Using electrical impedance tomography to map subsurface hydraulic conductivity
Berryman, James G.; Daily, William D.; Ramirez, Abelardo L.; Roberts, Jeffery J.
2000-01-01
The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.
Scanning evanescent electro-magnetic microscope
Xiang, Xiao-Dong; Gao, Chen; Schultz, Peter G.; Wei, Tao
2003-01-01
A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.
Scanning evanescent electro-magnetic microscope
Xiang, Xiao-Dong; Gao, Chen
2001-01-01
A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.
NASA Astrophysics Data System (ADS)
Jesús Moral García, Francisco; Rebollo Castillo, Francisco Javier; Monteiro Santos, Fernando
2016-04-01
Maps of apparent electrical conductivity of the soil are commonly used in precision agriculture to indirectly characterize some important properties like salinity, water, and clay content. Traditionally, these studies are made through an empirical relationship between apparent electrical conductivity and properties measured in soil samples collected at a few locations in the experimental area and at a few selected depths. Recently, some authors have used not the apparent conductivity values but the soil bulk conductivity (in 2D or 3D) calculated from measured apparent electrical conductivity through the application of an inversion method. All the published works used data collected with electromagnetic (EM) instruments. We present a new software to invert the apparent electrical conductivity data collected with VERIS 3100 and 3150 (or the more recent version with three pairs of electrodes) using the 1D spatially constrained inversion method (1D SCI). The software allows the calculation of the distribution of the bulk electrical conductivity in the survey area till a depth of 1 m. The algorithm is applied to experimental data and correlations with clay and water content have been established using soil samples collected at some boreholes. Keywords: Digital soil mapping; inversion modelling; VERIS; soil apparent electrical conductivity.
MacDonald, Gordon A; Veneman, P Alexander; Placencia, Diogenes; Armstrong, Neal R
2012-11-27
We demonstrate mapping of electrical properties of heterojunctions of a molecular semiconductor (copper phthalocyanine, CuPc) and a transparent conducting oxide (indium-tin oxide, ITO), on 20-500 nm length scales, using a conductive-probe atomic force microscopy technique, scanning current spectroscopy (SCS). SCS maps are generated for CuPc/ITO heterojunctions as a function of ITO activation procedures and modification with variable chain length alkyl-phosphonic acids (PAs). We correlate differences in small length scale electrical properties with the performance of organic photovoltaic cells (OPVs) based on CuPc/C(60) heterojunctions, built on these same ITO substrates. SCS maps the "ohmicity" of ITO/CuPc heterojunctions, creating arrays of spatially resolved current-voltage (J-V) curves. Each J-V curve is fit with modified Mott-Gurney expressions, mapping a fitted exponent (γ), where deviations from γ = 2.0 suggest nonohmic behavior. ITO/CuPc/C(60)/BCP/Al OPVs built on nonactivated ITO show mainly nonohmic SCS maps and dark J-V curves with increased series resistance (R(S)), lowered fill-factors (FF), and diminished device performance, especially near the open-circuit voltage. Nearly optimal behavior is seen for OPVs built on oxygen-plasma-treated ITO contacts, which showed SCS maps comparable to heterojunctions of CuPc on clean Au. For ITO electrodes modified with PAs there is a strong correlation between PA chain length and the degree of ohmicity and uniformity of electrical response in ITO/CuPc heterojunctions. ITO electrodes modified with 6-8 carbon alkyl-PAs show uniform and nearly ohmic SCS maps, coupled with acceptable CuPc/C(60)OPV performance. ITO modified with C14 and C18 alkyl-PAs shows dramatic decreases in FF, increases in R(S), and greatly enhanced recombination losses.
Ghazikhanlou-Sani, K; Firoozabadi, S M P; Agha-Ghazvini, L; Mahmoodzadeh, H
2016-06-01
There is many ways to assessing the electrical conductivity anisotropy of a tumor. Applying the values of tissue electrical conductivity anisotropy is crucial in numerical modeling of the electric and thermal field distribution in electroporation treatments. This study aims to calculate the tissues electrical conductivity anisotropy in patients with sarcoma tumors using diffusion tensor imaging technique. A total of 3 subjects were involved in this study. All of patients had clinically apparent sarcoma tumors at the extremities. The T1, T2 and DTI images were performed using a 3-Tesla multi-coil, multi-channel MRI system. The fractional anisotropy (FA) maps were performed using the FSL (FMRI software library) software regarding the DTI images. The 3D matrix of the FA maps of each area (tumor, normal soft tissue and bone/s) was reconstructed and the anisotropy matrix was calculated regarding to the FA values. The mean FA values in direction of main axis in sarcoma tumors were ranged between 0.475-0.690. With assumption of isotropy of the electrical conductivity, the FA value of electrical conductivity at each X, Y and Z coordinate axes would be equal to 0.577. The gathered results showed that there is a mean error band of 20% in electrical conductivity, if the electrical conductivity anisotropy not concluded at the calculations. The comparison of FA values showed that there is a significant statistical difference between the mean FA value of tumor and normal soft tissues (P<0.05). DTI is a feasible technique for the assessment of electrical conductivity anisotropy of tissues. It is crucial to quantify the electrical conductivity anisotropy data of tissues for numerical modeling of electroporation treatments.
NASA Astrophysics Data System (ADS)
Meyerhoff, Steven B.; Karaoulis, Marios; Fiebig, Florian; Maxwell, Reed M.; Revil, André; Martin, Jonathan B.; Graham, Wendy D.
2012-12-01
In the karstic upper Floridan aquifer, surface water flows into conduits of the groundwater system and may exchange with water in the aquifer matrix. This exchange has been hypothesized to occur based on differences in discharge at the Santa Fe River Sink-Rise system, north central Florida, but has yet to be visualized using any geophysical techniques. Using electrical resistivity tomography, we conducted a time-lapse study at two locations with mapped conduits connecting the Santa Fe River Sink to the Santa Fe River Rise to study changes of electrical conductivity during times of varying discharge over a six-week period. Our results show conductivity differences between matrix, conduit changes in resistivity occurring through time at the locations of mapped karst conduits, and changes in electrical conductivity during rainfall infiltration. These observations provide insight into time scales and matrix conduit conductivity differences, illustrating how surface water flow recharged to conduits may flow in a groundwater system in a karst aquifer.
NASA Technical Reports Server (NTRS)
Roble, R. G.; Hays, P. B.
1979-01-01
The paper presents a model of global atmospheric electricity used to examine the effect of upper atmospheric generators on the global electrical circuit. The model represents thunderstorms as dipole current generators randomly distributed in areas of known thunderstorm frequency; the electrical conductivity in the model increases with altitude, and electrical effects are coupled with a passive magnetosphere along geomagnetic field lines. The large horizontal-scale potential differences at ionospheric heights map downward into the lower atmosphere where the perturbations in the ground electric field are superimposed on the diurnal variation. Finally, changes in the upper atmospheric conductivity due to solar flares, polar cap absorptions, and Forbush decreases are shown to alter the downward mapping of the high-latitude potential pattern and the global distribution of fields and currents.
Takami, K; Tsuruta, S; Miyake, Y; Akai-Kasaya, M; Saito, A; Aono, M; Kuwahara, Y
2011-11-02
The electrical transport properties of organic thin films within the micrometer scale have been evaluated by a laboratory-built independently driven double-tip scanning tunneling microscope, operating under ambient conditions. The two tips were used as point contact electrodes, and current in the range from 0.1 pA to 100 nA flowing between the two tips through the material can be detected. We demonstrated two-dimensional contour mapping of the electrical resistance on a poly(3-octylthiophene) thin films as shown below. The obtained contour map clearly provided an image of two-dimensional electrical conductance between two point electrodes on the poly(3-octylthiophene) thin film. The conductivity of the thin film was estimated to be (1-8) × 10(-6) S cm(-1). Future prospects and the desired development of multiprobe STMs are also discussed.
The Use of Electromagnetic Induction Techniques for Soil Mapping
NASA Astrophysics Data System (ADS)
Brevik, Eric C.; Doolittle, Jim
2015-04-01
Soils have high natural spatial variability. This has been recognized for a long time, and many methods of mapping that spatial variability have been investigated. One technique that has received considerable attention over the last ~30 years is electromagnetic induction (EMI). Particularly when coupled with modern GPS and GIS systems, EMI techniques have allowed the rapid and relatively inexpensive collection of large spatially-related data sets that can be correlated to soil properties that either directly or indirectly influence electrical conductance in the soil. Soil electrical conductivity is directly controlled by soil water content, soluble salt content, clay content and mineralogy, and temperature. A wide range of indirect controls have been identified, such as soil organic matter content and bulk density; both influence water relationships in the soil. EMI techniques work best in areas where there are large changes in one soil property that influences soil electrical conductance, and don't work as well when soil properties that influence electrical conductance are largely homogenous. This presentation will present examples of situations where EMI techniques were successful as well as a couple of examples of situations where EMI was not so useful in mapping the spatial variability of soil properties. Reasons for both the successes and failures will be discussed.
NASA Astrophysics Data System (ADS)
Munch, Federico; Grayver, Alexander; Khan, Amir; Kuvshinov, Alexey
2017-04-01
As most of Earth's interior remains geochemically unsampled, geophysical techniques based on seismology, geodesy, gravimetry, and electromagnetic studies play prominent roles because of their ability to sense structure at depth. Although seismic tomography maps show a variety of structures, separating thermal and compositional contributions from seismic velocities alone still remains a challenging task. Alternatively, as electrical conductivity is sensitive to temperature, chemical composition, oxygen fugacity, water content, and the presence of melt, it can serve for determining chemistry, mineralogy, and physical structure of the deep mantle. In this work we estimate and invert local C-responses (period range 3-100 days) for a number of worldwide geomagnetic observatories to map lateral variations of electrical conductivity in Earth's mantle (400-1600 km depth). The obtained conductivity profiles are interpreted in terms of basalt fraction in a basalt-harzburgite mixture, temperature structure, and water content variations. Interpretation is based on a self-consistent thermodynamic calculation of mineral phase equilibria, electrical conductivity databases, and probabilistic inverse methods.
In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)
NASA Astrophysics Data System (ADS)
Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2017-01-01
New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.
Bedrock mapping of buried valley networks using seismic reflection and airborne electromagnetic data
NASA Astrophysics Data System (ADS)
Oldenborger, G. A.; Logan, C. E.; Hinton, M. J.; Pugin, A. J.-M.; Sapia, V.; Sharpe, D. R.; Russell, H. A. J.
2016-05-01
In glaciated terrain, buried valleys often host aquifers that are significant groundwater resources. However, given the range of scales, spatial complexity and depth of burial, buried valleys often remain undetected or insufficiently mapped. Accurate and thorough mapping of bedrock topography is a crucial step in detecting and delineating buried valleys and understanding formative valley processes. We develop a bedrock mapping procedure supported by the combination of seismic reflection data and helicopter time-domain electromagnetic data with water well records for the Spiritwood buried valley aquifer system in Manitoba, Canada. The limited spatial density of water well bedrock observations precludes complete depiction of the buried valley bedrock topography and renders the water well records alone inadequate for accurate hydrogeological model building. Instead, we leverage the complementary strengths of seismic reflection and airborne electromagnetic data for accurate local detection of the sediment-bedrock interface and for spatially extensive coverage, respectively. Seismic reflection data are used to define buried valley morphology in cross-section beneath survey lines distributed over a regional area. A 3D model of electrical conductivity is derived from inversion of the airborne electromagnetic data and used to extrapolate buried valley morphology over the entire survey area. A spatially variable assignment of the electrical conductivity at the bedrock surface is applied to different features of the buried valley morphology identified in the seismic cross-sections. Electrical conductivity is then used to guide construction of buried valley shapes between seismic sections. The 3D locus of points defining each morphological valley feature is constructed using a path optimization routine that utilizes deviation from the assigned electrical conductivities as the cost function. Our resulting map represents a bedrock surface of unprecedented detail with more complexity than has been suggested by previous investigations. Our procedure is largely data-driven with an adaptable degree of expert user input that provides a clear protocol for incorporating different types of geophysical data into the bedrock mapping procedure.
Dynamic prescription maps for site-specific variable rate irrigation of cotton
USDA-ARS?s Scientific Manuscript database
A prescription map is a set of instructions that controls a variable rate irrigation (VRI) system. These maps, which may be based on prior yield, soil texture, topography, or soil electrical conductivity data, are often manually applied at the beginning of an irrigation season and remain static. The...
Capacitive charge generation apparatus and method for testing circuits
Cole, E.I. Jr.; Peterson, K.A.; Barton, D.L.
1998-07-14
An electron beam apparatus and method for testing a circuit are disclosed. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 {micro}m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits. 7 figs.
Capacitive charge generation apparatus and method for testing circuits
Cole, Jr., Edward I.; Peterson, Kenneth A.; Barton, Daniel L.
1998-01-01
An electron beam apparatus and method for testing a circuit. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 .mu.m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits.
Li, Xu; Yu, Kai; He, Bin
2016-01-01
Magnetoacoustic tomography with magnetic induction (MAT-MI) is a noninvasive imaging method developed to map electrical conductivity of biological tissue with millimeter level spatial resolution. In MAT-MI, a time-varying magnetic stimulation is applied to induce eddy current inside the conductive tissue sample. With the existence of a static magnetic field, the Lorentz force acting on the induced eddy current drives mechanical vibrations producing detectable ultrasound signals. These ultrasound signals can then be acquired to reconstruct a map related to the sample’s electrical conductivity contrast. This work reviews fundamental ideas of MAT-MI and major techniques developed in these years. First, the physical mechanisms underlying MAT-MI imaging are described including the magnetic induction and Lorentz force induced acoustic wave propagation. Second, experimental setups and various imaging strategies for MAT-MI are reviewed and compared together with the corresponding experimental results. In addition, as a recently developed reverse mode of MAT-MI, magneto-acousto-electrical tomography with magnetic induction (MAET-MI) is briefly reviewed in terms of its theory and experimental studies. Finally, we give our opinions on existing challenges and future directions for MAT-MI research. With all the reported and future technical advancement, MAT-MI has the potential to become an important noninvasive modality for electrical conductivity imaging of biological tissue. PMID:27542088
Conduction aphasia as a function of the dominant posterior perisylvian cortex. Report of two cases.
Quigg, Mark; Geldmacher, David S; Elias, W Jeff
2006-05-01
Assessment of eloquent functions during brain mapping usually relies on testing reading, speech, and comprehension to uncover transient deficits during electrical stimulation. These tests stem from findings predicted by the Geschwind-Wernicke hypothesis of receptive and expressive cortices connected by white matter tracts. Later work, however, has emphasized cortical mechanisms of language function. The authors report two cases that demonstrate that conduction aphasia is cortically mediated and can be inadequately assessed if not specifically evaluated during brain mapping. To determine the distribution of language on the dominant cortex, electrical cortical stimulation was performed in two cases by using implanted subdural electrodes during brain mapping before epilepsy surgery. A transient isolated deficit in repetition of language was reported during stimulation of the posterior portion of the dominant superior temporal gyrus in one patient and during stimulation of the supramarginal gyrus in the other patient. These cases demonstrate a localization of language repetition to the posterior perisylvian cortex. Brain mapping of this region should include assessment of verbal repetition to avoid potential deficits resembling conduction aphasia.
Analytical scanning evanescent microwave microscope and control stage
Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin
2013-01-22
A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.
Analytical scanning evanescent microwave microscope and control stage
Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin
2009-06-23
A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.
Liu, Jiaen; Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortele, Pierre-Francois; He, Bin
2014-01-01
Purpose To develop high-resolution electrical properties tomography (EPT) methods and investigate a gradient-based EPT (gEPT) approach which aims to reconstruct the electrical properties (EP), including conductivity and permittivity, of an imaged sample from experimentally measured B1 maps with improved boundary reconstruction and robustness against measurement noise. Theory and Methods Using a multi-channel transmit/receive stripline head coil, with acquired B1 maps for each coil element, by assuming negligible Bz component compared to transverse B1 components, a theory describing the relationship between B1 field, EP value and their spatial gradient has been proposed. The final EP images were obtained through spatial integration over the reconstructed EP gradient. Numerical simulation, physical phantom and in vivo human experiments at 7 T have been conducted to evaluate the performance of the proposed methods. Results Reconstruction results were compared with target EP values in both simulations and phantom experiments. Human experimental results were compared with EP values in literature. Satisfactory agreement was observed with improved boundary reconstruction. Importantly, the proposed gEPT method proved to be more robust against noise when compared to previously described non-gradient-based EPT approaches. Conclusion The proposed gEPT approach holds promises to improve EP mapping quality by recovering the boundary information and enhancing robustness against noise. PMID:25213371
Rucker, Dale Franklin
2010-04-01
A former radioactive waste disposal site is surveyed with two non-intrusive geophysical techniques, including magnetic gradiometry and electromagnetic induction. Data were gathered over the site by towing the geophysical equipment mounted to a non-electrically conductive and non-magnetic fibre-glass cart. Magnetic gradiometry, which detects the location of ferromagnetic material, including iron and steel, was used to map the existence of a previously unknown buried pipeline formerly used in the delivery of liquid waste to a number of surface disposal trenches and concrete vaults. The existence of a possible pipeline is reinforced by historical engineering drawing and photographs. The electromagnetic induction (EMI) technique was used to map areas of high and low electrical conductivity, which coincide with the magnetic gradiometry data. The EMI also provided information on areas of high electrical conductivity unrelated to a pipeline network. Both data sets demonstrate the usefulness of surface geophysical surveillance techniques to minimize the risk of exposure in the event of future remediation efforts.
NASA Astrophysics Data System (ADS)
Pradipto, Abdul-Muizz; Akiyama, Toru; Ito, Tomonori; Nakamura, Kohji
2018-01-01
The effects of applying external electric fields to the anomalous and spin Hall conductivities in Fe thin-film models with different layer thicknesses on MgO(001) are investigated by using first-principles calculations. We observe that, for the considered systems, the application of positive electric field associated with the accumulation of negative charges on the Fe side generally decreases (increases) the anomalous (spin) Hall conductivities. The mapping of the Hall conductivities within the two-dimensional Brillouin zone shows that the electric-field-induced modifications are related to the modification of the band structures of the atoms at the interface with the MgO substrate. In particular, the external electric field affects the Hall conductivities via the modifications of the dx z,dy z orbitals, in which the application of positive electric field pushes the minority-spin states of the dx z,dy z bands closer to the Fermi level. Better agreement with the anomalous Hall conductivity for bulk Fe and a more realistic scenario for the electric field modification of Hall conductivities are obtained by using the thicker layers of Fe on MgO (Fe3/MgO and Fe5/MgO).
The monophasic action potential upstroke: a means of characterizing local conduction.
Levine, J H; Moore, E N; Kadish, A H; Guarnieri, T; Spear, J F
1986-11-01
The upstrokes of monophasic action potentials (MAPs) recorded with an extracellular pressure electrode were characterized in isolated canine tissue preparations in vitro. The characteristics of the MAP upstroke were compared with those of the local action potential foot as well as with the characteristics of approaching electrical activation during uniform and asynchronous conduction. The upstroke of the MAP was exponential during uniform conduction. The time constant of rise of the MAP upstroke (TMAP) correlated with that of the action potential foot (Tfoot): TMAP + 1.01 Tfoot + 0.50; r2 = .80. Furthermore, changes in Tfoot with alterations in cycle length were associated with similar changes in TMAP: Tfoot = 1.06 TMAP - 0.11; r2 = .78. In addition, TMAP and Tfoot both deviated from exponential during asynchronous activation; the inflections that developed in the MAP upstroke correlated in time with intracellular action potential upstrokes that were asynchronous in onset in these tissues. Finally, the field of view of the MAP was determined and was found to be dependent in part on tissue architecture and the space constant. Specifically, the field of view of the MAP was found to be greater parallel compared with transverse to fiber orientation (6.02 +/- 1.74 vs 3.03 +/- 1.10 mm; p less than .01). These data suggest that the MAP upstroke may be used to define and characterize local electrical activation. The relatively large field of view of the MAP suggests that this technique may be a sensitive means to record focal membrane phenomena in vivo.
Imaging Electric Properties of Biological Tissues by RF Field Mapping in MRI
Zhang, Xiaotong; Zhu, Shanan; He, Bin
2010-01-01
The electric properties (EPs) of biological tissue, i.e., the electric conductivity and permittivity, can provide important information in the diagnosis of various diseases. The EPs also play an important role in specific absorption rate (SAR) calculation, a major concern in high-field Magnetic Resonance Imaging (MRI), as well as in non-medical areas such as wireless-telecommunications. The high-field MRI system is accompanied by significant wave propagation effects, and the radio frequency (RF) radiation is dependent on the EPs of biological tissue. Based on the measurement of the active transverse magnetic component of the applied RF field (known as B1-mapping technique), we propose a dual-excitation algorithm, which uses two sets of measured B1 data to noninvasively reconstruct the electric properties of biological tissues. The Finite Element Method (FEM) was utilized in three-dimensional (3D) modeling and B1 field calculation. A series of computer simulations were conducted to evaluate the feasibility and performance of the proposed method on a 3D head model within a transverse electromagnetic (TEM) coil and a birdcage (BC) coil. Using a TEM coil, when noise free, the reconstructed EP distribution of tissues in the brain has relative errors of 12% ∼ 28% and correlated coefficients of greater than 0.91. Compared with other B1-mapping based reconstruction algorithms, our approach provides superior performance without the need for iterative computations. The present simulation results suggest that good reconstruction of electric properties from B1 mapping can be achieved. PMID:20129847
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, D.K.; Sharp, M.K.; Sjostrom, K.J.
1996-10-01
Seismic refraction, electrical resistivity, and transient electromagnetic surveys were conducted at a portion of Cluster 13, Edgewood Area of Aberdeen Proving Ground, Maryland. Seismic refraction cross sections map the topsoil layer and the water table (saturated zone). The water table elevations from the seismic surveys correlate closely with water table elevations in nearby monitoring wells. Electrical resistivity cross sections reveal a very complicated distribution of sandy and clayey facies in the upper 10 - 15 m of the subsurface. A continuous surficial (topsoil) layer correlates with the surficial layer of the seismic section and nearby boring logs. The complexity andmore » details of the electrical resistivity cross section correlate well with boring and geophysical logs from nearby wells. The transient electromagnetic surveys map the Pleistocene-Cretaceous boundary, the saprolite, and the top of the Precambrian crystalline rocks. Conducting the transient electromagnetic surveys on a grid pattern allows the construction of a three-dimensional representation of subsurface geology (as represented by variations of electrical resistivity). Thickness and depth of the saprolitic layer and depth to top of the Precambrian rocks are consistent with generalized geologic cross sections for the Edgewood Area and depths projected from reported depths at the Aberdeen Proving Ground NW boundary using regional dips.« less
NASA Astrophysics Data System (ADS)
Gurk, M.; Bosch, F. P.; Tougiannidis, N.
2013-04-01
Common studies on the static electric field distribution over a conductivity anomaly use the self-potential method. However, this method is time consuming and requires nonpolarizable electrodes to be placed in the ground. Moreover, the information gained by this method is restricted to the horizontal variations of the electric field. To overcome the limitation in the self-potential technique, we conducted a field experiment using a non conventional technique to assess the static electric field over a conductivity anomaly. We use two metallic potential probes arranged on an insulated boom with a separation of 126 cm. When placed into the electric field of the free air, a surface charge will be induced on each probe trying to equalize with the potential of the surrounding atmosphere. The use of a plasma source at both probes facilitated continuous and quicker measurement of the electric field in the air. The present study shows first experimental measurements with a modified potential probe technique (MPP) along a 600-meter-long transect to demonstrate the general feasibility of this method for studying the static electric field distribution over shallow conductivity anomalies. Field measurements were carried out on a test site on top of the Bramsche Massif near Osnabrück (Northwest Germany) to benefit from a variety of available near surface data over an almost vertical conductivity anomaly. High resolution self-potential data served in a numerical analysis to estimate the expected individual components of the electric field vector. During the experiment we found more anomalies in the vertical and horizontal components of the electric field than self-potential anomalies. These contrasting findings are successfully cross-validated with conventional near surface geophysical methods. Among these methods, we used self-potential, radiomagnetotelluric, electric resistivity tomography and induced polarization data to derive 2D conductivity models of the subsurface in order to infer the geometrical properties and the origin of the conductivity anomaly in the survey area. The presented study demonstrates the feasibility of electric field measurements in free air to detect and study near surface conductivity anomalies. Variations in Ez correlate well with the conductivity distribution obtained from resistivity methods. Compared to the self-potential technique, continuously free air measurements of the electric field are more rapid and of better lateral resolution combined with the unique ability to analyze vertical components of the electric field which are of particular importance to detect lateral conductivity contrasts. Mapping Ez in free air is a good tool to precisely map lateral changes of the electric field distribution in areas where SP generation fails. MPP offers interesting application in other geophysical techniques e.g. in time domain electromagnetics, DC and IP. With this method we were able to reveal a ca. 150 m broad zone of enhanced electric field strength.
Complex conductivity of volcanic rocks and the geophysical mapping of alteration in volcanoes
NASA Astrophysics Data System (ADS)
Ghorbani, A.; Revil, A.; Coperey, A.; Soueid Ahmed, A.; Roque, S.; Heap, M. J.; Grandis, H.; Viveiros, F.
2018-05-01
Induced polarization measurements can be used to image alteration at the scale of volcanic edifices to a depth of few kilometers. Such a goal cannot be achieved with electrical conductivity alone, because too many textural and environmental parameters influence the electrical conductivity of volcanic rocks. We investigate the spectral induced polarization measurements (complex conductivity) in the frequency band 10 mHz-45 kHz of 85 core samples from five volcanoes: Merapi and Papandayan in Indonesia (32 samples), Furnas in Portugal (5 samples), Yellowstone in the USA (26 samples), and Whakaari (White Island) in New Zealand (22 samples). This collection of samples covers not only different rock compositions (basaltic andesite, andesite, trachyte and rhyolite), but also various degrees of alteration. The specific surface area is found to be correlated to the cation exchange capacity (CEC) of the samples measured by the cobalthexamine method, both serving as rough proxies of the hydrothermal alteration experienced by these materials. The in-phase (real) conductivity of the samples is the sum of a bulk contribution associated with conduction in the pore network and a surface conductivity that increases with alteration. The quadrature conductivity and the normalized chargeability are two parameters related to the polarization of the electrical double layer coating the minerals of the volcanic rocks. Both parameters increase with the degree of alteration. The surface conductivity, the quadrature conductivity, and the normalized chargeability (defined as the difference between the in-phase conductivity at high and low frequencies) are linearly correlated to the CEC normalized by the bulk tortuosity of the pore space. The effects of temperature and pyrite-content are also investigated and can be understood in terms of a physics-based model. Finally, we performed a numerical study of the use of induced polarization to image the normalized chargeability of a volcanic edifice. Induced polarization tomography can be used to map alteration of volcanic edifices with applications to geohazard mapping.
NASA Astrophysics Data System (ADS)
Miller, C. R.; Routh, P. S.; Donaldson, P. R.
2004-05-01
Controlled Source Audio-Frequency Magnetotellurics (CSAMT) is a frequency domain electromagnetic (EM) sounding technique. CSAMT typically uses a grounded horizontal electric dipole approximately one to two kilometers in length as a source. Measurements of electric and magnetic field components are made at stations located ideally at least four skin depths away from the transmitter to approximate plane wave characteristics of the source. Data are acquired in a broad band frequency range that is sampled logarithmically from 0.1 Hz to 10 kHz. The usefulness of CSAMT soundings is to detect and map resistivity contrasts in the top two to three km of the Earth's surface. Some practical applications that CSAMT soundings have been used for include mapping ground water resources; mineral/precious metals exploration; geothermal reservoir mapping and monitoring; petroleum exploration; and geotechnical investigations. Higher frequency data can be used to image shallow features and lower frequency data are sensitive to deeper structures. We have a 3D CSAMT data set consisting of phase and amplitude measurements of the Ex and Hy components of the electric and magnetic fields respectively. The survey area is approximately 3 X 5 km. Receiver stations are situated 50 meters apart along a total of 13 lines with 8 lines bearing approximately N60E and the remainder of the lines oriented orthogonal to these 8 lines. We use an unconstrained Gauss-Newton method with positivity to invert the data. Inversion results will consist of conductivity versus depth profiles beneath each receiver station. These 1D profiles will be combined into a 3D subsurface conductivity image. We will include our interpretation of the subsurface conductivity structure and quantify the uncertainties associated with this interpretation.
NASA Astrophysics Data System (ADS)
Aly, Said A.; Farag, Karam S. I.; Atya, Magdy A.; Badr, Mohamed A. M.
2018-06-01
A joint multi-spacing electromagnetic-terrain conductivity meter and DC-resistivity horizontal profiling survey was conducted at the anticipated eastern extensional area of the 15th-of-May City, southeastern Cairo, Egypt. The main objective of the survey was to highlight the applicability, efficiency, and reliability of utilizing such non-invasive surface techniques in a field like geologic mapping, and hence to image both the vertical and lateral electrical resistivity structures of the subsurface bedrock. Consequently, a total of reliable 6 multi-spacing electromagnetic-terrain conductivity meter and 7 DC-resistivity horizontal profiles were carried out between August 2016 and February 2017. All data sets were transformed-inverted extensively and consistently in terms of two-dimensional (2D) electrical resistivity smoothed-earth models. They could be used effectively and inexpensively to interpret the area's bedrock geologic sequence using the encountered consecutive electrically resistive and conductive anomalies. Notably, the encountered subsurface electrical resistivity structures, below all surveying profiles, are correlated well with the mapped geological faults in the field. They even could provide a useful understanding of their faulting fashion. Absolute resistivity values were not necessarily diagnostic, but their vertical and lateral variations could provide more diagnostic information about the layer lateral extensions and thicknesses, and hence suggested reliable geo-electric earth models. The study demonstrated that a detailed multi-spacing electromagnetic-terrain conductivity meter and DC-resistivity horizontal profiling survey can help design an optimal geotechnical investigative program, not only for the whole eastern extensional area of the 15th-of-May City, but also for the other new urban communities within the Egyptian desert.
Shaheen, Naim; Shiti, Assad; Huber, Irit; Shinnawi, Rami; Arbel, Gil; Gepstein, Amira; Setter, Noga; Goldfracht, Idit; Gruber, Amit; Chorna, Snizhanna V; Gepstein, Lior
2018-06-05
Fulfilling the potential of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes for studying conduction and arrhythmogenesis requires development of multicellular models and methods for long-term repeated tissue phenotyping. We generated confluent hiPSC-derived cardiac cell sheets (hiPSC-CCSs), expressing the genetically encoded voltage indicator ArcLight. ArcLight-based optical mapping allowed generation of activation and action-potential duration (APD) maps, which were validated by mapping the same hiPSC-CCSs with the voltage-sensitive dye, Di-4-ANBDQBS. ArcLight mapping allowed long-term assessment of electrical remodeling in the hiPSC-CCSs and evaluation of drug-induced conduction slowing (carbenoxolone, lidocaine, and quinidine) and APD prolongation (quinidine and dofetilide). The latter studies also enabled step-by-step depiction of drug-induced arrhythmogenesis ("torsades de pointes in the culture dish") and its prevention by MgSO 4 and rapid pacing. Phase-mapping analysis allowed biophysical characterization of spiral waves induced in the hiPSC-CCSs and their termination by electrical cardioversion and overdrive pacing. In conclusion, ArcLight mapping of hiPSC-CCSs provides a powerful tool for drug testing and arrhythmia investigation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Saba, Samir; Mathier, Michael A; Mehdi, Haider; Liu, Tong; Choi, Bum-Rak; London, Barry; Salama, Guy
2008-02-01
Myocardial infarction (MI) disrupts electrical conduction in affected ventricular areas. We investigated the effect of MI on the regional voltage and calcium (Ca) signals and their propagation properties, with special attention to the effect of the site of ventricular pacing on these properties. New Zealand White rabbits were divided into four study groups: sham-operated (C, n = 6), MI with no pacing (MI, n = 7), MI with right ventricular pacing (MI + RV, n = 6), and MI with BIV pacing (MI + BIV, n = 7). At 4 weeks, hearts were excised, perfused, and optically mapped. As previously shown, systolic and diastolic dilation of the LV were prevented by BIV pacing, as was the reduction in LV fractional shortening. Four weeks after MI, optical mapping revealed markedly reduced action potential amplitudes and conduction velocities (CV) in MI zones, and these increased gradually in the border zone and normal myocardial areas. Also, Ca transients were absent in the infarcted areas and increased gradually 3-5 mm from the border of the normal zone. Neither BIV nor RV pacing affected these findings in any of the MI, border, or normal zones. MI has profound effects on the regional electrical and Ca signals and on their propagation properties in this rabbit model. The absence of differences in these parameters by study group suggests that altering the properties of myocardial electrical conduction and Ca signaling are unlikely mechanisms by which BIV pacing confers its benefits. Further studies into the regional, cellular, and molecular benefits of BIV pacing are therefore warranted.
Middle atmosphere electrical energy coupling
NASA Technical Reports Server (NTRS)
Hale, L. C.
1989-01-01
The middle atmosphere (MA) has long been known as an absorber of radio waves, and as a region of nonlinear interactions among waves. The region of highest transverse conductivity near the top of the MA provides a common return for global thunderstorm, auroral Birkeland, and ionospheric dynamo currents, with possibilities for coupling among them. Their associated fields and other transverse fields map to lower altitudes depending on scale size. Evidence now exists for motion-driven aerosol generators, and for charge trapped at the base of magnetic field lines, both capable of producing large MA electric fields. Ionospheric Maxwell currents (curl H) parallel to the magnetic field appear to map to lower altitudes, with rapidly time-varying components appearing as displacement currents in the stratosphere. Lightning couples a (primarily ELF and ULF) current transient to the ionosphere and magnetosphere whose wave shape is largely dependent on the MA conductivity profile. Electrical energy is of direct significance mainly in the upper MA, but electrodynamic transport of minor constituents such as smoke particles or CN may be important at other altitudes.
USDA-ARS?s Scientific Manuscript database
Soil salinity is recognized worldwide as a major threat to agriculture, particularly in arid and semi-arid regions. Farmers and decision makers need updated and accurate maps of salinity in agronomically and environmentally relevant ranges (i.e., <20 dS m/1, when salinity is measured as electrical...
Beyond the Point Charge: Equipotential Surfaces and Electric Fields of Various Charge Configurations
ERIC Educational Resources Information Center
Phillips, Jeffrey A.; Sanny, Jeff; Berube, David; Hoemke, Anatol
2017-01-01
A laboratory experiment often performed in an introductory electricity and magnetism course involves the mapping of equipotential lines on a conductive sheet between two objects at different potentials. In this article, we describe how we have expanded this experiment so that it can be used to illustrate the electrostatic properties of conductors.…
Yang, Renhuan; Li, Xu; Song, Aiguo; He, Bin; Yan, Ruqiang
2012-01-01
Electrical properties of biological tissues are highly sensitive to their physiological and pathological status. Thus it is of importance to image electrical properties of biological tissues. However, spatial resolution of conventional electrical impedance tomography (EIT) is generally poor. Recently, hybrid imaging modalities combining electric conductivity contrast and ultrasonic resolution based on acouto-electric effect has attracted considerable attention. In this study, we propose a novel three-dimensional (3D) noninvasive ultrasound Joule heat tomography (UJHT) approach based on acouto-electric effect using unipolar ultrasound pulses. As the Joule heat density distribution is highly dependent on the conductivity distribution, an accurate and high resolution mapping of the Joule heat density distribution is expected to give important information that is closely related to the conductivity contrast. The advantages of the proposed ultrasound Joule heat tomography using unipolar pulses include its simple inverse solution, better performance than UJHT using common bipolar pulses and its independence of any priori knowledge of the conductivity distribution of the imaging object. Computer simulation results show that using the proposed method, it is feasible to perform a high spatial resolution Joule heat imaging in an inhomogeneous conductive media. Application of this technique on tumor scanning is also investigated by a series of computer simulations. PMID:23123757
The bedrock electrical conductivity map of the UK
NASA Astrophysics Data System (ADS)
Beamish, David
2013-09-01
Airborne electromagnetic (AEM) surveys, when regionally extensive, may sample a wide-range of geological formations. The majority of AEM surveys can provide estimates of apparent (half-space) conductivity and such derived data provide a mapping capability. Depth discrimination of the geophysical mapping information is controlled by the bandwidth of each particular system. The objective of this study is to assess the geological information contained in accumulated frequency-domain AEM survey data from the UK where existing geological mapping can be considered well-established. The methodology adopted involves a simple GIS-based, spatial join of AEM and geological databases. A lithology-based classification of bedrock is used to provide an inherent association with the petrophysical rock parameters controlling bulk conductivity. At a scale of 1:625k, the UK digital bedrock geological lexicon comprises just 86 lithological classifications compared with 244 standard lithostratigraphic assignments. The lowest common AEM survey frequency of 3 kHz is found to provide an 87% coverage (by area) of the UK formations. The conductivities of the unsampled classes have been assigned on the basis of inherent lithological associations between formations. The statistical analysis conducted uses over 8 M conductivity estimates and provides a new UK national scale digital map of near-surface bedrock conductivity. The new baseline map, formed from central moments of the statistical distributions, allows assessments/interpretations of data exhibiting departures from the norm. The digital conductivity map developed here is believed to be the first such UK geophysical map compilation for over 75 years. The methodology described can also be applied to many existing AEM data sets.
Yang, Sumi; Jang, LindyK; Kim, Semin; Yang, Jongcheol; Yang, Kisuk; Cho, Seung-Woo; Lee, Jae Young
2016-11-01
Electrically conductive biomaterials that can efficiently deliver electrical signals to cells or improve electrical communication among cells have received considerable attention for potential tissue engineering applications. Conductive hydrogels are desirable particularly for neural applications, as they can provide electrical signals and soft microenvironments that can mimic native nerve tissues. In this study, conductive and soft polypyrrole/alginate (PPy/Alg) hydrogels are developed by chemically polymerizing PPy within ionically cross-linked alginate hydrogel networks. The synthesized hydrogels exhibit a Young's modulus of 20-200 kPa. Electrical conductance of the PPy/Alg hydrogels could be enhanced by more than one order of magnitude compared to that of pristine alginate hydrogels. In vitro studies with human bone marrow-derived mesenchymal stem cells (hMSCs) reveal that cell adhesion and growth are promoted on the PPy/Alg hydrogels. Additionally, the PPy/Alg hydrogels support and greatly enhance the expression of neural differentiation markers (i.e., Tuj1 and MAP2) of hMSCs compared to tissue culture plate controls. Subcutaneous implantation of the hydrogels for eight weeks induces mild inflammatory reactions. These soft and conductive hydrogels will serve as a useful platform to study the effects of electrical and mechanical signals on stem cells and/or neural cells and to develop multifunctional neural tissue engineering scaffolds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Investigations of conjugate MSTIDS over the Brazilian sector during daytime
NASA Astrophysics Data System (ADS)
Jonah, O. F.; Kherani, E. A.; De Paula, E. R.
2017-09-01
This study focuses on the daytime medium-scale traveling ionospheric disturbances (MSTIDs) observed at conjugate hemispheres. It is the first time that the geomagnetical conjugate daytime MSTIDs are observed over the South America sector. To observe the MSTID characteristics, we used detrended total electron content (TEC) derived from Global Navigation Satellite Systems receivers located at Brazilian sector covering the Northern and Southern Hemispheres along the same magnetic meridian. The geographic grid of 1°N to 14°S in latitude and 60°S to 50°S in longitude was selected for this study. The cross-correlation method between two latitudes and longitudes in time was used to observe the propagation of the MSTID waves. The following features are noted: (a) MSTIDs are well developed at both hemispheres; (b) the peak MSTIDs amplitudes vary from one hemisphere to another; hence, we suppose that MSTIDs generated in Southern Hemisphere or Northern Hemisphere mirrored in the conjugate hemisphere; (c) the gravity wave-induced electric fields from one hemisphere map along the field lines and generate the mirrored MSTIDs in the conjugate region. To investigate the hemispheric mapping mechanism, a rough approximation for the integrated field line conductivity ratio of E and F regions is calculated using digisonde E and F region parameters. We noted that during the period of mapping the decrease in E region conductivity results in an increase in total conductivity. This shows that the E region was partially short circuited; hence, electric field generated at F region could map to the conjugate hemisphere during daytime: daytime MSTIDs at conjugate regions; mechanisms responsible for daytime electrified MSTIDs; gravity wave-induced electric field role in daytime MSTIDs.
NASA Astrophysics Data System (ADS)
Domenech, Marisa; Castro Franco, Mauricio; Costa, Jose Luis; Aparicio, Virginia
2017-04-01
Apparent soil electrical conductivity (ECa) has been used to capture soil data in several Argentinean Pampas locations. The aim of this study was to generate digital soil mapping on the basis of understanding the relation among ECa and soil properties in three farming fields of the southeast Buenos Aires province. We carried out a geostatistical analysis using ECa data obtained at two depths 0-30cm (ECa_30cm) and 0-90cm (ECa_90cm). Then, two zones derived from ECa measurements were delimited in each field. A soil-sampling scheme was applied in each zone using two depths: 0-30cm and 30-90cm. Texture, Organic Matter Content (OMC), cation-exchange capacity (CEC), pH, saturated paste electrical conductivity (ECe) and effective depth were analyzed. The relation between zones and soil properties were studied using nested factor ANOVA. Our results indicated that clay content and effective depth showed significant differences among ECa_30 zones in all fields. In Argentine Pampas, the presence of petrocalcic horizons limits the effective soil depth at field scale. These horizons vary in depth, structure, hardness and carbonates content. In addition, they influence the spatial pattern of clay content. The relation among other physical and chemical soil properties was not consistent. Two soil unit maps were delimited in each field. These results might support irrigation management due to clay content and effective depth would be controlling soil water storage. Our findings highlight the high accuracy use of soil sensors in developing digital soil mapping at field scale, irrigation management zones, precision agriculture and hydrological modeling in Pampas region conditions.
NASA Technical Reports Server (NTRS)
Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)
2002-01-01
The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.
NASA Astrophysics Data System (ADS)
Abbas, M.; Jardani, A.; Soueid Ahmed, A.; Revil, A.; Brigaud, L.; Bégassat, Ph.; Dupont, J. P.
2017-11-01
Mapping the redox potential of shallow aquifers impacted by hydrocarbon contaminant plumes is important for the characterization and remediation of such contaminated sites. The redox potential of groundwater is indicative of the biodegradation of hydrocarbons and is important in delineating the shapes of contaminant plumes. The self-potential method was used to reconstruct the redox potential of groundwater associated with an organic-rich contaminant plume in northern France. The self-potential technique is a passive technique consisting in recording the electrical potential distribution at the surface of the Earth. A self-potential map is essentially the sum of two contributions, one associated with groundwater flow referred to as the electrokinetic component, and one associated with redox potential anomalies referred to as the electroredox component (thermoelectric and diffusion potentials are generally negligible). A groundwater flow model was first used to remove the electrokinetic component from the observed self-potential data. Then, a residual self-potential map was obtained. The source current density generating the residual self-potential signals is assumed to be associated with the position of the water table, an interface characterized by a change in both the electrical conductivity and the redox potential. The source current density was obtained through an inverse problem by minimizing a cost function including a data misfit contribution and a regularizer. This inversion algorithm allows the determination of the vertical and horizontal components of the source current density taking into account the electrical conductivity distribution of the saturated and non-saturated zones obtained independently by electrical resistivity tomography. The redox potential distribution was finally determined from the inverted residual source current density. A redox map was successfully built and the estimated redox potential values correlated well with in-situ measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata, E-mail: tsom@iopb.res.in
Using conductive atomic force microscopy and Kelvin probe force microscopy, we study local electrical transport properties in aluminum-doped zinc oxide (ZnO:Al or AZO) thin films. Current mapping shows a spatial variation in conductivity which corroborates well with the local mapping of donor concentration (∼10{sup 20 }cm{sup −3}). In addition, a strong enhancement in the local current at grains is observed after exposing the film to ultra-violet (UV) light which is attributed to persistent photocurrent. Further, it is shown that UV absorption gives a smooth conduction in AZO film which in turn gives rise to an improvement in the bulk photoresponsivity ofmore » an n-AZO/p-Si heterojunction diode. This finding is in contrast to the belief that UV absorption in an AZO layer leads to an optical loss for the underneath absorbing layer of a heterojunction solar cell.« less
Konofagou, Elisa E.; Provost, Jean
2014-01-01
Cardiovascular diseases rank as America’s primary killer, claiming the lives of over 41% of more than 2.4 million Americans. One of the main reasons for this high death toll is the severe lack of effective imaging techniques for screening, early detection and localization of an abnormality detected on the electrocardiogram (ECG). The two most widely used imaging techniques in the clinic are CT angiography and echocardiography with limitations in speed of application and reliability, respectively. It has been established that the mechanical and electrical properties of the myocardium change dramatically as a result of ischemia, infarction or arrhythmia; both at their onset and after survival. Despite these findings, no imaging technique currently exists that is routinely used in the clinic and can provide reliable, non-invasive, quantitative mapping of the regional, mechanical and electrical function of the myocardium. Electromechanical Wave Imaging (EWI) is an ultrasound-based technique that utilizes the electromechanical coupling and its associated resulting strain to infer to the underlying electrical function of the myocardium. The methodology of EWI is first described and its fundamental performance is presented. Subsequent in vivo canine and human applications are provided that demonstrate the applicability of Electromechanical Wave Imaging in differentiating between sinus rhythm and induced pacing schemes as well as mapping arrhythmias. Preliminary validation with catheter mapping is also provided and transthoracic electromechanical mapping in all four chambers of the human heart is also presented demonstrating the potential of this novel methodology to noninvasively infer to both the normal and pathological electrical conduction of the heart. PMID:22284425
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas, A. M.; Kumar, A.; Gregg, J. M.
Conducting atomic force microscopy images of bulk semiconducting BaTiO{sub 3} surfaces show clear stripe domain contrast. High local conductance correlates with strong out-of-plane polarization (mapped independently using piezoresponse force microscopy), and current-voltage characteristics are consistent with dipole-induced alterations in Schottky barriers at the metallic tip-ferroelectric interface. Indeed, analyzing current-voltage data in terms of established Schottky barrier models allows relative variations in the surface polarization, and hence the local domain structure, to be determined. Fitting also reveals the signature of surface-related depolarizing fields concentrated near domain walls. Domain information obtained from mapping local conductance appears to be more surface-sensitive than thatmore » from piezoresponse force microscopy. In the right materials systems, local current mapping could therefore represent a useful complementary technique for evaluating polarization and local electric fields with nanoscale resolution.« less
Detection of temperature distribution via recovering electrical conductivity in MREIT.
Oh, Tong In; Kim, Hyung Joong; Jeong, Woo Chul; Chauhan, Munish; Kwon, Oh In; Woo, Eung Je
2013-04-21
In radiofrequency (RF) ablation or hyperthermia, internal temperature measurements and tissue property imaging are important to control their outputs and assess the treatment effect. Recently, magnetic resonance electrical impedance tomography (MREIT), as a non-invasive imaging method of internal conductivity distribution using an MR scanner, has been developed. Its reconstruction algorithm uses measured magnetic flux density induced by injected currents. The MREIT technique has the potential to visualize electrical conductivity of tissue with high spatial resolution and measure relative conductivity variation according to the internal temperature change based on the fact that the electrical conductivity of biological tissues is sensitive to the internal temperature distribution. In this paper, we propose a method to provide a non-invasive alternative to monitor the internal temperature distribution by recovering the electrical conductivity distribution using the MREIT technique. To validate the proposed method, we design a phantom with saline solution and a thin transparency film in a form of a hollow cylinder with holes to create anomalies with different electrical and thermal conductivities controlled by morphological structure. We first prove the temperature maps with respect to spatial and time resolution by solving the thermal conductivity partial differential equation with the real phantom experimental environment. The measured magnetic flux density and the reconstructed conductivity distributions using the phantom experiments were compared to the simulated temperature distribution. The relative temperature variation of two testing objects with respect to the background saline was determined by the relative conductivity contrast ratio (rCCR,%). The relation between the temperature and conductivity measurements using MREIT was approximately linear with better accuracy than 0.22 °C.
NASA Technical Reports Server (NTRS)
Goldfine, Neil; Grundy, David; Zilberstein, Vladimir; Kinchen, David G.; McCool, Alex (Technical Monitor)
2002-01-01
Friction Stir Welds (FSW) of Al 2195-T8 and Al 2219-T8, provided by Lockheed Martin Michoud Operations, were inspected for lack-of-penetration (LOP) defects using a custom designed MWM-Array, a multi-element eddy-current sensor. MWM (registered trademark) electrical conductivity mapping demonstrated high sensitivity to LOP as small as 0.75 mm (0.03 in.), as confirmed by metallographic data that characterized the extent of LOP defects. High sensitivity and high spatial resolution was achieved via a 37-element custom designed MWM-Array allowing LOP detection using the normalized longitudinal component of the MWM measured conductivity. This permitted both LOP detection and correlation of MWM conductivity features with the LOP defect size, as changes in conductivity were apparently associated with metallurgical features within the near-surface layer of the LOP defect zone. MWM conductivity mapping reveals information similar to macro-etching as the MWM-Array is sensitive to small changes in conductivity due to changes in microstructure associated with material thermal processing, in this case welding. The electrical conductivity measured on the root side of FSWs varies across the weld due to microstructural differences introduced by the FSW process, as well as those caused by planar flaws. Weld metal, i.e., dynamically recrystallized zone (DXZ), thermomechanically affected zone (TMZ), heat-affected zone (HAZ), and parent metal (PM) are all evident in the conductivity maps. While prior efforts had met with limited success for NDE (Nondestructive Evaluation) of dissimilar alloy, Al2219 to Al2195 FSW, the new custom designed multi-element MWM-Array achieved detection of all LOP defects even in dissimilar metal welds.
Atmospheric electric field and current configurations in the vicinity of mountains
NASA Technical Reports Server (NTRS)
Tzur, I.; Roble, R. G.; Adams, J. C.
1985-01-01
A number of investigations have been conducted regarding the electrical distortion produced by the earth's orography. Hays and Roble (1979) utilized their global model of atmospheric electricity to study the effect of large-scale orographic features on the currents and fields of the global circuit. The present paper is concerned with an extension of the previous work, taking into account an application of model calculations to orographic features with different configurations and an examination of the electric mapping of these features to ionospheric heights. A two-dimensional quasi-static numerical model of atmospheric electricity is employed. The model contains a detailed electrical conductivity profile. The model region extends from the surface to 100 km and includes the equalization layer located above approximately 70 km. The obtained results show that the electric field and current configurations above mountains depend upon the curvature of the mountain slopes, on the width of the mountain, and on the columnar resistance above the mountain (or mountain height).
Regional TEMPEST survey in north-east Namibia
NASA Astrophysics Data System (ADS)
Peters, Geoffrey; Street, Gregory; Kahimise, Ivor; Hutchins, David
2015-09-01
A regional scale TEMPEST208 airborne electromagnetic survey was flown in north-east Namibia in 2011. With broad line spacing (4 km) and a relatively low-powered, fixed-wing system, the approach was intended to provide a regional geo-electric map of the area, rather than direct detection of potential mineral deposits. A key component of the geo-electric profiling was to map the relative thickness of the Kalahari sediments, which is up to 200 m thick and obscures most of the bedrock in the area. Knowledge of the thickness would allow explorers to better predict the costs of exploration under the Kalahari. An additional aim was to determine if bedrock conductors were detectable beneath the Kalahari cover. The system succeeded in measuring the Kalahari thickness where this cover was relatively thin and moderately conductive. Limitations in depth penetration mean that it is not possible to map the thickness in the centre of the survey area, and much of the northern half of the survey area. Additional problems arise due to the variable conductivity of the Kalahari cover. Where the conductivity of the Kalahari sediment is close to that of the basement, there is no discernable contrast to delineate the base of the Kalahari. Basement conductors are visible beneath the more thinly covered areas such as in the north-west and south of the survey area. The remainder of the survey area generally comprises deeper, more conductive cover and for the most part basement conductors cannot be detected. A qualitative comparison with VTEM data shows comparable results in terms of regional mapping, and suggests that even more powerful systems such as the VTEM may not detect discrete conductors beneath the thick conductive parts of the Kalahari cover.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2002-11-20
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2001-06-10
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
Application of neogeographic tools for geochemistry
NASA Astrophysics Data System (ADS)
Zhilin, Denis
2010-05-01
Neogeography is a usage of geographical tools for utilization by a non-expert group of users. It have been rapidly developing last ten years and is founded on (a) availability of Global Positioning System (GPS) receivers, that allows to obtain very precise geographical position (b) services, that allows linking geographical position with satellite images, GoogleEarth for example and (c) programs as GPS Track Maker or OziExplorer, that allows linking geographical coordinates with other raster images (for example, maps). However, the possibilities of neogeographic approach are much wider. It allows linking different parameters with geographical coordinates on the one hand and space image or map - on the other. If it is easy to measure a parameter, a great database could be collected for a very small time. The results can be presented in very different ways. One can plot a parameter versus the distance from a particular point (for example, a source of a substance), make two-dimension distribution of parameter of put the results onto a map or space image. In the case of chemical parameters it can help finding the source of pollution, trace the influence of pollution, reveal geochemical processes and patterns. The main advantage of neogeograpic approach is the employment of non-experts in collecting data. Now non-experts can easily measure electrical conductivity and pH of natural waters, concentration of different gases in the atmosphere, solar irradiation, radioactivity and so on. If the results are obtained (for example, by students of secondary schools) and shared, experts can proceed them and make significant conclusions. An interface of sharing the results (http://maps.sch192.ru/) was elaborated by V. Ilyin. Within the interface a user can load *.csv file with coordinates, type of parameter and the value of parameter in a particular point. The points are marked on the GoogleEarth map with the color corresponding the value of the parameter. The color scale can be edited manually. We would like to show some results of practical and scientific importance, obtained by non-experts. At 2006 our secondary school students investigated the distribution of snow salinity around Kosygina Street in Moscow. One can conclude that the distribution of salinity is reproducible and that the street influences the snow up to 150 meters. Another example obtained by our students is the distribution of electrical conductivity of swamp water showing extreme irregularity of this parameter within the small area (about 0.5x0.5 km) the electrical conductivity varied from 22 to 77 uS with no regularity. It points out the key role of local processes in swamp water chemistry. The third example (maps of electrical conductivity and pH of water on a large area) one can see at http://fenevo.narod.ru/maps/ec-maps.htm and http://fenevo.narod.ru/maps/ph-maps.htm. Basing on the map one can conclude mechanisms of formation of water mineralization in the area. Availability of GPS receivers and systems for easy measuring of chemical parameters can lead to neogeochemical revolution as GPS receivers have led to neogeographical. A great number of non-experts can share their geochemical results, forming huge amount of available geochemical data. It will help to falsify and visualize concepts of geochemistry and environmental chemistry and, maybe, develop new ones. Geophysical and biological data could be shared as well with the same advantages for corresponding sciences.
NASA Astrophysics Data System (ADS)
Love, J. J.
2016-12-01
Magnetic-storm induction of geoelectric fields in the Earth's electrically conducting crust, lithosphere, mantle, and ocean can interfere with the operations of electric-power grid systems. The future occurrence of an extremely intense magnetic storm might even result in continental-scale failure of electric-power distribution. Such an event would entail significant deleterious consequence for the economy and international security. Building on a project established by the President's National Science and Technology Council and the Office of Science and Technology Policy for assessing space-weather induction hazards, we develop a series of geoelectric hazard maps. These are constructed using an empirical parameterization of induction: local estimates of Earth-surface impedance, obtained from EarthScope and USGS magnetotelluric survey data, are convolved with latitude-dependent statistical maps of extreme-value geomagnetic activity, obtained from decades magnetic observatory data. Geoelectric hazard maps are constructed for both north-south and east-west geomagnetic variation, and for both 240-s and 1200-s sinusoidal variation -- periods of interest to the power-grid industry. The maps cover about half of the continental United States. They depict the threshold level that geoelectric amplitude can be expected to exceed, on average, once per century at discrete geographic sites in response to extreme-intensity geomagnetic activity. Of the regions where magnetotelluric data are available, the greatest induction hazards are found in Minnesota, Wisconsin, and Iowa - this being the result of both high-latitude geomagntic activity and complex subsurface conductivity structure. At some sites in the continental United States, once-per-century geoelectric amplitudes can exceed the 1.7 V/km realized in Quebec during the March 1989 storm. This work highlights the importance of geophysical surveys and ground-level monitoring data for assessing space-weather induction hazards.
The importance of explicitly mapping instructional analogies in science education
NASA Astrophysics Data System (ADS)
Asay, Loretta Johnson
Analogies are ubiquitous during instruction in science classrooms, yet research about the effectiveness of using analogies has produced mixed results. An aspect seldom studied is a model of instruction when using analogies. The few existing models for instruction with analogies have not often been examined quantitatively. The Teaching With Analogies (TWA) model (Glynn, 1991) is one of the models frequently cited in the variety of research about analogies. The TWA model outlines steps for instruction, including the step of explicitly mapping the features of the source to the target. An experimental study was conducted to examine the effects of explicitly mapping the features of the source and target in an analogy during computer-based instruction about electrical circuits. Explicit mapping was compared to no mapping and to a control with no analogy. Participants were ninth- and tenth-grade biology students who were each randomly assigned to one of three conditions (no analogy module, analogy module, or explicitly mapped analogy module) for computer-based instruction. Subjects took a pre-test before the instruction, which was used to assign them to a level of previous knowledge about electrical circuits for analysis of any differential effects. After the instruction modules, students took a post-test about electrical circuits. Two weeks later, they took a delayed post-test. No advantage was found for explicitly mapping the analogy. Learning patterns were the same, regardless of the type of instruction. Those who knew the least about electrical circuits, based on the pre-test, made the most gains. After the two-week delay, this group maintained the largest amount of their gain. Implications exist for science education classrooms, as analogy use should be based on research about effective practices. Further studies are suggested to foster the building of research-based models for classroom instruction with analogies.
Reconnaissance electrical surveys in the Coso Range, California
NASA Astrophysics Data System (ADS)
Jackson, Dallas B.; O'Donnell, James E.
1980-05-01
Telluric current, audiomagnetotelluric (AMT), and direct current (dc) methods were used to study the electrical structure of the Coso Range and Coso geothermal area. Telluric current mapping outlined major resistivity lows associated with conductive valley fill of the Rose Valley basin, the Coso Basin, and the northern extension of the Coso Basin east of Coso Hot Springs. A secondary resistivity low with a north-south trend runs through the Coso Hot Springs-Devil's Kitchen geothermal area. The secondary low in the geothermal area, best defined by the 7.5-Hz AMT map and dc soundings, is caused by a shallow conductive zone (5-30 ohm m) interpreted to be hydrothermally altered Sierra Nevada basement rocks containing saline water of a hot water geothermal system. This zone of lowest apparent resistivities over the basement rocks lies within a closed contour of a heat flow anomaly where all values are greater than 10 heat flow units.
DOE Office of Scientific and Technical Information (OSTI.GOV)
GANDER MJ; LEARY KD; LEVITT MT
2011-01-14
Historic boreholes confirmed the presence of nitrate and radionuclide contaminants at various intervals throughout a more than 60 m (200 ft) thick vadose zone, and a 2010 electrical resistivity survey mapped the known contamination and indicated areas of similar contaminants, both laterally and at depth; therefore, electrical resistivity mapping can be used to more accurately locate characterization boreholes. At the Hanford Nuclear Reservation in eastern Washington, production of uranium and plutonium resulted in the planned release of large quantities of contaminated wastewater to unlined excavations (cribs). From 1952 until 1960, the 216-U-8 Crib received approximately 379,000,000 L (100,000,000 gal) ofmore » wastewater containing 25,500 kg (56,218 lb) uranium; 1,029,000 kg (1,013 tons) of nitrate; 2.7 Ci of technetium-99; and other fission products including strontium-90 and cesium-137. The 216-U-8 Crib reportedly holds the largest inventory of waste uranium of any crib on the Hanford Site. Electrical resistivity is a geophysical technique capable of identifying contrasting physical properties; specifically, electrically conductive material, relative to resistive native soil, can be mapped in the subsurface. At the 216-U-8 Crib, high nitrate concentrations (from the release of nitric acid [HNO{sub 3}] and associated uranium and other fission products) were detected in 1994 and 2004 boreholes at various depths, such as at the base of the Crib at 9 m (30 ft) below ground surface (bgs) and sporadically to depths in excess of 60 m (200 ft) bgs. These contaminant concentrations were directly correlative with the presence of observed low electrical resistivity responses delineated during the summer 2010 geophysical survey. Based on this correlation and the recently completed mapping of the electrically conductive material, additional boreholes are planned for early 2011 to identify nitrate and radionuclide contamination: (a) throughout the entire vertical length of the vadose zone (i.e., 79 m [260 ft] bgs) within the footprint of the Crib, and (b) 15 to 30 m (50 to 100 ft) east of the Crib footprint, where contaminants are inferred to have migrated through relatively permeable soils. Confirmation of the presence of contamination in historic boreholes correlates well with mapping from the 2010 survey, and serves as a basis to site future characterization boreholes that will likely intersect contamination both laterally and at depth.« less
NASA Astrophysics Data System (ADS)
Hogg, Colin; Kiyan, Duygu; Rath, Volker; Byrdina, Svetlana; Vandemeulebrouck, Jean; Silva, Catarina; Viveiros, Maria FB; Ferreira, Teresa
2016-04-01
The Furnas volcano is the eastern-most of the three active central volcanoes of Sao Miguel Island. The main caldera formed about 30 ka BP, followed by a younger eruption at 10-12 ka BP, which forms the steep topography of more than 200 m in the measuring area. It contains several very young eruptive centers, and a shallow caldera lake. Tectonic features of varying directions have been identified in the Caldera and its vicinity. In the northern part of the caldera, containing the fumarole field of Caldeiras das Furnas, a detailed map of surface CO2 emissions was recently made available. In 2015, a pilot survey of 13 AudioMagnetoTelluric soundings (AMT) and Electrical Resistivity Tomography (ERT) data were collected along two profiles in the eastern part of Furnas caldera in order to image the electrical conductivity of the subsurface. The data quality achieved by both techniques is extraordinary and first results indicate a general correlation between regions of elevated conductivity and the mapped surface CO2 emissions, suggesting that they may both be caused by the presence hydrothermal fluids. Tensor decomposition analysis using the Groom-Bailey approach produce a generalised geo-electric strike direction, 72deg East of North, for the AMT data compared to the surface geological strike derived from the major mapped fault crossing the profiles of 105deg. An analysis of the real induction arrows at certain frequencies (at depths greater than 350 m) infer that an extended conductor at depth does not exactly correspond to the degassing structures at the surface and extends outside the area of investigation. The geometry of the most conductive regions with electrical conductivities less then1 Ώm found at various depths differ from what was expected from earlier geologic and tectonic studies and possibly may not be directly related to the mapped fault systems at the surface. On the eastern profile, which seemed to be more appropriate for 2-D modelling with 72deg strike angle, a deep structure starting north of the major mapped fault crossing this profile can be found. It extends far to the south, with a top of approximately 150 m below the surface at the northern limit. A deeper conductive structure (top at about 300 m) is emerging at the southern end of the profile, though not fully resolved by the existing data. This work will focus on the processing, analysis and preliminary modelling results of the AMT data. A joint interpretation of the AMT results together with the ERT data covering the shallow regime with much higher resolution will be presented.
Influence of local topography on precision irrigation management
USDA-ARS?s Scientific Manuscript database
Precision irrigation management is currently accomplished using spatial information about soil properties through soil series maps or electrical conductivity (EC measurements. Crop yield, however, is consistently influenced by local topography, both in rain-fed and irrigated environments. Utilizing ...
3D electrical conductivity tomography of volcanoes
NASA Astrophysics Data System (ADS)
Soueid Ahmed, A.; Revil, A.; Byrdina, S.; Coperey, A.; Gailler, L.; Grobbe, N.; Viveiros, F.; Silva, C.; Jougnot, D.; Ghorbani, A.; Hogg, C.; Kiyan, D.; Rath, V.; Heap, M. J.; Grandis, H.; Humaida, H.
2018-05-01
Electrical conductivity tomography is a well-established galvanometric method for imaging the subsurface electrical conductivity distribution. We characterize the conductivity distribution of a set of volcanic structures that are different in terms of activity and morphology. For that purpose, we developed a large-scale inversion code named ECT-3D aimed at handling complex topographical effects like those encountered in volcanic areas. In addition, ECT-3D offers the possibility of using as input data the two components of the electrical field recorded at independent stations. Without prior information, a Gauss-Newton method with roughness constraints is used to solve the inverse problem. The roughening operator used to impose constraints is computed on unstructured tetrahedral elements to map complex geometries. We first benchmark ECT-3D on two synthetic tests. A first test using the topography of Mt. St Helens volcano (Washington, USA) demonstrates that we can successfully reconstruct the electrical conductivity field of an edifice marked by a strong topography and strong variations in the resistivity distribution. A second case study is used to demonstrate the versatility of the code in using the two components of the electrical field recorded on independent stations along the ground surface. Then, we apply our code to real data sets recorded at (i) a thermally active area of Yellowstone caldera (Wyoming, USA), (ii) a monogenetic dome on Furnas volcano (the Azores, Portugal), and (iii) the upper portion of the caldera of Kīlauea (Hawai'i, USA). The tomographies reveal some of the major structures of these volcanoes as well as identifying alteration associated with high surface conductivities. We also review the petrophysics underlying the interpretation of the electrical conductivity of fresh and altered volcanic rocks and molten rocks to show that electrical conductivity tomography cannot be used as a stand-alone technique due to the non-uniqueness in interpreting electrical conductivity tomograms. That said, new experimental data provide evidence regarding the strong role of alteration in the vicinity of preferential fluid flow paths including magmatic conduits and hydrothermal vents.
Wynn, Jeff
2006-01-01
This report summarizes the results of two airborne geophysical surveys conducted in the upper San Pedro Valley of southeastern Arizona in 1997 and 1999. The combined surveys cover about 1,000 square kilometers and extend from the Huachuca Mountains on the west to the Mule Mountains and Tombstone Hills on the east and from north of the Babocomari River to near the Mexican border on the south. The surveys included the acquisition of high-resolution magnetic data, which were used to map depth to the crystalline basement rocks underlying the sediments filling the basin. The magnetic inversion results show a complex basement morphology, with sediment thickness in the center of the valley ranging from ~237 meters beneath the city of Sierra Vista to ~1,500 meters beneath Huachuca City and the Palominas area near the Mexican border. The surveys also included acquisition of 60-channel time-domain electromagnetic (EM) data. Extensive quality analyses of these data, including inversion to conductivity vs. depth (conductivity-depth-transform or CDT) profiles and comparisons with electrical well logs, show that the electrical conductor mapped represents the subsurface water-bearing sediments throughout most of the basin. In a few places (notably the mouth of Huachuca Canyon), the reported water table lies above where the electrical conductor places it. These exceptions appear to be due to a combination of outdated water-table information, significant horizontal displacement between the wells and the CDT profiles, and a subtle calibration issue with the CDT algorithm apparent only in areas of highly resistive (very dry) overburden. These occasional disparities appear in less than 5 percent of the surveyed area. Observations show, however, that wells drilled in the thick unsaturated zone along the Huachuca Mountain front eventually intersect water, at which point the water rapidly rises high into the unsaturated zone within the wellbore. This rising of water in a wellbore implies some sort of confinement below the thick unsaturated zone, a confinement that is not identified in the available literature. Occasional disparities notwithstanding, maps of the electrical conductor derived from the airborne EM system provide a synoptic view of the presence of water underlying the upper San Pedro Valley, including its three-dimensional distribution. The EM data even show faults previously only inferred from geologic mapping. The magnetic and electromagnetic data together appear to show the thickness of the sediments, the water in the saturated sediments down to a maximum of about 400 meters depth, and even places where the main ground-water body is not in direct contact with the San Pedro River. However, the geophysical data cannot reveal anything directly about hydraulic conductivity or ground-water flow. Estimating these characteristics requires new hydraulic modeling based in part on this report. One concern to reviewers of this report is the effect that clays may have on the electrical conductor mapped with the airborne geophysical system. Although the water in the basin is unusually conductive, averaging 338 microsiemens per centimeter, reasoning cited below suggests that the contribution of clays to the overall conductivity would be relatively small. Basic principles of sedimentary geology suggest that silts and clays should dominate the center of the basin, while sands and gravels would tend to dominate the margins. Although clay content may increase the amplitude of the observed electrical conductors somewhat, it will not affect the depths to the conductor derived from depth inversions. Further, fine-grained sediments generally have higher porosity and tend to lie toward a basin center, a fact in general agreement with the observed geophysical data.
In vivo electric conductivity of cervical cancer patients based on B₁⁺ maps at 3T MRI.
Balidemaj, E; de Boer, P; van Lier, A L H M W; Remis, R F; Stalpers, L J A; Westerveld, G H; Nederveen, A J; van den Berg, C A T; Crezee, J
2016-02-21
The in vivo electric conductivity (σ) values of tissue are essential for accurate electromagnetic simulations and specific absorption rate (SAR) assessment for applications such as thermal dose computations in hyperthermia. Currently used σ-values are mostly based on ex vivo measurements. In this study the conductivity of human muscle, bladder content and cervical tumors is acquired non-invasively in vivo using MRI. The conductivity of 20 cervical cancer patients was measured with the MR-based electric properties tomography method on a standard 3T MRI system. The average in vivo σ-value of muscle is 14% higher than currently used in human simulation models. The σ-value of bladder content is an order of magnitude higher than the value for bladder wall tissue that is used for the complete bladder in many models. Our findings are confirmed by various in vivo animal studies from the literature. In cervical tumors, the observed average conductivity was 13% higher than the literature value reported for cervical tissue. Considerable deviations were found for the electrical conductivity observed in this study and the commonly used values for SAR assessment, emphasizing the importance of acquiring in vivo conductivity for more accurate SAR assessment in various applications.
Simultaneous head tissue conductivity and EEG source location estimation.
