Solar array study for solar electric propulsion spacecraft for the Encke rendezvous mission
NASA Technical Reports Server (NTRS)
Sequeira, E. A.; Patterson, R. E.
1974-01-01
The work is described which was performed on the design, analysis and performance of a 20 kW rollup solar array capable of meeting the design requirements of a solar electric spacecraft for the 1980 Encke rendezvous mission. To meet the high power requirements of the proposed electric propulsion mission, solar arrays on the order of 186.6 sq m were defined. Because of the large weights involved with arrays of this size, consideration of array configurations is limited to lightweight, large area concepts with maximum power-to-weight ratios. Items covered include solar array requirements and constraints, array concept selection and rationale, structural and electrical design considerations, and reliability considerations.
Multi-Channel, Constant-Current Power Source for Aircraft Applications
2017-03-01
Special considerations impacting this design were minimizing volume, maintaining system power quality, and providing electrical fault protection...applications. Electrical loads, such as lighting, de-icing heaters, and actuators may be operated from this compact power conversion unit. Because of the...nature of aircraft systems, two of the most important design considerations are the maintenance of electrical power quality and minimization of weight
Lunar Module Electrical Power System Design Considerations and Failure Modes
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
This slide presentation reviews the design and redesign considerations of the Apollo lunar module electrical power system. Included in the work are graphics showing the lunar module power system. It describes the in-flight failures, and the lessons learned from these failures.
Design, economic and system considerations of large wind-driven generators
NASA Technical Reports Server (NTRS)
Jorgensen, G. E.; Lotker, M.; Meier, R. C.; Brierley, D.
1976-01-01
The increased search for alternative energy sources has lead to renewed interest and studies of large wind-driven generators. This paper presents the results and considerations of such an investigation. The paper emphasizes the concept selection of wind-driven generators, system optimization, control system design, safety aspects, economic viability on electric utility systems and potential electric system interfacing problems.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
... Design,'' GDC 31, ``Fracture Prevention of Reactor Coolant Pressure Boundary,'' and GDC 32, ``Inspection... Operating Company; Vogtle Electric Generating Plant, Unit Nos. 1 and 2; Notice of Consideration of Issuance of Amendment to Facility Operating License, Proposed No Significant Hazards Consideration...
Ergonomics: The Forgotten Variable.
ERIC Educational Resources Information Center
Fitterman, L. Jeffrey
This paper describes ergonomics and the need to adapt worksites and technologies for individuals with physical or sensory disabilities. It provides suggestions for how to design an appropriate setup, design considerations, environmental considerations, chairs, monitor height, ambient noise, light, and electricity. Recommendations include: (1)…
Electrodynamic tethers for energy conversion
NASA Technical Reports Server (NTRS)
Nobles, W.
1986-01-01
Conductive tethers have been proposed as a new method for converting orbital mechanical energy into electrical power for use on-board a satellite (generator mode) or conversely (motor mode) as a method of providing electric propulsion using electrical energy from the satellite. The operating characteristics of such systems are functionally dependent on orbit altitude and inclination. Effects of these relationships are examined to determine acceptable regions of application. To identify system design considerations, a specific set of system performance goals and requirements are selected. The case selected is for a 25 kW auxiliary power system for use on Space Station. Appropriate system design considerations are developed, and the resulting system is described.
The Automobile: A Designer's Dream. Resources in Technology.
ERIC Educational Resources Information Center
Bryson, George Y.; Deal, Walter F., III
1996-01-01
Sketches the history of automobile design, current design considerations, and social/cultural aspects of car design. Provides a design brief that challenges students to develop an electric vehicle. (SK)
Development of a Novel Wireless Electric Power Transfer System for Space Applications
NASA Technical Reports Server (NTRS)
VazquezRamos, Gabriel; Yuan, Jiann-Shiun
2011-01-01
This paper will introduce a new implementation for wireless electric power transfer systems: space applications. Due to the risks that constitute the use of electrical connector for some space missions/applications, a simple wireless power system design approach will be evaluated as an alternative for the use of electrical connectors. This approach takes into consideration the overall system performance by designing the magnetic resonance elements and by verifying the overall system electrical behavior. System characterization is accomplished by executing circuit and analytical simulations using Matlab(TradeMark) and LTSpiceIV(TradeMark) software packages. The design methodology was validated by two different experiments: frequency consideration (design of three magnetic elements) and a small scale proof-ofconcept prototype. Experiment results shows successful wireless power transfer for all the cases studied. The proof-of-concept prototype provided approx.4 W of wireless power to the load (light bulb) at a separation of 3 cm from the source. In addition. a resonant circuit was designed and installed to the battery terminals of a handheld radio without batteries, making it tum on at a separation of approx.5 cm or less from the source. It was also demonstrated by prototype experimentation that multiple loads can be powered wirelessly at the same time with a single electric power source.
Electrical Safety: Safety and Health for Electrical Trades. Student Manual.
ERIC Educational Resources Information Center
Fowler, Thaddeus W.; Miles, Karen K.
This document is designed to teach learners in secondary and postsecondary electrical trades courses to recognize, evaluate, and control hazards associated with electrical work, The manual's eight sections each include some or all of the following components: instructional text; definitions; case studies illustrating key safety considerations;…
Thermionic reactor power conditioner design for nuclear electric propulsion.
NASA Technical Reports Server (NTRS)
Jacobsen, A. S.; Tasca, D. M.
1971-01-01
Consideration of the effects of various thermionic reactor parameters and requirements upon spacecraft power conditioning design. A basic spacecraft is defined using nuclear electric propulsion, requiring approximately 120 kWe. The interrelationships of reactor operating characteristics and power conditioning requirements are discussed and evaluated, and the effects on power conditioner design and performance are presented.
Renewable Electricity Standards: Good Practices and Design Considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Sadie; Esterly, Sean
2016-01-02
In widespread use globally, renewable electricity standards (RES) are one of the most widely adopted renewable energy policies and a critical regulatory vehicle to accelerate renewable energy deployment. This policy brief provides an introduction to key RES design elements, lessons from country experience, and support resources to enable more detailed and country-specific RES policy design.
Multimegawatt electric propulsion system design considerations
NASA Technical Reports Server (NTRS)
Gilland, J. H.; Myers, Roger M.; Patterson, Michael J.
1991-01-01
Piloted Mars Mission Requirements of relatively short trip times and low initial mass in Earth orbit as identified by the NASA Space Exploration Initiative, indicate the need for multimegawatt electric propulsion systems. The design considerations and results for two thruster types, the argon ion, and hydrogen magnetoplasmadynamic thrusters, are addressed in terms of configuration, performance, and mass projections. Preliminary estimates of power management and distribution for these systems are given. Some assessment of these systems' performance in a reference Space Exploration Initiative piloted mission are discussed. Research and development requirements of these systems are also described.
Surrogate assisted multidisciplinary design optimization for an all-electric GEO satellite
NASA Astrophysics Data System (ADS)
Shi, Renhe; Liu, Li; Long, Teng; Liu, Jian; Yuan, Bin
2017-09-01
State-of-the-art all-electric geostationary earth orbit (GEO) satellites use electric thrusters to execute all propulsive duties, which significantly differ from the traditional all-chemical ones in orbit-raising, station-keeping, radiation damage protection, and power budget, etc. Design optimization task of an all-electric GEO satellite is therefore a complex multidisciplinary design optimization (MDO) problem involving unique design considerations. However, solving the all-electric GEO satellite MDO problem faces big challenges in disciplinary modeling techniques and efficient optimization strategy. To address these challenges, we presents a surrogate assisted MDO framework consisting of several modules, i.e., MDO problem definition, multidisciplinary modeling, multidisciplinary analysis (MDA), and surrogate assisted optimizer. Based on the proposed framework, the all-electric GEO satellite MDO problem is formulated to minimize the total mass of the satellite system under a number of practical constraints. Then considerable efforts are spent on multidisciplinary modeling involving geosynchronous transfer, GEO station-keeping, power, thermal control, attitude control, and structure disciplines. Since orbit dynamics models and finite element structural model are computationally expensive, an adaptive response surface surrogate based optimizer is incorporated in the proposed framework to solve the satellite MDO problem with moderate computational cost, where a response surface surrogate is gradually refined to represent the computationally expensive MDA process. After optimization, the total mass of the studied GEO satellite is decreased by 185.3 kg (i.e., 7.3% of the total mass). Finally, the optimal design is further discussed to demonstrate the effectiveness of our proposed framework to cope with the all-electric GEO satellite system design optimization problems. This proposed surrogate assisted MDO framework can also provide valuable references for other all-electric spacecraft system design.
Electric motor/controller design tradeoffs for noise, weight, and efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopp, N.L.; Brown, G.W.
1994-12-31
It is common for an AUV [Autonomous Underwater Vehicle] designer to be put in the position of a subsystem hardware integrator. In the case of electric motors and controllers this may be more by necessity than choice because a suitable subsystems supplier cannot be found. As a result, motors and controllers are purchased from various manufacturers who may optimize the design of each part but hold system performance secondary in importance. Unlike hydraulics, an electric motor/controller system presents significant opportunities to improve noise, weight, and efficiency. But, these opportunities can best be recognized by a single source who not onlymore » understands the technology but has the ability to implement them in the development and manufacture of the product. An analysis is presented which explains the various design considerations of noise, weight and efficiency of electric motors and controllers for submersible AUV`s. In concert with the design considerations, their interrelationships are discussed as to how they affect each other in the overall optimization of the system. In conclusion, a matrix is created which shows how the resultant system parameters of noise, weight, and efficiency may be ``traded off`` to tailor the best overall system for the application. 1 ref.« less
Fuel cell power plant economic and operational considerations
NASA Technical Reports Server (NTRS)
Lance, J. R.
1984-01-01
Fuel cell power plants intended for electric utility and cogeneration applications are now in the design and construction stage. This paper describes economic and operational considerations being used in the development and design of plants utilizing air cooled phosphoric acid fuel cells. Fuel cell power plants have some unique characteristics relative to other types of power plants. As a result it was necessary to develop specific definitions of the fuel cell power plant characteristics in order to perform cost of electricity calculations. This paper describes these characteristics and describes the economic analyses used in the Westinghouse fuel cell power plant program.
NASA Technical Reports Server (NTRS)
Schwarz, F. C.
1971-01-01
Processing of electric power has been presented as a discipline that draws on almost every field of electrical engineering, including system and control theory, communications theory, electronic network design, and power component technology. The cost of power processing equipment, which often equals that of expensive, sophisticated, and unconventional sources of electrical energy, such as solar batteries, is a significant consideration in the choice of electric power systems.
Recommended Practice for Use of Emissive Probes in Electric Propulsion Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheehan, J. P.; Raitses, Yevgeny; Hershkowitz, Noah
Here, this article provides recommended methods for building, operating, and taking plasma potential measurements from electron-emitting probes in electric propulsion devices, including Hall thrusters, gridded ion engines, and others. The two major techniques, the floating point technique and the inflection point technique, are described in detail as well as calibration and error-reduction methods. The major heating methods are described as well as the various considerations for emissive probe construction. Lastly, special considerations for electric propulsion plasmas are addressed, including high-energy densities, ion flows, magnetic fields, and potential fluctuations. Recommendations for probe design and operation are provided.
Recommended Practice for Use of Emissive Probes in Electric Propulsion Testing
Sheehan, J. P.; Raitses, Yevgeny; Hershkowitz, Noah; ...
2016-11-03
Here, this article provides recommended methods for building, operating, and taking plasma potential measurements from electron-emitting probes in electric propulsion devices, including Hall thrusters, gridded ion engines, and others. The two major techniques, the floating point technique and the inflection point technique, are described in detail as well as calibration and error-reduction methods. The major heating methods are described as well as the various considerations for emissive probe construction. Lastly, special considerations for electric propulsion plasmas are addressed, including high-energy densities, ion flows, magnetic fields, and potential fluctuations. Recommendations for probe design and operation are provided.
Technology-based design and scaling for RTGs for space exploration in the 100 W range
NASA Astrophysics Data System (ADS)
Summerer, Leopold; Pierre Roux, Jean; Pustovalov, Alexey; Gusev, Viacheslav; Rybkin, Nikolai
2011-04-01
This paper presents the results of a study on design considerations for a 100 W radioisotope thermo-electric generator (RTG). Special emphasis has been put on designing a modular, multi-purpose system with high overall TRL levels and making full use of the extensive Russian heritage in the design of radioisotope power systems. The modular approach allowed insight into the scaling of such RTGs covering the electric power range from 50 to 200 W e (EoL). The retained concept is based on a modular thermal block structure, a radiative inner-RTG heat transfer and using a two-stage thermo-electric conversion system.
Ergonomics: The Forgotten Variable.
ERIC Educational Resources Information Center
Fitterman, L. Jeffrey
1998-01-01
Defines ergonomics and discusses design and environmental considerations. Suggests work-space requirements for: tables, chairs, monitor height, ambient noise and light, electricity, and environmental hazards. Includes sources for additional information related to ergonomic design. (AEF)
NASA Technical Reports Server (NTRS)
Cork, M. J.; Hastrup, R. C.; Menard, W. A.; Olson, R. N.
1979-01-01
High energy planetary missions such as comet rendezvous, Saturn orbiter and asteroid rendezvous require development of a Solar Electric Propulsion Stage (SEPS) for augmentation of the Shuttle-IUS. Performance and functional requirements placed on the SEPS are presented. These requirements will be used in evolution of the SEPS design, which must be highly interactive with both the spacecraft and the mission design. Previous design studies have identified critical SEPS technology areas and some specific design solutions which are also presented in the paper.
Electricity use patterns in cotton gins
USDA-ARS?s Scientific Manuscript database
Energy costs are the second largest source of variable costs for cotton gins, with electricity accounting for 18% of variable costs. Energy use has typically not been a major consideration in gin design and previous studies of energy use have utilized instantaneous readings or aggregated season-lon...
Evaluation of indeterminacy of initial data for cad system of electric engine suspension
NASA Astrophysics Data System (ADS)
Antipin, D. Ya; Izmerov, O. V.; Shorokhov, S. G.; Nadtochey, D. G.
2018-03-01
The research of the variants of the suspension of the traction electric motor of diesel locomotives was performed. It was found that the method of designing the suspension does not take into consideration the possible changes of the characteristics of the parts in operation conditions. Variants of the suspension design were proposed and patented, which provide the work reliability despite the operating conditions.
A NASA Approach to Safety Considerations for Electric Propulsion Aircraft Testbeds
NASA Technical Reports Server (NTRS)
Papathakis, Kurt V.; Sessions, Alaric M.; Burkhardt, Phillip A.; Ehmann, David W.
2017-01-01
Electric, hybrid-electric, and turbo-electric distributed propulsion technologies and concepts are beginning to gain traction in the aircraft design community, as they can provide improvements in operating costs, noise, fuel consumption, and emissions compared to conventional internal combustion or Brayton-cycle powered vehicles. NASA is building multiple demonstrators and testbeds to buy down airworthiness and flight safety risks for these new technologies, including X-57 Maxwell, HEIST, Airvolt, and NEAT.
Laser-driven electron acceleration in a plasma channel with an additional electric field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Li-Hong; Xue, Ju-Kui, E-mail: xuejk@nwnu.edu.cn; Liu, Jie, E-mail: liu-jie@iapcm.ac.cn
2016-05-15
We examine the electron acceleration in a two-dimensional plasma channel under the action of a laser field and an additional static electric field. We propose to design an appropriate additional electric field (its direction and location), in order to launch the electron onto an energetic trajectory. We find that the electron acceleration strongly depends on the coupled effects of the laser polarization, the direction, and location of the additional electric field. The additional electric field affects the electron dynamics by changing the dephasing rate. Particularly, a suitably designed additional electric field leads to a considerable energy gain from the lasermore » pulse after the interaction with the additional electric field. The electron energy gain from the laser with the additional electric field can be much higher than that without the additional electric field. This engineering provides a possible means for producing high energetic electrons.« less
Ten Commandments for Microcomputer Facility Planners.
ERIC Educational Resources Information Center
Espinosa, Leonard J.
1991-01-01
Presents factors involved in designing a microcomputer facility, including how computers will be used in the instructional program; educational specifications; planning committees; user input; quality of purchases; visual supervision considerations; location; workstation design; turnkey systems; electrical requirements; local area networks;…
Mechanically and electrically robust metal-mask design for organic CMOS circuits
NASA Astrophysics Data System (ADS)
Shintani, Michihiro; Qin, Zhaoxing; Kuribara, Kazunori; Ogasahara, Yasuhiro; Hiromoto, Masayuki; Sato, Takashi
2018-04-01
The design of metal masks for fabricating organic CMOS circuits requires the consideration of not only the electrical property of the circuits, but also the mechanical strength of the masks. In this paper, we propose a new design flow for metal masks that realizes coanalysis of the mechanical and electrical properties and enables design exploration considering the trade-off between the two properties. As a case study, we apply a “stitching technique” to the mask design of a ring oscillator and explore the best design. With this technique, mask patterns are divided into separate parts using multiple mask layers to improve the mechanical strength at the cost of high resistance of the vias. By a numerical experiment, the design trade-off of the stitching technique is quantitatively analyzed, and it is demonstrated that the proposed flow is useful for the exploration of the designs of metal masks.
Market Evolution: Wholesale Electricity Market Design for 21st Century Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin; Miller, Mackay; Milligan, Michael
2013-10-01
Demand for affordable, reliable, domestically sourced, and low-carbon electricity is on the rise. This growing demand is driven in part by evolving public policy priorities, especially reducing the health and environmental impacts of electricity service and expanding energy access to under-served customers. Consequently, variable renewable energy resources comprise an increasing share ofelectricity generation globally. At the same time, new opportunities for addressing the variability of renewables are being strengthened through advances in smart grids, communications, and technologies that enable dispatchable demand response and distributed generation to extend to the mass market. A key challenge of merging these opportunities is marketmore » design -- determining how to createincentives and compensate providers justly for attributes and performance that ensure a reliable and secure grid -- in a context that fully realizes the potential of a broad array of sources of flexibility in both the wholesale power and retail markets. This report reviews the suite of wholesale power market designs in use and under consideration to ensure adequacy, security, and flexibilityin a landscape of significant variable renewable energy. It also examines considerations needed to ensure that wholesale market designs are inclusive of emerging technologies, such as demand response, distributed generation, and storage.« less
NASA Technical Reports Server (NTRS)
Whitson, D. W.
