMed Central

    Nawroj, Ahsan I.; Swensen, John P.; Dollar, Aaron M.

    2013-01-01

    This paper introduces a concept that allows the creation of low-resistance composites using a network of compliant conductive aggregate units, connected through contact, embedded within the composite. Due to the straight-forward fabrication method of the aggregate, conductive composites can be created in nearly arbitrary shapes and sizes, with a lower bound near the length scale of the conductive cell used in the aggregate. The described instantiation involves aggregate cells that are approximately spherical copper coils-of-coils within a polymeric matrix, but the concept can be implemented with a wide range of conductor elements, cell geometries, and matrix materials due to its lack of reliance on specific material chemistries. The aggregate cell network provides a conductive pathway that can have orders of magnitude lower resistance than that of the matrix material - from 1012 ohm-cm (approx.) for pure silicone rubber to as low as 1 ohm-cm for the silicone/copper composite at room temperature for the presented example. After describing the basic concept and key factors involved in its success, three methods of implementing the aggregate into a matrix are then addressed – unjammed packing, jammed packing, and pre-stressed jammed packing – with an analysis of the tradeoffs between increased stiffness and improved resistivity. PMID:24349239

  4. Electrical conductivity measurement: a new technique to detect iatrogenic initial pedicle perforation.

    PubMed

    Bolger, Ciaran; Kelleher, Michael O; McEvoy, Linda; Brayda-Bruno, M; Kaelin, A; Lazennec, J-Y; Le Huec, J-C; Logroscino, C; Mata, P; Moreta, P; Saillant, G; Zeller, R

    2007-11-01

    Pedicle screw fixation has achieved significant popularity amongst spinal surgeons for both single and multi-level spinal fusion. Misplacement and pedicle cortical violation occurs in over 20% of screw placement and can result in potential complications such as dysthesia, paraparesis or paraplegia. There have been many advances in techniques available for navigating through the pedicle; however, these techniques are not without drawbacks. A new electrical conductivity-measuring device, previously evaluated on the porcine model to detect the pedicle violation, was evaluated amongst nine European Hospitals to be used in conjunction with the methods currently used in that centre. This new device is based on two original principles; the device is integrated in the drilling or screwing tool. The technology allows real-time detection of perforation through two independent parameters, impedance variation and evoked muscle contractions. Data was collected twofold. Initially, the surgeon was given the device and a comparison was made between the devices ability to detect a breech and the surgeon's ability to detect one using his traditional methods of pedicle preparation. In the second module of the study, the surgeon was limited to using the electrical conductivity detection device as their sole guide to detect pedicle breaches. A comparison was made between the detection ability of the device and the other detection possibilities. Post-operative fine cut CT scanning was used to detect the pedicle breaches. Overall, the 11 trial surgeons performed a total of 521 pedicle drillings on 97 patients. Initially there were 147 drillings with 23 breaches detected. The detection rate of these breaches were 22/23 for the device compared to 10/23 by the surgeon. Over both parts of the study 64 breaches (12.3%) were confirmed on post-operative CT imaging. The electrical conductivity detection device detected 63 of the 64 breaches (98.4%). There was one false negative and four false

  5. Impact of a pulsed electric field on damage of plant tissues: effects of cell size and tissue electrical conductivity.

    PubMed

    Ben Ammar, J; Lanoisellé, J-L; Lebovka, N I; Van Hecke, E; Vorobiev, E

    2011-01-01

    Efficiency of pulsed electric field (PEF) induced permeabilization at 293 K in selected fruit and vegetable plant tissues (apple, potato, carrot, courgette, orange, and banana) at electric field strength (E) of 400 V·cm(-1), 1000 V·cm(-1) and pulse duration (t(p)) of 1000 μs was studied experimentally. The mean cell radius (〈r〉) was within 30 to 60 μm, and the ratio of electrical conductivities of the intact and damaged tissues (σ(i)/σ(d)) was within 0.07 to 0.79 for the studied tissues. Electroporation theory predicts higher damage for tissue with larger cells; however, the direct correlation between PEF damage efficiency and size of cell was not always observed. To explain this anomaly, a theoretical Monte Carlo model was developed and checked for parameters typical for potato tissue. The model showed a strong dependence of PEF damage efficiency and power consumption (W) on σ(i)/σ(d) ratio. The optimum value of electric field strength (E(opt)) was an increasing function of σ(i)/σ(d), and plant tissues with high σ(i)/σ(d) ratio (σ(i)/σ(d) ≈ 1) required application of a rather strong field (for example, E(opt) ≈ 3000 V·cm(-1) for σ(i)/σ(d) ≈ 0.8). However, the PEF treatment at a lower field (E ≈ 400 V·cm(-1)) allowed regulation of the selectivity of damage of cells in dependence of their size. A good qualitative correspondence between experimental data and simulation results were observed.

  6. Continuous-function ground conductivity model for the determination of electric railway earth conductance

    SciTech Connect

    Carpenter, D.C. ); Hill, R.J. . School of Electronic and Electrical Engineering)

    1993-09-01

    A method is described for the determination of ground conductivity as a continuous function of depth and frequency for applications along spatially linear structures such as railway tracks. The technique involves measurements of mutual resistance using a modified dipole array excited with AC currents up to audio frequency. After representation of the experimental data by analytic functions, the ground conductivity-depth variation is obtained as a degenerate hypergeometric function. The determined ground conductivity is utilized to model the self and mutual conductance of and between the running rails in a single-track railway. The result is verified by experimental measurement.

  7. Modeling of heat evolution in silicate building materials with electrically conductive admixtures

    NASA Astrophysics Data System (ADS)

    Fiala, Lukáš; Maděra, Jiří; Vejmelková, Eva; Černý, Robert

    2016-12-01

    Silicate building materials are electrically non-conductive, in general. However, a sufficient amount of electrically conductive admixtures can significantly increase their electrical conductivity. Consequently, new practical applications of such materials are available. Materials with enhanced electrical properties can be used as self-sensing sensors monitoring evolution of cracks, electromagnetic shields or cores of deicing systems. This paper deals with the modeling of heat evolution in silicate building materials by the action of passing electric current. Due to the conducting paths formed in the material's matrix by adding a sufficient amount of electrically conductive admixture and applying electric voltage on the installed electrodes, electric current is passing through the material. Thanks to the electric current, Joule heat is successively evolved. As it is crucial to evaluate theoretically the amount of evolved heat in order to assess the effectiveness of such a system, a model describing the Joule heat evolution is proposed and a modeling example based on finite-element method is introduced.

  8. Modelling of Electrical Conductivity of a Silver Plasma at Low Temperature

    NASA Astrophysics Data System (ADS)

    Pascal, Andre; William, Bussiere; Alain, Coulbois; Jean-Louis, Gelet; David, Rochette

    2016-08-01

    During the working of electrical fuses, inside the fuse element the silver ribbon first begins to melt, to vaporize and then a fuse arc appears between the two separated parts of the element. Second, the electrodes are struck and the burn-back phenomenon takes place. Usually, the silver ribbon is enclosed inside a cavity filled with silica sand. During the vaporization of the fuse element, one can consider that the volume is fixed so that the pressure increase appears to reach pressures higher than atmospheric pressure. Thus, in this paper two pressures, 1 atm and 10 atm, are considered. The electrical field inside the plasma can reach high values since the distance between the cathode surface and the anode surface varies with time. That is to say from zero cm to one cm order. So we consider various electrical fields: 102 V/m, 103 V/m, 5×103 V/m, 104 V/m at atmospheric pressure and 105 V/m at a pressure of 10 atm. This study is made in heavy species temperature range from 2,400 K to 10,000 K. To study the plasma created inside the electric fuse, we first need to determine some characteristics in order to justify some hypotheses. That is to say: are the classical approximations of the thermal plasmas physics justified? In other words: plasma frequency, the ideality of the plasma, the Debye-Hückel approximation and the drift velocity versus thermal velocity. These characteristics and assumptions are discussed and commented on in this paper. Then, an evaluation of non-thermal equilibrium versus considered electrical fields is given. Finally, considering the high mobility of electrons, we evaluate the electrical conductivities.