Akalin Acar, Zeynep; Acar, Can E; Makeig, Scott
2016-01-01
Accurate electroencephalographic (EEG) source localization requires an electrical head model incorporating accurate geometries and conductivity values for the major head tissues. While consistent conductivity values have been reported for scalp, brain, and cerebrospinal fluid, measured brain-to-skull conductivity ratio (BSCR) estimates have varied between 8 and 80, likely reflecting both inter-subject and measurement method differences. In simulations, mis-estimation of skull conductivity can produce source localization errors as large as 3cm. Here, we describe an iterative gradient-based approach to Simultaneous tissue Conductivity And source Location Estimation (SCALE). The scalp projection maps used by SCALE are obtained from near-dipolar effective EEG sources found by adequate independent component analysis (ICA) decomposition of sufficient high-density EEG data. We applied SCALE to simulated scalp projections of 15cm(2)-scale cortical patch sources in an MR image-based electrical head model with simulated BSCR of 30. Initialized either with a BSCR of 80 or 20, SCALE estimated BSCR as 32.6. In Adaptive Mixture ICA (AMICA) decompositions of (45-min, 128-channel) EEG data from two young adults we identified sets of 13 independent components having near-dipolar scalp maps compatible with a single cortical source patch. Again initialized with either BSCR 80 or 25, SCALE gave BSCR estimates of 34 and 54 for the two subjects respectively. The ability to accurately estimate skull conductivity non-invasively from any well-recorded EEG data in combination with a stable and non-invasively acquired MR imaging-derived electrical head model could remove a critical barrier to using EEG as a sub-cm(2)-scale accurate 3-D functional cortical imaging modality. Copyright © 2015 Elsevier Inc. All rights reserved.
Simultaneous head tissue conductivity and EEG source location estimation
Acar, Can E.; Makeig, Scott
2015-01-01
Accurate electroencephalographic (EEG) source localization requires an electrical head model incorporating accurate geometries and conductivity values for the major head tissues. While consistent conductivity values have been reported for scalp, brain, and cerebrospinal fluid, measured brain-to-skull conductivity ratio (BSCR) estimates have varied between 8 and 80, likely reflecting both inter-subject and measurement method differences. In simulations, mis-estimation of skull conductivity can produce source localization errors as large as 3 cm. Here, we describe an iterative gradient-based approach to Simultaneous tissue Conductivity And source Location Estimation (SCALE). The scalp projection maps used by SCALE are obtained from near-dipolar effective EEG sources found by adequate independent component analysis (ICA) decomposition of sufficient high-density EEG data. We applied SCALE to simulated scalp projections of 15 cm2-scale cortical patch sources in an MR image-based electrical head model with simulated BSCR of 30. Initialized either with a BSCR of 80 or 20, SCALE estimated BSCR as 32.6. In Adaptive Mixture ICA (AMICA) decompositions of (45-min, 128-channel) EEG data from two young adults we identified sets of 13 independent components having near-dipolar scalp maps compatible with a single cortical source patch. Again initialized with either BSCR 80 or 25, SCALE gave BSCR estimates of 34 and 54 for the two subjects respectively. The ability to accurately estimate skull conductivity non-invasively from any well-recorded EEG data in combination with a stable and non-invasively acquired MR imaging-derived electrical head model could remove a critical barrier to using EEG as a sub-cm2-scale accurate 3-D functional cortical imaging modality. PMID:26302675
NASA Astrophysics Data System (ADS)
Ding, R.; Cruz, L.; Whitney, J.; Telenko, D.; Oware, E. K.
2017-12-01
There is the growing need for the development of efficient irrigation management practices due to increasing irrigation water scarcity as a result of growing population and changing climate. Soil texture primarily controls the water-holding capacity of soils, which determines the amount of irrigation water that will be available to the plant. However, while there are significant variabilities in the textural properties of the soil across a field, conventional irrigation practices ignore the underlying variability in the soil properties, resulting in over- or under-irrigation. Over-irrigation leaches plant nutrients beyond the root-zone leading to fertilizer, energy, and water wastages with dire environmental consequences. Under-irrigation, in contrast, causes water stress of the plant, thereby reducing plant quality and yield. The goal of this project is to leverage soil textural map of a field to create water management zones (MZs) to guide site-specific precision irrigation. There is increasing application of electromagnetic induction methods to rapidly and inexpensively map spatially continuous soil properties in terms of the apparent electrical conductivity (ECa) of the soil. ECa is a measure of the bulk soil properties, including soil texture, moisture, salinity, and cation exchange capacity, making an ECa map a pseudo-soil map. Data for the project were collected from a farm site at Eden, NY. The objective is to leverage high-resolution ECa map to predict spatially dense soil textural properties from limited measurements of soil texture. Thus, after performing ECa mapping, we conducted particle-size analysis of soil samples to determine the textural properties of soils at selected locations across the field. We cokriged the high-resolution ECa measurements with the sparse soil textural data to estimate a soil texture map for the field. We conducted irrigation experiments at selected locations to calibrate representative water-holding capacities of each estimated soil textural unit. Estimated soil units with similar water-holding characteristics were merged to create sub-field water MZs to guide precision irrigation of each MZ, instructed by each MZ's calibrated water-holding properties.
Duchateau, Nicolas; Kostantyn Butakov, Constantine Butakoff; Andreu, David; Fernández-Armenta, Juan; Bijnens, Bart; Berruezo, Antonio; Sitges, Marta; Camara, Oscar
2017-01-01
Electro-anatomical maps (EAMs) are commonly acquired in clinical routine for guiding ablation therapies. They provide voltage and activation time information on a 3-D anatomical mesh representation, making them useful for analyzing the electrical activation patterns in specific pathologies. However, the variability between the different acquisitions and anatomies hampers the comparison between different maps. This paper presents two contributions for the analysis of electrical patterns in EAM data from biventricular surfaces of cardiac chambers. The first contribution is an integrated automatic 2-D disk representation (2-D bull’s eye plot) of the left ventricle (LV) and right ventricle (RV) obtained with a quasi-conformal mapping from the 3-D EAM meshes, that allows an analysis of cardiac resynchronization therapy (CRT) lead positioning, interpretation of global (total activation time), and local indices (local activation time (LAT), surrogates of conduction velocity, inter-ventricular, and transmural delays) that characterize changes in the electrical activation pattern. The second contribution is a set of indices derived from the electrical activation: speed maps, computed from LAT values, to study the electrical wave propagation, and histograms of isochrones to analyze regional electrical heterogeneities in the ventricles. We have applied the proposed methods to look for the underlying physiological mechanisms of left bundle branch block (LBBB) and CRT, with the goal of optimizing the therapy by improving CRT response. To better illustrate the benefits of the proposed tools, we created a set of synthetically generated and fully controlled activation patterns, where the proposed representation and indices were validated. Then, the proposed analysis tools are used to analyze EAM data from an experimental swine model of induced LBBB with an implanted CRT device. We have analyzed and compared the electrical activation patterns at baseline, LBBB, and CRT stages in four animals: two without any structural disease and two with an induced infarction. By relating the CRT lead location with electrical dyssynchrony, we evaluated current hypotheses about lead placement in CRT and showed that optimal pacing sites should target the RV lead close to the apex and the LV one distant from it. PMID:29164019
Using electrical resistance tomography to map subsurface temperatures
Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.
1994-09-13
A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.
Using electrical resistance tomography to map subsurface temperatures
Ramirez, Abelardo L.; Chesnut, Dwayne A.; Daily, William D.
1994-01-01
A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.
1990-02-15
electrical activity mapping procedures. It is necessary to employ approximately 20 electrodes to conduct full- scale brain mapping procedures, using a...animal groups, likewise, showed no observable differences in the animal’s exploratory behavior, nuzzle response, lid-corneal and ear reflexes, pain ...SPECIFICATIONS FOR THE ENVIRONICS SERIES 100 GAS STANDARDS GENERATOR Accuracy of Flow 0.15 % of Full Scale Linearity 0.15 % of Full Scale Repeatability 0.10
NASA Astrophysics Data System (ADS)
Zare, Ehsan; Huang, Jingyi; Koganti, Triven; Triantafilis, John
2017-04-01
In order to understand the drivers of topsoil salinization, the distribution and movement of salt in accordance with groundwater need mapping. In this study, we described a method to map the distribution of soil salinity, as measured by the electrical conductivity of a saturated soil-paste extract (ECe), and in 3-dimensions around a water storage reservoir in an irrigated field near Bourke, New South Wales, Australia. A quasi-3d electromagnetic conductivity image (EMCI) or model of the true electrical conductivity (sigma) was developed using 133 apparent electrical conductivity (ECa) measurements collected on a 50 m grid and using various coil arrays of DUALEM-421S and EM34 instruments. For the DUALEM-421S we considered ECa in horizontal coplanar (i.e., 1 mPcon, 2 mPcon and 4 mPcon) and vertical coplanar (i.e., 1 mHcon, 2 mHcon and 4 mHcon) arrays. For the EM34, three measurements in the horizontal mode (i.e., EM34-10H, EM34-20H and EM34-40H) were considered. We estimated σ using a quasi-3d joint-inversion algorithm (EM4Soil). The best correlation (R2 = 0.92) between σ and measured soil ECe was identified when a forward modelling (FS), inversion algorithm (S2) and damping factor (lambda = 0.2) were used and using both DUALEM-421 and EM34 data; but not including the 4 m coil arrays of the DUALEM-421S. A linear regression calibration model was used to predict ECe in 3-dimensions beneath the study field. The predicted ECe was consistent with previous studies and revealed the distribution of ECe and helped to infer a freshwater intrusion from a water storage reservoir at depth and as a function of its proximity to near-surface prior stream channels and buried paleochannels. It was concluded that this method can be applied elsewhere to map the soil salinity and water movement and provide guidance for improved land management.|
Huang, J; Koganti, T; Santos, F A Monteiro; Triantafilis, J
2017-01-15
In order to understand the drivers of topsoil salinization, the distribution and movement of salt in accordance with groundwater need mapping. In this study, we described a method to map the distribution of soil salinity, as measured by the electrical conductivity of a saturated soil-paste extract (EC e ), and in 3-dimensions around a water storage reservoir in an irrigated field near Bourke, New South Wales, Australia. A quasi-3d electromagnetic conductivity image (EMCI) or model of the true electrical conductivity (σ) was developed using 133 apparent electrical conductivity (EC a ) measurements collected on a 50m grid and using various coil arrays of DUALEM-421S and EM34 instruments. For the DUALEM-421S we considered EC a in horizontal coplanar (i.e., 1mPcon, 2mPcon and 4mPcon) and vertical coplanar (i.e., 1mHcon, 2mHcon and 4mHcon) arrays. For the EM34, three measurements in the horizontal mode (i.e., EM34-10H, EM34-20H and EM34-40H) were considered. We estimated σ using a quasi-3d joint-inversion algorithm (EM4Soil). The best correlation (R 2 =0.92) between σ and measured soil EC e was identified when a forward modelling (FS), inversion algorithm (S2) and damping factor (λ=0.2) were used and using both DUALEM-421 and EM34 data; but not including the 4m coil arrays of the DUALEM-421S. A linear regression calibration model was used to predict EC e in 3-dimensions beneath the study field. The predicted EC e was consistent with previous studies and revealed the distribution of EC e and helped to infer a freshwater intrusion from a water storage reservoir at depth and as a function of its proximity to near-surface prior stream channels and buried paleochannels. It was concluded that this method can be applied elsewhere to map the soil salinity and water movement and provide guidance for improved land management. Copyright © 2016 Elsevier B.V. All rights reserved.
Geoelectrical mapping and groundwater contamination
NASA Astrophysics Data System (ADS)
Blum, Rainer
Specific electrical resistivity of near-surface materials is mainly controlled by the groundwater content and thus reacts extremely sensitive to any change in the ion content. Geoelectric mapping is a well-established, simple, and inexpensive technique for observing areal distributions of apparent specific electrical resistivities. These are a composite result of the true resistivities in the underground, and with some additional information the mapping of apparent resistivities can help to delineate low-resistivity groundwater contaminations, typically observed downstream from sanitary landfills and other waste sites. The presence of other good conductors close to the surface, mainly clays, is a serious noise source and has to be sorted out by supporting observations of conductivities in wells and geoelectric depth soundings. The method may be used to monitor the extent of groundwater contamination at a specific time as well as the change of a contamination plume with time, by carrying out repeated measurements. Examples for both are presented.
Direct-current vertical electrical-resistivity soundings in the Lower Peninsula of Michigan
Westjohn, D.B.; Carter, P.J.
1989-01-01
Ninety-three direct-current vertical electrical-resistivity soundings were conducted in the Lower Peninsula of Michigan from June through October 1987. These soundings were made to assist in mapping the depth to brine in areas where borehole resistivity logs and water-quality data are sparse or lacking. The Schlumberger array for placement of current and potential electrodes was used for each sounding. Vertical electrical-resistivity sounding field data, shifted and smoothed sounding data, and electric layers calculated using inverse modeling techniques are presented. Also included is a summary of the near-surface conditions and depths to conductors and resistors for each sounding location.
Yu, Ting Yue; Syeda, Fahima; Holmes, Andrew P; Osborne, Benjamin; Dehghani, Hamid; Brain, Keith L; Kirchhof, Paulus; Fabritz, Larissa
2014-08-01
We developed and validated a new optical mapping system for quantification of electrical activation and repolarisation in murine atria. The system makes use of a novel 2nd generation complementary metal-oxide-semiconductor (CMOS) camera with deliberate oversampling to allow both assessment of electrical activation with high spatial and temporal resolution (128 × 2048 pixels) and reliable assessment of atrial murine repolarisation using post-processing of signals. Optical recordings were taken from isolated, superfused and electrically stimulated murine left atria. The system reliably describes activation sequences, identifies areas of functional block, and allows quantification of conduction velocities and vectors. Furthermore, the system records murine atrial action potentials with comparable duration to both monophasic and transmembrane action potentials in murine atria. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2004-06-16
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 0.1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002, Tseng et al., 2003). Electric and magnetic sensors are being tested and calibrated on sea water and in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
30 CFR 75.508 - Map of electrical system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Map of electrical system. 75.508 Section 75.508... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.508 Map of electrical system. [Statutory Provisions] The location and the electrical rating of all stationary electric...
30 CFR 75.508 - Map of electrical system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Map of electrical system. 75.508 Section 75.508... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.508 Map of electrical system. [Statutory Provisions] The location and the electrical rating of all stationary electric...
30 CFR 75.508 - Map of electrical system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Map of electrical system. 75.508 Section 75.508... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.508 Map of electrical system. [Statutory Provisions] The location and the electrical rating of all stationary electric...
NASA Astrophysics Data System (ADS)
Mohamed, N. E.; Yaramanci, U.; Kheiralla, K. M.; Abdelgalil, M. Y.
2011-07-01
Two geophysical techniques were integrated to map the groundwater aquifers on complex geological settings, in the crystalline basement terrain in northeast Nuba Mountains. The water flow is structurally controlled by the northwest-southeast extensional faults as one of several in-situ deformational patterns that are attributed to the collision of the Pan-African oceanic assemblage of the Nubian shield against the pre-Pan African continental crust to the west. The structural lineaments and drainage systems have been enhanced by the remote sensing technique. The geophysical techniques used are: vertical electrical soundings (VES) and electrical resistivity tomography (ERT), in addition to hydraulic conductivity measurements. These measurements were designed to overlap in order to improve the producibility of the geophysical data and to provide a better interpretation of the hydrogeological setting of the aquifer complex structure. Smooth and Block inversion schemes were attempted for the observed ERT data to study their reliability in mapping the different geometries in the complex subsurface. The VES data was conducted where ERT survey was not accessible, and inverted smoothly and merged with the ERT in the 3D resistivity grid. The hydraulic conductivity was measured for 42 water samples collected from the distributed dug wells in the study area; where extremely high saline zones were recorded and have been compared to the resistivity values in the 3D model.
The Calderón problem with corrupted data
NASA Astrophysics Data System (ADS)
Caro, Pedro; Garcia, Andoni
2017-08-01
We consider the inverse Calderón problem consisting of determining the conductivity inside a medium by electrical measurements on its surface. Ideally, these measurements determine the Dirichlet-to-Neumann map and, therefore, one usually assumes the data to be given by such a map. This situation corresponds to having access to infinite-precision measurements, which is totally unrealistic. In this paper, we study the Calderón problem assuming the data to contain measurement errors and provide formulas to reconstruct the conductivity and its normal derivative on the surface. Additionally, we state the rate convergence of the method. Our approach is theoretical and has a stochastic flavour.
A high-resolution computational localization method for transcranial magnetic stimulation mapping.
Aonuma, Shinta; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa; Takakura, Tomokazu; Tamura, Manabu; Muragaki, Yoshihiro
2018-05-15
Transcranial magnetic stimulation (TMS) is used for the mapping of brain motor functions. The complexity of the brain deters determining the exact localization of the stimulation site using simplified methods (e.g., the region below the center of the TMS coil) or conventional computational approaches. This study aimed to present a high-precision localization method for a specific motor area by synthesizing computed non-uniform current distributions in the brain for multiple sessions of TMS. Peritumoral mapping by TMS was conducted on patients who had intra-axial brain neoplasms located within or close to the motor speech area. The electric field induced by TMS was computed using realistic head models constructed from magnetic resonance images of patients. A post-processing method was implemented to determine a TMS hotspot by combining the computed electric fields for the coil orientations and positions that delivered high motor-evoked potentials during peritumoral mapping. The method was compared to the stimulation site localized via intraoperative direct brain stimulation and navigated TMS. Four main results were obtained: 1) the dependence of the computed hotspot area on the number of peritumoral measurements was evaluated; 2) the estimated localization of the hand motor area in eight non-affected hemispheres was in good agreement with the position of a so-called "hand-knob"; 3) the estimated hotspot areas were not sensitive to variations in tissue conductivity; and 4) the hand motor areas estimated by this proposal and direct electric stimulation (DES) were in good agreement in the ipsilateral hemisphere of four glioma patients. The TMS localization method was validated by well-known positions of the "hand-knob" in brains for the non-affected hemisphere, and by a hotspot localized via DES during awake craniotomy for the tumor-containing hemisphere. Copyright © 2018 Elsevier Inc. All rights reserved.
Electromagnetic Measurements in an Active Oilfield Environment
NASA Astrophysics Data System (ADS)
Weiss, C. J.; Aur, K. A.; Schramm, K. A.; Aldridge, D. F.; O'rourke, W. T.
2016-12-01
An important issue in oilfield development is mapping fracture distributions (either natural or man-made) controlling subsurface fluid flow. Although microseismic monitoring has been successful in constraining fracture system geometry and dynamics, accurate interpretation of microseismic data can be confounded by factors such as complex or poorly-understood velocity distributions, reactivation of previously unknown faults and fractures, and the problem of relating flow patterns to the cloud of hypocenter locations. For the particular problem of hydrocarbon production, the question of which fractures remain sufficiently "open" to allow economical fluid extraction is critical. As a supplement to microseismic analysis, we are investigating a novel electromagnetic (EM) technique for detecting and mapping hydraulic fractures in a hydrocarbon or geothermal reservoir by introducing an electrically conductive contrast agent into the fracturing fluid. In the field experiment presented here, a proppant-filled fracture zone is illuminated by a large engineered antenna consisting of an insulated current-carrying cable, grounded to `Earth' near the wellhead, and grounded at the other end to the steel-cased borehole near the target. Time-lapse measurements of horizontal electric field are subsequently made on Earth's surface to map the change in subsurface conductivity due to proppant emplacement. As predicted by 3D numerical modelling, observed differences in electric field values are very small. While these numbers are above the noise floor of electric field sensors, pervasive anthropogenic EM noise and regional-scale magnetotelluric signals make extraction of the differences from the observed time series especially difficult. We present field-acquired data on ambient EM noise in an active oilfield environment and demonstrate techniques for extracting the difference signal due to proppant emplacement. These techniques include classical spectral methods along with estimation of time-domain Green's function by regularized, linear least squares methods.
USING DIRECT-PUSH TOOLS TO MAP HYDROSTRATIGRAPHY AND PREDICT MTBE PLUME DIVING
MTBE plumes have been documented to dive beneath screened intervals of conventional monitoring well networks at a number of LUST sites. This behavior makes these plumes difficult both to detect and remediate. Electrical conductivity logging and pneumatic slug testing performed in...
Connexin43 contributes to electrotonic conduction across scar tissue in the intact heart
NASA Astrophysics Data System (ADS)
Mahoney, Vanessa M.; Mezzano, Valeria; Mirams, Gary R.; Maass, Karen; Li, Zhen; Cerrone, Marina; Vasquez, Carolina; Bapat, Aneesh; Delmar, Mario; Morley, Gregory E.
2016-05-01
Studies have demonstrated non-myocytes, including fibroblasts, can electrically couple to myocytes in culture. However, evidence demonstrating current can passively spread across scar tissue in the intact heart remains elusive. We hypothesize electrotonic conduction occurs across non-myocyte gaps in the heart and is partly mediated by Connexin43 (Cx43). We investigated whether non-myocytes in ventricular scar tissue are electrically connected to surrounding myocardial tissue in wild type and fibroblast-specific protein-1 driven conditional Cx43 knock-out mice (Cx43fsp1KO). Electrical coupling between the scar and uninjured myocardium was demonstrated by injecting current into the myocardium and recording depolarization in the scar through optical mapping. Coupling was significantly reduced in Cx43fsp1KO hearts. Voltage signals were recorded using microelectrodes from control scars but no signals were obtained from Cx43fsp1KO hearts. Recordings showed significantly decreased amplitude, depolarized resting membrane potential, increased duration and reduced upstroke velocity compared to surrounding myocytes, suggesting that the non-excitable cells in the scar closely follow myocyte action potentials. These results were further validated by mathematical simulations. Optical mapping demonstrated that current delivered within the scar could induce activation of the surrounding myocardium. These data demonstrate non-myocytes in the scar are electrically coupled to myocytes, and coupling depends on Cx43 expression.
A high frequency electromagnetic impedance imaging system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex
2003-01-15
Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systemsmore » for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.« less
Geophysical Sensing Applications on Claypan Soils
USDA-ARS?s Scientific Manuscript database
Maps of apparent electrical conductivity (ECa) of the soil profile are widely used in precision agriculture practice and research. A number of ECa sensors are commercially available, each with a unique response function (i.e., the relative contribution of soil at each depth to the integrated ECa rea...
Determining and representing width of soil boundaries using electrical conductivity and MultiGrid
NASA Astrophysics Data System (ADS)
Greve, Mogens Humlekrog; Greve, Mette Balslev
2004-07-01
In classical soil mapping, map unit boundaries are considered crisp even though all experienced survey personnel are aware of the fact, that soil boundaries really are transition zones of varying width. However, classification of transition zone width on site is difficult in a practical survey. The objective of this study is to present a method for determining soil boundary width and a way of representing continuous soil boundaries in GIS. A survey was performed using the non-contact conductivity meter EM38 from Geonics Inc., which measures the bulk Soil Electromagnetic Conductivity (SEC). The EM38 provides an opportunity to classify the width of transition zones in an unbiased manner. By calculating the spatial rate of change in the interpolated EM38 map across the crisp map unit delineations from a classical soil mapping, a measure of transition zone width can be extracted. The map unit delineations are represented as transition zones in a GIS through a concept of multiple grid layers, a MultiGrid. Each layer corresponds to a soil type and the values in a layer represent the percentage of that soil type in each cell. As a test, the subsoil texture was mapped at the Vindum field in Denmark using both the classical mapping method with crisp representation of the boundaries and the new map with MultiGrid and continuous boundaries. These maps were then compared to an independent reference map of subsoil texture. The improvement of the prediction of subsoil texture, using continuous boundaries instead of crisp, was in the case of the Vindum field, 15%.
The bedrock electrical conductivity structure of Northern Ireland
NASA Astrophysics Data System (ADS)
Beamish, David
2013-08-01
An airborne geophysical survey of the whole of Northern Ireland has provided over 4.8 M estimates of the bedrock conductivity over the wide range of geological formations present. This study investigates how such data can be used to provide additional knowledge in relation to existing digital geological map information. A by-product of the analysis is a simplification of the spatially aggregated information obtained in such surveys. The methodology used is a GIS-based attribution of the conductivity estimates using a lithological classification of the bedrock formations. A 1:250k geological classification of the data is performed leading to a 56 unit lithological and geostatistical analysis of the conductivity information. The central moments (medians) of the classified data are used to provide a new digital bedrock conductivity map of Northern Ireland with values ranging from 0.32 to 41.36 mS m-1. This baseline map of conductivities displays a strong correspondence with an existing 4 quadrant, chrono-geological description of Northern Ireland. Once defined, the baseline conductivity map allows departures from the norm to be assessed across each specific lithological unit. Bulk electrical conductivity is controlled by a number of petrophysical parameters and it is their variation that is assessed by the procedures employed. The igneous rocks are found to display the largest variability in conductivity values and many of the statistical distributions are multi-modal. A sequence of low-value modes in these data are associated with intrusives within volcanic complexes. These and much older Neoproterzoic rocks appear to represent very low porosity formations that may be the product of rapid cooling during emplacement. By way of contrast, extensive flood basalts (the Antrim lavas) record a well-defined and much higher median value (12.24 mS m-1) although they display complex spatial behaviour in detail. Sedimentary rocks appear to follow the broad behaviours anticipated by standard theoretical descriptions of rock electrical properties that allow for a term due to grain surface conduction (e.g. the presence of clay). Single lithology sedimentary rocks are represented by an increasing set of conductivities through the sequence sandstone (4.91 mS m-1), limestone (8.41 mS m-1) and mudstone (17.85 mS m-1) with argillaceous rocks providing a conductivity of 41.1 mS m-1. In the case of both sandstone and limestone, the single lithology conductivities are significantly less than their mixed lithology counterparts. Mudrocks display a bimodal statistical distribution and an extended analysis of these rocks is carried out across a Carboniferous basin. The results clearly indicate that non-shale mudstones are distinctly less conductive than their shale counterparts. Shale formations display rapid and large movements in conductivity and it is suggested that the observed sensitivity may be due to competing surface conduction effects due to clay and organic material. A study of the variation of conductivity with geological period is also performed. Both a decreasing trend with age and a modulation that peaks in the Triassic period are observed.
L-325 Sagebrush Habitat Mitigation Project: FY2008 Compensation Area Monitoring Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, Robin E.; Sackschewsky, Michael R.
2008-09-30
This document provides a review and status of activities conducted in support of the Fluor Daniel Hanford Company (Fluor) Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades. It includes time-zero monitoring results for planting activities conducted in January 2008, annual survival monitoring for all planting years (2007 and 2008), and recommendations for the successful completion of DOE habitat mitigation commitments for this project.
Automated detection of qualitative spatio-temporal features in electrocardiac activation maps.
Ironi, Liliana; Tentoni, Stefania
2007-02-01
This paper describes a piece of work aiming at the realization of a tool for the automated interpretation of electrocardiac maps. Such maps can capture a number of electrical conduction pathologies, such as arrhytmia, that can be missed by the analysis of traditional electrocardiograms. But, their introduction into the clinical practice is still far away as their interpretation requires skills that belongs to very few experts. Then, an automated interpretation tool would bridge the gap between the established research outcome and clinical practice with a consequent great impact on health care. Qualitative spatial reasoning can play a crucial role in the identification of spatio-temporal patterns and salient features that characterize the heart electrical activity. We adopted the spatial aggregation (SA) conceptual framework and an interplay of numerical and qualitative information to extract features from epicardial maps, and to make them available for reasoning tasks. Our focus is on epicardial activation isochrone maps as they are a synthetic representation of spatio-temporal aspects of the propagation of the electrical excitation. We provide a computational SA-based methodology to extract, from 3D epicardial data gathered over time, (1) the excitation wavefront structure, and (2) the salient features that characterize wavefront propagation and visually correspond to specific geometric objects. The proposed methodology provides a robust and efficient way to identify salient pieces of information in activation time maps. The hierarchical structure of the abstracted geometric objects, crucial in capturing the prominent information, facilitates the definition of general rules necessary to infer the correlation between pathophysiological patterns and wavefront structure and propagation.
NASA Astrophysics Data System (ADS)
Mandolesi, E.; Jones, A. G.; Roux, E.; Lebedev, S.
2009-12-01
Recently different studies were undertaken on the correlation between diverse geophysical datasets. Magnetotelluric (MT) data are used to map the electrical conductivity structure behind the Earth, but one of the problems in MT method is the lack in resolution in mapping zones beneath a region of high conductivity. Joint inversion of different datasets in which a common structure is recognizable reduces non-uniqueness and may improve the quality of interpretation when different dataset are sensitive to different physical properties with an underlined common structure. A common structure is recognized if the change of physical properties occur at the same spatial locations. Common structure may be recognized in 1D inversion of seismic and MT datasets, and numerous authors show that also 2D common structure may drive to an improvement of inversion quality while dataset are jointly inverted. In this presentation a tool to constrain MT 2D inversion with phase velocity of surface wave seismic data (SW) is proposed and is being developed and tested on synthetic data. Results obtained suggest that a joint inversion scheme could be applied with success along a section profile for which data are compatible with a 2D MT model.
NASA Astrophysics Data System (ADS)
Mace, Brennan; Harrell, Zach; Chen, Chonglin; Enriquez, Erik; Chen, Aiping; Jia, Quanxi
2018-02-01
The role of temperature and the oxygen content in the structural transformation and electrical conductivity of epitaxial double perovskite LaBaCo2O5+δ (0≤ δ ≤ 1) thin films was systematically investigated. Reciprocal space mapping and ω-2θ x-ray diffraction performed at different temperatures in vacuum indicate that oxygen vacancies in the films become ordered at high temperature in a reducing environment. The changes of the oxygen content and the degree of oxygen vacancy ordering in the films result in a strong in-plane anisotropic lattice deformation and a large thermal expansion coefficient along the c-axis direction. The electrical conductivity measurements reveal that these behaviors are related to the degree of oxygen vacancy formation and lattice deformation in the films.
Mace, Brennan; Harrell, Zach; Chen, Chonglin; Enriquez, Erik; Chen, Aiping; Jia, Quanxi
2018-02-12
The role of temperature and the oxygen content in the structural transformation and electrical conductivity of epitaxial double perovskite LaBaCo 2 O 5+δ (0≤ δ ≤ 1) thin films was systematically investigated. Reciprocal space mapping and ω-2θ x-ray diffraction performed at different temperatures in vacuum indicate that oxygen vacancies in the films become ordered at high temperature in a reducing environment. The changes of the oxygen content and the degree of oxygen vacancy ordering in the films result in a strong in-plane anisotropic lattice deformation and a large thermal expansion coefficient along the c-axis direction. The electrical conductivity measurements reveal that these behaviors are related to the degree of oxygen vacancy formation and lattice deformation in the films.
NASA Astrophysics Data System (ADS)
Newman, Gregory A.; Commer, Michael
2009-07-01
Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/L supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.
NASA Astrophysics Data System (ADS)
Ironi, Liliana; Tentoni, Stefania
2009-08-01
The last decade has witnessed major advancements in the direct application of functional imaging techniques to several clinical contexts. Unfortunately, this is not the case of Electrocardiology. As a matter of fact, epicardial maps, which can hit electrical conduction pathologies that routine surface ECG's analysis may miss, can be obtained non invasively from body surface data through mathematical model-based reconstruction methods. But, their interpretation still requires highly specialized skills that belong to few experts. The automated detection of salient patterns in the map, grounded on the existing interpretation rationale, would therefore represent a major contribution towards the clinical use of such valuable tools, whose diagnostic potential is still largely unexploited. We focus on epicardial activation isochronal maps, which convey information about the heart electric function in terms of the depolarization wavefront kinematics. An approach grounded on the integration of a Spatial Aggregation (SA) method with concepts borrowed from Computational Geometry provides a computational framework to extract, from the given activation data, a few basic features that characterize the wavefront propagation, as well as a more specific set of features that identify an important class of heart rhythm pathologies, namely reentry arrhythmias due to block of conduction.
Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortel, Pierre-François; Liu, Jiaen
2014-01-01
Elevated Specific Absorption Rate (SAR) associated with increased main magnetic field strength remains as a major safety concern in ultra-high-field (UHF) Magnetic Resonance Imaging (MRI) applications. The calculation of local SAR requires the knowledge of the electric field induced by radiofrequency (RF) excitation, and the local electrical properties of tissues. Since electric field distribution cannot be directly mapped in conventional MR measurements, SAR estimation is usually performed using numerical model-based electromagnetic simulations which, however, are highly time consuming and cannot account for the specific anatomy and tissue properties of the subject undergoing a scan. In the present study, starting from the measurable RF magnetic fields (B1) in MRI, we conducted a series of mathematical deduction to estimate the local, voxel-wise and subject-specific SAR for each single coil element using a multi-channel transceiver array coil. We first evaluated the feasibility of this approach in numerical simulations including two different human head models. We further conducted experimental study in a physical phantom and in two human subjects at 7T using a multi-channel transceiver head coil. Accuracy of the results is discussed in the context of predicting local SAR in the human brain at UHF MRI using multi-channel RF transmission. PMID:23508259
NASA Astrophysics Data System (ADS)
Eack, K. B.; Winn, W. P.; Rust, W. D.; Minschwaner, K.; Fredrickson, S.; Kennedy, D.; Edens, H. E.; Kalnajs, L. E.; Rabin, R. M.; Lu, G. P.; Bonin, D.
2008-12-01
A field project was conducted at the Langmuir Laboratory for Atmospheric Research during the summer of 2008 in an effort to better understand the direct production of ozone within electrically active storms. Five balloon flights were successfully launched into thunderstorms during this project. In situ measurements from the balloon instrument package included ozone mixing ratio, electric field strength, meteorological variables, and GPS location and timing. Lightning discharges were identified within each storm using a ground based lightning mapping array. The data show that the instruments ascended through regions of high electric fields within the sampled storms, and in some cases the balloon was in very close proximity to lightning. Relationships between electric field, lightning, and ozone observed during these flights will be discussed.
NASA Technical Reports Server (NTRS)
Miller, Teresa Y.; Williams, George O.; Snyder, Robert S.
1985-01-01
The resolution of continuous flow electrophoresis systems is generally measured by the spread of the sample bands in the direction of the electrophoretic migration. This paper evaluates the cross section of the sample bands in the plane perpendicular to the flow and shows that the spread in the direction perpendicular to the migration increased significantly with the applied electric field. Concentrated samples of monodisperse latex particles and vinyltoluene T-butylstyrene particles in sample buffers of different electrical conductivities were used to map the shape of the sample bands relative to the zero electric field case. As the electric field was applied, the sample band spread from an initial diameter of only one-third the chamber thickness until it approached the chamber walls where electroosmosis significantly reduced the resolution of separation. It can be shown, however, that it is possible to minimize these distortions by careful sample preparation and experiment design.
Geophysical exploration with audio frequency magnetic fields
NASA Astrophysics Data System (ADS)
Labson, V. F.
1985-12-01
Experience with the Audio Frequency Magnetic (AFMAG) method has demonstrated that an electromagnetic exploration system using the Earth's natural audiofrequency magnetic fields as an energy source, is capable of mapping subsurface electrical structure in the upper kilometer of the Earth's crust. The limitations are resolved by adapting the tensor analysis and remote reference noise bias removal techniques from the geomagnetic induction and magnetotelluric methods to the computation of the tippers. After a through spectral study of the natural magnetic fields, lightweight magnetic field sensors, capable of measuring the magnetic field throughout the year were designed. A digital acquisition and processing sytem, with the ability to provide audiofrequency tipper results in the field, was then built to complete the apparatus. The new instrumetnation was used in a study of the Mariposa, California site previously mapped with AFMAG. The usefulness of natural magnetic field data in mapping an electrical conductive body was again demonstrated. Several field examples are used to demonstrate that the proposed procedure yields reasonable results.
NASA Astrophysics Data System (ADS)
Kessouri, P.; Buvat, S.; Tabbagh, A.
2012-12-01
Both electrical conductivity and dielectric permittivity of soil are influenced by its water content. Dielectric permittivity is usually measured in the high frequency range, using GPR or TDR, where the sensitivity to water content is high. However, its evaluation is limited by a low investigation depth, especially for clay rich soils. Electrical conductivity is closely related not only to soil water content, but also to clay content and soil structure. A simultaneous estimation of these electrical parameters can allow the mapping of soil water content variations for an investigation depth close to 1m. In order to estimate simultaneously both soil electrical conductivity and dielectric permittivity, an electromagnetic device working in the medium frequency range (between 100 kHz and 10 MHz) has been designed. We adopted Slingram geometry for the EM prototype: its PERP configuration (vertical transmission loop Tx and horizontal measuring loop Rx) was defined using 1D ground models. As the required investigation depth is around 1m, the coil spacing was fixed to 1.2m. This prototype works in a frequency range between 1 and 5 MHz. After calibration, we tested the response of prototype to objects with known properties. The first in situ measurements were led on experimental sites with different types of soils and different water content variations (artificially created or natural): sandy alluvium on a plot of INRA (French National Institute for Agricultural Research) in Orléans (Centre, France), a clay-loam soil on an experimental site in Estrée-Mons (Picardie, France) and fractured limestone at the vicinity of Grand (Vosges, France). In the case of the sandy alluvium, the values of dielectric permittivity measured are close to those of HF permittivity and allow the use of existing theoretical models to determine the soil water content. For soils containing higher amount of clay, the coupled information brought by the electrical conductivity and the dielectric permittivity is used. Variations of water content detected by the EM prototype are confirmed by additional DC electrical profiling and direct mass water content measurements along depth. For the clay-loam soil, containing more than 20% of clay, the relative dielectric permittivity values, ranging from 63 to 138, are much higher than those expected in the high frequency range (above 20 MHz, the highest measured permittivity is equal to 81 for water). In the medium frequency range, those values are very likely due to interfacial polarization. This effect, also known as Maxwell-Wagner polarization, should increase with the soil clay content. The first measuring trial is coherent with the gravimetric water content as well as DC electrical profiling measurements. For a clay rich soil, the EM prototype is able to detect water content variations for an investigation depth close to 1m with both electrical conductivity and dielectric permittivity in the medium frequency range. Other field experiments are scheduled to confirm these results on other types of soils.
Singha, Kamini; Gorelick, Steven M.
2005-01-01
Cross-well electrical resistivity tomography (ERT) was used to monitor the migration of a saline tracer in a two-well pumping-injection experiment conducted at the Massachusetts Military Reservation in Cape Cod, Massachusetts. After injecting 2200 mg/L of sodium chloride for 9 hours, ERT data sets were collected from four wells every 6 hours for 20 days. More than 180,000 resistance measurements were collected during the tracer test. Each ERT data set was inverted to produce a sequence of 3-D snapshot maps that track the plume. In addition to the ERT experiment a pumping test and an infiltration test were conducted to estimate horizontal and vertical hydraulic conductivity values. Using modified moment analysis of the electrical conductivity tomograms, the mass, center of mass, and spatial variance of the imaged tracer plume were estimated. Although the tomograms provide valuable insights into field-scale tracer migration behavior and aquifer heterogeneity, standard tomographic inversion and application of Archie's law to convert electrical conductivities to solute concentration results in underestimation of tracer mass. Such underestimation is attributed to (1) reduced measurement sensitivity to electrical conductivity values with distance from the electrodes and (2) spatial smoothing (regularization) from tomographic inversion. The center of mass estimated from the ERT inversions coincided with that given by migration of the tracer plume using 3-D advective-dispersion simulation. The 3-D plumes seen using ERT exhibit greater apparent dispersion than the simulated plumes and greater temporal spreading than observed in field data of concentration breakthrough at the pumping well.
NASA Astrophysics Data System (ADS)
Divett, T.; Ingham, M.; Beggan, C. D.; Richardson, G. S.; Rodger, C. J.; Thomson, A. W. P.; Dalzell, M.
2017-10-01
Transformers in New Zealand's South Island electrical transmission network have been impacted by geomagnetically induced currents (GIC) during geomagnetic storms. We explore the impact of GIC on this network by developing a thin-sheet conductance (TSC) model for the region, a geoelectric field model, and a GIC network model. (The TSC is composed of a thin-sheet conductance map with underlying layered resistivity structure.) Using modeling approaches that have been successfully used in the United Kingdom and Ireland, we applied a thin-sheet model to calculate the electric field as a function of magnetic field and ground conductance. We developed a TSC model based on magnetotelluric surveys, geology, and bathymetry, modified to account for offshore sediments. Using this representation, the thin sheet model gave good agreement with measured impedance vectors. Driven by a spatially uniform magnetic field variation, the thin-sheet model results in electric fields dominated by the ocean-land boundary with effects due to the deep ocean and steep terrain. There is a strong tendency for the electric field to align northwest-southeast, irrespective of the direction of the magnetic field. Applying this electric field to a GIC network model, we show that modeled GIC are dominated by northwest-southeast transmission lines rather than east-west lines usually assumed to dominate.
The use of soil electrical conductivity to investigate soil homogeneity in Story County, Iowa, USA
USDA-ARS?s Scientific Manuscript database
Precision agriculture, environmental applications, and land use planning needs have led to calls for more detailed soil maps. A remote sensing technique that can differentiate soils with a high degree of accuracy would be ideal for soil survey purposes. One technique that has shown promise in Iowa i...
Ultrasoft Electronics for Hyperelastic Strain, Pressure, and Direct Curvature Sensing
NASA Astrophysics Data System (ADS)
Majidi, Carmel; Kramer, Rebecca; Wood, Robert
2011-03-01
Progress in soft robotics, wearable computing, and programmable matter demands a new class of ultrasoft electronics for tactile control, contact detection, and deformation mapping. This next generation of sensors will remain electrically functional under extreme deformation without influencing the natural mechanics of the host system. Ultrasoft strain and pressure sensing has previously been demonstrated with elastomer sheets (eg. PDMS, silicone rubber) embedded with microchannels of conductive liquid (mercury, eGaIn). Building on these efforts, we introduce a novel method for direct curvature sensing that registers the location and intensity of surface curvature. An elastomer sheet is embedded with micropatterned cavities and microchannels of conductive liquid. Bending the elastomer or placing it on a curved surface leads to a change in channel cross-section and a corresponding change in its electrical resistance. In contrast to conventional methods of curvature sensing, this approach does not depend on semi-rigid components or differential strain measurement. Direct curvature sensing completes the portfolio of sensing elements required to completely map hyperelastic deformation for future soft robotics and computing. NSF MRSEC DMR-0820484.
Calculation and Study of Graphene Conductivity Based on Terahertz Spectroscopy
NASA Astrophysics Data System (ADS)
Feng, Xiaodong; Hu, Min; Zhou, Jun; Liu, Shenggang
2017-07-01
Based on terahertz time-domain spectroscopy system and two-dimensional scanning control system, terahertz transmission and reflection intensity mapping images on a graphene film are obtained, respectively. Then, graphene conductivity mapping images in the frequency range 0.5 to 2.5 THz are acquired according to the calculation formula. The conductivity of graphene at some typical regions is fitted by Drude-Smith formula to quantitatively compare the transmission and reflection measurements. The results show that terahertz reflection spectroscopy has a higher signal-to-noise ratio with less interference of impurities on the back of substrates. The effect of a red laser excitation on the graphene conductivity by terahertz time-domain transmission spectroscopy is also studied. The results show that the graphene conductivity in the excitation region is enhanced while that in the adjacent area is weakened which indicates carriers transport in graphene under laser excitation. This paper can make great contribution to the study on graphene electrical and optical properties in the terahertz regime and help design graphene terahertz devices.
NASA Technical Reports Server (NTRS)
Nemzek, R. J.; Winckler, J. R.
1991-01-01
Electron detectors on the Echo 7 active sounding rocket experiment measured 'conjugate echoes' resulting from artificial electron beam injections. Analysis of the drift motion of the electrons after a complete bounce leads to measurements of the magnetospheric convection electric field mapped to ionospheric altitudes. The magnetospheric field was highly variable, changing by tens of mV/m on time scales of as little as hundreds of millisec. While the smallest-scale magnetospheric field irregularities were mapped out by ionospheric conductivity, larger-scale features were enhanced by up to 50 mV/m in the ionosphere. The mismatch between magnetospheric and ionspheric convection fields indicates a violation of the equipotential field line condition. The parallel fields occurred in regions roughly 10 km across and probably supported a total potential drop of 10-100 V.
NREL Triples Previous Estimates of U.S. Wind Power Potential (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The National Renewable Energy Laboratory (NREL) recently released new estimates of the U.S. potential for wind-generated electricity, using advanced wind mapping and validation techniques to triple previous estimates of the size of the nation's wind resources. The new study, conducted by NREL and AWS TruePower, finds that the contiguous 48 states have the potential to generate up to 37 million gigawatt-hours annually. In comparison, the total U.S. electricity generation from all sources was roughly 4 million gigawatt-hours in 2009.
NASA Astrophysics Data System (ADS)
Nugraheni, L. R.; Niasari, S. W.; Nukman, M.
2018-04-01
Geothermal manifestations located in the Tiris, Mount Lamongan, Probolinggo, consist of warm springs. These warm springs have temperature from 35° until 45°C. Tiris fault has NW-SE dominant orientation, similar to some lineaments of maars and cinder cones around Mount Lamongan. The Mount Lamongan geothermal area is situated between Bromo and Argapura volcanoes. This study aims to map the geo-electrical and geological strikes in the study area. Phase tensor analysis has been performed in this study to determine geo-electrical strike of study area. Geological field campaign has been conducted to measure geological strikes. Then, orientation of geo-electrical strike was compared to geological strike. The result presents that the regional geological strike of study area is NW-SE while the orientation of geo-electrical strike is N-S.
Mapping the electrical properties of large-area graphene
NASA Astrophysics Data System (ADS)
Bøggild, Peter; Mackenzie, David M. A.; Whelan, Patrick R.; Petersen, Dirch H.; Due Buron, Jonas; Zurutuza, Amaia; Gallop, John; Hao, Ling; Jepsen, Peter U.
2017-12-01
The significant progress in terms of fabricating large-area graphene films for transparent electrodes, barriers, electronics, telecommunication and other applications has not yet been accompanied by efficient methods for characterizing the electrical properties of large-area graphene. While in the early prototyping as well as research and development phases, electrical test devices created by conventional lithography have provided adequate insights, this approach is becoming increasingly problematic due to complications such as irreversible damage to the original graphene film, contamination, and a high measurement effort per device. In this topical review, we provide a comprehensive overview of the issues that need to be addressed by any large-area characterisation method for electrical key performance indicators, with emphasis on electrical uniformity and on how this can be used to provide a more accurate analysis of the graphene film. We review and compare three different, but complementary approaches that rely either on fixed contacts (dry laser lithography), movable contacts (micro four point probes) and non-contact (terahertz time-domain spectroscopy) between the probe and the graphene film, all of which have been optimized for maximal throughput and accuracy, and minimal damage to the graphene film. Of these three, the main emphasis is on THz time-domain spectroscopy, which is non-destructive, highly accurate and allows both conductivity, carrier density and carrier mobility to be mapped across arbitrarily large areas at rates that by far exceed any other known method. We also detail how the THz conductivity spectra give insights on the scattering mechanisms, and through that, the microstructure of graphene films subject to different growth and transfer processes. The perspectives for upscaling to realistic production environments are discussed.
Coupled charge migration and fluid mixing in reactive fronts
NASA Astrophysics Data System (ADS)
Ghosh, Uddipta; Bandopadhyay, Aditya; Jougnot, Damien; Le Borgne, Tanguy; Meheust, Yves
2017-04-01
Quantifying fluid mixing in subsurface environments and its consequence on biogeochemical reactions is of paramount importance owing to its role in processes such as contaminant migration, aquifer remediation, CO2 sequestration or clogging processes, to name a few (Dentz et al. 2011). The presence of strong velocity gradients in porous media is expected to lead to enhanced diffusive mixing and augmented reaction rates (Le Borgne et al. 2014). Accurate in situ imaging of subsurface reactive solute transport and mixing remains to date a challenging proposition: the opacity of the medium prevents optical imaging and field methods based on tracer tests do not provide spatial information. Recently developed geophysical methods based on the temporal monitoring of electrical conductivity and polarization have shown promises for mapping and monitoring biogeochemical reactions in the subsurface although it remains challenging to decipher the multiple sources of electrical signals (e.g. Knight et al. 2010). In this work, we explore the coupling between fluid mixing, reaction and charge migration in porous media to evaluate the potential of mapping reaction rates from electrical measurements. To this end, we develop a new theoretical framework based on a lamellar mixing model (Le Borgne et al. 2013) to quantify changes in electrical mobility induced by chemical reactions across mixing fronts. Electrical conductivity and induced polarization are strongly dependent on the concentration of ionic species, which in turn depend on the local reaction rates. Hence, our results suggest that variation in real and complex electrical conductivity may be quantitatively related to the mixing and reaction dynamics. Thus, the presented theory provides a novel upscaling framework for quantifying the coupling between mixing, reaction and charge migration in heterogeneous porous media flows. References: Dentz. et al., Mixing, spreading and reaction in heterogeneous media: A brief review J. Contam. Hydrol. 120-121, 1 (2011). Le Borgne et al. Impact of Fluid Deformation on Mixing-Induced Chemical Reactions in heterogeneous Flows, Geophys. Res. Lett. 41, 7898 (2014). Knight, et al., Geophysics at the interface: Response of geophysical properties to solid-fluid, fluid-fluid, and solid-solid interfaces. Rev. Geophys. 48, (2010). Le Borgne et al. (2013) Stretching, coalescence and mixing in porous media, Phys. Rev. Lett., 110, 204501
Cho, Duckhyung; Yang, Myungjae; Shin, Narae; Hong, Seunghun
2018-06-07
We report a direct mapping and analysis of electrical noise in azobenzene-terminated molecular monolayers, revealing reversible photoswitching of the molecular-resistance fluctuations in the layers. In this work, a conducting atomic force microscope combined with a homemade spectrum analyzer was used to image electrical current and noise at patterned self-assembled monolayers (SAMs) of azobenzene-terminated molecular wires on a gold substrate. We analyzed the current and noise imaging data to obtain maps of molecular resistances and amount of mean-square fluctuations in the resistances of the regions of trans-azobenzene and a cis/trans-azobenzene mixture. We revealed that the fluctuations in the molecular resistances in the SAMs were enhanced after the trans-to-cis isomerization, while the resistances were reduced. This result could be attributed to enhanced disorders in the molecular arrangements in the cis-SAMs. Furthermore, we observed that the changes in the resistance fluctuations were reversible with respect to repeated trans-to-cis and cis-to-trans isomerizations, indicating that the effects originated from reversible photoswitching of the molecular structures rather than irreversible damages of the molecules. These findings provide valuable insights into the electrical fluctuations in photoswitchable molecules, which could be utilized in further studies on molecular switches and molecular electronics in general. © 2018 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Wilt, M.; Nieuwenhuis, G.; Sun, S.; MacLennan, K.
2016-12-01
Electrical methods offer an attractive option to map induced fractures because the recovered anomaly is related to the electrical conductivity of the injected fluid in the open (propped) section of the fracture operation. This is complementary to existing micro-seismic technology, which maps the mechanical effects of the fracturing. In this paper we describe a 2014 field case where a combination of a borehole casing electrode and a surface receiver array was used to monitor hydrofracture fracture creation and growth in an unconventional oil field project. The fracture treatment well was 1 km long and drilled to a depth of 2.2 km. Twelve fracture events were induced in 30 m intervals (stages) in the 1 km well. Within each stage 5 events (clusters) were initiated at 30 m intervals. Several of the fracture stages used a high salinity brine, instead of fresh water, to enhance the electrical signal. The electrical experiment deployed a downhole source in a well parallel to the treatment well and 100 m away. The source consisted of an electrode attached to a wireline cable into which a 0.25 Hz square wave was injected. A 60-station electrical field receiver array was placed above the fracture and extending for several km. Receivers were oriented to measure electrical field parallel with the presumed fracture direction and those perpendicular to it. Active source electrical data were collected continuously during 7 frac stages, 3 of which used brine as the frac fluid over a period of several days. Although the site was quite noisy and the electrical anomaly small we managed to extract a clear frac anomaly using field separation, extensive signal averaging and background noise rejection techniques. Preliminary 3D modeling, where we account for current distribution of the casing electrode and explicitly model multiple thin conductive sheets to represent fracture stages, produces a model consistent with the field measurements and also highlights the sensitivity of the measurements to the high salinity frac stages. Data inversion is presently ongoing.
NASA Technical Reports Server (NTRS)
Kuebert, E. J.
1977-01-01
A Laser Altimeter and Mapping Camera System was included in the Apollo Lunar Orbital Experiment Missions. The backup system, never used in the Apollo Program, is available for use in the Lidar Test Experiments on the STS Orbital Flight Tests 2 and 4. Studies were performed to assess the problem associated with installation and operation of the Mapping Camera System in the STS. They were conducted on the photographic capabilities of the Mapping Camera System, its mechanical and electrical interface with the STS, documentation, operation and survivability in the expected environments, ground support equipment, test and field support.
NASA Astrophysics Data System (ADS)
Oni, T. E.; Omosuyi, G. O.; Akinlalu, A. A.
2017-12-01
Groundwater vulnerability assessment was carried out at Igbara Oke Southwestern Nigeria, with a view to classify the area into vulnerability zones, by applying the electrical resistivity method, using Schlumberger electrode arrays with maximum electrode separation (AB/2) of 65 m in (41) different locations for data acquisition. Geoelectric parameters (layer resistivity and thickness) were determined from the interpreted data. The study area comprises four geoelectric layers (topsoil, lateritic layer, weathered/fractured layer and fresh basement). The geoelectric parameters of the overlying layers across the area were used to assess the vulnerability of the underlying aquifers to near-surface contaminants with the aid of vulnerability maps generated. Three models were compared by maps using geo-electrically derived models; longitudinal conductance, GOD (groundwater occurrence, overlying lithology and depth to the aquifer) and GLSI (geoelectric layer susceptibility indexing). The total longitudinal conductance map shows the north central part of the study area as a weakly protected (0.1-0.19) area, while the northern and southern parts have poor protective capacity (<0.1); this is in agreement with the GOD method which shows the northern part of the study area as less vulnerable (0-0.1) while the southern part has low/moderate (0.1-0.3) vulnerability to contamination. The longitudinal conductance exaggerates the degree of susceptibility to contamination than the GOD and GLSI models. From the models, vulnerability to contamination can be considered higher at the southern part than the northern part and therefore, sources of contamination like septic tank, refuse dump should be cited far from groundwater development area.
Imaging quantum transport using scanning gate microscopy
NASA Astrophysics Data System (ADS)
Hackens, Benoit
2014-03-01
Quantum transport in nanodevices is usually probed thanks to measurements of the electrical resistance or conductance, which lack the spatial resolution necessary to probe electron behaviour inside the devices. In this talk, we will show that scanning gate microscopy (SGM) yields real-space images of quantum transport phenomena inside archetypal mesoscopic devices such as quantum point contacts and quantum rings. We will first discuss the SGM technique, which is based on mapping the electrical conductance of a device as an electrically-biased sharp metallic tip scans in its vicinity. With SGM, we demonstrated low temperature imaging of the electron probability density and interferences in embedded mesoscopic quantum rings [B. Hackens et al., Nat. Phys. 2, 826 (2006)]. At high magnetic field, thanks to the SGM conductance maps, one can decrypt complex transport phenomena such as tunneling between quantum Hall edge state, either direct or through localized states [B. Hackens et al., Nat. Comm. 1, 39 (2010)]. Moreover, the technique also allows to perform local spectroscopy of electron transport through selected localized states [F. Martins et al., New J. of Phys. 15, 013049 (2013); F. Martins et al., Sci. Rep. 3, 1416 (2013)]. Overall, these examples show that scanning gate microscopy is a powerful tool for imaging charge carrier behavior inside devices fabricated from a variety of materials, and opens the way towards a more intimate manipulation of charge and quasiparticle transport. This work was performed in collaboration with F. Martins, S. Faniel, B. Brun, M. Pala, X. Wallart, L. Desplanque, B. Rosenow, T. Ouisse, H. Sellier, S. Huant and V. Bayot.
A new instrument designedfor frequency-domain sounding in the depth range 0-10 m uses short coil spacings of 5 m or less and a frequency range of 300 kHz to 30 MHz. In this frequency range, both conduction currents (controlled by electrical conductibity) and displacement currents...
NASA Astrophysics Data System (ADS)
Harchi, Mongi; Gabtni, Hakim; El Mejri, Hatem; Dassi, Lassaad; Mammou, Abdallah Ben
2016-08-01
This work presents new results from gravity data analyses and interpretation within the Om Ali-Thelepte (OAT) basin, central Tunisia. It focuses on the hydrogeological implication, using several qualitative and quantitative techniques such as horizontal gradient, upward continuation and Euler deconvolution on boreholes log data, seismic reflection data and electrical conductivity measurements. The structures highlighted using the filtering techniques suggest that the Miocene aquifer of OAT basin is cut by four major fault systems that trend E-W, NE-SW, NW-SE and NNE-SSW. In addition, a NW-SE gravity model established shows the geometry of the Miocene sandstone reservoir and the Upper Cretaceous limestone rocks. Moreover, the superimposition of the electrical conductivity and the structural maps indicates that the low conductivity values of sampled water from boreholes are located around main faults.
Cardiac Conduction through Engineered Tissue
Choi, Yeong-Hoon; Stamm, Christof; Hammer, Peter E.; Kwaku, Kevin F.; Marler, Jennifer J.; Friehs, Ingeborg; Jones, Mara; Rader, Christine M.; Roy, Nathalie; Eddy, Mau-Thek; Triedman, John K.; Walsh, Edward P.; McGowan, Francis X.; del Nido, Pedro J.; Cowan, Douglas B.
2006-01-01
In children, interruption of cardiac atrioventricular (AV) electrical conduction can result from congenital defects, surgical interventions, and maternal autoimmune diseases during pregnancy. Complete AV conduction block is typically treated by implanting an electronic pacemaker device, although long-term pacing therapy in pediatric patients has significant complications. As a first step toward developing a substitute treatment, we implanted engineered tissue constructs in rat hearts to create an alternative AV conduction pathway. We found that skeletal muscle-derived cells in the constructs exhibited sustained electrical coupling through persistent expression and function of gap junction proteins. Using fluorescence in situ hybridization and polymerase chain reaction analyses, myogenic cells in the constructs were shown to survive in the AV groove of implanted hearts for the duration of the animal’s natural life. Perfusion of hearts with fluorescently labeled lectin demonstrated that implanted tissues became vascularized and immunostaining verified the presence of proteins important in electromechanical integration of myogenic cells with surrounding recipient rat cardiomyocytes. Finally, using optical mapping and electrophysiological analyses, we provide evidence of permanent AV conduction through the implant in one-third of recipient animals. Our experiments provide a proof-of-principle that engineered tissue constructs can function as an electrical conduit and, ultimately, may offer a substitute treatment to conventional pacing therapy. PMID:16816362
Modeling conduction in host-graft interactions between stem cell grafts and cardiomyocytes.
Chen, Michael Q; Yu, Jin; Whittington, R Hollis; Wu, Joseph C; Kovacs, Gregory T A; Giovangrandi, Laurent
2009-01-01
Cell therapy has recently made great strides towards aiding heart failure. However, while transplanted cells may electromechanically integrate into host tissue, there may not be a uniform propagation of a depolarization wave between the heterogeneous tissue boundaries. A model using microelectrode array technology that maps the electrical interactions between host and graft tissues in co-culture is presented and sheds light on the effects of having a mismatch of conduction properties at the boundary. Skeletal myoblasts co-cultured with cardiomyocytes demonstrated that conduction velocity significantly decreases at the boundary despite electromechanical coupling. In an attempt to improve the uniformity of conduction with host cells, differentiating human embryonic stem cells (hESC) were used in co-culture. Over the course of four to seven days, synchronous electrical activity was observed at the hESC boundary, implying differentiation and integration. Activity did not extend far past the boundary, and conduction velocity was significantly greater than that of the host tissue, implying the need for other external measures to properly match the conduction properties between host and graft tissue.
Electric fields yield chaos in microflows
Posner, Jonathan D.; Pérez, Carlos L.; Santiago, Juan G.
2012-01-01
We present an investigation of chaotic dynamics of a low Reynolds number electrokinetic flow. Electrokinetic flows arise due to couplings of electric fields and electric double layers. In these flows, applied (steady) electric fields can couple with ionic conductivity gradients outside electric double layers to produce flow instabilities. The threshold of these instabilities is controlled by an electric Rayleigh number, Rae. As Rae increases monotonically, we show here flow dynamics can transition from steady state to a time-dependent periodic state and then to an aperiodic, chaotic state. Interestingly, further monotonic increase of Rae shows a transition back to a well-ordered state, followed by a second transition to a chaotic state. Temporal power spectra and time-delay phase maps of low dimensional attractors graphically depict the sequence between periodic and chaotic states. To our knowledge, this is a unique report of a low Reynolds number flow with such a sequence of periodic-to-aperiodic transitions. Also unique is a report of strange attractors triggered and sustained through electric fluid body forces. PMID:22908251
Detecting Underground Mine Voids Using Complex Geophysical Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaminski, V. F.; Harbert, W. P.; Hammack, R. W.
2006-12-01
In July 2006, the National Energy Technology Laboratory in collaboration with Department of Geology and Planetary Science, University of Pittsburgh conducted complex ground geophysical surveys of an area known to be underlain by shallow coal mines. Geophysical methods including electromagnetic induction, DC resistivity and seismic reflection were conducted. The purpose of these surveys was to: 1) verify underground mine voids based on a century-old mine map that showed subsurface mine workings georeferenced to match with present location of geophysical test-site located on the territory of Bruceton research center in Pittsburgh, PA, 2) deliniate mine workings that may be potentially filledmore » with electrically conductive water filtrate emerging from adjacent groundwater collectors and 3) establish an equipment calibration site for geophysical instruments. Data from electromagnetic and resistivity surveys were further processed and inverted using EM1DFM, EMIGMA or Earthimager 2D capablilities in order to generate conductivity/depth images. Anomaly maps were generated, that revealed the locations of potential mine openings.« less
Electricity pricing policy: A neo-institutional, developmental and cross-national policy design map
NASA Astrophysics Data System (ADS)
Koundinya, Sridarshan Umesh
This dissertation explores the role of ideas and ideology in the mental policy design maps of regulators in the US and in India. The research approach is to describe the regulatory design process in the history of the US electric industry from a neo-institutional and developmental perspective. And then to use the insights of such a study to suggest policy options to a sample of Indian experts. A regulatory process model explores the interactions among normative values, regulatory instruments and historical phases in policy design. A spectrum of seven regulatory instruments--subsidized rates, average cost pricing, marginal cost pricing, time-of-use pricing, ramsey pricing, incentive regulation and spot pricing is examined. A neo-institutional perspective characterizes the process of institutionalizing these regulatory instruments as a design process that infuses them with values beyond mere technical requirements. The process model includes normative values such as efficiency, fairness, free choice and political feasibility. These values arise from an analytical classification of various market metaphors debated in the history of economic thought. The theory of development and co-evolution applied to the history of electricity regulation yields a typology of evolutionary phases in the US. The typology describes hierarchically emergent relationships between supply and demand and among the normative values. The theory hypothesizes technologically contingent relationships between pricing policies and normative values in the historical phases of dependence (or rural), independence (or urban) and interdependence (or informational). The contents of this model are represented as related elements in a policy design map that simplifies the process of designing regulatory instruments in the US. This neo-institutional, developmental policy design map was used to design a survey instrument. The survey was conducted among electricity experts in India to test the hypothesized inter-relationships among various elements at different levels of the policy design map in a cross-national context. The study adds value with a comprehensive design map that helps to organize and give coherence to the policy prescriptions made by Indian experts as they converge on one institutional model. Thus the dissertation contributes to the transfer of knowledge about regulatory practice from the US to India.
Quantifying Power Grid Risk from Geomagnetic Storms
NASA Astrophysics Data System (ADS)
Homeier, N.; Wei, L. H.; Gannon, J. L.
2012-12-01
We are creating a statistical model of the geophysical environment that can be used to quantify the geomagnetic storm hazard to power grid infrastructure. Our model is developed using a database of surface electric fields for the continental United States during a set of historical geomagnetic storms. These electric fields are derived from the SUPERMAG compilation of worldwide magnetometer data and surface impedances from the United States Geological Survey. This electric field data can be combined with a power grid model to determine GICs per node and reactive MVARs at each minute during a storm. Using publicly available substation locations, we derive relative risk maps by location by combining magnetic latitude and ground conductivity. We also estimate the surface electric fields during the August 1972 geomagnetic storm that caused a telephone cable outage across the middle of the United States. This event produced the largest surface electric fields in the continental U.S. in at least the past 40 years.
High Resolution Global Electrical Conductivity Variations in the Earth's Mantle
NASA Astrophysics Data System (ADS)
Kelbert, A.; Sun, J.; Egbert, G. D.
2013-12-01
Electrical conductivity of the Earth's mantle is a valuable constraint on the water content and melting processes. In Kelbert et al. (2009), we obtained the first global inverse model of electrical conductivity in the mantle capable of providing constraints on the lateral variations in mantle water content. However, in doing so we had to compromise on the problem complexity by using the historically very primitive ionospheric and magnetospheric source assumptions. In particular, possible model contamination by the auroral current systems had greatly restricted our use of available data. We have now addressed this problem by inverting for the external sources along with the electrical conductivity variations. In this study, we still focus primarily on long period data that are dominated by quasi-zonal source fields. The improved understanding of the ionospheric sources allows us to invert the magnetic fields directly, without a correction for the source and/or the use of transfer functions. It allows us to extend the period range of available data to 1.2 days - 102 days, achieving better sensitivity to the upper mantle and transition zone structures. Finally, once the source effects in the data are accounted for, a much larger subset of observatories may be used in the electrical conductivity inversion. Here, we use full magnetic fields at 207 geomagnetic observatories, which include mid-latitude, equatorial and high latitude data. Observatory hourly means from the years 1958-2010 are employed. The improved quality and spatial distribution of the data set, as well as the high resolution modeling and inversion using degree and order 40 spherical harmonics mapped to a 2x2 degree lateral grid, all contribute to the much improved resolution of our models, representing a conceptual step forward in global electromagnetic sounding. We present a fully three-dimensional, global electrical conductivity model of the Earth's mantle as inferred from ground geomagnetic observatory data, and use additional constraints to interpret these results in terms of mantle processes and compositional variations.
Angeli, T R; Du, P; Paskaranandavadivel, N; Sathar, S; Hall, A; Asirvatham, S J; Farrugia, G; Windsor, J A; Cheng, L K; O'Grady, G
2017-05-01
Gastric motility is coordinated by bioelectrical slow waves, and gastric dysrhythmias are reported in motility disorders. High-resolution (HR) mapping has advanced the accurate assessment of gastric dysrhythmias, offering promise as a diagnostic technique. However, HR mapping has been restricted to invasive surgical serosal access. This study investigates the feasibility of HR mapping from the gastric mucosal surface. Experiments were conducted in vivo in 14 weaner pigs. Reference serosal recordings were performed with flexible-printed-circuit (FPC) arrays (128-192 electrodes). Mucosal recordings were performed by two methods: (i) FPC array aligned directly opposite the serosal array, and (ii) cardiac mapping catheter modified for gastric mucosal recordings. Slow-wave propagation and morphology characteristics were quantified and compared between simultaneous serosal and mucosal recordings. Slow-wave activity was consistently recorded from the mucosal surface from both electrode arrays. Mucosally recorded slow-wave propagation was consistent with reference serosal activation pattern, frequency (P≥.3), and velocity (P≥.4). However, mucosally recorded slow-wave morphology exhibited reduced amplitude (65-72% reduced, P<.001) and wider downstroke width (18-31% wider, P≤.02), compared to serosal data. Dysrhythmias were successfully mapped and classified from the mucosal surface, accorded with serosal data, and were consistent with known dysrhythmic mechanisms in the porcine model. High-resolution gastric electrical mapping was achieved from the mucosal surface, and demonstrated consistent propagation characteristics with serosal data. However, mucosal signal morphology was attenuated, demonstrating necessity for optimized electrode designs and analytical algorithms. This study demonstrates feasibility of endoscopic HR mapping, providing a foundation for advancement of minimally invasive spatiotemporal gastric mapping as a clinical and scientific tool. © 2016 John Wiley & Sons Ltd.
Controlled Source Electromagnetic Monitoring of Hydraulic Fracturing: Wellbore and Fluid Effects
NASA Astrophysics Data System (ADS)
Couchman, M. J.; Everett, M. E.
2017-12-01
As unconventional resources become increasingly important, we must tackle the issue of real-time monitoring of the efficiency of unconventional hydrocarbon extraction. Controlled Source Electromagnetics (CSEM) have been used primarily as a marine-based technique to monitor conventional oil bearing reservoirs with a strong resurgence the new millennium. Many of these studies revolving around detecting a thin resistive layer such as a reservoir at 1m - 3km depth. In these cases, the presence of the resistive layer is characterized by a jump in electric field amplitude recorded at the boundary between the layer and the host sediments. The lessons learned from these studies can be applied to terrestrial unconventional settings with appropriate modifications. The work shown here is a means develop methods which enable more reliable terrestrial CSEM monitoring of the flow of injected fluids associated with hydraulic fracturing of unconventional reservoirs and to detect subsurface fluids based on their CSEM signature and in turn, to infer the subsurface flow of electrically conductive injected fluids. The predictive model validated for various 1-D marine, and terrestrial cases focus on the mapping of fluid flow in from a horizontal wellbore in a uniform halfspace using an in-line Horizontal Electric Dipole (HED) with electric field amplitude recorded by an array of electric field sensors. The effect of the of the vertical and horizontal wellbores are documented taking into account the conductivity, size, and thickness of each wellbore. The fracturing fluids flow and conductivity are also taken into account throughout various stages of the fracturing process. In each case, the sensitivity at a location of the surface in-line electric field to a given resistive or conductive layer, due to a source is calculated.