1975-01-01
The specific electrical discharge problems that can directly affect the shuttle vehicle and its payloads are addressed. General design guidelines are provided to assist flight hardware managers in minimizing these kinds of problems. Specific data are included on workmanship practices and system testing while in low pressure environments. Certain electrical discharge problems that may be unique to the design of the shuttle vehicle itself and to its various mission operational models are discussed.
Design Development Analyses in Support of a Heatpipe-Brayton Cycle Heat Exchanger
NASA Technical Reports Server (NTRS)
Steeve, Brian E.; Kapernick, Richard J.
2004-01-01
One of the power systems under consideration for nuclear electric propulsion or as a planetary surface power source is a heatpipe-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the heatpipes to the Brayton gas via a heat exchanger attached to the heatpipes. This paper discusses the fluid, thermal and structural analyses that were performed in support of the design of the heat exchanger to be tested in the SAFE-100 experimental program at the Marshall Space Flight Center: An important consideration throughout the design development of the heat exchanger w its capability to be utilized for higher power and temperature applications. This paper also discusses this aspect of the design and presents designs for specific applications that are under consideration.
Key issues in application of composites to transport aircraft
NASA Technical Reports Server (NTRS)
Stone, M.
1978-01-01
The application of composite materials to transport aircraft was identified and reviewed including the major contributing disciplines of design, manufacturing, and processing. Factors considered include: crashworthiness considerations (structural integrity, postcrash fires, and structural fusing), electrical/avionics subsystems integration, lightning, and P-static protection design; manufacturing development, evaluation, selection, and refining of tooling and curing procedures; and major joint design considerations. Development of the DC-10 rudder, DC-10 vertical stabilizer, and the DC-9 wing study project was reviewed. The Federal Aviation Administration interface and the effect on component design of compliance with Federal Aviation Regulation 25 Composite Guidelines are discussed.
Design and market considerations for axial flux superconducting electric machine design
NASA Astrophysics Data System (ADS)
Ainslie, M. D.; George, A.; Shaw, R.; Dawson, L.; Winfield, A.; Steketee, M.; Stockley, S.
2014-05-01
In this paper, the authors investigate a number of design and market considerations for an axial flux superconducting electric machine design that uses high temperature superconductors. The axial flux machine design is assumed to utilise high temperature superconductors in both wire (stator winding) and bulk (rotor field) forms, to operate over a temperature range of 65-77 K, and to have a power output in the range from 10s of kW up to 1 MW (typical for axial flux machines), with approximately 2-3 T as the peak trapped field in the bulk superconductors. The authors firstly investigate the applicability of this type of machine as a generator in small- and medium-sized wind turbines, including the current and forecasted market and pricing for conventional turbines. Next, a study is also carried out on the machine's applicability as an in-wheel hub motor for electric vehicles. Some recommendations for future applications are made based on the outcome of these two studies. Finally, the cost of YBCO-based superconducting (2G HTS) wire is analysed with respect to competing wire technologies and compared with current conventional material costs and current wire costs for both 1G and 2G HTS are still too great to be economically feasible for such superconducting devices.
Design-Construct Method Saves Time and Money in New School Building
ERIC Educational Resources Information Center
Modern Schools, 1972
1972-01-01
Describes the Lottie M. Schmidt Elementary School in New Baltimore, Michigan, completed in 154 days. Designed to a price rather than priced to a design, the school was built at considerable savings over modular approaches -- and the modest price also covered furniture, electric heating/cooling, carpeting, full masonry construction, concrete slab…
Grumman electric truck development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kessler, J.C.; Ferdman, S.
1981-11-01
An electric truck development was undertaken to prepare for the markets of the 1980's. Grumman is using its aluminum truck bodies technology to create a light weight vehicle. A redesigned unitized, all aluminum body and a new propulsion system resulted in the desired vehicle. The vehicle meets the requirements of the US Postal Service and the DOE Demonstration program. The unitized chassisless structure is designed to take major driving loads. Design features and performance characteristics are enumerated. Safety and service considerations have been incorporated into the vehicle.
Electrical insulation design requirements and reliability goals
NASA Astrophysics Data System (ADS)
Ross, R. G., Jr.
1983-11-01
The solar cells in a photovoltaic module which must be electrically isolated from module exterior surfaces to satisfy a variety of safety and operating considerations are discussed. The performance and reliability of the insulation system are examined. Technical requirements involve the capability of withstanding the differential voltage from the solar cells to the module frame. The maximum system voltage includes consideration of maximum open circuit array voltages achieved under low-temperature, high-irradiance conditions, and transient overvoltages due to system feedback of lightning transients. The latter is bounded by the characteristics of incorporated voltage limiting devices such as MOVs.
Building a High-Tech Library in a Period of Austerity.
ERIC Educational Resources Information Center
Bazillion, Richard J.; Scott, Sue
1991-01-01
Describes the planning process for designing a new library for Algoma University College (Ontario). Topics discussed include the building committee, library policy, design considerations, an electric system that supports computer technology, library automation, the online public access catalog (OPAC), furnishings and interior environment, and…
A computer-aided methodology for designing sustainable supply chains is presented using the P-graph framework to develop supply chain structures which are analyzed using cost, the cost of producing electricity, and two sustainability metrics: ecological footprint and emergy. They...
A computer-aided methodology for designing sustainable supply chains is presented using the P-graph framework to develop supply chain structures which are analyzed using cost, the cost of producing electricity, and two sustainability metrics: ecological footprint and emergy. They...
Study of advanced electric propulsion system concept using a flywheel for electric vehicles
NASA Technical Reports Server (NTRS)
Younger, F. C.; Lackner, H.
1979-01-01
Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.
Tool for Torquing Circular Electrical-Connector Collars
NASA Technical Reports Server (NTRS)
Gaulke, Kathryn; Werneth, Russell; Grunsfeld, John; O'Neill, Patrick; Snyder, Russ
2006-01-01
An improved tool has been devised for applying torque to lock and unlock knurled collars on circular electrical connectors. The tool was originally designed for, and used by, astronauts working in outer space on the Hubble Space Telescope (HST). The tool is readily adaptable to terrestrial use in installing and removing the same or similar circular electrical connectors as well as a wide variety of other cylindrical objects, the tightening and loosening of which entail considerable amounts of torque.
Solar Electric Propulsion (SEP) Tug Power System Considerations
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Bury, Kristen M.; Hojinicki, Jeffrey S.; Sajdak, Adam M.; Scheiddegger, Robert J.
2011-01-01
Solar electric propulsion (SEP) technology is truly at the "intersection of commercial and military space" as well as the intersection of NASA robotic and human space missions. Building on the use of SEP for geosynchronous spacecraft station keeping, there are numerous potential commercial and military mission applications for SEP stages operating in Earth orbit. At NASA, there is a resurgence of interest in robotic SEP missions for Earth orbit raising applications, 1-AU class heliocentric missions to near Earth objects (NEOs) and SEP spacecraft technology demonstrations. Beyond these nearer term robotic missions, potential future human space flight missions to NEOs with high-power SEP stages are being considered. To enhance or enable this broad class of commercial, military and NASA missions, advancements in the power level and performance of SEP technologies are needed. This presentation will focus on design considerations for the solar photovoltaic array (PVA) and electric power system (EPS) vital to the design and operation of an SEP stage. The engineering and programmatic pros and cons of various PVA and EPS technologies and architectures will be discussed in the context of operating voltage and power levels. The impacts of PVA and EPS design options on the remaining SEP stage subsystem designs, as well as spacecraft operations, will also be discussed.
Critical Infrastructure Protection: EMP Impacts on the U.S. Electric Grid
NASA Astrophysics Data System (ADS)
Boston, Edwin J., Jr.
The purpose of this research is to identify the United States electric grid infrastructure systems vulnerabilities to electromagnetic pulse attacks and the cyber-based impacts of those vulnerabilities to the electric grid. Additionally, the research identifies multiple defensive strategies designed to harden the electric grid against electromagnetic pulse attack that include prevention, mitigation and recovery postures. Research results confirm the importance of the electric grid to the United States critical infrastructures system and that an electromagnetic pulse attack against the electric grid could result in electric grid degradation, critical infrastructure(s) damage and the potential for societal collapse. The conclusions of this research indicate that while an electromagnetic pulse attack against the United States electric grid could have catastrophic impacts on American society, there are currently many defensive strategies under consideration designed to prevent, mitigate and or recover from an electromagnetic pulse attack. However, additional research is essential to further identify future target hardening opportunities, efficient implementation strategies and funding resources.
Geothermal FIT Design: International Experience and U.S. Considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rickerson, W.; Gifford, J.; Grace, R.
2012-08-01
Developing power plants is a risky endeavor, whether conventional or renewable generation. Feed-in tariff (FIT) policies can be designed to address some of these risks, and their design can be tailored to geothermal electric plant development. Geothermal projects face risks similar to other generation project development, including finding buyers for power, ensuring adequate transmission capacity, competing to supply electricity and/or renewable energy certificates (RECs), securing reliable revenue streams, navigating the legal issues related to project development, and reacting to changes in existing regulations or incentives. Although FITs have not been created specifically for geothermal in the United States to date,more » a variety of FIT design options could reduce geothermal power plant development risks and are explored. This analysis focuses on the design of FIT incentive policies for geothermal electric projects and how FITs can be used to reduce risks (excluding drilling unproductive exploratory wells).« less
Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants
NASA Technical Reports Server (NTRS)
Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.
1977-01-01
The use of thermal energy storage (TES) in the latent heat of molten salts as a means of conserving fossil fuels and lowering the cost of electric power was evaluated. Public utility systems provided electric power on demand. This demand is generally maximum during late weekday afternoons, with considerably lower overnight and weekend loads. Typically, the average demand is only 60% to 80% of peak load. As peak load increases, the present practice is to purchase power from other grid facilities or to bring older less efficient fossil-fuel plants on line which increase the cost of electric power. The widespread use of oil-fired boilers, gas turbine and diesel equipment to meet peaking loads depletes our oil-based energy resources. Heat exchangers utilizing molten salts can be used to level the energy consumption curve. The study begins with a demand analysis and the consideration of several existing modern fossil-fuel and nuclear power plants for use as models. Salts are evaluated for thermodynamic, economic, corrosive, and safety characteristics. Heat exchanger concepts are explored and heat exchanger designs are conceived. Finally, the economics of TES conversions in existing plants and new construction is analyzed. The study concluded that TES is feasible in electric power generation. Substantial data are presented for TES design, and reference material for further investigation of techniques is included.
High-Payoff Space Transportation Design Approach with a Technology Integration Strategy
NASA Technical Reports Server (NTRS)
McCleskey, C. M.; Rhodes, R. E.; Chen, T.; Robinson, J.
2011-01-01
A general architectural design sequence is described to create a highly efficient, operable, and supportable design that achieves an affordable, repeatable, and sustainable transportation function. The paper covers the following aspects of this approach in more detail: (1) vehicle architectural concept considerations (including important strategies for greater reusability); (2) vehicle element propulsion system packaging considerations; (3) vehicle element functional definition; (4) external ground servicing and access considerations; and, (5) simplified guidance, navigation, flight control and avionics communications considerations. Additionally, a technology integration strategy is forwarded that includes: (a) ground and flight test prior to production commitments; (b) parallel stage propellant storage, such as concentric-nested tanks; (c) high thrust, LOX-rich, LOX-cooled first stage earth-to-orbit main engine; (d) non-toxic, day-of-launch-loaded propellants for upper stages and in-space propulsion; (e) electric propulsion and aero stage control.
A Remote Monitoring System for Voltage, Current, Power and Temperature Measurements
NASA Astrophysics Data System (ADS)
Barakat, E.; Sinno, N.; Keyrouz, C.
This paper presents a study and design of a monitoring system for the continuous measurement of electrical energy parameters such as voltage, current, power and temperature. This system is designed to monitor the data remotely over internet. The electronic power meter is based on a microcontroller from Microchip Technology Inc. PIC family. The design takes into consideration the correct operation in the event of an outage or brown out by recording the electrical values and the temperatures in EEPROM internally available in the microcontroller. Also a digital display is used to show the acquired measurements. A computer will remotely monitor the data over internet.
X-57 Power and Command System Design
NASA Technical Reports Server (NTRS)
Clarke, Sean; Redifer, Matthew; Papathakis, Kurt; Samuel, Aamod; Foster, Trevor
2017-01-01
This paper describes the power and command system architecture of the X-57 Maxwell flight demonstrator aircraft. The X-57 is an experimental aircraft designed to demonstrate radically improved aircraft efficiency with a 3.5 times aero-propulsive efficiency gain at a "high-speed cruise" flight condition for comparable general aviation aircraft. These gains are enabled by integrating the design of a new, optimized wing and a new electric propulsion system. As a result, the X-57 vehicle takes advantage of the new capabilities afforded by electric motors as primary propulsors. Integrating new technologies into critical systems in experimental aircraft poses unique challenges that require careful design considerations across the entire vehicle system, such as qualification of new propulsors (motors, in the case of the X-57 aircraft), compatibility of existing systems with a new electric power distribution bus, and instrumentation and monitoring of newly qualified propulsion system devices.
Photovoltaic central station step and touch potential considerations in grounding system design
NASA Technical Reports Server (NTRS)
Engmann, G.
1983-01-01
The probability of hazardous step and touch potentials is an important consideration in central station grounding system design. Steam turbine generating station grounding system design is based on accepted industry practices and there is extensive in-service experience with these grounding systems. A photovoltaic (PV) central station is a relatively new concept and there is limited experience with PV station grounding systems. The operation and physical configuration of a PV central station is very different from a steam electric station. A PV station bears some similarity to a substation and the PV station step and touch potentials might be addressed as they are in substation design. However, the PV central station is a generating station and it is appropriate to examine the effect that the differences and similarities of the two types of generating stations have on step and touch potential considerations.
Design Development Analyses in Support of a Heatpipe-Brayton Cycle Heat Exchanger
NASA Technical Reports Server (NTRS)
Steeve, Brian; VanDyke, Melissa; Majumdar, Alok; Nguyen, Dalton; Corley, Melissa; Guffee, Ray M.; Kapernick, Richard J.
2003-01-01
One of the power systems under consideration for nuclear electric propulsion or as a planetary surface power source is a heatpipe-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the heatpipes to the Brayton gas via a heat exchanger attached to the heatpipes. This paper discusses the fluid, thermal and structural analyses that were performed in support of the design of the heat exchanger to be tested in the SAFE-100 experimental program at Marshall Space Flight Center. A companion paper, "Mechanical Design and Fabrication of a SAFE-100 Heat Exchanger for use in NASA s Advanced Propulsion Thermal-hydraulic Simulator", presents the fabrication issues and prototyping studies that, together with these analyses, led to the development of this heat exchanger. An important consideration throughout the design development of the heat exchanger was its capability to be utilized for higher power and temperature applications. This paper also discusses this aspect of the design and presents designs for specific applications that are under consideration.
USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering, No. 43.
1978-11-16
WISOWSKI, JANUSZ; STOLARSKI, EDWARD and CZERWINSKI, ANDRZEJ , Institute of Electronic Technology NPCP [Scientific-Production Center for...PINTER (Mrs DUDAS ), MARTA [Abstract] Some theoretical considerations are presented concerning the design of small coaxial cables with
CHP, also known as cogeneration, is the simultaneous production of electricity and heat from a single fuel source. Read more about recommendations for designing, implementing, and evaluating combined heat and power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic andmore » changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.« less
Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic andmore » changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.« less
Overview of Wholesale Electricity Markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milligan, Michael; Bloom, Aaron P; Cochran, Jaquelin M
This chapter provides a comprehensive review of four key electricity markets: energy markets (day-ahead and real-time markets); ancillary service markets; financial transmission rights markets; capacity markets. It also discusses how the outcomes of each of these markets may be impacted by the introduction of high penetrations of variable generation. Furthermore, the chapter examines considerations needed to ensure that wholesale market designs are inclusive of emerging technologies, such as demand response, distributed generation, and distributed storage.
Small space station electrical power system design concepts
NASA Technical Reports Server (NTRS)
Jones, G. M.; Mercer, L. N.
1976-01-01
A small manned facility, i.e., a small space station, placed in earth orbit by the Shuttle transportation system would be a viable, cost effective addition to the basic Shuttle system to provide many opportunities for R&D programs, particularly in the area of earth applications. The small space station would have many similarities with Skylab. This paper presents design concepts for an electrical power system (EPS) for the small space station based on Skylab experience, in-house work at Marshall Space Flight Center, SEPS (Solar Electric Propulsion Stage) solar array development studies, and other studies sponsored by MSFC. The proposed EPS would be a solar array/secondary battery system. Design concepts expressed are based on maximizing system efficiency and five year operational reliability. Cost, weight, volume, and complexity considerations are inherent in the concepts presented. A small space station EPS based on these concepts would be highly efficient, reliable, and relatively inexpensive.
Space Tethers: Design Criteria
NASA Technical Reports Server (NTRS)
Tomlin, D. D.; Faile, G. C.; Hayashida, K. B.; Frost, C. L.; Wagner, C. Y.; Mitchell, M. L.; Vaughn, J. A.; Galuska, M. J.
1997-01-01
This document is prepared to provide a systematic process for the selection of tethers for space applications. Criteria arc provided for determining the strength requirement for tether missions and for mission success from tether severing due to micrometeoroids and orbital debris particle impacts. Background information of materials for use in space tethers is provided, including electricity-conducting tethers. Dynamic considerations for tether selection is also provided. Safety, quality, and reliability considerations are provided for a tether project.
NASA Technical Reports Server (NTRS)
Hughes, Vernon W.
1959-01-01
The use of a rotational state transition as observed by the molecular beam electric resonance method is discussed as a possible frequency standard particularly in the millimeter wavelength range. As a promising example the 100 kMc transition between the J = 0 and J = 1 rotational states of Li 6F19 is considered. The relative insensitivity of the transition frequency to external electric and magnetic fields and the low microwave power requirements appear favorable; the small fraction of the molecular beam that is in a single rotational state is a limiting factor.