  9. Electrical conductivity imaging of lower extremities using MREIT: postmortem swine and in vivo human experiments.

    PubMed

    Woo, Eung Je; Kim, Hyung Joong; Minhas, Atul S; Kim, Young Tae; Jeong, Woo Chul; Kwon, O

    2008-01-01

    Cross-sectional conductivity images of lower extremities were reconstructed using Magnetic Resonance Electrical Impedance Tomography (MREIT) techniques. Carbon-hydrogel electrodes were adopted for postmortem swine and in vivo human imaging experiments. Due to their large surface areas and good contacts on the skin, we could inject as much as 10 mA into the lower extremities of human subjects without producing a painful sensation. Using a 3T MREIT system, we first performed a series of postmortem swine experiments and produced high-resolution conductivity images of swine legs. Validating the experimental protocol for the lower extremities, we revised it for the following human experiments. After the review of the Institutional Review Board (IRB), we conducted our first MREIT experiments of human subjects using the same 3T MREIT system. Collecting magnetic flux density data inside lower extremities subject to multiple injection currents, we reconstructed cross-sectional conductivity images using the harmonic B(z) algorithm. The conductivity images very well distinguished different parts of muscles inside the lower extremities. The outermost fatty layer was clearly shown in each conductivity image. We could observe severe noise in the outer layer of the bones primarily due to the MR signal void phenomenon there. Reconstructed conductivity images indicated that the internal regions of the bones have relatively high conductivity values. Future study is desired in terms of the conductivity image reconstruction algorithm to improve the image quality. Further human imaging experiments are planned and being conducted to produce high-resolution conductivity images from different parts of the human body.

  10. Influence of sulphate ion on the electrical conductivity of lithium -boro-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Narayana Reddy, C.; Chakradhar, R. P. S.

    2009-07-01

    The effect of Li2SO4 on the electrical conductivity of Li2O- B2O3- P2O5 glass system prepared by melt quenching technique has been studied. Frequency and temperature dependent conductivity measurements have been carried out in the frequency range of 10 Hz to 10 MHz and a temperature range of 523 K-603 K respectively. Conductivity in these glasses is governed by the incorporation of lithium salt in the macromolecular structure. It exhibits Arrhenius behavior over the entire temperature range. Addition of Li2SO4 expands the glass network. Consequently the conductivity increases while activation energy decreases. Impedance spectra of these glasses show a single semicircle indicating one type of conduction. The nature of conductivity behavior observed can be explained using Almond-West type power law with a single exponent σ (ω) = σ (0) + A ωs. The power law exponent (s) decreases with temperature. Scaling behavior has also been carried out using the reduced plots of conductivity with frequency, which suggests the ion transport mechanism remains unaffected by temperature and composition.

  11. Electrical and optical conductivities of hole gas in p-doped bulk III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Mawrie, Alestin; Halder, Pushpajit; Ghosh, Barun; Ghosh, Tarun Kanti

    2016-09-01

    We study electrical and optical conductivities of hole gas in p-doped bulk III-V semiconductors described by the Luttinger Hamiltonian. We provide exact analytical expressions of the Drude conductivity, inverse relaxation time for various impurity potentials, Drude weight, and optical conductivity in terms of the Luttinger parameters γ1 and γ2. The back scattering is completely suppressed as a result of the helicity conservation of the heavy and light hole states. The energy dependence of the relaxation time for the hole states is different from the Brooks-Herring formula for electron gas in n-doped semiconductors. We find that the inverse relaxation time of heavy holes is much less than that of the light holes for Coulomb-type and Gaussian-type impurity potentials and vice-versa for a short-range impurity potential. The Drude conductivity increases non-linearly with the increase in the hole density. The exponent of the density dependence of the conductivity is obtained in the Thomas-Fermi limit. The Drude weight varies linearly with the density even in the presence of the spin-orbit coupling. The finite-frequency optical conductivity goes as √{ ω} , and its amplitude strongly depends on the Luttinger parameters. The Luttinger parameters can be extracted from the optical conductivity measurement.

  12. Simultaneous solution for core magnetic field and fluid flow beneath an electrically conducting mantle

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.; Nishihama, Masahiro

    1993-01-01

    The effects of laterally homogeneous mantle electrical conductivity were included in steady, frozen-flux core surface flow estimation along with refinements in method and weighting. The refined method allows simultaneous solution for both the initial radial geomagnetic field component at the core-mantle boundary (CMB) and the sub-adjacent fluid motion; it also features Gauss' method for solving the non-linear inverse problem associated with steady motional induction. The tradeoff between spatial complexity of the derived flows and misfit to the weighted Definitive Geomagnetic Reference Field models (DGRF's) is studied for various mantle conductivity profiles. For simple flow and a fixed initial geomagnetic condition, a fairly high deep-mantle conductivity performs better than either insulating or weakly conducting profiles; however, a thin, very high conductivity layer at the base of the mantle performs almost as well. Simultaneous solution for both initial geomagnetic field and flow reduces the misfit per degree of freedom even more than does changing the mantle conductivity profile. Moreover, when both core field and flow are estimated, the performance of the solutions and the derived flows become insensitive to the conductivity profile.

  13. Simultaneous solution for core magnetic field and fluid flow beneath an electrically conducting mantle

    NASA Technical Reports Server (NTRS)

    Voorhies, Goerte V.; Nishihama, Masahiro

    1994-01-01

    The effects of laterally homogeneous mantle electrical conductivity have been included in steady, frozen-flux core surface flow estimation along with refinements in method and weighting. The refined method allows simultaneous solution for both the initial radial geomagnetic field component at the core-mantle boundary and the subadjacent fluid motion; it also features Gauss' method for solving the nonlinear inverse problem associated with steady motional induction. The trade-off between spatial complexity of the derived flows and misfit to the weighted Definitive Geomagnetic Reference Field models is studied for various mantle conductivity profiles. For simple flow and a fixed initial geomagnetic condition a fairly high deep-mantle conductivity performs better than either insulating or weakly conducting profiles; however, a thin, very high conductivity layer at the base of the mantle performs almost as well. Simultaneous solution for both initial geomagnetic field and fluid flow reduces the misfit per degree of freedom even more than does changing the mantle conductivity profile. Moreover, when both core field and flow are estimated, the performance of the solutions and the derived flows become insensitive to the conductivity profile.

  14. Electrical conductivity of cationized ferritin decorated gold nanoshells

    NASA Astrophysics Data System (ADS)

    Cortez, Rebecca; Slocik, Joseph M.; Van Nostrand, Joseph E.; Halas, Naomi J.; Naik, Rajesh R.

    2012-06-01

    We report on a novel method of controlling the resistance of nanodimensional, gold-coated SiO2 nanoparticles by utilizing biomolecules chemisorbed to the nanoshell surface. Local electronic transport properties of gold-coated nanoshells were measured using scanning conductance microscopy. These results were compared to transport properties of identical gold nanoshells biofunctionalized with cationized ferritin protein both with and without an iron oxide core (apoferritin). Measured resistances were on the order of mega-ohms. White light irradiation effects on transport properties were also explored. The results suggest that the light energy influences the nanoshells' conductivity. A mechanism for assembly of gold nanoshells with cationized ferritin or cationized apoferritin is proposed to explain the resistivity dependence on irradiation.

  15. Conducted electrical weapons or stun guns: a review of 46 cases examined in casualty.

    PubMed

    Becour, Bertrand

    2013-06-01

    Low-lethality weapons are intended to neutralize a person with maximum security and with minimal risk of injury or death to the user of the weapon, the person arrested, and the witnesses. Under the same circumstances, the use of a firearm is causing mortality of 50%. Marketed since 1974, the Taser X26 is currently staffing services in the French police and gendarmerie. The Taser device has 3 damaging mechanisms: the direct effect of electric current on the tissues, the conversion of electrical energy into thermal energy, and the injuries caused by the general muscle contraction and resulting fall. The study aimed to analyze the specificities of the conducted electrical weapon-related injuries treated in a emergency department on a series of 46 cases. The study population was predominantly middle-aged men. The circumstances of use of the Taser X26 were most often related to an arrest. The frequency of consultation after a shot by Taser X26 was stable. The management is essentially an outpatient because of frequent and benign lesions. The impacts of electrical impulse mainly affect the chest and abdomen. This distribution of impact zones is inhomogeneous, depending on the circumstances of use.