Measuring the acoustoelectric interaction constant using ultrasound current source density imaging
NASA Astrophysics Data System (ADS)
Li, Qian; Olafsson, Ragnar; Ingram, Pier; Wang, Zhaohui; Witte, Russell
2012-10-01
Ultrasound current source density imaging (UCSDI) exploits the acoustoelectric (AE) effect, an interaction between ultrasound pressure and electrical resistivity, to map electrical conduction in the heart. The conversion efficiency for UCSDI is determined by the AE interaction constant K, a fundamental property of all materials; K directly affects the magnitude of the detected voltage signal in UCSDI. This paper describes a technique for measuring K in biological tissue, and reports its value for the first time in cadaver hearts. A custom chamber was designed and fabricated to control the geometry for estimating K, which was measured in different ionic salt solutions and seven cadaver rabbit hearts. We found K to be strongly dependent on concentration for the divalent salt CuSO4, but not for the monovalent salt NaCl, consistent with their different chemical properties. In the rabbit heart, K was determined to be 0.041±0.012%/MPa, similar to the measurement of K in physiological saline (0.034±0.003%/MPa). This study provides a baseline estimate of K for modeling and experimental studies that involve UCSDI to map cardiac conduction and reentry currents associated with arrhythmias.
NASA Astrophysics Data System (ADS)
Baasch, Benjamin; Müller, Hendrik; von Dobeneck, Tilo; Oberle, Ferdinand K. J.
2017-05-01
The electric conductivity and magnetic susceptibility of sediments are fundamental parameters in environmental geophysics. Both can be derived from marine electromagnetic profiling, a novel, fast and non-invasive seafloor mapping technique. Here we present statistical evidence that electric conductivity and magnetic susceptibility can help to determine physical grain-size characteristics (size, sorting and mud content) of marine surficial sediments. Electromagnetic data acquired with the bottom-towed electromagnetic profiler MARUM NERIDIS III were analysed and compared with grain size data from 33 samples across the NW Iberian continental shelf. A negative correlation between mean grain size and conductivity (R=-0.79) as well as mean grain size and susceptibility (R=-0.78) was found. Simple and multiple linear regression analyses were carried out to predict mean grain size, mud content and the standard deviation of the grain-size distribution from conductivity and susceptibility. The comparison of both methods showed that multiple linear regression models predict the grain-size distribution characteristics better than the simple models. This exemplary study demonstrates that electromagnetic benthic profiling is capable to estimate mean grain size, sorting and mud content of marine surficial sediments at a very high significance level. Transfer functions can be calibrated using grains-size data from a few reference samples and extrapolated along shelf-wide survey lines. This study suggests that electromagnetic benthic profiling should play a larger role for coastal zone management, seafloor contamination and sediment provenance studies in worldwide continental shelf systems.
Local electrical properties of thermally grown oxide films formed on duplex stainless steel surfaces
NASA Astrophysics Data System (ADS)
Guo, L. Q.; Yang, B. J.; He, J. Y.; Qiao, L. J.
2018-06-01
The local electrical properties of thermally grown oxide films formed on ferrite and austenite surfaces of duplex stainless steel at different temperatures were investigated by Current sensing atomic force microscopy, X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The current maps and XPS/AES analyses show that the oxide films covering austenite and ferrite surfaces formed at different temperatures exhibit different local electrical characteristics, thickness and composition. The dependence of electrical conductivity of oxide films covering austenite and ferrite surface on the formation temperature is attributed to the film thickness and semiconducting structures, which is intrinsically related to thermodynamics and kinetics process of film grown at different temperature. This is well elucidated by corresponding semiconductor band structures of oxide films formed on austenite and ferrite phases at different temperature.
Estimation of 3-D conduction velocity vector fields from cardiac mapping data.
Barnette, A R; Bayly, P V; Zhang, S; Walcott, G P; Ideker, R E; Smith, W M
2000-08-01
A method to estimate three-dimensional (3-D) conduction velocity vector fields in cardiac tissue is presented. The speed and direction of propagation are found from polynomial "surfaces" fitted to space-time (x, y, z, t) coordinates of cardiac activity. The technique is applied to sinus rhythm and paced rhythm mapped with plunge needles at 396-466 sites in the canine myocardium. The method was validated on simulated 3-D plane and spherical waves. For simulated data, conduction velocities were estimated with an accuracy of 1%-2%. In experimental data, estimates of conduction speeds during paced rhythm were slower than those found during normal sinus rhythm. Vector directions were also found to differ between different types of beats. The technique was able to distinguish between premature ventricular contractions and sinus beats and between sinus and paced beats. The proposed approach to computing velocity vector fields provides an automated, physiological, and quantitative description of local electrical activity in 3-D tissue. This method may provide insight into abnormal conduction associated with fatal ventricular arrhythmias.
General-relativistic pulsar magnetospheric emission
NASA Astrophysics Data System (ADS)
Pétri, J.
2018-06-01
Most current pulsar emission models assume photon production and emission within the magnetosphere. Low-frequency radiation is preferentially produced in the vicinity of the polar caps, whereas the high-energy tail is shifted to regions closer but still inside the light cylinder. We conducted a systematic study of the merit of several popular radiation sites like the polar cap, the outer gap, and the slot gap. We computed sky maps emanating from each emission site according to a prescribed distribution function for the emitting particles made of an electron/positron mixture. Calculations are performed using a three-dimensional integration of the plasma emissivity in the vacuum electromagnetic field of a rotating and centred general-relativistic dipole. We compare Newtonian electromagnetic fields to their general-relativistic counterpart. In the latter case, light bending is also taken into account. As a typical example, light curves and sky maps are plotted for several power-law indices of the particle distribution function. The detailed pulse profiles strongly depend on the underlying assumption about the fluid motion subject to strong electromagnetic fields. This electromagnetic topology enforces the photon propagation direction directly, or indirectly, from aberration effects. We also discuss the implication of a net stellar electric charge on to sky maps. Taking into account, the electric field strongly affects the light curves originating close to the light cylinder, where the electric field strength becomes comparable to the magnetic field strength.
High-resolution charge carrier mobility mapping of heterogeneous organic semiconductors
NASA Astrophysics Data System (ADS)
Button, Steven W.; Mativetsky, Jeffrey M.
2017-08-01
Organic electronic device performance is contingent on charge transport across a heterogeneous landscape of structural features. Methods are therefore needed to unravel the effects of local structure on overall electrical performance. Using conductive atomic force microscopy, we construct high-resolution out-of-plane hole mobility maps from arrays of 5000 to 16 000 current-voltage curves. To demonstrate the efficacy of this non-invasive approach for quantifying and mapping local differences in electrical performance due to structural heterogeneities, we investigate two thin film test systems, one bearing a heterogeneous crystal structure [solvent vapor annealed 5,11-Bis(triethylsilylethynyl)anthradithiophene (TES-ADT)—a small molecule organic semiconductor] and one bearing a heterogeneous chemical composition [p-DTS(FBTTh2)2:PC71BM—a high-performance organic photovoltaic active layer]. TES-ADT shows nearly an order of magnitude difference in hole mobility between semicrystalline and crystalline areas, along with a distinct boundary between the two regions, while p-DTS(FBTTh2)2:PC71BM exhibits subtle local variations in hole mobility and a nanoscale domain structure with features below 10 nm in size. We also demonstrate mapping of the built-in potential, which plays a significant role in organic light emitting diode and organic solar cell operation.
Electromagnetic Measurements in an Active Oilfield Environment
NASA Astrophysics Data System (ADS)
Schramm, K. A.; Aldridge, D. F.; Bartel, L. C.; Knox, H. A.; Weiss, C. J.
2015-12-01
An important issue in oilfield development pertains to mapping and monitoring of the fracture distributions (either natural or man-made) controlling subsurface fluid flow. Although microseismic monitoring and analysis have been used for this purpose for several decades, there remain several ambiguities and uncertainties with this approach. We are investigating a novel electromagnetic (EM) technique for detecting and mapping hydraulic fractures in a petroleum reservoir by injecting an electrically conductive contrast agent into an open fracture. The fracture is subsequently illuminated by a strong EM field radiated by a large engineered antenna. Specifically, a grounded electric current source is applied directly to the steel casing of the borehole, either at/near the wellhead or at a deep downhole point. Transient multicomponent EM signals (both electric and magnetic) scattered by the conductivity contrast are then recorded by a surface receiver array. We are presently utilizing advanced 3D numerical modeling algorithms to accurately simulate fracture responses, both before and after insertion of the conductive contrast agent. Model results compare favorably with EM field data recently acquired in a Permian Basin oilfield. However, extraction of the very-low-amplitude fracture signatures from noisy data requires effective noise suppression strategies such as long stacking times, rejection of outliers, and careful treatment of natural magnetotelluric fields. Dealing with the ever-present "episodic EM noise" typical in an active oilfield environment (associated with drilling, pumping, machinery, traffic, etc.) constitutes an ongoing problem. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Costet, Alexandre; Wan, Elaine; Bunting, Ethan; Grondin, Julien; Garan, Hasan; Konofagou, Elisa
2016-01-01
Characterization and mapping of arrhythmias is currently performed through invasive insertion and manipulation of cardiac catheters. Electromechanical wave imaging (EWI) is a non-invasive ultrasound-based imaging technique, which tracks the electromechanical activation that immediately follows electrical activation. Electrical and electromechanical activations were previously found to be linearly correlated in the left ventricle, but the relationship has not yet been investigated in the three other chambers of the heart. The objective of this study was to investigate the relationship between electrical and electromechanical activations and validate EWI in all four chambers of the heart with conventional 3D electroanatomical mapping. Six (n = 6) normal adult canines were used in this study. The electrical activation sequence was mapped in all four chambers of the heart, both endocardially and epicardially using the St Jude's EnSite 3D mapping system (St. Jude Medical, Secaucus, NJ). EWI acquisitions were performed in all four chambers during normal sinus rhythm, and during pacing in the left ventricle. Isochrones of the electromechanical activation were generated from standard echocardiographic imaging views. Electrical and electromechanical activation maps were co-registered and compared, and electrical and electromechanical activation times were plotted against each other and linear regression was performed for each pair of activation maps. Electromechanical and electrical activations were found to be directly correlated with slopes of the correlation ranging from 0.77 to 1.83, electromechanical delays between 9 and 58 ms and R2 values from 0.71 to 0.92. The linear correlation between electrical and electromechanical activations and the agreement between the activation maps indicate that the electromechanical activation follows the pattern of propagation of the electrical activation. This suggests that EWI may be used as a novel non-invasive method to accurately characterize and localize sources of arrhythmias. PMID:27782003
Costet, Alexandre; Wan, Elaine; Bunting, Ethan; Grondin, Julien; Garan, Hasan; Konofagou, Elisa
2016-11-21
Characterization and mapping of arrhythmias is currently performed through invasive insertion and manipulation of cardiac catheters. Electromechanical wave imaging (EWI) is a non-invasive ultrasound-based imaging technique, which tracks the electromechanical activation that immediately follows electrical activation. Electrical and electromechanical activations were previously found to be linearly correlated in the left ventricle, but the relationship has not yet been investigated in the three other chambers of the heart. The objective of this study was to investigate the relationship between electrical and electromechanical activations and validate EWI in all four chambers of the heart with conventional 3D electroanatomical mapping. Six (n = 6) normal adult canines were used in this study. The electrical activation sequence was mapped in all four chambers of the heart, both endocardially and epicardially using the St Jude's EnSite 3D mapping system (St. Jude Medical, Secaucus, NJ). EWI acquisitions were performed in all four chambers during normal sinus rhythm, and during pacing in the left ventricle. Isochrones of the electromechanical activation were generated from standard echocardiographic imaging views. Electrical and electromechanical activation maps were co-registered and compared, and electrical and electromechanical activation times were plotted against each other and linear regression was performed for each pair of activation maps. Electromechanical and electrical activations were found to be directly correlated with slopes of the correlation ranging from 0.77 to 1.83, electromechanical delays between 9 and 58 ms and R 2 values from 0.71 to 0.92. The linear correlation between electrical and electromechanical activations and the agreement between the activation maps indicate that the electromechanical activation follows the pattern of propagation of the electrical activation. This suggests that EWI may be used as a novel non-invasive method to accurately characterize and localize sources of arrhythmias.
NASA Astrophysics Data System (ADS)
Brahim Mahamat, Hamza; Coz Mathieu, Le; Abderamane, Hamit; Razack, Moumtaz
2017-04-01
Access to water in the Wadi-Fira aquifer system is a crucial problem in Eastern Chad because of (i) the complexity of the hydrogeological context (fractured basement), (ii) large extent of the study area (50,000 km2); And (iii) hard-to-access field data (only 34 water points were available to determine physicochemical and hydrodynamic parameters) often associated with high uncertainty. This groundwater resource is paramount in this arid environment, to meet the water needs of an increasingly growing population (refugees from Darfur) with a predominant pastoral activity. In order to optimally exploit the available data, correlative analyzes are carried out by integrating the spatial dimension of the data with GIS tools. A three-step strategy is thus implemented, based on: (i) point field data with physicochemical and hydrodynamic parameters; (ii) maps interpolated from point data, to increase the number of ''comparable'' parameters for each site; and (iii) interpolated maps coupled to maps from Remote Sensing results describing the area's structural geomorphology (slopes, hydrographic network, faults). The first results show marked correlations between physico-chemical and hydrodynamical parameters. According to the correlation matrix, the static level correlates significantly with the dominant cations (Ca2+ ; R = 0.52) and anions (HCO3- ; R = 0.53). Correlations are lower between electrical conductivity and transmissivity, and electrical conductivity and measured static level. A negative correlation is observed between Fluorine and transmissivity (r = -0.65), and the altered horizon (r = -0.5). The most significant discharges are obtained in fissured horizons. The correlative analysis allowsto differentiate mapped sectors according to the productivity and chemical quality regarding groundwater resource. Keywords: Hydrodynamics, Hydrochemistry, Remote Sensing, SRTM, Basement aquifer, Alteration, Lineaments, Wadi-Fira, Tchad.
NASA Astrophysics Data System (ADS)
Zogala, B.; Dubiel, R.; Zuberek, W. M.; Rusin-Zogala, M.; Steininger, M.
2009-07-01
The survey has been carried out in the area of 0.23 km2 of the former military underground fuel base. The oil derivative products were observed in excavations and the laboratory tests confirmed the occurrence of hydrocarbons (>C12) in soils. The purpose of the survey was to determine the spatial extent of the contamination. The studied area is covered by postglacial sediments: sands, gravels and till. The first water table was observed at a depth of 10-12 m. The detailed electromagnetic measurements with Geonics EM31-MK2 conductivity meter were performed in the whole area of the former fuel base. Obtained results were elaborated statistically and the map of apparent electrical conductivity to a depth of 6 m was created. Many local low conductivity anomalies were observed. The measurements with Geonics EM34-3XL were performed along one A-A' profile and 1D electromagnetic modelling along with this profile was calculated to obtain the electrical conductivity cross-section to a depth of 30 m. Two-dimensional electrical resistivity imaging measurements were carried out along the same profile and the resistivity cross-section to a depth of 20 m was performed. Both conducivity and resistivity cross-sections show anomalous zones. The zones correlate with oil contaminated zones very well.
NASA Astrophysics Data System (ADS)
Kuvshinov, A. V.
2016-12-01
Electrical conductivity is one of the characteristic physical parameters of materials making up Earth's interior which is sensitive to variations of temperature, chemical composition, water content, and partial melt. As a consequence, estimating lithosphere and upper mantle (LUM) electrical conductivity structure is a potentially strong tool for mapping their chemistry, mineralogy and physical structure thus presenting a complementary method to seismic studies that focus on LUM elastic properties. Global electromagnetic (EM) studies, which provide information on LUM electrical conductivity, have attracted increasing interest during the last decade, mainly for three reasons. A primary reason is the recent growth in the amount of EM data available, especially from low-Earth orbiting magnetic satellite missions (Oersted, CHAMP, SAC-C, and Swarm). A second reason is the great interest in the characterization of the three-dimensional properties of Earth's interior on a global scale. Finally, the interest has also resulted from the significant methodological progress made during the last years in EM data analysis, forward modelling and inversion. In this talk I will summarize advances and challenges in EM data interpretation, and present recent global and regional models of LUM conductivity derived from satellite and ground-based data. I will also discuss possible topics for future research.
Electric radiation mapping of silver/zinc oxide nanoantennas by using electron holography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, J. E.; Mendoza-Santoyo, F.; Cantu-Valle, J.
2015-01-21
In this work, we report the fabrication of self-assembled zinc oxide nanorods grown on pentagonal faces of silver nanowires by using microwaves irradiation. The nanostructures resemble a hierarchal nanoantenna and were used to study the far and near field electrical metal-semiconductor behavior from the electrical radiation pattern resulting from the phase map reconstruction obtained using off-axis electron holography. As a comparison, we use electric numerical approximations methods for a finite number of ZnO nanorods on the Ag nanowires and show that the electric radiation intensities maps match closely the experimental results obtained with electron holography. The time evolution of themore » radiation pattern as generated from the nanostructure was recorded under in-situ radio frequency signal stimulation, in which the generated electrical source amplitude and frequency were varied from 0 to 5 V and from 1 to 10 MHz, respectively. The phase maps obtained from electron holography show the change in the distribution of the electric radiation pattern for individual nanoantennas. The mapping of this electrical behavior is of the utmost importance to gain a complete understanding for the metal-semiconductor (Ag/ZnO) heterojunction that will help to show the mechanism through which these receiving/transmitting structures behave at nanoscale level.« less
NASA Astrophysics Data System (ADS)
Auken, E.; Tulaczyk, S. M.; Foley, N.; Dugan, H.; Schamper, C.; Peter, D.; Virginia, R. A.; Sørensen, K.
2015-12-01
Here, we demonstrate how high powered airborne electromagnetic resistivity is efficiently used to map 3D domains of unfrozen water below glaciers and permafrost in the cold regions of the Earth. Exploration in these parts of the world has typically been conducted using radar methods, either ground-based or from an airborne platform. Radar is an excellent method if the penetrated material has a low electrical conductivity, but in materials with higher conductivity, such as sediments with liquid water, the energy is attenuated . Such cases are efficiently explored with electromagnetic methods, which attenuate less quickly in conductive media and can therefore 'see through' conductors and return valuable information about their electrical properties. In 2011, we used a helicopter-borne, time-domain electromagnetic sensor to map resistivity in the subsurface across the McMurdo Dry Valleys (MDV). The MDV are a polar desert in coastal Antarctica where glaciers, permafrost, ice-covered lakes, and ephemeral summer streams coexist. In polar environments, this airborne electromagnetic system excels at finding subsurface liquid water, as water which remains liquid under cold conditions must be sufficiently saline, and therefore electrically conductive. In Taylor Valley, in the MDV, our data show extensive subsurface low resistivity layers beneath higher resistivity layers, which we interpret as cryoconcentrated hypersaline brines lying beneath glaciers and frozen permafrost. These brines appear to be contiguous with surface lakes, subglacial regions, and the Ross Sea, which could indicate a regional hydrogeologic system wherein solutes may be transported between surface reservoirs by ionic diffusion and subsurface flow. The system as of 2011 had a maximum exploration depth of about 300 m. However, newer and more powerful airborne systems can explore to a depth of 500 - 600 m and new ground based instruments will get to 1000 m. This is sufficient to penetrate to the base of almost all coastal Antarctic glaciers. The MDV, where conductive brines exist beneath resistive glacial ice and frozen permafrost, are especially well suited to exploration by airborne electromagnetic, but similarly suitable systems are likely to exist elsewhere in the cryosphere.
Chang, Chia Min; Chu, Cheng Hung; Tseng, Ming Lun; Chiang, Hai-Pang; Mansuripur, Masud; Tsai, Din Ping
2011-05-09
Amorphous thin films of Ge(2)Sb(2)Te(5), sputter-deposited on a thin-film gold electrode, are investigated for the purpose of understanding the local electrical conductivity of recorded marks under the influence of focused laser beam. Being amorphous, the as-deposited chalcogenide films have negligible electrical conductivity. With the aid of a focused laser beam, however, we have written on these films micron-sized crystalline marks, ablated holes surrounded by crystalline rings, and other multi-ring structures containing both amorphous and crystalline zones. Within these structures, nano-scale regions of superior local conductivity have been mapped and probed using our high-resolution, high-sensitivity conductive-tip atomic force microscope (C-AFM). Scanning electron microscopy and energy-dispersive spectrometry have also been used to clarify the origins of high conductivity in and around the recorded marks. When the Ge(2)Sb(2)Te(5) layer is sufficiently thin, and when laser crystallization/ablation is used to define long isolated crystalline stripes on the samples, we find the C-AFM-based method of extracting information from the recorded marks to be superior to other forms of microscopy for this particular class of materials. Given the tremendous potential of chalcogenides as the leading media candidates for high-density memories, local electrical characterization of marks recorded on as-deposited amorphous Ge(2)Sb(2)Te(5) films provides useful information for furthering research and development efforts in this important area of modern technology. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Rao, Sathyanarayan; Ehosioke, Solomon; Lesparre, Nolwenn; Nguyen, Frédéric; Javaux, Mathieu
2017-04-01
Electrical Resistivity Tomography (ERT) is more and more used for monitoring soil water content in a cropped soil. Yet, the impact of roots on the signal is often neglected and a topic of controversy. In several studies related to soil-root system, it has been showed that the measured root mass density statistically correlates with the electrical conductivity (EC) data obtained from ERT. In addition, some studies suggest that some roots are more electrically conductive than soil for most water content. Thus, higher EC of roots suggest that it might have a measurable impact on ERT signals. In this work, virtual rhizotrons are simulated using the software package called R-SWMS that solves water and solute transport in plant root-soil system, including root growth. The distribution of water content obtained from R-SWMS simulation is converted into EC data using pedo-physical models. The electrical properties of roots and rhizosphere are explicitly included in the EC data to form a conductivity map (CM) with a very detailed spatial resolution. Forward ERT simulations is then carried out for CM generated for various root architectures and soil conditions to study the impact of roots on ERT forward (current and voltage patterns) and inverse solutions. It is demonstrated that under typical injection schemes with lateral electrodes, root system is hardly measurable. However, it is showed that adding electrodes and constraints on the ERT inversion based on root architecture help quantifying root system mass and extent.
NASA Astrophysics Data System (ADS)
Kayode, J. S.; Adelusi, A. O.; Nawawi, M. N. M.; Bawallah, M.; Olowolafe, T. S.
2016-07-01
This paper presents a geophysical surveying for groundwater identification in a resistive crystalline basement hard rock in Isuada area, Southwestern Nigeria. Very low frequency (VLF) electromagnetic and electrical resistivity geophysical techniques combined with well log were used to characterize the concealed near surface conductive structures suitable for groundwater accumulation. Prior to this work; little was known about the groundwater potential of this area. Qualitative and semi-quantitative interpretations of the data collected along eight traverses at 20 m spacing discovered conductive zones suspected to be fractures, faults, and cracks which were further mapped using Vertical Electrical Sounding (VES) technique. Forty VES stations were utilized using Schlumberger configurations with AB/2 varying from 1 to 100 m. Four layers i.e. the top soil, the weathered layer, the partially weathered/fractured basement and the fresh basement were delineated from the interpreted resistivity curves. The weathered layers constitute the major aquifer unit in the area and are characterized by moderately low resistivity values which ranged between about 52 Ωm and 270 Ωm while the thickness varied from 1 to 35 m. The depth to the basement and the permeable nature of the weathered layer obtained from both the borehole and the hand-dug wells was used to categorize the groundwater potential of the study area into high, medium and low ratings. The groundwater potential map revealed that about 45% of the study area falls within the low groundwater potential rating while about 10% constitutes the medium groundwater potential and the remaining 45% constitutes high groundwater potential. The low resistivity, thick overburden, and fractured bedrock constitute the aquifer units and the series of basement depressions identified from the geoelectric sections as potential conductive zones appropriate for groundwater development.
NASA Astrophysics Data System (ADS)
Antunes Azevedo, Juliana; Burghardt, René; Chapman, Lee; Katzchner, Lutz; Muller, Catherine L.
2015-04-01
Climate is a key driving factor in energy consumption. However, income, vegetation, building mass structure, topography also impact on the amount of energy consumption. In a changing climate, increased temperatures are likely to lead to increased electricity consumption, affecting demand, distribution and generation. Furthermore, as the world population becomes more urbanized, increasing numbers of people will need to deal with not only increased temperatures from climate change, but also from the unintentional modification of the urban climate in the form of urban heat islands. Hence, climate and climate change needs to be taken into account for future urban planning aspects to increase the climate and energy resilience of the community and decrease the future social and economic costs. Geographical Information Systems provide a means to create urban climate maps as part of the urban planning process. Geostatistical analyses linking these maps with demographic and social data, enables a geo-statistical analysis to identify linkages to high-risk groups of the community and vulnerable areas of town and cities. Presently, the climatope classification is oriented towards thermal aspects and the ventilation quality (roughness) of the urban areas but can also be adapted to take into account other structural "environmental factors". This study aims to use the climatope approach to predict areas of potential high electricity consumption in Birmingham, UK. Several datasets were used to produce an average surface temperature map, vegetation map, land use map, topography map, building height map, built-up area roughness calculations, an average air temperature map and a domestic electricity consumption map. From the correlations obtained between the layers it is possible to average the importance of each factor and create a map for domestic electricity consumption to understand the influence of environmental aspects on spatial energy consumption. Based on these results city planners and local authorities can guide their directives and policies towards electricity consumption, demand, generation and distribution.
Golberg, Alexander; Bruinsma, Bote G.; Uygun, Basak E.; Yarmush, Martin L.
2015-01-01
Irreversible electroporation (IRE) is an emerging, minimally invasive technique for solid tumors ablation, under clinical investigation for cancer therapy. IRE affects only the cell membrane, killing cells while preserving the extracellular matrix structure. Current reports indicate tumors recurrence rate after IRE averaging 31% of the cases, of which 10% are local recurrences. The mechanisms for these recurrences are not known and new explanations for incomplete cell death are needed. Using finite elements method for electric field distribution, we show that presence of vascular structures with blood leads to the redistribution of electric fields leading to the areas with more than 60% reduced electric field strength in proximity to large blood vessels and clustered vessel structures. In an in vivo rat model of liver IRE ablation, we show that cells located in the proximity of larger vessel structures and in proximity of clustered vessel structures appear less affected by IRE ablation than cells in the tissue parenchyma or in the proximity of small, more isolated vessels. These findings suggest a role for “electric field sinks” in local tumors recurrences after IRE and emphasize the importance of the precise mapping of the targeted organ structure and conductivity for planning of electroporation procedures. PMID:25684630
Golberg, Alexander; Bruinsma, Bote G; Uygun, Basak E; Yarmush, Martin L
2015-02-16
Irreversible electroporation (IRE) is an emerging, minimally invasive technique for solid tumors ablation, under clinical investigation for cancer therapy. IRE affects only the cell membrane, killing cells while preserving the extracellular matrix structure. Current reports indicate tumors recurrence rate after IRE averaging 31% of the cases, of which 10% are local recurrences. The mechanisms for these recurrences are not known and new explanations for incomplete cell death are needed. Using finite elements method for electric field distribution, we show that presence of vascular structures with blood leads to the redistribution of electric fields leading to the areas with more than 60% reduced electric field strength in proximity to large blood vessels and clustered vessel structures. In an in vivo rat model of liver IRE ablation, we show that cells located in the proximity of larger vessel structures and in proximity of clustered vessel structures appear less affected by IRE ablation than cells in the tissue parenchyma or in the proximity of small, more isolated vessels. These findings suggest a role for "electric field sinks" in local tumors recurrences after IRE and emphasize the importance of the precise mapping of the targeted organ structure and conductivity for planning of electroporation procedures.
NASA Technical Reports Server (NTRS)
Moore, Andrew J.; Schubert, Matthew; Rymer, Nicholas; Balachandran, Swee; Consiglio, Maria; Munoz, Cesar; Smith, Joshua; Lewis, Dexter; Schneider, Paul
2017-01-01
Flights at low altitudes in close proximity to electrical transmission infrastructure present serious navigational challenges: GPS and radio communication quality is variable and yet tight position control is needed to measure defects while avoiding collisions with ground structures. To advance unmanned aerial vehicle (UAV) navigation technology while accomplishing a task with economic and societal benefit, a high voltage electrical infrastructure inspection reference mission was designed. An integrated air-ground platform was developed for this mission and tested in two days of experimental flights to determine whether navigational augmentation was needed to successfully conduct a controlled inspection experiment. The airborne component of the platform was a multirotor UAV built from commercial off-the-shelf hardware and software, and the ground component was a commercial laptop running open source software. A compact ultraviolet sensor mounted on the UAV can locate 'hot spots' (potential failure points in the electric grid), so long as the UAV flight path adequately samples the airspace near the power grid structures. To improve navigation, the platform was supplemented with two navigation technologies: lidar-to-polyhedron preflight processing for obstacle demarcation and inspection distance planning, and trajectory management software to enforce inspection standoff distance. Both navigation technologies were essential to obtaining useful results from the hot spot sensor in this obstacle-rich, low-altitude airspace. Because the electrical grid extends into crowded airspaces, the UAV position was tracked with NASA unmanned aerial system traffic management (UTM) technology. The following results were obtained: (1) Inspection of high-voltage electrical transmission infrastructure to locate 'hot spots' of ultraviolet emission requires navigation methods that are not broadly available and are not needed at higher altitude flights above ground structures. (2) The sensing capability of a novel airborne UV detector was verified with a standard ground-based instrument. Flights with this sensor showed that UAV measurement operations and recording methods are viable. With improved sensor range, UAVs equipped with compact UV sensors could serve as the detection elements in a self-diagnosing power grid. (3) Simplification of rich lidar maps to polyhedral obstacle maps reduces data volume by orders of magnitude, so that computation with the resultant maps in real time is possible. This enables real-time obstacle avoidance autonomy. Stable navigation may be feasible in the GPS-deprived environment near transmission lines by a UAV that senses ground structures and compares them to these simplified maps. (4) A new, formally verified path conformance software system that runs onboard a UAV was demonstrated in flight for the first time. It successfully maneuvered the aircraft after a sudden lateral perturbation that models a gust of wind, and processed lidar-derived polyhedral obstacle maps in real time. (5) Tracking of the UAV in the national airspace using the NASA UTM technology was a key safety component of this reference mission, since the flights were conducted beneath the landing approach to a heavily used runway. Comparison to autopilot tracking showed that UTM tracking accurately records the UAV position throughout the flight path.
Electrical resistance tomography using steel cased boreholes as electrodes
Daily, W.D.; Ramirez, A.L.
1999-06-22
An electrical resistance tomography method is described which uses steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constrain the models. 2 figs.
Electrical resistance tomography using steel cased boreholes as electrodes
Daily, William D.; Ramirez, Abelardo L.
1999-01-01
An electrical resistance tomography method using steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constain the models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, G.A.; Commer, M.
Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/Lmore » supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.« less
Experimental observation of Lorenz chaos in the Quincke rotor dynamics.
Peters, François; Lobry, Laurent; Lemaire, Elisabeth
2005-03-01
In this paper, we report experimental evidence of Lorenz chaos for the Quincke rotor dynamics. We study the angular motion of an insulating cylinder immersed in slightly conducting oil and submitted to a direct current electric field. The simple equations which describe the dynamics of the rotor are shown to be equivalent to the Lorenz equations. In particular, we observe two bifurcations in our experimental system. Above a critical value of the electric field, the cylinder rotates at a constant rate. At a second bifurcation, the system becomes chaotic. The characteristic shape of the experimental first return map provides strong evidence for Lorenz-type chaos.
Experimental observation of Lorenz chaos in the Quincke rotor dynamics
NASA Astrophysics Data System (ADS)
Peters, François; Lobry, Laurent; Lemaire, Elisabeth
2005-03-01
In this paper, we report experimental evidence of Lorenz chaos for the Quincke rotor dynamics. We study the angular motion of an insulating cylinder immersed in slightly conducting oil and submitted to a direct current electric field. The simple equations which describe the dynamics of the rotor are shown to be equivalent to the Lorenz equations. In particular, we observe two bifurcations in our experimental system. Above a critical value of the electric field, the cylinder rotates at a constant rate. At a second bifurcation, the system becomes chaotic. The characteristic shape of the experimental first return map provides strong evidence for Lorenz-type chaos.
NASA Astrophysics Data System (ADS)
Doi, Marika; Ogawa, Emiyu; Arai, Tsunenori
2017-02-01
In order to study cardiomyocyte electrical conduction damage by a photosensitization reaction (PR) mostly comes from outside of the cells in a few minutes after the PR, we studied propagation delay of contact action potential with cardiomyocyte by the PR. To determine appropriate PR condition for tachyarrhythmia ablation, a precise electrophysiological experiment in vitro has been preferable. We measured the contact action potential using a microelectrode array system of which information may be correct than conventional Ca2+ measurement. We investigated the propagation delays of an evoked potential to evaluate the electrical conduction damage by the PR. Rat cardiomyocytes were cultivated for 5-7 days on a dish with which 64 electrodes were patterned, in an incubator controlled to 37°C, 5% CO2. The following conditions were used for the PR: 40 μg/ml talapordfin sodium and 290 mW/cm2, 40-78 J/cm2 for an irradiation. A 2D map was obtained to visualize the propagation delays of the evoked potential. The propagation speed, which was calculated based on the measured propagation delays, was decreased by about 30-50% on average of all electrodes after the PR. Therefore, we think 2D propagation delays measurement of the evoked potential with contact action potential measuring system might be available to evaluate the acute electrical conduction damage of cardiomyocyte by the PR.
Effects of urban microcellular environments on ray-tracing-based coverage predictions.
Liu, Zhongyu; Guo, Lixin; Guan, Xiaowei; Sun, Jiejing
2016-09-01
The ray-tracing (RT) algorithm, which is based on geometrical optics and the uniform theory of diffraction, has become a typical deterministic approach of studying wave-propagation characteristics. Under urban microcellular environments, the RT method highly depends on detailed environmental information. The aim of this paper is to provide help in selecting the appropriate level of accuracy required in building databases to achieve good tradeoffs between database costs and prediction accuracy. After familiarization with the operating procedures of the RT-based prediction model, this study focuses on the effect of errors in environmental information on prediction results. The environmental information consists of two parts, namely, geometric and electrical parameters. The geometric information can be obtained from a digital map of a city. To study the effects of inaccuracies in geometry information (building layout) on RT-based coverage prediction, two different artificial erroneous maps are generated based on the original digital map, and systematic analysis is performed by comparing the predictions with the erroneous maps and measurements or the predictions with the original digital map. To make the conclusion more persuasive, the influence of random errors on RMS delay spread results is investigated. Furthermore, given the electrical parameters' effect on the accuracy of the predicted results of the RT model, the dielectric constant and conductivity of building materials are set with different values. The path loss and RMS delay spread under the same circumstances are simulated by the RT prediction model.
Mapping Near-Surface Salinization Using Long-wavelength AIRSAR
NASA Technical Reports Server (NTRS)
Paine, Jeffery G.
2003-01-01
In May 1999, NASA's Jet Propulsion Laboratory acquired airborne synthetic aperture radar (AIRSAR) data over the Hatchel and Montague Test Sites in Texas. We analyzed P- and L-band polarimetric radar data from these AIRSAR missions to assess whether AIRSAR could be used as a rapid and remote platform for screening large areas at risk for near-surface soil and water salinization. Ongoing geological, geophysical, and hydrological studies at the Hatchel Test Site in Runnels County and the Montague Test Site in Montague County have demonstrated the utility of high-resolution airborne electromagnetic (EM) induction in mapping electrical conductivity changes that accompany shallow natural and oil-field related salinization at these sites in the Colorado and Red River basins. We compared AIRSAR and airborne EM data quantitatively by (1) selecting representative flight lines from airborne EM surveys of the Hatchel and Montague sites, (2) extracting measurement locations and apparent conductivities at the highest available EM frequency, (3) identifying and extracting all P- and L-band backscatter intensities for all locations within 5 m of an airborne EM measurement, and (4) examining the spatial and magnitude relationships between apparent conductivity and all radar polarization and polarization-ratio combinations. For both test sites, backscatter intensity in all individual P- and L-band polarizations was slightly negatively correlated with apparent conductivity. In most modes this was manifested as a decrease in the range and magnitude of backscatter intensity as apparent conductivity increased. Select single-band and cross-band polarization ratios exhibited somewhat higher correlation with apparent conductivity by partly diminishing the dominance of the vegetation contribution to V backscatter intensity. The highest correlation with conductivity was obtained using the L-band vertical- to cross-polarization ratio, the P-band vertical- to L-band cross-polarization ratio, and the P-band vertical-to cross-polarization ratio. These correlations were higher for the more arid (and less electrically conductive) Hatchel Test Site than they were for the Montague Test Site.
NASA Astrophysics Data System (ADS)
Gendron, Mathieu
This thesis describes a new medical imaging technique for determining the electrical conductivity distribution of tissues in a body region with a resolution comparable to that of current ultrasound techniques. The new technique, henceforth referred to as "Acousto-Electric Conductivity Modulation" (AECM) imaging, is based on the interaction of a sound wave with an electrical field. In its simplest form, four electrodes located near the region to be imaged apply a low-amplitude electrical current and measure the potential difference arising from current flow in the tissues. A focused ultrasound transducer directs a pressure wave to a voxel of the region of interest, modifying its conductivity distribution and, as a result, the amplitude of the potential measured by the electrodes. An image of the conductivity distribution can thus be constructed point-by-point by moving the electrodes and transducer to scan the object. In this context, the acoustic wave acts as the localization agent while the electrical potential provides a measure of the local conductivity change that occurs in the voxel. The first model presented in the thesis is based on the use of bipolar acoustic waves for excitation. This waveform is generally used with narrow band transducers. Acoustic waves generated by an ultrasound transducer driven with a burst of sine waves consists of alternating compression and rarefaction phases which tend to cancel each other in terms of the conductivity changes they produce. However when the thickness of the target object is small compared to the wavelength of the acoustic wave, this cancelling effect will not occur and the AECM signals will have sufficiently high amplitude to achieve image reconstruction using successive transducer positions to scan the region of interest. By extracting from the spectra of the AECM signals the amplitude of the peak at the excitation frequency, a map of the acousto-electric sensitivity of the system can be obtained. This map is then used to reconstruct the electrical conductivity distribution. The second model presented in the thesis uses a unipolar acoustic wave to generate AECM signals of relatively large amplitude. There are two aspects related to this type of wave. The first aspect is that the acoustic modulation is unidirectional if the applied pressure is unidirectional. As a result, a positive pressure only produces an increase in electrical conductivity and this will result in a large AECM signal even when the thickness of the object is large. The second aspect concerns the shape of the acoustic field. Since the unipolar acoustic wave is not focused, it modulates the conductivity over a large area, and thus the associated AECM signals needs to be processed through a reconstruction algorithm so as to recover local conductivity. In this model, the data required for image reconstruction are acquired by rotating the transducer around the target object. An experimental setup has been developed during our project to get values of certain parameter that are required to define the numerical models. The setup comprises a large tank which is filled with water and in which are immersed the ultrasound transducer, a hydrophone and a measurement cell. The acousto-electric interaction takes place within this cell. A computer controlled positioning system allows precise displacements of the transducer relative to the hydrophone and the measurement cell. This cell comprises a cavity in which the object to be analyzed is placed and that is then filled with an electrolytic solution. The cavity is closed on two sides by an acoustic window to allow propagation of the ultrasound wave and on another side by six Ag/AgCl electrodes that are used to apply current and to measure the resulting electrical potential. Mammography is presently the most widely used medical imaging procedure for breast cancer screening. The average sensitivity of this technique is 80 % but it is less for younger women. According to recent studies, MRI offers a higher sensitivity and the possibility of detecting very small tumors, thus allowing earlier treatment. The operating costs of MRI systems are at the moment too high to consider using the modality for breast cancer screening on a large scale. AECM imaging could eventually provide an interesting compromise between operating costs and the sensitivity required for screening patients of all ages. (Abstract shortened by UMI.).
Geoelectrical signatures of reactive mixing
NASA Astrophysics Data System (ADS)
Ghosh, U.; Bandopadhyay, A.; Jougnot, D.; Le Borgne, T.; Meheust, Y.
2017-12-01
Characterizing the effects of fluid mixing on geochemical reactions in the subsurface is of paramount importance owing to their pivotal role in processes such as contaminant migration or aquifer remediation, to name a few [1]. Large velocity gradients in the porous media are expected to lead to enhanced diffusive mixing accompanied by augmented reaction rates [2]. Despite its importance, accurate monitoring of such processes still remains an open challenge, mainly due to the opacity of the medium and to the lack of access to it. However, in recent years, geophysical methods based on electrical conductivity and polarization have come up as a promising tool for mapping and monitoring such reactions in the subsurface. In this regard, one of the main challenges is to properly characterize the multiple sources of electrical signals and in particular isolate the influence of reactive mixing on the electrical conductivity from those of other sources [3]. In this work, we explore the coupling between fluid mixing, reaction and charge migration in porous media to evaluate the potential of obtaining a spatially-resolved measurement of local reaction rates in the subsurface from electrical measurements. To this end, we employ a lamellar description of the mixing interface [4] with novel semi-analytical upscaling techniques to quantify changes in electrical conductivity induced by chemical reactions across mixing fronts. The changes in electrical conductivity are strongly dependent on the concentration of ionic species as well as on the polarization of the pore (water) solution around the grains, which in turn are controlled by local reaction rates and, consequently, by the local velocity gradients. Hence, our results essentially suggest that local variations in the electrical conductivity may be quantitatively related to the mixing and reaction dynamics, and thus be used as a measurement tool to characterize these dynamics. References 1. M. Dentz, T. Le Borgne, A. Englert, and B. Bijeljic, J. Cont. Hyd., 120, 1-17, 2011. 2. T. Le Borgne, T. R. Ginn, and M. Dentz, Geophys. Res. Lett., 41(22), 7898-7906, 2014. 3. R Knight et al. Reviews of Geophysics, 48(4), 2010. 4. T. Le Borgne, M. Dentz, and E. Villermaux, J. Fluid Mech., 770, 458-498, 2015.
ERIC Educational Resources Information Center
Tsai, Chin-Chung
2003-01-01
Examines the effects of using a conflict map on 8th grade students' conceptual change and ideational networks about simple series electric circuits. Analyzes student interview data through a flow map method. Shows that the use of conflict maps could help students construct greater, richer, and more integrated ideational networks about electric…
NASA Astrophysics Data System (ADS)
Zhang, X.; Zahn, M.
2013-10-01
The smart use of charge injection to improve breakdown strength in transformer oil is demonstrated in this paper. Hypothetically, bipolar homo-charge injection with reduced electric field at both electrodes may allow higher voltage operation without insulation failure, since electrical breakdown usually initiates at the electrode-dielectric interfaces. To find experimental evidence, the applicability and limitation of the hypothesis is first analyzed. Impulse breakdown tests and Kerr electro-optic field mapping measurements are then conducted with different combinations of parallel-plate aluminum and brass electrodes stressed by millisecond duration impulse. It is found that the breakdown voltage of brass anode and aluminum cathode is ˜50% higher than that of aluminum anode and brass cathode. This can be explained by charge injection patterns from Kerr measurements under a lower voltage, where aluminum and brass electrodes inject negative and positive charges, respectively. This work provides a feasible approach to investigating the effect of electrode material on breakdown strength.
NASA Astrophysics Data System (ADS)
Fadili, Ahmed; Najib, Saliha; Mehdi, Khalid; Riss, Joëlle; Malaurent, Philippe; Makan, Abdelhadi
2017-11-01
This study aims to assess the evolution of seawater intrusion between 1992 and 2011 periods in the coastal aquifers of Oualidia. To achieve this objective, the combination of geoelectrical and hydrochemical methods was adopted. Apparent resistivity maps, using 74 Vertical Electrical Sounding (VES) performed on 1992, allowed to distinguish two different zones. The conductive one, with apparent resistivity ranging between 4 and 86 Ω·m, is limited to 1 km with respect to the ocean. Meanwhile, the resistant one is much farther from the coastline. Besides, results of Electrical Resistivity Tomography (ERT) profiles performed during 2011 are in good agreement with those obtained by apparent resistivity maps. The ERT profiles show a conductive level characterized by low resistivity below 30 Ω·m assigned to seawater intrusion effect. Moreover, hydrochemical analysis, performed on 19 wells during three different periods, on June, December 2010 and May 2011, indicates that the most affected part with marine waters was at that time localized in the first kilometer from the ocean, with high amounts of Na+ and Cl- ions. Beyond this fringe, mineralization becomes very weak. Overall, the comparison of old VES with recent ERT coupled with hydrochemical results suggest no important evolution of the salt wedge since 1992.
The ionic DTI model (iDTI) of dynamic diffusion tensor imaging (dDTI)
Makris, Nikos; Gasic, Gregory P.; Garrido, Leoncio
2014-01-01
Measurements of water molecule diffusion along fiber tracts in CNS by diffusion tensor imaging (DTI) provides a static map of neural connections between brain centers, but does not capture the electrical activity along axons for these fiber tracts. Here, a modification of the DTI method is presented to enable the mapping of active fibers. It is termed dynamic diffusion tensor imaging (dDTI) and is based on a hypothesized “anisotropy reduction due to axonal excitation” (“AREX”). The potential changes in water mobility accompanying the movement of ions during the propagation of action potentials along axonal tracts are taken into account. Specifically, the proposed model, termed “ionic DTI model”, was formulated as follows.•First, based on theoretical calculations, we calculated the molecular water flow accompanying the ionic flow perpendicular to the principal axis of fiber tracts produced by electrical conduction along excited myelinated and non-myelinated axons.•Based on the changes in molecular water flow we estimated the signal changes as well as the changes in fractional anisotropy of axonal tracts while performing a functional task.•The variation of fractional anisotropy in axonal tracts could allow mapping the active fiber tracts during a functional task. Although technological advances are necessary to enable the robust and routine measurement of this electrical activity-dependent movement of water molecules perpendicular to axons, the proposed model of dDTI defines the vectorial parameters that will need to be measured to bring this much needed technique to fruition. PMID:25431757
Two different electrical properties can improve transoceanic cable-route mapping
Wynn, J.; McGinnis, T.
2001-01-01
Induced polarization (IP) measurements made in the marine environment were investigated to map and remotely characterize the top 6-10 meters of the seafloor. The continuous resistivity profiling with cone-penetrometer tests, providing important information to engineers planning transoceanic cable routes, was also described. The IP effect and resistivity were identified as the two electric properties to improve transoceanic cable-route mapping. The measurement of IP and resistivity was found to depend on electrical current.
Middle atmosphere electrical structure, dynamics and coupling
NASA Technical Reports Server (NTRS)
Hale, L. C.
1984-01-01
The ram current to ion traps and the insensitivity of ion conductivity to compressibility provide the basis of robust techniques for middle atmosphere measurements. Gerdien condensers are more difficult to implement but provide more information. Mesospheric electrical conductivity shows many orders of magnitude variability, with depressions below gas phase model values indicating dominance by aerosol particles. The mobility of these ions has been directly measured and indicates particles of thousands of AMU. Large mesospheric fields have come into question, and diagnostic measurements show that many such measurements may be artifacts. However, some measurements of V/m fields with symmetrical and redundant sensors appear to be real. These fields complicate the 'mapping' picture of electrical coupling and may also modulate the transport of aerosol particles. They are probably related to neutral atmospheric dynamics and/or the aerosol particles. Lightning couples much more energy to the middle atmosphere and above than previously suspected, primarily in the ELF-UHF range. There are many important unanswered questions in this relatively unexplored frontier area which may be answered with low cost balloon and sounding rocket experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Framgos, William
1999-06-01
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex
2000-06-01
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach (Song et al., 1997). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
Subsurface imaging of an abandoned solid waste landfill site in Norman, Oklahoma
Zume, J.T.; Tarhule, A.; Christenson, S.
2006-01-01
Leachate plume emanating from an old unlined municipal landfill site near the city of Norman, Oklahoma, is discharging into the underlying alluvial aquifer. Subsurface imaging techniques, electrical resistivity tomography and electrical conductivity (EC) logging, were used on the site to detect and map the position of the leachate plume. Anomalous EC zones, delineated with the two methods, correlated with the occurrence of the plume detected by water chemistry analyses from multilevel monitoring wells. Specific conductance, a potential indicator of leachate contamination, ranged from 1861 to 7710 ??S/cm in contaminated zones and from 465 to 2180 ??S/cm in uncontaminated ground water. Results are in agreement with those from earlier studies that the leachate plume emerges from the landfill along preferential pathways. Additionally, there are indications that the leading edge of the plume has migrated, at least, 200 m away from the landfill in the direction of ground water flow. ?? 2006 National Ground Water Association.
Using Brain Electrical Activity Mapping to Diagnose Learning Disabilities.
ERIC Educational Resources Information Center
Torello, Michael, W.; Duffy, Frank H.
1985-01-01
Cognitive neuroscience assumes that measurement of brain electrical activity should relate to cognition. Brain Electrical Activity Mapping (BEAM), a non-invasive technique, is used to record changes in activity from one brain area to another and is 80 to 90 percent successful in classifying subjects as dyslexic or normal. (MT)
NASA Astrophysics Data System (ADS)
Martini, Edoardo; Werban, Ulrike; Zacharias, Steffen; Pohle, Marco; Dietrich, Peter; Wollschläger, Ute
2017-01-01
Electromagnetic induction (EMI) measurements are widely used for soil mapping, as they allow fast and relatively low-cost surveys of soil apparent electrical conductivity (ECa). Although the use of non-invasive EMI for imaging spatial soil properties is very attractive, the dependence of ECa on several factors challenges any interpretation with respect to individual soil properties or states such as soil moisture (θ). The major aim of this study was to further investigate the potential of repeated EMI measurements to map θ, with particular focus on the temporal variability of the spatial patterns of ECa and θ. To this end, we compared repeated EMI measurements with high-resolution θ data from a wireless soil moisture and soil temperature monitoring network for an extensively managed hillslope area for which soil properties and θ dynamics are known. For the investigated site, (i) ECa showed small temporal variations whereas θ varied from very dry to almost saturation, (ii) temporal changes of the spatial pattern of ECa differed from those of the spatial pattern of θ, and (iii) the ECa-θ relationship varied with time. Results suggest that (i) depending upon site characteristics, stable soil properties can be the major control of ECa measured with EMI, and (ii) for soils with low clay content, the influence of θ on ECa may be confounded by changes of the electrical conductivity of the soil solution. Further, this study discusses the complex interplay between factors controlling ECa and θ, and the use of EMI-based ECa data with respect to hydrological applications.
Near Surface Investigation of Agricultural Soils using a Multi-Frequency Electromagnetic Sensor
NASA Astrophysics Data System (ADS)
Sadatcharam, K.; Unc, A.; Krishnapillai, M.; Cheema, M.; Galagedara, L.
2017-12-01
Electromagnetic induction (EMI) sensors have been used as precision agricultural tools over decades. They are being used to measure spatiotemporal variability of soil properties and soil stratification in the sense of apparent electrical conductivity (ECa). We mapped the ECa variability by horizontal coplanar (HCP) and by vertical coplanar (VCP) orientation of a multi-frequency EMI sensor and identified its interrelation with physical properties of soil. A broadband, multi-frequency handheld EMI sensor (GEM-2) was used on a loamy sand soil cultivated with silage-corn in western Newfoundland, Canada. Log and line spaced, three frequency ranges (weak, low, and high), based on the factory calibration were tested using HCP and VCP orientation to produce spatiotemporal data of ECa. In parallel, we acquired data on soil moisture content, texture and bulk density. We then assessed the statistical significance of the relationship between ECa and soil physical properties. The test site had three areas of distinct soil properties corresponding to the elevation, in particular. The same spatial variability was also identified by ECa mapping at different frequencies and the two modes of coil orientations. Data analysis suggested that the high range frequency (38 kHz (log-spaced) and 49 kHz (line-spaced)) for both HCP and VCP orientations produced accurate ECa maps, better than the weak and low range frequencies tested. Furthermore, results revealed that the combined effects of soil texture, moisture content and bulk density affect ECameasurements as obtained by both frequencies and two coil orientations. Keywords: Apparent electrical conductivity, Electromagnetic induction, Horizontal coplanar, Soil properties, Vertical coplanar
30 CFR 75.508 - Map of electrical system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... apparatus in connection with the mine electric system, including permanent cables, switchgear, rectifying... direct-current circuit breakers protecting underground trolley circuits, shall be shown on a mine map...
30 CFR 75.508 - Map of electrical system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... apparatus in connection with the mine electric system, including permanent cables, switchgear, rectifying... direct-current circuit breakers protecting underground trolley circuits, shall be shown on a mine map...
On optimal current patterns for electrical impedance tomography.
Demidenko, Eugene; Hartov, Alex; Soni, Nirmal; Paulsen, Keith D
2005-02-01
We develop a statistical criterion for optimal patterns in planar circular electrical impedance tomography. These patterns minimize the total variance of the estimation for the resistance or conductance matrix. It is shown that trigonometric patterns (Isaacson, 1986), originally derived from the concept of distinguishability, are a special case of our optimal statistical patterns. New optimal random patterns are introduced. Recovering the electrical properties of the measured body is greatly simplified when optimal patterns are used. The Neumann-to-Dirichlet map and the optimal patterns are derived for a homogeneous medium with an arbitrary distribution of the electrodes on the periphery. As a special case, optimal patterns are developed for a practical EIT system with a finite number of electrodes. For a general nonhomogeneous medium, with no a priori restriction, the optimal patterns for the resistance and conductance matrix are the same. However, for a homogeneous medium, the best current pattern is the worst voltage pattern and vice versa. We study the effect of the number and the width of the electrodes on the estimate of resistivity and conductivity in a homogeneous medium. We confirm experimentally that the optimal patterns produce minimum conductivity variance in a homogeneous medium. Our statistical model is able to discriminate between a homogenous agar phantom and one with a 2 mm air hole with error probability (p-value) 1/1000.
Seol, Daehee; Seo, Hosung; Jesse, Stephen; ...
2015-08-19
Electromechanical (EM) response in ion conductive ceramics with piezoelectric inclusions was spatially explored using strain-based atomic force microscopy. Since the sample is composed of two dominant phases of ionic and piezoelectric phases, it allows us to explore two different EM responses of electrically induced ionic response and piezoresponse over the same surface. Furthermore, EM response of the ionic phase, i.e., electrochemical strain, was quantitatively investigated from the comparison with that of the piezoelectric phase, i.e., piezoresponse. Finally, these results could provide additional information on the EM properties, including the electrochemical strain at nanoscale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seol, Daehee; Seo, Hosung; Jesse, Stephen
Electromechanical (EM) response in ion conductive ceramics with piezoelectric inclusions was spatially explored using strain-based atomic force microscopy. Since the sample is composed of two dominant phases of ionic and piezoelectric phases, it allows us to explore two different EM responses of electrically induced ionic response and piezoresponse over the same surface. Furthermore, EM response of the ionic phase, i.e., electrochemical strain, was quantitatively investigated from the comparison with that of the piezoelectric phase, i.e., piezoresponse. Finally, these results could provide additional information on the EM properties, including the electrochemical strain at nanoscale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seol, Daehee; Seo, Hosung; Kim, Yunseok, E-mail: yunseokkim@skku.edu
Electromechanical (EM) response in ion conductive ceramics with piezoelectric inclusions was spatially explored using strain-based atomic force microscopy. Since the sample is composed of two dominant phases of ionic and piezoelectric phases, it allows us to explore two different EM responses of electrically induced ionic response and piezoresponse over the same surface. Furthermore, EM response of the ionic phase, i.e., electrochemical strain, was quantitatively investigated from the comparison with that of the piezoelectric phase, i.e., piezoresponse. These results could provide additional information on the EM properties, including the electrochemical strain at nanoscale.
Analysis of recoverable current from one component of magnetic flux density in MREIT and MRCDI.
Park, Chunjae; Lee, Byung Il; Kwon, Oh In
2007-06-07
Magnetic resonance current density imaging (MRCDI) provides a current density image by measuring the induced magnetic flux density within the subject with a magnetic resonance imaging (MRI) scanner. Magnetic resonance electrical impedance tomography (MREIT) has been focused on extracting some useful information of the current density and conductivity distribution in the subject Omega using measured B(z), one component of the magnetic flux density B. In this paper, we analyze the map Tau from current density vector field J to one component of magnetic flux density B(z) without any assumption on the conductivity. The map Tau provides an orthogonal decomposition J = J(P) + J(N) of the current J where J(N) belongs to the null space of the map Tau. We explicitly describe the projected current density J(P) from measured B(z). Based on the decomposition, we prove that B(z) data due to one injection current guarantee a unique determination of the isotropic conductivity under assumptions that the current is two-dimensional and the conductivity value on the surface is known. For a two-dimensional dominating current case, the projected current density J(P) provides a good approximation of the true current J without accumulating noise effects. Numerical simulations show that J(P) from measured B(z) is quite similar to the target J. Biological tissue phantom experiments compare J(P) with the reconstructed J via the reconstructed isotropic conductivity using the harmonic B(z) algorithm.
Sannicolo, Thomas; Charvin, Nicolas; Flandin, Lionel; Kraus, Silas; Papanastasiou, Dorina T; Celle, Caroline; Simonato, Jean-Pierre; Muñoz-Rojas, David; Jiménez, Carmen; Bellet, Daniel
2018-05-22
Electrical stability and homogeneity of silver nanowire (AgNW) networks are critical assets for increasing their robustness and reliability when integrated as transparent electrodes in devices. Our ability to distinguish defects, inhomogeneities, or inactive areas at the scale of the entire network is therefore a critical issue. We propose one-probe electrical mapping (1P-mapping) as a specific simple tool to study the electrical distribution in these discrete structures. 1P-mapping has allowed us to show that the tortuosity of the voltage equipotential lines of AgNW networks under bias decreases with increasing network density, leading to a better electrical homogeneity. The impact of the network fabrication technique on the electrical homogeneity of the resulting electrode has also been investigated. Then, by combining 1P-mapping with electrical resistance measurements and IR thermography, we propose a comprehensive analysis of the evolution of the electrical distribution in AgNW networks when subjected to increasing voltage stresses. We show that AgNW networks experience three distinctive stages: optimization, degradation, and breakdown. We also demonstrate that the failure dynamics of AgNW networks at high voltages occurs through a highly correlated and spatially localized mechanism. In particular the in situ formation of cracks could be clearly visualized. It consists of two steps: creation of a crack followed by propagation nearly parallel to the equipotential lines. Finally, we show that current can dynamically redistribute during failure, by following partially damaged secondary pathways through the crack.
Cervera, Javier; Alcaraz, Antonio; Mafe, Salvador
2016-02-04
Bioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects in small multicellular ensembles, ignoring slow diffusional processes. The spatio-temporal patterns obtained for the local map of cell electric potentials illustrate the normalization of regions with abnormal cell electrical states. The effects of intercellular coupling and blocking of specific channels on the electrical patterns are described. These patterns can regulate the electrically-induced redistribution of charged nanoparticles over small regions of a model tissue. The inclusion of bioelectrical signals provides new insights for the modeling of cancer biophysics because collective multicellular states show electrical coupling mechanisms that are not readily deduced from biochemical descriptions at the individual cell level.
Cervera, Javier; Alcaraz, Antonio; Mafe, Salvador
2016-01-01
Bioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects in small multicellular ensembles, ignoring slow diffusional processes. The spatio-temporal patterns obtained for the local map of cell electric potentials illustrate the normalization of regions with abnormal cell electrical states. The effects of intercellular coupling and blocking of specific channels on the electrical patterns are described. These patterns can regulate the electrically-induced redistribution of charged nanoparticles over small regions of a model tissue. The inclusion of bioelectrical signals provides new insights for the modeling of cancer biophysics because collective multicellular states show electrical coupling mechanisms that are not readily deduced from biochemical descriptions at the individual cell level. PMID:26841954
NASA Astrophysics Data System (ADS)
Cervera, Javier; Alcaraz, Antonio; Mafe, Salvador
2016-02-01
Bioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects in small multicellular ensembles, ignoring slow diffusional processes. The spatio-temporal patterns obtained for the local map of cell electric potentials illustrate the normalization of regions with abnormal cell electrical states. The effects of intercellular coupling and blocking of specific channels on the electrical patterns are described. These patterns can regulate the electrically-induced redistribution of charged nanoparticles over small regions of a model tissue. The inclusion of bioelectrical signals provides new insights for the modeling of cancer biophysics because collective multicellular states show electrical coupling mechanisms that are not readily deduced from biochemical descriptions at the individual cell level.
NASA Astrophysics Data System (ADS)
Laumonier, Mickael; Frost, Dan; Farla, Robert; Katsura, Tomoo; Marquardt, Katharina
2016-04-01
A consistent explanation for mantle geophysical anomalies such as the Lithosphere-Astenosphere Boundary (LAB) relies on the existence of little amount of melt trapped in the solid peridotite. Mathematical models have been used to assess the melt fraction possibly lying at mantle depths, but they have not been experimentally checked at low melt fraction (< 2 vol. %). To fill this gap, we performed in situ electrical conductivity (EC) measurement on a partially-molten olivine aggregate (Fo92-olivine from a natural peridotite of Lanzarote, Canary Islands, Spain) containing various amount of basaltic (MORB-like composition) melt (0 to 100%) at upper mantle conditions. We used the MAVO 6-ram press (BGI) combined with a Solartron gain phase analyser to acquire the electrical resistance of the sample at pressure of 1.5 GPa and temperature up to 1400°C. The results show the increase of the electrical conductivity with the temperature following an Arrhenius law, and with the melt fraction, but the effect of pressure between 1.5 and 3.0 GPa was found negligible at a melt fraction of 0.5 vol.%. The conductivity of a partially molten aggregate fits the modified Archie's law from 0.5 to 100 vol.%. At melt fractions of 0.25, 0.15 and 0.0 vol.%, the EC value deviates from the trend previously defined, suggesting that the melt is no longer fully interconnected through the sample, also supported by chemical mapping. Our results extend the previous results obtained on mixed system between 1 and 10% of melt. Since the melt appears fully interconnected down to very low melt fraction (0.5 vol.%), we conclude that (i) only 0.5 to 1 vol.% of melt is enough to explain the LAB EC anomaly, lower than previously determined; and (ii) deformation is not mandatory to enhance electrical conductivity of melt-bearing mantle rocks.
Montes, Rubén Vidal; Martínez-Graña, Antonio Miguel; Martínez Catalán, José Ramón; Arribas, Puy Ayarza; Sánchez San Román, Francisco Javier; Zazo, Caridad
2017-11-10
The present work envisages the possible geometry of a contaminated plume of groundwater near hospital facilities by combining GIS (Geographic Information System) and geophysical methods. The rock underlying the soil and thin sedimentary cover of the study area is moderately fractured quartzite, which makes aquifers vulnerable to pollution. The GIS methodology is used to calculate the area that would be affected by the effluent source of residual water, based on algorithms that consider ground surface mapping (slopes, orientations, accumulated costs and cost per distance). Geophysical methods (electromagnetic induction and electric resistivity tomography) use changes in the electrical conductivity or resistivity of the subsurface to determine the geometry of the discharge and the degree of contamination. The model presented would allow a preliminary investigation regarding potential corrective measures.
Montes, Rubén Vidal; Sánchez San Román, Francisco Javier; Zazo, Caridad
2017-01-01
The present work envisages the possible geometry of a contaminated plume of groundwater near hospital facilities by combining GIS (Geographic Information System) and geophysical methods. The rock underlying the soil and thin sedimentary cover of the study area is moderately fractured quartzite, which makes aquifers vulnerable to pollution. The GIS methodology is used to calculate the area that would be affected by the effluent source of residual water, based on algorithms that consider ground surface mapping (slopes, orientations, accumulated costs and cost per distance). Geophysical methods (electromagnetic induction and electric resistivity tomography) use changes in the electrical conductivity or resistivity of the subsurface to determine the geometry of the discharge and the degree of contamination. The model presented would allow a preliminary investigation regarding potential corrective measures. PMID:29125556
Electromagnetic studies in the Fennoscandian Shield—electrical conductivity of Precambrian crust
NASA Astrophysics Data System (ADS)
Korja, T.; Hjelt, S.-E.
1993-12-01
Electromagnetic (EM) investigations of the 1980s in the Fennoscandian (Baltic) Shield produced an unique and unified EM data set. Studies include regional investigations by the magnetovariational (MV) method with large lateral sampling distance, investigations of anomalous conductivity structures by magnetotelluric (MT) soundings and other (EM) and electrical methods (audio MT soundings, d.c. dipole-dipole and VLF resistivity profilings) with shorter sampling distance, and studies of the near-surface conductivity by airborne EM surveys. The variety of methods provide an ability to map efficiently crustal conductivity structures from a regional scale of hundreds of kilometres down to local details of some metres in the anomalous structures. The Precambrian of the Fennoscandian Shield is characterized by roughly NW-SE-directed elongated belts of conductors which separate more resistive crustal blocks. The latter serve as transparent windows through which to probe deep electrical structure and belts of conductors as tectonic markers of ancient orogenic zones including (1) the Kittilä-Vetrenny Poyas conductor, (2) the Lapland Granulite Belt and Inari-Pechenga-Imandra-Varzuga conductors, (3) the Archaean-Proterozoic boundary conductor and (4) the Southern Finland Conductor. The conductive belts—orogenic conductors—indicate places where crustal masses collided and were finally sealed together. Enhanced conductivity in the orogenic conductors is caused primarily by an electronic conducting mechanism in graphite- and sulphide-bearing metasedimentary rocks. Estimations of the lower-crustal conductivity indicate a laterally heterogeneous lower crust in the Fennoscandian Shield. Archaean lower crust seems to be in general more resistive than the Early Proterozoic lower crust of the Karelian and Svecofennian Domains. The lower crust in the southwestern part of the Svecofennian Domain and in the Sveconorwegian Domain seems to be more resistive than in the central part of the Svecofennian Domain.
Electrical remodelling of the left and right atria due to rheumatic mitral stenosis.
John, Bobby; Stiles, Martin K; Kuklik, Pawel; Chandy, Sunil T; Young, Glenn D; Mackenzie, Lorraine; Szumowski, Lukasz; Joseph, George; Jose, Jacob; Worthley, Stephen G; Kalman, Jonathan M; Sanders, Prashanthan
2008-09-01
To characterize the atrial remodelling in mitral stenosis (MS). Twenty-four patients with severe MS undergoing commissurotomy and 24 controls were studied. Electrophysiological evaluation was performed in 12 patients in each group by positioning multi-electrode catheters in both atria to determine the following: effective refractory period (ERP) at 10 sites at 600 and 450 ms; conduction time; conduction delay at the crista terminalis (CT); and vulnerability for atrial fibrillation (AF). P-wave duration (PWD) was determined on the surface ECG. In the remaining 12 patients in each group, electroanatomic maps of both atria were created to determine conduction velocity and identify regions of low voltage and electrical silence. Patients with MS had larger left atria (LA) (P < 0.0001); prolonged PWD (P = 0.0007); prolonged ERP in both LA (P < 0.0001) and right atria (RA) (P < 0.0001); reduced conduction velocity in the LA (P = 0.009) and RA (P < 0.0001); greater number (P < 0.0001) and duration (P< 0.0001) of bipoles along the CT with delayed conduction; lower atrial voltage in the LA (P < 0.0001) and RA (P < 0.0001); and more frequent electrical scar (P = 0.001) compared with controls. Five of twelve with MS and none of the controls developed AF with extra-stimulus (P = 0.02). Atrial remodelling in MS is characterized by LA enlargement, loss of myocardium, and scarring associated with widespread and site-specific conduction abnormalities and no change or an increase in ERP. These abnormalities were associated with a heightened inducibility of AF.
NASA Astrophysics Data System (ADS)
Garcia, Xavier; Monteys, Xavier; Evans, Rob L.; Szpak, Michal
2014-04-01
During the Irish National Seabed Survey (INSS) in 2003, a gas related pockmark field was discovered and extensively mapped in the Malin Shelf region (NW Ireland). In summer 2006, additional complementary data involving core sample analysis, multibeam and single-beam backscatter classification, and a marine controlled-source electromagnetic survey were obtained in specific locations.This multidisciplinary approach allowed us to map the upper 20 m of the seabed in an unprecedented way and to correlate the main geophysical parameters with the geological properties of the seabed. The EM data provide us with information about sediment conductivity, which can be used as a proxy for porosity and also to identify the presence of fluid and fluid migration pathways. We conclude that, as a whole, the central part of the Malin basin is characterized by higher conductivities, which we interpret as a lithological change. Within the basin several areas are characterized by conductive anomalies associated with fluid flow processes and potentially the presence of microbial activity, as suggested by previous work. Pockmark structures show a characteristic electrical signature, with high-conductivity anomalies on the edges and less conductive, homogeneous interiors with several high-conductivity anomalies, potentially associated with gas-driven microbial activity.
NASA Astrophysics Data System (ADS)
Stieglitz, T. C.; Burnett, W. C.; Rapaglia, J.
2008-12-01
Submarine groundwater discharge (SGD) is now increasingly recognized as an important component in the water balance, water quality and ecology of the coastal zone. A multitude of methods are currently employed to study SGD, ranging from point flux measurements with seepage meters to methods integrating over various spatial and temporal scales such as hydrological models, geophysical techniques or surface water tracer approaches. From studies in a large variety of hydrogeological settings, researchers in this field have come to expect that SGD is rarely uniformly distributed. Here we discuss the application of: (a) the mapping of subsurface electrical conductivity in a discharge zone on a beach; and (b) the large-scale mapping of radon in coastal surface water to improving our understanding of SGD and its spatial variability. On a beach scale, as part of intercomparison studies of a UNESCO/IAEA working group, mapping of subsurface electrical conductivity in a beach face have elucidated the non-uniform distribution of SGD associated with rock fractures, volcanic settings and man-made structures (e.g., piers, jetties). Variations in direct point measurements of SGD flux with seepage meters were linked to the subsurface conductivity distribution. We demonstrate how the combination of these two techniques may complement one another to better constrain SGD measurements. On kilometer to hundred kilometer scales, the spatial distribution and regional importance of SGD can be investigated by mapping relevant tracers in the coastal ocean. The radon isotope Rn-222 is a commonly used tracer for SGD investigations due to its significant enrichment in groundwater, and continuous mapping of this tracer, in combination with ocean water salinity, can be used to efficiently infer locations of SGD along a coastline on large scales. We use a surface-towed, continuously recording multi-detector setup installed on a moving vessel. This tool was used in various coastal environments, e.g. in Florida, Brazil, Mauritius and Australia's Great Barrier Reef lagoon. From shore-parallel transects along the Central Great Barrier Reef coastline, numerous processes and locations of SGD were identified, including terrestrially-derived fresh SGD and the recirculation of seawater in mangrove forests, as well as riverine sources. From variations in the inverse relationship of the two tracers radon and salinity, some aspects of regional freshwater input into the lagoon during the tropical wet season could be assessed. Such surveys on coastal scales can be a useful tool to obtain an overview of locations and processes of SGD on an unknown coastline.