Engineering study of the module/array interface for large terrestrial photovoltaic arrays
NASA Technical Reports Server (NTRS)
1977-01-01
Three major areas--structural, electrical, and maintenance--were evaluated. Efforts in the structural area included establishing acceptance criteria for materials and members, determining loading criteria, and analyzing glass modules in various framing system configurations. Array support structure design was addressed briefly. Electrical considerations included evaluation of module characteristics, intermodule connectors, array wiring, converters and lightning protection. Plant maintenance features such as array cleaning, failure detection, and module installation and replacement were addressed.
NASA Technical Reports Server (NTRS)
Hsieh, T.-M.; Koenig, D. R.
1977-01-01
Some nuclear safety aspects of a 3.2 mWt heat pipe cooled fast reactor with out-of-core thermionic converters are discussed. Safety related characteristics of the design including a thin layer of B4C surrounding the core, the use of heat pipes and BeO reflector assembly, the elimination of fuel element bowing, etc., are highlighted. Potential supercriticality hazards and countermeasures are considered. Impacts of some safety guidelines of space transportation system are also briefly discussed, since the currently developing space shuttle would be used as the primary launch vehicle for the nuclear electric propulsion spacecraft.
The MOD-OA 200 kilowatt wind turbine generator design and analysis report
NASA Astrophysics Data System (ADS)
Andersen, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.
1980-08-01
The project requirements, approach, system description, design requirements, design, analysis, system tests, installation safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the MOD-OA 200 kw wind turbine generator are discussed. The components, the rotor, driven train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electrical system, and control systems are presented. The rotor includes the blades, hub and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control and Dynamic loads and fatigue are analyzed.
The MOD-OA 200 kilowatt wind turbine generator design and analysis report
NASA Technical Reports Server (NTRS)
Andersen, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.
1980-01-01
The project requirements, approach, system description, design requirements, design, analysis, system tests, installation safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the MOD-OA 200 kw wind turbine generator are discussed. The components, the rotor, driven train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electrical system, and control systems are presented. The rotor includes the blades, hub and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control and Dynamic loads and fatigue are analyzed.
Zhou, Gaochao; Tao, Xudong; Shen, Ze; Zhu, Guanghao; Jin, Biaobing; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng
2016-01-01
We propose a kind of general framework for the design of a perfect linear polarization converter that works in the transmission mode. Using an intuitive picture that is based on the method of bi-directional polarization mode decomposition, it is shown that when the device under consideration simultaneously possesses two complementary symmetry planes, with one being equivalent to a perfect electric conducting surface and the other being equivalent to a perfect magnetic conducting surface, linear polarization conversion can occur with an efficiency of 100% in the absence of absorptive losses. The proposed framework is validated by two design examples that operate near 10 GHz, where the numerical, experimental and analytic results are in good agreements. PMID:27958313
Design and assembly considerations for Redox cells and stacks
NASA Technical Reports Server (NTRS)
Stalnaker, D. K.; Lieberman, A.
1981-01-01
Individual redox flow cells are arranged electrically in series and hydraulically in parallel to form a single assembly called a stack. The hardware currently being tested in the laboratory has an active electrode area of either 310 sq cm or 929 sq cm. Four 310 sq cm stacks, each consisting of 39 active cells, were incorporated into a 1.0 kW preprototype system. The physical design of the stack is very critical to the performance and efficiency of the redox storage sytem. This report will discuss the mechanical aspects of the cell and stack design for the current Redox hardware, with regard to sealing the stack internally as well as externally, minimizing shunt currents and minimizing the electrical resistance of the stack.
Design and Manufacturing Criteria for Beam Position Monitor (BPM) of Taiwan Photon Source (TPS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsueh, H. P.; Chang, C. C.; Hsu, S. N.
2010-06-23
There are quite some considerations when the button feedthrough is designed and manufactured in a new 3rd generation synchrotron light source like the to-be-constructed TPS. It is the responsibility of the button feedthrough designer to design a feedthrough with the lowest probable HOM problem. It is also required for the designer to analyze the consequences for each possible mechanical error during manufacturing and therefore set standards of tolerance. We have been using MAFIA to optimize the design of feedthrough including flange type on bending chamber section and primary BPM on insertion device section. We also have set some criteria formore » feedthrough manufacturing, inspection, and welding based on hands-on experience on feedthrough electrical properties measuring, sorting, inspection, and laser welding. Here we will present the MAFIA results, electrical measurement results, and laser welding results and analysis. Criteria based on these results will also be presented.« less
Design and Manufacturing Criteria for Beam Position Monitor (BPM) of Taiwan Photon Source (TPS)
NASA Astrophysics Data System (ADS)
Hsueh, H. P.; Chang, C. C.; Hsu, S. N.; Huang, I. T.; Chen, Y. B.; Kuan, C. K.; Hsiung, G. Y.; Chen, J. R.
2010-06-01
There are quite some considerations when the button feedthrough is designed and manufactured in a new 3rd generation synchrotron light source like the to-be-constructed TPS. It is the responsibility of the button feedthrough designer to design a feedthrough with the lowest probable HOM problem. It is also required for the designer to analyze the consequences for each possible mechanical error during manufacturing and therefore set standards of tolerance. We have been using MAFIA to optimize the design of feedthrough including flange type on bending chamber section and primary BPM on insertion device section. We also have set some criteria for feedthrough manufacturing, inspection, and welding based on hands-on experience on feedthrough electrical properties measuring, sorting, inspection, and laser welding. Here we will present the MAFIA results, electrical measurement results, and laser welding results and analysis. Criteria based on these results will also be presented.
10 CFR 434.402 - Building envelope assemblies and materials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...
Energy Monitoring in Gins - 2011
USDA-ARS?s Scientific Manuscript database
Energy costs are the second largest source of variable costs for gins, accounting for 27% of variable costs. Energy use has typically not been a major consideration in gin design and previous studies of energy use have utilized instantaneous readings or aggregated season-long values. Electricity u...
10 CFR 434.402 - Building envelope assemblies and materials.
Code of Federal Regulations, 2010 CFR
2010-01-01
... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...
10 CFR 434.402 - Building envelope assemblies and materials.
Code of Federal Regulations, 2013 CFR
2013-01-01
... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...
10 CFR 434.402 - Building envelope assemblies and materials.
Code of Federal Regulations, 2012 CFR
2012-01-01
... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...
10 CFR 434.402 - Building envelope assemblies and materials.
Code of Federal Regulations, 2014 CFR
2014-01-01
... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...
Aircraft wing structural detail design (wing, aileron, flaps, and subsystems)
NASA Technical Reports Server (NTRS)
Downs, Robert; Zable, Mike; Hughes, James; Heiser, Terry; Adrian, Kenneth
1993-01-01
The goal of this project was to design, in detail, the wing, flaps, and ailerons for a primary flight trainer. Integrated in this design are provisions for the fuel system, the electrical system, and the fuselage/cabin carry-through interface structure. This conceptual design displays the general arrangement of all major components in the wing structure, taking into consideration the requirements set forth by the appropriate sections of Federal Aviation Regulation Part 23 (FAR23) as well as those established in the statement of work.
Climate Considerations Of The Electricity Supply Systems In Industries
NASA Astrophysics Data System (ADS)
Asset, Khabdullin; Zauresh, Khabdullina
2014-12-01
The study is focused on analysis of climate considerations of electricity supply systems in a pellet industry. The developed analysis model consists of two modules: statistical data of active power losses evaluation module and climate aspects evaluation module. The statistical data module is presented as a universal mathematical model of electrical systems and components of industrial load. It forms a basis for detailed accounting of power loss from the voltage levels. On the basis of the universal model, a set of programs is designed to perform the calculation and experimental research. It helps to obtain the statistical characteristics of the power losses and loads of the electricity supply systems and to define the nature of changes in these characteristics. Within the module, several methods and algorithms for calculating parameters of equivalent circuits of low- and high-voltage ADC and SD with a massive smooth rotor with laminated poles are developed. The climate aspects module includes an analysis of the experimental data of power supply system in pellet production. It allows identification of GHG emission reduction parameters: operation hours, type of electrical motors, values of load factor and deviation of standard value of voltage.
Equipment. [for testing human space perception
NASA Technical Reports Server (NTRS)
1974-01-01
A discussion is presented on the problems encountered in designing and constructing a simulator to determine human vestibular response to a range of linear accelerations from 0 to 0.3 g's. Starting with a set of initial performance specifications, the designers combined an array of commercially available components into a system which, altough requiring further refinement before completion, shows considerable promise of fulfilling the initial requirements. The resulting system consists of a wheeled vehicle driven by a cable and drum arrangement, powered by a hydraulic-electric servo-valve. Technical design considerations are presented along with a discussion of the trade-offs between various component options. A description of the system characteristics as well as an analysis of preliminary test results and recommendations for future system improvements are included.
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.
2005-01-01
The description and interpretation of the terrestrial environment (0-90 km altitude) is an important driver of aerospace vehicle structural, control, and thermal system design. NASA is currently in the process of reviewing the meteorological information acquired over the past decade and producing an update to the 1993 Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, sea state, etc. In addition, the respective engineering design elements will be discussed relative to the importance and influence of terrestrial environment inputs that require consideration and interpretation for design applications. Specific lessons learned that have contributed to the advancements made in the acquisition, interpretation, application and awareness of terrestrial environment inputs for aerospace engineering applications are discussed.
Effect of Voltage Level on Power System Design for Solar Electric Propulsion Missions
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.
2003-01-01
This paper presents study results quantifying the benefits of higher voltage, electric power system designs for a typical solar electric propulsion spacecraft Earth orbiting mission. A conceptual power system architecture was defined and design points were generated for system voltages of 28-V, 50-V, 120-V, and 300-V using state-of-the-art or advanced technologies. A 300-V 'direct-drive' architecture was also analyzed to assess the benefits of directly powering the electric thruster from the photovoltaic array without up-conversion. Fortran and spreadsheet computational models were exercised to predict the performance and size power system components to meet spacecraft mission requirements. Pertinent space environments, such as electron and proton radiation, were calculated along the spiral trajectory. In addition, a simplified electron current collection model was developed to estimate photovoltaic array losses for the orbital plasma environment and that created by the thruster plume. The secondary benefits of power system mass savings for spacecraft propulsion and attitude control systems were also quantified. Results indicate that considerable spacecraft wet mass savings were achieved by the 300-V and 300-V direct-drive architectures.
Design and Calibration of an Airborne Multichannel Swept-Tuned Spectrum Analyzer
NASA Technical Reports Server (NTRS)
Hamory, Philip J.; Diamond, John K.; Bertelrud, Arild
1999-01-01
This paper describes the design and calibration of a four-channel, airborne, swept-tuned spectrum analyzer used in two hypersonic flight experiments for characterizing dynamic data up to 25 kHz. Built mainly from commercially available analog function modules, the analyzer proved useful for an application with limited telemetry bandwidth, physical weight and volume, and electrical power. The authors discuss considerations that affect the frequency and amplitude calibrations, limitations of the design, and example flight data.
Requirements for soldered electrical connections
NASA Technical Reports Server (NTRS)
1992-01-01
This publication is applicable to NASA programs involving solder connections for flight hardware, mission essential support equipment, and elements thereof. This publication sets forth hand and wave soldering requirements for reliable electrical connections. The prime consideration is the physical integrity of solder connections. Special requirements may exist which are not in conformance with the requirements of this publication. Design documentation contains the detail for these requirements, and they take precedence over conflicting portions of this publication when they are approved in writing by the procuring NASA installation.
Grumman evaluates Space Station thermal control and power systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandebo, S.W.
1985-09-01
Attention is given to the definition of requirements for the NASA Space Station's electrical power and thermal control systems, which must be highly dependable to minimize the need for external support and will embody a highly flexible modular design concept. Module maintenance will be performed by in-orbit replacement of failed modules, and energy storage system growth will be accomplished by the incorporation of additional modules. Both photovoltaic and solar heat-driven electrical generator concepts are under consideration as the basis of the power system.
Design consideration for a nuclear electric propulsion system
NASA Technical Reports Server (NTRS)
Phillips, W. M.; Pawlik, E. V.
1978-01-01
A study is currently underway to design a nuclear electric propulsion vehicle capable of performing detailed exploration of the outer-planets. Primary emphasis is on the power subsystem. Secondary emphasis includes integration into a spacecraft, and integration with the thrust subsystem and science package or payload. The results of several design iterations indicate an all-heat-pipe system offers greater reliability, elimination of many technology development areas and a specific weight of under 20 kg/kWe at the 400 kWe power level. The system is compatible with a single Shuttle launch and provides greater safety than could be obtained with designs using pumped liquid metal cooling. Two configurations, one with the reactor and power conversion forward on the spacecraft with the ion engines aft and the other with reactor, power conversion and ion engines aft were selected as dual baseline designs based on minimum weight, minimum required technology development and maximum growth potential and flexibility.
Spacecraft active thermal control subsystem design and operation considerations
NASA Technical Reports Server (NTRS)
Sadunas, J. A.; Lehtinen, A. M.; Nguyen, H. T.; Parish, R.
1986-01-01
Future spacecraft missions will be characterized by high electrical power requiring active thermal control subsystems for acquisition, transport, and rejection of waste heat. These systems will be designed to operate with minimum maintenance for up to 10 years, with widely varying externally-imposed environments, as well as the spacecraft waste heat rejection loads. This paper presents the design considerations and idealized performance analysis of a typical thermal control subsystem with emphasis on the temperature control aspects during off-design operation. The selected thermal management subsystem is a cooling loop for a 75-kWe fuel cell subsystem, consisting of a fuel cell heat exchanger, thermal storage, pumps, and radiator. Both pumped-liquid transport and two-phase (liquid/vapor) transport options are presented with examination of similarities and differences of the control requirements for these representative thermal control options.
NASA Astrophysics Data System (ADS)
Tatchyn, Roman
1992-01-01
Insertion devices that are tuned by electrical period variation are particularly suited for the design of flexible polarized-light sources [R. Tatchyn, J. Appl. Phys. 65, 4107 (1989); R. Tatchyn and T. Cremer, IEEE Trans. Mag. 26, 3102 (1990)]. Important advantages vis-a-vis mechanical or hybrid variable field designs include: (1) significantly more rapid modulation of both polarization and energy, (2) an inherently larger set of polarization modulation capabilities and (3) polarization/energy modulation at continuously optimized values of K. In this paper we outline some of the general considerations that enter into the design of hysteresis-free variable-period/polarizing undulator structures and present the parameters of a recently-completed prototype design capable of generating intense levels of UV/VUV photon flux on SPEAR running at 3 GeV.
NASA Astrophysics Data System (ADS)
Bailly, Yannick; Nika, Philippe
2002-10-01
The design of a double inlet pulse tube refrigerator is investigated by means of an analogy with an electric circuit. The results obtained are compared with both those of the thermodynamic model (Part A) and experiments. The basic formulation of equivalent electronic components is discussed and a few improvements are proposed for adjusting the theoretical expressions of the electric impedance concerning the capillaries and the regenerator. Then additional effects such as pressure drops due to geometrical singularities are taken into account considering the different internal flow regimes that may occur. Besides a simplified formulation for the regenerator efficiency is deduced from considerations on its harmonic functioning. In this analysis, the emphasis concerns principally the design of miniature cryocoolers dedicated to electronic applications. Those models are applied to a commercial miniature refrigerator. A discussion of their relevance is achieved and a few suggestions on the refrigerator design are proposed in order to improve the cooling production.
Plasmonic hole arrays for combined photon and electron management
Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.
2016-11-14
Material architectures that balance optical transparency and electrical conductivity are highly sought after for thin-film device applications. However, these are competing properties, since the electronic structure that gives rise to conductivity typically also leads to optical opacity. Nanostructured metal films that exhibit extraordinary optical transmission, while at the same time being electrically continuous, offer considerable flexibility in the design of their transparency and resistivity. In this paper, we present design guidelines for metal films perforated with arrays of nanometer-scale holes, discussing the consequences of the choice of nanostructure dimensions, of the type of metal, and of the underlying substrate onmore » their electrical, optical, and interfacial properties. We experimentally demonstrate that such films can be designed to have broad-band optical transparency while being an order of magnitude more conductive than indium tin oxide. Finally, prototypical photovoltaic devices constructed with perforated metal contacts convert ~18% of the incident photons, compared to <1% for identical devices having contacts without the hole array.« less
Implementing AORN recommended practices for MIS: Part II.
Morton, Paula J
2012-10-01
This article focuses on the equipment and workplace safety aspects of the revised AORN "Recommended practices for minimally invasive surgery." A multidisciplinary team that includes the perioperative nurse should be established to discuss aspects of the development and design of new construction or renovation (eg, room access, ergonomics, low-lighting, OR integration, hybrid OR considerations, design development). Equipment safety considerations during minimally invasive surgical procedures include using active electrode monitoring; verifying the properties of distention media; using smoke evacuation systems; reducing equipment, electrical, thermal, and fire hazards; performing routine safety checks on insufflation accessories; and minimizing the risk of ergonomic injuries to staff members. Additional considerations include using video recording devices, nonmagnetic equipment during magnetic resonance imaging, and fluid containment methods for fluid management. Copyright © 2012 AORN, Inc. Published by Elsevier Inc. All rights reserved.
Mechanical design of SERT 2 thruster system
NASA Technical Reports Server (NTRS)
Zavesky, R. J.; Hurst, E. B.
1972-01-01
The mechanical design of the mercury bombardment thruster that was tested on SERT is described. The report shows how the structural, thermal, electrical, material compatibility, and neutral mercury coating considerations affected the design and integration of the subsystems and components. The SERT 2 spacecraft with two thrusters was launched on February 3, 1970. One thruster operated for 3782 hours and the other for 2011 hours. A high voltage short resulting from buildup of loose eroded material was believed to be the cause of failure.
Electrical conductivity modeling and experimental study of densely packed SWCNT networks.