  16. Surface Roughness Influence on Eddy Current Electrical Conductivity Measurements

    DTIC Science & Technology

    2003-01-01

    presented on shot peened pure ( C11000 ) copper , in which the effect is particularly stro n g and readily measurable because of the low penetration depth...electri- cal conductivity measurements were carried out on each fully relaxed shot peened copper specimen over a wide frequency range from 1 kHz to...residual stress is created over a shallow surface layer. Shot peening is performed on a wide range of materials, including gas turbine engine components

  17. Changes to Electrical Conductivity in Irradiated Carbon Nanocomposites

    DTIC Science & Technology

    2011-03-24

    47 4.3 Post Electron Irradiation Resistivity Analysis ................................................... 50 4.4 Post Neutron Resistivity...Research Reactor (OSURR) was the source of the neutron radiation, they were also exposed to a large gamma flux. Therefore, the effects of gammas ...higher dose levels of both electrons and neutrons to facilitate the analysis of radiation effects on the conductivity. 23 III. Experiment 3.1

  18. Electrical regulation of olfactory ensheathing cells using conductive polypyrrole/chitosan polymers.

    PubMed

    Qi, Fengyu; Wang, Yuqing; Ma, Teng; Zhu, Shu; Zeng, Wen; Hu, Xueyu; Liu, Zhongyang; Huang, Jinghui; Luo, Zhuojing

    2013-02-01

    Electrical stimulation (ES) applied to a conductive nerve graft holds the great potential to improve nerve regeneration and functional recovery in the treatment of lengthy nerve defects. A conductive nerve graft can be obtained by a combination of conductive nerve scaffold and olfactory ensheathing cells (OECs), which are known to enhance axonal regeneration and to produce myelin after transplantation. However, when ES is applied through the conductive graft, the impact of ES on OECs has never been investigated. In this study, a biodegradable conductive composite made of conductive polypyrrole (PPy, 2.5%) and biodegradable chitosan (97.5%) was prepared in order to electrically stimulate OECs. The tolerance of OECs to ES was examined by a cell apoptosis assay. The growth of the cells was characterized using DAPI staining and a CCK-8 assay. The mRNA and protein levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neural cell adhesion molecule (N-CAM), vascular endothelial growth factor (VEGF) and neurite outgrowth inhibitor-A (NOGO-A) in OECs were assayed by RT-PCR and Western blotting, and the amount of BDNF, NGF, N-CAM, VEGF and NOGO-A secreted was determined by an ELISA assay. The results showed that the PPy/chitosan membranes supported cell adhesion, spreading, and proliferation with or without ES. Interestingly, ES applied through the PPy/chitosan composite dramatically enhanced the expression and secretion of BDNF, NGF, N-CAM and VEGF, but decreased the expression and secretion of NOGO-A when compared with control cells without ES. These findings highlight the possibility of enhancing nerve regeneration in conductive scaffolds through ES increased neurotrophin secretion in OECs.

  19. On the Electrical Conductivity of Poly(vinylchloride)/poly(ethylene Oxide) Blends

    NASA Astrophysics Data System (ADS)

    Nasr, G. M.; El-Wahab, S. M. Abd; El-Athem, A. Abd

    2013-03-01

    Physical blending of different polymers is a very popular, simple and economical method of preparing composite with desirable and useful properties. The electrical conductivity of blends of amorphous poly(vinyl chloride) (PVC) with semicrystalline poly(ethylene oxide) (PEO) in the form of thin films has been measured by studying the I-V characteristics at room temperature and temperature dependence of the sample conductivity. The results are presented in the form of I-V characteristics and analysis has been made by interpretation of Poole Frenkel, Fowler-Nordheim and Schottky-Richardson plots. The analysis of these results suggests that Schottky - Richardson mechanism are primarily responsible for the observed conduction. Meanwhile, the percolation concentration of PEO in PVC matrix was found to be round 10%. Furthermore, the mechanism of electrical transport in this system is examined in temperature range 300-350K. The temperature dependence of conductivity gives evidence for the charge carriers transport mechanism via the occurred agreement of experimental results with the employed hopping models.

  20. Cole-cole analysis and electrical conduction mechanism of N{sup +} implanted polycarbonate

    SciTech Connect

    Chawla, Mahak; Shekhawat, Nidhi; Aggarwal, Sanjeev Sharma, Annu; Nair, K. G. M.

    2014-05-14

    In this paper, we present the analysis of the dielectric (dielectric constant, dielectric loss, a.c. conductivity) and electrical properties (I–V characteristics) of pristine and nitrogen ion implanted polycarbonate. The samples of polycarbonate were implanted with 100 keV N{sup +} ions with fluence ranging from 1 × 10{sup 15} to 1 × 10{sup 17} ions cm{sup −2}. The dielectric measurements of these samples were performed in the frequency range of 100 kHz to 100 MHz. It has been observed that dielectric constant decreases whereas dielectric loss and a.c. conductivity increases with increasing ion fluence. An analysis of real and imaginary parts of dielectric permittivity has been elucidated using Cole-Cole plot of the complex permittivity. With the help of Cole-Cole plot, we determined the values of static dielectric constant (ε{sub s}), optical dielectric constant (ε{sub ∞}), spreading factor (α), average relaxation time (τ{sub 0}), and molecular relaxation time (τ). The I–V characteristics were studied using Keithley (6517) electrometer. The electrical conduction behaviour of pristine and implanted polycarbonate specimens has been explained using various models of conduction.

  1. Electrical conductivity of reconstructed Si(111) surface with sodium-doped C{sub 60} layers

    SciTech Connect

    Tsukanov, D. A. Saranin, A. A.; Ryzhkova, M. V.; Borisenko, E. A.; Zotov, A. V.

    2015-01-05

    Electrical conductance of sodium-doped C{sub 60} ultra-thin layers (1–6 monolayers) grown on the Na-adsorbed Si(111)√3 × √3-Au surface has been studied in situ by four-point probe technique, combined with low-energy electron diffraction observations. Evidence of conductance channel formation through the C{sub 60} ultrathin layer is demonstrated as a result of Na dosing of 3 and 6 monolayers thick C{sub 60} layers. The observed changes in surface conductivity can be attributed to the formation of fulleride-like NaC{sub 60} and Na{sub 2}C{sub 60} compound layers.

  2. Electrical properties and conduction mechanism of the NaMg4(PO4)3 compound

    NASA Astrophysics Data System (ADS)

    Karray, M.; Louati, B.; Guidara, K.; Gargouri, M.

    2016-07-01

    The NaMg4(PO4)3 phosphor was prepared by the conventional high-temperature solid-state reaction. The phase formation of the compound was confirmed by the powder X-ray diffraction. Electrical properties of the compound have been studied using complex impedance spectroscopy in the frequency range 209 Hz-1 MHz and temperature range 648-712 K. The AC conductivity for grain contribution was interpreted using the universal Jonscher's power law. The temperature dependence of frequency exponent s was investigated to understand the conduction mechanism in NaMg4(PO4)3 compound. The non-overlapping small polaron tunneling model can explain the temperature dependence of the frequency exponent, and it was a closely good model to describe the dominant conduction mechanism.

  3. Switching of the electrical conductivity of plasticized PVC films under uniaxial pressure

    NASA Astrophysics Data System (ADS)

    Vlasov, D. V.; Apresyan, L. A.; Vlasova, T. V.; Kryshtob, V. I.