The Electric Field of a Weakly Electric Fish
NASA Astrophysics Data System (ADS)
Rasnow, Brian K.
Freshwater fish of the genus Apteronotus (family Gymnotidae) generate a weak, high frequency electric field (<100 mV/cm, 0.5-10 kHz) which permeates their local environment. These nocturnal fish are acutely sensitive to perturbations in their electric field caused by other electric fish, and nearby objects whose impedance is different from the surrounding water. This thesis presents high temporal and spatial resolution maps of the electric potential and field on and near Apteronotus. The fish's electric field is a complicated and highly stable function of space and time. Its characteristics, such as spectral composition, timing, and rate of attenuation, are examined in terms of physical constraints, and their possible functional roles in electroreception. Temporal jitter of the periodic field is less than 1 musec. However, electrocyte activity is not globally synchronous along the fish's electric organ. The propagation of electrocyte activation down the fish's body produces a rotation of the electric field vector in the caudal part of the fish. This may assist the fish in identifying nonsymmetrical objects, and could also confuse electrosensory predators that try to locate Apteronotus by following its fieldlines. The propagation also results in a complex spatiotemporal pattern of the EOD potential near the fish. Visualizing the potential on the same and different fish over timescales of several months suggests that it is stable and could serve as a unique signature for individual fish. Measurements of the electric field were used to calculate the effects of simple objects on the fish's electric field. The shape of the perturbation or "electric image" on the fish's skin is relatively independent of a simple object's size, conductivity, and rostrocaudal location, and therefore could unambiguously determine object distance. The range of electrolocation may depend on both the size of objects and their rostrocaudal location. Only objects with very large dielectric constants cause appreciable phase shifts, and these are strongly dependent on the water conductivity.
Requirements for a multi-scale, ultra wide-band National Geoelectromagnetic Facility (Invited)
NASA Astrophysics Data System (ADS)
Schultz, A.
2009-12-01
Advances in data acquisition technology and modeling make it possible to image the electrical properties of the near surface, crust and mantle in 3D. A generation of investigators is emerging whose research depends on application of complementary methods including magnetotelluric (MT) [micro-Hz to kHz sampling frequencies], natural audio (AMT) and controlled source and radio-frequency magnetotellurics (CSAMT, RFMT) [1 Hz-300 kHz], time-domain (TDEM) EM, as well as DC resistivity, induced polarization and ground-penetrating radar. Different process studies involve different depths and spatial scales, requiring target illumination by signals of different frequency content, and application of one or more of the methods above. Current practice often assumes that near surface and deeper crustal imaging problems can be decoupled by treating shallower heterogeneities in e.g. electrical conductivity structure as surface distortions that can be dealt with either through tensor stripping techniques or thin sheet modeling. Such methods are based on parametric models with implicit or explicit assumptions that may not in all cases be satisfied by the physics of the situation. Large-scale EM imaging programs such as EarthScope/USArray's magnetotelluric (MT) component seek to reconstruct the electrical conductivity structure of the US on the crustal-to-upper mantle scale. A variety of PI-led investigations seek to increase the resolving power of this effort through a combination of targeted, finer-spaced arrays, and by pushing into a higher frequency domain. As these efforts continue, great care has to be made in dealing with the impact of near surface heterogeneities. There is no national or regional scale set of near surface conductivity maps that one could use to strip near surface effects from deeper studies. National radio propagation/absorption maps were assembled by the FCC in the 1950's, and maps of ground-penetrating radar soil suitability provide a rough guide to surface conductance. Such information is insufficient to remove near surface effects for those imaging upper-to-mid crustal electrical properties. In order to obtain field measurements that can span near-surface through crust and upper mantle problems, an initiative to establish a multi-institutional National Geoelectromagnetic Facility has been proposed as part of a Virtual Institute for EM methods. An academic-industry partnership is designing a flexible, ultra wide-band system capable of being configured to obtain most of the data types indicated above. The system is specified to to provide between 100 dB - 130 dB dynamic range for sample rates from DC up to 2.5 MHz. A hybrid magnetic field sensor employing both induction coils and fluxgates, and a flexible arrangement of electric field sensors completes the specified receivers. The systems can be configured for sustained, low-power autonomous operation, or for higher power high frequency, active source operations. A series of controlled source transmitter systems is also specified. As financial support for the National Geoelectromagnetic Facility is being aligned, an organizational framework is being developed to permit efficient scheduling, data flow and archiving of resulting data sets. Education and outreach efforts are intrinsic to this, with close interactions with SAGE and other projects planned from the outset.
NASA Astrophysics Data System (ADS)
Schultz, A.; Bonner, L. R., IV
2017-12-01
Current efforts to assess risk to the power grid from geomagnetic disturbances (GMDs) that result in geomagnetically induced currents (GICs) seek to identify potential "hotspots," based on statistical models of GMD storm scenarios and power distribution grounding models that assume that the electrical conductivity of the Earth's crust and mantle varies only with depth. The NSF-supported EarthScope Magnetotelluric (MT) Program operated by Oregon State University has mapped 3-D ground electrical conductivity structure across more than half of the continental US. MT data, the naturally occurring time variations in the Earth's vector electric and magnetic fields at ground level, are used to determine the MT impedance tensor for each site (the ratio of horizontal vector electric and magnetic fields at ground level expressed as a complex-valued frequency domain quantity). The impedance provides information on the 3-D electrical conductivity structure of the Earth's crust and mantle. We demonstrate that use of 3-D ground conductivity information significantly improves the fidelity of GIC predictions over existing 1-D approaches. We project real-time magnetic field data streams from US Geological Survey magnetic observatories into a set of linear filters that employ the impedance data and that generate estimates of ground level electric fields at the locations of MT stations. The resulting ground electric fields are projected to and integrated along the path of power transmission lines. This serves as inputs to power flow models that represent the power transmission grid, yielding a time-varying set of quasi-real-time estimates of reactive power loss at the power transformers that are critical infrastructure for power distribution. We demonstrate that peak reactive power loss and hence peak risk for transformer damage from GICs does not necessarily occur during peak GMD storm times, but rather depends on the time-evolution of the polarization of the GMD's inducing fields and the complex ground (3-D) electric field response, and the resulting alignment of the ground electric fields with the power transmission line paths. This is informing our efforts to provide a set of real-time tools for power grid operators to use in mitigating damage from space weather events.
Roell, Wilhelm; Klein, Alexandra M; Breitbach, Martin; Becker, Torsten S; Parikh, Ashish; Lee, Jane; Zimmermann, Katrin; Reining, Shaun; Gabris, Beth; Ottersbach, Annika; Doran, Robert; Engelbrecht, Britta; Schiffer, Miriam; Kimura, Kenichi; Freitag, Patricia; Carls, Esther; Geisen, Caroline; Duerr, Georg D; Sasse, Philipp; Welz, Armin; Pfeifer, Alexander; Salama, Guy; Kotlikoff, Michael; Fleischmann, Bernd K
2018-05-08
Ventricular tachycardia (VT) is the most common and potentially lethal complication following myocardial infarction (MI). Biological correction of the conduction inhomogeneity that underlies re-entry could be a major advance in infarction therapy. As minimal increases in conduction of infarcted tissue markedly influence VT susceptibility, we reasoned that enhanced propagation of the electrical signal between non-excitable cells within a resolving infarct might comprise a simple means to decrease post-infarction arrhythmia risk. We therefore tested lentivirus-mediated delivery of the gap-junction protein Connexin 43 (Cx43) into acute myocardial lesions. Cx43 was expressed in (myo)fibroblasts and CD45 + cells within the scar and provided prominent and long lasting arrhythmia protection in vivo. Optical mapping of Cx43 injected hearts revealed enhanced conduction velocity within the scar, indicating Cx43-mediated electrical coupling between myocytes and (myo)fibroblasts. Thus, Cx43 gene therapy, by direct in vivo transduction of non-cardiomyocytes, comprises a simple and clinically applicable biological therapy that markedly reduces post-infarction VT.
Dielectric properties of thin C r2O3 films grown on elemental and oxide metallic substrates
NASA Astrophysics Data System (ADS)
Mahmood, Ather; Street, Michael; Echtenkamp, Will; Kwan, Chun Pui; Bird, Jonathan P.; Binek, Christian
2018-04-01
In an attempt to optimize leakage characteristics of α-C r2O3 thin films, its dielectric properties were investigated at local and macroscopic scale. The films were grown on Pd(111), Pt(111), and V2O3 (0001), supported on A l2O3 substrate. The local conductivity was measured by conductive atomic force microscopy mapping of C r2O3 surfaces, which revealed the nature of defects that formed conducting paths with the bottom Pd or Pt layer. A strong correlation was found between these electrical defects and the grain boundaries revealed in the corresponding topographic scans. In comparison, the C r2O3 film on V2O3 exhibited no leakage paths at similar tip bias value. Electrical resistance measurements through e-beam patterned top electrodes confirmed the resistivity mismatch between the films grown on different electrodes. The x-ray analysis attributes this difference to the twin free C r2O3 growth on V2O3 seeding.
Remote Sensing Soil Salinity Map for the San Joaquin Vally, California
NASA Astrophysics Data System (ADS)
Scudiero, E.; Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.
2015-12-01
Soil salinization is a major natural hazard to worldwide agriculture. We present a remote imagery approach that maps salinity within a range (i.e., salinities less than 20 dS m-1, when measured as the electrical conductivity of the soil saturation extract), accuracy, and resolution most relevant to agriculture. A case study is presented for the western San Joaquin Valley (WSJV), California, USA (~870,000 ha of farmland) using multi-year Landsat 7 ETM+ canopy reflectance and the Canopy Response Salinity Index (CRSI). Highly detailed salinity maps for 22 fields (542 ha) established from apparent soil electrical conductivity directed sampling were used as ground-truth (sampled in 2013), totaling over 5000 pixels (30×30 m) with salinity values in the range of 0 to 35.2 dS m-1. Multi-year maximum values of CRSI were used to model soil salinity. In addition, soil type, elevation, meteorological data, and crop type were evaluated as covariates. The fitted model (R2=0.73) was validated: i) with a spatial k-folds (i.e., leave-one-field-out) cross-validation (R2=0.61), ii) versus salinity data from three independent fields (sampled in 2013 and 2014), and iii) by determining the accuracy of the qualitative classification of white crusted land as extremely-saline soils. The effect of land use change is evaluated over 2396 ha in the Broadview Water District from a comparison of salinity mapped in 1991 with salinity predicted in 2013 from the fitted model. From 1991 to 2013 salinity increased significantly over the selected study site, bringing attention to potential negative effects on soil quality of shifting from irrigated agriculture to fallow-land. This is cause for concern since over the 3 years of California's drought (2010-2013) the fallow land in the WSJV increased from 12.7% to 21.6%, due to drastic reduction in water allocations to farmers.
On the structures and mapping of auroral electrostatic potentials
NASA Technical Reports Server (NTRS)
Chiu, Y. T.; Newman, A. L.; Cornwall, J. M.
1981-01-01
The mapping of magnetospheric and ionospheric electric fields in a kinetic model of magnetospheric-ionospheric electrodynamic coupling proposed for the aurora is examined. One feature is the generalization of the kinetic current-potential relationship to the return current region (identified as a region where the parallel drop from magnetosphere to ionosphere is positive); such a return current always exists unless the ionosphere is electrically charged to grossly unphysical values. A coherent phenomenological picture of both the low energy return current and the high energy precipitation of an inverted-V is given. The mapping between magnetospheric and ionospheric electric fields is phrased in terms of a Green's function which acts as a filter, emphasizing magnetospheric latitudinal spatial scales of order (when mapped to the ionosphere) 50 to 150 km. This same length, when multiplied by electric fields just above the ionosphere, sets the scale for potential drops between the ionosphere and equatorial magnetosphere.
NASA Astrophysics Data System (ADS)
Schmitt, D. R.; Welz, M.; Rokosh, C. D.; Pontbriand, M.-C.; Smith, D. G.
2004-05-01
Two-dimensional electric resistivity imaging (ERI) is the most exciting and promising geological tool in geomorphology and stratigraphy since development of ground-penetrating radar. Recent innovations in 2-D ERI provides a non-intrusive mean of efficiently resolving complex shallow subsurface structures under a number of different geological scenarios. In this paper, we test the capacity of ERI to image two large pre-late Wisconsinan-aged valley-fills in central Alberta and north-central Montana. Valley-fills record the history of pre-glacial and glacial sedimentary deposits. These fills are of considerable economical value as groundwater aquifers, aggregate resources (sand and gravel), placers (gold, diamond) and sometime gas reservoirs in Alberta. Although the approximate locations of pre-glacial valley-fills have been mapped, the scarcity of borehole (well log) information and sediment exposures make accurate reconstruction of their stratigraphy and cross-section profiles difficult. When coupled with borehole information, ERI successfully imaged three large pre-glacial valley-fills representing three contrasting geological settings. The Sand Coulee segment of the ancestral Missouri River, which has never been glaciated, is filled by electrically conductive pro-glacial lacustrine deposits over resistive sandstone bedrock. By comparison, the Big Sandy segment of the ancestral Missouri River valley has a complex valley-fill composed of till units interbedded with glaciofluvial gravel and varved clays over conductive shale. The fill is capped by floodplain, paludal and low alluvial fan deposits. The pre-glacial Onoway Valley (the ancestral North Saskatchewan River valley) is filled with thick, resistive fluvial gravel over conductive shale and capped with conductive till. The cross-sectional profile of each surveyed pre-glacial valley exhibits discrete benches (terraces) connected by steep drops, features that are hard to map using only boreholes. Best quality ERI results were obtained along the Sand Coulee and Onoway transects where the contrast between the bedrock and valley-fill was large and the surficial sediment was homogeneous. The effects of decreasing reliability with depth, 3-D anomalies, principles of equivalence and suppression, and surface inhomogeneity on the image quality are discussed.
Sparse Reconstruction of Electric Fields from Radial Magnetic Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeates, Anthony R.
2017-02-10
Accurate estimates of the horizontal electric field on the Sun’s visible surface are important not only for estimating the Poynting flux of magnetic energy into the corona but also for driving time-dependent magnetohydrodynamic models of the corona. In this paper, a method is developed for estimating the horizontal electric field from a sequence of radial-component magnetic field maps. This problem of inverting Faraday’s law has no unique solution. Unfortunately, the simplest solution (a divergence-free electric field) is not realistically localized in regions of nonzero magnetic field, as would be expected from Ohm’s law. Our new method generates instead a localizedmore » solution, using a basis pursuit algorithm to find a sparse solution for the electric field. The method is shown to perform well on test cases where the input magnetic maps are flux balanced in both Cartesian and spherical geometries. However, we show that if the input maps have a significant imbalance of flux—usually arising from data assimilation—then it is not possible to find a localized, realistic, electric field solution. This is the main obstacle to driving coronal models from time sequences of solar surface magnetic maps.« less
The role of rotors in atrial fibrillation
Swarup, Vijay; Narayan, Sanjiv M.
2015-01-01
Despite significant advances in our understanding of atrial fibrillation (AF) mechanisms in the last 15 years, ablation outcomes remain suboptimal. A potential reason is that many ablation techniques focus on anatomic, rather than patient-specific functional targets for ablation. Panoramic contact mapping, incorporating phase analysis, repolarization and conduction dynamics, and oscillations in AF rate, overcomes many prior difficulties with mapping AF. This approach provides evidence that the mechanisms sustaining human AF are deterministic, largely due to stable electrical rotors and focal sources in either atrium. Ablation of such sources (Focal Impulse and Rotor Modulation: FIRM ablation) has been shown to improve ablation outcome compared with conventional ablation alone; independent laboratories directly targeting stable rotors have shown similar results. Clinical trials examining the role of stand-alone FIRM ablation are in progress. Looking forward, translating insights from patient-specific mapping to evidence-based guidelines and clinical practice is the next challenge in improving patient outcomes in AF management. PMID:25713729
L-325 Sagebrush Habitat Mitigation Project: FY2009 Compensation Area Monitoring Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, Robin E.; Sackschewsky, Michael R.
2009-09-29
Annual monitoring in support of the Fluor Daniel Hanford Company (Fluor) Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades was conducted in June 2009. MAP guidelines defined mitigation success for this project as 3000 established sagebrush transplants on a 4.5 ha mitigation site after five monitoring years. Annual monitoring results suggest that an estimated 2130 sagebrush transplants currently grow on the site. Additional activities in support of this project included gathering sagebrush seed and securing a local grower to produce between 2250 and 2500 10-in3 tublings for outplanting during the early winter months of FY2010. If the minimummore » number of seedlings grown for this planting meets quality specifications, and planting conditions are favorable, conservative survival estimates indicate the habitat mitigation goals outlined in the MAP will be met in FY2014.« less
Tomonaga-Luttinger physics in electronic quantum circuits.
Jezouin, S; Albert, M; Parmentier, F D; Anthore, A; Gennser, U; Cavanna, A; Safi, I; Pierre, F
2013-01-01
In one-dimensional conductors, interactions result in correlated electronic systems. At low energy, a hallmark signature of the so-called Tomonaga-Luttinger liquids is the universal conductance curve predicted in presence of an impurity. A seemingly different topic is the quantum laws of electricity, when distinct quantum conductors are assembled in a circuit. In particular, the conductances are suppressed at low energy, a phenomenon called dynamical Coulomb blockade. Here we investigate the conductance of mesoscopic circuits constituted by a short single-channel quantum conductor in series with a resistance, and demonstrate a proposed link to Tomonaga-Luttinger physics. We reformulate and establish experimentally a recently derived phenomenological expression for the conductance using a wide range of circuits, including carbon nanotube data obtained elsewhere. By confronting both conductance data and phenomenological expression with the universal Tomonaga-Luttinger conductance curve, we demonstrate experimentally the predicted mapping between dynamical Coulomb blockade and the transport across a Tomonaga-Luttinger liquid with an impurity.
NASA Astrophysics Data System (ADS)
Jagannadham, K.
2018-05-01
A battery device with graphene platelets as anode, lithium nickel manganese oxide as cathode, and solid-state electrolyte consisting of layers of lithium phosphorous oxynitride and lithium lanthanum titanate is assembled on the stainless steel substrate. The battery in a polymer enclosure is subjected to several electrical tests consisting of charge and discharge cycles at different current and voltage levels. Thermal conductivity of the cathode layer is determined at the end of charge-discharge cycles using transient thermoreflectance. The microstructure and composition of the cathode layer and the interface between the cathode, the anode, and the electrolyte are characterized using scanning electron microscopy and elemental mapping. The decrease in the thermal conductivity of the same cathode observed after each set of electrical test cycles is correlated with the volume changes and formation of low ionic and thermal conductivity lithium oxide and lithium oxychloride at the interface and along porous regions. The interface between the metal current collector and the cathode is also found to be responsible for the increase in thermal resistance. The results indicate that changes in the thermal conductivity of the electrodes provide a measure of the resistance to heat transfer and degradation of ionic transport in the cathode accompanying the charge-discharge cycles in the batteries.
Project MANTIS: A MANTle Induction Simulator for coupling geodynamic and electromagnetic modeling
NASA Astrophysics Data System (ADS)
Weiss, C. J.
2009-12-01
A key component to testing geodynamic hypotheses resulting from the 3D mantle convection simulations is the ability to easily translate the predicted physiochemical state to the model space relevant for an independent geophysical observation, such as earth's seismic, geodetic or electromagnetic response. In this contribution a new parallel code for simulating low-frequency, global-scale electromagnetic induction phenomena is introduced that has the same Earth discretization as the popular CitcomS mantle convection code. Hence, projection of the CitcomS model into the model space of electrical conductivity is greatly simplified, and focuses solely on the node-to-node, physics-based relationship between these Earth parameters without the need for "upscaling", "downscaling", averaging or harmonizing with some other model basis such as spherical harmonics. Preliminary performance tests of the MANTIS code on shared and distributed memory parallel compute platforms shows favorable scaling (>70% efficiency) for up to 500 processors. As with CitcomS, an OpenDX visualization widget (VISMAN) is also provided for 3D rendering and interactive interrogation of model results. Details of the MANTIS code will be briefly discussed here, focusing on compatibility with CitcomS modeling, as will be preliminary results in which the electromagnetic response of a CitcomS model is evaluated. VISMAN rendering of electrical tomography-derived electrical conductivity model overlain by an a 1x1 deg crustal conductivity map. Grey scale represents the log_10 magnitude of conductivity [S/m]. Arrows are horiztonal components of a hypothetical magnetospheric source field used to electromagnetically excite the conductivity model.
NASA Astrophysics Data System (ADS)
Mohsin, Mohammad; Mohd, Aas; Suhaib, M.; Arif, Sajjad; Arif Siddiqui, M.
2017-10-01
In this experimental work, aluminium Al-20Fe-5Cr (in wt.%) matrix reinforced with varying wt.% Al2O3 (0, 10, 20 and 30) and compaction pressure (470, 550 and 600 MPa) were prepared by powder metallurgy technique. The characterization of composites were performed by scanning electron microscopy (SEM), x-ray diffraction (XRD), energy dispersive spectrum (EDS) and elemental mapping. Uniform distribution of Al2O3 in aluminium matrix were observed by elemental mapping. The composites showed an increase in density and hardness by increasing both alumina and compaction pressure. While, electrical conductivity decreased by the addition of alumina. The tribological study of the composites were performed on pin-on-disc apparatus at sliding conditions (applied load 40 N, sliding speed 1.5 m s-1, sliding distance 300 m). The tribological properties of the composites were improved by increasing alumina and compaction pressure. SEM analysis were also carried out to understand wear mechanism of the worn surfaces of various fabricated composites and aluminium matrix.
Mustonen, Satu M; Tissari, Soile; Huikko, Laura; Kolehmainen, Mikko; Lehtola, Markku J; Hirvonen, Arja
2008-05-01
The distribution of drinking water generates soft deposits and biofilms in the pipelines of distribution systems. Disturbances in water distribution can detach these deposits and biofilms and thus deteriorate the water quality. We studied the effects of simulated pressure shocks on the water quality with online analysers. The study was conducted with copper and composite plastic pipelines in a pilot distribution system. The online data gathered during the study was evaluated with Self-Organising Map (SOM) and Sammon's mapping, which are useful methods in exploring large amounts of multivariate data. The objective was to test the usefulness of these methods in pinpointing the abnormal water quality changes in the online data. The pressure shocks increased temporarily the number of particles, turbidity and electrical conductivity. SOM and Sammon's mapping were able to separate these situations from the normal data and thus make those visible. Therefore these methods make it possible to detect abrupt changes in water quality and thus to react rapidly to any disturbances in the system. These methods are useful in developing alert systems and predictive applications connected to online monitoring.
NASA Astrophysics Data System (ADS)
Luculescu, Catalin Romeo; Acasandrei, Adriana Maria; Mustaciosu, Cosmin Catalin; Zamfirescu, Marian; Dinescu, Maria; Calin, Bogdan Stefanita; Popescu, Andrei; Chioibasu, Diana; Cristian, Dan; Paun, Irina Alexandra
2018-03-01
In this work, we demonstrate the efficiency of substrate-mediated electrical stimulation of micropatterned polypyrrole/polyurethane (PPy/PU) composites for enhancing the osteogenesis in osteoblast-like cells. The PPy/PU substrates were obtained by dispersing electrically conductive PPy nanograins within a mechanically resistant PU matrix. Spin-coated PPy/PU layers were micropatterned with predefined 3D geometries by ultrashort laser ablation. Then they were conformally coated by Matrix Assisted Pulsed Laser Evaporation, in order to restore their chemical and electrical integrity. The chemical structure of the laser-processed PPy/PU substrates was investigated by 2D and 3D mapping of the laser-processed areas, via Raman microspectroscopy. In vitro studies revealed that the micropatterned PPy/PU substrates facilitated the topological and electrical communication of the seeded osteoblasts. Specifically, we demonstrated the cells attachment on the predefined 3D micropatterns. More importantly, we found evidence about the cells mineralization inside the 3D micropatterns by investigating the calcium deposits by Energy-Dispersive X-Ray Spectroscopy (EDS) and Alizarin Red staining. We found that the substrate-mediated electrical stimulation of the PPy/PU substrates induced a twofold increase of the Ca deposits in the cultured cells.
A Preliminary Investigation of Hall Thruster Technology
NASA Technical Reports Server (NTRS)
Gallimore, Alec D.
1997-01-01
A three-year, NASA/BMDO-sponsored experimental program to conduct performance and plume plasma property measurements on two Russian Stationary Plasma Thrusters (SPTs) has been completed. The program utilized experimental facilitates at the University of Michigan's Plasmadynamics and Electric Propulsion Laboratory (PEPL). The main features of the proposed effort were as follows: We Characterized Hall thruster [and arcjet] performance by measuring ion exhaust velocity with probes at various thruster conditions. Used a variety of probe diagnostics in the thruster plume to measure plasma properties and flow properties including T(sub e) and n(sub e), ion current density and ion energy distribution, and electric fields by mapping plasma potential. Used emission spectroscopy to identify species within the plume and to measure electron temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haemmerli, Alexandre J.; Pruitt, Beth L., E-mail: pruitt@stanford.edu; Harjee, Nahid
The lateral resolution of many electrical scanning probe techniques is limited by the spatial extent of the electrostatic potential profiles produced by their probes. Conventional unshielded conductive atomic force microscopy probes produce broad potential profiles. Shielded probes could offer higher resolution and easier data interpretation in the study of nanostructures. Electrical scanning probe techniques require a method of locating structures of interest, often by mapping surface topography. As the samples studied with these techniques are often photosensitive, the typical laser measurement of cantilever deflection can excite the sample, causing undesirable changes electrical properties. In this work, we present the design,more » fabrication, and characterization of probes that integrate coaxial tips for spatially sharp potential profiles with piezoresistors for self-contained, electrical displacement sensing. With the apex 100 nm above the sample surface, the electrostatic potential profile produced by our coaxial tips is more than 2 times narrower than that of unshielded tips with no long tails. In a scan bandwidth of 1 Hz–10 kHz, our probes have a displacement resolution of 2.9 Å at 293 K and 79 Å at 2 K, where the low-temperature performance is limited by amplifier noise. We show scanning gate microscopy images of a quantum point contact obtained with our probes, highlighting the improvement to lateral resolution resulting from the coaxial tip.« less
Wilson, Gary L.; Richards, Joseph M.
2008-01-01
On December 14, 2005, the embankment of the upper reservoir at the Taum Sauk pump storage facility, Reynolds County, Missouri, catastrophically failed and flooded the East Fork Black River, depositing debris and sediment in Johnson's Shut-Ins State Park, the lower Taum Sauk Reservoir, and downstream in the Black River (location map). A bathymetric survey conducted December 20-22, 2005, documented the bathymetry of the lower Taum Sauk Reservoir after the upper reservoir failure (Rydlund, 2006). After subsequent excavation of sediment and debris from the lower reservoir by Ameren Union Electric (UE), the U.S. Geological Survey (USGS), in collaboration with Roux Associates Inc., conducted a bathymetric survey of the lower Taum Sauk Reservoir on June 16-19, 2008, to prepare a current (2008) bathymetric map (fig. 1) for the lower reservoir, establish a current (2008) elevation-area and capacity table, and determine reservoir area and capacity differences between the 2005 and 2008 bathymetric surveys.
NASA Astrophysics Data System (ADS)
Doolittle, J.; Lin, H.; Jenkinson, B.; Zhou, X.
2006-05-01
The USDA-NRCS and its cooperators use ground-penetrating radar (GPR) and electromagnetic induction (EMI) as rapid, noninvasive tools to support soil surveys at different scales and levels of resolution. The effective use of GPR is site-specific and generally restricted to soils having low electrical conductivity (e.g., soils with low clay and soluble salt contents). In suitable soils, GPR provides high resolution data, which are used to estimate depths to soil horizons and geologic layers that restrict, redirect, and/or concentrate the flow of water through landscapes. In areas of coarse-textured soils, GPR has been used to map spatiotemporal variations in water-table depths and local ground-water flow patterns. Compared with GPR, EMI can be effectively used across a broader spectrum of soils and spatial scales, but provides lower resolution of subsurface features. EMI is used to refine and improve soil maps prepared with traditional soil survey methods. Differences in apparent conductivity (ECa) are associated with different soils and soil properties (e.g., clay, moisture and soluble salt contents). Apparent conductivity maps provide an additional layer of information, which directs soil sampling, aids the identification and delineation of some soil polygons, and enhances the quality of soil maps. More recently, these tools were used to characterize the hydropedological character of a small, steeply sloping, forested watershed. Within the watershed, EMI was used to characterize the principal soil-landscape components, and GPR was used to provide high resolution data on soil depth and layering within colluvial deposits located in swales and depressional areas.
NASA Astrophysics Data System (ADS)
MacDonald, Gordon Alex
This dissertation focuses on characterizing the nanoscale and surface averaged electrical properties of transparent conducting oxide electrodes such as indium tin oxide (ITO) and transparent metal-oxide (MO) electron selective interlayers (ESLs), such as zinc oxide (ZnO), the ability of these materials to rapidly extract photogenerated charges from organic semiconductors (OSCs) used in organic photovoltaic (OPV) cells, and evaluating their impact on the power conversion efficiency (PCE) of OPV devices. In Chapter 1, we will introduce the fundamental principles, benefits, and the key innovations that have advanced this technology. In Chapter 2 of this dissertation, we demonstrate an innovative application of conductive probe atomic force microscopy (CAFM) to map the nanoscale electrical heterogeneity at the interface between ITO, and a well-studied OSC, copper phthalocyanine (CuPc).(MacDonald et al. (2012) ACS Nano, 6, p. 9623) In this work we collected arrays of current-voltage (J-V) curves, using a CAFM probe as the top contact of CuPc/ITO systems, to map the local J-V responses. By comparing J-V responses to known models for charge transport, we were able to determine if the local rate-limiting-step for charge transport is through the OSC (ohmic) or the CuPc/ITO interface (non-ohmic). Chapter 3 focus on the electrical property characterization of RF-magnetron sputtered ZnO (sp-ZnO) ESL films on ITO substrates. We have shown that the energetic alignment of ESLs and the OSC active materials plays a critical role in determining the PCE of OPV devices and UV light soaking sensitivity. We have used a combination of device testing, modeling, and impedance spectroscopy to characterize the effects that energetic alignment has on the charge carrier transport and distribution within the OPV device. In Chapter 4 we demonstrate that the local properties of sp-ZnO films varies as a function of the underlying ITO crystal face. We show that the local ITO crystal face determines the local nucleation and growth of the sp-ZnO films and, in turn, affects the nanoscale distribution of electrical and chemical properties. These studies have contributed to a detailed understanding of the role that electrical heterogeneity, insulating barriers and energetic alignment at MO/OSC interfaces play in OPV PCE.
NASA Astrophysics Data System (ADS)
Kang, L.; Lin, J.; Liu, C.; Zhou, H.; Ren, T.; Yao, Y.
2017-12-01
A new frequency-domain AEM system with a grounded electric source, which was called ground-airborne frequency-domain electromagnetic (GAFEM) system, was proposed to extend penetration depth without compromising the resolution and detection efficiency. In GAFEM system, an electric source was placed on the ground to enlarge the strength of response signals. UVA was chosen as aircraft to reduce interaction noise and improve its ability to adapt to complex terrain. Multi-source and multi-frequency emission method has been researched and applied to improve the efficiency of GAFEM system. 2n pseudorandom sequence was introduced as transmitting waveform, to ensure resolution and detection efficiency. Inversion-procedure based on full-space apparent resistivity formula was built to realize GAFEM method and extend the survey area to non-far field. Based on GAFEM system, two application was conducted in Changchun, China, to map the deep conductive structure. As shown in the results of this exploration, GAFEM system shows its effectiveness to conductive structure, obtaining a depth of about 1km with a source-receiver distance of over 6km. And it shows the same level of resolution with CSAMT method with an over 10 times of efficiency. This extended a range of important applications where the terrain is too complex to be accessed or large penetration depth is required in a large survey area.
NASA Astrophysics Data System (ADS)
Martinez, G.; Vanderlinden, K.; Ordóñez, R.; Muriel, J. L.
2009-04-01
Soil organic carbon (SOC) spatial characterization is necessary to evaluate under what circumstances soil acts as a source or sink of carbon dioxide. However, at the field or catchment scale it is hard to accurately characterize its spatial distribution since large numbers of soil samples are necessary. As an alternative, near-surface geophysical sensor-based information can improve the spatial estimation of soil properties at these scales. Electromagnetic induction (EMI) sensors provide non-invasive and non-destructive measurements of the soil apparent electrical conductivity (ECa), which depends under non-saline conditions on clay content, water content or SOC, among other properties that determine the electromagnetic behavior of the soil. This study deals with the possible use of ECa-derived maps to improve SOC spatial estimation by Simple Kriging with varying local means (SKlm). Field work was carried out in a vertisol in SW Spain. The field is part of a long-term tillage experiment set up in 1982 with three replicates of conventional tillage (CT) and Direct Drilling (DD) plots with unitary dimensions of 15x65m. Shallow and deep (up to 0.8m depth) apparent electrical conductivity (ECas and ECad, respectively) was measured using the EM38-DD EMI sensor. Soil samples were taken from the upper horizont and analyzed for their SOC content. Correlation coefficients of ECas and ECad with SOC were low (0.331 and 0.175) due to the small range of SOC values and possibly also to the different support of the ECa and SOC data. Especially the ECas values were higher in the DD plots. The normalized ECa difference (ΔECa), calculated as the difference between the normalized ECas and ECad values, distinguished clearly the CT and DD plots, with the DD plots showing positive ΔECa values and CT plots ΔECa negative values. The field was stratified using fuzzy k-means (FKM) classification of ΔECa (FKM1), and ECas and ECad (FKM2). The FKM1 map mainly showed the difference between CT and DD plots, while the FKM2 map showed both differences between CT and DD and topography-associated features. Using the FKM1 and FKM2 maps as secondary information accounted for 30% of the total SOC variability, whereas plot and management average SOC explained 44 and 41%, respectively. Cross validation of SKlm using FKM2 reduced the RMSE by 8% and increased the efficiency index almost 70% as compared to Ordinary Kriging. This work shows how ECa can improve the spatial characterization of SOC, despite its low correlation and the small size of the plots used in this study.
Deep electrical resistivity structure of northwestern Costa Rica
NASA Astrophysics Data System (ADS)
Brasse, H.; Kapinos, G.; Mütschard, L.; Alvarado, G. E.; Worzewski, T.; Jegen, M.
2009-01-01
First long-period magnetotelluric investigations were conducted in early 2008 in northwestern Costa Rica, along a profile that extends from the coast of the Pacific Ocean, traverses the volcanic arc and ends currently at the Nicaraguan border. The aim of this study is to gain insight into the electrical resistivity structure and thus fluid distribution at the continental margin where the Cocos plate subducts beneath the Caribbean plate. Preliminary two-dimensional models map the only moderately resistive mafic/ultramafic complexes of the Nicoya Peninsula (resistivity of a few hundred Ωm), the conductive forearc and the backarc basins (several Ωm). Beneath the backarc basin the data image a poor conductor in the basement with a clear termination in the south, which may tentatively be interpreted as the Santa Elena Suture. The volcanic arc shows no pronounced anomaly at depth, but a moderate conductor underlies the backarc with a possible connection to the upper mantle. A conductor at deep-crustal levels in the forearc may reflect fluid release from the downgoing slab.
Wynn, Jefferey C.; Urquhart, Scott; Williamson, Mike; Fleming, John B.
2011-01-01
A towed-streamer technology has been developed for mapping placer heavy minerals and dispersed hydrocarbon plumes in the open ocean. The approach uses induced polarization (IP), an electrical measurement that encompasses several different surface-reactive capacitive and electrochemical phenomena, and thus is ideally suited for mapping dispersed or disseminated targets. The application is operated at sea by towing active electrical geophysical streamers behind a ship; a wide area can be covered in three dimensions by folding tow-paths over each other in lawn-mower fashion. This technology has already been proven in laboratory and ocean settings to detect IP-reactive titanium- and rare-earth (REE) minerals such as ilmenite and monazite. By extension, minerals that weather and accumulate/concentrate by a similar mechanism, including gold, platinum, and diamonds, may be rapidly detected and mapped indirectly- even when dispersed and covered with thick, inert sediment. IP is also highly reactive to metal structures such as pipelines and cables. Currently, the only means for mapping an oil-spill plume is to park a large ship in the ocean and drop a sampling string over the side, requiring hours of time per sampling point. The samples must then be chemically analyzed, adding additional time and expense. We believe that an extension of the marine IP technology could also apply to rapidly mapping both seafloor- blanket and disseminated hydrocarbon plumes in the open ocean, as hydrocarbon droplets in conductive seawater are topologically equivalent to a metal-plates-and-dielectric capacitor. Because the effective capacitance would be frequency-dependent on droplet size, the approach we advocate holds the potential to not only map, but also to characterize the evolution and degradation of such a plume over time. In areas where offshore oil field development has been practiced for extended periods, making IP measurements from a towed streamer may be useful for locating buried - nd exposed pipelines, as well as pipeline leaks. We believe this technique will be a more cost-effective method than drop-sampling to map and monitor hydrocarbon plumes in open ocean settings. A marine induced polarization system was used successfully to map a 15 km × 45 km swath of the ocean floor off eastern South Africa with 3-meter sampling along 200-meter-separated profiles. The survey detected titanium-bearing sands up to 15 meters below the seafloor. From preliminary laboratory work it is apparent that we can extend this technology to monitor significant environmental problems including anthropogenic and industrial waste washed into sensitive estuaries and sounds during storm-water runoff episodes, and also to map and characterize dispersed oil plumes in the seawater column in three dimensions, as well as movement and dispersal of both over time.
Modulation of cardiac tissue electrophysiological properties with light-sensitive proteins.
Nussinovitch, Udi; Shinnawi, Rami; Gepstein, Lior
2014-04-01
Optogenetics approaches, utilizing light-sensitive proteins, have emerged as unique experimental paradigms to modulate neuronal excitability. We aimed to evaluate whether a similar strategy could be used to control cardiac-tissue excitability. A combined cell and gene therapy strategy was developed in which fibroblasts were transfected to express the light-activated depolarizing channel Channelrhodopsin-2 (ChR2). Patch-clamp studies confirmed the development of a robust inward current in the engineered fibroblasts following monochromatic blue-light exposure. The engineered cells were co-cultured with neonatal rat cardiomyocytes (or human embryonic stem cell-derived cardiomyocytes) and studied using a multielectrode array mapping technique. These studies revealed the ability of the ChR2-fibroblasts to electrically couple and pace the cardiomyocyte cultures at varying frequencies in response to blue-light flashes. Activation mapping pinpointed the source of this electrical activity to the engineered cells. Similarly, diffuse seeding of the ChR2-fibroblasts allowed multisite optogenetics pacing of the co-cultures, significantly shortening their electrical activation time and synchronizing contraction. Next, optogenetics pacing in an in vitro model of conduction block allowed the resynchronization of the tissue's electrical activity. Finally, the ChR2-fibroblasts were transfected to also express the light-sensitive hyperpolarizing proton pump Archaerhodopsin-T (Arch-T). Seeding of the ChR2/ArchT-fibroblasts allowed to either optogentically pace the cultures (in response to blue-light flashes) or completely suppress the cultures' electrical activity (following continuous illumination with 624 nm monochromatic light, activating ArchT). The results of this proof-of-concept study highlight the unique potential of optogenetics for future biological pacemaking and resynchronization therapy applications and for the development of novel anti-arrhythmic strategies.
Assessment of the geothermal resources of the Socialist Republic of Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, T.; Tien, Phan Cu; Schochert, D.
1997-12-31
More than 125 thermal springs, with temperatures greater than 30{degrees}C have been identified and catalogued by the General Department of Geology of Vietnam. Subsurface data are limited and fewer than 10 areas have been identified, on the basis of chemical geothermometers, as capable of supporting electric power production. Six sites in south-central Vietnam have recently been selected for exploration to determine their development potential for electrical power generation. Selected criteria included surface features, chemical geothermometers, proximity to regional faults trends, and regional requirements for electric power. Site visits were conducted to a total of eight areas in south central Vietnammore » where collateral economic developments suggest the need for a local, reliable source of electricity. Physical and visual information on geothermal springs and wells in Vietnam was compared to Nevada`s geothermal resources. Surface geothermal manifestations in Vietnam appear remarkably similar to those in Nevada. Outcrops adjacent to the geothermal areas indicate that Mesozoic-age granites are the most likely basement rocks. Quaternary basalts mapped throughout the study area may be responsible for the thermal anomaly. Initial exploration efforts will focus on three of the six sites, which together may be able to produce 40 to 60 MWe. A cooperative research program with selected Vietnamese governmental agencies includes geologic mapping, surface geophysical and geochemical surveys, and a graduated schedule of drilling programs, ranging in depth from 100 to 1,000 m. Results will be used to define a detailed, deep drilling and testing program at the three prime sites. Development of geothermal power in this region will boost local economic recovery and add stability to the national electric grid.« less
Hertwich, Edgar G; Gibon, Thomas; Bouman, Evert A; Arvesen, Anders; Suh, Sangwon; Heath, Garvin A; Bergesen, Joseph D; Ramirez, Andrea; Vega, Mabel I; Shi, Lei
2015-05-19
Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11-40 times more copper for photovoltaic systems and 6-14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.
Hertwich, Edgar G.; Gibon, Thomas; Bouman, Evert A.; Arvesen, Anders; Heath, Garvin A.; Bergesen, Joseph D.; Ramirez, Andrea; Vega, Mabel I.; Shi, Lei
2015-01-01
Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11–40 times more copper for photovoltaic systems and 6–14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050. PMID:25288741
NASA Astrophysics Data System (ADS)
Sánchez de Miguel, A.; Zamorano, J.; Pila-Díez, B.; Rubio, J.; Ruiz, R.; Rodríguez-Herranz, I.; González-Pérez, A.
2011-11-01
The most recent data on electricity consumption for public lighting inSpain is presented and compared with light pollution measurements asderived from night satellite imagery. NOAA-MSP images (low-resolution)and higher resolution images obtained with conventional DSLR cameras on board the International Space Station (ISS) have been used.We show that the data can be related to night sky brightness maps with a study conducted within the Comunidad Autónoma de Madrid. Weintend to extend our work to the rest of Spain through tight collaborationwith amateur astronomers.
Compilation of 3D global conductivity model of the Earth for space weather applications
NASA Astrophysics Data System (ADS)
Alekseev, Dmitry; Kuvshinov, Alexey; Palshin, Nikolay
2015-07-01
We have compiled a global three-dimensional (3D) conductivity model of the Earth with an ultimate goal to be used for realistic simulation of geomagnetically induced currents (GIC), posing a potential threat to man-made electric systems. Bearing in mind the intrinsic frequency range of the most intense disturbances (magnetospheric substorms) with typical periods ranging from a few minutes to a few hours, the compiled 3D model represents the structure in depth range of 0-100 km, including seawater, sediments, earth crust, and partly the lithosphere/asthenosphere. More explicitly, the model consists of a series of spherical layers, whose vertical and lateral boundaries are established based on available data. To compile a model, global maps of bathymetry, sediment thickness, and upper and lower crust thicknesses as well as lithosphere thickness are utilized. All maps are re-interpolated on a common grid of 0.25×0.25 degree lateral spacing. Once the geometry of different structures is specified, each element of the structure is assigned either a certain conductivity value or conductivity versus depth distribution, according to available laboratory data and conversion laws. A numerical formalism developed for compilation of the model, allows for its further refinement by incorporation of regional 3D conductivity distributions inferred from the real electromagnetic data. So far we included into our model four regional conductivity models, available from recent publications, namely, surface conductance model of Russia, and 3D conductivity models of Fennoscandia, Australia, and northwest of the United States.
NASA Astrophysics Data System (ADS)
Stillman, D. E.; Grimm, R. E.; MacGregor, J. A.; Sander-Olhoeft, M.; Brown, J.
2016-12-01
The numerous chaos regions, lenticulae and double layer ridges on Europa's surface suggest that pockets of liquid currently exist or did exist. Here we investigate the sensitivity of ice-penetrating radar (IPR) and magnetotelluric (MT) methods to the putative electrical properties of Europa's ice shell, based on a set of plausible ice-shell scenarios and a synthesis of laboratory dielectric spectroscopy measurements of hundreds of ice samples. We evaluate models of the electrical conductivity of the ice shell as a function of impurity content, temperature and liquid vein network tortuosity. Europa's ice shell is estimated to be 5-30 km thick. If its thickness exceeds 10 km, the shell likely convects within its bottom 70%, while the upper part is thermally conductive. These convective downwellings and upwellings are estimated to have core temperatures of 235 K and 253 K, respectively. Downwellings are so cold that they are below of eutectic temperature of most Europa-relevant salts, but not below that of Europa-relevant acids. Given the low temperature of downwelling ice, IPR is expected to penetrate through it. Warmer upwellings may possess significant amounts of unfrozen water if the shell is acid- or salt-rich. The injection of liquid or the melting of acid- or salt-rich ice will eventually lead to refreezing, as the shell conducts away this excess heat. As liquid freezes, impurities are rejected and concentrated in a liquid vein network surrounding relatively pure ice crystals. These vein networks remain liquid as long as the temperature is greater than that of the eutectic of the bulk impurities. Therefore, in upwellings, vein networks should be briny and hence more electrically conductive. The electrical conductivity of these vein networks depends on the initial impurity concentration of the liquid, impurity type, temperature and the tortuosity of any vein networks. The latter property decreases with increasing ice recrystallization. We conclude that IPR will likely be able to map the top of the unfrozen zone, assuming typical marine ice salt concentrations, but not penetrate through it. MT measurements could complement IPR effectively, because they could measure a conductivity depth profile within the unfrozen part of the ice shell, where the electrical conductivity exceeds 0.1 mS/m.
Petrophysical Effects during karstification
NASA Astrophysics Data System (ADS)
Mai, Franziska; Kirsch, Reinhard; Rücker, Carsten; Börner, Frank
2017-04-01
Sinkholes are depression or collapse structures caused by dissolution in the subsurface or subrosion processes and occur in a vast variety of geological settings. They pose a considerable threat to people's safety and can cause severe economic loss, especially in highly populated areas. Commonly, sinkholes are linked to anomalies in groundwater flow and to the heterogeneities in the soluble sediment. To develop an early recognition system of sinkhole instability, unrest and collapse it is necessary to obtain a better understanding of sinkhole generation. With this intent the joint project "SIMULTAN" studies sinkholes applying a combination of structural, geophysical, petrophysical, and hydrological mapping methods, accompanied by sensor development, and multi-scale monitoring. Studying the solution process of gypsum and limestone as well as the accompanying processes and their relation to hydrologic mechanisms from a petrophysical point of view is essential to understand geophysically detected anomalies related to sinkholes. The focus lies on measurements of the complex, frequency dependent electrical conductivity, the self potential and the travel time of elastic waves. First, systematic laboratory measurements of the complex electrical conductivity were conducted on samples consisting of unconsolidated sand. The fully saturated samples differed in the ionic composition of their pore water (e.g. calcium sulfate and/or sodium chloride). The results indicate that it is possible to detect effects of higher gypsum concentration in the ground- or pore-water using electrical conductivity. This includes both the karstificable sediments as well as the adjacent, non-soluble sediments like e.g. clean sand or shaly sand. To monitor karstification and subrosion processes on a field scale, a stationary measuring system was installed in Münsterdorf, Schleswig-Holstein in northern Germany, an area highly at risk of sinkhole development. The complex electrical conductivity is measured in two boreholes, located 5 meters apart. The results of these measurements are used to investigate possible solution of the subterranean chalk.
Using Geophysics to Define Hydrostratigraphic Units in the Edwards and Trinity Aquifers, Texas
NASA Astrophysics Data System (ADS)
Smith, B. D.; Blome, C. D.; Clark, A. K.; Kress, W.; Smith, D. V.
2007-05-01
Airborne and ground geophysical surveys conducted in Uvalde, Medina, and northern Bexar counties, Texas, can be used to define and characterize hydrostratigraphic units of the Edwards and Trinity aquifers. Airborne magnetic surveys have defined numerous Cretaceous intrusive stocks and laccoliths, mainly in Uvalde County, that influence local hydrology and perhaps regional ground-water flow paths. Depositional environments in the aquifers can be classified as shallow water platforms (San Marcos Platform, Edwards Group), shoal and reef facies (Devils River Trend, Devils River Formation), and deeper water basins (Maverick Basin, West Nueces, McKnight, and Salmon Peak Formations). Detailed airborne and ground electromagnetic surveys have been conducted over the Edwards aquifer catchment zone (exposed Trinity aquifer rocks), recharge zone (exposed Edwards aquifer rocks), and artesian zone (confined Edwards) in the Seco Creek area (northeast Uvalde and Medina Counties; Devils River Trend). These geophysical survey data have been used to divide the Edwards exposed within the Balcones fault zone into upper and lower hydrostratigraphic units. Although both units are high electrical resistivity, the upper unit has slightly lower resistivity than the lower unit. The Georgetown Formation, at the top of the Edwards Group has a moderate resistivity. The formations that comprise the upper confining units to the Edwards aquifer rocks have varying resistivities. The Eagleford and Del Rio Groups (mainly clays) have very low resistivities and are excellent electrical marker beds in the Seco Creek area. The Buda Limestone is characterized by high resistivities. Moderate resistivities characterize the Austin Group rocks (mainly chalk). The older Trinity aquifer, underlying the Edwards aquifer rocks, is characterized by less limestone (electrically resistive or low conductivity units) and greater quantities of mudstones (electrically conductive or low resistivity units). In the western area (Devils River Trend and Maverick Basin) of the Trinity aquifer system there are well-defined collapse units and features that are marked by moderate resistivities bracketed by resistive limestone and conductive mudstone of the Glen Rose Limestone. In the central part of the aquifer (San Marcos Platform) the Trinity's lithologies are divided into upper and lower units with further subdivisions into hydrostratigraphic units. These hydrostratigraphic units are well mapped by an airborne electromagnetic survey in Bexar County. Electrical properties of the Edwards aquifer also vary across the fresh-saline water interface where ground and borehole electrical surveys have been conducted. The saline- saturated Edwards is predictably more conductive than the fresh-water saturated rocks. Similar fresh-saline water interfaces exist within the upper confining units of the Edwards aquifer (Carrizo-Wilcox aquifer) and the Trinity aquifer rocks.
NASA Astrophysics Data System (ADS)
Egbert, G.; Evans, R.; Ingate, S.; Livelybrooks, D.; Mickus, K.; Park, S.; Schultz, A.; Unsworth, M.; Wannamaker, P.
2007-12-01
USArray (http://www.iris.edu/USArray) in conjunction with EMSOC (Electromagnetic Studies of the Continents) (http://emsoc.ucr.edu/emsoc) is installing magnetotelluric (MT) stations as part of Earthscope. The MT component of Earthscope consists of permanent (Backbone) and transportable long period stations to record naturally occurring, time varying electric and magnetic fields to produce a regional lithospheric/asthensospheric electrical conductivity map of the United States. The recent arrival of 28 long period MT instruments allows for the final installation of the Backbone stations throughout the US and yearly transportable array studies. The Backbone MT survey consists of 7 stations spaced throughout the continental US with preliminary installation at Soap Creek, Oregon; Parkfield, California; Braden, Missouri and Socorro, New Mexico.Siting and permitting are underway or completed at stations in eastern Montana, northern Wisconsin and Virginia. These stations will be recording for at least five years to determine electrical conductivities at depths that extend into the mantle transition zone. The first transportable array experiment was performed in the summer and fall of 2006 in central and eastern Oregon (Oregon Pilot Project) using equipment loaned from EMSOC. Thirty-one long period MT stations were recorded with 14 to 21 day occupations. Preliminary 3D inverse models indicate several lithospheric electrical conductivity anomalies including a linear zone marked by low-high conductivity transition along the Klamath-Blue Mountain Lineament associated with a linear trend of gravity minima. High electrical conductivity values occur in the upper crust under the accreted terrains in the Blue Mountains region. The second transportable array experiment was performed in the summer and fall of 2007 and completes coverage of the Oregon, Washington, and western Idaho, targeting the Cascadia subduction zone, Precambrian boundaries, and sub-basalt lithologies. The 2008 transportable MT experiment will focus on the Snake River Plain and the Yellowstone Hot Spot. The disposition of future USArray magnetotelluric geotransects will be the subject of an upcoming NSF-supported planning workshop. Time series are available now from the IRIS data center (www.iris.edu/data), and magnetotelluric transfer functions will soon be available.
Evaluation of 2004 Toyota Prius Hybrid Electric Drive System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staunton, R. H.; Ayers, C. W.; Marlino, L. D.
2006-05-01
The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200–1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economymore » compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) – Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available. This report summarizes vehicle-level and subsystem-level test results obtained for the 2004 Prius and various electrical and mechanical subassemblies of its hybrid electric drive system. The primary objective of these tests was to (1) characterize the electrical and mechanical performance of the 2004 Prius, and (2) map the performance of the inverter/motor system over the full design speed and load ranges.« less
Etalon (standard) for surface potential distribution produced by electric activity of the heart.
Szathmáry, V; Ruttkay-Nedecký, I
1981-01-01
The authors submit etalon (standard) equipotential maps as an aid in the evaluation of maps of surface potential distributions in living subjects. They were obtained by measuring potentials on the surface of an electrolytic tank shaped like the thorax. The individual etalon maps were determined in such a way that the parameters of the physical dipole forming the source of the electric field in the tank corresponded to the mean vectorcardiographic parameters measured in a healthy population sample. The technique also allows a quantitative estimate of the degree of non-dipolarity of the heart as the source of the electric field.
NASA Astrophysics Data System (ADS)
Linek, M.; Jungmann, M.; Berlage, T.; Clauser, C.
2005-12-01
Within the Ocean Drilling Program (ODP), image logging tools have been routinely deployed such as the Formation MicroScanner (FMS) or the Resistivity-At-Bit (RAB) tools. Both logging methods are based on resistivity measurements at the borehole wall and therefore are sensitive to conductivity contrasts, which are mapped in color scale images. These images are commonly used to study the structure of the sedimentary rocks and the oceanic crust (petrologic fabric, fractures, veins, etc.). So far, mapping of lithology from electrical images is purely based on visual inspection and subjective interpretation. We apply digital image analysis on electrical borehole wall images in order to develop a method, which augments objective rock identification. We focus on supervised textural pattern recognition which studies the spatial gray level distribution with respect to certain rock types. FMS image intervals of rock classes known from core data are taken in order to train textural characteristics for each class. A so-called gray level co-occurrence matrix is computed by counting the occurrence of a pair of gray levels that are a certain distant apart. Once the matrix for an image interval is computed, we calculate the image contrast, homogeneity, energy, and entropy. We assign characteristic textural features to different rock types by reducing the image information into a small set of descriptive features. Once a discriminating set of texture features for each rock type is found, we are able to discriminate the entire FMS images regarding the trained rock type classification. A rock classification based on texture features enables quantitative lithology mapping and is characterized by a high repeatability, in contrast to a purely visual subjective image interpretation. We show examples for the rock classification between breccias, pillows, massive units, and horizontally bedded tuffs based on ODP image data.
Hole-to-surface resistivity measurements at Gibson Dome (drill hole GD-1) Paradox basin, Utah
Daniels, J.J.
1984-01-01
Hole-to-surface resistivity measurements were made in a deep drill hole (GD-1), in San Juan County, Utah, which penetrated a sequence of sandstone, shale, and evaporite. These measurements were made as part of a larger investigation to study the suitability of an area centered around the Gibson Dome structure for nuclear waste disposal. The magnitude and direction of the total electric field resulting from a current source placed in a drill hole is calculated from potential difference measurements for a grid of closely-spaced stations. A contour map of these data provides a detailed map of the distribution of the electric field away from the drill hole. Computation of the apparent resistivity from the total electric field helps to interpret the data with respect to the ideal situation of a layered earth. Repeating the surface measurements for different source depths gives an indication of variations in the geoelectric section with depth. The quantitative interpretation of the field data at Gibson Dome was hindered by the pressure of a conductive borehole fluid. However, a qualitative interpretation of the field data indicates the geoelectric section around drill hole GD-1 is not perfectly layered. The geoelectric section appears to dip to the northwest, and contains anomalies in the resistivity distribution that may be representative of localized thickening or folding of the salt layers.
Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale.
Aigouy, L; Cazé, A; Gredin, P; Mortier, M; Carminati, R
2014-08-15
We report on an experimental technique to quantify the relative importance of electric and magnetic dipole luminescence from a single nanosource in structured environments. By attaching a Eu^{3+}-doped nanocrystal to a near-field scanning optical microscope tip, we map the branching ratios associated with two electric dipole and one magnetic dipole transitions in three dimensions on a gold stripe. The relative weights of the electric and magnetic radiative local density of states can be recovered quantitatively, based on a multilevel model. This paves the way towards the full electric and magnetic characterization of nanostructures for the control of single emitter luminescence.
Ground geophysical study of the Buckeye mine tailings, Boulder watershed, Montana
McDougal, Robert R.; Smith, Bruce D.
2000-01-01
The Buckeye mine site is located in the Boulder River watershed along Basin Creek, in northern Jefferson County, Montana. This project is part of the Boulder River watershed Abandoned Mine Lands Initiative, and is a collaborative effort between the U.S. Geological Survey and Bureau of Land Management in the U.S. Department of the Interior, and the U.S. Forest Service in the U.S. Department of Agriculture. The site includes a large flotation milltailing deposit, which extends to the stream and meadows below the mine. These tailings contain elevated levels of metals, such as silver, cadmium, copper, lead, and zinc. Metal-rich fluvial tailings containing these metals, are possible sources of ground and surface water contamination. Geophysical methods were used to characterize the sediments at the Buckeye mine site. Ground geophysical surveys, including electromagnetics, DC resistivity, and total field magnetic methods, were used to delineate anomalies that probably correlate with subsurface metal contamination. Subsurface conductivity was mapped using EM-31 and EM-34 terrain conductivity measuring systems. The conductivity maps represent variation of concentration of dissolved solids in the subsurface from a few meters, to an approximate depth of 30 meters. Conductive sulfides several centimeters thick were encountered in a shallow trench, dug in an area of very high conductivity, at a depth of approximately 1 to1.5 meters. Laboratory measurements of samples of the sulfide layers show the conductivity is on the order of 1000 millisiemens. DC resistivity soundings were used to quantify subsurface conductivity variations and to estimate the depth to bedrock. Total field magnetic measurements were used to identify magnetic metals in the subsurface. The EM surveys identified several areas of relatively high conductivity and detected a conductive plume extending to the southwest, toward the stream. This plume correlates well with the potentiometric surface and direction of ground water flow, and with water quality data from monitoring wells in and around the tailings. The electrical geophysical data suggests there has been vertical migration of high dissolved solids. A DC sounding made on a nearby granite outcrop to the north of the mine showed that the shallow conductivity is on the order of 5 millisiemens/m. Granite underlying the mine tailings, with similar electrical properties as the outcropping area, may be more than 30 meters deep.
Kik, Charles; Mouws, Elisabeth M J P; Bogers, Ad J J C; de Groot, Natasja M S
2017-07-01
Atrial fibrillation (AF), an age-related progressive disease, is becoming a worldwide epidemic with a prevalence rate of 33 million. Areas covered: In this expert review, an overview of important results obtained from previous intra-operative mapping studies is provided. In addition, our novel intra-operative high resolution mapping studies, its surgical considerations and data analyses are discussed. Furthermore, the importance of high resolution mapping studies of both sinus rhythm and AF for the development of future AF therapy is underlined by our most recent results. Expert commentary: Progression of AF is determined by the extensiveness of electropathology which is defined as conduction disorders caused by structural damage of atrial tissue. The severity of electropathology is a major determinant of therapy failure. At present, we do not have any diagnostic tool to determine the degree of electropathology in the individual patient and we can thus not select the most optimal treatment modality for the individual patient. An intra-operative, high resolution scale, epicardial mapping approach combined with quantification of electrical parameters may serve as a diagnostic tool to stage AF in the individual patient and to provide patient tailored therapy.
Provost, Jean; Gurev, Viatcheslav; Trayanova, Natalia; Konofagou, Elisa E.
2011-01-01
Background Electromechanical Wave Imaging (EWI) is an entirely non-invasive, ultrasound-based imaging method capable of mapping the electromechanical activation sequence of the ventricles in vivo. Given the broad accessibility of ultrasound scanners in the clinic, the application of EWI could constitute a flexible surrogate for the 3D electrical activation. Objective The purpose of this report is to reproduce the electromechanical wave (EW) using an anatomically-realistic electromechanical model, and establish the capability of EWI to map the electrical activation sequence in vivo when pacing from different locations. Methods EWI was performed in one canine during pacing from three different sites. A high-resolution dynamic model of coupled cardiac electromechanics of the canine heart was used to predict the experimentally recorded electromechanical wave. The simulated 3D electrical activation sequence was then compared with the experimental EW. Results The electrical activation sequence and the EW were highly correlated for all pacing sites. The relationship between the electrical activation and the EW onset was found to be linear with a slope of 1.01 to 1.17 for different pacing schemes and imaging angles. Conclusions The accurate reproduction of the EW in simulations indicates that the model framework is capable of accurately representing the cardiac electromechanics and thus testing new hypotheses. The one-to-one correspondence between the electrical activation sequence and the EW indicates that EWI could be used to map the cardiac electrical activity. This opens the door for further exploration of the technique in assisting in the early detection, diagnosis and treatment monitoring of rhythm dysfunction. PMID:21185403
Optogenetic control of the cardiac conduction system (Conference Presentation)
NASA Astrophysics Data System (ADS)
Crocini, Claudia; Ferrantini, Cecilia; Coppini, Raffaele; Loew, Leslie M.; Cerbai, Elisabetta; Poggesi, Corrado; Pavone, Francesco S.; Sacconi, Leonardo
2016-03-01
Fatal cardiac arrhythmias are a major medical and social issue in Western countries. Current implantable pacemaker/defibrillators have limited effectiveness and are plagued by frequent malfunctions and complications. Here, we aim at setting up a new method to map and control the electrical activity of whole isolated mouse hearts. We employ a transgenic mouse model expressing Channel Rhodopsin-2 (ChR2) in the heart coupled with voltage optical mapping to monitor and control action potential propagation. The whole heart is loaded with the fluorinated red-shifted voltage sensitive dye (di-4-ANBDQPQ) and imaged with the central portion (128 x 128 pixel) of sCMOS camera operating at frame rate of 1.6 kHz. The wide-field imaging system is implemented with a random access ChR2 activation developed using two orthogonally-mounted acousto-optical deflectors (AODs). AODs rapidly scan different sites of the sample with a commutation time of 4 μs, allowing us to design ad hoc ChR2-stimulation pattern. First, we demonstrate the capability of our system in manipulating the conduction system of the whole mouse heart by changing the electrical propagation features. Then, we explore the efficacy of the random access ChR2 stimulation in inducing arrhythmias as well as to restore the cardiac sinus rhythm during an arrhythmic event. This work shows the potentiality of this new method for studying the mechanisms of arrhythmias and reentry in healthy and diseased hearts, as well as the basis of intra-ventricular dyssynchrony.
Real-space mapping of electronic orbitals.
Löffler, Stefan; Bugnet, Matthieu; Gauquelin, Nicolas; Lazar, Sorin; Assmann, Elias; Held, Karsten; Botton, Gianluigi A; Schattschneider, Peter
2017-06-01
Electronic states are responsible for most material properties, including chemical bonds, electrical and thermal conductivity, as well as optical and magnetic properties. Experimentally, however, they remain mostly elusive. Here, we report the real-space mapping of selected transitions between p and d states on the Ångström scale in bulk rutile (TiO 2 ) using electron energy-loss spectrometry (EELS), revealing information on individual bonds between atoms. On the one hand, this enables the experimental verification of theoretical predictions about electronic states. On the other hand, it paves the way for directly investigating electronic states under conditions that are at the limit of the current capabilities of numerical simulations such as, e.g., the electronic states at defects, interfaces, and quantum dots. Copyright © 2017 Elsevier B.V. All rights reserved.
Electrical geophysical study over the Norman Landfill, near Norman, Oklahoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisdorf, R.J.
In 1995 and 1996 the US Geological Survey made 40 Schlumberger dc electrical resistivity soundings at the Norman Landfill, near Norman, Oklahoma. Interpretation of the resistivity data indicates that high resistivities (>300 ohm-m) are related to dry sand, intermediate resistivities (45-300 ohm-m) are related to freshwater saturated sand, and low resistivities (<45 ohm-m) are related to fine-grained materials or materials saturated with the conductive fluids. Interpreted resistivity maps show a low resistivity anomaly that extends from under the landfill to just past a nearby slough. This anomaly corresponds to known areas of ground water contamination. A resistivity cross section, constructedmore » from interpreted Schlumberger soundings, shows that this low resistivity anomaly is about 5 m deep and up to 9 m thick.« less
Passive safety device and internal short tested method for energy storage cells and systems
Keyser, Matthew; Darcy, Eric; Long, Dirk; Pesaran, Ahmad
2015-09-22
A passive safety device for an energy storage cell for positioning between two electrically conductive layers of the energy storage cell. The safety device also comprising a separator and a non-conductive layer. A first electrically conductive material is provided on the non-conductive layer. A first opening is formed through the separator between the first electrically conductive material and one of the electrically conductive layers of the energy storage device. A second electrically conductive material is provided adjacent the first electrically conductive material on the non-conductive layer, wherein a space is formed on the non-conductive layer between the first and second electrically conductive materials. A second opening is formed through the non-conductive layer between the second electrically conductive material and another of the electrically conductive layers of the energy storage device. The first and second electrically conductive materials combine and exit at least partially through the first and second openings to connect the two electrically conductive layers of the energy storage device at a predetermined temperature.
Conductive-probe atomic force microscopy characterization of silicon nanowire
2011-01-01
The electrical conduction properties of lateral and vertical silicon nanowires (SiNWs) were investigated using a conductive-probe atomic force microscopy (AFM). Horizontal SiNWs, which were synthesized by the in-plane solid-liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local current mapping shows that the wires have internal microstructures. The local current-voltage measurements on these horizontal wires reveal a power law behavior indicating several transport regimes based on space-charge limited conduction which can be assisted by traps in the high-bias regime (> 1 V). Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates. The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated. PMID:21711623
Method of Mapping Anomalies in Homogenous Material
NASA Technical Reports Server (NTRS)
Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor)
2016-01-01
An electrical conductor and antenna are positioned in a fixed relationship to one another. Relative lateral movement is generated between the electrical conductor and a homogenous material while maintaining the electrical conductor at a fixed distance from the homogenous material. The antenna supplies a time-varying magnetic field that causes the electrical conductor to resonate and generate harmonic electric and magnetic field responses. Disruptions in at least one of the electric and magnetic field responses during this lateral movement are indicative of a lateral location of a subsurface anomaly. Next, relative out-of-plane movement is generated between the electrical conductor and the homogenous material in the vicinity of the anomaly's lateral location. Disruptions in at least one of the electric and magnetic field responses during this out-of-plane movement are indicative of a depth location of the subsurface anomaly. A recording of the disruptions provides a mapping of the anomaly.
Mapping and predicting sinkholes by integration of remote sensing and spectroscopy methods
NASA Astrophysics Data System (ADS)
Goldshleger, N.; Basson, U.; Azaria, I.
2013-08-01
The Dead Sea coastal area is exposed to the destructive process of sinkhole collapse. The increase in sinkhole activity in the last two decades has been substantial, resulting from the continuous decrease in the Dead Sea's level, with more than 1,000 sinkholes developing as a result of upper layer collapse. Large sinkholes can reach 25 m in diameter. They are concentrated mainly in clusters in several dozens of sites with different characteristics. In this research, methods for mapping, monitoring and predicting sinkholes were developed using active and passive remote-sensing methods: field spectrometer, geophysical ground penetration radar (GPR) and a frequency domain electromagnetic instrument (FDEM). The research was conducted in three stages: 1) literature review and data collection; 2) mapping regions abundant with sinkholes in various stages and regions vulnerable to sinkholes; 3) analyzing the data and translating it into cognitive and accessible scientific information. Field spectrometry enabled a comparison between the spectral signatures of soil samples collected near active or progressing sinkholes, and those collected in regions with no visual sign of sinkhole occurrence. FDEM and GPR investigations showed that electrical conductivity and soil moisture are higher in regions affected by sinkholes. Measurements taken at different time points over several seasons allowed monitoring the progress of an 'embryonic' sinkhole.
Tomonaga–Luttinger physics in electronic quantum circuits
Jezouin, S.; Albert, M.; Parmentier, F. D.; Anthore, A.; Gennser, U.; Cavanna, A.; Safi, I.; Pierre, F.
2013-01-01
In one-dimensional conductors, interactions result in correlated electronic systems. At low energy, a hallmark signature of the so-called Tomonaga–Luttinger liquids is the universal conductance curve predicted in presence of an impurity. A seemingly different topic is the quantum laws of electricity, when distinct quantum conductors are assembled in a circuit. In particular, the conductances are suppressed at low energy, a phenomenon called dynamical Coulomb blockade. Here we investigate the conductance of mesoscopic circuits constituted by a short single-channel quantum conductor in series with a resistance, and demonstrate a proposed link to Tomonaga–Luttinger physics. We reformulate and establish experimentally a recently derived phenomenological expression for the conductance using a wide range of circuits, including carbon nanotube data obtained elsewhere. By confronting both conductance data and phenomenological expression with the universal Tomonaga–Luttinger conductance curve, we demonstrate experimentally the predicted mapping between dynamical Coulomb blockade and the transport across a Tomonaga–Luttinger liquid with an impurity. PMID:23653214
NASA Astrophysics Data System (ADS)
Farag, Karam S. I.; Abd El-Aal, Mohamed H.; Garamoon, Hassan K. F.