Jack, D A; Yeh, C-S; Liang, Z; Li, S; Park, J G; Fielding, J C
2010-05-14
Single-walled carbon nanotube (SWCNT) networks have become a subject of interest due to their ability to support structural, thermal and electrical loadings, but to date their application has been hindered due, in large part, to the inability to model macroscopic responses in an industrial product with any reasonable confidence. This paper seeks to address the relationship between macroscale electrical conductivity and the nanostructure of a dense network composed of SWCNTs and presents a uniquely formulated physics-based computational model for electrical conductivity predictions. The proposed model incorporates physics-based stochastic parameters for the individual nanotubes to construct the nanostructure such as: an experimentally obtained orientation distribution function, experimentally derived length and diameter distributions, and assumed distributions of chirality and registry of individual CNTs. Case studies are presented to investigate the relationship between macroscale conductivity and nanostructured variations in the bulk stochastic length, diameter and orientation distributions. Simulation results correspond nicely with those available in the literature for case studies of conductivity versus length and conductivity versus diameter. In addition, predictions for the increasing anisotropy of the bulk conductivity as a function of the tube orientation distribution are in reasonable agreement with our experimental results. Examples are presented to demonstrate the importance of incorporating various stochastic characteristics in bulk conductivity predictions. Finally, a design consideration for industrial applications is discussed based on localized network power emission considerations and may lend insight to the design engineer to better predict network failure under high current loading applications.
Flat conductor cable design, manufacture, and installation
NASA Technical Reports Server (NTRS)
Angele, W.; Hankins, J. D.
1973-01-01
Pertinent information for hardware selection, design, manufacture, and quality control necessary for flat conductor cable interconnecting harness application is presented. Comparisons are made between round wire cable and flat conductor cable. The flat conductor cable interconnecting harness systems show major cost, weight, and space savings, plus increased system performance and reliability. The design application section includes electrical characteristics, harness design and development, and a full treatise on EMC considerations. Manufacturing and quality control sections pertain primarily to the developed conductor-contact connector system and special flat conductor cable to round wire cable transitions.
High Voltage Design Considerations for the Electrostatic Septum for the Mu2e Beam Resonant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, Matthew L.; Jensen, C.; Morris, D.
aTwo electrostatic septa (ESS) are being designed for the slow extraction of 8GeV proton beam for the Mu2e experiment at Fermilab. Special attention is given to the high voltage components that affect the performance of the septa. The components under consideration are the high voltage (HV) feedthrough, cathode standoff (CS), and clearing electrode ceramic standoffs (CECS). Previous experience with similar HV systems at Fermilab was used to define the evaluation criteria of the design of the high voltage components. Using electric field simulation software, high E-field intensities on the components and integrated field strength along the surface of the dielectricmore » material were minimized. Here we discuss the limitations found and improvements made based on those studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic andmore » changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.« less
Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric
AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles electricity to improve fuel efficiency. Pre-Owned Vehicles Learn about buying and selling pre-owned and plug-in electric vehicles. Learn more about the benefits and considerations of electricity as a
NASA Astrophysics Data System (ADS)
Cordoba-Arenas, Andrea; Onori, Simona; Rizzoni, Giorgio
2015-04-01
A crucial step towards the large-scale introduction of plug-in hybrid electric vehicles (PHEVs) in the market is to reduce the cost of its battery systems. Currently, battery cycle- and calendar-life represents one of the greatest uncertainties in the total life-cycle cost of battery systems. The field of battery aging modeling and prognosis has seen progress with respect to model-based and data-driven approaches to describe the aging of battery cells. However, in real world applications cells are interconnected and aging propagates. The propagation of aging from one cell to others exhibits itself in a reduced battery system life. This paper proposes a control-oriented battery pack model that describes the propagation of aging and its effect on the life span of battery systems. The modeling approach is such that it is able to predict pack aging, thermal, and electrical dynamics under actual PHEV operation, and includes consideration of random variability of the cells, electrical topology and thermal management. The modeling approach is based on the interaction between dynamic system models of the electrical and thermal dynamics, and dynamic models of cell aging. The system-level state-of-health (SOH) is assessed based on knowledge of individual cells SOH, pack electrical topology and voltage equalization approach.
Processing of thermionic power on an electrically propelled spacecraft
NASA Technical Reports Server (NTRS)
Macie, T. W.
1973-01-01
A study to define the power processing equipment required between a thermionic reactor and an array of mercury-ion thrusters for a nuclear electric propulsion system is reported. Observations and recommendations that resulted from this study were: (1) the preferred thermionic-fuel-element source voltages are 23 V or higher; (2) transistor characteristics exert a strong effect on power processor mass; (3) the power processor mass could be considerably reduced should the magnetic materials that exhibit low losses at high frequencies, that have a high Curie point, and that can operate at 15 to 20 kG become avaliable; (4) electrical component packaging on the radiator could reduce the area that is sensitive to meteoroid penetration, thereby reducing the meteoroid shielding mass requirement; (5) an experimental model of the power processor design should be built and tested to verify the efficiencies, masses, and all the automatic operational aspects of the design.
Advanced concepts for transformers pressboard dielectric constant and mechanical strength
NASA Astrophysics Data System (ADS)
1982-03-01
Of the numerous electrical considerations in a material, the value of the dielectric constant serves as an important criterion in designing proper insulation systems. Ways to reduce the dielectric constant of solid (fibrous) insulating materials were investigated. A literature search was made on cellulosic and synthetic fibers and also additives which offered the potential for dielectric constant reduction of the solid insulation. Sample board structures were produced in the laboratory and tested for electrical, mechanical and chemical characteristics. Electrical tests determined the suitability of the material at transformer test and operating conditions. The mechanical tests established the physical characteristics of the modified board structures. Chemical tests checked the conductivity of the aqueous extract, acidity, and ash content. Further, compatibility with transformer oil and some aging tests were performed. An actual computer transformer design was made based on one of the modified board structures and the reduction in core steel and transformer losses were shown.
Should the next standby power target be 0-watt?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, Alan; Siderius, Hans-Paul
The standby power use of appliances continues to consume large amounts of electricity. Considerable success has been made in reducing each device’s use, but these savings have been offset by a huge increase in the number of products using standby power and new power requirements for maintaining network connections. Current strategies to reduce standby have limitations and may not be most appropriate for emerging energy consumption trends. A new strategy for further reductions in standby, the “Standzero” option, encourages electrical products to be designed to operate for short periods without relying on mains-supplied electricity. Energy savings are achieved through enhancedmore » efficiency and by harvesting ambient energy. A sensitivity analysis suggests many appliances could be designed to operate for at least an hour without relying on mains power and, in some cases, may be able to operate indefinitely at zero watts until activated.« less
Evolution of integrated panel structural design and interfaces for PV power plants
NASA Technical Reports Server (NTRS)
Arnett, J. C.; Anderson, A. J.; Robertson, R. E.
1983-01-01
The evolution of integrated photovoltaic (PV) panel design at ARCO Solar is discussed. Historically, framed PV modules of about 1 x 4-ft size were individually mounted in the field on fixed support structures and interconnected electrically with cables to build higher-power arrays. When ARCO Solar saw the opportunity in 1982 to marry its PV modules with state-of-the-art heliostat trackers developed by ARCO Power Systems, it became obvious that mounting individual modules was impractical. For this project, the framed modules were factory-assembled into panels and interconnected with cables before being mounted on the trackers. Since then, ARCO Solar made considerable progress and gained substantial experience in the design and fabrication of large PV panels. Constraints and criteria considered in these design activities included static and dynamic loads; assembly and transportation equipment and logistics, structural and electrical interfaces, and safety and grounding concerns.
NASA Technical Reports Server (NTRS)
Christie, Robert J.; Lu, Cheng-Yi; Aronoff, Irene
1992-01-01
Data defining space environmental effects on the Long Duration Exposure Facility (LDEF) are examined in terms of the design of the electrical power system (EPS) of the Space Station Freedom (SSF). The significant effects of long-term exposure to space are identified with respect to the performance of the LDEF's materials, components, and systems. A total of 57 experiments were conducted on the LDEF yielding information regarding coatings, thermal systems, electronics, optics, and power systems. The resulting database is analyzed in terms of the specifications of the SSF EPS materials and subsystems and is found to be valuable in the design of control and protection features. Specific applications are listed for findings regarding the thermal environment, atomic oxygen, UV and ionizing radiation, debris, and contamination. The LDEF data are shown to have a considerable number of applications to the design and planning of the SSF and its EPS.
One hundred ampere-hour nickel-cadmium battery cells of improved design
NASA Technical Reports Server (NTRS)
Kantner, E.
1972-01-01
Nickel cadmium battery cells with 100 ampere hour capacity were developed. The design features, notably extension of the current collector tab to the full width of the battery plate, and the location of the cell terminals on the opposite ends, resulted in a reduction of internal impedance, and improved electrical performance with expected improvement in thermal performance. Tables of data and performance curves are included to support the theoretical considerations.
2017-07-01
work , the guideline document (1) provides a basis for identifying high voltage design risks, (2) defines areas of concern as a function of environment ... work , the guideline document 1) provides a basis for identifying high voltage design risks, 2) defines areas of concern as a function of environment ...pressures (y-axis - breakdown voltage [volts-peak]) As an example of the impact of the aerospace environment , consider the calculation of the safe
Evolution of Automotive Chopper Circuits Towards Ultra High Efficiency and Power Density
NASA Astrophysics Data System (ADS)
Pavlovsky, Martin; Tsuruta, Yukinori; Kawamura, Atsuo
Automotive industry is considered to be one of the main contributors to environmental pollution and global warming. Therefore, many car manufacturers are in near future planning to introduce hybrid electric vehicles (HEV), fuel cell electric vehicles (FCEV) and pure electric vehicles (EV) to make our cars more environmentally friendly. These new vehicles require highly efficient and small power converters. In recent years, considerable improvements were made in designing such converters. In this paper, an approach based on so called Snubber Assisted Zero Voltage and Zero Current Switching topology otherwise also known as SAZZ is presented. This topology has evolved to be one of the leaders in the field of highly efficient converters with high power densities. Evolution and main features of this topology are briefly discussed. Capabilities of the topology are demonstrated on two case study prototypes based on different design approaches. The prototypes are designed to be fully bi-directional for peak power output of 30kW. Both designs reached efficiencies close to 99% in wide load range. Power densities over 40kW/litre are attainable in the same time. Combination of MOSFET technology and SAZZ topology is shown to be very beneficial to converters designed for EV applications.
Portable Life Support System: PLSS 101
NASA Technical Reports Server (NTRS)
Thomas, Gretchen A.
2011-01-01
This presentation reviewed basic interfaces and considerations necessary for prototype suit hardware integration from an advanced spacesuit engineer perspective during the early design and test phases. The discussion included such topics such as the human interface, suit pass-throughs, keep-out zones, hardware form factors, subjective feedback from suit tests, and electricity in the suit.
Note: Versatile sample stick for neutron scattering experiments in high electric fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartkowiak, M., E-mail: marek.bartkowiak@psi.ch; White, J. S.; Laboratory for Quantum Magnetism, Ecole Polytechnique Fédérale de Lausanne
2014-02-15
We present a versatile high voltage sample stick that fits into all cryomagnets and standard cryostats at the Swiss Spallation Neutron Source, Paul Scherrer Institut, and which provides a low effort route to neutron scattering experiments that combine electric field with low temperature and magnetic field. The stick allows for voltages up to 5 kV and can be easily adapted for different scattering geometries. We discuss the design consideration and thermal behavior of the stick, and give one example to showcase the abilities of the device.
Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The proposed TFM has a modular structure with quasi-U stator cores and toroidal ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating setup to achieve high air gap flux density. Pole number selection is critical in the design process of a TFM as it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the initial design procedure. The effect of pole shaping on back-EMF andmore » inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis (FEA). A proof-of-concept prototype was developed to experimentally validate the FEA results.« less
Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz; ...
2018-03-12
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The proposed TFM has a modular structure with quasi-U stator cores and toroidal ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating setup to achieve high air gap flux density. Pole number selection is critical in the design process of a TFM as it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the initial design procedure. The effect of pole shaping on back-EMF andmore » inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis (FEA). A proof-of-concept prototype was developed to experimentally validate the FEA results.« less
Alternative Fuels Data Center: Electricity
efficiency. Using electricity to power vehicles can have significant energy security and emissions benefits . Icon of an information sign. Basics Find information about using electricity as a vehicle fuel Considerations Explore the benefits and considerations of using electricity as a vehicle fuel. Icon of a fueling
Survey of power tower technology
NASA Astrophysics Data System (ADS)
Hildebrandt, A. F.; Dasgupta, S.
1980-05-01
The history of the power tower programs is reviewed, and attention is given to the current state of heliostat, receiver, and storage design. Economic considerations are discussed, as are simulation studies and implications. Also dealt with are alternate applications for the power tower and some financing and energy aspects of solar electric conversion. It is noted that with a national commitment to solar energy, the power tower concept could generate 40 GW of electricity and double this amount in process heat by the year 2000. Calculations show an energy amplification factor of 20 for solar energy plants; that is, the ratio of the electric energy produced over the lifetime of a power plant to the thermal energy required to produce the plant.
NASA Technical Reports Server (NTRS)
Krupp, Joseph C.
1991-01-01
The Electric Power Control System (EPCS) created by Decision-Science Applications, Inc. (DSA) for the Lewis Research Center is discussed. This system makes decisions on what to schedule and when to schedule it, including making choices among various options or ways of performing a task. The system is goal-directed and seeks to shape resource usage in an optimal manner using a value-driven approach. Discussed here are considerations governing what makes a good schedule, how to design a value function to find the best schedule, and how to design the algorithm that finds the schedule that maximizes this value function. Results are shown which demonstrate the usefulness of the techniques employed.
Type C investigation of electrical fabrication projects in ICF Kaiser shops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huckfeldt, R.A.
1995-06-01
A Type C Investigation Board was convened to investigate an electrical miswiring problem found during the operation of the electrical distribution trailer for the TWRS Rotary Mode Core Sampling Truck {number_sign}2. The trailer was designed by WHC and fabricated ICF KH on site for use in the Characterization Program. This problem resulted in a serious safety hazard since the support truck frame/chassis became electrically energized. This final report provides results of the ``Type C Investigation, Electrical Fabrication Projects in ICF KH Shops, June, 1995.`` It contains the investigation scope, executive summary, relevant facts, analysis, conclusions and corrective actions. DOE Ordermore » 5484.1, ``Environmental Protection, Safety and Health Protection Information Reporting Requirements,`` was followed in preparation of this report. Because the incident was electrical in nature and involved both Westinghouse Hanford Company and ICF Kaiser Hanford organizations, the board included members from both contractors and members with considerable electrical expertise.« less
Supersonic combustion engine testbed, heat lightning
NASA Technical Reports Server (NTRS)
Hoying, D.; Kelble, C.; Langenbahn, A.; Stahl, M.; Tincher, M.; Walsh, M.; Wisler, S.
1990-01-01
The design of a supersonic combustion engine testbed (SCET) aircraft is presented. The hypersonic waverider will utilize both supersonic combustion ramjet (SCRAMjet) and turbofan-ramjet engines. The waverider concept, system integration, electrical power, weight analysis, cockpit, landing skids, and configuration modeling are addressed in the configuration considerations. The subsonic, supersonic and hypersonic aerodynamics are presented along with the aerodynamic stability and landing analysis of the aircraft. The propulsion design considerations include: engine selection, turbofan ramjet inlets, SCRAMjet inlets and the SCRAMjet diffuser. The cooling requirements and system are covered along with the topics of materials and the hydrogen fuel tanks and insulation system. A cost analysis is presented and the appendices include: information about the subsonic wind tunnel test, shock expansion calculations, and an aerodynamic heat flux program.
DC breakdown characteristics of silicone polymer composites for HVDC insulator applications
NASA Astrophysics Data System (ADS)
Han, Byung-Jo; Seo, In-Jin; Seong, Jae-Kyu; Hwang, Young-Ho; Yang, Hai-Won
2015-11-01
Critical components for HVDC transmission systems are polymer insulators, which have stricter requirements that are more difficult to achieve compared to those of HVAC insulators. In this study, we investigated the optimal design of HVDC polymer insulators by using a DC electric field analysis and experiments. The physical properties of the polymer specimens were analyzed to develop an optimal HVDC polymer material, and four polymer specimens were prepared for DC breakdown experiments. Single and reverse polarity breakdown tests were conducted to analyze the effect of temperature on the breakdown strength of the polymer. In addition, electric fields were analyzed via simulations, in which a small-scale polymer insulator model was applied to prevent dielectric breakdown due to electric field concentration, with four DC operating conditions taken into consideration. The experimental results show that the electrical breakdown strength and the electric field distribution exhibit significant differences in relation to different DC polarity transition procedures.
Reliability of large superconducting magnets through design
NASA Astrophysics Data System (ADS)
Henning, C. D.
1981-01-01
Design and quality control of large superconducting magnets for reliability comparable to pressure vessels are discussed. The failure modes are analyzed including thermoelectric instabilities, electrical shorts, cryogenic/vacuum defects, and mechanical malfunctions. Design must take into consideration conductor stability, insulation based on the Paschen curves, and the possible burnout of cryogenic transition leads if the He flow is interrupted. The final stage of the metal drawing process should stress the superconductor material to a stress value higher than the magnet design stress, cabled conductors should be used to achieve mechanical redundancy, and ground-plane insulation must be multilayered for arc prevention.
Aircraft empennage structural detail design
NASA Technical Reports Server (NTRS)
Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo
1993-01-01
This project involved the detailed design of the aft fuselage and empennage structure, vertical stabilizer, rudder, horizontal stabilizer, and elevator for the Triton primary flight trainer. The main design goals under consideration were to illustrate the integration of the control systems devices used in the tail surfaces and their necessary structural supports as well as the elevator trim, navigational lighting system, electrical systems, tail-located ground tie, and fuselage/cabin interface structure. Accommodations for maintenance, lubrication, adjustment, and repairability were devised. Weight, fabrication, and (sub)assembly goals were addressed. All designs were in accordance with the FAR Part 23 stipulations for a normal category aircraft.
NASA Astrophysics Data System (ADS)
Wray, J. D.