    2011-11-01

    The jumplike switching of the electrical conductivity in wide-band-gap polymer (antistatic plasticized polyvinylchloride) films under uniaxial pressure is studied. In various plasticized PVC materials, the uniaxial pressure inducing a conductivity jump by four orders of magnitude or higher changes from several to several hundreds of bars, and this effect is retained at a film thickness of several hundred microns, which is two orders of magnitude larger than the critical film thicknesses known for other wide-band-gap polymers. In addition to the earlier interpretation of the conductivity anomalies in plasticized PVC, we proposed a phenomenological electron-molecular dynamic nanotrap model, in which local charge transfer is provided by mobile molecule segments in a plasticized polymer.

  4. Electrical signaling, stomatal conductance, ABA and ethylene content in avocado trees in response to root hypoxia.

    PubMed

    Gil, Pilar M; Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo

    2009-02-01

    Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone.

  5. Electrical signaling, stomatal conductance, ABA and Ethylene content in avocado trees in response to root hypoxia

    PubMed Central

    Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo

    2009-01-01

    Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone. PMID:19649181

  6. Double-Wall Nanotubes and Graphene Nanoplatelets for Hybrid Conductive Adhesives with Enhanced Thermal and Electrical Conductivity.

    PubMed

    Messina, Elena; Leone, Nancy; Foti, Antonino; Di Marco, Gaetano; Riccucci, Cristina; Di Carlo, Gabriella; Di Maggio, Francesco; Cassata, Antonio; Gargano, Leonardo; D'Andrea, Cristiano; Fazio, Barbara; Maragò, Onofrio Maria; Robba, Benedetto; Vasi, Cirino; Ingo, Gabriel Maria; Gucciardi, Pietro Giuseppe

    2016-09-07

    Improving the electrical and thermal properties of conductive adhesives is essential for the fabrication of compact microelectronic and optoelectronic power devices. Here we report on the addition of a commercially available conductive resin with double-wall carbon nanotubes and graphene nanoplatelets that yields simultaneously improved thermal and electrical conductivity. Using isopropanol as a common solvent for the debundling of nanotubes, exfoliation of graphene, and dispersion of the carbon nanostructures in the epoxy resin, we obtain a nanostructured conducting adhesive with thermal conductivity of ∼12 W/mK and resistivity down to 30 μΩ cm at very small loadings (1% w/w for nanotubes and 0.01% w/w for graphene). The low filler content allows one to keep almost unchanged the glass-transition temperature, the viscosity, and the curing parameters. Die shear measurements show that the nanostructured resins fulfill the MIL-STD-883 requirements when bonding gold-metalized SMD components, even after repeated thermal cycling. The same procedure has been validated on a high-conductivity resin characterized by a higher viscosity, on which we have doubled the thermal conductivity and quadrupled the electrical conductivity. Graphene yields better performances with respect to nanotubes in terms of conductivity and filler quantity needed to improve the resin. We have finally applied the nanostructured resins to bond GaN-based high-electron-mobility transistors in power-amplifier circuits. We observe a decrease of the GaN peak and average temperatures of, respectively, ∼30 °C and ∼10 °C, with respect to the pristine resin. The obtained results are important for the fabrication of advanced packaging materials in power electronic and microwave applications and fit the technological roadmap for CNTs, graphene, and hybrid systems.

  7. Enhanced Electrical Conductivity of Aluminum by Carbon Nanotube Hybrid Dilution

    NASA Astrophysics Data System (ADS)

    Stigers, Shelby; Savadelis, Alexader; Carruba, Kathryn; Johns, Kiley; Adu, Kofi

    2015-03-01

    Carbon nanotubes (CNTs) have been recognized as potential candidate for reinforcements in lightweight metals. A composite consisting of CNTs embedded in an Al-matrix might work as an ultra-low-resistive material with the potential of having a room-temperature resistivity far below Al, Cu and Ag. While several advances have been made in developing Al-CNT composites, three major challenges: (1) interfacial bond strength between CNT and the Al matrix, (2) homogeneous dispersion of the CNTs in the Al matrix and impurity (CNTs) scattering centers, continue to limit progress in Al-CNT composites. Several conventional methods including powder metallurgy, melting and solidification, thermal spray and electrochemical deposition have been used to process Al and CNT to form composites. We present preliminary results that address these challenges and demonstrate the fabrication of easily drawable Al-CNT composites into wires of diameter <= 1.0mm with ~ 18% +/- 2% reduction in the electrical resistivity of Al-CNT composite using CNT-hybrid as reinforcement and an inductive melting technique that takes advantage of the induced eddy current in the melt to provide in-situ stirring. This Work is Supported by Penn State Altoona Undergraduate Research Sponsored Program and Penn State Materials Research Institute, University Park.

  8. In situ electrical conductivity measurements of H2O under static pressure up to 28 GPa

    NASA Astrophysics Data System (ADS)

    Liu, Bao; Gao, Yang; Han, Yonghao; Ma, Yanzhang; Gao, Chunxiao

    2016-08-01

    The in situ electrical conductivity measurements on water in both solid state and liquid state were performed under pressure up to 28 GPa and temperature from 77 K to 300 K using a microcircuit fabricated on a diamond anvil cell (DAC). Water chemically ionization mainly contributes to electrical conduction in liquid state, which is in accord with the results obtained under dynamic pressure. Energy band theory of liquid water was used to understand effect of static pressure on electrical conduction of water. The electric conductivity of H2O decreased discontinuously by four orders of magnitude at 0.7-0.96 GPa, indicating water frozen at this P-T condition. Correspondingly, the conduction of H2O in solid state is determined by arrangement and bending of H-bond in ice VI and ice VII. Based on Jaccard theory, we have concluded that the charge carriers of ice are already existing ions and Bjerrum defects.

  9. Seebeck effect influence on joule heat evolution in electrically conductive silicate materials

    NASA Astrophysics Data System (ADS)

    Fiala, Lukáš; Medved, Igor; Maděra, Jiří; Černý, Robert

    2016-07-01

    In general, silicate building materials are non-conductive matters that are not able to evolve heat when they are subjected to an external voltage. However, the electrical conductivity can be increased by addition of electrically conductive admixtures in appropriate amount which leads to generation of conductive paths in materials matrix. Such enhanced materials can evolve Joule heat and are utilizable as a core of self-heating or snow-melting systems. In this paper, Joule heat evolution together with Seebeck effect in electrically conductive silicate materials was taken into consideration and the model based on heat equation with included influence of DC electric field was proposed. Besides, a modeling example of heating element was carried out on FEM basis and time development of temperature in chosen surface points was expressed in order to declare ability of such system to be applicable.

  10. Mapping the near-surface electrical conductivity with DEMETER satellite VLF data

    NASA Astrophysics Data System (ADS)

    Leye, P.; Tarits, P.

    2012-12-01

    Electromagnetic methods in geophysics are useful tools in hydrology and environmental studies. They provide maps of the near-surface electrical conductivity with depth. The well known Very Low Frequency (VLF) sounding technique is revisited in this study with the emphasis on applications using the anthropogenic VLF wave recorded by satellites. The source is the electromagnetic (EM) signal transmitted in the 15 - 20 kHz frequency band by several VLF station located on the Earth surface. The micro-satellite DEMETER (CNES - France) measured the electric and magnetic fields in this frequency range at 700 km altitude. The ICE \\citep{Berthelier2006456} and IMSC \\citep{Parrot2006441} sensors on-board the aircraft measured respectively and simultaneously the electric (E) and magnetic (B) component of the EM field. Theoretical calculations \\citep{Wait2} have shown how this field depended on near-surface properties for earth surface and aircraft measurements. Here we investigate for the first time the modeling of these VLF waves measured at satellite altitudes taking into account the effect of the ionosphere. We show that the theoretical EM field is consistent with the measurements by the satellite. The results suggest that the DEMETER data may be used to study the Earth near-surface properties. We study the relationship between the EM impedance (the ratio between the tangential component E and B EM field) and the Earth conductivity. The ratio has the advantage of being independent on the antenna's current moment. We compare theoretical and observed impedances as a function of the Earth conductivity.