2018-07-01
A joint azimuthal very low frequency-electromagnetic (VLF-EM) and DC-resistivity sounding survey was conducted at the new Ain Shams university campus in Al-Obour city, northwest of Cairo, Egypt. The main objective of the survey was to highlight the applicability and reliability of such non-invasive surface techniques in mapping and monitoring both the vertical and lateral electrical conductivity structures of waterlogged areas, by subterraneous water accumulations, at the campus site. Consequently, a total of 743 azimuthal VLF-EM and 4 DC-resistivity soundings were carried out in June, 2011, 2012 and 2013. The data were interpreted extensively and consistently in terms of two-dimensional (2D) transformed EM equivalent current-density and stitched inverted electrical resistivity models, without using any geological a-priori information. They could be used effectively to image the local anomalous lower electrical resistivity (higher EM equivalent current-density) structures and their near-surface spreading with time, due to the excessive accumulations of subterraneous water at the campus site. The study demonstrated that a regional azimuthal VLF-EM and DC-resistivity sounding survey could help design an optimal dewatering program for the whole city, at greatly reduced execution time.
Electric Motor Thermal Management R&D. Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, Kevin
With the push to reduce component volumes, lower costs, and reduce weight without sacrificing performance or reliability, the challenges associated with thermal management increase for power electronics and electric motors. Thermal management for electric motors will become more important as the automotive industry continues the transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform, and as thermal management improves, there will be a direct trade-off between motor performance, efficiency, cost, and the sizingmore » of electric motors to operate within the thermal constraints. The goal of this research project is to support broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management. Work in FY15 focused on two areas related to motor thermal management: passive thermal performance and active convective cooling. Passive thermal performance emphasized the thermal impact of materials and thermal interfaces among materials within an assembled motor. The research tasks supported the publication of test methods and data for thermal contact resistances and direction-dependent thermal conductivity within an electric motor. Active convective cooling focused on measuring convective heat-transfer coefficients using automatic transmission fluid (ATF). Data for average convective heat transfer coefficients for direct impingement of ATF jets was published. Also, experimental hardware for mapping local-scale and stator-scale convective heat transfer coefficients for ATF jet impingement were developed.« less
Smith, Bruce D.; Smith, David V.; Deszcz-Pan, Maryla; Blome, Charles D.; Hill, Patricia
2011-01-01
This report is a digital data release for multiple geophysical surveys conducted in the Hunton anticline area of south-central Oklahoma. The helicopter electromagnetic and magnetic surveys were flown on March 16–17, 2007, in four areas of the Hunton anticline in south-central Oklahoma. The objective of this project is to improve the understanding of the geohydrologic framework of the Arbuckle-Simpson aquifer. The electromagnetic sensor for the helicopter electromagnetic survey consisted of six different transmitter-receiver orientations that measured the earth's electrical response at six distinct frequencies from approximately 500 Hertz to approximately 115,000 Hertz. The electromagnetic measurements were converted to electrical resistivity values, which were gridded and plotted on georeferenced maps. The map from each frequency represents a different depth of investigation for each area. The range of subsurface investigation is comparable to the depth of shallow groundwater. The four areas selected for the helicopter electromagnetic study, blocks A–D, have different geologic and hydrologic settings. Geophysical and hydrologic information from U.S. Geological Survey studies are being used by modelers and resource managers to develop groundwater resource plans for the Arbuckle-Simpson aquifer.
Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach
Pan, Luan; Adamchuk, Viacheslav I.; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S.; Dabas, Michel
2014-01-01
Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument. PMID:25057135
Hall, David R [Provo, UT; Fox, Joe [Spanish Fork, UT
2008-01-15
A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. An electrical conductor connects both the transmission elements. The electrical conductor comprises at least three electrically conductive elements insulated from each other. In the preferred embodiment the electrical conductor comprises an electrically conducting outer shield, an electrically conducting inner shield and an electrical conducting core. In some embodiments of the present invention, the electrical conductor comprises an electrically insulating jacket. In other embodiments, the electrical conductor comprises a pair of twisted wires. In some embodiments, the electrical conductor comprises semi-conductive material.
Mapping on Slope Seepage Problem using Electrical Resistivity Imaging (ERI)
NASA Astrophysics Data System (ADS)
Hazreek, Z. A. M.; Nizam, Z. M.; Aziman, M.; Dan, M. F. Md; Shaylinda, M. Z. N.; Faizal, T. B. M.; Aishah, M. A. N.; Ambak, K.; Rosli, S.; Rais, Y.; Ashraf, M. I. M.; Alel, M. N. A.
2018-04-01
The stability of slope may influenced by several factors such as its geomaterial properties, geometry and environmental factors. Problematic slope due to seepage phenomenon will influenced the slope strength thus promoting to its failure. In the past, slope seepage mapping suffer from several limitation due to cost, time and data coverage. Conventional engineering tools to detect or mapped the seepage on slope experienced those problems involving large and high elevation of slope design. As a result, this study introduced geophysical tools for slope seepage mapping based on electrical resistivity method. Two spread lines of electrical resistivity imaging were performed on the slope crest using ABEM SAS 4000 equipment. Data acquisition configuration was based on long and short arrangement, schlumberger array and 2.5 m of equal electrode spacing interval. Raw data obtained from data acquisition was analyzed using RES2DINV software. Both of the resistivity results show that the slope studied consists of three different anomalies representing top soil (200 – 1000 Ωm), perched water (10 – 100 Ωm) and hard/dry layer (> 200 Ωm). It was found that seepage problem on slope studied was derived from perched water zones with electrical resistivity value of 10 – 100 Ωm. Perched water zone has been detected at 6 m depth from the ground level with varying thickness at 5 m and over. Resistivity results have shown some good similarity output with reference to borehole data, geological map and site observation thus verified the resistivity results interpretation. Hence, this study has shown that the electrical resistivity imaging was applicable in slope seepage mapping which consider efficient in term of cost, time, data coverage and sustainability.
In-Situ Wire Damage Detection System
NASA Technical Reports Server (NTRS)
Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Medelius, Pedro J. (Inventor); Roberson, Luke B. (Inventor); Tate, Lanetra C. (Inventor); Smith, Trent M. (Inventor); Williams, Martha K. (Inventor)
2014-01-01
An in-situ system for detecting damage in an electrically conductive wire. The system includes a substrate at least partially covered by a layer of electrically conductive material forming a continuous or non-continuous electrically conductive layer connected to an electrical signal generator adapted to delivering electrical signals to the electrically conductive layer. Data is received and processed to identify damage to the substrate or electrically conductive layer. The electrically conductive material may include metalized carbon fibers, a thin metal coating, a conductive polymer, carbon nanotubes, metal nanoparticles or a combination thereof.
Jeong, Woo Chul; Chauhan, Munish; Sajib, Saurav Z K; Kim, Hyung Joong; Serša, Igor; Kwon, Oh In; Woo, Eung Je
2014-09-07
Magnetic Resonance Electrical Impedance Tomography (MREIT) is an MRI method that enables mapping of internal conductivity and/or current density via measurements of magnetic flux density signals. The MREIT measures only the z-component of the induced magnetic flux density B = (Bx, By, Bz) by external current injection. The measured noise of Bz complicates recovery of magnetic flux density maps, resulting in lower quality conductivity and current-density maps. We present a new method for more accurate measurement of the spatial gradient of the magnetic flux density gradient (∇ Bz). The method relies on the use of multiple radio-frequency receiver coils and an interleaved multi-echo pulse sequence that acquires multiple sampling points within each repetition time. The noise level of the measured magnetic flux density Bz depends on the decay rate of the signal magnitude, the injection current duration, and the coil sensitivity map. The proposed method uses three key steps. The first step is to determine a representative magnetic flux density gradient from multiple receiver coils by using a weighted combination and by denoising the measured noisy data. The second step is to optimize the magnetic flux density gradient by using multi-echo magnetic flux densities at each pixel in order to reduce the noise level of ∇ Bz and the third step is to remove a random noise component from the recovered ∇ Bz by solving an elliptic partial differential equation in a region of interest. Numerical simulation experiments using a cylindrical phantom model with included regions of low MRI signal to noise ('defects') verified the proposed method. Experimental results using a real phantom experiment, that included three different kinds of anomalies, demonstrated that the proposed method reduced the noise level of the measured magnetic flux density. The quality of the recovered conductivity maps using denoised ∇ Bz data showed that the proposed method reduced the conductivity noise level up to 3-4 times at each anomaly region in comparison to the conventional method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Du, Liang
A system for different electric loads includes sensors structured to sense voltage and current signals for each of the different electric loads; a hierarchical load feature database having a plurality of layers, with one of the layers including a plurality of different load categories; and a processor. The processor acquires voltage and current waveforms from the sensors for a corresponding one of the different electric loads; maps a voltage-current trajectory to a grid including a plurality of cells, each of which is assigned a binary value of zero or one; extracts a plurality of different features from the mapped gridmore » of cells as a graphical signature of the corresponding one of the different electric loads; derives a category of the corresponding one of the different electric loads from the database; and identifies one of a plurality of different electric load types for the corresponding one of the different electric loads.« less
NASA Astrophysics Data System (ADS)
Wang, Wei; Zhong, Ming; Cheng, Ling; Jin, Lu; Shen, Si
2018-02-01
In the background of building global energy internet, it has both theoretical and realistic significance for forecasting and analysing the ratio of electric energy to terminal energy consumption. This paper firstly analysed the influencing factors of the ratio of electric energy to terminal energy and then used combination method to forecast and analyse the global proportion of electric energy. And then, construct the cointegration model for the proportion of electric energy by using influence factor such as electricity price index, GDP, economic structure, energy use efficiency and total population level. At last, this paper got prediction map of the proportion of electric energy by using the combination-forecasting model based on multiple linear regression method, trend analysis method, and variance-covariance method. This map describes the development trend of the proportion of electric energy in 2017-2050 and the proportion of electric energy in 2050 was analysed in detail using scenario analysis.
NASA Astrophysics Data System (ADS)
Cardenas, M. B.; Befus, K. M.; Zamora, P. B.; Ong, J.; Zlotnik, V. A.; Cook, P. L.; Tait, D. R.; Erler, D.; Santos, I. R.; Siringan, F. P.
2012-12-01
Surface water (SW) and groundwater (GW) interact across multiple spatial and temporal scales and their interaction is important for ecological and biogeochemical functions. The mixing of GW and SW has been challenging to simultaneously map with sufficient detail and coverage. Fortunately, ambient differences in salinity of waters occupying geologic formations and sediment are an ideal target for electrical resistivity imaging (ERI). We present examples of the application of ERI for mapping GW discharge and for understanding GW-SW interactions at: (1) a large regulated river, (2) neighboring lakes with differing salinity, (3) fringing coral reefs and lagoons, (4) beaches, and (5) estuaries. In all these cases, the ER tomograms were critical for improving conceptual understanding of GW-SW interactions. At the Lower Colorado River in Austin, Texas (USA), time-lapse ERI was conducted across a 12-hour dam-release cycle when the river stage varied by 0.7 m. Using temporal variability in electrical resistivity (ER) signatures, we identified a shallow well-flushed hyporheic zone, a transition zone where SW and GW mix, and a stable deep zone hosting only GW. In alkaline lakes in the Nebraska Sand Hills (Nebraska, USA), ER surveys using boat-towed cables allowed for mapping the 3D electrical structure underneath the lake. The tomograms were used to distinguish flow-through lakes, which have decreasing subsurface ER from GW inflow to outflow area, from pure GW discharge lakes, which have uniformly stratified increasing-with-depth ER profiles. Moreover, GW plumes in both discharge and recharge zones were clearly outlined underneath the lake. More than 30 km of ER profiles collected via boat-towed surveys over a fringing coral reef in the Philippines identified areas of high ER within the reef that coincide with resistive zones in the seawater. Analysis of 222Rn of bottom waters and vertical conductivity-temperature-depth measurements show the persistence of fresh GW input into the ocean where low salinity and high 222Rn areas coincided with high ER areas. In Muri Lagoon in Rarotonga Island of the Cook Islands, boat-towed ER surveys similarly showed areas underneath the lagoon that have groundwater that is fresher than seawater. Likewise, there was 222Rn high concentrations throughout the lagoon. Closer to shore, ER surveys using fixed electrodes showed complex 3D mixing processes between seawater and terrestrial-sourced fresh groundwater in beach sediment. Lastly, both boat-towed and fixed surveys across the salt wedge of Werribee Estuary west of Melbourne, Australia, outlined the estuarine salt wedge and its relationship with and effect on fresh and nutrient-laden groundwater discharging to the estuary. The examples discussed illustrate that ERI is a powerful and convenient tool for mapping GW discharge and GW-SW interactions across different scales and diverse environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tooker, Angela C.; Felix, Sarah H.; Pannu, Satinderpall S.
A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.
Simultaneous localization and calibration for electromagnetic tracking systems.
Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor
2016-06-01
In clinical environments, field distortion can cause significant electromagnetic tracking errors. Therefore, dynamic calibration of electromagnetic tracking systems is essential to compensate for measurement errors. It is proposed to integrate the motion model of the tracked instrument with redundant EM sensor observations and to apply a simultaneous localization and mapping algorithm in order to accurately estimate the pose of the instrument and create a map of the field distortion in real-time. Experiments were conducted in the presence of ferromagnetic and electrically-conductive field distorting objects and results compared with those of a conventional sensor fusion approach. The proposed method reduced the tracking error from 3.94±1.61 mm to 1.82±0.62 mm in the presence of steel, and from 0.31±0.22 mm to 0.11±0.14 mm in the presence of aluminum. With reduced tracking error and independence from external tracking devices or pre-operative calibrations, the approach is promising for reliable EM navigation in various clinical procedures. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Liao, Qing; Deng, Yaping; Shi, Xiaoqing; Sun, Yuanyuan; Duan, Weidong; Wu, Jichun
2018-03-03
Precise delineation of contaminant plume distribution is essential for effective remediation of contaminated sites. Traditional in situ investigation methods like direct-push (DP) sampling are accurate, but are usually intrusive and costly. Electrical resistivity tomography (ERT) method, as a non-invasive geophysical technique to map spatiotemporal changes in resistivity of the subsurface, is becoming increasingly popular in environmental science. However, the resolution of ERT for delineation of contaminant plumes still remains controversial. In this study, ERT and DP technique were both conducted at a real inorganic contaminated site. The reliability of the ERT method was validated by the direct comparisons of their investigation results that the resistivity acquired by ERT method is in accordance with the total dissolved solid concentration in groundwater and the overall variation of the total iron content in soil obtained by DP technique. After testifying the applicability of ERT method for contaminant identification, the extension of contaminant plume at the study site was revealed by supplementary ERT surveys conducted subsequently in the surrounding area of the contaminant source zone.
Thermal stability of epitaxial SrRuO3 films as a function of oxygen pressure
NASA Astrophysics Data System (ADS)
Lee, Ho Nyung; Christen, Hans M.; Chisholm, Matthew F.; Rouleau, Christopher M.; Lowndes, Douglas H.
2004-05-01
The thermal stability of electrically conducting SrRuO3 thin films grown by pulsed-laser deposition on (001) SrTiO3 substrates has been investigated by atomic force microscopy and reflection high-energy electron diffraction (RHEED) under reducing conditions (25-800 °C in 10-7-10-2 Torr O2). The as-grown SrRuO3 epitaxial films exhibit atomically flat surfaces with single unit-cell steps, even after exposure to air at room temperature. The films remain stable at temperatures as high as 720 °C in moderate oxygen ambients (>1 mTorr), but higher temperature anneals at lower pressures result in the formation of islands and pits due to the decomposition of SrRuO3. Using in situ RHEED, a temperature and oxygen pressure stability map was determined, consistent with a thermally activated decomposition process having an activation energy of 88 kJ/mol. The results can be used to determine the proper conditions for growth of additional epitaxial oxide layers on high quality electrically conducting SrRuO3.
NASA Astrophysics Data System (ADS)
Siqueira, Glecio; Silva, Jucicléia; Bezerra, Joel; Silva, Enio; Montenegro, Abelardo
2013-04-01
The cultivation of sugar cane in Brazil occupies a prominent place in national production chain, because the country is the main world producer of sugar and ethanol. Accordingly, studies are needed that allow an integrated production and technified, and especially that estimates of crops are consistent with the actual production of each region. The objective of this study was to determine the spatial relationship between the productivity of cane sugar and soil electrical conductivity measured by electromagnetic induction. The field experiment was conducted at an agricultural research site located in Goiana municipality, Pernambuco State, north-east of Brazil (Latitude 07 ° 34 '25 "S, Longitude 34 ° 55' 39" W). The surface of the studied field is 6.5 ha, and its mean height 8.5 m a.s.l. This site has been under sugarcane (Saccharum officinarum sp.) monoculture during the last 24 years and it was managed burning the straw each year after harvesting, renewal of plantation was performed every 7 years. Studied the field is located 10 km east from Atlantic Ocean and it is representative of the regional landscape lowlands, whose soils are affected by salinity seawater, sugarcane plantations with the main economical activity. Soil was classified an orthic the Podsol. The productivity of cane sugar and electrical conductivity were measured in 90 sampling points. The productivity of cane sugar was determined in each of the sampling points in plots of 9 m2. The Apparent soil electrical conductivity (ECa, mS m-1) was measured with an electromagnetic induction device EM38-DD (Geonics Limited). The equipment consists of two units of measurement, one in a horizontal dipole (ECa-H) to provide effective measurement distance of 1.5 m approximately and other one in vertical dipole (ECa-V) with an effective measurement depth of approximately 0.75 m. Data were analyzed using descriptive statistics and geostatistical tools. The results showed that productivity in the study area reached values above 200 t ha-1, with higher values of productivity are concentrated in the region northern terrain. The maps of soil electrical conductivity (ECa-V and ECa-H) showed behavior similar to the productivity of cane sugar. The linear correlation showed values of 0.74 (yield x ECa-H) and 0.85 (yield x ECa-V). The adjusted semivariograms showed no similarity in the spatial pattern of pairs of semivariance. The electrical conductivity measured by electromagnetic induction has been shown as an important tool for predicting the productivity of sugar cane, however more studies are needed to determine the magnitude of the differences between such attributes.
Apparatus for detecting alpha radiation in difficult access areas
Steadman, Peter; MacArthur, Duncan W.
1997-09-02
An electrostatic alpha radiation detector for measuring alpha radiation emitted from inside an enclosure comprising an electrically conductive expandable electrode for insertion into the enclosure. After insertion, the electrically conductive expandable electrode is insulated from the enclosure and defines a decay cavity between the electrically conductive expandable electrode and the enclosure so that air ions generated in the decay cavity are electrostatically captured by the electrically conductive expandable electrode and the enclosure when an electric potential is applied between the electrically conductive expandable electrode and the enclosure. Indicator means are attached to the electrically conductive expandable electrode for indicating an electrical current produced by generation of the air ions generated in the decay cavity by collisions between air molecules and the alpha particles emitted from the enclosure. A voltage source is connected between the indicator means and the electrically conductive enclosure for creating an electric field between the electrically conductive expandable electrode and the enclosure.
Mafi Rad, Masih; Blaauw, Yuri; Dinh, Trang; Pison, Laurent; Crijns, Harry J; Prinzen, Frits W; Vernooy, Kevin
2014-11-01
Current targeted left ventricular (LV) lead placement strategy is directed at the latest activated region during intrinsic activation. However, cardiac resynchronization therapy (CRT) is most commonly applied by simultaneous LV and right ventricular (RV) pacing without contribution from intrinsic conduction. Therefore, targeting the LV lead to the latest activated region during RV pacing might be more appropriate. We investigated the difference in LV electrical activation sequence between left bundle-branch block (LBBB) and RV apex (RVA) pacing using coronary venous electro-anatomic mapping (EAM). Twenty consecutive CRT candidates with LBBB underwent intra-procedural coronary venous EAM during intrinsic activation and RVA pacing using EnSite NavX. Left ventricular lead placement was aimed at the latest activated region during LBBB according to current recommendations. In all patients, LBBB was associated with a circumferential LV activation pattern, whereas RVA pacing resulted in activation from the apex of the heart to the base. In 10 of 20 patients, RVA pacing shifted the latest activated region relative to LBBB. In 18 of 20 patients, the LV lead was successfully positioned in the latest activated region during LBBB. For the whole study population, LV lead electrical delay, expressed as percentage of QRS duration, was significantly shorter during RVA pacing than during LBBB (72 ± 13 vs. 82 ± 5%, P = 0.035). Right ventricular apex pacing alters LV electrical activation pattern in CRT patients with LBBB, and shifts the latest activated region in a significant proportion of these patients. These findings warrant reconsideration of the current practice of LV lead targeting for CRT. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinzierl, Marion; Yeates, Anthony R.; Mackay, Duncan H.
2016-05-20
In this paper, we develop a new technique for driving global non-potential simulations of the Sun’s coronal magnetic field solely from sequences of radial magnetic maps of the solar photosphere. A primary challenge to driving such global simulations is that the required horizontal electric field cannot be uniquely determined from such maps. We show that an “inductive” electric field solution similar to that used by previous authors successfully reproduces specific features of the coronal field evolution in both single and multiple bipole simulations. For these cases, the true solution is known because the electric field was generated from a surfacemore » flux-transport model. The match for these cases is further improved by including the non-inductive electric field contribution from surface differential rotation. Then, using this reconstruction method for the electric field, we show that a coronal non-potential simulation can be successfully driven from a sequence of ADAPT maps of the photospheric radial field, without including additional physical observations which are not routinely available.« less
NASA Astrophysics Data System (ADS)
Ma, Pei; Gu, Shi; Wang, Yves T.; Jenkins, Michael W.; Rollins, Andrew M.
2016-03-01
Optical mapping (OM) using fluorescent voltage-sensitive dyes (VSD) to measure membrane potential is currently the most effective method for electrophysiology studies in early embryonic hearts due to its noninvasiveness and large field-of-view. Conventional OM acquires bright-field images, collecting signals that are integrated in depth and projected onto a 2D plane, not capturing the 3D structure of the sample. Early embryonic hearts, especially at looping stages, have a complicated, tubular geometry. Therefore, conventional OM cannot provide a full picture of the electrical conduction circumferentially around the heart, and may result in incomplete and inaccurate measurements. Here, we demonstrate OM of Hamburger and Hamilton stage 14 embryonic quail hearts using a new commercially-available VSD, Fluovolt, and depth sectioning using a custom built light-sheet microscopy system. Axial and lateral resolution of the system is 14µm and 8µm respectively. For OM imaging, the field-of-view was set to 900µm×900µm to cover the entire heart. 2D over time OM image sets at multiple cross-sections through the looping-stage heart were recorded. The shapes of both atrial and ventricular action potentials acquired were consistent with previous reports using conventional VSD (di-4-ANNEPS). With Fluovolt, signal-to-noise ratio (SNR) is improved significantly by a factor of 2-10 (compared with di-4-ANNEPS) enabling light-sheet OM, which intrinsically has lower SNR due to smaller sampling volumes. Electrophysiologic parameters are rate dependent. Optical pacing was successfully integrated into the system to ensure heart rate consistency. This will also enable accurately gated reconstruction of full four dimensional conduction maps and 3D conduction velocity measurements.
Brosten, Troy R.; Day-Lewis, Frederick D.; Schultz, Gregory M.; Curtis, Gary P.; Lane, John W.
2011-01-01
Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of − 0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)–ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~ 0.5 m followed by a gradual correlation loss of 90% at 2.3 m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter–receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0 ± 0.5 m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation.
Brosten, T.R.; Day-Lewis, F. D.; Schultz, G.M.; Curtis, G.P.; Lane, J.W.
2011-01-01
Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of -0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)-ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~0.5m followed by a gradual correlation loss of 90% at 2.3m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter-receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0??0.5m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation. ?? 2011.
NASA Astrophysics Data System (ADS)
Haseman, Micah; Saadatkia, P.; Winarski, D. J.; Selim, F. A.; Leedy, K. D.; Tetlak, S.; Look, D. C.; Anwand, W.; Wagner, A.
2016-12-01
Aluminum-doped zinc oxide (ZnO:Al) thin films were synthesized by atomic layer deposition on silicon, quartz and sapphire substrates and characterized by x-ray diffraction (XRD), high-resolution scanning electron microscopy, optical spectroscopy, conductivity mapping, Hall effect measurements and positron annihilation spectroscopy. XRD showed that the as-grown films are of single-phase ZnO wurtzite structure and do not contain any secondary or impurity phases. The type of substrate was found to affect the orientation and degree of crystallinity of the films but had no effect on the defect structure or the transport properties of the films. High conductivity of 10-3 Ω cm, electron mobility of 20 cm2/Vs and carrier density of 1020 cm-3 were measured in most films. Thermal treatments in various atmospheres induced a large effect on the thickness, structure and electrical properties of the films. Annealing in a Zn and nitrogen environment at 400°C for 1 h led to a 16% increase in the thickness of the film; this indicates that Zn extracts oxygen atoms from the matrix and forms new layers of ZnO. On the other hand, annealing in a hydrogen atmosphere led to the emergence of an Al2O3 peak in the XRD pattern, which implies that hydrogen and Al atoms compete to occupy Zn sites in the ZnO lattice. Only ambient air annealing had an effect on film defect density and electrical properties, generating reductions in conductivity and electron mobility. Depth-resolved measurements of positron annihilation spectroscopy revealed short positron diffusion lengths and high concentrations of defects in all as-grown films. However, these defects did not diminish the electrical conductivity in the films.
Low resistance thin film organic solar cell electrodes
Forrest, Stephen [Princeton, NJ; Xue, Jiangeng [Piscataway, NJ
2008-01-01
A method which lower the series resistance of photosensitive devices includes providing a transparent film of a first electrically conductive material arranged on a transparent substrate; depositing and patterning a mask over the first electrically conductive material, such that openings in the mask have sloping sides which narrow approaching the substrate; depositing a second electrically conductive material directly onto the first electrically conductive material exposed in the openings of the mask, at least partially filling the openings; stripping the mask, leaving behind reentrant structures of the second electrically conductive material which were formed by the deposits in the openings of the mask; after stripping the mask, depositing a first organic material onto the first electrically conductive material in between the reentrant structures; and directionally depositing a third electrically conductive material over the first organic material deposited in between the reentrant structures, edges of the reentrant structures aligning deposition so that the third electrically conductive material does not directly contact the first electrically conductive material, and does not directly contact the second electrically conductive material.
Flexible neural interfaces with integrated stiffening shank
Tooker, Angela C.; Felix, Sarah H.; Pannu, Satinderpall S.; Shah, Kedar G.; Sheth, Heeral; Tolosa, Vanessa
2016-07-26
A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.
Mapping and energization in the magnetotail. II - Particle acceleration
NASA Technical Reports Server (NTRS)
Kaufmann, Richard L.; Larson, Douglas J.; Lu, Chen
1993-01-01
Mapping with the Tsyganenko (1989) or T89 magnetosphere model has been examined previously. In the present work, an attempt is made to evaluate quantitatively what the selection of T89 implies for steady-state particle energization. The Heppner and Maynard (1987) or HM87 electric field model is mapped from the ionosphere to the equatorial plane, and the electric currents associated with T89 are evaluated. Consideration is also given to the nature of the acceleration that occurs when cross-tail current is suddenly diverted to the ionosphere.
Research on the construction of three level customer service knowledge graph
NASA Astrophysics Data System (ADS)
Cheng, Shi; Shen, Jiajie; Shi, Quan; Cheng, Xianyi
2017-09-01
With the explosion of knowledge and information of the enterprise and the growing demand for intelligent knowledge management and application and improve business performance the knowledge expression and processing of the enterprise has become a hot topic. Aim at the problems of the electric marketing customer service knowledge map (customer service knowledge map) in building theory and method, electric marketing knowledge map of three levels of customer service was discussed, and realizing knowledge reasoning based on Neo4j, achieve good results in practical application.
Study on the Geomagnetic Short Period Variations of the Northwestern Yunnan
NASA Astrophysics Data System (ADS)
Yuan, Y.; Li, Q.; Cai, J.
2015-12-01
The Northwestern Yunnan is located in the interaction area between the Eurasian plate and the India plate. This area has been the ideal place for the research of continental dynamics and the prediction for risk region of strong earthquake for its complex tectonic environment and frequent seismic activity. Therefore the study on the geomagnetic short period variations is of great significance in the exploration of deep electrical structure, analysis of the seismic origin and deep geodynamics in the Northwestern Yunnan of China . This paper is based on the geomagnetic data from the magnetometer array with 8 sites built in the northwestern Yunnan to explore the deep electrical structure by the method of geomagnetic depth sounding. Firstly, we selected a total of 183 geomagnetic short period events at the range of 6min to 120min period. And we found a north northwest dividing line, of which two sides has the opposite value in the vertical component variation amplitude, which indicates the obvious conductivity anomaly underground. Secondly, the contour maps of the ratio of vertical component and horizontal component variation amplitude ΔZ/ΔH in different periods reflects the changes of a high conductivity belt's direction and position. In addition, the induction arrows maps within the period of 2 - 256min also shows that on the two sides of the dividing line the induction vectors deviate from each other, and the amplitude and direction of vectors varies with periods regularly. In the light of this, we infer that a high conductivity belt probably exists, which stretches from the deep crust to uppermost mantle and changes with depth constantly with the reference of magnetotelluric sounding. In the end of this paper, the staggered grid finite difference method is used to model the simplified three-dimensional high conductivity anomaly, and the result shows magnetic field distributions are consistent with the observed geomagnetic short period variations characteristics in different periods, which confirms the existence of the high conductivity belt. According to the characteristics of the short period geomagnetic variation above, in combination with the results of previous studies, the synthetic action of partial melting and fluid might be the origin of the belt.
Matiukas, Arvydas; Mitrea, Bogdan G; Qin, Maochun; Pertsov, Arkady M; Shvedko, Alexander G; Warren, Mark D; Zaitsev, Alexey V; Wuskell, Joseph P; Wei, Mei-de; Watras, James; Loew, Leslie M
2007-11-01
Styryl voltage-sensitive dyes (e.g., di-4-ANEPPS) have been used successfully for optical mapping in cardiac cells and tissues. However, their utility for probing electrical activity deep inside the myocardial wall and in blood-perfused myocardium has been limited because of light scattering and high absorption by endogenous chromophores and hemoglobin at blue-green excitation wavelengths. The purpose of this study was to characterize two new styryl dyes--di-4-ANBDQPQ (JPW-6003) and di-4-ANBDQBS (JPW-6033)--optimized for blood-perfused tissue and intramural optical mapping. Voltage-dependent spectra were recorded in a model lipid bilayer. Optical mapping experiments were conducted in four species (mouse, rat, guinea pig, and pig). Hearts were Langendorff perfused using Tyrode's solution and blood (pig). Dyes were loaded via bolus injection into perfusate. Transillumination experiments were conducted in isolated coronary-perfused pig right ventricular wall preparations. The optimal excitation wavelength in cardiac tissues (650 nm) was >70 nm beyond the absorption maximum of hemoglobin. Voltage sensitivity of both dyes was approximately 10% to 20%. Signal decay half-life due to dye internalization was 80 to 210 minutes, which is 5 to 7 times slower than for di-4-ANEPPS. In transillumination mode, DeltaF/F was as high as 20%. In blood-perfused tissues, DeltaF/F reached 5.5% (1.8 times higher than for di-4-ANEPPS). We have synthesized and characterized two new near-infrared dyes with excitation/emission wavelengths shifted >100 nm to the red. They provide both high voltage sensitivity and 5 to 7 times slower internalization rate compared to conventional dyes. The dyes are optimized for deeper tissue probing and optical mapping of blood-perfused tissue, but they also can be used for conventional applications.
Electrical Resistivity Imaging of Saltwater and Freshwater Along the Coast of Monterey Bay
NASA Astrophysics Data System (ADS)
Knight, R. J.; Pidlisecky, A.; Moran, T.; Goebel, M.
2014-12-01
A coastal region represents a dynamic interface where the processes of saltwater intrusion and freshwater flow create complex spatial and temporal changes in water chemistry. These changes in water chemistry affect both human use of coastal groundwater aquifers and the functioning of coastal ecosystems. Mapping out the subsurface distribution of saltwater and freshwater is a critical step in predicting, and managing, changes in water chemistry in coastal regions. Our research is focused on California's Monterey Bay region where agriculturally-intensive land meets the sensitive marine environment of the Monterey Bay National Marine Sanctuary. Along the coast of Monterey Bay extensive groundwater extraction (groundwater provides more than 80% of the area's water supply) has led to saltwater intrusion into aquifers at various locations. To date, the mapping of saltwater intrusion has relied on measurements of changing water chemistry in monitoring wells. But it is challenging with wells to capture the spatially complex hydrostratigraphy resulting from changing depositional environments and numerous faulting events. We suggest that geophysical methods be used to map and monitor the distribution of saltwater and freshwater by acquiring non-invasive, high-resolution continuous images of the subsurface. In a pilot study conducted over the past four years, we used electrical resistivity imaging to successfully identify regions of saltwater and freshwater 150 m below sea level along a 7 km stretch of the southern Monterey Bay coast. We employed large-offset electrical resistance tomography using a 96-electrode system with an overall array length of 860 m. The results showed excellent agreement with measurements in nearby monitoring wells. The large-scale image provided by the geophysical measurements revealed the hydrostratigraphic controls on the spatial distribution of the saltwater/freshwater interface. In October 2014 we will expand this study, using large-offset electrical resistance tomography to image to a depth of 300 m along a 40 km stretch of the Monterey Bay coast. The acquisition of this continuous dataset will provide an improved understanding of the biophysical and human factors controlling the processes of saltwater intrusion and freshwater flow in this coastal region.
Beyond Single Images: Combining the Geosciences in Geothermal Exploration
NASA Astrophysics Data System (ADS)
Malin, P. E.
2012-12-01
Geothermal exploration routinely includes a variety of field surveys, the interpretations of which are usually done separately and then combined in some ad hoc way. Instead, because these data share numerous constraints, combining them in a systematic, quantitative way is far preferable. Aside from the shared geological background, a "joint" analysis can dampen errors and noise in one data set by less sensitive responses in another. In this presentation case histories from several surveys will be used to illustrate these points. By way of background, an example of this type of integrated approach is the improvement in earthquake location when P-wave data are supplemented with S-wave data. These two waves share the effects of the S-wave velocity structure through its shear modulus, which the S-wave measures independent of the P-wave. Using only P-waves travel times for event location is thus equivalent to making the acoustic approximation for the elastic rock velocities. When earthquake location combines both phases, not only is this approximation improved, but errors in picking these times are reduced as well. The case histories include 1) mapping fracture orientations -primarily using seismic shear wave splitting and magnetotelluric polarization directions, but supplemented with surface geology and 2) deriving combined porosity and permeability from seismic velocity and resistivity. Shear wave splitting is routinely used to detect fracture orientation since S-waves propagate faster parallel to their direction. However shear wave splitting can also be caused by other features such as 2-D layering. Magnetotelluric polarizations can be the result of fracture orientation, but also with 3-D structural effects. However, combined, the non-fracture related effects are notably different between the two data types. As a result, detecting similar polarization effects in both makes the case for aligned fractures strong. In a similar vein, porosity and permeability play different roles in determining the relationships between seismic velocities and electrical conductivities. Velocities are more sensitive to rocks with different lithology and porosity while electrical conductivities are more sensitive to rocks with different permeability. Change in seismic velocity due to rock density or lithology have less of an effect on electrical conductivity as compared to a similar change in seismic velocity due to porosity. Similarly, a large fluctuation in electrical conductivity is more logically attributed to variation in permeability. The joint quantitative analysis of such data sets includes using, for example, simple linear and more advanced inversion schemes. Combining their inversion creates a subsurface map that is more robust than with either method alone. The combination of sensitivities helps constrain local fluctuations in these properties as well as background noise. The final test is of course in the drilling, recent results of which support the approach described here.
Toward microendoscopy-inspired cardiac optogenetics in vivo: technical overview and perspective
NASA Astrophysics Data System (ADS)
Klimas, Aleksandra; Entcheva, Emilia
2014-08-01
The ability to perform precise, spatially localized actuation and measurements of electrical activity in the heart is crucial in understanding cardiac electrophysiology and devising new therapeutic solutions for control of cardiac arrhythmias. Current cardiac imaging techniques (i.e. optical mapping) employ voltage- or calcium-sensitive fluorescent dyes to visualize the electrical signal propagation through cardiac syncytium in vitro or in situ with very high-spatiotemporal resolution. The extension of optogenetics into the cardiac field, where cardiac tissue is genetically altered to express light-sensitive ion channels allowing electrical activity to be elicited or suppressed in a precise cell-specific way, has opened the possibility for all-optical interrogation of cardiac electrophysiology. In vivo application of cardiac optogenetics faces multiple challenges and necessitates suitable optical systems employing fiber optics to actuate and sense electrical signals. In this technical perspective, we present a compendium of clinically relevant access routes to different parts of the cardiac electrical conduction system based on currently employed catheter imaging systems and determine the quantitative size constraints for endoscopic cardiac optogenetics. We discuss the relevant technical advancements in microendoscopy, cardiac imaging, and optogenetics and outline the strategies for combining them to create a portable, miniaturized fiber-based system for all-optical interrogation of cardiac electrophysiology in vivo.
Structural, chemical and electrical characterisation of conductive graphene-polymer composite films
NASA Astrophysics Data System (ADS)
Brennan, Barry; Spencer, Steve J.; Belsey, Natalie A.; Faris, Tsegie; Cronin, Harry; Silva, S. Ravi P.; Sainsbury, Toby; Gilmore, Ian S.; Stoeva, Zlatka; Pollard, Andrew J.
2017-05-01
Graphene poly-acrylic and PEDOT:PSS nanocomposite films were produced using two alternative commercial graphene powders to explore how the graphene flake dimensions and chemical composition affected the electrical performance of the film. A range of analytical techniques, including scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), were employed to systematically analyse the initial graphene materials as well as the nanocomposite films. Electrical measurements indicated that the sheet resistance of the films was affected by the properties of the graphene flakes used. To further explore the composition of the films, ToF-SIMS mapping was employed and provided a direct means to elucidate the nature of the graphene dispersion in the films and to correlate this with the electrical analysis. These results reveal important implications for how the dispersion of the graphene material in films produced from printable inks can be affected by the type of graphene powder used and the corresponding effect on electrical performance of the nanocomposites. This work provides direct evidence for how accurate and comparable characterisation of the graphene material is required for real-world graphene materials to develop graphene enabled films and proposes a measurement protocol for comparing graphene materials that can be used for international standardisation.
NASA Astrophysics Data System (ADS)
Kim, Ji-Soo; Han, Soo-Hyung; Ryang, Woo-Hun
2001-12-01
Electrical resistivity mapping was conducted to delineate boundaries and architecture of the Eumsung Basin Cretaceous. Basin boundaries are effectively clarified in electrical dipole-dipole resistivity sections as high-resistivity contrast bands. High resistivities most likely originate from the basement of Jurassic granite and Precambrian gneiss, contrasting with the lower resistivities from infilled sedimentary rocks. The electrical properties of basin-margin boundaries are compatible with the results of vertical electrical soundings and very-low-frequency electromagnetic surveys. A statistical analysis of the resistivity sections is tested in terms of standard deviation and is found to be an effective scheme for the subsurface reconstruction of basin architecture as well as the surface demarcation of basin-margin faults and brittle fracture zones, characterized by much higher standard deviation. Pseudo three-dimensional architecture of the basin is delineated by integrating the composite resistivity structure information from two cross-basin E-W magnetotelluric lines and dipole-dipole resistivity lines. Based on statistical analysis, the maximum depth of the basin varies from about 1 km in the northern part to 3 km or more in the middle part. This strong variation supports the view that the basin experienced pull-apart opening with rapid subsidence of the central blocks and asymmetric cross-basinal extension.
Apparatus for detecting alpha radiation in difficult access areas
Steadman, P.; MacArthur, D.W.
1997-09-02
An electrostatic alpha radiation detector for measuring alpha radiation emitted from inside an enclosure comprising an electrically conductive expandable electrode for insertion into the enclosure is disclosed. After insertion, the electrically conductive expandable electrode is insulated from the enclosure and defines a decay cavity between the electrically conductive expandable electrode and the enclosure so that air ions generated in the decay cavity are electrostatically captured by the electrically conductive expandable electrode and the enclosure when an electric potential is applied between the electrically conductive expandable electrode and the enclosure. Indicator means are attached to the electrically conductive expandable electrode for indicating an electrical current produced by generation of the air ions generated in the decay cavity by collisions between air molecules and the alpha particles emitted from the enclosure. A voltage source is connected between the indicator means and the electrically conductive enclosure for creating an electric field between the electrically conductive expandable electrode and the enclosure. 4 figs.
Electrical Resistivity Imaging Below Nuclear Waste Tank Farms at the Hanford Site
NASA Astrophysics Data System (ADS)
Rucker, D. F.; Levitt, M. T.
2006-12-01
The Hanford Site, a Department of Energy nuclear processing facility in eastern Washington, contains a complex series of radiological liquid waste disposal and storage facilities. The primary method of interim storage is the use of large single-shelled steel tanks with capacities of up to 3790 m3 (1 million gallons). The tanks are organized below ground into tank farms, with about 12 tanks per farm. The liquid waste within the tanks is primarily comprised of inorganic salts with minor constituents of heavy metals and radiological metals. The electrical properties of the radiological waste are significantly different to that of the surrounding engineered fill and native geologic formations. Over the past 60 years since the earliest tanks have been in use, many have been known to leak. An electrical resistivity survey was conducted within a tank farm to map the extent of the plumes resulting from historic leaks. Traditional surface-based electrical resistivity surveys resulted in unusable data due to the significant subsurface infrastructure that included a network of delivery pipes, wells, fences, and electrical discharge sources . HGI adapted the resistivity technique to include the site infrastructure as transceivers to augment data density and geometry. The results show a distribution of low resistivity values within the farm in areas that match known historic leak sites. The addition of site infrastructure as sensors demonstrates that the electrical resistivity technique can be used in highly industrial sites.
Wynn, J.; Williamson, M.; Urquhart, S.; Fleming, J.
2011-01-01
A towed-streamer technology has been developed for mapping placer heavy minerals and dispersed hydrocarbon plumes in the open ocean. The approach uses induced polarization (IP), an electrical measurement that encompasses several different surface-reactive capacitive and electrochemical phenomena, and thus is ideally suited for mapping dispersed or disseminated targets. The application is operated at sea by towing active electrical geophysical streamers behind a ship; a wide area can be covered in three dimensions by folding tow-paths over each other in lawn-mower fashion. This technology has already been proven in laboratory and ocean settings to detect IP-reactive titanium-and rare-earth (REE) minerals such as ilmenite and monazite. By extension, minerals that weather and accumulate/concentrate by a similar mechanism, including gold, platinum, and diamonds, may be rapidly detected and mapped indirectly even when dispersed and covered with thick, inert sediment. IP is also highly reactive to metal structures such as pipelines and cables. ?? 2011 MTS.
NASA Astrophysics Data System (ADS)
Zhao, Mingkang; Wi, Hun; Lee, Eun Jung; Woo, Eung Je; In Oh, Tong
2014-10-01
Electrical impedance imaging has the potential to detect an early stage of breast cancer due to higher admittivity values compared with those of normal breast tissues. The tumor size and extent of axillary lymph node involvement are important parameters to evaluate the breast cancer survival rate. Additionally, the anomaly characterization is required to distinguish a malignant tumor from a benign tumor. In order to overcome the limitation of breast cancer detection using impedance measurement probes, we developed the high density trans-admittance mammography (TAM) system with 60 × 60 electrode array and produced trans-admittance maps obtained at several frequency pairs. We applied the anomaly detection algorithm to the high density TAM system for estimating the volume and position of breast tumor. We tested four different sizes of anomaly with three different conductivity contrasts at four different depths. From multifrequency trans-admittance maps, we can readily observe the transversal position and estimate its volume and depth. Specially, the depth estimated values were obtained accurately, which were independent to the size and conductivity contrast when applying the new formula using Laplacian of trans-admittance map. The volume estimation was dependent on the conductivity contrast between anomaly and background in the breast phantom. We characterized two testing anomalies using frequency difference trans-admittance data to eliminate the dependency of anomaly position and size. We confirmed the anomaly detection and characterization algorithm with the high density TAM system on bovine breast tissue. Both results showed the feasibility of detecting the size and position of anomaly and tissue characterization for screening the breast cancer.
Analysis of the BEV Technology Progress of America, Europe, Japan and Korea Based on Patent Map
NASA Astrophysics Data System (ADS)
Yurong, Huang; Yuanyuan, Hou; Jingyan, Zhou; Ru, Liu
2018-02-01
The paper analyzed the Battery Electric Vehicle patent application trend, major country distribution, main technology layout and patentee of America, Europe, Japan and Korea based on patent information from 2006 to 2016 by using patent map method, and visualized the Battery Electric Vehicle technology progress conditions of the four countries and regions in the last decade.
NASA Astrophysics Data System (ADS)
Gross, L.; Shaw, S.
2016-04-01
Mapping the horizontal distribution of permeability is a key problem for the coal seam gas industry. Poststack seismic data with anisotropy attributes provide estimates for fracture density and orientation which are then interpreted in terms of permeability. This approach delivers an indirect measure of permeability and can fail if other sources of anisotropy (for instance stress) come into play. Seismo-electric methods, based on recording the electric signal from pore fluid movements stimulated through a seismic wave, measure permeability directly. In this paper we use numerical simulations to demonstrate that the seismo-electric method is potentially suitable to map the horizontal distribution of permeability changes across coal seams. We propose the use of an amplitude to offset (AVO) analysis of the electrical signal in combination with poststack seismic data collected during the exploration phase. Recording of electrical signals from a simple seismic source can be closer to production planning and operations. The numerical model is based on a sonic wave propagation model under the low frequency, saturated media assumption and uses a coupled high order spectral element and low order finite element solver. We investigate the impact of seam thickness, coal seam layering, layering in the overburden and horizontal heterogeneity of permeability.
Flowing Plasma Interaction with an Electric Sail Tether Element
NASA Technical Reports Server (NTRS)
Schneider, Todd; Vaughn, Jason; Wright, Kenneth; Andersen, Allen; Stone, Nobie
2017-01-01
Electric sails are a relatively new concept for providing high speed propellant-less propulsion. Employing multiple tethers biased to high positive voltage levels (kV), electric sails are designed to gain momentum from the solar wind by repelling solar wind protons. To maximize the area of the sail that interacts with the solar wind, electric sails rely on the formation of a large plasma sheath around each small diameter tether. Motivated by interest in advancing the development of electric sails, a set of laboratory tests has been conducted to study the interaction of a drifting plasma with a sheath formed around a small diameter tether element biased at positive voltages. The laboratory test setup was created with Debye length scaling in mind to offer a path to extrapolate (via modeling) to full scale electric sail missions. Using an instrument known as a Differential Ion Flux Probe (DIFP) the interaction between a positively biased tether element and a drifting plasma has been measured for several scenarios. Clear evidence of the tether element sheath deflecting ions has been obtained. Maps of the flow angle downstream from the tether element have been made and they show the influence of the plasma sheath. Finally, electron current collection measurements have been made for a wide range of plasma conditions and tether element bias voltages. The electron collection data will have an impact on electric sail power requirements, as high voltage power supplies and electron guns will have to be sized to accommodate the electron currents collected by each tether.
Murray, M.M.; Wilfong, D.H.; Lomax, R.E.
1998-12-08
An electrical cable for connecting transient voltage surge suppressors to electrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation. 6 figs.
Time-lapse electrical surveys to locate infiltration zones in weathered hard rock tropical areas
NASA Astrophysics Data System (ADS)
Wubda, M.; Descloitres, M.; Yalo, N.; Ribolzi, O.; Vouillamoz, J. M.; Boukari, M.; Hector, B.; Séguis, L.
2017-07-01
In West Africa, infiltration and groundwater recharge processes in hard rock areas are depending on climatic, surface and subsurface conditions, and are poorly documented. Part of the reason is that identification, location and monitoring of these processes is still a challenge. Here, we explore the potential for time-lapse electrical surveys to bring additional information on these processes for two different climate situations: a semi-arid Sahelian site (north of Burkina and a humid Sudanian site (north of Benin), respectively focusing on indirect (localized) and direct (diffuse) recharge processes. The methodology is based on surveys in dry season and rainy season on typical pond or gully using Electrical Resistivity Tomography (ERT) and frequency electromagnetic (FEM) apparent conductivity mapping. The results show that in the Sahelian zone an indirect recharge occurs as expected, but infiltration doesn't takes place at the center of the pond to the aquifer, but occurs laterally in the banks. In Sudanian zone, the ERT survey shows a direct recharge process as expected, but also a complicated behavior of groundwater dilution, as well as the role of hardpans for fast infiltration. These processes are ascertained by groundwater monitoring in adjacent observing wells. At last, FEM time lapse mapping is found to be difficult to quantitatively interpreted due to the non-uniqueness of the model, clearly evidenced comparing FEM result to auger holes monitoring. Finally, we found that time-lapse ERT can be an efficient way to track infiltration processes across ponds and gullies in both climatic conditions, the Sahelian setting providing results easier to interpret, due to significant resistivity contrasts between dry and rain seasons. Both methods can be used for efficient implementation of punctual sensors for complementary studies. However, FEM time-lapse mapping remains difficult to practice without external information that renders this method less attractive for quantitative interpretation purposes.
NASA Astrophysics Data System (ADS)
Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.
2018-05-01
Seismic events of varying magnitudes have been associated with ruptures along unknown or incompletely mapped buried faults. The 2009 Mw 6.0 Karonga, Malawi earthquake caused a surface rupture length of 14-18 km along a single W-dipping fault [St. Mary Fault (SMF)] on the hanging wall of the North Basin of the Malawi Rift. Prior to this earthquake, there was no known surface expression or knowledge of the presence of this fault. Although the earthquake damage zone is characterized by surface ruptures and coseismic liquefaction-induced sand blows, the origin of the causative fault and the near-surface structure of the rupture zone are not known. We used high-resolution aeromagnetic and electrical resistivity data to elucidate the relationship between surface rupture locations and buried basement structures. We also acquired electrical resistivity tomography (ERT) profiles along and across the surface rupture zone to image the near-surface structure of the damaged zone. We applied mathematical derivative filters to the aeromagnetic data to enhance basement structures underlying the rupture zone and surrounding areas. Although several magnetic lineaments are visible in the basement, mapped surface ruptures align with a single 37 km long, 148°-162°—striking magnetic lineament, and is interpreted as the ruptured normal fault. Inverted ERT profiles reveal three regional geoelectric layers which consist of 15 m thick layer of discontinuous zones of high and low resistivity values, underlain by a 27 m thick zone of high electrical resistivity (up to 100 Ω m) and a basal layer of lower resistivity (1.0-6.0 Ω m) extending from 42 m depth downwards (the maximum achieved depth of investigation). The geoelectric layers are truncated by a zone of electrical disturbance (electrical mélange) coinciding with areas of coseismic surface rupturing and sediment liquefaction along the ruptured. Our study shows that the 2009 Karonga earthquake was associated with the partial rupture of the buried SMF, and illuminates other potential seismogenic buried faults within the Karonga area of the North Basin. Although our electrical surveys were conducted 6 yr after the 2009 Karonga earthquake, we observe that near-surface lenses of electrically conductive sediments imaged by our ERT profiles, coincide with zones of coseismic surface rupture and liquefaction sand blows. We suggest that the presence of these preserved near-surface lenses of potentially water-saturated sand pose potential hazard in the event of a future earthquake in the area. In addition, our ERT profiles reveal structures that could represent relics of previous earthquake events along the SMF. In addition, our study demonstrates that the integration of ERT and aeromagnetic data can be very useful in illuminating seismogenic buried faults, thereby significantly improving seismic hazard analysis in tectonically active areas.
Method of Fault Detection and Rerouting
NASA Technical Reports Server (NTRS)
Gibson, Tracy L. (Inventor); Medelius, Pedro J. (Inventor); Lewis, Mark E. (Inventor)
2013-01-01
A system and method for detecting damage in an electrical wire, including delivering at least one test electrical signal to an outer electrically conductive material in a continuous or non-continuous layer covering an electrically insulative material layer that covers an electrically conductive wire core. Detecting the test electrical signals in the outer conductive material layer to obtain data that is processed to identify damage in the outer electrically conductive material layer.
Cannan, Chad; Bartel, Lewis; Palisch, Terrence; Aldridge, David
2015-01-13
Electrically conductive proppants and methods for detecting, locating, and characterizing same are provided. The electrically conductive proppant can include a substantially uniform coating of an electrically conductive material having a thickness of at least 500 nm. The method can include injecting a hydraulic fluid into a wellbore extending into a subterranean formation at a rate and pressure sufficient to open a fracture therein, injecting into the fracture a fluid containing the electrically conductive proppant, electrically energizing the earth at or near the fracture, and measuring three dimensional (x, y, and z) components of electric and magnetic field responses at a surface of the earth or in an adjacent wellbore.
Tunable charge transfer properties in metal-phthalocyanine heterojunctions.
Siles, P F; Hahn, T; Salvan, G; Knupfer, M; Zhu, F; Zahn, D R T; Schmidt, O G
2016-04-28
Organic materials such as phthalocyanine-based systems present a great potential for organic device applications due to the possibility of integrating films of different organic materials to create organic heterostructures which combine the electrical capabilities of each material. This opens the possibility to precisely engineer and tune new electrical properties. In particular, similar transition metal phthalocyanines demonstrate hybridization and charge transfer properties which could lead to interesting physical phenomena. Although, when considering device dimensions, a better understanding and control of the tuning of the transport properties still remain in the focus of research. Here, by employing conductive atomic force microscopy techniques, we provide an insight about the nanoscale electrical properties and transport mechanisms of MnPc and fluorinated phthalocyanines such as F16CuPc and F16CoPc. We report a transition from typical diode-like transport mechanisms for pure MnPc thin films to space-charge-limited current transport regime (SCLC) for Pc-based heterostructures. The controlled addition of fluorinated phthalocyanine also provides highly uniform and symmetric-polarized transport characteristics with conductance enhancements up to two orders of magnitude depending on the polarization. We present a method to spatially map the mobility of the MnPc/F16CuPc structures with a nanoscale resolution and provide theoretical calculations to support our experimental findings. This well-controlled nanoscale tuning of the electrical properties for metal transition phthalocyanine junctions stands as key step for future phthalocyanine-based electronic devices, where the low dimension charge transfer, mediated by transition metal atoms could be intrinsically linked to a transfer of magnetic moment or spin.
NASA Astrophysics Data System (ADS)
Shibata, K.; Yoshida, K.; Daiguji, K.; Sato, H.; , T., Ii; Hirakawa, K.
2017-10-01
An electric-field control of quantized conductance in metal (gold) quantum point contacts (QPCs) is demonstrated by adopting a liquid-gated electric-double-layer (EDL) transistor geometry. Atomic-scale gold QPCs were fabricated by applying the feedback-controlled electrical break junction method to the gold nanojunction. The electric conductance in gold QPCs shows quantized conductance plateaus and step-wise increase/decrease by the conductance quantum, G0 = 2e2/h, as EDL-gate voltage is swept, demonstrating a modulation of the conductance of gold QPCs by EDL gating. The electric-field control of conductance in metal QPCs may open a way for their application to local charge sensing at room temperature.
Stability and chaos of Rulkov map-based neuron network with electrical synapse
NASA Astrophysics Data System (ADS)
Wang, Caixia; Cao, Hongjun
2015-02-01
In this paper, stability and chaos of a simple system consisting of two identical Rulkov map-based neurons with the bidirectional electrical synapse are investigated in detail. On the one hand, as a function of control parameters and electrical coupling strengthes, the conditions for stability of fixed points of this system are obtained by using the qualitative analysis. On the other hand, chaos in the sense of Marotto is proved by a strict mathematical way. These results could be useful for building-up large-scale neurons networks with specific dynamics and rich biophysical phenomena.
Hole-to-surface resistivity measurements.
Daniels, J.J.
1983-01-01
Hole-to-surface resistivity measurements over a layered volcanic tuff sequence illustrate procedures for gathering, reducing, and interpreting hole-to-surface resistivity data. The magnitude and direction of the total surface electric field resulting from a buried current source is calculated from orthogonal potential difference measurements for a grid of closely spaced stations. A contour map of these data provides a detailed map of the distribution of the electric field away from the drill hole. Resistivity anomalies can be enhanced by calculating the difference between apparent resistivities calculated from the total surface electric field and apparent resistivities for a layered earth model.-from Author
NASA Astrophysics Data System (ADS)
Metwaly, Mohamed; El-Qady, Gad; Massoud, Usama; El-Kenawy, Abeer; Matsushima, Jun; Al-Arifi, Nasser
2010-09-01
Siliyin spring is one of the many natural fresh water springs in the Western Desert of Egypt. It is located at the central part of El-Fayoum Delta, which is a potential place for urban developments and touristic activities. Integrated geoelectrical survey was conducted to facilitate mapping the groundwater resources and the shallow subsurface structures in the area. Twenty-eight transient electromagnetic (TEM) soundings, three vertical electrical soundings (VES) and three electrical resistivity tomography (ERT) profiles were carried out around the Siliyin spring location. The dense cultivation, the rugged topography and the existence of infra structure in the area hindered acquiring more data. The TEM data were inverted jointly with the VES and ERT, and constrained by available geological information. Based on the inversion results, a set of geoelectrical cross-sections have been constructed. The shallow sand to sandy clay layer that forms the shallow aquifer has been completely mapped underneath and around the spring area. Flowing of water from the Siliyin spring is interconnected with the lateral lithological changes from clay to sand soil. Exploration of the extension of Siliyin spring zone is recommended. The interpretation emphasizes the importance of integrating the geoelectrical survey with the available geological information to obtain useful, cheap and fast lithological and structural subsurface information.
Airborne Geophysical Surveys Applied to Hydrocarbon Resource Development Environmental Studies
NASA Astrophysics Data System (ADS)
Smith, B. D.; Ball, L. B.; Finn, C.; Kass, A.; Thamke, J.
2014-12-01
Application of airborne geophysical surveys ranges in scale from detailed site scale such as locating abandoned well casing and saline water plumes to landscape scale for mapping hydrogeologic frameworks pertinent to ground water and tectonic settings relevant to studies of induced seismicity. These topics are important in understanding possible effects of hydrocarbon development on the environment. In addition airborne geophysical surveys can be used in establishing baseline "snapshots", to provide information in beneficial uses of produced waters, and in mapping ground water resources for use in well development. The U.S. Geological Survey (USGS) has conducted airborne geophysical surveys over more than 20 years for applications in energy resource environmental studies. A majority of these surveys are airborne electromagnetic (AEM) surveys to map subsurface electrical conductivity related to plumes of saline waters and more recently to map hydrogeologic frameworks for ground water and plume migration. AEM surveys have been used in the Powder River Basin of Wyoming to characterize the near surface geologic framework for siting produced water disposal ponds and for beneficial utilization in subsurface drip irrigation. A recent AEM survey at the Fort Peck Reservation, Montana, was used to map both shallow plumes from brine pits and surface infrastructure sources and a deeper concealed saline water plume from a failed injection well. Other reported applications have been to map areas geologically favorable for shallow gas that could influence drilling location and design. Airborne magnetic methods have been used to image the location of undocumented abandoned well casings which can serve as conduits to the near surface for coproduced waters. They have also been used in conjunction with geologic framework studies to understand the possible relationships between tectonic features and induced earthquakes in the Raton Basin. Airborne gravity as well as developing deeper mapping AEM surveys could also be effectively used in mapping tectonic features. Airborne radiometric methods have not been routinely used in hydrocarbon environmental studies but might be useful in understanding the surficial distribution of deposits related to naturally occurring radioactive materials.
Electrical conductivity modeling in fractal non-saturated porous media
NASA Astrophysics Data System (ADS)
Wei, W.; Cai, J.; Hu, X.; Han, Q.
2016-12-01
The variety of electrical conductivity in non-saturated conditions is important to study electric conduction in natural sedimentary rocks. The electrical conductivity in completely saturated porous media is a porosity-function representing the complex connected behavior of single conducting phases (pore fluid). For partially saturated conditions, the electrical conductivity becomes even more complicated since the connectedness of pore. Archie's second law is an empirical electrical conductivity-porosity and -saturation model that has been used to predict the formation factor of non-saturated porous rock. However, the physical interpretation of its parameters, e.g., the cementation exponent m and the saturation exponent n, remains questionable. On basis of our previous work, we combine the pore-solid fractal (PSF) model to build an electrical conductivity model in non-saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as fluid electrical conductivities, pore fractal dimension and tortuosity fractal dimension (representing the complex degree of electrical flowing path). We find the presented model with non-saturation-dependent electrical conductivity datasets indicate excellent match between theory and experiments. This means the value of pore fractal dimension and tortuosity fractal dimension change from medium to medium and depends not only on geometrical properties of pore structure but also characteristics of electrical current flowing in the non-saturated porous media.
Swarup, Vijay; Baykaner, Tina; Rostamian, Armand; Daubert, James P; Hummel, John; Krummen, David E; Trikha, Rishi; Miller, John M; Tomassoni, Gery F; Narayan, Sanjiv M
2014-12-01
Several groups report electrical rotors or focal sources that sustain atrial fibrillation (AF) after it has been triggered. However, it is difficult to separate stable from unstable activity in prior studies that examined only seconds of AF. We applied phase-based focal impulse and rotor mapping (FIRM) to study the dynamics of rotors/sources in human AF over prolonged periods of time. We prospectively mapped AF in 260 patients (169 persistent, 61 ± 12 years) at 6 centers in the FIRM registry, using baskets with 64 contact electrodes per atrium. AF was phase mapped (RhythmView, Topera, Menlo Park, CA, USA). AF propagation movies were interpreted by each operator to assess the source stability/dynamics over tens of minutes before ablation. Sources were identified in 258 of 260 of patients (99%), for 2.8 ± 1.4 sources/patient (1.8 ± 1.1 in left, 1.1 ± 0.8 in right atria). While AF sources precessed in stable regions, emanating activity including spiral waves varied from collision/fusion (fibrillatory conduction). Each source lay in stable atrial regions for 4,196 ± 6,360 cycles, with no differences between paroxysmal versus persistent AF (4,290 ± 5,847 vs. 4,150 ± 6,604; P = 0.78), or right versus left atrial sources (P = 0.26). Rotors and focal sources for human AF mapped by FIRM over prolonged time periods precess ("wobble") but remain within stable regions for thousands of cycles. Conversely, emanating activity such as spiral waves disorganize and collide with the fibrillatory milieu, explaining difficulties in using activation mapping or signal processing analyses at fixed electrodes to detect AF rotors. These results provide a rationale for targeted ablation at AF sources rather than fibrillatory spiral waves. © 2014 Wiley Periodicals, Inc.
Imaging thermal conductivity with nanoscale resolution using a scanning spin probe
Laraoui, Abdelghani; Aycock-Rizzo, Halley; Gao, Yang; ...
2015-11-20
The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps.more » The small mass and high thermal conductivity of the diamond host make the time response of our technique short, which we demonstrate by monitoring the tip temperature upon application of a heat pulse. Our approach promises multiple applications, from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions and chemical reactions in various solid-state systems.« less
Novel anisotropic engineered cardiac tissues: studies of electrical propagation.
Bursac, Nenad; Loo, Yihua; Leong, Kam; Tung, Leslie
2007-10-05
The goal of this study was to engineer cardiac tissue constructs with uniformly anisotropic architecture, and to evaluate their electrical function using multi-site optical mapping of cell membrane potentials. Anisotropic polymer scaffolds made by leaching of aligned sucrose templates were seeded with neonatal rat cardiac cells and cultured in rotating bioreactors for 6-14 days. Cells aligned and interconnected inside the scaffolds and when stimulated by a point electrode, supported macroscopically continuous, anisotropic impulse propagation. By culture day 14, the ratio of conduction velocities along vs. across cardiac fibers reached a value of 2, similar to that in native neonatal ventricles, while action potential duration and maximum capture rate, respectively, decreased to 120ms and increased to approximately 5Hz. The shorter culture time and larger scaffold thickness were associated with increased incidence of sustained reentrant arrhythmias. In summary, this study is the first successful attempt to engineer a cm(2)-size, functional anisotropic cardiac tissue patch.
Neutrally buoyant tracers in hydrogeophysics: Field demonstration in fractured rock
NASA Astrophysics Data System (ADS)
Shakas, Alexis; Linde, Niklas; Baron, Ludovic; Selker, John; Gerard, Marie-Françoise; Lavenant, Nicolas; Bour, Olivier; Le Borgne, Tanguy
2017-04-01
Electrical and electromagnetic methods are extensively used to map electrically conductive tracers within hydrogeologic systems. Often, the tracers used consist of dissolved salt in water, leading to a denser mixture than the ambient formation water. Density effects are often ignored and rarely modeled but can dramatically affect transport behavior and introduce dynamics that are unrepresentative of the response obtained with classical tracers (e.g., uranine). We introduce a neutrally buoyant tracer consisting of a mixture of salt, water, and ethanol and monitor its movement during push-pull experiments in a fractured rock aquifer using ground-penetrating radar. Our results indicate a largely reversible transport process and agree with uranine-based push-pull experiments at the site, which is in contrast to results obtained using dense saline tracers. We argue that a shift toward neutrally buoyant tracers in both porous and fractured media would advance hydrogeophysical research and enhance its utility in hydrogeology.
10 CFR 205.303 - Required exhibits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports; Applications; Administrative Procedures and Sanctions Application for Authorization to Transmit Electric Energy... used for the generation and transmission of the electric energy to be exported. The detailed map shall...
NASA Astrophysics Data System (ADS)
Mosayebidorcheh, Taha; Hosseinibalam, Fahimeh; Hassanzadeh, Smaeyl
2017-11-01
In this paper, the effect of atmospheric electrical conductivity on the electromagnetic waves radiated by a vertical electric dipole located in the earth, near the surface of the earth, is investigated. As far as electrical conductivity is concerned, the atmosphere is divided into three areas, in which the electrical conductivity changes with altitude. The Maxwell equations in these areas are investigated as well. Using the differential transform method, the differential equation is solved in a way that atmospheric electrical conductivity is variable. Solving the problem in these areas indicates that electrical conductivity in the middle and lower areas of atmosphere may be ignored. However, in the upper areas of atmosphere, the magnitude of the magnetic field in the ionosphere at a frequency of 10 kHz at night is five times smaller when electrical conductivity is considered compared to when it is neglected.
Livesay, Ronald Jason; Mason, Brandon William; Kuhn, Michael Joseph; Rowe, Nathan Carl
2017-04-04
Disclosed are several examples of a system and method for detecting if an article is being tampered with. Included is a covering made of a substrate that is coated with a layer of an electrically conductive material that forms an electrically conductive surface having an electrical resistance. The covering is configured to at least partially encapsulate the article such that the article cannot be tampered with, without modifying the electrical resistance of the electrically conductive surface of the covering. A sensing device is affixed to the electrically conductive surface of the covering and the sensing device monitors the condition of the covering by producing a signal that is indicative of the electrical resistance of the electrically conductive surface of the covering. A measured electrical resistance that differs from a nominal electrical resistance is indicative of a covering that is being tampered with and an alert is communicated to an observer.
Livesay, Ronald Jason; Mason, Brandon William; Kuhn, Michael Joseph; Rowe, Nathan Carl
2015-10-13
Disclosed are several examples of a system and method for detecting if an article is being tampered with. Included is a covering made of a substrate that is coated with a layer of an electrically conductive material that forms an electrically conductive surface having an electrical resistance. The covering is configured to at least partially encapsulate the article such that the article cannot be tampered with, without modifying the electrical resistance of the electrically conductive surface of the covering. A sensing device is affixed to the electrically conductive surface of the covering and the sensing device monitors the condition of the covering by producing a signal that is indicative of the electrical resistance of the electrically conductive surface of the covering. A measured electrical resistance that differs from a nominal electrical resistance is indicative of a covering that is being tampered with and an alert is communicated to an observer.
NASA Astrophysics Data System (ADS)
Dickey, K.; Holbrook, W. S.; Finn, C.; Auken, E.; Carr, B.; Sims, K. W. W.; Bedrosian, P.; Lowenstern, J. B.; Hurwitz, S.; Pedersen, J. B. B.
2017-12-01
Yellowstone National Park hosts over 10,000 thermal features (e.g. geysers, fumaroles, mud pots, and hot springs), yet little is known about the circulation depth of meteoric water feeding these features, nor the lithological and structural bounds on the pathways that guide deep, hot fluids to the surface. Previous near-surface geophysical studies have been effective in imaging shallow hydrothermal pathways in some areas of the park, but these methods are difficult to conduct over the large areas needed to characterize entire hydrothermal systems. Transient electromagnetic (TEM) soundings and 2D direct current (DC) resistivity profiles show that hydrothermal fluids at active sites have a higher electrical conductivity than the surrounding hydrothermally inactive areas. For that reason, airborne TEM is an effective method to characterize large areas and identify hydrothermally active and inactive zones using electrical conductivity. Aeromagnetic data have been useful in mapping faults that localize hot springs, making the integration of aeromagnetic and EM data effective for structurally characterizing fluid pathways. Here we present the preliminary results from an airborne transient electromagnetic (TEM) and magnetic survey acquired jointly by the U.S. Geological Survey (USGS) and the University of Wyoming (UW) in November 2016. We integrate the EM and magnetic data for the purpose of edge detection of rhyolite flow boundaries as well as source depth of hydrothermal features. The maximum horizontal gradient technique applied on magnetic data is a useful tool that used to estimate source depth as well as indicate faults and fractures. The integration of EM with magnetics allows us to distinguish hydrothermally altered fault systems that guide fluids in the subsurface. We have used preliminary 2D inversions of EM from Aarhus Workbench to delineate rhyolite flow edges in the upper 300-600 meters and cross-checked those boundaries with the aeromagnetic map.
An analysis of electrical conductivity model in saturated porous media
NASA Astrophysics Data System (ADS)
Cai, J.; Wei, W.; Qin, X.; Hu, X.