2003-05-01
The robotic observatory telescope must point precisely on the target object, and then track autonomously to a fraction of the FWHM of the system PSF for durations of ten to twenty minutes or more. It must retain this precision while continuing to function at rates approaching thousands of observations per night for all its years of useful life. These stringent requirements raise new challenges unique to robotic telescope systems design. Critical design considerations are driven by the applicability of the above requirements to all systems of the robotic observatory, including telescope and instrument systems, telescope-dome enclosure systems, combined electrical and electronics systems, environmental (e.g. seeing) control systems and integrated computer control software systems. Traditional telescope design considerations include the effects of differential thermal strain, elastic flexure, plastic flexure and slack or backlash with respect to focal stability, optical alignment and angular pointing and tracking precision. Robotic observatory design must holistically encapsulate these traditional considerations within the overall objective of maximized long-term sustainable precision performance. This overall objective is accomplished through combining appropriate mechanical and dynamical system characteristics with a full-time real-time telescope mount model feedback computer control system. Important design considerations include: identifying and reducing quasi-zero-backlash; increasing size to increase precision; directly encoding axis shaft rotation; pointing and tracking operation via real-time feedback between precision mount model and axis mounted encoders; use of monolithic construction whenever appropriate for sustainable mechanical integrity; accelerating dome motion to eliminate repetitive shock; ducting internal telescope air to outside dome; and the principal design criteria: maximizing elastic repeatability while minimizing slack, plastic deformation and hysteresis to facilitate long-term repeatably precise pointing and tracking performance.
Power system modeling and optimization methods vis-a-vis integrated resource planning (IRP)
NASA Astrophysics Data System (ADS)
Arsali, Mohammad H.
1998-12-01
The state-of-the-art restructuring of power industries is changing the fundamental nature of retail electricity business. As a result, the so-called Integrated Resource Planning (IRP) strategies implemented on electric utilities are also undergoing modifications. Such modifications evolve from the imminent considerations to minimize the revenue requirements and maximize electrical system reliability vis-a-vis capacity-additions (viewed as potential investments). IRP modifications also provide service-design bases to meet the customer needs towards profitability. The purpose of this research as deliberated in this dissertation is to propose procedures for optimal IRP intended to expand generation facilities of a power system over a stretched period of time. Relevant topics addressed in this research towards IRP optimization are as follows: (1) Historical prospective and evolutionary aspects of power system production-costing models and optimization techniques; (2) A survey of major U.S. electric utilities adopting IRP under changing socioeconomic environment; (3) A new technique designated as the Segmentation Method for production-costing via IRP optimization; (4) Construction of a fuzzy relational database of a typical electric power utility system for IRP purposes; (5) A genetic algorithm based approach for IRP optimization using the fuzzy relational database.
Electrical Conductivity Measurements of Hydroxylammonium Nitrate: Design Considerations
1986-04-01
aqueous NaNO3 i• shown as well to indicate the similarity of this conductivity data with that cf HAN. The solubility of NaNO 3 in H120 is much less than... Wilmot , R-16 Commander Silver Spring, MD 20910 US Army Tank Automotive Command 1 Commander ATTN: AMSTA-TSL Naval Weapons Center Warren, MI 48397-5000
Manned spacecraft electrical power systems
NASA Technical Reports Server (NTRS)
Simon, William E.; Nored, Donald L.
1987-01-01
A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.
Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates
NASA Technical Reports Server (NTRS)
Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.
2006-01-01
Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell-lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a-Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two "control plates" are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (gladwater) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.
Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates
NASA Astrophysics Data System (ADS)
Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.
2006-04-01
Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a- Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two ''control plates'' are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (glass/water) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.
Research on precise pneumatic-electric displacement sensor with large measurement range
NASA Astrophysics Data System (ADS)
Yin, Zhehao; Yuan, Yibao; Liu, Baoshuai
2017-10-01
This research mainly focuses on precise pneumatic-electric displacement sensor which has large measurement range. Under the high precision, measurement range can be expanded so that the need of high precision as well as large range can be satisfied in the field of machining inspection technology. This research was started by the analysis of pneumatic-measuring theory. Then, an gas circuit measuring system which is based on differential pressure was designed. This designed system can reach two aims: Firstly, to convert displacement signal into gas signal; Secondly, to reduce the measurement error which caused by pressure and environmental turbulence. Furthermore, in consideration of the high requirement for linearity, sensitivity and stability, the project studied the pneumatic-electric transducer which puts the SCX series pressure sensor as a key part. The main purpose of this pneumatic-electric transducer is to convert gas signal to suitable electrical signal. Lastly, a broken line subsection linearization circuit was designed, which can nonlinear correct the output characteristic curve so as to enlarge the linear measurement range. The final result could be briefly described like this: under the condition that measuring error is less than 1μm, measurement range could be extended to approximately 200μm which is much higher than the measurement range of traditional pneumatic measuring instrument. Meanwhile, it can reach higher exchangeability and stability in order to become more suitable to engineering application.
Man and machine design for space flight
NASA Technical Reports Server (NTRS)
Louviere, A. J.
1979-01-01
The factors involved in creating effective designs for living and working in a weightless environment are discussed. Among the areas covered are special provisions for eating and drinking, a special shower nozzle to remove soap, electric shavers designed for vacuum containment of the clippings, and the need for restraint systems at the crew's workstations. Attention is given to the fact that the crewmen assume a neutral body posture in weightlessness which is an important consideration in designing displays, controls, and windows. It is concluded that the incorporation of the change in body posture and the requirement for restraint into future designs will greatly facilitate the crewman's task in the weightless environment.
Power And Propulsion Systems For Mobile Robotic Applications
NASA Astrophysics Data System (ADS)
Layuan, Li; Haiming, Zou
1987-02-01
Choosing the best power and propulsion systems for mobile robotic land vehicle applications requires consideration of technologies. The electric power requirements for onboard electronic and auxiliary equipment include 110/220 volt 60 Hz ac power as well as low voltage dc power. Weight and power are saved by either direct dc power distribution, or high frequency (20 kHz) ac power distribution. Vehicle control functions are performed electronically but steering, braking and traction power may be distributed electrically, mechanically or by fluid (hydraulic) means. Electric drive is practical, even for small vehicles, provided that advanced electric motors are used. Such electric motors have demonstrated power densities of 3.1 kilowatts per kilogram with devices in the 15 kilowatt range. Electric motors have a lower torque, but higher power density as compared to hydraulic or mechanical transmission systems. Power density being comparable, electric drives were selected to best meet the other requirements for robotic vehicles. Two robotic vehicle propulsion system designs are described to illustrate the implementation of electric drive over a vehicle size range of 250-7500 kilograms.
Development of the electric vehicle analyzer
NASA Astrophysics Data System (ADS)
Dickey, Michael R.; Klucz, Raymond S.; Ennix, Kimberly A.; Matuszak, Leo M.
1990-06-01
The increasing technological maturity of high power (greater than 20 kW) electric propulsion devices has led to renewed interest in their use as a means of efficiently transferring payloads between earth orbits. Several systems and architecture studies have identified the potential cost benefits of high performance Electric Orbital Transfer Vehicles (EOTVs). These studies led to the initiation of the Electric Insertion Transfer Experiment (ELITE) in 1988. Managed by the Astronautics Laboratory, ELITE is a flight experiment designed to sufficiently demonstrate key technologies and options to pave the way for the full-scale development of an operational EOTV. An important consideration in the development of the ELITE program is the capability of available analytical tools to simulate the orbital mechanics of a low thrust, electric propulsion transfer vehicle. These tools are necessary not only for ELITE mission planning exercises but also for continued, efficient, accurate evaluation of DoD space transportation architectures which include EOTVs. This paper presents such a tool: the Electric Vehicle Analyzer (EVA).
Nanomaterial-Enabled Neural Stimulation
Wang, Yongchen; Guo, Liang
2016-01-01
Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed. PMID:27013938
Photovoltaic power system reliability considerations
NASA Technical Reports Server (NTRS)
Lalli, V. R.
1980-01-01
An example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems is presented. This particular application is for a solar cell power system demonstration project designed to provide electric power requirements for remote villages. The techniques utilized involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of fail-safe and planned spare parts engineering philosophy.
Spacecraft attitude control for a solar electric geosynchronous transfer mission
NASA Technical Reports Server (NTRS)
Leroy, B. E.; Regetz, J. D., Jr.
1975-01-01
A study of the Attitude Control System (ACS) is made for a solar electric propulsion geosynchronous transfer mission. The basic mission considered is spacecraft injection into a low altitude, inclined orbit followed by low thrust orbit changing to achieve geosynchronous orbit. Because of the extended thrusting time, the mission performance is a strong function of the attitude control system. Two attitude control system design options for an example mission evolve from consideration of the spacecraft configuration, the environmental disturbances, and the probable ACS modes of operation. The impact of these design options on other spacecraft subsystems is discussed. The factors which must be considered in determining the ACS actuation and sensing subsystems are discussed. The effects of the actuation and sensing subsystems on the mission performance are also considered.
Bulk electric system reliability evaluation incorporating wind power and demand side management
NASA Astrophysics Data System (ADS)
Huang, Dange
Electric power systems are experiencing dramatic changes with respect to structure, operation and regulation and are facing increasing pressure due to environmental and societal constraints. Bulk electric system reliability is an important consideration in power system planning, design and operation particularly in the new competitive environment. A wide range of methods have been developed to perform bulk electric system reliability evaluation. Theoretically, sequential Monte Carlo simulation can include all aspects and contingencies in a power system and can be used to produce an informative set of reliability indices. It has become a practical and viable tool for large system reliability assessment technique due to the development of computing power and is used in the studies described in this thesis. The well-being approach used in this research provides the opportunity to integrate an accepted deterministic criterion into a probabilistic framework. This research work includes the investigation of important factors that impact bulk electric system adequacy evaluation and security constrained adequacy assessment using the well-being analysis framework. Load forecast uncertainty is an important consideration in an electrical power system. This research includes load forecast uncertainty considerations in bulk electric system reliability assessment and the effects on system, load point and well-being indices and reliability index probability distributions are examined. There has been increasing worldwide interest in the utilization of wind power as a renewable energy source over the last two decades due to enhanced public awareness of the environment. Increasing penetration of wind power has significant impacts on power system reliability, and security analyses become more uncertain due to the unpredictable nature of wind power. The effects of wind power additions in generating and bulk electric system reliability assessment considering site wind speed correlations and the interactive effects of wind power and load forecast uncertainty on system reliability are examined. The concept of the security cost associated with operating in the marginal state in the well-being framework is incorporated in the economic analyses associated with system expansion planning including wind power and load forecast uncertainty. Overall reliability cost/worth analyses including security cost concepts are applied to select an optimal wind power injection strategy in a bulk electric system. The effects of the various demand side management measures on system reliability are illustrated using the system, load point, and well-being indices, and the reliability index probability distributions. The reliability effects of demand side management procedures in a bulk electric system including wind power and load forecast uncertainty considerations are also investigated. The system reliability effects due to specific demand side management programs are quantified and examined in terms of their reliability benefits.
NASA Technical Reports Server (NTRS)
Gneses, M. I.; Berg, D. S.
1981-01-01
Specifications for the pointing stabilization system of the large space telescope were used in an investigation of the feasibility of reducing ring laser gyro output quantization to the sub-arc-second level by the use of phase locked loops and associated electronics. Systems analysis procedures are discussed and a multioscillator laser gyro model is presented along with data on the oscillator noise. It is shown that a second order closed loop can meet the measurement noise requirements when the loop gain and time constant of the loop filter are appropriately chosen. The preliminary electrical design is discussed from the standpoint of circuit tradeoff considerations. Analog, digital, and hybrid designs are given and their applicability to the high resolution sensor is examined. the electrical design choice of a system configuration is detailed. The design and operation of the various modules is considered and system block diagrams are included. Phase 1 and 2 test results using the multioscillator laser gyro are included.
Performance mapping of a 30 cm engineering model thruster
NASA Technical Reports Server (NTRS)
Poeschel, R. L.; Vahrenkamp, R. P.
1975-01-01
A 30 cm thruster representative of the engineering model design has been tested over a wide range of operating parameters to document performance characteristics such as electrical and propellant efficiencies, double ion and beam divergence thrust loss, component equilibrium temperatures, operational stability, etc. Data obtained show that optimum power throttling, in terms of maximum thruster efficiency, is not highly sensitive to parameter selection. Consequently, considerations of stability, discharge chamber erosion, thrust losses, etc. can be made the determining factors for parameter selection in power throttling operations. Options in parameter selection based on these considerations are discussed.
An Apollo compatible cloud physics experiment.
NASA Technical Reports Server (NTRS)
Eaton, L. R.; Hollinden, A. B.; Satterblom, P. R.
1973-01-01
Consideration of the utilization of a low-gravity environment to obtain experimental information, in the area of cloud microphysics, which cannot be obtained in ground laboratories. The experiment discussed is designed to obtain quantitative answers about evaporation and breakup of salt particles from ocean spray and other sources. In addition to salt nuclei distribution mechanisms, this breakup has ecological importance in relation to the spreading of salt mists from salted highways and spreading of brine cooling tower spray from electrical power generation plants. This experiment is being submitted for consideration on the Apollo-Soyuz Test Program in 1975.
Hybrid battery/supercapacitor energy storage system for the electric vehicles
NASA Astrophysics Data System (ADS)
Kouchachvili, Lia; Yaïci, Wahiba; Entchev, Evgueniy
2018-01-01
Electric vehicles (EVs) have recently attracted considerable attention and so did the development of the battery technologies. Although the battery technology has been significantly advanced, the available batteries do not entirely meet the energy demands of the EV power consumption. One of the key issues is non-monotonic consumption of energy accompanied by frequent changes during the battery discharging process. This is very harmful to the electrochemical process of the battery. A practical solution is to couple the battery with a supercapacitor, which is basically an electrochemical cell with a similar architecture, but with a higher rate capability and better cyclability. In this design, the supercapacitor can provide the excess energy required while the battery fails to do so. In addition to the battery and supercapacitor as the individual units, designing the architecture of the corresponding hybrid system from an electrical engineering point of view is of utmost importance. The present manuscript reviews the recent works devoted to the application of various battery/supercapacitor hybrid systems in EVs.
High Voltage Power Supply Design Guide for Space
NASA Technical Reports Server (NTRS)
Bever, Renate S.; Ruitberg, Arthur P.; Kellenbenz, Carl W.; Irish, Sandra M.
2006-01-01
This book is written for newcomers to the topic of high voltage (HV) in space and is intended to replace an earlier (1970s) out-of-print document. It discusses the designs, problems, and their solutions for HV, mostly direct current, electric power, or bias supplies that are needed for space scientific instruments and devices, including stepping supplies. Output voltages up to 30kV are considered, but only very low output currents, on the order of microamperes. The book gives a brief review of the basic physics of electrical insulation and breakdown problems, especially in gases. It recites details about embedment and coating of the supplies with polymeric resins. Suggestions on HV circuit parts follow. Corona or partial discharge testing on the HV parts and assemblies is discussed both under AC and DC impressed test voltages. Electric field analysis by computer on an HV device is included in considerable detail. Finally, there are many examples given of HV power supplies, complete with some of the circuit diagrams and color photographs of the layouts.
High voltage power transistor development
NASA Technical Reports Server (NTRS)
Hower, P. L.
1981-01-01
Design considerations, fabrication procedures, and methods of evaluation for high-voltage power-transistor development are discussed. Technique improvements such as controlling the electric field at the surface and perserving lifetimes in the collector region which have advanced the state of the art in high-voltage transistors are discussed. These improvements can be applied directly to the development of 1200 volt, 200 ampere transistors.
Simple and accurate temperature correction for moisture pin calibrations in oriented strand board
Charles Boardman; Samuel V. Glass; Patricia K. Lebow
2017-01-01
Oriented strand board (OSB) is commonly used in the residential construction market in North America and its moisture-related durability is a critical consideration for building envelope design. Measurement of OSB moisture content (MC), a key determinant of durability, is often done using moisture pins and relies on a correlation between MC and the electrical...
Permanent-Magnet Motors and Generators for Aircraft
NASA Technical Reports Server (NTRS)
Echolds, E. F.
1983-01-01
Electric motors and generators that use permarotating machinery, but aspects of control and power conditioning are also considered. The discussion is structured around three basic areas: rotating machine design considerations presents various configuration and material options, generator applications provides insight into utilization areas and shows actual hardware and test results, and motor applications provides the same type of information for drive systems.
ERIC Educational Resources Information Center
Delaware Univ., Newark. Coll. of Education.
This activity is designed for secondary school students. The process of constructing a model solar building includes consideration of many fundamental scientific principles, such as the nature of heat, light, electricity, and energy conversion technology. When the model solar building is completed, there are numerous possibilities for the use of…
Enabling fast charging - Vehicle considerations
NASA Astrophysics Data System (ADS)
Meintz, Andrew; Zhang, Jiucai; Vijayagopal, Ram; Kreutzer, Cory; Ahmed, Shabbir; Bloom, Ira; Burnham, Andrew; Carlson, Richard B.; Dias, Fernando; Dufek, Eric J.; Francfort, James; Hardy, Keith; Jansen, Andrew N.; Keyser, Matthew; Markel, Anthony; Michelbacher, Christopher; Mohanpurkar, Manish; Pesaran, Ahmad; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Tanim, Tanvir
2017-11-01
To achieve a successful increase in the plug-in battery electric vehicle (BEV) market, it is anticipated that a significant improvement in battery performance is required to increase the range that BEVs can travel and the rate at which they can be recharged. While the range that BEVs can travel on a single recharge is improving, the recharge rate is still much slower than the refueling rate of conventional internal combustion engine vehicles. To achieve comparable recharge times, we explore the vehicle considerations of charge rates of at least 400 kW. Faster recharge is expected to significantly mitigate the perceived deficiencies for long-distance transportation, to provide alternative charging in densely populated areas where overnight charging at home may not be possible, and to reduce range anxiety for travel within a city when unplanned charging may be required. This substantial increase in charging rate is expected to create technical issues in the design of the battery system and the vehicle's electrical architecture that must be resolved. This work focuses on vehicle system design and total recharge time to meet the goals of implementing improved charge rates and the impacts of these expected increases on system voltage and vehicle components.
Enabling fast charging – Vehicle considerations
Meintz, Andrew; Zhang, Jiucai; Vijayagopal, Ram; ...