  11. Thermal and Electrical Conductivity of Ge1Sb4Te7 Chalcogenide Alloy

    NASA Astrophysics Data System (ADS)

    Lan, Rui; Endo, Rie; Kuwahara, Masashi; Kobayashi, Yoshinao; Susa, Masahiro

    2017-02-01

    The unique properties of the Ge1Sb4Te7 alloy as a chalcogenide make it a good candidate for application in phase-change random access memory as well as thermoelectric materials. The thermal and electrical conductivity of the Ge1Sb4Te7 alloy play an important role in both applications. This work aims to determine the thermal conductivity and electrical resistivity of the Ge1Sb4Te7 alloy as a function of temperature and to discuss the thermal conduction mechanism. Thermal conductivity and electrical resistivity were measured from room temperature to 778 K using the hot strip method and the four-terminal method, respectively. The thermal conductivity of the Ge1Sb4Te7 alloy shows an interesting temperature dependence: it decreases up to about 600 K, and then increases with increasing temperature. The electrical resistivity shows a monotonic increase with increasing temperature. Through a discussion of the thermal conductivity results together with electrical resistivity results, it is proposed that electronic thermal conductivity dominates the thermal conductivity, while the bipolar diffusion contributes to the increase in the thermal conductivity at higher temperatures. The resonance bonding existing in this chalcogenide alloy accounts for the low lattice thermal conductivity.

  12. Electrically conductive fabric based stretchable triboelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Haque, Rubaiyet I.; Farine, Pierre-André; Briand, Danick

    2016-11-01

    Stretchable conductive fabric-based triboelectric generator (TENG), to develop breathing/chest band for harvesting energy at low frequency has been developed. Stretchable conductive nylon-fabric and carbon-based elastomer composites were used as electrodes. During this work, film casting technique was implemented and combination of different materials, such as, polydimethylsiloxane (PDMS) and polytetrafluoroethylene (PTFE)/ polyurethane (PU) were tested as triboelectric layers. The process was compatible with large scale fabrication. At low operation frequency of 1.0±0.1 Hz for the strain of 13±1.5%, developed TENGs provide output power densities of 0.06 μW/cm2 and 0.11 μW/cm2 for the load resistance of 100 MΩ, and energy density of 0.19±0.03 nJ/cm2/cycle and 0.08±0.01 nJ/cm2/cycle for the use of capacitor of 2.2 μF, for PDMS-PTFE and PDMS-PU based TENGs respectively.

  13. Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication

    NASA Astrophysics Data System (ADS)

    Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Liang, Xiaobin; Ostrovidov, Serge; Shiku, Hitoshi; Ramalingam, Murugan; Nakajima, Ken; Sakka, Yoshio; Bae, Hojae; Matsue, Tomokazu; Khademhosseini, Ali

    2014-03-01

    Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices.

  14. Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication

    PubMed Central

    Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Liang, Xiaobin; Ostrovidov, Serge; Shiku, Hitoshi; Ramalingam, Murugan; Nakajima, Ken; Sakka, Yoshio; Bae, Hojae; Matsue, Tomokazu; Khademhosseini, Ali

    2014-01-01

    Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices. PMID:24642903

  15. Electrical/dielectric properties and conductivity mechanism of epoxy/expanded graphite composites

    NASA Astrophysics Data System (ADS)

    Kanapitsas, Athanasios; Logakis, Emmanuel; Pandis, Christos; Pissis, Polycarpos; Jovic, Natasa; Djokovic, Vladimir

    2009-03-01

    In this work the electrical and dielectric properties, as well as the temperature dependence of the electrical conductivity of epoxy/expanded graphite (EG) composites, are studied by employing dielectric relaxation spectroscopy (DRS). For the preparation of the composites EG was sonicated in acetone for 10h and then the appropriate amount of epoxy resin added to the mixture. The sonication was prolonged for another 3 h. The mixture was dried at 60^oC for a few hours and then the appropriate amount of hardener (triethylenetetramine) was added followed by mechanical stirring for 15 min. Finally, the mixture was cast in a glass mould and outgassed overnight at room temperature. Before they were removed from the mould, all samples were post-cured at 127^oC for 10 min in air. Samples with EG weight fractions ranging from 0 to 8 wt.% were produced. Preliminary DRS results at room temperature indicate that electrical percolation threshold (pc) lies between 3-5 wt.% EG. The influence of the EG fillers (for concentrations below pc) on the dielectric relaxation mechanisms of the epoxy matrix, as well as the conductivity mechanism (for concentrations above pc) are investigated.

  16. Petrology-based Modeling of Mantle Melt Electrical Conductivity and Joint-Interpretation of Electromagnetic and Seismic Results

    NASA Astrophysics Data System (ADS)

    Pommier, A.; Garnero, E. J.

    2013-12-01

    The presence of melt in the Earth's interior depends on the thermal state, bulk chemistry and dynamics. Therefore, the investigation of the physical and chemical properties of melt is a probe of the planet's structure, dynamics, and potentially evolution. We present a petrology-based model of the electrical conductivity of fertile and depleted peridotites during partial melting. Seismic and magnetotelluric (MT) studies provide geophysical datasets sensitive to the presence of melt, but they do not necessarily agree on melt fraction estimates. A possible explanation regards the assumptions made about melt chemistry as part of MT data interpretation. Melt fraction estimates from electrical anomalies usually assume a basaltic melt phase, whereas petrological studies suggest that the first liquids produced have a different chemistry, and thus a different conductivity. Our model is based on the existing laboratory database of electrical conductivity of silicate melts and crystals, and allows calculation of the electrical conductivity of peridotite partial melting (valid at pressures up to 2 GPa) that accounts for the dependency of melt composition on the extent of melting. Partial melting of both depleted and fertile peridotites is considered. Chemical compositions and phase proportions of melt and crystals are determined using the MELTS algorithm [1]. The melt composition dependence on electrical conductivity is expressed using the optical basicity parameter. Our results show that melts produced by low-degree peridotite melting (< 14 vol. %) are up to 5 times more conductive than basaltic liquids. Such conductive melts significantly affect bulk rock conductivity, particularly for a fertile peridotite. Our findings demonstrate that the electrical conductivity of low-degree partial melting of a peridotite can be significantly underestimated if the liquid phase is assumed to be basaltic, resulting in overestimated melt fractions from bulk conductivity values. Application

  17. Tunable electrical conductivity in metal-organic framework thin film devices

    SciTech Connect

    Talin, Albert Alec; Allendorf, Mark D.; Stavila, Vitalie; Leonard, Francois

    2016-05-24

    A composition including a porous metal organic framework (MOF) including an open metal site and a guest species capable of charge transfer that can coordinate with the open metal site, wherein the composition is electrically conductive. A method including infiltrating a porous metal organic framework (MOF) including an open metal site with a guest species that is capable of charge transfer; and coordinating the guest species to the open metal site to form a composition including an electrical conductivity greater than an electrical conductivity of the MOF.

  18. Music through the skin—simple demonstration of human electrical conductivity

    NASA Astrophysics Data System (ADS)

    Vollmer, M.; Möllmann, K. P.

    2016-05-01

    The conduction of electricity is an important topic for any basic physics course. Issues of safety often results in teacher demonstration experiments in front of the class or in extremely simple though—for students—not really fascinating (not to say boring) hands on activities for everybody using 1.5 V batteries, cables and light bulbs etc. Here we briefly review some basic facts about conduction of electricity through the human body and report a simple, safe, and awe inspiring electrical conduction experiment which can be performed with little preparation by a teacher involving the whole class of say 20 students.

  19. Fluctuations of Electrical Conductivity: A New Source for Astrophysical Magnetic Fields.

    PubMed

    Pétrélis, F; Alexakis, A; Gissinger, C

    2016-04-22

    We consider the generation of a magnetic field by the flow of a fluid for which the electrical conductivity is nonuniform. A new amplification mechanism is found which leads to dynamo action for flows much simpler than those considered so far. In particular, the fluctuations of the electrical conductivity provide a way to bypass antidynamo theorems. For astrophysical objects, we show through three-dimensional global numerical simulations that the temperature-driven fluctuations of the electrical conductivity can amplify an otherwise decaying large scale equatorial dipolar field. This effect could play a role for the generation of the unusually tilted magnetic field of the iced giants Neptune and Uranus.