2017-12-01
Electrical conductivity of saturated porous media has numerous applications in many fields. In recent years, the number of theoretical methods to model electrical conductivity of complex porous media has dramatically increased. Nevertheless, the process of modeling the spatial conductivity distributed function continues to present challenges when these models used in reservoirs, particularly in porous media with strongly heterogeneous pore-space distributions. Many experiments show a more complex distribution of electrical conductivity data than the predictions derived from the experiential model. Studies have observed anomalously-high electrical conductivity of some low-porosity (tight) formations compared to more- porous reservoir rocks, which indicates current flow in porous media is complex and difficult to predict. Moreover, the change of electrical conductivity depends not only on the pore volume fraction but also on several geometric properties of the more extensive pore network, including pore interconnection and tortuosity. In our understanding of electrical conductivity models in porous media, we study the applicability of several well-known methods/theories to electrical characteristics of porous rocks as a function of pore volume, tortuosity and interconnection, to estimate electrical conductivity based on the micro-geometrical properties of rocks. We analyze the state of the art of scientific knowledge and practice for modeling porous structural systems, with the purpose of identifying current limitations and defining a blueprint for future modeling advances. We compare conceptual descriptions of electrical current flow processes in pore space considering several distinct modeling approaches. Approaches to obtaining more reasonable electrical conductivity models are discussed. Experiments suggest more complex relationships between electrical conductivity and porosity than experiential models, particularly in low-porosity formations. However, the available theoretical models combined with simulations do provide insight to how microscale physics affects macroscale electrical conductivity in porous media.
Murray, Matthew M.; Wilfong, Dennis H.; Lomax, Ralph E.
1998-01-01
An electrical cable for connecting transient voltage surge suppressers to ectrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation.
NASA Astrophysics Data System (ADS)
Valois, Remi; Vouillamoz, Jean-Michel; Lun, Sambo; Arnout, Ludovic
2018-06-01
Lack of access to water is the primary constraint to development in rural areas of northwestern Cambodia. Communities lack water for both domestic and irrigation purposes. To provide access to drinking water, governmental and aid agencies have focused on drilling shallow boreholes but they have not had a clear understanding of groundwater potential. The goal of this study has been to improve hydrogeological knowledge of two districts in Oddar Meanchey Province by analyzing borehole lithologs and geophysical data sets. The comparison of 55 time-domain electromagnetic (TEM) soundings and lithologs, as well as 66 magnetic-resonance soundings (MRS) with TEM soundings, allows a better understanding of the links between geology, electrical resistivity and hydrogeological parameters such as the specific yield ( S y) derived from MRS. The main findings are that water inflow and S y are more related to electrical resistivity and elevation than to the litholog description. Indeed, conductive media are associated with a null value of S y, whereas resistive rocks at low elevation are always linked to strictly positive S y. A new methodology was developed to create maps of groundwater reserves based on 612 TEM soundings and the observed relationship between resistivity and S y. TEM soundings were inverted using a quasi-3D modeling approach called `spatially constrained inversion'. Such maps will, no doubt, be very useful for borehole siting and in the economic development of the province because they clearly distinguish areas of high groundwater-reserves potential from areas that lack reserves.
Mapping Aquifer Systems with Airborne Electromagnetics in the Central Valley of California.
Knight, Rosemary; Smith, Ryan; Asch, Ted; Abraham, Jared; Cannia, Jim; Viezzoli, Andrea; Fogg, Graham
2018-03-09
The passage of the Sustainable Groundwater Management Act in California has highlighted a need for cost-effective ways to acquire the data used in building conceptual models of the aquifer systems in the Central Valley of California. One approach would be the regional implementation of the airborne electromagnetic (AEM) method. We acquired 104 line-kilometers of data in the Tulare Irrigation District, in the Central Valley, to determine the depth of investigation (DOI) of the AEM method, given the abundance of electrically conductive clays, and to assess the usefulness of the method for mapping the hydrostratigraphy. The data were high quality providing, through inversion of the data, models displaying the variation in electrical resistivity to a depth of approximately 500 m. In order to transform the resistivity models to interpreted sections displaying lithology, we established the relationship between resistivity and lithology using collocated lithology logs (from drillers' logs) and AEM data. We modeled the AEM response and employed a bootstrapping approach to solve for the range of values in the resistivity model corresponding to sand and gravel, mixed coarse and fine, and clay in the unsaturated and saturated regions. The comparison between the resulting interpretation and an existing cross section demonstrates that AEM can be an effective method for mapping the large-scale hydrostratigraphy of aquifer systems in the Central Valley. The methods employed and developed in this study have widespread application in the use of the AEM method for groundwater management in similar geologic settings. © 2018 The Authors. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.
Bisphenol A Exposure and Cardiac Electrical Conduction in Excised Rat Hearts
Jaimes, Rafael; Asfour, Huda; Swift, Luther M.; Wengrowski, Anastasia M.; Sarvazyan, Narine; Kay, Matthew W.
2014-01-01
Background: Bisphenol A (BPA) is used to produce polycarbonate plastics and epoxy resins that are widely used in everyday products, such as food and beverage containers, toys, and medical devices. Human biomonitoring studies have suggested that a large proportion of the population may be exposed to BPA. Recent epidemiological studies have reported correlations between increased urinary BPA concentrations and cardiovascular disease, yet the direct effects of BPA on the heart are unknown. Objectives: The goal of our study was to measure the effect of BPA (0.1–100 μM) on cardiac impulse propagation ex vivo using excised whole hearts from adult female rats. Methods: We measured atrial and ventricular activation times during sinus and paced rhythms using epicardial electrodes and optical mapping of transmembrane potential in excised rat hearts exposed to BPA via perfusate media. Atrioventricular activation intervals and epicardial conduction velocities were computed using recorded activation times. Results: Cardiac BPA exposure resulted in prolonged PR segment and decreased epicardial conduction velocity (0.1–100 μM BPA), prolonged action potential duration (1–100 μM BPA), and delayed atrioventricular conduction (10–100 μM BPA). These effects were observed after acute exposure (≤ 15 min), underscoring the potential detrimental effects of continuous BPA exposure. The highest BPA concentration used (100 μM) resulted in prolonged QRS intervals and dropped ventricular beats, and eventually resulted in complete heart block. Conclusions: Our results show that acute BPA exposure slowed electrical conduction in excised hearts from female rats. These findings emphasize the importance of examining BPA’s effect on heart electrophysiology and determining whether chronic in vivo exposure can cause or exacerbate conduction abnormalities in patients with preexisting heart conditions and in other high-risk populations. Citation: Posnack NG, Jaimes R III, Asfour H, Swift LM, Wengrowski AM, Sarvazyan N, Kay MW. 2014. Bisphenol A exposure and cardiac electrical conduction in excised rat hearts. Environ Health Perspect 122:384–390; http://dx.doi.org/10.1289/ehp.1206157 PMID:24487307
Apparatus for Use in Determining Surface Conductivity at Microwave Frequencies
NASA Technical Reports Server (NTRS)
Hearn, Chase P. (Inventor)
1995-01-01
An apparatus is provided for use in determining surface conductivity of a flat or shaped conductive material at microwave frequencies. A plate has an electrically conductive surface with first and second holes passing through the plate. An electrically conductive material under test (MUT) is maintained in a spaced apart relationship with the electrically conductive surface of the plate by one or more nonconductive spacers. A first coupling loop is electrically shielded within the first hole while a second coupling loop is electrically shielded within the second hole. A dielectric resonator element is positioned between the first and second coupling loops, while also being positioned closer to the MUT than the electrically conductive surface of the plate. Microwave energy at an operating frequency f is supplied from a signal source to the first coupling loop while microwave energy received at the second coupling loop is measured. The apparatus is capable of measuring the Q-factor of the dielectric resonator situated in the 'cavity' existing between the electrically conductive surface of the plate and the MUT. Surface conductivity of the electrically conductive surface can be determined via interpolation using: 1 ) the measured Q-factor with the electrically conductive surface in place, and 2) the measured Q-factor when the MUT is replaced with reference standards having known surface conductivities.
Magnetic electroanatomical mapping for ablation of focal atrial tachycardias.
Marchlinski, F; Callans, D; Gottlieb, C; Rodriguez, E; Coyne, R; Kleinman, D
1998-08-01
Uniform success for ablation of focal atrial tachycardias has been difficult to achieve using standard catheter mapping and ablation techniques. In addition, our understanding of the complex relationship between atrial anatomy, electrophysiology, and surface ECG P wave morphology remains primitive. The magnetic electroanatomical mapping and display system (CARTO) offers an on-line display of electrical activation and/or signal amplitude related to the anatomical location of the recorded sites in the mapped chamber. A window of electrical interest is established based on signals timed from an electrical reference that usually represents a fixed electrogram recording from the coronary sinus or the atrial appendage. This window of electrical interest is established to include atrial activation prior to the onset of the P wave activity associated with the site of origin of a focal atrial tachycardia. Anatomical and electrical landmarks are defined with limited fluoroscopic imaging support and more detailed global chamber and more focal atrial mapping can be performed with minimal fluoroscopic guidance. A three-dimensional color map representing atrial activation or voltage amplitude at the magnetically defined anatomical sites is displayed with on-line data acquisition. This display can be manipulated to facilitate viewing from any angle. Altering the zoom control, triangle fill threshold, clipping plane, or color range can all enhance the display of a more focal area of interest. We documented the feasibility of using this single mapping catheter technique for localizing and ablating focal atrial tachycardias. In a consecutive series of 8 patients with 9 focal atrial tachycardias, the use of the single catheter CARTO mapping system was associated with ablation success in all but one patient who had a left atrial tachycardia localized to the medial aspect of the orifice of the left atrial appendage. Only low power energy delivery was used in this patient because of the unavailability of temperature monitoring in the early version of the Navistar catheter, the location of the arrhythmia, and the history of arrhythmia control with flecainide. No attempt was made to limit fluoroscopy time in our study population. Nevertheless, despite data acquisition from 120-320 anatomically distinct sites during global and more detailed focal atrial mapping, total fluoroscopy exposure was typically < 30 minutes and was as little as 12 minutes. The detailed display capabilities of the CARTO system appear to offer the potential of enhancing our understanding of atrial anatomy, atrial activation, and their relationship to surface ECG P wave morphology during focal atrial tachycardias.
Geographic footprint of electricity use for water services in the Western U.S.
Tidwell, Vincent C; Moreland, Barbie; Zemlick, Katie
2014-01-01
A significant fraction of our nation's electricity use goes to lift, convey, and treat water, while the resulting expenditures on electricity represent a key budgetary consideration for water service providers. To improve understanding of the electricity-for-water interdependency, electricity used in providing water services is mapped at the regional, state and county level for the 17-conterminous states in the Western U.S. This study is unique in estimating electricity use for large-scale conveyance and agricultural pumping as well as mapping these electricity uses along with that for drinking and wastewater services at a state and county level. Results indicate that drinking and wastewater account for roughly 2% of total West-wide electricity use, while an additional 1.2% is consumed by large-scale conveyance projects and 2.6% is consumed by agricultural pumping. The percent of electricity used for water services varies strongly by state with some as high as 34%, while other states expend less than 1%. Every county in the West uses some electricity for water services; however, there is a large disparity in use ranging from 10 MWh/yr to 5.8 TWh/yr. These results support long-term transmission planning in the Western U.S. by characterizing an important component of the electric load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Hyun Woo; Kim, Jeongmin; Sung, Bong June, E-mail: jjpark@chonnam.ac.kr, E-mail: bjsung@sogang.ac.kr
We investigate how the electrical conductance of microfibers (made of polymers and conductive nanofillers) decreases upon uniaxial deformation by performing both experiments and simulations. Even though various elastic conductors have been developed due to promising applications for deformable electronic devices, the mechanism at a molecular level for electrical conductance change has remained elusive. Previous studies proposed that the decrease in electrical conductance would result from changes in either distances or contact numbers between conductive fillers. In this work, we prepare microfibers of single walled carbon nanotubes (SWCNTs)/polyvinyl alcohol composites and investigate the electrical conductance and the orientation of SWCNTs uponmore » uniaxial deformation. We also perform extensive Monte Carlo simulations, which reproduce experimental results for the relative decrease in conductance and the SWCNTs orientation. We investigate the electrical networks of SWCNTs in microfibers and find that the decrease in the electrical conductance upon uniaxial deformation should be attributed to a subtle change in the topological structure of the electrical network.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colin, P.; Nicoletis, S.; Froidevaux, R.
1996-12-31
A case study is presented of building a map showing the probability that the concentration in polycyclic aromatic hydrocarbon (PAH) exceeds a critical threshold. This assessment is based on existing PAH sample data (direct information) and on an electrical resistivity survey (indirect information). Simulated annealing is used to build a model of the range of possible values for PAH concentrations and of the bivariate relationship between PAH concentrations and electrical resistivity. The geostatistical technique of simple indicator kriging is then used, together with the probabilistic model, to infer, at each node of a grid, the range of possible values whichmore » the PAH concentration can take. The risk map is then extracted for this characterization of the local uncertainty. The difference between this risk map and a traditional iso-concentration map is then discussed in terms of decision-making.« less
NASA Astrophysics Data System (ADS)
Bedrosian, Paul A.; Love, Jeffrey J.
2015-12-01
Empirical impedance tensors obtained from EarthScope magnetotelluric data at sites distributed across the midwestern United States are used to examine the feasibility of mapping magnetic storm induction of geoelectric fields. With these tensors, in order to isolate the effects of Earth conductivity structure, we perform a synthetic analysis—calculating geoelectric field variations induced by a geomagnetic field that is geographically uniform but varying sinusoidally with a chosen set of oscillation frequencies that are characteristic of magnetic storm variations. For north-south oriented geomagnetic oscillations at a period of T0=100 s, induced geoelectric field vectors show substantial geographically distributed differences in amplitude (approximately a factor of 100), direction (up to 130∘), and phase (over a quarter wavelength). These differences are the result of three-dimensional Earth conductivity structure, and they highlight a shortcoming of one-dimensional conductivity models (and other synthetic models not derived from direct geophysical measurement) that are used in the evaluation of storm time geoelectric hazards for the electric power grid industry. A hypothetical extremely intense magnetic storm having 500 nT amplitude at T0=100 s would induce geoelectric fields with an average amplitude across the midwestern United States of about 2.71 V/km, but with a representative site-to-site range of 0.15 V/km to 16.77 V/km. Significant improvement in the evaluation of such hazards will require detailed knowledge of the Earth's interior three-dimensional conductivity structure.
Smith, Bruce D.; Thamke, Joanna N.; Cain, Michael J.; Tyrrell, Christa; Hill, Patricia L.
2006-01-01
This report is a data release for a helicopter electromagnetic and magnetic survey that was conducted during August 2004 in a 275-square-kilometer area that includes the East Poplar oil field on the Fort Peck Indian Reservation. The electromagnetic equipment consisted of six different coil-pair orientations that measured resistivity at separate frequencies from about 400 hertz to about 140,000 hertz. The electromagnetic resistivity data were converted to six electrical conductivity grids, each representing different approximate depths of investigation. The range of subsurface investigation is comparable to the depth of shallow aquifers. Areas of high conductivity in shallow aquifers in the East Poplar oil field area are being delineated by the U.S. Geological Survey, in cooperation with the Fort Peck Assiniboine and Sioux Tribes, in order to map areas of saline-water plumes. Ground electromagnetic methods were first used during the early 1990s to delineate more than 31 square kilometers of high conductivity saline-water plumes in a portion of the East Poplar oil field area. In the 10 years since the first delineation, the quality of water from some wells completed in the shallow aquifers in the East Poplar oil field changed markedly. The extent of saline-water plumes in 2004 likely differs from that delineated in the early 1990s. The geophysical and hydrologic information from U.S. Geological Survey studies is being used by resource managers to develop ground-water resource plans for the area.
A gridded global description of the ionosphere and thermosphere for 1996 - 2000
NASA Astrophysics Data System (ADS)
Ridley, A.; Kihn, E.; Kroehl, H.
The modeling and simulation community has asked for a realistic representation of the near-Earth space environment covering a significant number of years to be used in scientific and engineering applications. The data, data management systems, assimilation techniques, physical models, and computer resources are now available to construct a realistic description of the ionosphere and thermosphere over a 5 year period. DMSP and NOAA POES satellite data and solar emissions were used to compute Hall and Pederson conductances in the ionosphere. Interplanetary magnetic field measurements on the ACE satellite define average electrostatic potential patterns over the northern and southern Polar Regions. These conductances, electric field patterns, and ground-based magnetometer data were input to the Assimilative Mapping of Ionospheric Electrodynamics model to compute the distribution of electric fields and currents in the ionosphere. The Global Thermosphere Ionosphere Model (GITM) used the ionospheric electrodynamic parameters to compute the distribution of particles and fields in the ionosphere and thermosphere. GITM uses a general circulation approach to solve the fundamental equations. Model results offer a unique opportunity to assess the relative importance of different forcing terms under a variety of conditions as well as the accuracies of different estimates of ionospheric electrodynamic parameters.
NASA Astrophysics Data System (ADS)
Besson, Pierre; Dominguez, Cesar; Voarino, Philippe; Garcia-Linares, Pablo; Weick, Clement; Lemiti, Mustapha; Baudrit, Mathieu
2015-09-01
The optical characterization and electrical performance evaluation are essential in the design and optimization of a concentrator photovoltaic system. The geometry, materials, and size of concentrator optics are diverse and different environmental conditions impact their performance. CEA has developed a new concentrator photovoltaic system characterization bench, METHOD, which enables multi-physics optimization studies. The lens and cell temperatures are controlled independently with the METHOD to study their isolated effects on the electrical and optical performance of the system. These influences can be studied in terms of their effect on optical efficiency, focal distance, spectral sensitivity, electrical efficiency, or cell current matching. Furthermore, the irradiance map of a concentrator optic can be mapped to study its variations versus the focal length or the lens temperature. The present work shows this application to analyze the performance of a Fresnel lens linking temperature to optical and electrical performance.
Campbell, Jeremy B [Torrance, CA; Newson, Steve [Redondo Beach, CA
2011-11-15
A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.
What electrical measurements can say about changes in fault systems.
Madden, T R; Mackie, R L
1996-01-01
Earthquake zones in the upper crust are usually more conductive than the surrounding rocks, and electrical geophysical measurements can be used to map these zones. Magnetotelluric (MT) measurements across fault zones that are parallel to the coast and not too far away can also give some important information about the lower crustal zone. This is because the long-period electric currents coming from the ocean gradually leak into the mantle, but the lower crust is usually very resistive and very little leakage takes place. If a lower crustal zone is less resistive it will be a leakage zone, and this can be seen because the MT phase will change as the ocean currents leave the upper crust. The San Andreas Fault is parallel to the ocean boundary and close enough to have a lot of extra ocean currents crossing the zone. The Loma Prieta zone, after the earthquake, showed a lot of ocean electric current leakage, suggesting that the lower crust under the fault zone was much more conductive than normal. It is hard to believe that water, which is responsible for the conductivity, had time to get into the lower crustal zone, so it was probably always there, but not well connected. If this is true, then the poorly connected water would be at a pressure close to the rock pressure, and it may play a role in modifying the fluid pressure in the upper crust fault zone. We also have telluric measurements across the San Andreas Fault near Palmdale from 1979 to 1990, and beginning in 1985 we saw changes in the telluric signals on the fault zone and east of the fault zone compared with the signals west of the fault zone. These measurements were probably seeing a better connection of the lower crust fluids taking place, and this may result in a fluid flow from the lower crust to the upper crust. This could be a factor in changing the strength of the upper crust fault zone. PMID:11607664
Fractured-rock hydrogeophysics with electrically conductive and neutrally buoyant tracers
NASA Astrophysics Data System (ADS)
Shakas, A.; Linde, N.; Baron, L.; Le Borgne, T.; Bour, O.; Lavenant, N.; Gerard, M. F.
2016-12-01
Artificial tracer tests help to characterize and understand the dynamics of groundwater systems. This remains a challenging task, especially when dealing with highly heterogeneous formations in which flow can be very localized and the interpretation of tracer breakthrough curves may be ambiguous. As a complement to tracer tests, ground-penetrating radar (GPR) and electrical resistivity tomography can map the space-time migration of electrically conductive tracers. In hydrogeophysics, the most common tracer is dissolved table salt in water. However, conventional salt tracers lead to density effects that are often ignored. Even less than 1% density variations can have a dramatic effect on transport behavior and affect tracer tests in complex ways. Such effects have been demonstrated in our previous experiments that used single-hole GPR to monitor saline push-pull tests in fractured granite. It is possible to model density effects, but this leads to computational complexity and field dynamics that are not necessarily representative of the natural responses of the system. To minimize density effects, we performed a new set of push-pull tests using a neutrally buoyant and electrically conductive tracer at the same test site located close to Ploemeur, France. This novel tracer consists of a mixture of salt (NaCl), water and pure ethanol. Ethanol has a density of 789 g/L at 20° C and is used to counter-act the salt-induced density increase. Our GPR time-lapse images and tracer breakthrough data indicate a largely reversible transport process that confirms the neutral buoyancy of the tracer. Ethanol is biodegradable and does not pose significant environmental issues. Furthermore, calibration of the neutral-buoyant mixture is straightforward to perform in the field using Archimedes principle. Based on these results, we argue that neutrally buoyant ethanol-salt-water mixtures are ideal for a wide variety of hydrogeophysical tracer tests in porous or fractured media.
NASA Technical Reports Server (NTRS)
Groza, Michael; Krawczynski, Henic; Garson, Alfred, III; Martin, Jerrad W.; Lee, Kuen; Li, Qiang; Beilicke, Matthias; Cui, Yunlong; Buliga, Vladimir; Guo, Mingsheng;
2010-01-01
The Pockels electro-optic effect can be used to investigate the internal electric field in cadmium zinc telluride (CZT) single crystals that are used to fabricate room temperature x and gamma radiation detectors. An agreement is found between the electric field mapping obtained from Pockels effect images and the measurements of charge transients generated by alpha particles. The Pockels effect images of a CZT detector along two mutually perpendicular directions are used to optimize the detector response in a dual anode configuration, a device in which the symmetry of the internal electric field with respect to the anode strips is of critical importance. The Pockels effect is also used to map the electric field in a CZT detector with dual anodes and an attempt is made to find a correlation with the simulated electric potential in such detectors. Finally, the stress-induced birefringence effects seen in the Pockels images are presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groza, Michael; Cui Yunlong; Buliga, Vladimir
2010-01-15
The Pockels electro-optic effect can be used to investigate the internal electric field in cadmium zinc telluride (CZT) single crystals that are used to fabricate room temperature x and gamma radiation detectors. An agreement is found between the electric field mapping obtained from Pockels effect images and the measurements of charge transients generated by alpha particles. The Pockels effect images of a CZT detector along two mutually perpendicular directions are used to optimize the detector response in a dual anode configuration, a device in which the symmetry of the internal electric field with respect to the anode strips is ofmore » critical importance. The Pockels effect is also used to map the electric field in a CZT detector with dual anodes and an attempt is made to find a correlation with the simulated electric potential in such detectors. Finally, the stress-induced birefringence effects seen in the Pockels images are presented and discussed.« less
NASA Astrophysics Data System (ADS)
Kai, Chen; Sheng, Jin; Wang, Shun
2017-09-01
A new type of electromagnetic (EM) receiver has been developed by integrating four capacitive electrodes and a triaxial induction coil with an advanced data logger for tunnel exploration. The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of surface-tunnel-borehole EM detection for deep ore deposit mapping. The use of capacitive electrodes enables us to record the electrical field (E-field) signals from hard rock surfaces, which are high-resistance terrains. A compact triaxial induction coil integrates three independent induction coils for narrow-tunnel exploration applications. A low-time-drift-error clock source is developed for tunnel applications where GPS signals are unavailable. The three main components of our tunnel EM receiver are: (1) four capacitive electrodes for measuring the E-field signal without digging in hard rock regions; (2) a triaxial induction coil sensor for audio-frequency magnetotelluric and controlled-source audio-frequency magnetotelluric signal measurements; and (3) a data logger that allows us to record five-component MT signals with low noise levels, low time-drift-error for the clock source, and high dynamic range. The proposed tunnel EM receiver was successfully deployed in a mine that exhibited with typical noise characteristics. [Figure not available: see fulltext. Caption: The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of the surface-tunnel-borehole EM (STBEM) detection for deep ore deposit mapping. The use of a capacitive electrode enables us to record the electrical field (E-field) signals from hard rock surfaces. A compact triaxial induction coil integrated three induction coils, for narrow-tunnel applications.
Characterizing Drought Impacted Soils in the San Joaquin Valley of California Using Remote Sensing
NASA Astrophysics Data System (ADS)
Wahab, L. M.; Miller, D.; Roberts, D. A.
2017-12-01
California's San Joaquin Valley is an extremely agriculturally productive region of the country, and understanding the state of soils in this region is an important factor in maintaining this high productivity. In this study, we quantified changing soil cover during the drought and analyzed spatial changes in salinity, organic matter, and moisture using unique soil spectral characteristics. We used data from the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) from Hyperspectral Infrared Imager (HyspIRI) campaign flights in 2013 and 2014 over the San Joaquin Valley. A mixture model was applied to both images that identified non- photosynthetic vegetation, green vegetation, and soil cover fractions through image endmembers of each of these three classes. We optimized the spectral library used to identify these classes with Iterative Endmember Selection (IES), and the images were unmixed using Multiple Endmember Spectral Mixture Analysis (MESMA). Maps of soil electrical conductivity, organic matter, soil saturated moisture, and field moisture were generated for the San Joaquin Valley based on indices developed by Ben-Dor et al. [2002]. Representative polygons were chosen to quantify changes between years. Maps of spectrally distinct soils were also generated for 2013 and 2014, in order to determine the spatial distribution of these soil types as well as their temporal dynamics between years. We estimated that soil cover increased by 16% from 2013-2014. Six spectrally distinct soil types were identified for the region, and it was determined that the distribution of these soil types was not constant for most areas between 2013 and 2014. Changes in soil pH, electrical conductivity, and soil moisture were strongly tied in the region between 2013 and 2014.
Petrović, Jelena; Ćujić, Mirjana; Đorđević, Milan; Dragović, Ranko; Gajić, Boško; Miljanić, Šćepan; Dragović, Snežana
2013-06-01
In this study, the specific activity of (137)Cs was determined by gamma-ray spectrometry in 72 surface soil samples and 11 soil profiles collected from the territory of Belgrade 25 years after the Chernobyl accident. Based on the data obtained the external effective gamma dose rates due to (137)Cs were assessed and geographically mapped. The influence of pedogenic factors (pH, specific electrical conductivity, cation exchange capacity, organic matter content, soil particle size and carbonate content) on the spatial and vertical distribution of (137)Cs in soil was estimated through Pearson correlations. The specific activity of (137)Cs in surface soil samples ranged from 1.00 to 180 Bq kg(-1), with a mean value of 29.9 Bq kg(-1), while in soil profiles they ranged from 0.90 to 58.0 Bq kg(-1), with a mean value of 15.3 Bq kg(-1). The mean external effective gamma dose at 1 m above the ground due to (137)Cs in the soil was calculated to be 1.96 nSv h(-1). Geographic mapping of the external effective gamma dose rates originating from (137)Cs revealed much higher dose rates in southern parts of Belgrade city and around the confluence of the Sava and Danube. Negative Pearson correlation coefficients were found between pH, cation exchange capacity and (137)Cs specific activity in surface soil. There were positive correlations between organic matter and (137)Cs specific activity in surface soil; and between specific electrical conductivity, organic matter, silt content and (137)Cs specific activity in soil profiles.
Combined interpretation of multiple geophysical techniques: an archaeological case study
NASA Astrophysics Data System (ADS)
Riedl, S.; Reichmann, S.; Tronicke, J.; Lück, E.
2009-04-01
In order to locate and ascertain the dimensions of an ancient orangery, we explored an area of about 70 m x 60 m in the Rheinsberg Palace Garden (Germany) with multiple geophysical techniques. The Rheinsberg Park, situated about 100 km northwest of Berlin, Germany, was established by the Prussian emperors in the 18th century. Due to redesign of the architecture and the landscaping during the past 300 years, buildings were dismantled and detailed knowledge about some original buildings got lost. We surveyed an area close to a gazebo where, after historical sources, an orangery was planned around the year 1740. However, today it is not clear to what extent this plan has been realized and if remains of this building are still buried in the subsurface. Applied geophysical techniques include magnetic gradiometry, frequency domain electromagnetic (FDEM) and direct current (DC) resistivity mapping as well as ground penetrating radar (GPR). To get an overview of the site, we performed FDEM electrical conductivity mapping using an EM38 instrument and magnetic gradiometry with caesium magnetometers. Both data sets were collected with an in- and crossline data point spacing of ca. 10 cm and 50 cm, respectively. DC resistivity surveying was performed using a pole-pole electrode configuration with an electrode spacing of 1.5 m and a spacing of 1.0 m between individual readings. A 3-D GPR survey was conducted using 200 MHz antennae and in- and crossline spacing of ca. 10 cm and 40 cm, respectively. A standard processing sequence including 3-D migration was applied. A combined interpretation of all collected data sets illustrates that the magnetic gradient and the EM38 conductivity maps is are dominated by anomalies from metallic water pipes from belonging to the irrigation system of the park. The DC resistivity map outlines a rectangular area which might indicate the extension of a former building south of the gazebo. The 3-D GPR data set provides further insights about subsurface structures and relevant geometries. From this data set, we interpret the depth and the extent of foundation and wall remains in the southern and central part of the site indicating the extent of the old orangery. This case study clearly illustrates the benefit of using multiple geophysical methods in archaeological studies. It further illustrates the advantage of 3-D GPR surveying at sites where anthropogenic disturbances (such as metallic pipes and other utilities) might limit the applicability of commonly applied mapping techniques such as magnetic gradiometry or EM38 conductivity mapping.
Schmidt, Rita; Webb, Andrew
2016-01-01
Electrical Properties Tomography (EPT) using MRI is a technique that has been developed to provide a new contrast mechanism for in vivo imaging. Currently the most common method relies on the solution of the homogeneous Helmholtz equation, which has limitations in accurate estimation at tissue interfaces. A new method proposed in this work combines a Maxwell's integral equation representation of the problem, and the use of high permittivity materials (HPM) to control the RF field, in order to reconstruct the electrical properties image. The magnetic field is represented by an integral equation considering each point as a contrast source. This equation can be solved in an inverse method. In this study we use a reference simulation or scout scan of a uniform phantom to provide an initial estimate for the inverse solution, which allows the estimation of the complex permittivity within a single iteration. Incorporating two setups with and without the HPM improves the reconstructed result, especially with respect to the very low electric field in the center of the sample. Electromagnetic simulations of the brain were performed at 3T to generate the B1(+) field maps and reconstruct the electric properties images. The standard deviations of the relative permittivity and conductivity were within 14% and 18%, respectively for a volume consisting of white matter, gray matter and cerebellum. Copyright © 2015 Elsevier Inc. All rights reserved.
Electrically-conductive proppant and methods for making and using same
Cannan, Chad; Roper, Todd; Savoy, Steve; Mitchell, Daniel R.
2016-09-06
Electrically-conductive sintered, substantially round and spherical particles and methods for producing such electrically-conductive sintered, substantially round and spherical particles from an alumina-containing raw material. Methods for using such electrically-conductive sintered, substantially round and spherical particles in hydraulic fracturing operations.
NASA Astrophysics Data System (ADS)
Hui, KeShi; Dai, LiDong; Li, HePing; Hu, HaiYing; Jiang, JianJun; Sun, WenQing; Zhang, Hui
2017-03-01
The electrical conductivity of pyroxene andesite was in situ measured under conditions of 1.0-2.0 GPa and 673-1073 K using a YJ-3000t multi-anvil press and Solartron-1260 Impedance/Gain-phase analyzer. Experimental results indicate that the electrical conductivities of pyroxene andesite increase with increasing temperature, and the electrical conductivities decrease with the rise of pressure, and the relationship between electrical conductivity ( σ) and temperature ( T) conforms to an Arrhenius relation within a given pressure and temperature range. When temperature rises up to 873-923 K, the electrical conductivities of pyroxene andesite abruptly increase, and the activation enthalpy increases at this range, which demonstrates that pyroxene andesite starts to dehydrate. By the virtue of the activation enthalpy (0.35-0.42 eV) and the activation volume (-6.75 ± 1.67 cm3/mole) which characterizes the electrical properties of sample after dehydration, we consider that the conduction mechanism is the small polaron conduction before and after dehydration, and that the rise of carrier concentration is the most important reason of increased electrical conductivity.
Electrically conductive cellulose composite
Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan
2010-05-04
An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.
Geomagnetic Observatory Data for Real-Time Applications
NASA Astrophysics Data System (ADS)
Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.
2015-12-01
The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints and will require coordination with partners in government, academia, and private industry.
Meroni, Davide; Maglioli, Camilla Carpano; Bovio, Dario; Greco, Francesco G; Aliverti, Andrea
2017-07-01
Electrical Impedance Tomography (EIT) is an image reconstruction technique applied in medicine for the electrical imaging of living tissues. In literature there is the evidence that a large resistivity variation related to the differences of the human tissues exists. As a result of this interest for the electrical characterization of the biological samples, recently the attention is also focused on the identification and characterization of the human tissue, by studying the homogeneity of its structure. An 8 electrodes needle-probe device has been developed with the intent of identifying the structural inhomogeneities under the surface layers. Ex-vivo impeditivity measurements, by placing the needle-probe in 5 different patterns of fat and lean porcine tissue, were performed, and impeditivity maps were obtained by EIDORS open source software for image reconstruction in electrical impedance. The values composing the maps have been analyzed, pointing out a good tissue discrimination, and the conformity with the real images. We conclude that this device is able to perform impeditivity maps matching to reality for position and orientation. In all the five patterns presented is possible to identify and replicate correctly the heterogeneous tissue under test. This new procedure can be helpful to the medical staff to completely characterize the biological sample, in different unclear situations.
Experimental analysis of electrical properties of composite materials
NASA Astrophysics Data System (ADS)
Fiala, L.; Rovnaník, P.; Černý, R.
2017-02-01
Dry cement-based composites are electrically non-conductive materials that behave in electric field like dielectrics. However, a relatively low amount of electrically conductive admixture significantly increases the electrical conductivity which extends applicability of such materials in practice. Therefore, they can be used as self-monitoring sensors controlling development of cracks; as sensors monitoring moisture content or when treated by an external electrical voltage as heat sources used for deicing of material's surface layer. Alkali-activated aluminosilicates (AAA), as competing materials to cement-based materials, are intensively investigated in the present due to their superior durability and environmental impact. Whereas the electrical properties of AAA are similar to those cement-based, they can be enhanced in the same way. In both cases, it is crucial to find a reasonable amount of electrically conductive phase to design composites with a sufficient electrical conductivity at an affordable price. In this paper, electrical properties of composites based on AAA binder and electrically conductive admixture represented by carbon nanotubes (CNT) are investigated. Measurements of electrical properties are carried out by means of 2-probes DC technique on nine types of samples; reference sample without the conductive phase and samples with CNT admixture in amount of 0.1 % - 2.5 % by vol. A significant increase of the electrical conductivity starts from the amount of 0.5 % CNT admixture and in case of 2.5 % CNT is about three orders of magnitude higher compared to the reference sample.
Bisphenol A exposure and cardiac electrical conduction in excised rat hearts.
Posnack, Nikki Gillum; Jaimes, Rafael; Asfour, Huda; Swift, Luther M; Wengrowski, Anastasia M; Sarvazyan, Narine; Kay, Matthew W
2014-04-01
Bisphenol A (BPA) is used to produce polycarbonate plastics and epoxy resins that are widely used in everyday products, such as food and beverage containers, toys, and medical devices. Human biomonitoring studies have suggested that a large proportion of the population may be exposed to BPA. Recent epidemiological studies have reported correlations between increased urinary BPA concentrations and cardiovascular disease, yet the direct effects of BPA on the heart are unknown. The goal of our study was to measure the effect of BPA (0.1-100 μM) on cardiac impulse propagation ex vivo using excised whole hearts from adult female rats. We measured atrial and ventricular activation times during sinus and paced rhythms using epicardial electrodes and optical mapping of transmembrane potential in excised rat hearts exposed to BPA via perfusate media. Atrioventricular activation intervals and epicardial conduction velocities were computed using recorded activation times. Cardiac BPA exposure resulted in prolonged PR segment and decreased epicardial conduction velocity (0.1-100 μM BPA), prolonged action potential duration (1-100 μM BPA), and delayed atrioventricular conduction (10-100 μM BPA). These effects were observed after acute exposure (≤ 15 min), underscoring the potential detrimental effects of continuous BPA exposure. The highest BPA concentration used (100 μM) resulted in prolonged QRS intervals and dropped ventricular beats, and eventually resulted in complete heart block. Our results show that acute BPA exposure slowed electrical conduction in excised hearts from female rats. These findings emphasize the importance of examining BPA's effect on heart electrophysiology and determining whether chronic in vivo exposure can cause or exacerbate conduction abnormalities in patients with preexisting heart conditions and in other high-risk populations.
NASA Astrophysics Data System (ADS)
Zhao, Cunyu; Liu, Lianjun; Zhao, Huilei; Krall, Andy; Wen, Zhenhai; Chen, Junhong; Hurley, Patrick; Jiang, Junwei; Li, Ying
2013-12-01
Sulfur has received increasing attention as a cathode material for lithium-sulfur (Li-S) batteries due to its high theoretical specific capacity. However, the commercialization of Li-S batteries is limited by the challenges of poor electrical conductivity of sulfur, dissolution of the polysulfide intermediates into the electrolyte, and volume expansion of sulfur during cycling. Herein, we report the fabrication of novel-structured porous carbon microspheres with a controllable multi-modal pore size distribution, i.e., a combination of interconnected micropores, mesopores and macropores. Cathodes made of sulfur infiltrated in such a hierarchical carbon framework provide several advantages: (1) a continuous and high surface area carbon network for enhanced electrical conductivity and high sulfur loading; (2) macropores and large mesopores bridged by small mesopores to provide good electrolyte accessibility and fast Li ion transport and to accommodate volume expansion of sulfur; and (3) small mesopores and micropores to improve carbon/sulfur interaction and to help trap polysulfides. An initial discharge capacity at 1278 mA h g-1 and capacity retention at 70.7% (904 mA h g-1) after 100 cycles at a high rate (1 C) were achieved. The material fabrication process is relatively simple and easily scalable.Sulfur has received increasing attention as a cathode material for lithium-sulfur (Li-S) batteries due to its high theoretical specific capacity. However, the commercialization of Li-S batteries is limited by the challenges of poor electrical conductivity of sulfur, dissolution of the polysulfide intermediates into the electrolyte, and volume expansion of sulfur during cycling. Herein, we report the fabrication of novel-structured porous carbon microspheres with a controllable multi-modal pore size distribution, i.e., a combination of interconnected micropores, mesopores and macropores. Cathodes made of sulfur infiltrated in such a hierarchical carbon framework provide several advantages: (1) a continuous and high surface area carbon network for enhanced electrical conductivity and high sulfur loading; (2) macropores and large mesopores bridged by small mesopores to provide good electrolyte accessibility and fast Li ion transport and to accommodate volume expansion of sulfur; and (3) small mesopores and micropores to improve carbon/sulfur interaction and to help trap polysulfides. An initial discharge capacity at 1278 mA h g-1 and capacity retention at 70.7% (904 mA h g-1) after 100 cycles at a high rate (1 C) were achieved. The material fabrication process is relatively simple and easily scalable. Electronic supplementary information (ESI) available: Preparation process scheme; X-ray mapping images and EDX analysis for the surface of PMC/S-40; X-ray mapping images for the cross-section of PMC/S-40; thermogravimetric analysis (TGA) of PMC/S samples; T-plot results for PMC sample; and electrochemical measurements of lithium-sulfur batteries using PMC/S as cathode materials. See DOI: 10.1039/c3nr04532c
Language Mapping in Awake Surgery: Report of Two Cases with Review of Language Networks.
Lim, Liang Hooi; Idris, Zamzuri; Reza, Faruque; Wan Hassan, Wan Mohd Nazaruddin; Mukmin, Laila Abd; Abdullah, Jafri Malin
2018-01-01
The role of language in communication plays a crucial role in human development and function. In patients who have a surgical lesion at the functional language areas, surgery should be intricately planned to avoid incurring further morbidity. This normally requires extensive functional and anatomical mappings of the brain to identify regions that are involved in language processing and production. In our case report, regions of the brain that are important for language functions were studied before surgery by employing (a) extraoperative methods such as functional magnetic resonance imaging, transmagnetic stimulation, and magnetoencephalography; (b) during the surgery by utilizing intraoperative awake surgical methods such as an intraoperative electrical stimulation; and (c) a two-stage surgery, in which electrical stimulation and first mapping are made thoroughly in the ward before second remapping during surgery. The extraoperative methods before surgery can guide the neurosurgeon to localize the functional language regions and tracts preoperatively. This will be confirmed using single-stage intraoperative electrical brain stimulation during surgery or a two-stage electrical brain stimulation before and during surgery. Here, we describe two cases in whom one has a superficial lesion and another a deep-seated lesion at language-related regions, in which language mapping was done to preserve its function. Additional review on the neuroanatomy of language regions, language network, and its impairment was also described.
McIlwain, J T
1990-03-01
Saccades evoked electrically from the deep layers of the superior colliculus have been examined in the alert cat with its head fixed. Amplitudes of the vertical and horizontal components varied linearly with the starting position of the eye. The slopes of the linear-regression lines provided an estimate of the sensitivity of these components to initial eye position. In observations on 29 sites in nine cats, the vertical and horizontal components of saccades evoked from a given site were rarely influenced to the same degree by initial eye position. For most sites, the horizontal component was more sensitive than the vertical component. Sensitivities of vertical and horizontal components were lowest near the representations of the horizontal and vertical meridians, respectively, of the collicular retinotopic map, but otherwise exhibited no systematic retinotopic dependence. Estimates of component amplitudes for saccades evoked from the center of the oculomotor range also diverged significantly from those predicted from the retinotopic map. The results of this and previous studies indicate that electrical stimulation of the cat's superior colliculus cannot yield a unique oculomotor map or one that is in register everywhere with the sensory retinotopic map. Several features of these observations suggest that electrical stimulation of the colliculus produces faulty activation of a saccadic control system that computes target position with respect to the head and that small and large saccades are controlled differently.
Method of forming an electrically conductive cellulose composite
Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Woodward, Jonathan [Ashtead, GB
2011-11-22
An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.
Topographic Brain Mapping: A Window on Brain Function?
ERIC Educational Resources Information Center
Karniski, Walt M.
1989-01-01
The article reviews the method of topographic mapping of the brain's electrical activity. Multiple electroencephalogram (EEG) electrodes and computerized analysis of the EEG signal are used to generate maps of frequency and voltage (evoked potential). This relatively new technique holds promise in the evaluation of children with behavioral and…
NASA Astrophysics Data System (ADS)
Brevik, E. C.; Heilig, J.; Kempenich, J.; Doolittle, J.; Ulmer, M.
2012-04-01
Sodium-affected soils (SAS) cover over 4 million hectares in the Northern Great Plains of the United States. Improving the classification, interpretation, and mapping of SAS is a major goal of the United States Department of Agriculture-Natural Resource Conservation Service (USDA-NRCS) as Northern Great Plains soil surveys are updated. Apparent electrical conductivity (ECa) as measured with ground conductivity meters has shown promise for mapping SAS, however, this use of this geophysical tool needs additional evaluation. This study used an EM-38 MK2-2 meter (Geonics Limited, Mississauga, Ontario), a Trimble AgGPS 114 L-band DGPS (Trimble, Sunnyvale, CA) and the RTmap38MK2 program (Geomar Software, Inc., Mississauga, Ontario) on an Allegro CX field computer (Juniper Systems, North Logan, UT) to collect, observe, and interpret ECa data in the field. The ECa map generated on-site was then used to guide collection of soil samples for soil characterization and to evaluate the influence of soil properties in SAS on ECa as measured with the EM-38MK2-2. Stochastic models contained in the ESAP software package were used to estimate the SAR and salinity levels from the measured ECa data in 30 cm depth intervals to a depth of 90 cm and for the bulk soil (0 to 90 cm). This technique showed promise, with meaningful spatial patterns apparent in the ECa data. However, many of the stochastic models used for salinity and SAR for individual depth intervals and for the bulk soil had low R-squared values. At both sites, significant variability in soil clay and water contents along with a small number of soil samples taken to calibrate the ECa values to soil properties likely contributed to these low R-squared values.
NASA Astrophysics Data System (ADS)
Dalla, P. T.; Alafogianni, P.; Tragazikis, I. K.; Exarchos, D. A.; Dassios, K.; Barkoula, N.-M.; Matikas, T. E.
2015-03-01
Cement-based materials have in general low electrical conductivity. Electrical conductivity is the measure of the ability of the material to resist the passage of electrical current. The addition of a conductive admixture such as Multi-Walled Carbon Nanotubes (MWCNTs) in a cement-based material increases the conductivity of the structure. This research aims to characterize nano-modified cement mortars with MWCNT reinforcements. Such nano-composites would possess smartness and multi-functionality. Multifunctional properties include electrical, thermal and piezo-electric characteristics. One of these properties, the electrical conductivity, was measured using a custom made apparatus that allows application of known D.C. voltage on the nano-composite. In this study, the influence of different surfactants/plasticizers on CNT nano-modified cement mortar specimens with various concentrations of CNTs (0.2% wt. cement CNTs - 0.8% wt. cement CNTs) on the electrical conductivity is assessed.
Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements
NASA Astrophysics Data System (ADS)
Dragonetti, Giovanna; Comegna, Alessandro; Ajeel, Ali; Piero Deidda, Gian; Lamaddalena, Nicola; Rodriguez, Giuseppe; Vignoli, Giulio; Coppola, Antonio
2018-02-01
This paper deals with the issue of monitoring the spatial distribution of bulk electrical conductivity, σb, in the soil root zone by using electromagnetic induction (EMI) sensors under different water and salinity conditions. To deduce the actual distribution of depth-specific σb from EMI apparent electrical conductivity (ECa) measurements, we inverted the data by using a regularized 1-D inversion procedure designed to manage nonlinear multiple EMI-depth responses. The inversion technique is based on the coupling of the damped Gauss-Newton method with truncated generalized singular value decomposition (TGSVD). The ill-posedness of the EMI data inversion is addressed by using a sharp stabilizer term in the objective function. This specific stabilizer promotes the reconstruction of blocky targets, thereby contributing to enhance the spatial resolution of the EMI results in the presence of sharp boundaries (otherwise smeared out after the application of more standard Occam-like regularization strategies searching for smooth solutions). Time-domain reflectometry (TDR) data are used as ground-truth data for calibration of the inversion results. An experimental field was divided into four transects 30 m long and 2.8 m wide, cultivated with green bean, and irrigated with water at two different salinity levels and using two different irrigation volumes. Clearly, this induces different salinity and water contents within the soil profiles. For each transect, 26 regularly spaced monitoring soundings (1 m apart) were selected for the collection of (i) Geonics EM-38 and (ii) Tektronix reflectometer data. Despite the original discrepancies in the EMI and TDR data, we found a significant correlation of the means and standard deviations of the two data series; in particular, after a low-pass spatial filtering of the TDR data. Based on these findings, this paper introduces a novel methodology to calibrate EMI-based electrical conductivities via TDR direct measurements. This calibration strategy consists of a linear mapping of the original inversion results into a new conductivity spatial distribution with the coefficients of the transformation uniquely based on the statistics of the two original measurement datasets (EMI and TDR conductivities).
Advanced electrophysiologic mapping systems: an evidence-based analysis.
2006-01-01
To assess the effectiveness, cost-effectiveness, and demand in Ontario for catheter ablation of complex arrhythmias guided by advanced nonfluoroscopy mapping systems. Particular attention was paid to ablation for atrial fibrillation (AF). Tachycardia Tachycardia refers to a diverse group of arrhythmias characterized by heart rates that are greater than 100 beats per minute. It results from abnormal firing of electrical impulses from heart tissues or abnormal electrical pathways in the heart because of scars. Tachycardia may be asymptomatic, or it may adversely affect quality of life owing to symptoms such as palpitations, headaches, shortness of breath, weakness, dizziness, and syncope. Atrial fibrillation, the most common sustained arrhythmia, affects about 99,000 people in Ontario. It is associated with higher morbidity and mortality because of increased risk of stroke, embolism, and congestive heart failure. In atrial fibrillation, most of the abnormal arrhythmogenic foci are located inside the pulmonary veins, although the atrium may also be responsible for triggering or perpetuating atrial fibrillation. Ventricular tachycardia, often found in patients with ischemic heart disease and a history of myocardial infarction, is often life-threatening; it accounts for about 50% of sudden deaths. Treatment of Tachycardia The first line of treatment for tachycardia is antiarrhythmic drugs; for atrial fibrillation, anticoagulation drugs are also used to prevent stroke. For patients refractory to or unable to tolerate antiarrhythmic drugs, ablation of the arrhythmogenic heart tissues is the only option. Surgical ablation such as the Cox-Maze procedure is more invasive. Catheter ablation, involving the delivery of energy (most commonly radiofrequency) via a percutaneous catheter system guided by X-ray fluoroscopy, has been used in place of surgical ablation for many patients. However, this conventional approach in catheter ablation has not been found to be effective for the treatment of complex arrhythmias such as chronic atrial fibrillation or ventricular tachycardia. Advanced nonfluoroscopic mapping systems have been developed for guiding the ablation of these complex arrhythmias. Four nonfluoroscopic advanced mapping systems have been licensed by Health Canada: CARTO EP mapping System (manufactured by Biosense Webster, CA) uses weak magnetic fields and a special mapping/ablation catheter with a magnetic sensor to locate the catheter and reconstruct a 3-dimensional geometry of the heart superimposed with colour-coded electric potential maps to guide ablation. EnSite System (manufactured by Endocardial Solutions Inc., MN) includes a multi-electrode non-contact catheter that conducts simultaneous mapping. A processing unit uses the electrical data to computes more than 3,000 isopotential electrograms that are displayed on a reconstructed 3-dimensional geometry of the heart chamber. The navigational system, EnSite NavX, can be used separately with most mapping catheters. The LocaLisa Intracardiac System (manufactured by Medtronics Inc, MN) is a navigational system that uses an electrical field to locate the mapping catheter. It reconstructs the location of the electrodes on the mapping catheter in 3-dimensional virtual space, thereby enabling an ablation catheter to be directed to the electrode that identifies abnormal electric potential. Polar Constellation Advanced Mapping Catheter System (manufactured by Boston Scientific, MA) is a multielectrode basket catheter with 64 electrodes on 8 splines. Once deployed, each electrode is automatically traced. The information enables a 3-dimensional model of the basket catheter to be computed. Colour-coded activation maps are reconstructed online and displayed on a monitor. By using this catheter, a precise electrical map of the atrium can be obtained in several heartbeats. A systematic search of Cochrane, MEDLINE and EMBASE was conducted to identify studies that compared ablation guided by any of the advanced systems to fluoroscopy-guided ablation of tachycardia. English-language studies with sample sizes greater than or equal to 20 that were published between 2000 and 2005 were included. Observational studies on safety of advanced mapping systems and fluoroscopy were also included. Outcomes of interest were acute success, defined as termination of arrhythmia immediately following ablation; long-term success, defined as being arrhythmia free at follow-up; total procedure time; fluoroscopy time; radiation dose; number of radiofrequency pulses; complications; cost; and the cost-effectiveness ratio. Quality of the individual studies was assessed using established criteria. Quality of the overall evidence was determined by applying the GRADE evaluation system. (3) Qualitative synthesis of the data was performed. Quantitative analysis using Revman 4.2 was performed when appropriate. Quality of the Studies Thirty-four studies met the inclusion criteria. These comprised 18 studies on CARTO (4 randomized controlled trials [RCTs] and 14 non-RCTs), 3 RCTs on EnSite NavX, 4 studies on LocaLisa Navigational System (1 RCT and 3 non-RCTs), 2 studies on EnSite and CARTO, 1 on Polar Constellation basket catheter, and 7 studies on radiation safety. The quality of the studies ranged from moderate to low. Most of the studies had small sample sizes with selection bias, and there was no blinding of patients or care providers in any of the studies. Duration of follow-up ranged from 6 weeks to 29 months, with most having at least 6 months of follow-up. There was heterogeneity with respect to the approach to ablation, definition of success, and drug management before and after the ablation procedure. Evidence is based on a small number of small RCTS and non-RCTS with methodological flaws.Advanced nonfluoroscopy mapping/navigation systems provided real time 3-dimensional images with integration of anatomic and electrical potential information that enable better visualization of areas of interest for ablationAdvanced nonfluoroscopy mapping/navigation systems appear to be safe; they consistently shortened the fluoroscopy duration and radiation exposure.Evidence suggests that nonfluoroscopy mapping and navigation systems may be used as adjuncts to rather than replacements for fluoroscopy in guiding the ablation of complex arrhythmias.Most studies showed a nonsignificant trend toward lower overall failure rate for advanced mapping-guided ablation compared with fluoroscopy-guided mapping.Pooled analyses of small RCTs and non-RCTs that compared fluoroscopy- with nonfluoroscopy-guided ablation of atrial fibrillation and atrial flutter showed that advanced nonfluoroscopy mapping and navigational systems:Yielded acute success rates of 69% to 100%, not significantly different from fluoroscopy ablation.Had overall failure rates at 3 months to 19 months of 1% to 40% (median 25%).Resulted in a 10% relative reduction in overall failure rate for advanced mapping guided-ablation compared to fluoroscopy guided ablation for the treatment of atrial fibrillation.Yielded added benefit over fluoroscopy in guiding the ablation of complex arrhythmia. The advanced systems were shown to reduce the arrhythmia burden and the need for antiarrhythmic drugs in patients with complex arrhythmia who had failed fluoroscopy-guided ablationBased on predominantly observational studies, circumferential PV ablation guided by a nonfluoroscopy system was shown to do the following:Result in freedom from atrial fibrillation (with or without antiarrhythmic drug) in 75% to 95% of patients (median 79%). This effect was maintained up to 28 months.Result in freedom from atrial fibrillation without antiarrhythmic drugs in 47% to 95% of patients (median 63%).Improve patient survival at 28 months after the procedure as compared with drug therapy.Require special skills; patient outcomes are operator dependent, and there is a significant learning curve effect.Complication rates of pulmonary vein ablation guided by an advanced mapping/navigation system ranged from 0% to 10% with a median of 6% during a follow-up period of 6 months to 29 months.The complication rate of the study with the longest follow-up was 8%.The most common complications of advanced catheter-guided ablation were stroke, transient ischemic attack, cardiac tamponade, myocardial infarction, atrial flutter, congestive heart failure, and pulmonary vein stenosis. A small number of cases with fatal atrial-esophageal fistula had been reported and were attributed to the high radiofrequency energy used rather than to the advanced mapping systems. An Ontario-based economic analysis suggests that the cumulative incremental upfront costs of catheter ablation of atrial fibrillation guided by advanced nonfluoroscopy mapping could be recouped in 4.7 years through cost avoidance arising from less need for antiarrhythmic drugs and fewer hospitalization for stroke and heart failure. Expert Opinion Expert consultants to the Medical Advisory Secretariat noted the following: Nonfluoroscopy mapping is not necessary for simple ablation procedures (e.g., typical flutter). However, it is essential in the ablation of complex arrhythmias including these:Symptomatic, drug-refractory atrial fibrillationArrhythmias in people who have had surgery for congenital heart disease (e.g., macro re-entrant tachycardia in people who have had surgery for congenital heart disease).Ventricular tachycardia due to myocardial infarctionAtypical atrial flutterAdvanced mapping systems represent an enabling technology in the ablation of complex arrhythmias. The ablation of these complex cases would not have been feasible or advisable with fluoroscopy-guided ablation and, therefore, comparative studies would not be feasible or ethical in such cases. (ABSTRACT TRUNCATED)
Electromagnetic interference filter for automotive electrical systems
Herron, Nicholas Hayden; Carlson, Douglas S; Tang, David; Korich, Mark D
2013-07-02
A filter for an automotive electrical system includes a substrate having first and second conductive members. First and second input terminals are mounted to the substrate. The first input terminal is electrically connected to the first conductive member, and the second input terminal is electrically connected to the second conductive member. A plurality of capacitors are mounted to the substrate. Each of the capacitors is electrically connected to at least one of the first and second conductive members. First and second power connectors are mounted to the substrate. The first power connector is electrically connected to the first conductive member, and the second power connector is electrically connected to the second conductive member. A common mode choke is coupled to the substrate and arranged such that the common mode choke extends around at least a portion of the substrate and the first and second conductive members.
Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder.
Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong
2016-12-22
The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service.
Investigation of the electrical characteristics of electrically conducting yarns and fabrics
NASA Astrophysics Data System (ADS)
Akbarov, R. D.; Baymuratov, B. H.; Akbarov, D. N.; Ilhamova, M.
2017-11-01
Electro-conductive textile materials and products are used presently giving solutions to the problems, related to static electricity, electromagnetic shielding and electromagnetic radiation. Thus a study of their electro-physical characteristics, character of conductivity, possibility of forecasting of electric parameters etc has a substantial value. This work shows the possibility of production electro-conducting textile materials with stable anti-static properties by introduction of electro-conducting yarn into the structure of fabrics. The results of the research, directed to the study of the electro-physical characteristics of electroconducting yarn and fabrics, are influenced by the frequent washing of polyester fabrics containing the different amounts of electro-conducting filaments in the composition. This article reviews the results of the related research, of the electrical characteristics of the yarn and fabric, of the effect of multiple water treatments on the electrical properties of polyester fabrics, containing in their composition different amounts of electrically conductive yarns.
Alternative Fuels Data Center: All-Electric Vehicles
. electricity production contributes to air pollution, the U.S. Environmental Protection Agency categorizes all Location Map a Route Laws & Incentives Search Federal State Key Legislation Data & Tools Widgets
Chaudhry, Aafia; Benson, Laura; Varshaver, Michael; Farber, Ori; Weinberg, Uri; Kirson, Eilon; Palti, Yoram
2015-11-11
Optune™, previously known as the NovoTTF-100A System™, generates Tumor Treating Fields (TTFields), an effective anti-mitotic therapy for glioblastoma. The system delivers intermediate frequency, alternating electric fields to the supratentorial brain. Patient therapy is personalized by configuring transducer array layout placement on the scalp to the tumor site using MRI measurements and the NovoTAL System. Transducer array layout mapping optimizes therapy by maximizing electric field intensity to the tumor site. This study evaluated physician performance in conducting transducer array layout mapping using the NovoTAL System compared with mapping performed by the Novocure in-house clinical team. Fourteen physicians (7 neuro-oncologists, 4 medical oncologists, and 3 neurosurgeons) evaluated five blinded cases of recurrent glioblastoma and performed head size and tumor location measurements using a standard Digital Imaging and Communications in Medicine reader. Concordance with Novocure measurement and intra- and inter-rater reliability were assessed using relevant correlation coefficients. The study criterion for success was a concordance correlation coefficient (CCC) >0.80. CCC for each physician versus Novocure on 20 MRI measurements was 0.96 (standard deviation, SD ± 0.03, range 0.90-1.00), indicating very high agreement between the two groups. Intra- and inter-rater reliability correlation coefficients were similarly high: 0.83 (SD ±0.15, range 0.54-1.00) and 0.80 (SD ±0.18, range 0.48-1.00), respectively. This user study demonstrated an excellent level of concordance between prescribing physicians and Novocure in-house clinical teams in performing transducer array layout planning. Intra-rater reliability was very high, indicating reproducible performance. Physicians prescribing TTFields, when trained on the NovoTAL System, can independently perform transducer array layout mapping required for the initiation and maintenance of patients on TTFields therapy.
NASA Technical Reports Server (NTRS)
Rust, W. D.; Macgorman, D. R.
1985-01-01
During FY-85, Researchers conducted a field program and analyzed data. The field program incorporated coordinated measurements made with a NASA U2. Results include the following: (1) ground truth measurements of lightning for comparison with those obtained by the U2; (2) analysis of dual-Doppler radar and dual-VHF lightning mapping data from a supercell storm; (3) analysis of synoptic conditions during three simultaneous storm systems on 13 May 1983 when unusually large numbers of positive cloud-to-ground (+CG) flashes occurred; (4) analysis of extremely low frequency (ELF) wave forms; and (5) an assessment of a cloud -ground strike location system using a combination of mobile laboratory and fixed-base TV video data.
Electrical contact arrangement for a coating process
Kabagambe, Benjamin; McCamy, James W; Boyd, Donald W
2013-09-17
A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.
Fast, V G; Kléber, A G
1995-05-01
Unidirectional conduction block (UCB) and reentry may occur as a consequence of an abrupt tissue expansion and a related change in the electrical load. The aim of this study was to evaluate critical dimensions of the tissue necessary for establishing UCB in heart cell culture. Neonatal rat heart cell cultures with cell strands of variable width emerging into a large cell area were grown using a technique of patterned cell growth. Action potential upstrokes were measured using a voltage sensitive dye (RH-237) and a linear array of 10 photodiodes with a 15 microns resolution. A mathematical model was used to relate action potential wave shapes to underlying ionic currents. UCB (block of a single impulse in anterograde direction - from a strand to a large area - and conduction in the retrograde direction) occurred in narrow cell strands with a width of 15(SD 4) microns (1-2 cells in width, n = 7) and there was no conduction block in strands with a width of 31(8) microns (n = 9, P < 0.001) or larger. The analysis of action potential waveshapes indicated that conduction block was either due to geometrical expansion alone (n = 5) or to additional local depression of conduction (n = 2). In wide strands, action potential upstrokes during anterograde conduction were characterised by multiple rising phases. Mathematical modelling showed that two rising phases were caused by electronic current flow, whereas local ionic current did not coincide with the rising portions of the upstrokes. (1) High resolution optical mapping shows multiphasic action potential upstrokes at the region of abrupt expansion. At the site of the maximum decrement in conduction, these peaks were largely determined by the electrotonus and not by the local ionic current. (2) Unidirectional conduction block occurred in strands with a width of 15(4) microns (1-2 cells).
Geographic Footprint of Electricity Use for Water Services in the Western U.S.
Tidwell, Vincent C.; Moreland, Barbara Denise; Zemlick, Katie
2014-06-25
A significant fraction of our nation’s electricity use goes to lift, convey, and treat water, while the resulting expenditures on electricity represent a key budgetary consideration for water service providers. In order to improve understanding of the electricity-for-water interdependency, electricity used in providing water services is mapped at the regional, state and county level for the 17-conterminous states in the Western U.S. Our study is unique in estimating electricity use for large-scale conveyance and agricultural pumping as well as mapping these electricity uses along with that for drinking and wastewater services at a state and county level. These results indicatemore » that drinking and wastewater account for roughly 2% of total West-wide electricity use, while an additional 1.2% is consumed by large-scale conveyance projects and 2.6% is consumed by agricultural pumping. The percent of electricity used for water services varies strongly by state with some as high as 34%, while other states expend less than 1%. Every county in the West uses some electricity for water services; however, there is a large disparity in use ranging from 10 MWh/yr to 5.8 TWh/yr. Finally, our results support long-term transmission planning in the Western U.S. by characterizing an important component of the electric load.« less
Anisotropy of synthetic quartz electrical conductivity at high pressure and temperature
NASA Astrophysics Data System (ADS)
Wang, Duojun; Li, Heping; Yi, Li; Matsuzaki, Takuya; Yoshino, Takashi
2010-09-01
AC measurements of the electrical conductivity of synthetic quartz along various orientations were made between 0.1 and 1 MHz, at ˜855˜1601 K and at 1.0 GPa. In addition, the electrical conductivity of quartz along the c axis has been studied at 1.0-3.0 GPa. The impedance arcs representing bulk conductivity occur in the frequency range of 103-106 Hz, and the electrical responses of the interface between the sample and the electrode occur in the 0.1˜103 Hz range. The pressure has a weak effect on the electrical conductivity. The electrical conductivity experiences no abrupt change near the α - β phase transition point. The electrical conductivity of quartz is highly anisotropic; the electrical conductivity along the c axis is strongest and several orders of magnitude larger than in other directions. The activation enthalpies along various orientations are determined to be 0.6 and 1.2 eV orders of magnitude, respectively. The interpretation of the former is based on the contribution of alkali ions, while the latter effect is attributed to additional unassociated aluminum ions. Comparison of determined anisotropic conductivity of quartz determined with those from field geophysical models shows that the quartz may potentially provide explanations for the behavior of electrical conductivity of anisotropy in the crust that are inferred from the transverse magnetic mode.
High electric field conduction in low-alkali boroaluminosilicate glass
NASA Astrophysics Data System (ADS)
Dash, Priyanka; Yuan, Mengxue; Gao, Jun; Furman, Eugene; Lanagan, Michael T.
2018-02-01
Electrical conduction in silica-based glasses under a low electric field is dominated by high mobility ions such as sodium, and there is a transition from ionic transport to electronic transport as the electric field exceeds 108 V/m at low temperatures. Electrical conduction under a high electric field was investigated in thin low-alkali boroaluminosilicate glass samples, showing nonlinear conduction with the current density scaling approximately with E1/2, where E is the electric field. In addition, thermally stimulated depolarization current (TSDC) characterization was carried out on room-temperature electrically poled glass samples, and an anomalous discharging current flowing in the same direction as the charging current was observed. High electric field conduction and TSDC results led to the conclusion that Poole-Frenkel based electronic transport occurs in the mobile-cation-depleted region adjacent to the anode, and accounts for the observed anomalous current.
Capillary zone electrophoresis-mass spectrometer interface
D'Silva, Arthur
1996-08-06
A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conducts is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer.
Schwamb, Timo; Burg, Brian R; Schirmer, Niklas C; Poulikakos, Dimos
2009-10-07
This paper introduces an electrical four-point measurement method enabling thermal and electrical conductivity measurements of nanoscale materials. The method was applied to determine the thermal and electrical conductivity of reduced graphene oxide flakes. The dielectrophoretically deposited samples exhibited thermal conductivities in the range of 0.14-2.87 W m(-1) K(-1) and electrical conductivities in the range of 6.2 x 10(2)-6.2 x 10(3) Omega(-1) m(-1). The measured properties of each flake were found to be dependent on the duration of the thermal reduction and are in this sense controllable.
Corrected body surface potential mapping.
Krenzke, Gerhard; Kindt, Carsten; Hetzer, Roland
2007-02-01
In the method for body surface potential mapping described here, the influence of thorax shape on measured ECG values is corrected. The distances of the ECG electrodes from the electrical heart midpoint are determined using a special device for ECG recording. These distances are used to correct the ECG values as if they had been measured on the surface of a sphere with a radius of 10 cm with its midpoint localized at the electrical heart midpoint. The equipotential lines of the electrical heart field are represented on the virtual surface of such a sphere. It is demonstrated that the character of a dipole field is better represented if the influence of the thorax shape is reduced. The site of the virtual reference electrode is also important for the dipole character of the representation of the electrical heart field.
NASA Astrophysics Data System (ADS)
Abedi, Maysam
2015-06-01
This reply discusses the results of two previously developed approaches in mineral prospectivity/potential mapping (MPM), i.e., ELECTRE III and PROMETHEE II as well-known methods in multi-criteria decision-making (MCDM) problems. Various geo-data sets are integrated to prepare MPM in which generated maps have acceptable matching with the drilled boreholes. Equal performance of the applied methods is indicated in the studied case. Complementary information of these methods is also provided in order to help interested readers to implement them in MPM process.
Watanabe, Masaya; Feola, Iolanda; Majumder, Rupamanjari; Jangsangthong, Wanchana; Teplenin, Alexander S; Ypey, Dirk L; Schalij, Martin J; Zeppenfeld, Katja; de Vries, Antoine A F; Pijnappels, Daniël A
2017-03-01
Anatomical re-entry is an important mechanism of ventricular tachycardia, characterized by circular electrical propagation in a fixed pathway. It's current investigative and therapeutic approaches are non-biological, rather unspecific (drugs), traumatizing (electrical shocks), or irreversible (ablation). Optogenetics is a new biological technique that allows reversible modulation of electrical function with unmatched spatiotemporal precision using light-gated ion channels. We therefore investigated optogenetic manipulation of anatomical re-entry in ventricular cardiac tissue. Transverse, 150-μm-thick ventricular slices, obtained from neonatal rat hearts, were genetically modified with lentiviral vectors encoding Ca2+-translocating channelrhodopsin (CatCh), a light-gated depolarizing ion channel, or enhanced yellow fluorescent protein (eYFP) as control. Stable anatomical re-entry was induced in both experimental groups. Activation of CatCh was precisely controlled by 470-nm patterned illumination, while the effects on anatomical re-entry were studied by optical voltage mapping. Regional illumination in the pathway of anatomical re-entry resulted in termination of arrhythmic activity only in CatCh-expressing slices by establishing a local and reversible, depolarization-induced conduction block in the illuminated area. Systematic adjustment of the size of the light-exposed area in the re-entrant pathway revealed that re-entry could be terminated by either wave collision or extinction, depending on the depth (transmurality) of illumination. In silico studies implicated source-sink mismatches at the site of subtransmural conduction block as an important factor in re-entry termination. Anatomical re-entry in ventricular tissue can be manipulated by optogenetic induction of a local and reversible conduction block in the re-entrant pathway, allowing effective re-entry termination. These results provide distinctively new mechanistic insight into re-entry termination and a novel perspective for cardiac arrhythmia management. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K.H.; Pellerin, L.; Becker, A.
1998-06-01
'Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small due, and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high resolution imaging, accurate measurements are necessary so the field datamore » can be mapped into the space of the subsurface parameters. The authors are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach, known as the magnetotelluric (MT) method at low frequencies. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques. The summary of the work to date is divided into three sections: equipment procurement, instrumentation, and theoretical developments. For most earth materials, the frequency range from 1 to 100 MHz encompasses a very difficult transition zone between the wave propagation of displacement currents and the diffusive behavior of conduction currents. Test equipment, such as signal generators and amplifiers, does not cover the entire range except at great expense. Hence the authors have divided the range of investigation into three sub-ranges: 1--10 MHz, 10--30 MHz, and 30--100 MHz. Results to date are in the lowest frequency range of 1--10 MHz. Even though conduction currents dominate in this range, as in traditional electromagnetic exploration methods, little work has been done by the geophysical community above 500 kHz.'« less
Electrical condition monitoring method for polymers
Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA; Masakowski, Daniel D [Worcester, MA; Wong, Ching Ping [Duluth, GA; Luo, Shijian [Boise, ID
2008-08-19
An electrical condition monitoring method utilizes measurement of electrical resistivity of an age sensor made of a conductive matrix or composite disposed in a polymeric structure such as an electrical cable. The conductive matrix comprises a base polymer and conductive filler. The method includes communicating the resistivity to a measuring instrument and correlating resistivity of the conductive matrix of the polymeric structure with resistivity of an accelerated-aged conductive composite.