2017-11-01
To achieve a successful increase in the plug-in battery electric vehicle (BEV) market it is anticipated that a significant improvement in battery performance is required to improve the range that BEVs can travel. While the range that BEVs can travel on a single recharge is improving, the rate at which these vehicles can be recharged is still much slower than conventional internal combustion engine vehicles. To achieve comparable recharge times we explore the vehicle considerations of charge rates up to 350 kW. This faster recharge is expected to significantly mitigate the perceived deficiencies for long-distance transportation, to provide alternative chargingmore » in densely populated areas where overnight charging at home may not be possible, and to reduce range anxiety for travel within a city when unplanned charging maybe required. This substantial increase in the charging rate is expected to create technical issues in the design of the battery system and the vehicle electrical architecture that must be resolved. This work will focus on the battery system thermal design and total recharge time to meet the goals of implementing higher charge rates as well as the impacts of the expected increase in system voltage on the components of the vehicle.« less
Enabling fast charging – Vehicle considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meintz, Andrew; Zhang, Jiucai; Vijayagopal, Ram
To achieve a successful increase in the plug-in battery electric vehicle (BEV) market it is anticipated that a significant improvement in battery performance is required to improve the range that BEVs can travel. While the range that BEVs can travel on a single recharge is improving, the rate at which these vehicles can be recharged is still much slower than conventional internal combustion engine vehicles. To achieve comparable recharge times we explore the vehicle considerations of charge rates up to 350 kW. This faster recharge is expected to significantly mitigate the perceived deficiencies for long-distance transportation, to provide alternative chargingmore » in densely populated areas where overnight charging at home may not be possible, and to reduce range anxiety for travel within a city when unplanned charging maybe required. This substantial increase in the charging rate is expected to create technical issues in the design of the battery system and the vehicle electrical architecture that must be resolved. This work will focus on the battery system thermal design and total recharge time to meet the goals of implementing higher charge rates as well as the impacts of the expected increase in system voltage on the components of the vehicle.« less
Enabling fast charging - Infrastructure and economic considerations
NASA Astrophysics Data System (ADS)
Burnham, Andrew; Dufek, Eric J.; Stephens, Thomas; Francfort, James; Michelbacher, Christopher; Carlson, Richard B.; Zhang, Jiucai; Vijayagopal, Ram; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Hardy, Keith; Shirk, Matthew; Hovsapian, Rob; Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.; Keyser, Matthew; Kreuzer, Cory; Markel, Anthony; Meintz, Andrew; Pesaran, Ahmad; Tanim, Tanvir R.
2017-11-01
The ability to charge battery electric vehicles (BEVs) on a time scale that is on par with the time to fuel an internal combustion engine vehicle (ICEV) would remove a significant barrier to the adoption of BEVs. However, for viability, fast charging at this time scale needs to also occur at a price that is acceptable to consumers. Therefore, the cost drivers for both BEV owners and charging station providers are analyzed. In addition, key infrastructure considerations are examined, including grid stability and delivery of power, the design of fast charging stations and the design and use of electric vehicle service equipment. Each of these aspects have technical barriers that need to be addressed, and are directly linked to economic impacts to use and implementation. This discussion focuses on both the economic and infrastructure issues which exist and need to be addressed for the effective implementation of fast charging at 400 kW and above. In so doing, it has been found that there is a distinct need to effectively manage the intermittent, high power demand of fast charging, strategically plan infrastructure corridors, and to further understand the cost of operation of charging infrastructure and BEVs.
Enabling fast charging – Infrastructure and economic considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnham, Andrew; Dufek, Eric J.; Stephens, Thomas
The ability to charge battery electric vehicles (BEVs) on a time scale that is on par with the time to fuel an internal combustion engine vehicle (ICEV) would remove a significant barrier to the adoption of BEVs. However, for viability, fast charging at this time scale needs to also occur at a price that is acceptable to consumers. Therefore, the cost drivers for both BEV owners and charging station providers are analyzed. In addition, key infrastructure considerations are examined, including grid stability and delivery of power, the design of fast charging stations and the design and use of electric vehiclemore » service equipment. Each of these aspects have technical barriers that need to be addressed, and are directly linked to economic impacts to use and implementation. This discussion focuses on both the economic and infrastructure issues which exist and need to be addressed for the effective implementation of fast charging at 400 kW and above. In so doing, it has been found that there is a distinct need to effectively manage the intermittent, high power demand of fast charging, strategically plan infrastructure corridors, and to further understand the cost of operation of charging infrastructure and BEVs.« less
Enabling fast charging – Infrastructure and economic considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnham, Andrew; Dufek, Eric J.; Stephens, Thomas
The ability to charge battery electric vehicles (BEVs) on a time scale that is on par with the time to fuel an internal combustion engine vehicle (ICEV) would remove a significant barrier to the adoption of BEVs. However, for viability, fast charging at this time scale needs to also occur at a price that is acceptable to consumers. Therefore, the cost drivers for both BEV owners and charging station providers are analyzed. In addition, key infrastructure considerations are examined, including grid stability and delivery of power, the design of fast charging stations and the design and use of electric vehiclemore » service equipment. Each of these aspects have technical barriers that need to be addressed, and are directly linked to economic impacts to use and implementation. Here, this discussion focuses on both the economic and infrastructure issues which exist and need to be addressed for the effective implementation of fast charging up to 350 kW. In doing so, it has been found that there is a distinct need to effectively manage the intermittent, high power demand of fast charging, strategically plan infrastructure corridors, and to further understand the cost of operation of charging infrastructure and BEVs.« less
Enabling fast charging – Infrastructure and economic considerations
Burnham, Andrew; Dufek, Eric J.; Stephens, Thomas; ...
2017-10-23
The ability to charge battery electric vehicles (BEVs) on a time scale that is on par with the time to fuel an internal combustion engine vehicle (ICEV) would remove a significant barrier to the adoption of BEVs. However, for viability, fast charging at this time scale needs to also occur at a price that is acceptable to consumers. Therefore, the cost drivers for both BEV owners and charging station providers are analyzed. In addition, key infrastructure considerations are examined, including grid stability and delivery of power, the design of fast charging stations and the design and use of electric vehiclemore » service equipment. Each of these aspects have technical barriers that need to be addressed, and are directly linked to economic impacts to use and implementation. Here, this discussion focuses on both the economic and infrastructure issues which exist and need to be addressed for the effective implementation of fast charging up to 350 kW. In doing so, it has been found that there is a distinct need to effectively manage the intermittent, high power demand of fast charging, strategically plan infrastructure corridors, and to further understand the cost of operation of charging infrastructure and BEVs.« less
Wireless Power Transfer for Space Applications
NASA Technical Reports Server (NTRS)
Ramos, Gabriel Vazquez; Yuan, Jiann-Shiun
2011-01-01
This paper introduces an implementation for magnetic resonance wireless power transfer for space applications. The analysis includes an equivalent impedance study, loop material characterization, source/load resonance coupling technique, and system response behavior due to loads variability. System characterization is accomplished by executing circuit design from analytical equations and simulations using Matlab and SPICE. The theory was validated by a combination of different experiments that includes loop material consideration, resonance coupling circuits considerations, electric loads considerations and a small scale proof-of-concept prototype. Experiment results shows successful wireless power transfer for all the cases studied. The prototype provided about 4.5 W of power to the load at a separation of -5 cm from the source using a power amplifier rated for 7 W.
Display Considerations For Intravascular Ultrasonic Imaging
NASA Astrophysics Data System (ADS)
Gessert, James M.; Krinke, Charlie; Mallery, John A.; Zalesky, Paul J.
1989-08-01
A display has been developed for intravascular ultrasonic imaging. Design of this display has a primary goal of providing guidance information for therapeutic interventions such as balloons, lasers, and atherectomy devices. Design considerations include catheter configuration, anatomy, acoustic properties of normal and diseased tissue, catheterization laboratory and operating room environment, acoustic and electrical safety, acoustic data sampling issues, and logistical support such as image measurement, storage and retrieval. Intravascular imaging is in an early stage of development so design flexibility and expandability are very important. The display which has been developed is capable of acquisition and display of grey scale images at rates varying from static B-scans to 30 frames per second. It stores images in a 640 X 480 X 8 bit format and is capable of black and white as well as color display in multiplevideo formats. The design is based on the industry standard PC-AT architecture and consists of two AT style circuit cards, one for high speed sampling and the other for scan conversion, graphics and video generation.
Actuator concepts and mechatronics
NASA Astrophysics Data System (ADS)
Gilbert, Michael G.; Horner, Garnett C.
1998-06-01
Mechatronic design implies the consideration of integrated mechanical, electrical, and local control characteristics in electromechanical device design. In this paper, mechatronic development of actuation device concepts for active aircraft aerodynamic flow control are presented and discussed. The devices are intended to be embedded in aircraft aerodynamic surfaces to provide zero-net-momentum jets or additional flow-vorticity to control boundary layers and flow- separation. Two synthetic jet device prototypes and one vorticity-on-demand prototype currently in development are described in the paper. The aspects of actuation materials, design approaches to generating jets and vorticity, and the integration of miniaturized electronics are stressed.
NASA Astrophysics Data System (ADS)
Fox, Matthew D.
Advanced automotive technology assessment and powertrain design are increasingly performed through modeling, simulation, and optimization. But technology assessments usually target many competing criteria making any individual optimization challenging and arbitrary. Further, independent design simulations and optimizations take considerable time to execute, and design constraints and objectives change throughout the design process. Changes in design considerations usually require re-processing of simulations and more time. In this thesis, these challenges are confronted through CSU's participation in the EcoCAR2 hybrid vehicle design competition. The complexity of the competition's design objectives leveraged development of a decision support system tool to aid in multi-criteria decision making across technologies and to perform powertrain optimization. To make the decision support system interactive, and bypass the problem of long simulation times, a new approach was taken. The result of this research is CSU's architecture selection and component sizing, which optimizes a composite objective function representing the competition score. The selected architecture is an electric vehicle with an onboard range extending hydrogen fuel cell system. The vehicle has a 145kW traction motor, 18.9kWh of lithium ion battery, a 15kW fuel cell system, and 5kg of hydrogen storage capacity. Finally, a control strategy was developed that improves the vehicles performance throughout the driving range under variable driving conditions. In conclusion, the design process used in this research is reviewed and evaluated against other common design methodologies. I conclude, through the highlighted case studies, that the approach is more comprehensive than other popular design methodologies and is likely to lead to a higher quality product. The upfront modeling work and decision support system formulation will pay off in superior and timely knowledge transfer and more informed design decisions. The hypothesis is supported by the three case studies examined in this thesis.
Nonideal ultrathin mantle cloak for electrically large conducting cylinders.
Liu, Shuo; Zhang, Hao Chi; Xu, He-Xiu; Cui, Tie Jun
2014-09-01
Based on the concept of the scattering cancellation technique, we propose a nonideal ultrathin mantle cloak that can efficiently suppress the total scattering cross sections of an electrically large conducting cylinder (over one free-space wavelength). The cloaking mechanism is investigated in depth based on the Mie scattering theory and is simultaneously interpreted from the perspective of far-field bistatic scattering and near-field distributions. We remark that, unlike the perfect transformation-optics-based cloak, this nonideal cloaking technique is mainly designed to minimize simultaneously several scattering multipoles of a relatively large geometry around considerably broad bandwidth. Numerical simulations and experimental results show that the antiscattering ability of the metasurface gives rise to excellent total scattering reduction of the electrically large cylinder and remarkable electric-field restoration around the cloak. The outstanding cloaking performance together with the good features of and ultralow profile, flexibility, and easy fabrication predict promising applications in the microwave frequencies.
Integrated thermal management of a hybrid electric vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Traci, R.M.; Acebal, R.; Mohler, T.
1999-01-01
A thermal management methodology, based on the Vehicle Integrated Thermal Management Analysis Code (VITMAC), has been developed for a notional vehicle employing the All-Electric Combat Vehicle (AECV) concept. AECV uses a prime power source, such as a diesel, to provide mechanical energy which is converted to electrical energy and stored in a central energy storage system consisting of flywheels, batteries and/or capacitors. The combination of prime power and stored energy powers the vehicle drive system and also advanced weapons subsystems such as an ETC or EM gun, electrically driven lasers, an EM armor system and an active suspension. Every majormore » system is electrically driven with energy reclamation when possible from braking and gun recoil. Thermal management of such a complicated energy transfer and utilization system is a major design consideration due to the substantial heat rejection requirements. In the present paper, an overall integrated thermal management system (TMS) is described which accounts for energy losses from each subsystem component, accepts the heat using multiple coolant loops and expels the heat from the vehicle. VITMAC simulations are used to design the TMS and to demonstrate that a conventional TMS approach is capable of successfully handling vehicle heat rejection requirements under stressing operational conditions.« less
Implementation of object-oriented programming in study of electrical race car
NASA Astrophysics Data System (ADS)
Nowak, M.; Baier, M.
2016-08-01
The paper covers issue of conducting advanced research of electrical race car participating in international competition called Sileverline Corporate Challenge. Process of designing race cars in Silesian Greenpower team is aided by a professional engine test stand built particularly in purpose of this research. Phase of testing and simulation is an important part of the implementation of new technologies. Properly developed solutions and test procedures are able to significantly shorten development time and reduce design costs. Testing process must be controlled by a modular and flexible application, easy to modify and ensuring safety. This paper describes the concept of object-oriented programming in LabVIEW and exemplary architecture of object-oriented control application designed to control engine test stand of the electrical race car. Eventually, the task of application will be to steer the electromagnetic brake and the engine load torque to perform according to data from the actual race track. During the designing process of the car, minimizing energy losses and maximizing powertrain efficiency are the main aspects taken into consideration. One of the crucial issues to accomplish these goals is to maintain optimal performance of the motor by applying effective cooling. The paper covers the research verifying the effectiveness of the cooling system.
Ultra High Voltage Propellant Isolators and Insulators for JIMO Ion Thrusters
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Gaier, James R.; Hung, Ching-Cheh; Walters, Patty A.; Sechkar, Ed; Panko, Scott; Kamiotis, Christina A.
2004-01-01
Within NASA's Project Prometheus, high specific impulse ion thrusters for electric propulsion of spacecraft for the proposed Jupiter Icy Moon Orbiter (JIMO) mission to three of Jupiter's moons: Callisto, Ganymede and Europa will require high voltage operation to meet mission propulsion. The anticipated approx.6,500 volt net ion energy will require electrical insulation and propellant isolation which must exceed that used successfully by the NASA Solar Electric Propulsion Technology Readiness (NSTAR) Deep Space 1 mission thruster by a factor of approx.6. Xenon propellant isolator prototypes that operate at near one atmosphere and prototypes that operate at low pressures (<100 Torr) have been designed and are being tested for suitability to the JIMO mission requirements. Propellant isolators must be durable to Paschen breakdown, sputter contamination, high temperature, and high voltage while operating for factors longer duration than for the Deep Space 1 Mission. Insulators used to mount the thrusters as well as those needed to support the ion optics have also been designed and are under evaluation. Isolator and insulator concepts, design issues, design guidelines, fabrication considerations and performance issues are presented. The objective of the investigation was to identify candidate isolators and insulators that are sufficiently robust to perform durably and reliably during the proposed JIMO mission.
Monitoring of In-Situ Remediation By Time Lapse 3D Geo-Electric Measurements
NASA Astrophysics Data System (ADS)
Kanli, A. I.; Tildy, P.; Neducza, B.; Nagy, P.; Hegymegi, C.
2017-12-01
Injection of chemical oxidant solution to degrade the subsurface contaminants can be used for hydrocarbon contamination remediation. In this study, we developed a non-destructive measurement strategy to monitor oxidative in-situ remediation processes. The difficulties of the presented study originate from the small volume of conductive solution that can be used due to environmental considerations. Due to the effect of conductive groundwater and the high clay content of the targeted layer and the small volume of conductive solution that can be used due to environmental considerations, a site specific synthetic modelling is necessary for measurement design involving the results of preliminary 2D ERT measurements, electrical conductivity measurements of different active agents and expected resistivity changes calculated by soil resistivity modelling. Because of chemical biodegradation, the results of soil resistivity modelling have suggested that the reagent have complex effects on contaminated soils. As a result the plume of resistivity changes caused by the injected agent was determined showing strong fracturing effect because of the high pressure of injection. 3D time-lapse geo-electric measurements were proven to provide a usable monitoring tool for in-situ remediation as a result of our sophisticated tests and synthetic modelling.
ERIC Educational Resources Information Center
Ienatsch, Grant Peter
The purpose of this study was to determine the effect that various methods of using television have on instruction in reading for second graders. A specific part of the study was to explore whether teacher interaction is an important consideration in the use of the educational television program, "The Electric Company." A sample of 156…
Finite element analysis of multilayer DEAP stack-actuators
NASA Astrophysics Data System (ADS)
Kuhring, Stefan; Uhlenbusch, Dominik; Hoffstadt, Thorben; Maas, Jürgen
2015-04-01
Dielectric elastomers (DE) are thin polymer films belonging to the class of electroactive polymers (EAP). They are coated with compliant and conductive electrodes on each side, which make them performing a relative high amount of deformation with considerable force generation under the influence of an electric field. Because the realization of high electric fields with a limited voltage level requests single layer polymer films to be very thin, novel multilayer actuators are utilized to increase the absolute displacement and force. In case of a multilayer stack-actuator, many actuator films are mechanically stacked in series and electrically connected in parallel. Because there are different ways to design such a stack-actuator, this contribution considers an optimization of some design parameters using the finite element analysis (FEA), whereby the behavior and the actuation of a multilayer dielectric electroactive polymer (DEAP) stack-actuator can be improved. To describe the material behavior, first different material models are compared and necessary material parameters are identified by experiments. Furthermore, a FEA model of a DEAP film is presented, which is expanded to a multilayer DEAP stack-actuator model. Finally, the results of the FEA are discussed and conclusions for design rules of optimized stack-actuators are outlined.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Chang, Li; Clayman, Lauren; Herman, Daniel; Shastry, Rohit; Thomas, Robert; Verhey, Timothy;
2014-01-01
NASA is developing mission concepts for a solar electric propulsion technology demonstration mission. A number of mission concepts are being evaluated including ambitious missions to near Earth objects. The demonstration of a high-power solar electric propulsion capability is one of the objectives of the candidate missions under consideration. In support of NASA's exploration goals, a number of projects are developing extensible technologies to support NASA's near and long term mission needs. Specifically, the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project is funding the development of a 12.5-kilowatt magnetically shielded Hall thruster system to support future NASA missions. This paper presents the design attributes of the thruster that was collaboratively developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory. The paper provides an overview of the magnetic, plasma, thermal, and structural modeling activities that were carried out in support of the thruster design. The paper also summarizes the results of the functional tests that have been carried out to date. The planned thruster performance, plasma diagnostics (internal and in the plume), thermal, wear, and mechanical tests are outlined.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Chang, Li; Clayman, Lauren; Herman, Daniel; Shastry, Rohit; Thomas, Robert; Verhey, Timothy;
2014-01-01
NASA is developing mission concepts for a solar electric propulsion technology demonstration mission. A number of mission concepts are being evaluated including ambitious missions to near Earth objects. The demonstration of a high-power solar electric propulsion capability is one of the objectives of the candidate missions under consideration. In support of NASAs exploration goals, a number of projects are developing extensible technologies to support NASAs near and long term mission needs. Specifically, the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project is funding the development of a 12.5-kW magnetically shielded Hall thruster system to support future NASA missions. This paper presents the design attributes of the thruster that was collaboratively developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory. The paper provides an overview of the magnetic, plasma, thermal, and structural modeling activities that were carried out in support of the thruster design. The paper also summarizes the results of the functional tests that have been carried out to date. The planned thruster performance, plasma diagnostics (internal and in the plume), thermal, wear, and mechanical tests are outlined.