  20. Fluctuations of Electrical Conductivity: A New Source for Astrophysical Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Pétrélis, F.; Alexakis, A.; Gissinger, C.

    2016-04-01

    We consider the generation of a magnetic field by the flow of a fluid for which the electrical conductivity is nonuniform. A new amplification mechanism is found which leads to dynamo action for flows much simpler than those considered so far. In particular, the fluctuations of the electrical conductivity provide a way to bypass antidynamo theorems. For astrophysical objects, we show through three-dimensional global numerical simulations that the temperature-driven fluctuations of the electrical conductivity can amplify an otherwise decaying large scale equatorial dipolar field. This effect could play a role for the generation of the unusually tilted magnetic field of the iced giants Neptune and Uranus.

  1. Tunable electrical conductivity in metal-organic framework thin film devices

    SciTech Connect

    Talin, Albert Alec; Allendorf, Mark D.; Stavila, Vitalie; Leonard, Francois

    2016-08-30

    A composition including a porous metal organic framework (MOF) including an open metal site and a guest species capable of charge transfer that can coordinate with the open metal site, wherein the composition is electrically conductive. A method including infiltrating a porous metal organic framework (MOF) including an open metal site with a guest species that is capable of charge transfer; and coordinating the guest species to the open metal site to form a composition including an electrical conductivity greater than an electrical conductivity of the MOF.

  2. Suppression of ion conductance by electro-osmotic flow in nano-channels with weakly overlapping electrical double layers

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Guo, Lingzi; Zhu, Xin; Ran, Qiushi; Dutton, Robert

    2016-08-01

    This theoretical study investigates the nonlinear ionic current-voltage characteristics of nano-channels that have weakly overlapping electrical double layers. Numerical simulations as well as a 1-D mathematical model are developed to reveal that the electro-osmotic flow (EOF) interplays with the concentration-polarization process and depletes the ion concentration inside the channels, thus significantly suppressing the channel conductance. The conductance may be restored at high electrical biases in the presence of recirculating vortices within the channels. As a result of the EOF-driven ion depletion, a limiting-conductance behavior is identified, which is intrinsically different from the classical limiting-current behavior.

  3. Electrical conductivity of (Mg,Fe)SiO3 Perovskite and a Perovskite-dominated assemblage at lower mantle conditions

    NASA Technical Reports Server (NTRS)

    Li, Xiaoyuan; Jeanloz, Raymond

    1987-01-01

    Electrical conductivity measurements of Perovskite and a Perovskite-dominated assemblage synthesized from pyroxene and olivine demonstrate that these high-pressure phases are insulating to pressures of 82 GPa and temperatures of 4500 K. Assuming an anhydrous upper mantle composition, the result provides an upper bound of 0.01 S/m for the electrical conductivity of the lower mantle between depths of 700 and 1900 km. This is 2 to 4 orders of magnitude lower than previous estimates of lower-mantle conductivity derived from studies of geomagnetic secular variations.

  4. Electrical Charging of Aerosols and Conductivity of Titan's Atmosphere

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Whitten, R. C.; Tripathi, S. N.; Bakes, E. L. O.; Barth, E.

    2004-01-01

    We have used recent data on graphitic cloud particles in the atmosphere of Titan to compute the electrical charging of the particles (radii ranging from 0.01 microns to 0.26 microns). The charging on the nightside was rather similar to that obtained earlier except that charge distributions on the particles are now computed and recently obtained cloud particle sizes and density distributions were employed. The negative charge on particles of 0.26 microns peaked at 9 at 150 km altitude. The computations were repeated for the dayside with the addition of photoelectron emission by the particles as a result of the absorption of solar UV radiation. Particles (except the very smallest) now became positively charged with particles of radius 0.26 microns being charged up to +47. Next, very small particles (radii approx. 3 x 10 (sup -4) microns) of polycyclic aromatic hydrocarbons (PAHs) were introduced and treated as sources of negative ions since they could be either neutral or carry one negative charge. Moreover, they are mobile so that they had to be treated like molecular size negative ions although much more massive. They had the effect of substantially reducing the electron densities in the altitude range 190 to 310 km to values less than the negative PAH densities and increasing the peak electron charge on the larger particles. Particles of radius 0.26 microns bore peak charges of approx. +47 at altitudes of approx. 250 km. The simulated effect of PAHs on the nightside proved to be much less pronounced; at the peak negative PAH density, it was less than the electron density. The physics governing these results will be discussed.

  5. Electrical conductivity of a warm neutron star crust in magnetic fields

    NASA Astrophysics Data System (ADS)

    Harutyunyan, Arus; Sedrakian, Armen

    2016-08-01

    We study the electrical conductivity of finite-temperature crust of a warm compact star which may be formed in the aftermath of a supernova explosion or a binary neutron star merger as well as when a cold neutron star is heated by accretion of material from a companion. We focus on the temperature-density regime where plasma is in the liquid state and, therefore, the conductivity is dominated by the electron scattering off correlated nuclei. The dynamical screening of this interaction is implemented in terms of the polarization tensor computed in the hard-thermal-loop effective field theory of QED plasma. The correlations of the background ionic component are accounted for via a structure factor derived from Monte Carlo simulations of one-component plasma. With this input we solve the Boltzmann kinetic equation in relaxation time approximation taking into account the anisotropy of transport due to the magnetic field. The electrical conductivity tensor is studied numerically as a function of temperature and density for carbon and iron nuclei as well as density-dependent composition of zero-temperature dense matter in weak equilibrium with electrons. We also provide accurate fit formulas to our numerical results as well as supplemental tables which can be used in dissipative magneto-hydrodynamics simulations of warm compact stars.

  6. Changes in young's modulus and electrical conductivity of nuclear grade graphites oxidized with air

    NASA Astrophysics Data System (ADS)

    Imai, Hisashi; Fujii, Kimio; Kurosawa, Takeshi; Nomura, Shinzo

    1983-10-01

    Five kinds of nuclear grade graphites were oxidized to study thermal oxidation effects on Young's modulus and electrical conductivity. The property changes were measured on specimens which were oxidized uniformly throughout their whole volume in the temperature range 500-600°C in air. The following relations were derived as a function of the bulk density of the graphites: E/ E0 = ( ρ/ ρ0) nE and R0/ R = ( ρ/ ρ0) nR, where E, R and ρ are Young's modulus, specific electrical resistivity and bulk density, respectively, and subscript zero refers to the initial unoxidized condition. The exponents nE and nR were found to be dependent on both the kind of graphite and the oxidation temperature, and the dependences were discussed in connection with selective oxidation in the graphite texture. It was also tried to relate the property changes with oxidation rate.

  7. Calibration of EMI derived apparent electrical conductivity based on ERT measurements

    NASA Astrophysics Data System (ADS)

    Rudolph, S.; Mester, A.; van der Kruk, J.; Weihermüller, L.; Zimmermann, E.; Vereecken, H.