Irrigation salinity hazard assessment and risk mapping in the lower Macintyre Valley, Australia.
Huang, Jingyi; Prochazka, Melissa J; Triantafilis, John
2016-05-01
In the Murray-Darling Basin of Australia, secondary soil salinization occurs due to excessive deep drainage and the presence of shallow saline water tables. In order to understand the cause and best management, soil and vadose zone information is necessary. This type of information has been generated in the Toobeah district but owing to the state border an inconsistent methodology was used. This has led to much confusion from stakeholders who are unable to understand the ambiguity of the results in terms of final overall risk of salinization. In this research, a digital soil mapping method that employs various ancillary data is presented. Firstly, an electromagnetic induction survey using a Geonics EM34 and EM38 was used to characterise soil and vadose zone stratigraphy. From the apparent electrical conductivity (ECa) collected, soil sampling locations were selected and with laboratory analysis carried out to determine average (2-12m) clay and EC of a saturated soil-paste extract (ECe). EM34 ECa, land surface parameters derived from a digital elevation model and measured soil data were used to establish multiple linear regression models, which allowed for mapping of various hazard factors, including clay and ECe. EM38 ECa data were calibrated to deep drainage obtained from Salt and Leaching Fraction (SaLF) modelling of soil data. Expert knowledge and indicator kriging were used to determine critical values where the salinity hazard factors were likely to contribute to a shallow saline water table (i.e., clay ≤35%; ECe>2.5dS/m, and deep drainage >100mm/year). This information was combined to produce an overall salinity risk map for the Toobeah district using indicator kriging. The risk map shows potential salinization areas and where detailed information is required and where targeted research can be conducted to monitor soil conditions and water table heights and determine best management strategies. Copyright © 2016 Elsevier B.V. All rights reserved.
Entz, Michael; King, D Ryan; Poelzing, Steven
2017-12-01
With the sudden increase in affordable manufacturing technologies, the relationship between experimentalists and the designing process for laboratory equipment is rapidly changing. While experimentalists are still dependent on engineers and manufacturers for precision electrical, mechanical, and optical equipment, it has become a realistic option for in house manufacturing of other laboratory equipment with less precise design requirements. This is possible due to decreasing costs and increasing functionality of desktop three-dimensional (3-D) printers and 3-D design software. With traditional manufacturing methods, iterative design processes are expensive and time consuming, and making more than one copy of a custom piece of equipment is prohibitive. Here, we provide an overview to design a tissue bath and stabilizer for a customizable, suspended, whole heart optical mapping apparatus that can be produced significantly faster and less expensive than conventional manufacturing techniques. This was accomplished through a series of design steps to prevent fluid leakage in the areas where the optical imaging glass was attached to the 3-D printed bath. A combination of an acetone dip along with adhesive was found to create a water tight bath. Optical mapping was used to quantify cardiac conduction velocity and action potential duration to compare 3-D printed baths to a bath that was designed and manufactured in a machine shop. Importantly, the manufacturing method did not significantly affect conduction, action potential duration, or contraction, suggesting that 3-D printed baths are equally effective for optical mapping experiments. NEW & NOTEWORTHY This article details three-dimensional printable equipment for use in suspended whole heart optical mapping experiments. This equipment is less expensive than conventional manufactured equipment as well as easily customizable to the experimentalist. The baths can be waterproofed using only a three-dimensional printer, acetone, a glass microscope slide, c-clamps, and adhesive. Copyright © 2017 the American Physiological Society.
Carbon-Nanotube Conductive Layers for Thin-Film Solar Cells
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2005-01-01
Thin, transparent layers comprising mats of carbon nanotubes have been proposed for providing lateral (that is, inplane) electrical conductivities for collecting electric currents from the front surfaces of the emitter layers of thin-film solar photovoltaic cells. Traditionally, thin, semitransparent films of other electrically conductive materials (usually, indium tin oxide, zinc oxide, or cadmium sulfide) have been used for this purpose. As in the cases of the traditional semitransparent conductive films, the currents collected by the nanotube layers would, in turn, be further collected by front metal contact stripes. Depending on details of a specific solar-cell design, the layer of carbon nanotubes would be deposited in addition to, or instead of, a semitransparent layer of one of these traditional conductive materials (see figure). The proposal is expected to afford the following advantages: The electrical conductivity of the carbon- nanotube layer would exceed that of the corresponding semitransparent layer of traditional electrically conductive material. The greater electrical conductivity of the carbon-nanotube layer would make it possible to retain adequate lateral electrical conductivity while reducing the thickness of, or eliminating entirely, the traditional semitransparent conductive layer. As a consequence of thinning or elimination of the traditional semitransparent conductive layer, less light would be absorbed, so that more of the incident light would be available for photovoltaic conversion. The greater electrical conductivity of the carbon-nanotube layer would make it possible to increase the distance between front metal contact stripes, in addition to (or instead of) thinning or eliminating the layer of traditional semitransparent conductive material. Consequently, the fraction of solar-cell area shadowed by front metal contact stripes would be reduced again, making more of the incident light available for photovoltaic conversion. The electrical conductivities of individual carbon nanotubes can be so high that the mat of carbon nanotubes could be made sparse enough to be adequately transparent while affording adequate lateral electrical conductivity of the mat as a whole. The thickness of the nanotube layer would be chosen so that the layer would contribute significant lateral electrical conductivity, yet would be as nearly transparent as possible to incident light. A typical thickness for satisfying these competing requirements is expected to lie between 50 and 100 nm. The optimum thickness must be calculated by comparing the lateral electrical conductivity, the distance between front metal stripes, and the amount of light lost by absorption in the nanotube layer.
Electrical conductivity of electrolytes applicable to natural waters from 0 to 100 degrees C
McCleskey, R. Blaine
2011-01-01
The electrical conductivities of 34 electrolyte solutions found in natural waters ranging from (10-4 to 1) molkg-1 in concentration and from (5 to 90) °C have been determined. High-quality electrical conductivity data for numerous electrolytes exist in the scientific literature, but the data do not span the concentration or temperature ranges of many electrolytes in natural waters. Methods for calculating the electrical conductivities of natural waters have incorporated these data from the literature, and as a result these methods cannot be used to reliably calculate the electrical conductivity over a large enough range of temperature and concentration. For the single-electrolyte solutions, empirical equations were developed that relate electrical conductivity to temperature and molality. For the 942 molar conductivity determinations for single electrolytes from this study, the mean relative difference between the calculated and measured values was 0.1 %. The calculated molar conductivity was compared to literature data, and the mean relative difference for 1978 measurements was 0.2 %. These data provide an improved basis for calculating electrical conductivity for most natural waters.
Wang, Zhaohui; Witte, Russell S.
2015-01-01
Ultrasound current source density imaging (UCSDI), which has application to the heart and brain, exploits the acoustoelectric (AE) effect and Ohm's law to detect and map an electrical current distribution. In this study, we describe 4-D UCSDI simulations of a dipole field for comparison and validation with bench-top experiments. The simulations consider the properties of the ultrasound pulse as it passes through a conductive medium, the electric field of the injected dipole, and the lead field of the detectors. In the simulation, the lead fields of detectors and electric field of the dipole were calculated by the finite element (FE) method, and the convolution and correlation in the computation of the detected AE voltage signal were accelerated using 3-D fast Fourier transforms. In the bench-top experiment, an electric dipole was produced in a bath of 0.9% NaCl solution containing two electrodes, which injected an ac pulse (200 Hz, 3 cycles) ranging from 0 to 140 mA. Stimulating and recording electrodes were placed in a custom electrode chamber made on a rapid prototype printer. Each electrode could be positioned anywhere on an x-y grid (5 mm spacing) and individually adjusted in the depth direction for precise control of the geometry of the current sources and detecting electrodes. A 1-MHz ultrasound beam was pulsed and focused through a plastic film to modulate the current distribution inside the saline-filled tank. AE signals were simultaneously detected at a sampling frequency of 15 MHz on multiple recording electrodes. A single recording electrode is sufficient to form volume images of the current flow and electric potentials. The AE potential is sensitive to the distance from the dipole, but is less sensitive to the angle between the detector and the dipole. Multi-channel UCSDI potentially improves 4-D mapping of bioelectric sources in the body at high spatial resolution, which is especially important for diagnosing and guiding treatment of cardiac and neurologic disorders, including arrhythmia and epilepsy. PMID:24569247
NASA Astrophysics Data System (ADS)
Jasper, Cameron A.
Although aquifer recharge and recovery systems are a sustainable, decentralized, low cost, and low energy approach for the reclamation, treatment, and storage of post- treatment wastewater, they can suffer from poor infiltration rates and the development of a near-surface clogging layer within infiltration ponds. One such aquifer recharge and recovery system, the Aurora Water site in Colorado, U.S.A, functions at about 25% of its predicted capacity to recharge floodplain deposits by flooding infiltration ponds with post-treatment wastewater extracted from river bank aquifers along the South Platte River. The underwater self-potential method was developed to survey self-potential signals at the ground surface in a flooded infiltration pond for mapping infiltration pathways. A method for using heat as a groundwater tracer within the infiltration pond used an array of in situ high-resolution temperature sensing probes. Both relatively positive and negative underwater self-potential anomalies are consistent with observed recovery well pumping rates and specific discharge estimates from temperature data. Results from electrical resistivity tomography and electromagnetics surveys provide consistent electrical conductivity distributions associated with sediment textures. A lab method was developed for resistivity tests of near-surface sediment samples. Forward numerical modeling synthesizes the geophysical information to best match observed self- potential anomalies and provide permeability distributions, which is important for effective aquifer recharge and recovery system design, and optimization strategy development.
Chen, Fei-Fei; Zhu, Ying-Jie; Xiong, Zhi-Chao; Dong, Li-Ying; Chen, Feng; Lu, Bing-Qiang; Yang, Ri-Long
2017-11-15
How to survive under various harsh working conditions is a key challenge for flexible electronic devices because their performances are always susceptible to environments. Herein, we demonstrate the novel design and fabrication of a new kind of the all-weather flexible electrically conductive paper based on ultralong hydroxyapatite nanowires (HNs) with unique combination of the superhydrophobic surface, electrothermal effect, and flame retardancy. The superhydrophobic surface with water repellency stabilizes the electrically conductive performance of the paper in water. For example, the electrical current through the superhydrophobic paper onto which water droplets are deposited shows a little change (0.38%), and the electrical performance is steady as well even when the paper is immersed in water for 120 s (just 3.65% change). In addition, the intrinsic electrothermal effect of the electrically conductive paper can efficiently heat the paper to reach a high temperature, for example, 224.25 °C, within 10 s. The synergistic effect between the electrothermal effect and superhydrophobic surface accelerates the melting and removal of ice on the heated electrically conductive paper. Deicing efficiency of the heated superhydrophobic electrically conductive paper is ∼4.5 times that of the unheated superhydrophobic electrically conductive paper and ∼10.4 times that of the heated superhydrophilic paper. More importantly, benefiting from fire-resistant ultralong HNs, thermally stable Ketjen black, and Si-O backbone of poly(dimethylsiloxane), we demonstrate the stable and continuous service of the as-prepared electrically conductive paper in the flame for as long as 7 min. The electrical performance of the electrically conductive paper after flame treatment can maintain as high as 90.60% of the original value. The rational design of the electrically conductive paper with suitable building materials and structure demonstrated here will give an inspiration for the development of new kinds of all-weather flexible electronic devices that can work under harsh conditions.
Smith, B.D.; Abraham, J.D.; Cannia, J.C.; Minsley, B.J.; Ball, L.B.; Steele, G.V.; Deszcz-Pan, M.
2011-01-01
This report is a release of digital data from a helicopter electromagnetic and magnetic survey conducted by Fugro Airborne Surveys in areas of eastern Nebraska as part of a joint hydrologic study by the Lower Platte North and Lower Platte South Natural Resources Districts, and the U.S. Geological Survey. The survey flight lines covered 1,418.6 line km (882 line mile). The survey was flown from April 22 to May 2, 2009. The objective of the contracted survey was to improve the understanding of the relation between surface water and groundwater systems critical to developing groundwater models used in management programs for water resources. The electromagnetic equipment consisted of six different coil-pair orientations that measured resistivity at separate frequencies from about 400 hertz to about 140,000 hertz. The electromagnetic data were converted to georeferenced electrical resistivity grids and maps for each frequency that represent different approximate depths of investigation for each survey area. The electrical resistivity data were input into a numerical inversion to estimate resistivity variations with depth. In addition to the electromagnetic data, total field magnetic data and digital elevation data were collected. Data released in this report consist of flight line data, digital grids, digital databases of the inverted electrical resistivity with depth, and digital maps of the apparent resistivity and total magnetic field. The range of subsurface investigation is comparable to the depth of shallow aquifers. The survey areas, Swedeburg and Sprague, were chosen based on results from test flights in 2007 in eastern Nebraska and needs of local water managers. The geophysical and hydrologic information from U.S. Geological Survey studies are being used by resource managers to develop groundwater resource plans for the area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagor, Anna; Pawlowski, Antoni; Pietraszko, Adam
2009-03-15
Single crystals of proustite Ag{sub 3}AsS{sub 3} have been characterised by impedance spectroscopy and single-crystal X-ray diffraction in the temperature ranges of 295-543 and 295-695 K, respectively. An analysis of the one-particle potential of silver atoms shows that in the whole measuring temperature range defects in the silver substructure play a major role in the conduction mechanism. Furthermore, the silver transfer is equally probable within silver chains and spirals, as well as between chains and spirals. The trigonal R3c room temperature phase does not change until the decomposition of the crystal. The electric anomaly of the first-order character which appearsmore » near 502 K is related to an increase in the electronic component of the total conductivity resulting from Ag{sub 2}S deposition at the sample surface. - Joint probability density function map of silver atoms at T=695 K.« less
Grain boundary dominated electrical conductivity in ultrananocrystalline diamond
NASA Astrophysics Data System (ADS)
Wiora, Neda; Mertens, Michael; Brühne, Kai; Fecht, Hans-Jörg; Tran, Ich C.; Willey, Trevor; van Buuren, Anthony; Biener, Jürgen; Lee, Jun-Sik
2017-10-01
N-type electrically conductive ultrananocrystalline diamond (UNCD) films were deposited using the hot filament chemical vapor deposition technique with a gas mixture of H2, CH4 and NH3. Depending on the deposition temperature and ammonia feed gas concentration, which serves as a nitrogen source, room temperature electrical conductivities in the order of 10-2 to 5 × 101 S/cm and activation energies in the meV range were achieved. In order to understand the origin of the enhanced electrical conductivity and clarify the role of ammonia addition to the process gas, a set of UNCD films was grown by systematically varying the ammonia gas phase concentration. These samples were analyzed with respect to their morphology and electrical properties as well as their carbon and nitrogen bonding environments. Temperature dependent electrical conductivity measurements (300-1200 K) show that the electrical conductivity of the samples increases with temperature. The near edge x-ray absorption fine structure measurements reveal that the electrical conductivity of the UNCD films does not correlate directly with ammonia addition, but depends on the total amount of sp2 bonded carbon in the deposited films.
Effect of the mechanical deformation on the electrical properties of the polymer/CNT fiber
NASA Astrophysics Data System (ADS)
Cho, Hyun Woo; Sung, Bong June; Nano-Bio Computational Chemistry Laboratory Team
2014-03-01
We elucidate the effect of the mechanical deformation on the electrical properties of the polymer/CNT fiber. The conductive polymer fiber has drawn a great attention for its potential application to a stretchable electronics such as wearable devices and artificial muscles, etc. However, the electrical conductivity of the polymer-based stretchable electronics decreases significantly during the deformation, which may limit the applicability of the polymer/CNT fiber for the stretchable electronics. Moreover, its physical origin for the decrease in electrical conductivity has not been explained clearly. In this work, we employ a coarse-grained model for the polymer/CNT fiber, and we calculate the electric conductivity using global tunneling network (GTN) model. We show that the electric conductivity decreases during the elongation of the polymer/CNT fiber. We also find using critical path approximation (CPA) that the structure of the electrical network of the CNTs changes collectively during the elongation of the fiber, which is strongly responsible for the reduction of the electrical conductivity of the polymer/CNT fiber.
Alternative Fuels Data Center: Maps and Data
control systems and appliances with off-board sources of electricity, thereby reducing the need to idle trucks to power climate control systems and appliances with off-board sources of electricity, thereby
Hot wire needle probe for thermal conductivity detection
Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban
2015-11-10
An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.
Lu, Bin; Harley, Ronald G.; Du, Liang; Yang, Yi; Sharma, Santosh K.; Zambare, Prachi; Madane, Mayura A.
2014-06-17
A method identifies electric load types of a plurality of different electric loads. The method includes providing a self-organizing map load feature database of a plurality of different electric load types and a plurality of neurons, each of the load types corresponding to a number of the neurons; employing a weight vector for each of the neurons; sensing a voltage signal and a current signal for each of the loads; determining a load feature vector including at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the loads; and identifying by a processor one of the load types by relating the load feature vector to the neurons of the database by identifying the weight vector of one of the neurons corresponding to the one of the load types that is a minimal distance to the load feature vector.
Maximum on the Electrical Conductivity Polytherm of Molten TeCl4
NASA Astrophysics Data System (ADS)
Salyulev, Alexander B.; Potapov, Alexei M.
2017-05-01
The electrical conductivity of molten TeCl4 was measured up to 761K, i.e. 106 degrees above the normal boiling point of the salt. For the first time it was found that TeCl4 electrical conductivity polytherm has a maximum. It was recorded at 705K (κmax=0.245 Sm/cm), whereupon the conductivity decreases as the temperature rises. The activation energy of electrical conductivity was calculated.
NASA Astrophysics Data System (ADS)
Jacquot, Jonathan; Tierens, Wouter; Zhang, Wei; Bobkov, Volodymyr; Colas, Laurent; Noterdaeme, Jean-Marie
2017-10-01
A sequence of simulations is performed with RAPLICASOL and SSWICH to compare two AUG ICRF antennas. RAPLICASOL outputs have been used as input to SSWICH-SW for the AUG ICRF antennas. Using parallel electric field maps and the scattering matrix produced by RAPLICASOL, SSWICH-SW, reduced to its asymptotic part, is able to produce a 2D radial/poloidal map of the DC plasma potential accounting for the antenna input settings (total power, power balance, phasing). Two models of antennas are compared: 2-strap antenna vs 3-strap antenna. The 2D DC potential structures are correlated to structures of the parallel electric field map for different phasing and power balance. The overall DC plasma potential on the 3-strap antenna is lower due to better global RF currents compensation. Spatial proximity between regions of high RF electric field and regions where high DC plasma potentials are observed is an important factor for sheath rectification.
Triki Fourati, Hela; Bouaziz, Moncef; Benzina, Mourad; Bouaziz, Samir
2017-04-01
Traditional surveying methods of soil properties over landscapes are dramatically cost and time-consuming. Thus, remote sensing is a proper choice for monitoring environmental problem. This research aims to study the effect of environmental factors on soil salinity and to map the spatial distribution of this salinity over the southern east part of Tunisia by means of remote sensing and geostatistical techniques. For this purpose, we used Advanced Spaceborne Thermal Emission and Reflection Radiometer data to depict geomorphological parameters: elevation, slope, plan curvature (PLC), profile curvature (PRC), and aspect. Pearson correlation between these parameters and soil electrical conductivity (EC soil ) showed that mainly slope and elevation affect the concentration of salt in soil. Moreover, spectral analysis illustrated the high potential of short-wave infrared (SWIR) bands to identify saline soils. To map soil salinity in southern Tunisia, ordinary kriging (OK), minimum distance (MD) classification, and simple regression (SR) were used. The findings showed that ordinary kriging technique provides the most reliable performances to identify and classify saline soils over the study area with a root mean square error of 1.83 and mean error of 0.018.
NASA Astrophysics Data System (ADS)
Mehrali, Mohammad; Sadeghinezhad, Emad; Rashidi, Mohammad Mehdi; Akhiani, Amir Reza; Tahan Latibari, Sara; Mehrali, Mehdi; Metselaar, Hendrik Simon Cornelis
2015-06-01
Electrical conductivity is an important property for technological applications of nanofluids that have not been widely investigated, and few studies have been concerned about the electrical conductivity. In this study, nitrogen-doped graphene (NDG) nanofluids were prepared using the two-step method in an aqueous solution of 0.025 wt% Triton X-100 as a surfactant at several concentrations (0.01, 0.02, 0.04, 0.06 wt%). The electrical conductivity of the aqueous NDG nanofluids showed a linear dependence on the concentration and increased up to 1814.96 % for a loading of 0.06 wt% NDG nanosheet. From the experimental data, empirical models were developed to express the electrical conductivity as functions of temperature and concentration. It was observed that increasing the temperature has much greater effect on electrical conductivity enhancement than increasing the NDG nanosheet loading. Additionally, by considering the electrophoresis of the NDG nanosheets, a straightforward electrical conductivity model is established to modulate and understand the experimental results.
Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder
Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong
2016-01-01
The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service. PMID:28004839
System and method for evaluating a wire conductor
Panozzo, Edward; Parish, Harold
2013-10-22
A method of evaluating an electrically conductive wire segment having an insulated intermediate portion and non-insulated ends includes passing the insulated portion of the wire segment through an electrically conductive brush. According to the method, an electrical potential is established on the brush by a power source. The method also includes determining a value of electrical current that is conducted through the wire segment by the brush when the potential is established on the brush. The method additionally includes comparing the value of electrical current conducted through the wire segment with a predetermined current value to thereby evaluate the wire segment. A system for evaluating an electrically conductive wire segment is also disclosed.
NASA Astrophysics Data System (ADS)
Shakak, N.
2015-04-01
Spatial variations in ground water quality in the Khartoum state, Sudan, have been studied using geographic information system (GIS) and remote sensing technique. Gegraphical informtion system a tool which is used for storing, analyzing and displaying spatial data is also used for investigating ground water quality information. Khartoum landsat mosac image aquired in 2013was used, Arc/Gis software applied to extract the boundary of the study area, the image was classified to create land use/land cover map. The land use map,geological and soil map are used for correlation between land use , geological formations, and soil types to understand the source of natural pollution that can lower the ground water quality. For this study, the global positioning system (GPS), used in the field to identify the borehole location in a three dimentional coordinate (Latitude, longitude, and altitude), water samples were collected from 156 borehole wells, and analyzed for physico-chemical parameters like electrical conductivity, Total dissolved solid,Chloride, Nitrate, Sodium, Magnisium, Calcium,and Flouride, using standard techniques in the laboratory and compared with the standards.The ground water quality maps of the entire study area have been prepared using spatial interpolation technique for all the above parameters.then the created maps used to visualize, analyze, and understand the relationship among the measured points. Mapping was coded for potable zones, non-potable zones in the study area, in terms of water quality sutability for drinking water and sutability for irrigation. In general satellite remote sensing in conjunction with geographical information system (GIS) offers great potential for water resource development and management.
Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Chen, Gang
2011-01-01
Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions. PMID:21505445
Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Chen, Gang
2011-01-01
Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions.
Depositing bulk or micro-scale electrodes
Shah, Kedar G.; Pannu, Satinderpall S.; Tolosa, Vanessa; Tooker, Angela C.; Sheth, Heeral J.; Felix, Sarah H.; Delima, Terri L.
2016-11-01
Thicker electrodes are provided on microelectronic device using thermo-compression bonding. A thin-film electrical conducting layer forms electrical conduits and bulk depositing provides an electrode layer on the thin-film electrical conducting layer. An insulating polymer layer encapsulates the electrically thin-film electrical conducting layer and the electrode layer. Some of the insulating layer is removed to expose the electrode layer.
Variable Anisotropic Brain Electrical Conductivities in Epileptogenic Foci
Mandelkern, M.; Bui, D.; Salamon, N.; Vinters, H. V.; Mathern, G. W.
2010-01-01
Source localization models assume brain electrical conductivities are isotropic at about 0.33 S/m. These assumptions have not been confirmed ex vivo in humans. This study determined bidirectional electrical conductivities from pediatric epilepsy surgery patients. Electrical conductivities perpendicular and parallel to the pial surface of neocortex and subcortical white matter (n = 15) were measured using the 4-electrode technique and compared with clinical variables. Mean (±SD) electrical conductivities were 0.10 ± 0.01 S/m, and varied by 243% from patient to patient. Perpendicular and parallel conductivities differed by 45%, and the larger values were perpendicular to the pial surface in 47% and parallel in 40% of patients. A perpendicular principal axis was associated with normal, while isotropy and parallel principal axes were linked with epileptogenic lesions by MRI. Electrical conductivities were decreased in patients with cortical dysplasia compared with non-dysplasia etiologies. The electrical conductivity values of freshly excised human brain tissues were approximately 30% of assumed values, varied by over 200% from patient to patient, and had erratic anisotropic and isotropic shapes if the MRI showed a lesion. Understanding brain electrical conductivity and ways to non-invasively measure them are probably necessary to enhance the ability to localize EEG sources from epilepsy surgery patients. PMID:20440549
NASA Astrophysics Data System (ADS)
Thao, S. J.; Plattner, A.
2015-12-01
Farming in the San Joaquin Valley in central California is often impeded by a shallow rock-hard layer of consolidated soil commonly referred to as hardpan. To be able to successfully farm, this layer, if too shallow, needs to be removed either with explosives or heavy equipment. It is therefore of great value to obtain information about depth and presence of such a layer prior to agricultural operations. We tested the applicability of electrical resistivity tomography and ground penetrating radar in hardpan detection. On our test site of known hardpan depth (from trenching) and local absence (prior dynamiting to plant trees), we successfully recovered the known edge of a hardpan layer with both methods, ERT and GPR. The clay-rich soil significantly reduced the GPR penetration depth but we still managed to map the edges at a known gap where prior dynamiting had removed the hardpan. Electrical resistivity tomography with a dipole-dipole electrode configuration showed a clear conductive layer at expected depths with a clearly visible gap at the correct location. In our data analysis and representation we only used either freely available or in-house written software.
NASA Astrophysics Data System (ADS)
Constable, S.
2015-12-01
Marine magnetotelluric (MT) and controlled-source electromagnetic (CSEM) sounding methods were developed in the early 1980's as deep-water academic tools to study the oceanic lithosphere and mantle. Electrical conductivity is a strong function of porosity, temperature, melting, and volatile content, and so marine MT and CSEM data can be used to address a variety of geological questions related to plate tectonics. These include the distribution of melt at mid-ocean ridges, the fate of fluids in subduction zones, and the nature of the lithosphere-asthenosphere boundary. With the advent of deepwater oil and gas drilling in the late 1990's, marine EM methods were embraced by the exploration community, and are now routinely used to assist in exploration and make drilling decisions for wells costing $100M or more. For countries without conventional hydrocarbon resources, gas hydrate offers the potential for energy production, and marine CSEM methods may be the only effective way to explore for and characterize this resource. The use of EM methods to map geothermal, groundwater, and mineral resources also has application in the marine environment. Water and electricity has proved to be a very successful mix!
Mobile geophysical study of peat deposits in Fuhrberger Field, Germany
NASA Astrophysics Data System (ADS)
Wunderlich, T.; Petersen, H.; Hagrey, S. A. al; Rabbel, W.
2012-04-01
In the water protection area of Fuhrberger Field, north of Hanover, geophysical techniques were applied to study the stakeholder problem of the source detection for nitrate accumulations in the ground water. We used our mobile multisensor platform to conduct measurements using Ground Penetrating Radar (GPR, 200 MHz antenna) and Electromagnetic Induction (EMI, EM31). This aims to study the subsurface occurrences of peat deposits (surplus of organic carbon) supposed to be a source of nitrate emissions due to the aeration and the drawdown of groundwater levels (e.g. by pumping, drainage etc.). Resulting EMI and GPR signals show high data quality. Measured apparent electrical conductivity shows very low values (<10 mS/m) due to the mainly sandy subsurface. For this medium, both methods are expected to penetrate down to 3-5 m depth. GPR radargrams, time slices of GPR reflection energy and EMI apparent electrical conductivities are plotted on aerial photographs and compared to each other's and with vegetation intensity. We could separate areas characterized by low reflection energy and high conductivity, and vice versa. Briefly, organic rich sediments such as peats are assumed to have a relative high conductivity and thus low GPR reflectivity. Some areas of local conductivity increase correspond to a deep reflection interface (as seen in the radargrams), which even vanishes due to the high attenuation caused by the high conductivity. This implies that the upper layer is more conductive than the lower layer. Several local areas with these characteristics are found at the study sites. We recommend shallow drillings at representative points to deliver the necessary confirmation with ground truth information. Acknowledgments: iSOIL (Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping) is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment.
Coated carbon nanotube array electrodes
Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi
2006-12-12
The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.
Coated carbon nanotube array electrodes
Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA
2008-10-28
The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.
Soil Salinity Mapping in Everglades National Park Using Remote Sensing Techniques
NASA Astrophysics Data System (ADS)
Su, H.; Khadim, F. K.; Blankenship, J.; Sobhan, K.
2017-12-01
The South Florida Everglades is a vast subtropical wetland with a globally unique hydrology and ecology, and it is designated as an International Biosphere Reserve and a Wetland of International Importance. Everglades National Park (ENP) is a hydro-ecologically enriched wetland with varying salinity contents, which is a concern for terrestrial ecosystem balance and sustainability. As such, in this study, time series soil salinity mapping was carried out for the ENP area. The mapping first entailed a maximum likelihood classification of seven land cover classes for the ENP area—namely mangrove forest, mangrove scrub, low-density forest, sawgrass, prairies and marshes, barren lands with woodland hammock and water—for the years 1996, 2000, 2006, 2010 and 2015. The classifications for 1996-2010 yielded accuracies of 82%-94%, and the 2015 classification was supported through ground truthing. Afterwards, electric conductivity (EC) tolerance thresholds for each vegetation class were established,which yielded soil salinity maps comprising four soil salinity classes—i.e., the non- (EC = 0 2 dS/m), low- (EC = 2 4 dS/m), moderate- (EC = 4 8 dS/m) and high-saline (EC = >8 dS/m) areas. The soil salinity maps visualized the spatial distribution of soil salinity with no significant temporal variations. The innovative approach of "land cover identification to salinity estimation" used in the study is pragmatic and application oriented, and the study upshots are also useful, considering the diversifying ecological context of the ENP area.
Identification of cardiac rhythm features by mathematical analysis of vector fields.
Fitzgerald, Tamara N; Brooks, Dana H; Triedman, John K
2005-01-01
Automated techniques for locating cardiac arrhythmia features are limited, and cardiologists generally rely on isochronal maps to infer patterns in the cardiac activation sequence during an ablation procedure. Velocity vector mapping has been proposed as an alternative method to study cardiac activation in both clinical and research environments. In addition to the visual cues that vector maps can provide, vector fields can be analyzed using mathematical operators such as the divergence and curl. In the current study, conduction features were extracted from velocity vector fields computed from cardiac mapping data. The divergence was used to locate ectopic foci and wavefront collisions, and the curl to identify central obstacles in reentrant circuits. Both operators were applied to simulated rhythms created from a two-dimensional cellular automaton model, to measured data from an in situ experimental canine model, and to complex three-dimensional human cardiac mapping data sets. Analysis of simulated vector fields indicated that the divergence is useful in identifying ectopic foci, with a relatively small number of vectors and with errors of up to 30 degrees in the angle measurements. The curl was useful for identifying central obstacles in reentrant circuits, and the number of velocity vectors needed increased as the rhythm became more complex. The divergence was able to accurately identify canine in situ pacing sites, areas of breakthrough activation, and wavefront collisions. In data from human arrhythmias, the divergence reliably estimated origins of electrical activity and wavefront collisions, but the curl was less reliable at locating central obstacles in reentrant circuits, possibly due to the retrospective nature of data collection. The results indicate that the curl and divergence operators applied to velocity vector maps have the potential to add valuable information in cardiac mapping and can be used to supplement human pattern recognition.
On-Line Planning and Mapping for Chemical Plume Tracing
2004-06-01
09 - 2005 Final Report 01/04/2001 - 31/10/2004 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER On-line Planning and Mapping for Chemical Plume Tracing 5b...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Department of Electrical Engineering University of California...develop, and implement on-vehicle planning and mapping theory and software to find, trace, and map chemical plumes. This objective included accurate
NASA Astrophysics Data System (ADS)
Majeed, Hassaan; Lee, Young J.; Best-Popescu, Catherine; Popescu, Gabriel; Jang, Sung-Soo; Chung, Hee Jung
2017-02-01
Traditionally the measurement of electrical activity in neurons has been carried out using microelectrode arrays that require the conducting elements to be in contact with the neuronal network. This method, also referred to as "electrophysiology", while being excellent in terms of temporal resolution is limited in spatial resolution and is invasive. An optical microscopy method for measuring electrical activity is thus highly desired. Common-path quantitative phase imaging (QPI) systems are good candidates for such investigations as they provide high sensitivity (on the order of nanometers) to the plasma membrane fluctuations that can be linked to electrical activity in a neuronal circuit. In this work we measured electrical activity in a culture of rat cortical neurons using MISS microscopy, a high-speed common-path QPI technique having an axial resolution of around 1 nm in optical path-length, which we introduced at PW BIOS 2016. Specifically, we measured the vesicular cycling (endocytosis and exocytosis) occurring at axon terminals of the neurons due to electrical activity caused by adding a high K+ solution to the cell culture. The axon terminals were localized using a micro-fluidic device that separated them from the rest of the culture. Stacks of images of these terminals were acquired at 826 fps both before and after K+ excitation and the temporal standard deviation maps for the two cases were compared to measure the membrane fluctuations. Concurrently, the existence of vesicular cycling was confirmed through fluorescent tagging and imaging of the vesicles at and around the axon terminals.
Influence of plant roots on electrical resistivity measurements of cultivated soil columns
NASA Astrophysics Data System (ADS)
Maloteau, Sophie; Blanchy, Guillaume; Javaux, Mathieu; Garré, Sarah
2016-04-01
Electrical resistivity methods have been widely used for the last 40 years in many fields: groundwater investigation, soil and water pollution, engineering application for subsurface surveys, etc. Many factors can influence the electrical resistivity of a media, and thus influence the ERT measurements. Among those factors, it is known that plant roots affect bulk electrical resistivity. However, this impact is not yet well understood. The goals of this experiment are to quantify the effect of plant roots on electrical resistivity of the soil subsurface and to map a plant roots system in space and time with ERT technique in a soil column. For this research, it is assumed that roots system affect the electrical properties of the rhizosphere. Indeed the root activity (by transporting ions, releasing exudates, changing the soil structure,…) will modify the rhizosphere electrical conductivity (Lobet G. et al, 2013). This experiment is included in a bigger research project about the influence of roots system on geophysics measurements. Measurements are made on cylinders of 45 cm high and a diameter of 20 cm, filled with saturated loam on which seeds of Brachypodium distachyon (L.) Beauv. are sowed. Columns are equipped with electrodes, TDR probes and temperature sensors. Experiments are conducted at Gembloux Agro-Bio Tech, in a growing chamber with controlled conditions: temperature of the air is fixed to 20° C, photoperiod is equal to 14 hours, photosynthetically active radiation is equal to 200 μmol m-2s-1, and air relative humidity is fixed to 80 %. Columns are fully saturated the first day of the measurements duration then no more irrigation is done till the end of the experiment. The poster will report the first results analysis of the electrical resistivity distribution in the soil columns through space and time. These results will be discussed according to the plant development and other controlled factors. Water content of the soil will also be detailed. Reference Lobet G, Hachez C, Chaumont F, Javaux M, Draye X. Root water uptake and water flow in the soil-root domain. In: Eshel A and Beeckman T, editors. Plant Roots. The Hidden Half. Boca Raton (US):CRC Press,2013. p. 24-1 - 24-13.
Ceramic substrate including thin film multilayer surface conductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Joseph Ambrose; Peterson, Kenneth A.
2017-05-09
A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on anmore » upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.« less
Exposure assessment of extremely low frequency electric fields in Tehran, Iran, 2010.
Nassiri, Parvin; Esmaeilpour, Mohammad Reza Monazzam; Gharachahi, Ehsan; Haghighat, Gholamali; Yunesian, Masoud; Zaredar, Narges
2013-01-01
Extremely Low-Frequency (ELF) electric and magnetic fields belonging to the nonionizing electromagnetic radiation spectrum have a frequency of 50 - 60 Hz. All people are exposed to a complex set of electric and magnetic fields that spread throughout the environment. The current study was carried out to assess people's exposure to an ELF electric field in the Tehran metropolitan area in 2010. The measurement of the electronic fields was performed using an HI-3604 power frequency field strength measurement device. A total number of 2,753 measurements were performed. Afterward, the data obtained were transferred to the base map using Arc View Version 3.2 and Arc Map Version 9.3. Finally, an interpolation method was applied to expand the intensity of the electric field to the entire city. Based on the results obtained, the electric field was divided into three parts with various intensities including 0-5 V m, 5-15 V m, and >15 V m. It should be noted that the status of high voltage transmission lines, electric substations, and specific points including schools and hospitals were also marked on the map. Minimum and maximum electric field intensities were measured tantamount to 0.31 V m and 19.80 V m, respectively. In all measurements, the electric field was much less than the amount provided in the ICNIRP Guide. The results revealed that 141 hospitals and 6,905 schools are situated in an area with electric field intensity equal to 0-5 V m, while 15 hospitals and 95 schools are located in zones of 5-15 V m and more than 15 V m. Examining high voltage transmission lines and electric substations in Tehran and its suburbs suggested that the impact of the lines on the background electric field of the city was low. Accordingly, 0.97 km of Tehran located on the city border adjacent to the high voltage transmission lines have an electric field in the range of 5 to 15 V m. The noted range is much lower than the available standards. In summary, it can be concluded that the public is not exposed to a risky background electric field in metropolitan Tehran. The result of comparing sensitive recipients showed that the schools have a more desirable status than the hospitals. Nonetheless, epidemiologic studies can lead to more understanding of the impact on public health.
Estimates of olivine-basaltic melt electrical conductivity using a digital rock physics approach
NASA Astrophysics Data System (ADS)
Miller, Kevin J.; Montési, Laurent G. J.; Zhu, Wen-lu
2015-12-01
Estimates of melt content beneath fast-spreading mid-ocean ridges inferred from magnetotelluric tomography (MT) vary between 0.01 and 0.10. Much of this variation may stem from a lack of understanding of how the grain-scale melt geometry influences the bulk electrical conductivity of a partially molten rock, especially at low melt fraction. We compute bulk electrical conductivity of olivine-basalt aggregates over 0.02 to 0.20 melt fraction by simulating electric current in experimentally obtained partially molten geometries. Olivine-basalt aggregates were synthesized by hot-pressing San Carlos olivine and high-alumina basalt in a solid-medium piston-cylinder apparatus. Run conditions for experimental charges were 1.5 GPa and 1350 °C. Upon completion, charges were quenched and cored. Samples were imaged using synchrotron X-ray micro-computed tomography (μ-CT). The resulting high-resolution, 3-dimensional (3-D) image of the melt distribution constitutes a digital rock sample, on which numerical simulations were conducted to estimate material properties. To compute bulk electrical conductivity, we simulated a direct current measurement by solving the current continuity equation, assuming electrical conductivities for olivine and melt. An application of Ohm's Law yields the bulk electrical conductivity of the partially molten region. The bulk electrical conductivity values for nominally dry materials follow a power-law relationship σbulk = Cσmeltϕm with fit parameters m = 1.3 ± 0.3 and C = 0.66 ± 0.06. Laminar fluid flow simulations were conducted on the same partially molten geometries to obtain permeability, and the respective pathways for electrical current and fluid flow over the same melt geometry were compared. Our results indicate that the pathways for flow fluid are different from those for electric current. Electrical tortuosity is lower than fluid flow tortuosity. The simulation results are compared to existing experimental data, and the potential influence of volatiles and melt films on electrical conductivity of partially molten rocks is discussed.
Photovoltaic device having light transmitting electrically conductive stacked films
Weber, Michael F.; Tran, Nang T.; Jeffrey, Frank R.; Gilbert, James R.; Aspen, Frank E.
1990-07-10
A light transmitting electrically conductive stacked film, useful as a light transmitting electrode, including a first light transmitting electrically conductive layer, having a first optical thickness, a second light transmitting layer, having a second optical thickness different from the optical thickness of the first layer, and an electrically conductive metallic layer interposed between and in initimate contact with the first and second layers.
Electric moisture meters for wood
William L. James
1988-01-01
Electric moisture meters for wood measure electric conductance (resistance) or dielectric properties, which vary fairly consistently with moisture content when it is less than 30 percent. The two major classes of electric moisture meters are the conductance (resistance) type and the dielectric type. Conductance-t ype meters use penetrating electrodes that measure in a...
Ahn, Yongjun; Yeo, Hwasoo
2015-01-01
The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric vehicles.
Electrically-Conductive Polyaramid Cable And Fabric
NASA Technical Reports Server (NTRS)
Orban, Ralph F.
1988-01-01
Tows coated with metal provide strength and conductance. Cable suitable for use underwater made of electrically conductive tows of metal-coated polyaramid filaments surrounded by electrically insulating jacket. Conductive tows used to make conductive fabrics. Tension borne by metal-coated filaments, so upon release, entire cable springs back to nearly original length without damage.
NASA Astrophysics Data System (ADS)
Sharma, Nidhi; Khan, Zahid A.; Siddiquee, Arshad Noor; Shihab, Suha K.; Atif Wahid, Mohd
2018-04-01
Copper (Cu) is predominantly used material as a conducting element in electrical and electronic components due to its high conductivity. Aluminum (Al) being lighter in weight and more conductive on weight basis than that of Cu is able to replace or partially replace Cu to make lighter and cost effective electrical components. Conventional methods of joining Al to Cu, such as, fusion welding process have many shortcomings. Friction Stir Welding (FSW) is a solid state welding process which overcomes the shortcoming of the fusion welding. FSW parameters affect the mechanical and electrical properties of the joint. This study aims to evaluate the effect of different process parameters such as shoulder diameter, pin offset, welding and rotational speed on the microstructure and electrical conductivity of the dissimilar Al-Cu joint. FSW is performed using cylindrical pin profile, and four process parameters. Each parameter at different levels is varied according to Taguchi’s L18 standard orthogonal array. It is found that the electrical conductivity of the FSWed joints are equal to that of aluminum at all the welded sections. FSW is found to be an effective technique to join Al to Cu without compromising with the electrical properties. However, the electrical conductivity gets influenced by the process parameters in the stir zone. The optimal combination of the FSW parameters for maximum electrical conductivity is determined. The analysis of variance (ANOVA) technique applied on stir zone suggests that the rotational speed and tool pin offset are the significant parameters to influence the electrical conductivity.
Shareef, Hussain; Mohamed, Azah
2017-01-01
The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method. PMID:29220396
Islam, Md Mainul; Shareef, Hussain; Mohamed, Azah
2017-01-01
The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method.
Application of conformal transformation to elliptic geometry for electric impedance tomography.
Yilmaz, Atila; Akdoğan, Kurtuluş E; Saka, Birsen
2008-03-01
Electrical impedance tomography (EIT) is a medical imaging modality that is used to compute the conductivity distribution through measurements on the cross-section of a body part. An elliptic geometry model, which defines a more general frame, ensures more accurate results in reconstruction and assessment of inhomogeneities inside. This study provides a link between the analytical solutions defined in circular and elliptical geometries on the basis of the computation of conformal mapping. The results defined as voltage distributions for the homogeneous case in elliptic and circular geometries have been compared with those obtained by the use of conformal transformation between elliptical and well-known circular geometry. The study also includes the results of the finite element method (FEM) as another approach for more complex geometries for the comparison of performance in other complex scenarios for eccentric inhomogeneities. The study emphasizes that for the elliptic case the analytical solution with conformal transformation is a reliable and useful tool for developing insight into more complex forms including eccentric inhomogeneities.
NASA Astrophysics Data System (ADS)
Singh, Shailendra; Maurya, Ved P.; Singh, Roshan K.; Srivastava, Shalivahan; Tripathi, Anurag; Adhikari, P. K.
2018-04-01
Greenstone belts are well known for gold occurrences at different regions of the world. The Dhanjori basin in the eastern Singhbhum region shows major characteristics of a rifted greenstone belt. Initially, we conducted 14 audio-magnetotelluric (AMT) measurements for a profile of ˜ 20 km in the frequency range of 1 kHz to 10 Hz over this rather complex geologic environment covering Dhanjori Volcanics (DhV) and Kolhan Group (KG). Subsequently, gravity and magnetic surveys were also conducted over this AMT profile. The purpose of the survey was to identify and map conductive features and to relate them to metallogeny of the area along with the mapping of the basement of Dhanjori basin. The strike analysis showed N30°W strike for DhV for all the frequencies and for sites over KG domain in the frequency range of 100-10 Hz, but for KG domain, the obtained strike in 1 kHz to 100 Hz is N45°E. As the combination of transverse electric (TE), transverse magnetic (TM) and tipper (Tzy) can recover the electrical signature in complex geological environment, we discuss the conductivity model obtained from TE+TM+Tzy only. The inversion was carried for the regional profile with 14 sites and for 7 sites over KG domain. Conductivity model shows two well resolved conductors, one each in KG and Quartz Pebble Conglomerate Dhanjori (QPCD) domains respectively showing common linked concordant features between these regional and KG profiles. The conductors are interpreted as sulfide mineralization linked with QPCD group of rocks which may host gold. These conductors are also horizontally disposed due to the intrusive younger Mayurbhanj Granite. These intrusives correlate well with the gravity modeling as well. The thickness of the Dhanjori basin at the central is about 3.0 km, similar to that from gravity modeling. The conductivity model also indicates the presence of shallow conductors, but could not be resolved due to lack of high frequency data. However, the results from the close-by drill site indicate the presence of shallow sulfide mineralization hosting gold. The deep level conductors delineated from AMT studies are associated with gravity high and low magnetic. ICP-AES results of Dhanjori samples show significant concentration of gold ˜ 5.0 g/t, which is of economic consideration. Thus, it can be inferred that the conductors have evidences of sulfide mineralization which host gold.
Minimizing radiation damage in nonlinear optical crystals
Cooke, D.W.; Bennett, B.L.; Cockroft, N.J.
1998-09-08
Methods are disclosed for minimizing laser induced damage to nonlinear crystals, such as KTP crystals, involving various means for electrically grounding the crystals in order to diffuse electrical discharges within the crystals caused by the incident laser beam. In certain embodiments, electrically conductive material is deposited onto or into surfaces of the nonlinear crystals and the electrically conductive surfaces are connected to an electrical ground. To minimize electrical discharges on crystal surfaces that are not covered by the grounded electrically conductive material, a vacuum may be created around the nonlinear crystal. 5 figs.
NASA Astrophysics Data System (ADS)
Vidmar, David; Narayan, Sanjiv M.; Krummen, David E.; Rappel, Wouter-Jan
2016-11-01
We present a general method of utilizing bioelectric recordings from a spatially sparse electrode grid to compute a dynamic vector field describing the underlying propagation of electrical activity. This vector field, termed the wave-front flow field, permits quantitative analysis of the magnitude of rotational activity (vorticity) and focal activity (divergence) at each spatial point. We apply this method to signals recorded during arrhythmias in human atria and ventricles using a multipolar contact catheter and show that the flow fields correlate with corresponding activation maps. Further, regions of elevated vorticity and divergence correspond to sites identified as clinically significant rotors and focal sources where therapeutic intervention can be effective. These flow fields can provide quantitative insights into the dynamics of normal and abnormal conduction in humans and could potentially be used to enhance therapies for cardiac arrhythmias.
Packham, B; Barnes, G; Dos Santos, G Sato; Aristovich, K; Gilad, O; Ghosh, A; Oh, T; Holder, D
2016-06-01
Electrical impedance tomography (EIT) allows for the reconstruction of internal conductivity from surface measurements. A change in conductivity occurs as ion channels open during neural activity, making EIT a potential tool for functional brain imaging. EIT images can have >10 000 voxels, which means statistical analysis of such images presents a substantial multiple testing problem. One way to optimally correct for these issues and still maintain the flexibility of complicated experimental designs is to use random field theory. This parametric method estimates the distribution of peaks one would expect by chance in a smooth random field of a given size. Random field theory has been used in several other neuroimaging techniques but never validated for EIT images of fast neural activity, such validation can be achieved using non-parametric techniques. Both parametric and non-parametric techniques were used to analyze a set of 22 images collected from 8 rats. Significant group activations were detected using both techniques (corrected p < 0.05). Both parametric and non-parametric analyses yielded similar results, although the latter was less conservative. These results demonstrate the first statistical analysis of such an image set and indicate that such an analysis is an approach for EIT images of neural activity.
Deep electrical investigations in the Long Valley geothermal area, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, W.D.; Jackson, D.B.; Zohdy, A.A.R.
1976-02-10
Direct current resistivity and time domain electromagnetic techniques were used to study the electrical structure of the Long Valley geothermal area. A resistivity map was compiled from 375 total field resistivity measurements. Two significant zones of low resistivity were detected, one near Casa Diablo Hot Springs and one surrounding the Cashbaugh Ranch-Whitmore Hot Springs area. These anomalies and other parts of the caldera were investigated in detail with 49 Schlumberger dc soundings and 13 transient electromagnetic soundings. An extensive conductive zone of 1- to 10-..cap omega..m resistivity was found to be the cause of the total field resistivity lows. Drillmore » hole information indicates that the shallow parts of the conductive zone in the eastern part of the caldera contain water of only 73/sup 0/C and consist of highly zeolitized tuffs and ashes in the places that were tested. A deeper zone near Whitmore Hot Springs is somewhat more promising in potential for hot water, but owing to the extensive alteration prevalent in the caldera the presence of hot water cannot be definitely assumed. The resistivity results indicate that most of the past hydrothermal activity, and probably most of the present activity, is controlled by fracture systems related to regional Sierran faulting.« less
High-resolution moisture profiles from full-waveform probabilistic inversion of TDR signals
NASA Astrophysics Data System (ADS)
Laloy, Eric; Huisman, Johan Alexander; Jacques, Diederik
2014-11-01
This study presents an novel Bayesian inversion scheme for high-dimensional undetermined TDR waveform inversion. The methodology quantifies uncertainty in the moisture content distribution, using a Gaussian Markov random field (GMRF) prior as regularization operator. A spatial resolution of 1 cm along a 70-cm long TDR probe is considered for the inferred moisture content. Numerical testing shows that the proposed inversion approach works very well in case of a perfect model and Gaussian measurement errors. Real-world application results are generally satisfying. For a series of TDR measurements made during imbibition and evaporation from a laboratory soil column, the average root-mean-square error (RMSE) between maximum a posteriori (MAP) moisture distribution and reference TDR measurements is 0.04 cm3 cm-3. This RMSE value reduces to less than 0.02 cm3 cm-3 for a field application in a podzol soil. The observed model-data discrepancies are primarily due to model inadequacy, such as our simplified modeling of the bulk soil electrical conductivity profile. Among the important issues that should be addressed in future work are the explicit inference of the soil electrical conductivity profile along with the other sampled variables, the modeling of the temperature-dependence of the coaxial cable properties and the definition of an appropriate statistical model of the residual errors.
Packham, B; Barnes, G; dos Santos, G Sato; Aristovich, K; Gilad, O; Ghosh, A; Oh, T; Holder, D
2016-01-01
Abstract Electrical impedance tomography (EIT) allows for the reconstruction of internal conductivity from surface measurements. A change in conductivity occurs as ion channels open during neural activity, making EIT a potential tool for functional brain imaging. EIT images can have >10 000 voxels, which means statistical analysis of such images presents a substantial multiple testing problem. One way to optimally correct for these issues and still maintain the flexibility of complicated experimental designs is to use random field theory. This parametric method estimates the distribution of peaks one would expect by chance in a smooth random field of a given size. Random field theory has been used in several other neuroimaging techniques but never validated for EIT images of fast neural activity, such validation can be achieved using non-parametric techniques. Both parametric and non-parametric techniques were used to analyze a set of 22 images collected from 8 rats. Significant group activations were detected using both techniques (corrected p < 0.05). Both parametric and non-parametric analyses yielded similar results, although the latter was less conservative. These results demonstrate the first statistical analysis of such an image set and indicate that such an analysis is an approach for EIT images of neural activity. PMID:27203477
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iefanova, Anastasiia; Adhikari, Nirmal; Dubey, Ashish
Lead free CH{sub 3}NH{sub 3}SnI{sub 3} perovskite thin film was prepared by low temperature solution processing and characterized using current sensing atomic force microscopy (CS-AFM). Analysis of electrical, optical, and optoelectrical properties reveals unique p-type semiconducting nature and metal like conductivity of this material. CH{sub 3}NH{sub 3}SnI{sub 3} film also showed a strong absorption in visible and near infrared spectrum with absorption onset of 1.3 eV. X-ray Diffraction analysis and scanning electron microscopy (SEM) confirmed a structure of this compound and uniform film formation. The morphology, film uniformity, light harvesting and electrical properties strongly depend on preparation method and precursormore » solution. CH{sub 3}NH{sub 3}SnI{sub 3} films prepared based on dimethylformamide (DMF) showed higher crystallinity and light harvesting capability compared to the film based on combination of dimethyl sulfoxide (DMSO) with gamma-butyrolactone (GBL). Local photocurrent mapping analysis showed that CH{sub 3}NH{sub 3}SnI{sub 3} can be used as an active layer and have a potential to fabricate lead free photovoltaic devices.« less
NASA Astrophysics Data System (ADS)
Albor Aguilera, M. L.; Flores Márquez, J. M.; Remolina Millan, A.; Matsumoto Kuwabara, Y.; González Trujillo, M. A.; Hernández Vásquez, C.; Aguilar Hernandez, J. R.; Hernández Pérez, M. A.; Courel-Piedrahita, M.; Madeira, H. T. Yee
2017-08-01
Cu(In, Ga)Se2 (CIGS) and Cu2ZnSnS4 (CZTS) semiconductors are direct band gap materials; when these types of material are used in solar cells, they provide efficiencies of 22.1% and 12.6%, respectively. Most traditional fabrication methods involve expensive vacuum processes including co-evaporation and sputtering techniques, where films and doping are conducted separately. On the other hand, the chemical bath deposition (CBD) technique allows an in situ process. Cu-doped CdS thin films working as a buffer layer on solar cells provide good performing devices and they may be deposited by low cost techniques such as chemical methods. In this work, Cu-doped CdS thin films were deposited using the CBD technique on SnO2:F (FTO) substrates. The elemental analysis and mapping reconstruction were conducted by EDXS. Morphological, optical and electrical properties were studied, and they revealed that Cu doping modified the CdS structure, band-gap value and the electrical properties. Cu-doped CdS films show high resistivity compared to the non-doped CdS. The appropriate parameters of Cu-doped CdS films were determined to obtain an adequate window or buffer layer on CIGS and CZTS photovoltaic solar cells.
NASA Astrophysics Data System (ADS)
Mehrdad Mirsanjari, Mir; Mohammadyari, Fatemeh
2018-03-01
Underground water is regarded as considerable water source which is mainly available in arid and semi arid with deficient surface water source. Forecasting of hydrological variables are suitable tools in water resources management. On the other hand, time series concepts is considered efficient means in forecasting process of water management. In this study the data including qualitative parameters (electrical conductivity and sodium adsorption ratio) of 17 underground water wells in Mehran Plain has been used to model the trend of parameters change over time. Using determined model, the qualitative parameters of groundwater is predicted for the next seven years. Data from 2003 to 2016 has been collected and were fitted by AR, MA, ARMA, ARIMA and SARIMA models. Afterward, the best model is determined using information criterion or Akaike (AIC) and correlation coefficient. After modeling parameters, the map of agricultural land use in 2016 and 2023 were generated and the changes between these years were studied. Based on the results, the average of predicted SAR (Sodium Adsorption Rate) in all wells in the year 2023 will increase compared to 2016. EC (Electrical Conductivity) average in the ninth and fifteenth holes and decreases in other wells will be increased. The results indicate that the quality of groundwater for Agriculture Plain Mehran will decline in seven years.
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.
2018-02-01
The structural characteristics of thermally deposited ZnIn2Se4 thin films were indexed utilizing x-ray diffraction as well as scanning electron microscopy techniques. Dielectric properties, electric modulus and AC electrical conductivity of ZnIn2Se4 thin films were examined in the frequency range from 42 Hz to 106 Hz. The capacitance, conductance and impedance were measured at different temperatures. The dielectric constant and dielectric loss decrease with an increase in frequency. The maximum barrier height was determined from the analysis of the dielectric loss depending on the Giuntini model. The real part of the electric modulus revealed a constant maximum value at higher frequencies and the imaginary part of the electric modulus was characterized by the appearance of dielectric relaxation peaks. The AC electrical conductivity obeyed the Jonscher universal power law. Correlated barrier hopping model was the appropriate mechanism for AC conduction in ZnIn2Se4 thin films. Estimation of the density of states at the Fermi level and activation energy, for AC conduction, was carried out based on the temperature dependence of AC electrical conductivity.
Grain boundary dominated electrical conductivity in ultrananocrystalline diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiora, Neda; Mertens, Michael; Bruhne, Kai
Here, N-type electrically conductive ultrananocrystalline diamond (UNCD) films were deposited using the hot filament chemical vapor deposition technique with a gas mixture of H 2, CH 4 and NH 3. Depending on the deposition temperature and ammonia feed gas concentration, which serves as a nitrogen source, room temperature electrical conductivities in the order of 10 –2 to 5 × 10 1S/cm and activation energies in the meV range were achieved. In order to understand the origin of the enhanced electrical conductivity and clarify the role of ammonia addition to the process gas, a set of UNCD films was grown bymore » systematically varying the ammonia gas phase concentration. These samples were analyzed with respect to their morphology and electrical properties as well as their carbon and nitrogen bonding environments. Temperature dependent electrical conductivity measurements (300–1200 K) show that the electrical conductivity of the samples increases with temperature. The near edge x-ray absorption fine structure measurements reveal that the electrical conductivity of the UNCD films does not correlate directly with ammonia addition, but depends on the total amount of sp2 bonded carbon in the deposited films.« less
Grain boundary dominated electrical conductivity in ultrananocrystalline diamond
Wiora, Neda; Mertens, Michael; Bruhne, Kai; ...
2017-10-09
Here, N-type electrically conductive ultrananocrystalline diamond (UNCD) films were deposited using the hot filament chemical vapor deposition technique with a gas mixture of H 2, CH 4 and NH 3. Depending on the deposition temperature and ammonia feed gas concentration, which serves as a nitrogen source, room temperature electrical conductivities in the order of 10 –2 to 5 × 10 1S/cm and activation energies in the meV range were achieved. In order to understand the origin of the enhanced electrical conductivity and clarify the role of ammonia addition to the process gas, a set of UNCD films was grown bymore » systematically varying the ammonia gas phase concentration. These samples were analyzed with respect to their morphology and electrical properties as well as their carbon and nitrogen bonding environments. Temperature dependent electrical conductivity measurements (300–1200 K) show that the electrical conductivity of the samples increases with temperature. The near edge x-ray absorption fine structure measurements reveal that the electrical conductivity of the UNCD films does not correlate directly with ammonia addition, but depends on the total amount of sp2 bonded carbon in the deposited films.« less
Gasket Assembly for Sealing Mating Surfaces
NASA Technical Reports Server (NTRS)
Bryant, Melvin A., III (Inventor)
2003-01-01
A pair of substantially opposed mating surfaces are joined to each other and sealed in place by means of an electrically-conductive member which is placed in proximity to the mating surfaces. The electrically-conductive member has at least one element secured thereto which is positioned to contact the mating surfaces, and which softens when the electrically-conductive member is heated by passing an electric current therethrough. The softened element conforms to the mating surfaces, and upon cooling of the softened element the mating surfaces are joined together in an effective seal. Of particular significance is an embodiment of the electrically-conductive member which is a gasket having an electrically-conductive gasket base and a pair of the elements secured to opposite sides of the gasket base. This embodiment is positioned between the opposed mating surfaces to be joined to each other. Also significant is an embodiment of the electrically-conductive member which is an electrically-conductive sleeve having an element secured to its inner surface. This embodiment surrounds cylindrical members the bases of which are the substantially opposed mating surfaces to be joined, and the element on the inner surface of the sleeve contacts the outer surfaces of the cylindrical members.
Multi-point observations of large-amplitude electric fields during substorms obtained by THEMIS
NASA Astrophysics Data System (ADS)
Ogasawara, K.; Kasaba, Y.; Nishimura, Y.; Hori, T.; Takada, T.; Miyashita, Y.; Angelopoulos, V.; Bonnell, J. W.; McFadden, J. P.
2009-12-01
Large-amplitude electric fields over 100 mV/m have been observed around the equatorial magnetosphere. These electric fields may contribute to energy transport and particle acceleration in the magnetosphere [e.g., Wygant et al., 2000, 2002], and seem to be related to fast plasma flows with a size of a few Re [Nakamura et al., 2001]. In order to understand their macroscopic characteristics and the effects to magnetic activities, it is important to observe both fields and particles simultaneously at multiple locations within several Re. Five THEMIS probes can frequently provide such chances. In this paper, we show the several events with large-amplitude electric fields during substorms obtained by THEMIS. One of the events is found in 05:50-06:00 UT on 11 March 2008, when TH-D (Xsm=-10.7 Re, Ysm=4.8 Re) and TH-E (Xsm=-10.3 Re, Ysm=5.6 Re) observed intense electric fields. At 05:54 UT, THEMIS GBO-s clearly showed the auroral onset signature. The great intensification was near the SNKQ station, and this structure moved westward with the speed of ~6 km/s. It corresponds to ~200 km/s, as mapped to the TH-D/E location. The footprints of TH-A (Xsm=-6.8 Re, Ysm=-0.4 Re), D, and E were close to the site of the aurora. The location of TH-D was beside that of TH-E, and TH-A was located earthward and eastward from the former two. The enhanced electric fields observed by TH-D and E were associated with magnetic dipolarization and earthward high-speed plasma flow. They were also associated with the depletion of electron density estimated by the spacecraft potential. These features are consistent with the model of plasma bubbles [e.g., Pontius and Wolf, 1990]. The Y components of plasma flows were 200-300 km/s, roughly consistent with the westward auroral motion as mapped to the equatorial magnetosphere. Also, we found that Poynting flux of low frequency was efficient to illuminate the auroral emissions. This fact suggests that electromagnetic energy is transported to the ionosphere. On the other hand, TH-A also observed the large-amplitude electric field greater than TH-D/E. However, TH-A did not detect the high-speed plasma flow nor the depletion of the electron density. In the drift electric field, VxB, estimated from particle and magnetic field observations, TH-D and E detected intense fields, but TH-A found almost zero. This result shows a difference in the role of the electric fields in location of TH-D/E and TH-A. We will show the possible contribution from other factors, such as pressure gradient, current system, and the ionospheric conductivity.
Voltage-Sensitive Fluorescence of Indocyanine Green in the Heart
Martišienė, Irma; Mačianskienė, Regina; Treinys, Rimantas; Navalinskas, Antanas; Almanaitytė, Mantė; Karčiauskas, Dainius; Kučinskas, Audrius; Grigalevičiūtė, Ramunė; Zigmantaitė, Vilma; Benetis, Rimantas; Jurevičius, Jonas
2016-01-01
So far, the optical mapping of cardiac electrical signals using voltage-sensitive fluorescent dyes has only been performed in experimental studies because these dyes are not yet approved for clinical use. It was recently reported that the well-known and widely used fluorescent dye indocyanine green (ICG), which has FDA approval, exhibits voltage sensitivity in various tissues, thus raising hopes that electrical activity could be optically mapped in the clinic. The aim of this study was to explore the possibility of using ICG to monitor cardiac electrical activity. Optical mapping experiments were performed on Langendorff rabbit hearts stained with ICG and perfused with electromechanical uncouplers. The residual contraction force and electrical action potentials were recorded simultaneously. Our research confirms that ICG is a voltage-sensitive dye with a dual-component (fast and slow) response to membrane potential changes. The fast component of the optical signal (OS) can have opposite polarities in different parts of the fluorescence spectrum. In contrast, the polarity of the slow component remains the same throughout the entire spectrum. Separating the OS into these components revealed two different voltage-sensitivity mechanisms for ICG. The fast component of the OS appears to be electrochromic in nature, whereas the slow component may arise from the redistribution of the dye molecules within or around the membrane. Both components quite accurately track the time of electrical signal propagation, but only the fast component is suitable for estimating the shape and duration of action potentials. Because ICG has voltage-sensitive properties in the entire heart, we suggest that it can be used to monitor cardiac electrical behavior in the clinic. PMID:26840736
NASA Astrophysics Data System (ADS)
Dong, Song-Tao; Zhang, Bin-Bin; Xiong, Ye; Lv, Yang-Yang; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Zhang, Shan-Tao; Chen, Yan-Feng
2015-09-01
Bi2AE2Co2O8+δ (AE represents alkaline earth), constructed by stacking of rock-salt Bi2AE2O4 and triangle CoO2 layers alternatively along c-axis, is one of promising thermoelectric oxides. The most impressive feature of Bi2AE2Co2O8+δ, as reported previously, is their electrical conductivity mainly lying along CoO2 plane, adjusting Bi2AE2O4 layer simultaneously manipulates both thermal conductivity and electrical conductivity. It in turn optimizes thermoelectric performance of these materials. In this work, we characterize the anisotropic thermal and electrical conductivity along both ab-plane and c-direction of Bi2AE2Co2O8+δ (AE = Ca, Sr, Ba, Sr1-xBax) single crystals. The results substantiate that isovalence replacement in Bi2AE2Co2O8+δ remarkably modifies their electrical property along ab-plane; while their thermal conductivity along ab-plane only has a slightly difference. At the same time, both the electrical conductivity and thermal conductivity along c-axis of these materials also have dramatic changes. Certainly, the electrical resistance along c-axis is too high to be used as thermoelectric applications. These results suggest that adjusting nano-block Bi2AE2O4 layer in Bi2AE2Co2O8+δ cannot modify the thermal conductivity along high electrical conductivity plane (ab-plane here). The evolution of electrical property is discussed by Anderson localization and electron-electron interaction U. And the modification of thermal conductivity along c-axis is attributed to the microstructure difference. This work sheds more light on the manipulation of the thermal and electrical conductivity in the layered thermoelectric materials.
NASA Astrophysics Data System (ADS)
Kiyan, Duygu; Hogg, Colin; Rath, Volker; Byrdina, Svetlana; Vandemeulebrouck, Jean; Revil, Andre; Silva, Catarina; Viveiros, Fatima; Ferreira, Teresa; Carmo, Rita
2017-04-01
The Furnas volcano is the eastern-most of the three active central volcanoes of Sao Miguel Island. The main caldera formed about 30 ka BP, followed by a younger eruption at 10-12 ka BP, which is responsible for the steep topography of more than 200 m in the target area. It contains several very young eruptive centers, and a shallow caldera lake. Tectonic features of varying directions have been identified in the caldera and its vicinity (Carmo et al., 2015). In the northern part of the caldera, containing the fumarole field of Caldeiras das Furnas, a detailed map of surface CO2 emissions was recently made available (Viveiros et al., 2010). Following a pilot survey of 13 AudioMagnetoTelluric soundings (AMT) and Electrical Resistivity Tomography (ERT) data collected along two profiles in the eastern part of Furnas caldera in 2015, a second campaign was completed in June 2016, yielding a total of 39 separate soundings including 15 broad-band magnetotelluric (MT) soundings to image the electrical conductivity of the subsurface. The data quality achieved by both techniques is very good, and initial results indicate a general correlation between regions of elevated conductivity at depth and the mapped surface CO2 emissions, suggesting that they may both be caused by the presence hydrothermal fluids. Dimensionality and directionality analysis using the WALDIM (Marti et al., 2009) approach in conjunction with Phase Tensor (Caldwell et al., 2004) indicate that the geo-electrical structure needs to be inverted in 3-D. Indicators of directionality derived from the analysis follow the general geological, fault dominated structural trend of NE-SW of Sao Miguel Island. A quantitative analysis of the potential influence of the Atlantic Ocean indicates that MT data up to 1 second period can be used in inversions with confidence without including the ocean. The 3-D inversions thus have been performed including only high-resolution topography and the Furnas lake bathymetry data employing the parallel version of the Modular system for ElectroMagnetic inversion code (ModEM; Egbert and Kelbert, 2012; Kelbert et al., 2014). The 3-D resistivity model shows a shallow conductive body at a depth of 90 m a.s.l. beneath the area of Furnas lake fumaroles. Deep-seated high conductivity regions have been imaged beneath the Trachytic domes of the inner caldera and the northern part of the inner caldera. This work will focus on the processing, analysis and 3-D inversion results of the MT data along with an interpretation of the geological structures found. A joint interpretation of the MT results together with the ERT data covering the shallow regime with much higher resolution will also be presented.
Electrically conductive material
Singh, Jitendra P.; Bosak, Andrea L.; McPheeters, Charles C.; Dees, Dennis W.
1993-01-01
An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.
Contact-independent electrical conductance measurement
Mentzel, Tamar S.; MacLean, Kenneth; Kastner, Marc A.; Ray, Nirat
2017-01-24
Electrical conductance measurement system including a one-dimensional semiconducting channel, with electrical conductance sensitive to electrostatic fluctuations, in a circuit for measuring channel electrical current. An electrically-conductive element is disposed at a location at which the element is capacitively coupled to the channel; a midpoint of the element aligned with about a midpoint of the channel, and connected to first and second electrically-conductive contact pads that are together in a circuit connected to apply a changing voltage across the element. The electrically-conductive contact pads are laterally spaced from the midpoint of the element by a distance of at least about three times a screening length of the element, given in SI units as (K.di-elect cons..sub.0/e.sup.2D(E.sub.F)).sup.1/2, where K is the static dielectric constant, .di-elect cons..sub.0 is the permittivity of free space, e is electron charge, and D(E.sub.F) is the density of states at the Fermi energy for the element.
Granger causality network reconstruction of conductance-based integrate-and-fire neuronal systems.