ERIC Educational Resources Information Center
Moller, Peter
1980-01-01
Describes electroreceptivity in fishes, including information on electric signals in water, electroreceptors, electric organs, electric sense in weak-electric fishes, electrolocation, electrocommunication, and evolutionary considerations. (CS)
Optimized design of total energy systems: The RETE project
NASA Astrophysics Data System (ADS)
Alia, P.; Dallavalle, F.; Denard, C.; Sanson, F.; Veneziani, S.; Spagni, G.
1980-05-01
The RETE (Reggio Emilia Total Energy) project is discussed. The total energy system (TES) was developed to achieve the maximum quality matching on the thermal energy side between plant and user and perform an open scheme on the electrical energy side by connection with the Italian electrical network. The most significant qualitative considerations at the basis of the plant economic energy optimization and the selection of the operating criterion most fitting the user consumption characteristics and the external system constraints are reported. The design methodology described results in a TES that: in energy terms achieves a total efficiency evaluated on a yearly basis to be equal to about 78 percent and a fuel saving of about 28 percent and in economic terms allows a recovery of the investment required as to conventional solutions, in about seven years.
NASA Astrophysics Data System (ADS)
1981-04-01
Overriding considerations, including type of hoist, capacity limitations, operating speed, haulage ropes, guides, conveyance, and landings were studied within the context both of feasibility and of minimizing equipment costs. The study led to the selection of a twin drum, twin electric drive hoist, and for depths as much as 5000 ft, hoist capacities of up to 300 tons were found to be feasible. A brief reference is made to the requirements for hoisting equipment other than for heavy loads.
Aerospace Power Systems Design and Analysis (APSDA) Tool
NASA Technical Reports Server (NTRS)
Truong, Long V.
1998-01-01
The conceptual design of space and/or planetary electrical power systems has required considerable effort. Traditionally, in the early stages of the design cycle (conceptual design), the researchers have had to thoroughly study and analyze tradeoffs between system components, hardware architectures, and operating parameters (such as frequencies) to optimize system mass, efficiency, reliability, and cost. This process could take anywhere from several months to several years (as for the former Space Station Freedom), depending on the scale of the system. Although there are many sophisticated commercial software design tools for personal computers (PC's), none of them can support or provide total system design. To meet this need, researchers at the NASA Lewis Research Center cooperated with Professor George Kusic from the University of Pittsburgh to develop a new tool to help project managers and design engineers choose the best system parameters as quickly as possible in the early design stages (in days instead of months). It is called the Aerospace Power Systems Design and Analysis (APSDA) Tool. By using this tool, users can obtain desirable system design and operating parameters such as system weight, electrical distribution efficiency, bus power, and electrical load schedule. With APSDA, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. user interface. It operates on any PC running the MS-DOS (Microsoft Corp.) operating system, version 5.0 or later. A color monitor (EGA or VGA) and two-button mouse are required. The APSDA tool was presented at the 30th Intersociety Energy Conversion Engineering Conference (IECEC) and is being beta tested at several NASA centers. Beta test packages are available for evaluation by contacting the author.
Design rules for phase-change materials in data storage applications.
Lencer, Dominic; Salinga, Martin; Wuttig, Matthias
2011-05-10
Phase-change materials can rapidly and reversibly be switched between an amorphous and a crystalline phase. Since both phases are characterized by very different optical and electrical properties, these materials can be employed for rewritable optical and electrical data storage. Hence, there are considerable efforts to identify suitable materials, and to optimize them with respect to specific applications. Design rules that can explain why the materials identified so far enable phase-change based devices would hence be very beneficial. This article describes materials that have been successfully employed and dicusses common features regarding both typical structures and bonding mechanisms. It is shown that typical structural motifs and electronic properties can be found in the crystalline state that are indicative for resonant bonding, from which the employed contrast originates. The occurence of resonance is linked to the composition, thus providing a design rule for phase-change materials. This understanding helps to unravel characteristic properties such as electrical and thermal conductivity which are discussed in the subsequent section. Then, turning to the transition kinetics between the phases, the current understanding and modeling of the processes of amorphization and crystallization are discussed. Finally, present approaches for improved high-capacity optical discs and fast non-volatile electrical memories, that hold the potential to succeed present-day's Flash memory, are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of magnetic fields during high voltage live-line maintenance
NASA Astrophysics Data System (ADS)
Göcsei, Gábor; Kiss, István, Dr; Németh, Bálint
2015-10-01
In case of transmission and distribution networks, extra low frequency (typically 50 or 60 Hz) electric and magnetic fields have to be taken into consideration separately from each other. Health effects have been documented from exposures to both types of fields. Magnetic fields are qualified as possibly carcinogenic to humans (category “2B”) by WHO's cancer research institute, International Agency for Research on Cancer (IARC), so it is essential to protect the workers against their harmful effects. During live-line maintenance (LLM) electric fields can be shielded effectively by different kinds of conductive clothing, which are enclosed metal surfaces acting as a Faraday-cage. In practice laboratory measurements also prove their efficiency, the required shielding ratio is above 99% by the related standard.. A set of measurements have proved that regular conductive clothing used against the electric fields cannot shield the magnetic fields effectively at all. This paper introduces the possible risks of LLM from the aspect of the health effects of magnetic fields. Although in this case the principle of shielding the electric fields cannot be applied, new considerations in equipment design and technology can be used as a possible solution. Calculations and simulations based on the data of the Hungarian transmission network - which represents the European grid as a part of ENTSO-E - and high-current laboratory measurement results also prove the importance of the topic.
Severity of electrical accidents in the construction industry in Spain.
Suárez-Cebador, Manuel; Rubio-Romero, Juan Carlos; López-Arquillos, Antonio
2014-02-01
This paper analyzes the severity of workplace accidents involving electricity in the Spanish construction sector comprising 2,776 accidents from 2003 to 2008. The investigation considered the impact of 13 variables, classified into 5 categories: Personal, Business, Temporal, Material, and Spatial. The findings showed that electrical accidents are almost five times more likely to have serious consequences than the average accident in the sector and it also showed how the variables of age, occupation, company size, length of service, preventive measures, time of day, days of absence, physical activity, material agent, type of injury, body part injured, accident location, and type of location are related to the severity of the electrical accidents under consideration. The present situation makes it clear that greater effort needs to be made in training, monitoring, and signage to guarantee a safe working environment in relation to electrical hazards. This research enables safety technicians, companies, and government officials to identify priorities and to design training strategies to minimize the serious consequences of electrical accidents for construction workers. Copyright © 2013 Elsevier Ltd and National Safety Council. All rights reserved.
The dynamic and steady state behavior of a PEM fuel cell as an electric energy source
NASA Astrophysics Data System (ADS)
Costa, R. A.; Camacho, J. R.
The main objective of this work is to extract information on the internal behavior of three small polymer electrolyte membrane fuel cells under static and dynamic load conditions. A computational model was developed using Scilab [SCILAB 4, Scilab-a free scientific software package, http://www.scilab.org/, INRIA, France, December, 2005] to simulate the static and dynamic performance [J.M. Correa, A.F. Farret, L.N. Canha, An analysis of the dynamic performance of proton exchange membrane fuel cells using an electrochemical model, in: 27th Annual Conference of IEEE Industrial Electronics Society, 2001, pp. 141-146] of this particular type of fuel cell. This dynamic model is based on electrochemical equations and takes into consideration most of the chemical and physical characteristics of the device in order to generate electric power. The model takes into consideration the operating, design parameters and physical material properties. The results show the internal losses and concentration effects behavior, which are of interest for power engineers and researchers.
Phase I of the Near Term Hybrid Passenger Vehicle Development Program. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
The results of Phase I of the Near-Term Hybrid Vehicle Program are summarized. This phase of the program ws a study leading to the preliminary design of a 5-passenger hybrid vehicle utilizing two energy sources (electricity and gasoline/diesel fuel) to minimize petroleum usage on a fleet basis. This report presents the following: overall summary of the Phase I activity; summary of the individual tasks; summary of the hybrid vehicle design; summary of the alternative design options; summary of the computer simulations; summary of the economic analysis; summary of the maintenance and reliability considerations; summary of the design for crash safety;more » and bibliography.« less
Space Vehicle Terrestrial Environment Design Requirements Guidelines
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.
2006-01-01
The terrestrial environment is an important driver of space vehicle structural, control, and thermal system design. NASA is currently in the process of producing an update to an earlier Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development Handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, and sea state. In addition, the respective engineering design elements are discussed relative to terrestrial environment inputs that require consideration. Specific lessons learned that have contributed to the advancements made in the application and awareness of terrestrial environment inputs for aerospace engineering applications are presented.
NASA Technical Reports Server (NTRS)
Beck, Theodore S.
1992-01-01
Existing procedures for design of electrochemical plants can be used for design of lunar processes taking into consideration the differences in environmental conditions. These differences include: 1/6 Earth gravity, high vacuum, solar electrical and heat source, space radiation heat sink, long days and nights, and different availability and economics of materials, energy, and labor. Techniques have already been developed for operation of relatively small scale hydrogen-oxygen fuel cell systems used in the U.S. lunar landing program. Design and operation of lunar aqueous electrolytic process plants appears to be within the state-of-the-art. Finding or developing compatible materials for construction and designing of fused-magma metal winning cells will present a real engineering challenge.
Full Ka Band Waveguide-to-Microstrip Inline Transition Design
NASA Astrophysics Data System (ADS)
Li, Jianxing; Li, Lei; Qiao, Yu; Chen, Juan; Chen, Jianzhong; Zhang, Anxue
2018-05-01
In this paper, a compact and broadband inline waveguide-to-microstrip transition is proposed to cover the full Ka band. The transition can be segmented from the electric point of view into three building blocks, comprising a microstrip line to rectangular coaxial line, a wedged rectangular coaxial line to ridged waveguide, and a final tapered ridged waveguide impedance transformer to standard waveguide. Both good electrical performance and simple modular assembly without any soldering have been simultaneously obtained. The validation of the design concept has been conducted by numerical simulations and experimental measurements. The experimental results of a fabricated back-to-back transition prototype coincide with the simulated results. It shows that the proposed transition achieves good return loss of lower than 15.5 dB and low insertion loss with a fluctuation between 0.23 to 0.60 dB across the entire Ka band. Details of design considerations and operation mechanism as well as simulation and measurement results are presented.
Energy efficient engine: Flight propulsion system, preliminary analysis and design update
NASA Technical Reports Server (NTRS)
Stearns, E. M.
1982-01-01
The preliminary design of General Electric's Energy Efficient Engine (E3) was reported in detail in 1980. Since then, the design has been refined and the components have been rig-tested. The changes which have occurred in the engine and a reassessment of the economic payoff are presented in this report. All goals for efficiency, environmental considerations, and economic payoff are being met. The E3 Flight Propulsion System has 14.9% lower sfc than a CF6-50C. It provides a 7.1% reduction in direct operating cost for a short haul domestic transport and 14.5% reduction for an international long distance transport.
Multifrequency synthetic aperture radar antenna comparison study. [for remote sensing
NASA Technical Reports Server (NTRS)
Blevins, B. A.
1983-01-01
Three multifrequency, dual polarization SAR antenna designs are reviewed. The SAR antenna design specifications were for a "straw man' SAR which would approximate the requirements for projected shuttle-based SAR's. Therefore, the physical dimensions were constrained to be compatible with the space shuttle. The electrical specifications were similar to those of SIR-A and SIR-B with the addition of dual polarization and the addition of C and X band operation. Early in the antenna design considerations, three candidate technologies emerged as having promise. They were: (1) microstrip patch planar array antennas, (2) slotted waveguide planar array antennas, and (3) open-ended waveguide planar array antennas.
Basic Principles of Electrical Network Reliability Optimization in Liberalised Electricity Market
NASA Astrophysics Data System (ADS)
Oleinikova, I.; Krishans, Z.; Mutule, A.
2008-01-01
The authors propose to select long-term solutions to the reliability problems of electrical networks in the stage of development planning. The guide lines or basic principles of such optimization are: 1) its dynamical nature; 2) development sustainability; 3) integrated solution of the problems of network development and electricity supply reliability; 4) consideration of information uncertainty; 5) concurrent consideration of the network and generation development problems; 6) application of specialized information technologies; 7) definition of requirements for independent electricity producers. In the article, the major aspects of liberalized electricity market, its functions and tasks are reviewed, with emphasis placed on the optimization of electrical network development as a significant component of sustainable management of power systems.
Parameterizing Sound: Design Considerations for an Environmental Sound Database
2015-04-01
Accordion Car backfire Crushing a metal can Aerosol can Car crash Crushing a tin can Alarm clock Car ignition Crushing egg shells Alloette...top Coffee perking Eggs beaten in a bowl with a whisk Bowling Coffee pot whistling Elastic (snap) Bread cutting Coin dropping Electric...Bus Combination lock Female speaking Bus air break Cooking with fat Ferry Bus stop and go Cuckoo clock Ferry horn Camera Corduroy
NASA Technical Reports Server (NTRS)
1980-01-01
Burns & McDonnell Engineering's environmental control study is assisted by NASA's Computer Software Management and Information Center's programs in environmental analyses. Company is engaged primarily in design of such facilities as electrical utilities, industrial plants, wastewater treatment systems, dams and reservoirs and aviation installations. Company also conducts environmental engineering analyses and advises clients as to the environmental considerations of a particular construction project. Company makes use of many COSMIC computer programs which have allowed substantial savings.
Selective current collecting design for spring-type energy harvesters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dongjin; Roh, Hee Seok; Kim, Yeontae
2015-01-01
Here we present a high performance spring-type piezoelectric energy harvester that selectively collects current from the inner part of a spring shell. We analyzed themain reason behind the low efficiency of the initial design using finite element models and proposed a selective current collecting design that can considerably improve the electrical conversion efficiency of the energy harvester. We found that the newly designed energy harvester increases the output voltage by 8 times leading to an output power of 2.21 mW under an impulsive load of 2.18 N when compared with the conventional design. We envision that selective current collecting designmore » will be used in spring-based self-powered active sensors and energy scavenging devices.« less
NASA Astrophysics Data System (ADS)
Treichel, A.; Huisman, J. A.; Zhao, Y.; Zimmermann, E.; Esser, O.; Kemna, A.; Vereecken, H.
2012-12-01
Geophysical measurements within a borehole are typically affected by the presence of the borehole. The focus of the current study is to quantify the effect of borehole design on broadband electrical impedance tomography (EIT) measurements within boreholes. Previous studies have shown that effects on the real part of the electrical resistivity are largest for boreholes with large diameters and for materials with a large formation factor. However, these studies have not considered the effect of the well casing and the filter gravel on the measurement of the real part of the electrical resistivity. In addition, the effect of borehole design on the imaginary part of the electrical resistivity has not been investigated yet. Therefore, the aim of this study is to investigate the effect of borehole design on the complex electrical resistivity using laboratory measurements and numerical simulations. In order to do so, we developed a high resolution two dimensional axisymmetric finite element model (FE) that enables us to simulate the effects of several key borehole design parameters (e.g. borehole diameter, thickness of PVC well casing) on the measurement process. For the material surrounding the borehole, realistic values for complex resistivity were obtained from a database of laboratory measurements of complex resistivity from the test site Krauthausen (Germany). The slotted PVC well casing is represented by an effective resistivity calculated from the water-filled slot volume and the PVC volume. Measurements with and without PVC well casing were made with a four-electrode EIT logging tool in a water-filled rain barrel. The initial comparison for the case that the logging tool was inserted in the PVC well casing showed a considerable mismatch between measured and modeled values. It was required to consider a complete electrode model instead of point electrodes to remove this mismatch. This validated model was used to investigate in detail how complex resistivity measurements with different electrode configurations are affected by borehole design. Finally, the plausibility of our results was verified by comparing the simulation results with borehole EIT measurements made at the test site Krauthausen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Potomac Electric Power Company (PEPCO) and Acres American Incorporated (AAI) have carried out a preliminary design study of water-compensated Compressed Air Energy Storage (CAES) and Underground Pumped Hydroelectric (UPH) plants for siting in geological conditions suitable for hard rock excavations. The work was carried out over a period of three years and was sponsored by the US Department of Energy (DOE), the Electric Power Research Institute (EPRI) and PEPCO. The study was divided into five primary tasks as follows: establishment of design criteria and analysis of impact on power system; selection of site and establishment of site characteristics; formulation ofmore » design approaches; assessment of environmental and safety aspects; and preparation of preliminary design of plant. The salient aspects considered and the conclusions reached during the consideration of the five primary tasks for both CAES and UPH are presented in this Executive Summary, which forms Volume 1 of the series of reports prepared during the study. The investigations and analyses carried out, together with the results and conclusions reached, are described in detail in Volumes 2 through 13 and ten appendices.« less
Clean catalytic combustor program
NASA Technical Reports Server (NTRS)
Ekstedt, E. E.; Lyon, T. F.; Sabla, P. E.; Dodds, W. J.