    2012-04-01

    Soil electrical conductivity (ECa) is an indirect measure for various soil physical and chemical parameters. Among non-invasive geophysical methods, electromagnetic induction (EMI) appears to be the most efficient one that is able to measure ECa over large areas in short time. However, this method currently does not provide quantitative values of ECa due to calibration problems. In the calibration approach of Lavoué et al. (2010) inverted electrical conductivity data from a 120 m long ERT (electrical resistivity tomography) calibration transect were used as input parameter for an electromagnetic forward model to predict ECa measured with EMI. To further improve this calibration method we conducted a field survey within an agricultural field for crop breeding studies. The entire field (60x100 m) was mapped with the EM38-MK2 (Geonics, Ontario, Canada), an EMI system with multiple coil spacing which measures the weighted average of ECa over four depth ranges, immediately after the harvest of sugar beet. On the basis of high-resolution ECa distribution maps, an area with high contrast in ECa was selected for calibrating the EMI sensor with ERT. Along a 30 m long transect EMI measurements with two different internal calibration settings were carried out. A Syscal Pro System (IRIS Instruments, Orleans France) and 120 electrodes with an electrode spacing of 0.25 m were used to measure the apparent resistivity of soil. Post processed ERT measurements were inverted using the robust inversion method of the RES2DINV software. Quantitative EM inductions measurements were derived by linear regression between measured and predicted ECa measurements. The observed offset between the repeated EMI measurements could be removed successfully. Furthermore, shortening and focusing the ERT measurements to a specific area of interest could reduce the measurement time for calibration significantly. Prospectively, the application of a quantitative multi-layer inversion of multi

  8. Additional Sawmill Electrical Energy Study.

    SciTech Connect

    Carroll, Hatch & Associates.

    1987-02-01

    This study was undertaken to investigate the potential for reducing use of electrical energy at lumber dry kilns by reducing fan speeds part way through the lumber drying process. It included three tasks: to quantify energy savings at a typical mill through field tests; to investigate the level of electric energy use at a representative sample of other mills and thereby to estimate the transferability of the conservation to the region; and to prepare a guidebook to present the technology to mill operators, and to allow them to estimate the economic value of adopting the technique at their facilities. This document reports on the first two tasks.

  9. Flowing fluid electric conductivity logging for a deep artesian well in fractured rock with regional flow

    NASA Astrophysics Data System (ADS)

    Doughty, Christine; Tsang, Chin-Fu; Yabuuchi, Satoshi; Kunimaru, Takanori

    2013-03-01

    SummaryThe flowing fluid electric conductivity (FFEC) logging method is a well-logging technique that may be used to estimate flow rate, salinity, transmissivity, and hydraulic head of individual fractures or high-permeability zones intersected by a wellbore. Wellbore fluid is first replaced with fluid of a contrasting electric conductivity, then repeated FEC logging is done while the well is pumped. Zones where fluid flows into the wellbore show peaks in the FEC logs, which may be analyzed to infer inflow rate and salinity of the individual fractures. Conducting the procedure with two or more pumping rates (multi-rate FFEC logging) enables individual fracture transmissivity and hydraulic head to be determined. Here we describe the first application of the multi-rate FFEC logging method to an artesian well, using a 500-m well in fractured rock at Horonobe, Japan. An additional new factor at the site is the presence of regional groundwater flow, which heretofore has only been studied with synthetic data. FFEC logging was conducted for two different pumping rates. Several analysis techniques had to be adapted to account for the artesian nature of the well. The results were subsequently compared with independent salinity measurements and transmissivity and hydraulic head values obtained from packer tests in the same well. Despite non-ideal operating conditions, multi-rate FFEC logging successfully determined flow rate, salinity, and transmissivity of 17 conducting fractures intercepted by the logged section of the borehole, including two fractures with regional groundwater flow. Predictions of hydraulic head were less accurate, a not unexpected result in light of operational problems and the form of the equation for hydraulic head, which involves the difference between two uncertain quantities. This study illustrates the strengths and weaknesses of the multi-rate FFEC logging method applied to artesian wells. In conjunction with previous studies, it demonstrates the

  10. Electrical measurements in the atmosphere and the Ionosphere over an active thunderstorm. II - Direct current electric fields and conductivity

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; Kelley, M. C.; Siefring, C. L.; Hale, L. C.; Mitchell, J. D.

    1985-01-01

    On August 9, 1981, a series of three rockets was launched over an air mass thunderstorm off the eastern seaboard of Virginia while simultaneous stratospheric and ground-based electric field measurements were made. The conductivity was substantially lower at most altitudes than the conductivity profiles used by theoretical models. Direct current electric fields over 80 mV/m were measured as far away as 96 km from the storm in the stratosphere at 23 km altitude. No dc electric fields above 75 km altitude could be identified with the thunderstorm, in agreement with theory. However, vertical current densities over 120 pA/sq m were seen well above the classical 'electrosphere' (at 50 or 60 km). Frequent dc shifts in the electric field following lightning transients were seen by both balloon and rocket payloads. These dc shifts are clearly identifiable with either cloud-to-ground (increases) or intercloud (decreases) lightning flashes.

  11. Substituent effects on the electrical conductivities of the phenazine derivatives

    NASA Technical Reports Server (NTRS)

    Sugimoto, A.; Furuyama, S.; Inoue, H.; Imoto, E.

    1984-01-01

    The and/or photoconductivities of 16 substituted phenazines having methoxy, hydroxy, chloro, nitro, amino or t-butyl group at 1-, 2-, 1, 6- or 2,7- positions of the phenazine ring measured by using the surface type cells. The energy gaps of the dark conductivities in the range 2.0 to 2.3 were independent of the kinds and the positions of the substituent groups, although the photo-absorption wavelength of the evaporated films changed with them. No correlation between photoconductivity and fluorescence was observed. The photocurrent was affected by the position of the substituents; namely, the photocurrents of the 1,6-di-substituted phenazines. When the substituent at 1,6-positions was hydroxy or amino group, however, the photocurrents decreased. The photocurrents decreased drastically in the presence of oxygen.

  12. Latent synthesis of electrically conductive surface-silvered polyimide films.

    PubMed

    Davis, Luke M; Abelt, Christopher J; Scott, Joseph L; Orlova, Evguenia; Thompson, David W

    2009-01-01

    A facile ambient temperature route to the fabrication of surface silver-metallized polyimide films is described. Silver(I) trifluoromethanesulfonate or silver(I) nitrate and a polyimide, derived from 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride and an equimolar amount of 4,4'-oxydianiline and 3,5-diaminobenzoic acid, were dissolved together in dimethylacetamide. Silver(I)-doped films were prepared at thicknesses of 25-40 microm and depleted of solvent by evaporation at ambient temperature and low humidity. The silver(I)-ion-containing films were then treated with aqueous solutions of the reducing agents hydrazine hydrate and hydroxylamine, which brought forth surface-silvered films exhibiting conductivity on the order of bulk polycrystalline silver accompanied by modest-to-high specular reflectivity.

  13. Upper Mantle Composition Beneath the Petit-Spot Area in Northwestern Pacific: Insights From Electrical Conductivity

    NASA Astrophysics Data System (ADS)

    Baba, K.; Ichiki, M.; Abe, N.; Hirano, N.

    2007-12-01

    The mantle composition beneath the petit-spot area, where is about 500 km offshore from Japan Trench in northwestern Pacific, is discussed through electrical conductivity obtained by seafloor magnetotelluric (MT) survey. The seafloor MT data were collected using ocean bottom electromagnetometers (OBEMs) at four sites with the spacing of 100-150 km, between May and August, 2005. The survey was conducted as a part of the petit-spot multidsciplinary project. The petit-spot is young volcanic activity on very old (~130 Ma) oceanic plate characterized as a clump of small knolls which erupted strong to moderate alkaline basalt. This volcanic field is associated with neither any plate boundaries nor hot spots. To elucidate the magma generation process of this new-type volcanic activity, a collaborative study of various geophysical and geochemical approaches has been carried out. The MT survey aims to constrain the physical state of the lithosphere and asthenosphere where the petit-spot melt is probably generated. The acquired electromagnetic field variation data were analyzed and the MT responses, which is the transfer function between the electric and magnetic fields, were obtained. The effect for the ocean-land distribution and seafloor topography on the MT responses was modeled and stripped. As the result, the corrected responses indicate that the lateral heterogeneity in electrical conductivity is less significant beneath the survey area. One- dimensional inversion study shows that the data require a peak in conductivity (0.05 S/m) at about 200 km depth. The mantle temperature may be calculated from the conductivity using an experimental result for dry olivine (Constable et al., 1992). The resultant temperature is about 1750 °C which is lower than the dry solidus for garnet peridotite. Instead, assuming the temperature as GDH1 model (Stein and Stein, 1992) for 130 Myr old mantle, we calculate water content in olivine using an experimental result by Wang et al. (2006

  14. Statistical analysis of plating variable effects on the electrical conductivity of electroless copper patterns on paper.