Zhou, Douglas; Xiao, Yanyang; Zhang, Yaoyu; Xu, Zhiqin; Cai, David
2014-01-01
Reconstruction of anatomical connectivity from measured dynamical activities of coupled neurons is one of the fundamental issues in the understanding of structure-function relationship of neuronal circuitry. Many approaches have been developed to address this issue based on either electrical or metabolic data observed in experiment. The Granger causality (GC) analysis remains one of the major approaches to explore the dynamical causal connectivity among individual neurons or neuronal populations. However, it is yet to be clarified how such causal connectivity, i.e., the GC connectivity, can be mapped to the underlying anatomical connectivity in neuronal networks. We perform the GC analysis on the conductance-based integrate-and-fire (I&F) neuronal networks to obtain their causal connectivity. Through numerical experiments, we find that the underlying synaptic connectivity amongst individual neurons or subnetworks, can be successfully reconstructed by the GC connectivity constructed from voltage time series. Furthermore, this reconstruction is insensitive to dynamical regimes and can be achieved without perturbing systems and prior knowledge of neuronal model parameters. Surprisingly, the synaptic connectivity can even be reconstructed by merely knowing the raster of systems, i.e., spike timing of neurons. Using spike-triggered correlation techniques, we establish a direct mapping between the causal connectivity and the synaptic connectivity for the conductance-based I&F neuronal networks, and show the GC is quadratically related to the coupling strength. The theoretical approach we develop here may provide a framework for examining the validity of the GC analysis in other settings.
Granger Causality Network Reconstruction of Conductance-Based Integrate-and-Fire Neuronal Systems
Zhou, Douglas; Xiao, Yanyang; Zhang, Yaoyu; Xu, Zhiqin; Cai, David
2014-01-01
Reconstruction of anatomical connectivity from measured dynamical activities of coupled neurons is one of the fundamental issues in the understanding of structure-function relationship of neuronal circuitry. Many approaches have been developed to address this issue based on either electrical or metabolic data observed in experiment. The Granger causality (GC) analysis remains one of the major approaches to explore the dynamical causal connectivity among individual neurons or neuronal populations. However, it is yet to be clarified how such causal connectivity, i.e., the GC connectivity, can be mapped to the underlying anatomical connectivity in neuronal networks. We perform the GC analysis on the conductance-based integrate-and-fire (IF) neuronal networks to obtain their causal connectivity. Through numerical experiments, we find that the underlying synaptic connectivity amongst individual neurons or subnetworks, can be successfully reconstructed by the GC connectivity constructed from voltage time series. Furthermore, this reconstruction is insensitive to dynamical regimes and can be achieved without perturbing systems and prior knowledge of neuronal model parameters. Surprisingly, the synaptic connectivity can even be reconstructed by merely knowing the raster of systems, i.e., spike timing of neurons. Using spike-triggered correlation techniques, we establish a direct mapping between the causal connectivity and the synaptic connectivity for the conductance-based IF neuronal networks, and show the GC is quadratically related to the coupling strength. The theoretical approach we develop here may provide a framework for examining the validity of the GC analysis in other settings. PMID:24586285
Mapping Topological Magnetization and Magnetic Skyrmions
NASA Astrophysics Data System (ADS)
Chess, Jordan J.
A 2014 study by the US Department of Energy conducted at Lawrence Berkeley National Laboratory estimated that U.S. data centers consumed 70 billion kWh of electricity. This represents about 1.8% of the total U.S. electricity consumption. Putting this in perspective 70 billion kWh of electricity is the equivalent of roughly 8 big nuclear reactors, or around double the nation's solar panel output. Developing new memory technologies capable of reducing this power consumption would be greatly beneficial as our demand for connectivity increases in the future. One newly emerging candidate for an information carrier in low power memory devices is the magnetic skyrmion. This magnetic texture is characterized by its specific non-trivial topology, giving it particle-like characteristics. Recent experimental work has shown that these skyrmions can be stabilized at room temperature and moved with extremely low electrical current densities. This rapidly developing field requires new measurement techniques capable of determining the topology of these textures at greater speed than previous approaches. In this dissertation, I give a brief introduction to the magnetic structures found in Fe/Gd multilayered systems. I then present newly developed techniques that streamline the analysis of Lorentz Transmission Electron Microscopy (LTEM) data. These techniques are then applied to further the understanding of the magnetic properties of these Fe/Gd based multilayered systems. This dissertation includes previously published and unpublished co-authored material.
3D soil water nowcasting using electromagnetic conductivity imaging and the ensemble Kalman filter
NASA Astrophysics Data System (ADS)
Huang, Jingyi; McBratney, Alex; Minasny, Budiman; Triantafilis, John
2017-04-01
Mapping and immediate forecasting of soil water content (θ) and its movement can be challenging. Although apparent electrical conductivity (ECa) measured by electromagnetic induction has been used, it is difficult to apply it along a transect or across a field. Across a 3.95-ha field with varying soil texture, an ensemble Kalman filter (EnFK) was used to monitor and nowcast θ dynamics in 2-d and 3-d over 16 days. The EnKF combined a physical model fitted with θ measured by soil moisture sensors and an Artificial Neural Network model comprising estimate of true electrical conductivity (σ) generated by inversions of DUALEM-421S ECa data. Results showed that the spatio-temporal variation in θ can be successfully modelled using the EnKF (Lin's concordance = 0.89). Soil water dried fast at the beginning of the irrigation and decreased with time and soil depth, which were consistent with the classical soil drying theory and experiments. It was also found that the soil dried fast in the loamy and duplex soils across the field, which was attributable to deep drainage and preferential flows. It was concluded that the EnKF approach can be used to better the irrigation practice so that variation in irrigation is minimised and irrigation efficiency is improved by applying variable rates of irrigation across the field. In addition, soil water status can be nowcasted using this method with weather forecast information, which will provide guidance to farmers for real-time irrigation management.
Conducting single-molecule magnet materials.
Cosquer, Goulven; Shen, Yongbing; Almeida, Manuel; Yamashita, Masahiro
2018-05-11
Multifunctional molecular materials exhibiting electrical conductivity and single-molecule magnet (SMM) behaviour are particularly attractive for electronic devices and related applications owing to the interaction between electronic conduction and magnetization of unimolecular units. The preparation of such materials remains a challenge that has been pursued by a bi-component approach of combination of SMM cationic (or anionic) units with conducting networks made of partially oxidized (or reduced) donor (or acceptor) molecules. The present status of the research concerning the preparation of molecular materials exhibiting SMM behaviour and electrical conductivity is reviewed, describing the few molecular compounds where both SMM properties and electrical conductivity have been observed. The evolution of this research field through the years is discussed. The first reported compounds are semiconductors in spite being able to present relatively high electrical conductivity, and the SMM behaviour is observed at low temperatures where the electrical conductivity of the materials is similar to that of an insulator. During the recent years, a breakthrough has been achieved with the coexistence of high electrical conductivity and SMM behaviour in a molecular compound at the same temperature range, but so far without evidence of a synergy between these properties. The combination of high electrical conductivity with SMM behaviour requires not only SMM units but also the regular and as far as possible uniform packing of partially oxidized molecules, which are able to provide a conducting network.
The electrical conductivity of in vivo human uterine fibroids.
DeLonzor, Russ; Spero, Richard K; Williams, Joseph J
2011-01-01
The purpose of this study was to determine the value of electrical conductivity that can be used for numerical modelling in vivo radiofrequency ablation (RFA) treatments of human uterine fibroids. No experimental electrical conductivity data have previously been reported for human uterine fibroids. In this study electrical data (voltage) from selected in vivo clinical procedures on human uterine fibroids were used to numerically model the treatments. Measured versus calculated power dissipation profiles were compared to determine uterine fibroid electrical conductivity. Numerical simulations were conducted utilising a wide range of values for tissue thermal conductivity, heat capacity and blood perfusion coefficient. The simulations demonstrated that power dissipation was insensitive to the exact values of these parameters for the simulated geometry, treatment duration, and power level. Consequently, it was possible to determine tissue electrical conductivity without precise knowledge of the values for these parameters. Results of this study showed that an electrical conductivity for uterine fibroids of 0.305 S/m at 37°C and a temperature coefficient of 0.2%/°C can be used for modelling Radio Frequency Ablation of human uterine fibroids at a frequency of 460 kHz for temperatures from 37°C to 100°C.
NASA Astrophysics Data System (ADS)
Jardani, A.; Revil, A.; Dupont, J. P.
2013-02-01
The assessment of hydraulic conductivity of heterogeneous aquifers is a difficult task using traditional hydrogeological methods (e.g., steady state or transient pumping tests) due to their low spatial resolution. Geophysical measurements performed at the ground surface and in boreholes provide additional information for increasing the resolution and accuracy of the inverted hydraulic conductivity field. We used a stochastic joint inversion of Direct Current (DC) resistivity and self-potential (SP) data plus in situ measurement of the salinity in a downstream well during a synthetic salt tracer experiment to reconstruct the hydraulic conductivity field between two wells. The pilot point parameterization was used to avoid over-parameterization of the inverse problem. Bounds on the model parameters were used to promote a consistent Markov chain Monte Carlo sampling of the model parameters. To evaluate the effectiveness of the joint inversion process, we compared eight cases in which the geophysical data are coupled or not to the in situ sampling of the salinity to map the hydraulic conductivity. We first tested the effectiveness of the inversion of each type of data alone (concentration sampling, self-potential, and DC resistivity), and then we combined the data two by two. We finally combined all the data together to show the value of each type of geophysical data in the joint inversion process because of their different sensitivity map. We also investigated a case in which the data were contaminated with noise and the variogram unknown and inverted stochastically. The results of the inversion revealed that incorporating the self-potential data improves the estimate of hydraulic conductivity field especially when the self-potential data were combined to the salt concentration measurement in the second well or to the time-lapse cross-well electrical resistivity data. Various tests were also performed to quantify the uncertainty in the inverted hydraulic conductivity field.
NASA Astrophysics Data System (ADS)
Morozov, V. N.
2018-01-01
The problem of the penetration of nonstationary ionospheric electric fields into the lower atmospheric layers is considered based on the model of the global electric circuit in the Earth's atmosphere. For the equation of the electric field potential, a solution that takes into account exponential variation in the electrical conductivity with height has been obtained. Analysis of the solution made it possible to reveal three cases of the dependence of the solution on height. The first case (the case of high frequencies) corresponds to the Coulomb approximation, when the electrical conductivity of the atmosphere can be neglected. In the case of low frequencies (when the frequency of changes in the ionosphere potential is less than the quantity reciprocal to the time of electric relaxation of the atmosphere), a quasi-stationary regime, in which the variation in the electric potential of the atmosphere is determined by the electric conduction currents, occurs. In the third case, due to the increase in the electrical conductivity of the atmosphere, two spherical regions appear: with the Coulomb approximation in the lower region and conduction currents in the upper one. For these three cases, formulas for estimating the electric field strength near the Earth's surface have been obtained.
Reactive conductors for increased efficiency of exploding foil initiators and other detonators
Morris, Christopher J.; Wilkins, Paul; May, Chadd; Zakar, Eugene
2015-05-05
Provided among other things are reactive energetic material systems used for conductors in detonators for increased efficiencies. According to an embodiment, a detonator may include: a conductor including at least two constituents including (i) an electrically conductive constituent, and (ii) an electrically non-conductive constituent, that when subjected to sufficient electrical energy, result in an exothermic reaction; and a flyer plate having a non-conductive surface in contact with said conductor. When the sufficient electrical energy is supplied to said conductor, rapid heating and vaporization of at least a portion of the conductor occurs so as to explosively drive at least a portion of the flyer plate away from said conductor. In an embodiment, a multilayer conductor may be formed of alternating layers of at least one electrically conductive layer, and at least one electrically non-conductive layer, that when subjected to sufficient electrical energy, result in an exothermic reaction.
Tamura, Yukie; Ogawa, Hiroshi; Kapeller, Christoph; Prueckl, Robert; Takeuchi, Fumiya; Anei, Ryogo; Ritaccio, Anthony; Guger, Christoph; Kamada, Kyousuke
2016-12-01
OBJECTIVE Electrocortical stimulation (ECS) is the gold standard for functional brain mapping; however, precise functional mapping is still difficult in patients with language deficits. High gamma activity (HGA) between 80 and 140 Hz on electrocorticography is assumed to reflect localized cortical processing, whereas the cortico-cortical evoked potential (CCEP) can reflect bidirectional responses evoked by monophasic pulse stimuli to the language cortices when there is no patient cooperation. The authors propose the use of "passive" mapping by combining HGA mapping and CCEP recording without active tasks during conscious resections of brain tumors. METHODS Five patients, each with an intraaxial tumor in their dominant hemisphere, underwent conscious resection of their lesion with passive mapping. The authors performed functional localization for the receptive language area, using real-time HGA mapping, by listening passively to linguistic sounds. Furthermore, single electrical pulses were delivered to the identified receptive temporal language area to detect CCEPs in the frontal lobe. All mapping results were validated by ECS, and the sensitivity and specificity were evaluated. RESULTS Linguistic HGA mapping quickly identified the language area in the temporal lobe. Electrical stimulation by linguistic HGA mapping to the identified temporal receptive language area evoked CCEPs on the frontal lobe. The combination of linguistic HGA and frontal CCEPs needed no patient cooperation or effort. In this small case series, the sensitivity and specificity were 93.8% and 89%, respectively. CONCLUSIONS The described technique allows for simple and quick functional brain mapping with higher sensitivity and specificity than ECS mapping. The authors believe that this could improve the reliability of functional brain mapping and facilitate rational and objective operations. Passive mapping also sheds light on the underlying physiological mechanisms of language in the human brain.
Electrochemical Device Comprising an Electrically-Conductive, Selectively-Permeable Membrane
NASA Technical Reports Server (NTRS)
Laicer, Castro S. T. (Inventor); Mittelsteadt, Cortney K. (Inventor); Harrison, Katherine E. (Inventor); McPheeters, Bryn M. (Inventor)
2017-01-01
An electrochemical device, such as a fuel cell or an electrolyzer. In one embodiment, the electrochemical device includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, the membrane including a solid polymer electrolyte and a non-particulate, electrically-conductive material, such as carbon nanotubes, carbon nanofibers, and/or metal nanowires. In addition, each bipolar plate also includes an electrically-conductive fluid chamber in contact with the electrically-conductive, selectively-permeable membrane and further includes a non-porous and electrically-conductive plate in contact with the fluid chamber.
NASA Astrophysics Data System (ADS)
E, Lotfi; H, Rezania; B, Arghavaninia; M, Yarmohammadi
2016-07-01
We address the electrical conductivity of bilayer graphene as a function of temperature, impurity concentration, and scattering strength in the presence of a finite bias voltage at finite doping, beginning with a description of the tight-binding model using the linear response theory and Green’s function approach. Our results show a linear behavior at high doping for the case of high bias voltage. The effects of electron doping on the electrical conductivity have been studied via changing the electronic chemical potential. We also discuss and analyze how the bias voltage affects the temperature behavior of the electrical conductivity. Finally, we study the behavior of the electrical conductivity as a function of the impurity concentration and scattering strength for different bias voltages and chemical potentials respectively. The electrical conductivity is found to be monotonically decreasing with impurity scattering strength due to the increased scattering among electrons at higher impurity scattering strength.
Downhole data transmission system
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S; Dahlgren, Scott; Fox, Joe
2006-06-20
A system for transmitting data through a string of downhole components. In one aspect, the system includes first and second magnetically conductive, electrically insulating elements at both ends of the component. Each element includes a first U-shaped trough with a bottom, first and second sides and an opening between the two sides. Electrically conducting coils are located in each trough. An electrical conductor connects the coils in each component. In operation, a varying current applied to a first coil in one component generates a varying magnetic field in the first magnetically conductive, electrically insulating element, which varying magnetic field is conducted to and thereby produces a varying magnetic field in the second magnetically conductive, electrically insulating element of a connected component, which magnetic field thereby generates a varying electrical current in the second coil in the connected component.
Downhole Data Transmission System
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Fox, Joe
2003-12-30
A system for transmitting data through a string of downhole components. In one aspect, the system includes first and second magnetically conductive, electrically insulating elements at both ends of the component. Each element includes a first U-shaped trough with a bottom, first and second sides and an opening between the two sides. Electrically conducting coils are located in each trough. An electrical conductor connects the coils in each component. In operation, a varying current applied to a first coil in one component generates a varying magnetic field in the first magnetically conductive, electrically insulating element, which varying magnetic field is conducted to and thereby produces a varying magnetic field in the second magnetically conductive, electrically insulating element of a connected component, which magnetic field thereby generates a varying electrical current in the second coil in the connected component.
Cheng, Yehong; Zhou, Shanbao; Hu, Ping; Zhao, Guangdong; Li, Yongxia; Zhang, Xinghong; Han, Wenbo
2017-05-03
Graphene aerogels with high surface areas, ultra-low densities and thermal conductivities have been prepared to exploit their wide applications from pollution adsorption to energy storage, supercapacitor, and thermal insulation. However, the low mechanical properties, poor thermal stability and electric conductivity restrict these aerogels' applications. In this paper, we prepared mechanically strong graphene aerogels with large BET surface areas, low thermal conductivities, high thermal stability and electric conductivities via hydrothermal reduction and supercritical ethanol drying. Annealing at 1500 °C resulted in slightly increased thermal conductivity and further improvement in mechanical properties, oxidation temperature and electric conductivity of the graphene aerogel. The large BET surface areas, together with strong mechanical properties, low thermal conductivities, high thermal stability and electrical conductivities made these graphene aerogels feasible candidates for use in a number of fields covering from batteries to sensors, electrodes, lightweight conductor and insulation materials.
Differential and directional effects of perfusion on electrical and thermal conductivities in liver.
Podhajsky, Ronald J; Yi, Ming; Mahajan, Roop L
2009-01-01
Two different measurement probes--an electrical probe and a thermal conductivity probe--were designed, fabricated, calibrated, and used in experimental studies on a pig liver model that was designed to control perfusion rates. These probes were fabricated by photolithography and mounted in 1.5-mm diameter catheters. We measured the local impedance and thermal conductivity, respectively, of the artificially perfused liver at different flow rates and, by rotating the probes, in different directions. The results show that both the local electrical conductivity and the thermal conductivity varied location to location, that thermal conductivity increased with decreased distance to large blood vessels, and that significant directional differences exist in both electrical and thermal conductivities. Measurements at different perfusion rates demonstrated that both the local electrical and local thermal conductivities increased linearly with the square root of perfusion rate. These correlations may be of great value to many energy-based biomedical applications.
Capillary zone electrophoresis-mass spectrometer interface
D`Silva, A.
1996-08-06
A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.
NASA Astrophysics Data System (ADS)
Benallou, Amina; Hadri, Baghdad; Martinez-Vega, Juan; El Islam Boukortt, Nour
2018-04-01
The effect of percolation threshold on the behaviour of electrical conductivity at high electric field of insulating polymers has been briefly investigated in literature. Sometimes the dead ends links are not taken into account in the study of the electric field effect on the electrical properties. In this work, we present a theoretical framework and Monte Carlo simulation of the behaviour of the electric conductivity at high electric field based on the percolation theory using the traps energies levels which are distributed according to distribution law (uniform, Gaussian, and power-law). When a solid insulating material is subjected to a high electric field, and during trapping mechanism the dead ends of traps affect with decreasing the electric conductivity according to the traps energies levels, the correlation length of the clusters, the length of the dead ends, and the concentration of the accessible positions for the electrons. A reasonably good agreement is obtained between simulation results and the theoretical framework.
A percolation model for electrical conduction in wood with implications for wood-water relations
Samuel L. Zelinka; Samuel V. Glass; Donald S. Stone
2008-01-01
The first models used to describe electrical conduction in cellulosic materials involved conduction pathways through free water. These models were abandoned in the middle of the 20th century. This article re-evaluates the theory of conduction in wood by using a percolation model that describes electrical conduction in terms of overlapping paths of loosely bound or...
Fuel Cell Backup Power Geographical Visualization Map (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-12-01
This NREL Hydrogen and Fuel Cell Technical Highlight describes a time-lapse geographical visualization map of early market use of fuel cells for telecommunications backup power. The map synthesizes data being analyzed by NREL's Technology Validation team for the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with DOE's publicly available annual summaries of electric disturbance events.
NASA Astrophysics Data System (ADS)
Smith, D.; Smith, B. D.; Blome, C. D.; Osborn, N.
2008-12-01
Airborne and ground electrical surveys have been conducted to map the subsurface hydrogeologic character of the Arbuckle-Simpson aquifer in south central Oklahoma. An understanding of the geologic framework and hydrogeologic characteristics is necessary to evaluate groundwater flow through the highly faulted, structurally complex, carbonate aquifer. Results from this research will further understanding of the aquifer and will assist in managing the water resources of the region. The major issues include water quality, the allocation of water rights, and the potential impacts of pumping on springs and stream. Four areas in the Hunton anticline area, with distinctly different geology, were flown with a frequency domain helicopter electromagnetic system (HEM) in March, 2007. Ground electrical studies include dc resistivity imaging and natural field audiomagnetotelluric (AMT), and magnetotelluric (MT) surveys. The HEM resistivity and total field magnetic survey was flown in four blocks, A through D, mostly with a line spacing of 400 m. Block A extends from the Chickasaw National Recreational Area (CHIC) to Mill Creek on the west side of the anticline. The surface geology of this block is mostly dolomitic limestone of the Arbuckle Group that is in fault contact with younger Paleozoic clastic rocks. The flight line spacing was 800 meters in the western half of the block and 400 meters in the eastern part. Airborne magnetic data indicate that the Sulphur fault bends south to merge with the Mill Creek fault which substantiates an earlier hypothesis first made from interpretation of gravity data. Block B, located on the north side of the anticline consists of mostly of Arbuckle and Simpson Group rocks. Block C, covering most of the Clarita horst on the east side of the anticline, consists of the Upper Ordovician to the Lower Pennsylvanian shales. Block D, which was flown to include a deep test well site at Spears ranch, consisted of eight lines spaced at 400 meters. The HEM data are being used to more precisely locate faults, refine the lithostratigraphic units, and to map the depth and extent of shallow epikarst. The MT and AMT data revealed deep structural contacts and a transition between fresh and highly mineralized ground water between springs in the CHIC. The dc resistivity survey has greatly helped in mapping major faults both within dolomitic limestone and clastic units. Ground resistivity surveys also suggest that, in places, the faults within limestone are zones of lower resistivity and map low resistivity surficial epikarst a several meters thick. Ground penetrometer data also has been used to define the depth extent of epikarst in selected areas and the data correlate well with the dc resistivity and HEM resistivity depth sections.
Two-dimensional nanosecond electric field mapping based on cell electropermeabilization.
Chen, Meng-Tse; Jiang, Chunqi; Vernier, P Thomas; Wu, Yu-Hsuan; Gundersen, Martin A
2009-11-11
Nanosecond, megavolt-per-meter electric pulses cause permeabilization of cells to small molecules, programmed cell death (apoptosis) in tumor cells, and are under evaluation as a treatment for skin cancer. We use nanoelectroporation and fluorescence imaging to construct two-dimensional maps of the electric field associated with delivery of 15 ns, 10 kV pulses to monolayers of the human prostate cancer cell line PC3 from three different electrode configurations: single-needle, five-needle, and flat-cut coaxial cable. Influx of the normally impermeant fluorescent dye YO-PRO-1 serves as a sensitive indicator of membrane permeabilization. The level of fluorescence emission after pulse exposure is proportional to the applied electric field strength. Spatial electric field distributions were compared in a plane normal to the center axis and 15-20 mum from the tip of the center electrode. Measurement results agree well with models for the three electrode arrangements evaluated in this study. This live-cell method for measuring a nanosecond pulsed electric field distribution provides an operationally meaningful calibration of electrode designs for biological applications and permits visualization of the relative sensitivities of different cell types to nanoelectropulse stimulation. PACS Codes: 87.85.M-
Electrically conductive material
Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.
1993-09-07
An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.
NASA Astrophysics Data System (ADS)
Zelenak, G.; Key, K.; Bennington, N. L.; Bedrosian, P.
2015-12-01
Understanding the factors controlling the release of volatiles from the downgoing slab, the subsequent generation of melt in the overlying mantle wedge, the migration of melt to the crust, and its evolution and emplacement within the crust are important for advancing our understanding of arc magmatism and crustal genesis. Because melt and aqueous fluids are a few orders of magnitude more electrically conductive than unmelted peridotite, the conductivity-mapping magnetotelluric (MT) method is well-suited to imaging fluids and melt beneath arc volcanoes. Here we present conductivity results from an amphibious MT profile crossing Okmok volcano in the central Aleutian arc. The Aleutian arc is one of the most volcanically active regions in North America, making it an ideal location for studying arc magnetism. Okmok volcano, located on the northeastern portion of Umnak Island, is among the most active volcanoes in the Aleutian chain. In addition to two caldera-forming events in the Holocene, numerous eruptions in the past century indicate a robust magmatic supply. Previous coarse resolution seismic studies have inferred a crustal magma reservoir. In order to investigate the role fluids play in melting the mantle wedge, how melts ascend through the corner flow regime of the mantle wedge, how melt migrates and is stored within the upper mantle and crust, and how this impacts explosive caldera forming eruptions, we carried out an amphibious geophysical survey across the arc in June-July 2015. Twenty-nine onshore MT stations and 10 offshore stations were collected in a 3D array covering Okmok, and 43 additional offshore MT stations completed a 300 km amphibious profile starting at the trench, crossing the forearc, arc and backarc. Thirteen onshore passive seismic stations were also installed and will remain in place for one year to supplement the twelve permanent stations on the island. Data collected by this project will be used to map seismic velocity and electrical conductivity variations within the arc, providing unique constraints on temperature, mineralogy and fluid content. This abstract covers preliminary MT constraints on the mantle and deep crust as inferred from the 300 km long amphibious profile. A companion abstract (Bennington et al.) considers the crustal magma chamber imaged by the 3D array.
All diamond self-aligned thin film transistor
Gerbi, Jennifer [Champaign, IL
2008-07-01
A substantially all diamond transistor with an electrically insulating substrate, an electrically conductive diamond layer on the substrate, and a source and a drain contact on the electrically conductive diamond layer. An electrically insulating diamond layer is in contact with the electrically conductive diamond layer, and a gate contact is on the electrically insulating diamond layer. The diamond layers may be homoepitaxial, polycrystalline, nanocrystalline or ultrananocrystalline in various combinations.A method of making a substantially all diamond self-aligned gate transistor is disclosed in which seeding and patterning can be avoided or minimized, if desired.
Perforation patterned electrical interconnects
Frey, Jonathan
2014-01-28
This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.
Capacitor discharge process for welding braided cable
Wilson, Rick D.
1995-01-01
A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.
Simplified Calculation of the Electrical Conductivity of Composites with Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Ivanov, S. G.; Aniskevich, A.; Kulakov, V.
2018-03-01
The electrical conductivity of two groups of polymer nanocomposites filled with the same NC7000 carbon nanotubes (CNTs) beyond the percolation threshold is described with the help of simple formulas. Different manufacturing process of the nanocomposites led to different CNT network structures, and, as a consequence, their electrical conductivity, at the same CNT volume, differed by two orders of magnitude. The relation between the electrical conductivity and the volume content of CNTs of the first group of composites (with a higher electrical conductivity) is described assuming that the CNT network structure is close to a statistically homogeneous one. The formula for this case, derived on the basis of a self-consistent model, includes only two parameters: the effective longitudinal electrical conductivity of CNT and the percolation threshold (the critical value of CNT volume content). These parameters were determined from two experimental points of electrical conductivity as a function of the volume fraction of CNTs. The second group of nanocomposites had a pronounced agglomerative structure, which was confirmed by microscopy data. To describe the low electrical conductivity of this group of nanocomposites, a formula based on known models of micromechanics is proposed. Two parameters of this formula were determined from experimental data of the first group, but the other two — of the second group of nanocomposites. A comparison of calculation and experimental relations confirmed the practical expediency of using the approach described.
Conductivity is a measure of the ability of water to pass an electrical current. Because dissolved salts and other inorganic chemicals conduct electrical current, conductivity increases as salinity increases.
A Toposcopic Investigation of Brain Electrical Activity Induced by Motion Sickness
1992-12-01
This hypothesis explains motion sickness symptoms as the body’s natural response when the infcr- mation transmitted by the eyes, the vestibular system...consisting of the summed pixel values of their respective sets. Each of these images are then converted to a map of the mean values and a map of the variances ...Statistical mapping requires a sizable normative database of maps, a signif - icant investment of resources (11:25). Location-by-location comparisons be
Characterizing the performance of eddy current probes using photoinductive field-mapping
NASA Astrophysics Data System (ADS)
Moulder, John C.; Nakagawa, Norio
1992-12-01
We present a new method for characterizing the performance of eddy current probes by mapping their electromagnetic fields. The technique is based on the photoinductive effect, the change in the impedance of an eddy current probe induced by laser heating of the material under the probe. The instrument we developed maps a probe's electric field distribution by scanning an infrared laser beam over a thin film of gold lying underneath the probe. Measurements of both photoinductive signals and flaw signals for a series of similar probes demonstrates that the impedance change caused by an electrical-discharge-machined notch or a fatigue crack is proportional to the strength of the photoinductive signal. Thus, photoinductive measurements can supplant the use of artifact standards to calibrate eddy current probes.
Method and Apparatus for Obtaining a Precision Thickness in Semiconductor and Other Wafers
NASA Technical Reports Server (NTRS)
Okojie, Robert S. (Inventor)
2002-01-01
A method and apparatus for processing a wafer comprising a material selected from an electrical semiconducting material and an electrical insulating material is presented. The wafer has opposed generally planar front and rear sides and a peripheral edge, wherein said wafer is pressed against a pad in the presence of a slurry to reduce its thickness. The thickness of the wafer is controlled by first forming a recess such as a dimple on the rear side of the wafer. A first electrical conducting strip extends from a first electrical connection means to the base surface of the recess to the second electrical connector. The first electrical conducting strip overlies the base surface of the recess. There is also a second electrical conductor with an electrical potential source between the first electrical connector and the second electrical connector to form. In combination with the first electrical conducting strip, the second electrical conductor forms a closed electrical circuit, and an electrical current flows through the closed electrical circuit. From the front side of the wafer the initial thickness of the wafer is reduced by lapping until the base surface of the recess is reached. The conductive strip is at least partially removed from the base surface to automatically stop the lapping procedure and thereby achieve the desired thickness.
Embedded Heaters for Joining or Separating Plastic Parts
NASA Technical Reports Server (NTRS)
Bryant, Melvin A., III
2004-01-01
A proposed thermal-bonding technique would make it possible to join or separate thermoplastic parts quickly and efficiently. The technique would eliminate the need for conventional welding or for such conventional fastening components as bolted flanges or interlocking hooks. The technique could be particularly useful in the sign industry (in which large quantities of thermoplastics are used) or could be used to join plastic pipes. A thin sheet of a suitable electrically conductive material would be formed to fit between two thermoplastic parts to be joined (see figure). The electrically conductive sheet and the two parts would be put together tightly, then an electrical current would be sent through the conductor to heat the thermoplastic locally. The magnitude of the current and the heating time would be chosen to generate just enough heat to cause the thermoplastic to adhere to both sides of the electrically conductive sheet. Optionally, the electrically conductive sheet could contain many small holes to provide purchase or to increase electrical resistance to facilitate the generation of heat. After thermal bonding, the electrically conductive sheet remains as an integral part of the structure. If necessary, the electrically conductive sheet can be reheated later to separate the joined thermoplastic parts.
Electrical Conductivity of Ferritin Proteins by Conductive AFM
NASA Technical Reports Server (NTRS)
Xu, Degao; Watt, Gerald D.; Harb, John N.; Davis, Robert C.
2005-01-01
Electrical conductivity measurements were performed on single apoferritin and holoferritin molecules by conductive atomic force microscopy. Conductivity of self-assembled monolayer films of ferritin molecules on gold surfaces was also measured. Holoferritin was 5-25 times more conductive than apoferritin, indicating that for holoferritin most electron-transfer goes through the ferrihydrite core. With 1 V applied, the average electrical currents through single holoferritin and apoferritin molecules were 2.6 PA and 0.19 PA, respectively.
Modeling of electric field distribution in tissues during electroporation
2013-01-01
Background Electroporation based therapies and treatments (e.g. electrochemotherapy, gene electrotransfer for gene therapy and DNA vaccination, tissue ablation with irreversible electroporation and transdermal drug delivery) require a precise prediction of the therapy or treatment outcome by a personalized treatment planning procedure. Numerical modeling of local electric field distribution within electroporated tissues has become an important tool in treatment planning procedure in both clinical and experimental settings. Recent studies have reported that the uncertainties in electrical properties (i.e. electric conductivity of the treated tissues and the rate of increase in electric conductivity due to electroporation) predefined in numerical models have large effect on electroporation based therapy and treatment effectiveness. The aim of our study was to investigate whether the increase in electric conductivity of tissues needs to be taken into account when modeling tissue response to the electroporation pulses and how it affects the local electric distribution within electroporated tissues. Methods We built 3D numerical models for single tissue (one type of tissue, e.g. liver) and composite tissue (several types of tissues, e.g. subcutaneous tumor). Our computer simulations were performed by using three different modeling approaches that are based on finite element method: inverse analysis, nonlinear parametric and sequential analysis. We compared linear (i.e. tissue conductivity is constant) model and non-linear (i.e. tissue conductivity is electric field dependent) model. By calculating goodness of fit measure we compared the results of our numerical simulations to the results of in vivo measurements. Results The results of our study show that the nonlinear models (i.e. tissue conductivity is electric field dependent: σ(E)) fit experimental data better than linear models (i.e. tissue conductivity is constant). This was found for both single tissue and composite tissue. Our results of electric field distribution modeling in linear model of composite tissue (i.e. in the subcutaneous tumor model that do not take into account the relationship σ(E)) showed that a very high electric field (above irreversible threshold value) was concentrated only in the stratum corneum while the target tumor tissue was not successfully treated. Furthermore, the calculated volume of the target tumor tissue exposed to the electric field above reversible threshold in the subcutaneous model was zero assuming constant conductivities of each tissue. Our results also show that the inverse analysis allows for identification of both baseline tissue conductivity (i.e. conductivity of non-electroporated tissue) and tissue conductivity vs. electric field (σ(E)) of electroporated tissue. Conclusion Our results of modeling of electric field distribution in tissues during electroporation show that the changes in electrical conductivity due to electroporation need to be taken into account when an electroporation based treatment is planned or investigated. We concluded that the model of electric field distribution that takes into account the increase in electric conductivity due to electroporation yields more precise prediction of successfully electroporated target tissue volume. The findings of our study can significantly contribute to the current development of individualized patient-specific electroporation based treatment planning. PMID:23433433
Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges.
Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis
2016-05-01
Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10(-3) S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10(-1) S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.
Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges
Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis
2016-01-01
Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10−3 S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10−1 S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front. PMID:27386526
Chemical Detection using Electrically Open Circuits having no Electrical Connections
NASA Technical Reports Server (NTRS)
Woodward, Stanley E.; Olgesby, Donald M.; Taylor, Bryant D.; Shams, Qamar A.
2008-01-01
This paper presents investigations to date on chemical detection using a recently developed method for designing, powering and interrogating sensors as electrically open circuits having no electrical connections. In lieu of having each sensor from a closed circuit with multiple electrically connected components, an electrically conductive geometric pattern that is powered using oscillating magnetic fields and capable of storing an electric field and a magnetic field without the need of a closed circuit or electrical connections is used. When electrically active, the patterns respond with their own magnetic field whose frequency, amplitude and bandwidth can be correlated with the magnitude of the physical quantities being measured. Preliminary experimental results of using two different detection approaches will be presented. In one method, a thin film of a reactant is deposited on the surface of the open-circuit sensor. Exposure to a specific targeted reactant shifts the resonant frequency of the sensor. In the second method, a coating of conductive material is placed on a thin non-conductive plastic sheet that is placed over the surface of the sensor. There is no physical contact between the sensor and the electrically conductive material. When the conductive material is exposed to a targeted reactant, a chemical reaction occurs that renders the material non-conductive. The change in the material s electrical resistance within the magnetic field of the sensor alters the sensor s response bandwidth and amplitude, allowing detection of the reaction without having the reactants in physical contact with the sensor.
Direct mapping of electrical noise sources in molecular wire-based devices
Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun
2017-01-01
We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices. PMID:28233821
Direct mapping of electrical noise sources in molecular wire-based devices
NASA Astrophysics Data System (ADS)
Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun
2017-02-01
We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices.
The Geography of Solar Energy.
ERIC Educational Resources Information Center
LaHart, David E.; Allen, Rodney F.
1984-01-01
After learning about two promising techniques for generating electricity--photovoltaic cells and wind energy conversion systems--secondary students analyze two maps of the United States showing solar radiation and available wind power to determine which U.S. regions have potential for these solar electric systems. (RM)
Non-permeable substrate carrier for electroplating
Abas, Emmanuel Chua; Chen, Chen-An; Ma, Diana Xiaobing; Ganti, Kalyana Bhargava
2012-11-27
One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.
Non-permeable substrate carrier for electroplating
Abas, Emmanuel Chua; Chen, Chen-an; Ma, Diana Xiaobing; Ganti, Kalyana; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor
2015-12-29
One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.
Electrical Investigation of Metal-Olivine Systems and Application to the Deep Interior of Mercury
NASA Astrophysics Data System (ADS)
Zhang, Zhou; Pommier, Anne
2017-12-01
We report electrical conductivity measurements on metal-olivine systems at about 5 and 6 GPa and up to 1,675°C in order to investigate the electrical properties of core-mantle boundary (CMB) systems. Electrical experiments were conducted in the multianvil apparatus using the impedance spectroscopy technique. The samples are composed of one metal layer (Fe, FeS, FeSi2, or Fe-Ni-S-Si) and one polycrystalline olivine layer, with the metal:olivine ratio ranging from 1:0.7 to 1:9.2. For all samples, we observe that the bulk electrical conductivity increases with temperature from 10-2.5 to 101.8 S/m, which is higher than the conductivity of polycrystalline olivine but lower than the conductivity of the pure metal phase at similar conditions. In some experiments, a conductivity jump is observed at the temperature corresponding to the melting temperature of the metallic phase. Both the metal:olivine ratio and the metal phase geometry control the electrical conductivity of the two-layer samples. By combining electrical results, textural analyses of the samples, and previous studies of the structure and composition of Mercury's interior, we propose an electrical profile of the deep interior of the planet that accounts for a layered CMB-outer core structure. The electrical model agrees with existing conductivity estimates of Mercury's lower mantle and CMB using magnetic observations and thermodynamic calculations, and thus, supports the hypothesis of a layered CMB-outermost core structure in the present-day interior of Mercury. We propose that the layered CMB-outer core structure is possibly electrically insulating, which may influence the planet's structure and cooling history.
Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.
Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2017-11-01
Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes.
Stanis, Ronald J.; Lambert, Timothy N.
2016-12-06
An apparatus of an aspect includes a fuel cell catalyst layer. The fuel cell catalyst layer is operable to catalyze a reaction involving a fuel reactant. A fuel cell gas diffusion layer is coupled with the fuel cell catalyst layer. The fuel cell gas diffusion layer includes a porous electrically conductive material. The porous electrically conductive material is operable to allow the fuel reactant to transfer through the fuel cell gas diffusion layer to reach the fuel cell catalyst layer. The porous electrically conductive material is also operable to conduct electrons associated with the reaction through the fuel cell gas diffusion layer. An electrically conductive polymer material is coupled with the fuel cell gas diffusion layer. The electrically conductive polymer material is operable to limit transfer of the fuel reactant to the fuel cell catalyst layer.
Method of forming electrical pathways in indium-tin-oxide coatings
Haynes, T.E.
1996-12-03
An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway. 8 figs.
Method of forming electrical pathways in indium-tin-oxide coatings
Haynes, T.E.
1997-03-04
An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, the balance of the ITO being insulative. The device is made by the following general steps: (a) providing a substrate having a conductive ITO coating on at least one surface thereof; (b) rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway. 8 figs.
Method of forming electrical pathways in indium-tin-oxide coatings
Haynes, Tony E.
1996-01-01
An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway.
Method of forming electrical pathways in indium-tin-oxide coatings
Haynes, Tony E.
1997-01-01
An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway.
NASA Astrophysics Data System (ADS)
Bagiya, Mala S.; Sunil, A. S.; Chakrabarty, D.; Sunda, Surendra
2017-10-01
Based on TEC observations by India's GPS Aided GEO Augmented Navigation (GAGAN) GPS network, we report the dayside low latitude ionospheric variations over the Indian region during the moderate main phase step-I of the 17 March 2015 geomagnetic storm. In addition, we assess the efficacy of GPS inferred TEC maps by International GNSS service (IGS) in capturing large scale diurnal features of equatorial ionization anomaly (EIA) over the Indian region during this period. Following the prompt penetration electric field (PPE) at ∼0605 UT, equatorial electrojet (EEJ) enhances by ∼55 nT over 75 ± 3oE longitudes where main phase step-I is coincided with local noon. Initial moderate EIA gradually strengthens with the storm commencement. Although GAGAN TEC exhibits more intense EIA evolution compare to IGS TEC maps, latitudinal extent of EIA are comparable in both. The enhanced EEJ reverses by ∼0918 UT under the effect of overshielding electric field, the later is accompanied by northward turning of interplanetary magnetic field (IMF) Bz. The weakening of well evolved EIA reflects in IGS TEC maps after ∼45 min of the overshielding occurrence. In contrary, GAGAN TEC shows the corresponding feature after ∼0115 h. Resurgence of EIA, following the PPE ∼1115 UT, shows up in GAGAN TEC but IGS TEC maps fails in capturing this feature. The observed low latitude TEC variations and EIA modulations are explained in terms of the varying storm time disturbance electric fields. The anomalies between the GAGAN TEC and IGS TEC maps are discussed in terms of the possible limitations of the IGS TEC maps in capturing storm time EIA variability over the Indian region.
`VIS/NIR mapping of TOC and extent of organic soils in the Nørre Å valley
NASA Astrophysics Data System (ADS)
Knadel, M.; Greve, M. H.; Thomsen, A.
2009-04-01
Organic soils represent a substantial pool of carbon in Denmark. The need for carbon stock assessment calls for more rapid and effective mapping methods to be developed. The aim of this study was to compare traditional soil mapping with maps produced from the results of a mobile VIS/NIR system and to evaluate the ability to estimate TOC and map the area of organic soils. The Veris mobile VIS/NIR spectroscopy system was compared to traditional manual sampling. The system is developed for in-situ near surface measurements of soil carbon content. It measures diffuse reflectance in the 350 nm-2200 nm region. The system consists of two spectrophotometers mounted on a toolbar and pulled by a tractor. Optical measurements are made through a sapphire window at the bottom of the shank. The shank was pulled at a depth of 5-7 cm at a speed of 4-5 km/hr. 20-25 spectra per second with 8 nm resolution were acquired by the spectrometers. Measurements were made on 10-12 m spaced transects. The system also acquired soil electrical conductivity (EC) for two soil depths: shallow EC-SH (0- 31 cm) and deep conductivity EC-DP (0- 91 cm). The conductivity was recorded together with GPS coordinates and spectral data for further construction of the calibration models. Two maps of organic soils in the Nørre Å valley (Central Jutland) were generated: (i) based on a conventional 25 m grid with 162 sampling points and laboratory analysis of TOC, (ii) based on in-situ VIS/NIR measurements supported by chemometrics. Before regression analysis, spectral information was compressed by calculating principal components. The outliers were determined by a mahalanobis distance equation and removed. Clustering using a fuzzy c- means algorithm was conducted. Within each cluster a location with the minimal spatial variability was selected. A map of 15 representative sample locations was proposed. The interpolation of the spectra into a single spectrum was performed using a Gaussian kernel weighting function. Spectra obtained near a sampled location were averaged. The collected spectra were correlated to TOC of the 15 representative samples using multivariate regression techniques (Unscrambler 9.7; Camo ASA, Oslo, Norway). Two types of calibrations were performed: using only spectra and using spectra together with the auxiliary data (EC-SH and EC-DP). These calibration equations were computed using PLS regression, segmented cross-validation method on centred data (using the raw spectral data, log 1/R). Six different spectra pre-treatments were conducted: (1) only spectra, (2) Savitsky-Golay smoothing over 11 wavelength points and transformation to a (3) 1'st and (4) 2'nd Savitzky and Golay derivative algorithm with a derivative interval of 21 wavelength points, (5) with or (6) without smoothing. The best treatment was considered to be the one with the lowest Root Mean Square Error of Prediction (RMSEP), the highest r2 between the VIS/NIR-predicted and measured values in the calibration model and the lowest mean deviation of predicted TOC values. The best calibration model was obtained with the mathematical pre-treatment's including smoothing, calculating the 2'nd derivative and outlier removal. The two TOC maps were compared after interpolation using kriging. They showed a similar pattern in the TOC distribution. Despite the unfavourable field conditions the VIS/NIR system performed well in both low and high TOC areas. Water content in places exceeding field capacity in the lower parts of the investigated field did not seriously degrade measurements. The present study represents the first attempt to apply the mobile Veris VIS/NIR system to the mapping of TOC of peat soils in Denmark. The result from this study show that a mobile VIS/NIR system can be applied to cost effective TOC mapping of mineral and organic soils with highly varying water content. Key words: VIS/NIR spectroscopy, organic soils, TOC
Electrical conductivity of rocks at high pressures and temperatures
NASA Technical Reports Server (NTRS)
Parkhomenko, E. I.; Bondarenko, A. T.
1986-01-01
The results of studies of the electrical conductivity in the most widely distributed types of igneous rocks, at temperatures of up to 1200 C, at atmospheric pressure, and also at temperatures of up to 700 C and at pressures of up to 20,000 kg/sq cm are described. The figures of electrical conductivity, of activaation energy and of the preexponential coefficient are presented and the dependence of these parameters on the petrochemical parameters of the rocks are reviewed. The possible electrical conductivities for the depository, granite and basalt layers of the Earth's crust and of the upper mantle are presented, as well as the electrical conductivity distribution to the depth of 200 to 240 km for different geological structures.
NASA Technical Reports Server (NTRS)
Wygant, J. R.; Keiling, A.; Cattell, C. A.; Johnson, M.; Lysak, R. L.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J. D.; Peterson, W.;
2000-01-01
In this paper, we present measurements from two passes of the Polar spacecraft of intense electric and magnetic field structures associated with Alfven waves at and within the outer boundary of the plasma sheet at geocentric distances of 4-6 R(sub E), near local midnight. The electric field variations have maximum values exceeding 100 mV/m and are typically polarized approximately normal to the plasma sheet boundary. The electric field structures investigated vary over timescales (in the spacecraft frame.) ranging front 1 to 30 s. They are associated with strong magnetic field fluctuations with amplitudes of 10-40 nT which lie predominantly ill the plane of the plasma sheet and are perpendicular to the local magnetic field. The Poynting flux associated with the perturbation fields measured at these altitudes is about 1-2 ergs per square centimeters per second and is directed along the average magnetic field direction toward the ionosphere. If the measured Poynting flux is mapped to ionospheric altitudes along converging magnetic field lines. the resulting energy flux ranges up to 100 ergs per centimeter squared per second. These strongly enhanced Poynting fluxes appear to occur in layers which are observed when the spacecraft is magnetically conjugate (to within a 1 degree mapping accuracy) to intense auroral structures as detected by the Polar UV Imager (UVI). The electron energy flux (averaged over a spatial resolution of 0.5 degrees) deposited in the ionosphere due to auroral electron beams as estimated from the intensity in the UVI Lyman-Birge-Hopfield-long filters is 15-30 ergs per centimeter squared per second. Thus there is evidence that these electric field structures provide sufficient Poynting flux to power the acceleration of auroral electrons (as well as the energization of upflowing ions and Joule heating of the ionosphere). During some events the phasing and ratio of the transverse electric and magnetic field variations are consistent with earthward propagation of Alfven surface waves with phase velocities of 4000-10000 kilometers per second. During other events the phase shifts between electric and magnetic fields suggest interference between upward and downward propagating Alfven waves. The E/B ratios are about an order of magnitude larger than typical values of C/SIGMA(sub p), where SIGMA(sub p), is the height integrated Pedersen conductivity. The contribution to the total energy flux at these altitudes from Poynting flux associated with Alfven waves is comparable to or larger than the contribution from the particle energy flux and 1-2 orders of magnitude larger than that estimated from the large-scale steady state convection electric field and field-aligned current system.
NASA Astrophysics Data System (ADS)
Wygant, J. R.; Keiling, A.; Cattell, C. A.; Johnson, M.; Lysak, R. L.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J. D.; Peterson, W.; Russell, C. T.; Parks, G.; Brittnacher, M.; Germany, G.; Spann, J.
2000-08-01
In this paper, we present measurements from two passes of the Polar spacecraft of intense electric and magnetic field structures associated with Alfven waves at and within the outer boundary of the plasma sheet at geocentric distances of 4-6 RE near local midnight. The electric field variations have maximum values exceeding 100 mV/m and are typically polarized approximately normal to the plasma sheet boundary. The electric field structures investigated vary over timescales (in the spacecraft frame) ranging from 1 to 30 s. They are associated with strong magnetic field fluctuations with amplitudes of 10-40 nT which lie predominantly in the plane of the plasma sheet and are perpendicular to the local magnetic field. The Poynting flux associated with the perturbation fields measured at these altitudes is about 1-2 ergs cm-2 s-1 and is directed along the average magnetic field direction toward the ionosphere. If the measured Poynting flux is mapped to ionospheric altitudes along converging magnetic field lines, the resulting energy flux ranges up to 100 ergs cm-2s-1. These strongly enhanced Poynting fluxes appear to occur in layers which are observed when the spacecraft is magnetically conjugate (to within a 1° mapping accuracy) to intense auroral structures as detected by the Polar UV Imager (UVI). The electron energy flux (averaged over a spatial resolution of 0.5° ) deposited in the ionosphere due to auroral electron beams as estimated from the intensity in the UVI Lyman-Birge-Hopfield-long filters is 15-30 ergs cm-2s-1. Thus there is evidence that these electric field structures provide sufficient Poynting flux to power the acceleration of auroral electrons (as well as the energization of upflowing ions and Joule heating of the ionosphere). During some events the phasing and ratio of the transverse electric and magnetic field variations are consistent with earthward propagation of Alfven surface waves with phase velocities of 4000-10000 km/s. During other events the phase shifts between electric and magnetic fields suggest interference between upward and downward propagating Alfven waves. The E/B ratios are about an order of magnitude larger than typical values of c/Σp, where Σp is the height integrated Pedersen conductivity. The contribution to the total energy flux at these altitudes from Poynting flux associated with Alfven waves is comparable to or larger than the contribution from the particle energy flux and 1-2 orders of magnitude larger than that estimated from the large-scale steady state convection electric field and field-aligned current system.
RF transmission line and drill/pipe string switching technology for down-hole telemetry
Clark, David D [Santa Fe, NM; Coates, Don M [Santa Fe, NM
2007-08-14
A modulated reflectance well telemetry apparatus having an electrically conductive pipe extending from above a surface to a point below the surface inside a casing. An electrical conductor is located at a position a distance from the electrically conductive pipe and extending from above the surface to a point below the surface. Modulated reflectance apparatus is located below the surface for modulating well data into a RF carrier transmitted from the surface and reflecting the modulated carrier back to the surface. A RF transceiver is located at the surface and is connected between the electrically conductive pipe and the electrical conductor for transmitting a RF signal that is confined between the electrically conductive well pipe and the electrical conductor to the modulated reflectance apparatus, and for receiving reflected data on the well from the modulated reflectance apparatus.
Electrical conductivity behavior of Gum Arabic biopolymer-Fe3O4 nanocomposites
NASA Astrophysics Data System (ADS)
Bhakat, D.; Barik, P.; Bhattacharjee, A.
2018-01-01
Present work reports a study on the electrical conduction properties of some composites of Gum Arabic biopolymer and magnetite nanoparticles as host and guest, respectively, synthesized in different weight percentages. The nanocomposites are found to be non-extrinsic type of semiconductors with guest content dependent trap distribution of charge carriers. Conductivity of these materials increases with increasing guest content along with a concomitant decrease in the activation energy. Percolation theory has been employed for the analysis of the electrical conductivity results to explore the effect of the guest on the electrical conductivity of the host.
Influence of temperature on the electrical conductivity of leachate from municipal solid waste.
Grellier, Solenne; Robain, Henri; Bellier, Gérard; Skhiri, Nathalie
2006-09-01
A bioreactor landfill is designed to manage municipal solid waste, through accelerated waste biodegradation, and stabilisation of the process by means of the controlled addition of liquid, i.e. leachate recirculation. The measurement of electrical resistivity by Electrical Resistivity Tomography (ERT) allows to monitor water content present in the bioreactors. Variations in electrical resistivity are linked to variations in moisture content and temperature. In order to overcome this ambiguity, two laboratory experiments were carried out to establish a relationship between temperature and electrical conductivity: the first set of measurements was made for leachate alone, whereas the second set was made with two different granular media saturated with leachate. Both experiments confirm a well known increase in conductivity of about 2% degrees C(-1). However, higher suspended matter concentrations lead to a lower dependence of electrical conductivity on temperature. Furthermore, for various porous media saturated with an identical leachate, the higher the specific surface of the granular matrix, the lower the effective bulk electrical conductivity. These observations show that a correct understanding of the electrical properties of liquids requires the nature and (in particular) the size of the electrical charge carriers to be taken into account.
NASA Astrophysics Data System (ADS)
Jougnot, Damien; Jiménez-Martínez, Joaquín; Legendre, Raphaël; Le Borgne, Tanguy; Méheust, Yves; Linde, Niklas
2018-03-01
Time-lapse electrical resistivity tomography (ERT) is a geophysical method widely used to remotely monitor the migration of electrically-conductive tracers and contaminant plumes in the subsurface. Interpretations of time-lapse ERT inversion results are generally based on the assumption of a homogeneous solute concentration below the resolution limits of the tomogram depicting inferred electrical conductivity variations. We suggest that ignoring small-scale solute concentration variability (i.e., at the sub-resolution scale) is a major reason for the often-observed apparent loss of solute mass in ERT tracer studies. To demonstrate this, we developed a geoelectrical milli-fluidic setup where the bulk electric conductivity of a 2D analogous porous medium, consisting of cylindrical grains positioned randomly inside a Hele-Shaw cell, is monitored continuously in time while saline tracer tests are performed through the medium under fully and partially saturated conditions. High resolution images of the porous medium are recorded with a camera at regular time intervals, and provide both the spatial distribution of the fluid phases (aqueous solution and air), and the saline solute concentration field (where the solute consists of a mixture of salt and fluorescein, the latter being used as a proxy for the salt concentration). Effective bulk electrical conductivities computed numerically from the measured solute concentration field and the spatial distributions of fluid phases agree well with the measured bulk conductivities. We find that the effective bulk electrical conductivity is highly influenced by the connectivity of high electrical conductivity regions. The spatial distribution of air, saline tracer fingering, and mixing phenomena drive temporal changes in the effective bulk electrical conductivity by creating preferential paths or barriers for electrical current at the pore-scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical conductivity, especially for partially saturated conditions. We highlight how these phenomena contribute to the typically large apparent mass loss observed when conducting field-scale time-lapse ERT.
Double anisotropic electrically conductive flexible Janus-typed membranes.
Li, Xiaobing; Ma, Qianli; Tian, Jiao; Xi, Xue; Li, Dan; Dong, Xiangting; Yu, Wensheng; Wang, Xinlu; Wang, Jinxian; Liu, Guixia
2017-12-07
Novel type III anisotropic conductive films (ACFs), namely flexible Janus-typed membranes, were proposed, designed and fabricated for the first time. Flexible Janus-typed membranes composed of ordered Janus nanobelts were constructed by electrospinning, which simultaneously possess fluorescence and double electrically conductive anisotropy. For the fabrication of the Janus-typed membrane, Janus nanobelts comprising a conductive side and an insulative-fluorescent side were primarily fabricated, and then the Janus nanobelts are arranged into parallel arrays using an aluminum rotary drum as the collector to obtain a single anisotropically conductive film. Subsequently, a secondary electrospinning process was applied to the as-prepared single anisotropically conductive films to acquire the final Janus-typed membrane. For this Janus-typed membrane, namely its left-to-right structure, anisotropic electrical conduction synchronously exists on both sides, and furthermore, the two electrically conductive directions are perpendicular. By modulating the amount of Eu(BA) 3 phen complex and conducting polyaniline (PANI), the characteristics and intensity of the fluorescence-electricity dual-function in the membrane can be tuned. The high integration of this peculiar Janus-typed membrane with simultaneous double electrically conductive anisotropy-fluorescent dual-functionality is successfully realized in this study. This design philosophy and preparative technique will provide support for the design and construction of new types of special nanostructures with multi-functionality.
NASA Astrophysics Data System (ADS)
Das, Sumanta; Choudhury, Malini Roy; Das, Subhasish; Nagarajan, M.
2016-12-01
To guarantee food security and job creation of small scale farmers to commercial farmers, unproductive farms in the South 24 PGS, West Bengal need land reform program to be restructured and evaluated for agricultural productivity. This study established a potential role of remote sensing and GIS for identification and mapping of salinity zone and spatial planning of agricultural land over the Basanti and Gosaba Islands(808.314sq. km) of South 24 PGS. District of West Bengal. The primary data i.e. soil pH, Electrical Conductivity (EC) and Sodium Absorption ratio (SAR) were obtained from soil samples of various GCP (Ground Control Points) locations collected at 50 mts. intervals by handheld GPS from 0-100 cm depths. The secondary information is acquired from the remotely sensed satellite data (LANDSAT ETM+) in different time scale and digital elevation model. The collected field samples were tested in the laboratory and were validated with Remote Sensing based digital indices analysisover the temporal satellite data to assess the potential changes due to over salinization. Soil physical properties such as texture, structure, depth and drainage condition is stored as attributes in a geographical soil database and linked with the soil map units. The thematic maps are integrated with climatic and terrain conditions of the area to produce land capability maps for paddy. Finally, The weighted overlay analysis was performed to assign theweights according to the importance of parameters taken into account for salineareaidentification and mapping to segregate higher, moderate, lower salinity zonesover the study area.
An application of MC-SDSS for water supply management during a drought crisis.
Jeihouni, Mehrdad; Toomanian, Ara; Alavipanah, Seyed Kazem; Shahabi, Mahmoud; Bazdar, Saba
2015-07-01
Climate change influences many countries' rainfall patterns and temperatures. In Iran, population growth has increased water demands. Tabriz is the capital of East Azerbaijan province, in northwestern Iran. A large proportion of the water required for this city is supplied from dams; thus, it is important to find alternatives to supply water for this city, which is the largest industrial city in northwestern Iran. In this paper, the groundwater quality was assessed using 70 wells in Tabriz Township. This work seeks to define the spatial distribution of groundwater quality parameters such as chloride, electrical conductivity (EC), pH, hardness, and sulfate using Geographic Information Systems (GIS) and geostatistics; map groundwater quality for drinking purposes employing multiple-criteria decision-making (MCDM), such as the Analytical Hierarchy Process (AHP) and fuzzy logic, in the study area; and develop an Spatial Decision Support System (SDSS) for managing a water crisis in the region. The map produced by the AHP is more accurate than the map produced using fuzzy logic because in the AHP, priorities were assigned to each parameter based on the weights given by water quality experts. The final map indicates that the groundwater quality increases from the north to the south and from the west to the east within the study area. During critical conditions, the groundwater quality maps and the presented SDSS core can be utilized by East Azerbaijan Regional Water Company to develop an SDSS to drill new wells or to select existing wells to supply drinking water to Tabriz City.
NASA Astrophysics Data System (ADS)
Sheftman, D.; Shafer, D.; Efimov, S.; Krasik, Ya. E.
2012-03-01
Sub-microsecond timescale underwater electrical wire explosions using Cu and Al materials have been conducted. Current and voltage waveforms and time-resolved streak images of the discharge channel, coupled to 1D magneto-hydrodynamic simulations, have been used to determine the electrical conductivity of the metals for the range of conditions between hot liquid metal and strongly coupled non-ideal plasma, in the temperature range of 10-60 KK. The results of these studies showed that the conductivity values obtained are typically lower than those corresponding to modern theoretical electrical conductivity models and provide a transition between the conductivity values obtained in microsecond time scale explosions and those obtained in nanosecond time scale wire explosions. In addition, the measured wire expansion shows good agreement with equation of state tables.
NASA Astrophysics Data System (ADS)
Asano, Takanori; Takaishi, Riichiro; Oda, Minoru; Sakuma, Kiwamu; Saitoh, Masumi; Tanaka, Hiroki
2018-04-01
We visualize the grain structures for individual nanosized thin film transistors (TFTs), which are electrically characterized, with an improved data processing technique for the dark-field image reconstruction of nanobeam electron diffraction maps. Our individual crystal analysis gives the one-to-one correspondence of TFTs with different grain boundary structures, such as random and coherent boundaries, to the characteristic degradations of ON-current and threshold voltage. Furthermore, the local crystalline uniformity inside a single grain is detected as the difference in diffraction intensity distribution.
Cervera, Javier; Manzanares, Jose Antonio; Mafe, Salvador
2015-02-19
We analyze the coupling of model nonexcitable (non-neural) cells assuming that the cell membrane potential is the basic individual property. We obtain this potential on the basis of the inward and outward rectifying voltage-gated channels characteristic of cell membranes. We concentrate on the electrical coupling of a cell ensemble rather than on the biochemical and mechanical characteristics of the individual cells, obtain the map of single cell potentials using simple assumptions, and suggest procedures to collectively modify this spatial map. The response of the cell ensemble to an external perturbation and the consequences of cell isolation, heterogeneity, and ensemble size are also analyzed. The results suggest that simple coupling mechanisms can be significant for the biophysical chemistry of model biomolecular ensembles. In particular, the spatiotemporal map of single cell potentials should be relevant for the uptake and distribution of charged nanoparticles over model cell ensembles and the collective properties of droplet networks incorporating protein ion channels inserted in lipid bilayers.
Method of imaging the electrical conductivity distribution of a subsurface
Johnson, Timothy C.
2017-09-26
A method of imaging electrical conductivity distribution of a subsurface containing metallic structures with known locations and dimensions is disclosed. Current is injected into the subsurface to measure electrical potentials using multiple sets of electrodes, thus generating electrical resistivity tomography measurements. A numeric code is applied to simulate the measured potentials in the presence of the metallic structures. An inversion code is applied that utilizes the electrical resistivity tomography measurements and the simulated measured potentials to image the subsurface electrical conductivity distribution and remove effects of the subsurface metallic structures with known locations and dimensions.
Sensors for detecting analytes in fluids
NASA Technical Reports Server (NTRS)
Lewis, Nathan S. (Inventor); Severin, Erik (Inventor)
1998-01-01
Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g., electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.
Sensors for detecting analytes in fluids
NASA Technical Reports Server (NTRS)
Severin, Erik (Inventor); Lewis, Nathan S. (Inventor)
2001-01-01
Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g., electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.
Sensors for detecting analytes in fluids
NASA Technical Reports Server (NTRS)
Lewis, Nathan S. (Inventor); Severin, Erik (Inventor)
1999-01-01
Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g., electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.
Sensor arrays for detecting analytes in fluids
NASA Technical Reports Server (NTRS)
Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)
1996-01-01
Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g. electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.
Design Considerations and Performance of MEMS Acoustoelectric Ultrasound Detectors
Wang, Zhaohui; Ingram, Pier; Greenlee, Charles L.; Olafsson, Ragnar; Norwood, Robert A.; Witte, Russell S.
2014-01-01
Most single-element hydrophones depend on a piezoelectric material that converts pressure changes to electricity. These devices, however, can be expensive, susceptible to damage at high pressure, and/or have limited bandwidth and sensitivity. We have previously described the acoustoelectric (AE) hydrophone as an inexpensive alternative for mapping an ultrasound beam and monitoring acoustic exposure. The device exploits the AE effect, an interaction between electrical current flowing through a material and a propagating pressure wave. Previous designs required imprecise fabrication methods using common laboratory supplies, making it difficult to control basic features such as shape and size. This study describes a different approach based on microelectromechanical systems (MEMS) processing that allows for much finer control of several design features. In an effort to improve the performance of the AE hydrophone, we combine simulations with bench-top testing to evaluate key design features, such as thickness, shape, and conductivity of the active and passive elements. The devices were evaluated in terms of sensitivity, frequency response, and accuracy for reproducing the beam pattern. Our simulations and experimental results both indicated that designs using a combination of indium tin oxide (ITO) for the active element and gold for the passive electrodes (conductivity ratio = ~20) produced the best result for mapping the beam of a 2.25-MHz ultrasound transducer. Also, the AE hydrophone with a rectangular dumbbell configuration achieved a better beam pattern than other shape configurations. Lateral and axial resolutions were consistent with images generated from a commercial capsule hydrophone. Sensitivity of the best-performing device was 1.52 nV/Pa at 500 kPa using a bias voltage of 20 V. We expect a thicker AE hydrophone closer to half the acoustic wavelength to produce even better sensitivity, while maintaining high spectral bandwidth for characterizing medical ultrasound transducers. AE ultrasound detectors may also be useful for monitoring acoustic exposure during therapy or as receivers for photoacoustic imaging. PMID:24658721
Transport properties of olivine grain boundaries from electrical conductivity experiments
NASA Astrophysics Data System (ADS)
Pommier, Anne; Kohlstedt, David L.; Hansen, Lars N.; Mackwell, Stephen; Tasaka, Miki; Heidelbach, Florian; Leinenweber, Kurt
2018-05-01
Grain boundary processes contribute significantly to electronic and ionic transports in materials within Earth's interior. We report a novel experimental study of grain boundary conductivity in highly strained olivine aggregates that demonstrates the importance of misorientation angle between adjacent grains on aggregate transport properties. We performed electrical conductivity measurements of melt-free polycrystalline olivine (Fo90) samples that had been previously deformed at 1200 °C and 0.3 GPa to shear strains up to γ = 7.3. The electrical conductivity and anisotropy were measured at 2.8 GPa over the temperature range 700-1400 °C. We observed that (1) the electrical conductivity of samples with a small grain size (3-6 µm) and strong crystallographic preferred orientation produced by dynamic recrystallization during large-strain shear deformation is a factor of 10 or more larger than that measured on coarse-grained samples, (2) the sample deformed to the highest strain is the most conductive even though it does not have the smallest grain size, and (3) conductivity is up to a factor of 4 larger in the direction of shear than normal to the shear plane. Based on these results combined with electrical conductivity data for coarse-grained, polycrystalline olivine and for single crystals, we propose that the electrical conductivity of our fine-grained samples is dominated by grain boundary paths. In addition, the electrical anisotropy results from preferential alignment of higher-conductivity grain boundaries associated with the development of a strong crystallographic preferred orientation of the grains.
Electrically Conductive and Protective Coating for Planar SOFC Stacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jung-Pyung; Stevenson, Jeffry W.
Ferritic stainless steels are preferred interconnect materials for intermediate temperature SOFCs because of their resistance to oxidation, high formability and low cost. However, their protective oxide layer produces Cr-containing volatile species at SOFC operating temperatures and conditions, which can cause cathode poisoning. Electrically conducting spinel coatings have been developed to prevent cathode poisoning and to maintain an electrically conductive pathway through SOFC stacks. However, this coating is not compatible with the formation of stable, hermetic seals between the interconnect frame component and the ceramic cell. Thus, a new aluminizing process has been developed by PNNL to enable durable sealing, preventmore » Cr evaporation, and maintain electrical insulation between stack repeat units. Hence, two different types of coating need to have stable operation of SOFC stacks. This paper will focus on the electrically conductive coating process. Moreover, an advanced coating process, compatible with a non-electrically conductive coating will be« less
Down to Earth with an electric hazard from space
Love, Jeffrey J.; Bedrosian, Paul A.; Schultz, Adam
2017-01-01
In reaching across traditional disciplinary boundaries, solid-Earth geophysicists and space physicists are forging new collaborations to map magnetic-storm hazards for electric-power grids. Future progress in evaluation storm time geoelectric hazards will come primarily through monitoring, surveys, and modeling of related data.
NASA Astrophysics Data System (ADS)
Revil, A.; Jardani, A.; Dupont, J.
2012-12-01
The assessment of hydraulic conductivity of heterogeneous aquifers is a difficult task using traditional hydrogeological methods (e.g., steady state or transient pumping tests) due to their low spatial resolution associated with a low density of available piezometers. Geophysical measurements performed at the ground surface and in boreholes provide additional information for increasing the resolution and accuracy of the inverted hydraulic conductivity. We use a stochastic joint inversion of Direct Current (DC) resistivity and Self-Potential (SP) data plus in situ measurement of the salinity in a downstream well during a synthetic salt tracer experiment to reconstruct the hydraulic conductivity field of an heterogeneous aquifer. The pilot point parameterization is used to avoid over-parameterization of the inverse problem. Bounds on the model parameters are used to promote a consistent Markov chain Monte Carlo sampling of the hydrogeological parameters of the model. To evaluate the effectiveness of the inversion process, we compare several scenarios where the geophysical data are coupled or not to the hydrogeological data to map the hydraulic conductivity. We first test the effectiveness of the inversion of each type of data alone, and then we combine the methods two by two. We finally combine all the information together to show the value of each type of geophysical data in the joint inversion process because of their different sensitivity map. The results of the inversion reveal that the self-potential data improve the estimate of hydraulic conductivity especially when the self-potential data are combined to the salt concentration measurement in the second well or to the time-lapse electrical resistivity data. Various tests are also performed to quantify the uncertainty in the inversion when for instance the semi-variogram is not known and its parameters should be inverted as well.
A system for mapping sources of VHF and electric field pulses from in-cloud lightning at KSC
NASA Technical Reports Server (NTRS)
Thomson, Ewen M.; Medelius, Pedro J.
1991-01-01
The literature concerning VHF radiation and wideband electric fields from in-cloud lightning is reviewed. VHF location systems give impressive radio images of lightning in clouds with high spatial and temporal resolution. Using systems based on long and short baseline time-or-arrival and interferometry, workers have detected VHF sources that move at speeds of 10(exp 5) to 10(exp 8) m/s. The more slowly moving sources appear to be associated with channel formation but the physical basis for the higher speeds is not clear. In contrast, wideband electric fields are directly related to physical parameters such as current and tortuosity. A long baseline system is described to measure simultaneously VHF radiation and wideband electric fields at five stations at Kennedy Space Center. All signals are detected over remote, isolated ground planes with fiber optics for data transmission. The modification of this system to map rapidly varying dE/dt pulses is discussed.