    PubMed

    Zabetakis, Daniel; Dressick, Walter J

    2012-05-01

    We describe a process for selective metallization of paper substrates bearing inkjet printed patterns of a commercial Pd/Sn colloidal catalyst ink plated using a commercial electroless Cu bath. The electrical conductivity of the Cu films is analyzed as a function of feature geometry (line dimensions (L) and spacing (S)), type of paper (P), age of the Pd/Sn patterns (A), plating time (T), and plating temperature (H) using a two-level factorial design. Conductivity is influenced predominantly by the P, T, and H factors, with lesser contributions attributed to pair-wise interactions among several of the variables studied. Increases in T and/or H enhance conductivity of the Cu films, whereas increases in P, corresponding to the use of rougher, more porous, paper substrates, yield Cu films exhibiting decreased conductivity. Our analysis leads to a model that predicts Cu film conductivity well over the ranges of variables examined, provides guidelines for identification of optimum conditions for plating highly conductive Cu films, and identifies areas for further process improvement.

  15. Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers.

    PubMed

    Liu, Hu; Gao, Jiachen; Huang, Wenju; Dai, Kun; Zheng, Guoqiang; Liu, Chuntai; Shen, Changyu; Yan, Xingru; Guo, Jiang; Guo, Zhanhu

    2016-07-14

    Thermoplastic polyurethane (TPU) based conductive polymer composites (CPCs) with a reduced percolation threshold and tunable resistance-strain sensing behavior were obtained through the addition of synergistic carbon nanotubes (CNT) and graphene bifillers. The percolation threshold of graphene was about 0.006 vol% when the CNT content was fixed at 0.255 vol% that is below the percolation threshold of CNT/TPU nanocomposites. The synergistic effect between graphene and CNT was identified using the excluded volume theory. Graphene acted as a 'spacer' to separate the entangled CNTs from each other and the CNT bridged the broad gap between individual graphene sheets, which was beneficial for the dispersion of CNT and formation of effective conductive paths, leading to better electrical conductivity at a lower conductive filler content. Compared with the dual-peak response pattern of the CNT/TPU based strain sensors, the CPCs with hybrid conductive fillers displayed single-peak response patterns under small strain, indicating good tunability with the synergistic effect of CNT and graphene. Under larger strain, prestraining was adopted to regulate the conductive network, and better tunable single-peak response patterns were also obtained. The CPCs also showed good reversibility and reproductivity under cyclic extension. This study paves the way for the fabrication of CPC based strain sensors with good tunability.

  16. A transient hot-wire instrument for thermal conductivity measurements in electrically conducting liquids at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Alloush, A.; Gosney, W. B.; Wakeham, W. A.

    1982-09-01

    This paper describes a novel type of transient hot-wire cell for thermal conductivity measurements on electrically conducting liquids. A tantalum wire of 25 μm. diameter is used as the sensing element in the cell, and it is insulated from the conducting liquids by an anodic film of tantalum pentoxide, 70 nm thick. The cell is suitable for measurements on conducting liquids at elevated temperatures. The results of test measurements on liquid water at its saturation vapor pressure are reported in order to confirm the correct operation of the thermal conductivity cell. The data, which have an estimated accuracy of ±3%, depart by less than ±1.8% from the correlation proposed by the International Association for the Properties of Steam. Results are also presented for concentrated aqueous solutions of lithium bromide, which are frequently used in absorption refrigerator cycles.

  17. DBS-relevant electric fields increase hydraulic conductivity of in vitro endothelial monolayers.

    PubMed

    Lopez-Quintero, S V; Datta, A; Amaya, R; Elwassif, M; Bikson, M; Tarbell, J M

    2010-02-01

    Deep brain stimulation (DBS) achieves therapeutic outcome through generation of electric fields (EF) in the vicinity of energized electrodes. Targeted brain regions are highly vascularized, and it remains unknown if DBS electric fields modulate blood-brain barrier (BBB) function, either through electroporation of individual endothelial cells or electro-permeation of barrier tight junctions. In our study, we calculated the intensities of EF generated around energized Medtronic 3387 and 3389 DBS leads by using a finite element model. Then we designed a novel stimulation system to study the effects of such fields with DBS-relevant waveforms and intensities on bovine aortic endothelial cell (BAEC) monolayers, which were used as a basic analog for the blood-brain barrier endothelium. Following 5 min of stimulation, we observed a transient increase in endothelial hydraulic conductivity (Lp) that could be related to the disruption of the tight junctions (TJ) between cells, as suggested by zonula occludens-1 (ZO-1) protein staining. This 'electro-permeation' occurred in the absence of cell death or single cell electroporation, as indicated by propidium iodide staining and cytosolic calcein uptake. Our in vitro results, using uniform fields and BAEC monolayers, thus suggest that electro-permeation of the BBB may occur at electric field intensities below those inducing electroporation and within intensities generated near DBS electrodes. Further studies are necessary to address potential BBB disruption during clinical studies, with safety and efficacy implications.

  18. Modeling the electrical conduction in DNA nanowires: charge transfer and lattice fluctuation theories.

    PubMed

    Behnia, S; Fathizadeh, S

    2015-02-01

    An analytical approach is proposed for the investigation of the conductivity properties of DNA. The charge mobility of DNA is studied based on an extended Peyrard-Bishop-Holstein model when the charge carrier is also subjected to an external electrical field. We have obtained the values of some of the system parameters, such as the electron-lattice coupling constant, by using the mean Lyapunov exponent method. On the other hand, the electrical current operator is calculated directly from the lattice operators. Also, we have studied Landauer resistance behavior with respect to the external field, which could serve as the interface between chaos theory tools and electronic concepts. We have examined the effect of two types of electrical fields (dc and ac) and variation of the field frequency on the current flowing through DNA. A study of the current-voltage (I-V) characteristic diagram reveals regions with a (quasi-)Ohmic property and other regions with negative differential resistance (NDR). NDR is a phenomenon that has been observed experimentally in DNA at room temperature. We have tried to study the affected agents in charge transfer phenomena in DNA to better design nanostructures.

  19. Negative differential conductance and hysteretic current switching of benzene molecular junction in a transverse electric field

    NASA Astrophysics Data System (ADS)

    Zhu, Wen-Huan; Ding, Guo-Hui; Dong, Bing

    2014-11-01

    We study charge transport through single benzene molecular junction (BMJ) directly sandwiched between two platinum electrodes by using a tight-binding model and the non-equilibrium Green's function approach. Pronounced negative differential conductance is observed at finite bias voltage, resulting from charge redistribution in BMJ and a Coulomb blockade effect at the interface of molecule-electrode contacts. In the presence of a transverse electric field, hysteretic switching behavior and large spin-polarization of current are obtained, indicating the potential application of BMJ for acting as a nanoscale current modulator or spintronic molecular device.

  20. Basic setup for breast conductivity imaging using magnetic resonance electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Lee, Byung Il; Oh, Suk Hoon; Kim, Tae-Seong; Woo, Eung Je; Lee, Soo Yeol; Kwon, Ohin; Seo, Jin Keun

    2006-01-01

    We present a new medical imaging technique for breast imaging, breast MREIT, in which magnetic resonance electrical impedance tomography (MREIT) is utilized to get high-resolution conductivity and current density images of the breast. In this work, we introduce the basic imaging setup of the breast MREIT technique with an investigation of four different imaging configurations of current-injection electrode positions and pathways through computer simulation studies. Utilizing the preliminary findings of a best breast MREIT configuration, additional numerical simulation studies have been carried out to validate breast MREIT at different levels of SNR. Finally, we have performed an experimental validation with a breast phantom on a 3.0 T MREIT system. The presented results strongly suggest that breast MREIT with careful imaging setups could be a potential imaging technique for human breast which may lead to early detection of breast cancer via improved differentiation of cancerous tissues in high-resolution conductivity images.