1983-01-01
A combustor program was conducted to evolve and to identify the technology needed for, and to establish the credibility of, using combustors with catalytic reactors in modern high-pressure-ratio aircraft turbine engines. Two selected catalytic combustor concepts were designed, fabricated, and evaluated. The combustors were sized for use in the NASA/General Electric Energy Efficient Engine (E3). One of the combustor designs was a basic parallel-staged double-annular combustor. The second design was also a parallel-staged combustor but employed reverse flow cannular catalytic reactors. Subcomponent tests of fuel injection systems and of catalytic reactors for use in the combustion system were also conducted. Very low-level pollutant emissions and excellent combustor performance were achieved. However, it was obvious from these tests that extensive development of fuel/air preparation systems and considerable advancement in the steady-state operating temperature capability of catalytic reactor materials will be required prior to the consideration of catalytic combustion systems for use in high-pressure-ratio aircraft turbine engines.
In-Space Propulsion Program Overview and Status
NASA Technical Reports Server (NTRS)
Carroll, Carol; Johnson, Les; Baggett, Randy
2002-01-01
NASA's In-Space Propulsion (ISP) Program is designed to develop advanced propulsion technologies that can enable or greatly enhance near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. These technologies include: Electric Propulsion (Solar and Nuclear Electric) [note: The Nuclear Electric Propulsion work will be transferred to the NSI program in FY03]; Propellantless Propulsion (aerocapture, solar sails, plasma sails, and momentum exchange tethers); Advanced Chemical Propulsion. The ISP approach to identifying and prioritizing these most promising technologies is to use mission analysis and subsequent peer review. These technologies under consideration are mid-Technology Readiness Level (TRL) up to TRL-6 for incorporation into mission planning within three - five years of initiation. In addition, maximum use of open competition is encouraged to seek optimum solutions under ISP. Several NASA Research Announcements (NRAs) have been released asking industry, academia and other organizations to propose propulsion technologies designed to improve our ability to conduct scientific study of the outer planets and beyond. The ISP Program is managed by NASA HQ (Headquarters) and implemented by the Marshall Space Flight Center in Huntsville, Alabama.
Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Baharvand, Hossein; Kiani, Sahar; Al-Deyab, Salem S; Ramakrishna, Seeram
2011-04-01
Among the numerous attempts to integrate tissue engineering concepts into strategies to repair nearly all parts of the body, neuronal repair stands out. This is partially due to the complexity of the nervous anatomical system, its functioning and the inefficiency of conventional repair approaches, which are based on single components of either biomaterials or cells alone. Electrical stimulation has been shown to enhance the nerve regeneration process and this consequently makes the use of electrically conductive polymers very attractive for the construction of scaffolds for nerve tissue engineering. In this review, by taking into consideration the electrical properties of nerve cells and the effect of electrical stimulation on nerve cells, we discuss the most commonly utilized conductive polymers, polypyrrole (PPy) and polyaniline (PANI), along with their design and modifications, thus making them suitable scaffolds for nerve tissue engineering. Other electrospun, composite, conductive scaffolds, such as PANI/gelatin and PPy/poly(ε-caprolactone), with or without electrical stimulation, are also discussed. Different procedures of electrical stimulation which have been used in tissue engineering, with examples on their specific applications in tissue engineering, are also discussed. Copyright © 2011 John Wiley & Sons, Ltd.
An integrated eVoucher mechanism for flexible loads in real-time retail electricity market
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tao; Pourbabak, Hajir; Liang, Zheming
This study proposes an innovative economic and engineering coupled framework to encourage typical flexible loads or load aggregators, such as parking lots with high penetration of electric vehicles, to participate directly in the real-time retail electricity market based on an integrated eVoucher program. The integrated eVoucher program entails demand side management, either in the positive or negative direction, following a popular customer-centric design principle. It provides the extra economic benefit to end-users and reduces the risk associated with the wholesale electricity market for electric distribution companies (EDCs), meanwhile improving the potential resilience of the distribution networks with consideration for frequencymore » deviations. When implemented, the eVoucher program allows typical flexible loads, such as electric vehicle parking lots, to adjust their demand and consumption behavior according to financial incentives from an EDC. A distribution system operator (DSO) works as a third party to hasten negotiations between such parking lots and EDCs, as well as the price clearing process. Eventually, both electricity retailers and power system operators will benefit from the active participation of the flexible loads and energy customers.« less
An integrated eVoucher mechanism for flexible loads in real-time retail electricity market
Chen, Tao; Pourbabak, Hajir; Liang, Zheming; ...
2017-01-26
This study proposes an innovative economic and engineering coupled framework to encourage typical flexible loads or load aggregators, such as parking lots with high penetration of electric vehicles, to participate directly in the real-time retail electricity market based on an integrated eVoucher program. The integrated eVoucher program entails demand side management, either in the positive or negative direction, following a popular customer-centric design principle. It provides the extra economic benefit to end-users and reduces the risk associated with the wholesale electricity market for electric distribution companies (EDCs), meanwhile improving the potential resilience of the distribution networks with consideration for frequencymore » deviations. When implemented, the eVoucher program allows typical flexible loads, such as electric vehicle parking lots, to adjust their demand and consumption behavior according to financial incentives from an EDC. A distribution system operator (DSO) works as a third party to hasten negotiations between such parking lots and EDCs, as well as the price clearing process. Eventually, both electricity retailers and power system operators will benefit from the active participation of the flexible loads and energy customers.« less
Direct launch using the electric rail gun
NASA Technical Reports Server (NTRS)
Barber, J. P.
1983-01-01
The concept explored involves using a large single stage electric rail gun to achieve orbital velocities. Exit aerodynamics, launch package design and size, interior ballistics, system and component sizing and design concepts are treated. Technology development status and development requirements are identified and described. The expense of placing payloads in Earth orbit using conventional chemical rockets is considerable. Chemical rockets are very inefficient in converting chemical energy into payload kinetic energy. A rocket motor is relatively expensive and is usually expended on each launch. In addition specialized and expensive forms of fuel are required. Gun launching payloads directly to orbit from the Earth's surface is a possible alternative. Guns are much more energy efficient than rockets. The high capital cost of the gun installation can be recovered by reusing it over and over again. Finally, relatively inexpensive fuel and large quantities of energy are readily available to a fixed installation on the Earth's surface.
Applications of Carbon Nanotubes for Lithium Ion Battery Anodes
Xiong, Zhili; Yun, Young Soo; Jin, Hyoung-Joon
2013-01-01
Carbon nanotubes (CNTs) have displayed great potential as anode materials for lithium ion batteries (LIBs) due to their unique structural, mechanical, and electrical properties. The measured reversible lithium ion capacities of CNT-based anodes are considerably improved compared to the conventional graphite-based anodes. Additionally, the opened structure and enriched chirality of CNTs can help to improve the capacity and electrical transport in CNT-based LIBs. Therefore, the modification of CNTs and design of CNT structure provide strategies for improving the performance of CNT-based anodes. CNTs could also be assembled into free-standing electrodes without any binder or current collector, which will lead to increased specific energy density for the overall battery design. In this review, we discuss the mechanism of lithium ion intercalation and diffusion in CNTs, and the influence of different structures and morphologies on their performance as anode materials for LIBs. PMID:28809361
High Efficiency Nuclear Power Plants Using Liquid Fluoride Thorium Reactor Technology
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan
2009-01-01
An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITs of 950 and 1200 K are presented. Power plant performance data were obtained for TITs ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo-generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.
Cardiac stem cell therapy and arrhythmogenicity: prometheus and the arrows of Apollo and Artemis.
Lyon, Alexander R; Harding, Sian E; Peters, Nicholas S
2008-09-01
Cardiac cell therapy is an expanding scientific field which is yielding new insights into the pathogenesis of cardiac disease and offers new therapeutic strategies. Inherent to both these areas of research are the electrical properties of individual cells, the electrical interplay between cardiomyocytes, and their roles in arrhythmogenesis. This review discusses the potential mechanisms by which various candidate cells for cardiac therapy may modulate the ventricular arrhythmic substrate and highlights the data and lessons learnt from the clinical cardiac cell therapy trials published to date. Pro- and antiarrhythmic mechanistic factors are discussed, and the importance of their consideration in the design of any future clinical cell therapy trials.
Wireless powering of e -swimmers
NASA Astrophysics Data System (ADS)
Roche, Jérome; Carrara, Serena; Sanchez, Julien; Lannelongue, Jérémy; Loget, Gabriel; Bouffier, Laurent; Fischer, Peer; Kuhn, Alexander
2014-10-01
Miniaturized structures that can move in a controlled way in solution and integrate various functionalities are attracting considerable attention due to the potential applications in fields ranging from autonomous micromotors to roving sensors. Here we introduce a concept which allows, depending on their specific design, the controlled directional motion of objects in water, combined with electronic functionalities such as the emission of light, sensing, signal conversion, treatment and transmission. The approach is based on electric field-induced polarization, which triggers different chemical reactions at the surface of the object and thereby its propulsion. This results in a localized electric current that can power in a wireless way electronic devices in water, leading to a new class of electronic swimmers (e-swimmers).
Energy Savings by Treating Buildings as Systems
NASA Astrophysics Data System (ADS)
Harvey, L. D. Danny
2008-09-01
This paper reviews the opportunities for dramatically reducing energy use in buildings by treating buildings as systems, rather than focusing on device efficiencies. Systems-level considerations are relevant for the operation of heat pumps (where the temperatures at which heat or coldness are distributed are particularly important); the joint or separate provision of heating, cooling, and ventilation; the joint or separate removal of sensible heat and moisture; and in the operation of fluid systems having pumps. Passive heating, cooling, and ventilation, as well as daylighting (use of sunlight for lighting purposes) also require consideration of buildings as systems. In order to achieve the significant (50-75%) energy savings that are possible through a systems approach, the design process itself has to involve a high degree of integration between the architect and various engineering disciplines (structural, mechanical, electrical), and requires the systematic examination and adjustment of alternative designs using computer simulation models.
Electrically Tunable Integrated Thin-Film Magnetoelectric Resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Ghazaly, Amal; Evans, Joseph T.; Sato, Noriyuki
Magnetoelectrics have attracted much attention for their ability to control magnetic behavior electrically and electrical behavior magnetically. This feature provides numerous benefits to electronic systems and can potentially serve as the bridge needed to integrate magnetic devices into mainstream electronics. This natural next step is pursued and thin-film integrated magnetoelectric devices are produced for radio-frequency (RF) electronics. The first fully integrated, thin-film magnetoelectric modulators for tunable RF electronics are presented. Moreover, these devices provide electric field control of magnetic permeability in order to change the phase velocity and resonance frequency of coplanar waveguides. During this study, the various thin-film materialmore » phenomena, trade-offs, and integration considerations for composite magnetoelectrics are analyzed and discussed. The fabricated devices achieve reversible tunability of the resonance frequency, characterized by a remarkable converse magnetoelectric coupling coefficient of up to 24 mG cm V -1 using just thin films. Based on this work, suggestions are given for additional optimizations of future designs that will maximize the thin-film magnetoelectric interactions.« less
Electrically Tunable Integrated Thin-Film Magnetoelectric Resonators
El-Ghazaly, Amal; Evans, Joseph T.; Sato, Noriyuki; ...
2017-06-14
Magnetoelectrics have attracted much attention for their ability to control magnetic behavior electrically and electrical behavior magnetically. This feature provides numerous benefits to electronic systems and can potentially serve as the bridge needed to integrate magnetic devices into mainstream electronics. This natural next step is pursued and thin-film integrated magnetoelectric devices are produced for radio-frequency (RF) electronics. The first fully integrated, thin-film magnetoelectric modulators for tunable RF electronics are presented. Moreover, these devices provide electric field control of magnetic permeability in order to change the phase velocity and resonance frequency of coplanar waveguides. During this study, the various thin-film materialmore » phenomena, trade-offs, and integration considerations for composite magnetoelectrics are analyzed and discussed. The fabricated devices achieve reversible tunability of the resonance frequency, characterized by a remarkable converse magnetoelectric coupling coefficient of up to 24 mG cm V -1 using just thin films. Based on this work, suggestions are given for additional optimizations of future designs that will maximize the thin-film magnetoelectric interactions.« less
Sintered Cathodes for All-Solid-State Structural Lithium-Ion Batteries
NASA Technical Reports Server (NTRS)
Huddleston, William; Dynys, Frederick; Sehirlioglu, Alp
2017-01-01
All-solid-state structural lithium ion batteries serve as both structural load-bearing components and as electrical energy storage devices to achieve system level weight savings in aerospace and other transportation applications. This multifunctional design goal is critical for the realization of next generation hybrid or all-electric propulsion systems. Additionally, transitioning to solid state technology improves upon battery safety from previous volatile architectures. This research established baseline solid state processing conditions and performance benchmarks for intercalation-type layered oxide materials for multifunctional application. Under consideration were lithium cobalt oxide and lithium nickel manganese cobalt oxide. Pertinent characteristics such as electrical conductivity, strength, chemical stability, and microstructure were characterized for future application in all-solid-state structural battery cathodes. The study includes characterization by XRD, ICP, SEM, ring-on-ring mechanical testing, and electrical impedance spectroscopy to elucidate optimal processing parameters, material characteristics, and multifunctional performance benchmarks. These findings provide initial conditions for implementing existing cathode materials in load bearing applications.
NASA Astrophysics Data System (ADS)
Xu, Xueping; Han, Qinkai; Chu, Fulei
2018-03-01
The electromagnetic vibration of electrical machines with an eccentric rotor has been extensively investigated. However, magnetic saturation was often neglected. Moreover, the rub impact between the rotor and stator is inevitable when the amplitude of the rotor vibration exceeds the air-gap. This paper aims to propose a general electromagnetic excitation model for electrical machines. First, a general model which takes the magnetic saturation and rub impact into consideration is proposed and validated by the finite element method and reference. The dynamic equations of a Jeffcott rotor system with electromagnetic excitation and mass imbalance are presented. Then, the effects of pole-pair number and rubbing parameters on vibration amplitude are studied and approaches restraining the amplitude are put forward. Finally, the influences of mass eccentricity, resultant magnetomotive force (MMF), stiffness coefficient, damping coefficient, contact stiffness and friction coefficient on the stability of the rotor system are investigated through the Floquet theory, respectively. The amplitude jumping phenomenon is observed in a synchronous generator for different pole-pair numbers. The changes of design parameters can alter the stability states of the rotor system and the range of parameter values forms the zone of stability, which lays helpful suggestions for the design and application of the electrical machines.
The use of magnesium in lightweight lithium-ion battery packs
NASA Astrophysics Data System (ADS)
Neelameggham, Neale R.
2009-04-01
The analysis of recently announced battery packs for plug-in hybrid electric vehicles (PHEV) shows that the design of the series-parallel combinations is being over-complicated. The proven energy densities of lithium-ion cells from about 200 Wh/kg are being reduced to 90 Wh/kg. The majority of the weight increase seems to be for thermal management. Simpler battery pack designs based on electro-refining pot rooms using self-contained rectangular lithium-ion cells with air cooling inside of die-cast magnesium cell tanks would help avoid hauling dead weight in PHEV by providing considerable weight reduction.
Development of a non-cryogenic nitrogen/oxygen supply system. [for spacecraft environments
NASA Technical Reports Server (NTRS)
1977-01-01
Modular components were refined or replaced to improve the performance of the electrolysis module in a system which generates both oxygen and hydrogen from hydrazine hydrate. Significant mechanical and electrical performance improvements were achieved in the cathode. Improvements were also made in the phase separation area but at considerable cost in time and money and to the detriment of other investigative areas. Only the pump/bubble separator failed in a manner necessitating redesign. Its failure was, however, due to its being operated above the temperature range for which it was designed. The basic electrolysis cell design was not changed.
NASA Astrophysics Data System (ADS)
Juda, Z.
2016-09-01
The issue of protecting health of residents of urbanized areas from the effect of excessive particulate matter and toxic components of car exhaust gases imposes the need of introduction of clean electric vehicles to the market. The increasing market availability of electric vehicles, especially in the segment of short-range (neighborhood) vehicles is followed by development of new and advanced infrastructure solutions. This also applies to the increasingly popular hybrid vehicles PHEV (Plug-in Hybrid Electric Vehicles). However, problems with the existing designs are primarily associated with limited driving range on a single battery charge, the density of charging stations in urban and suburban area, energy system efficiency due to increased electricity demand and the unification of solutions for charging stations, on-board chargers and the necessary accessories. Technical solutions are dependent on many factors, including the type and size of battery in the vehicle and access to power grid with increased load capacity. The article discusses the legal and technical actions outlined in the above directions. It shows the available and planned solutions in this area.
1987-11-01
developed that can be used by circuit engineers to extract the maximum performance from the devices on various board technologies including multilayer ceramic...Design guidelines have been developed that can be used by circuit engineers to extract the maxi- mum performance from the devices on various board...25 Attenuation and Dispersion Effects ......................................... 27 Skin Effect
Study of percolation behavior depending on molecular structure design
NASA Astrophysics Data System (ADS)
Yu, Ji Woong; Lee, Won Bo
Each differently designed anisotropic nano-crystals(ANCs) are studied using Langevin dynamic simulation and their percolation behaviors are presented. Popular molecular dynamics software LAMMPS was used to design the system and perform the simulation. We calculated the minimum number density at which percolation occurs(i.e. percolation threshold), radial distribution function, and the average number of ANCs for a cluster. Electrical conductivity is improved when the number of transfers of electrons between ANCs, so called ''inter-hopping process'', which has the considerable contribution to resistance decreases and the number of inter-hopping process is directly related with the concentration of ANCs. Therefore, with the investigation of relationship between molecular architecture and percolation behavior, optimal design of ANC can be achieved.
Space Vehicle Powerdown Philosophies Derived from the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Willsey, Mark; Bailey, Brad
2011-01-01
In spaceflight, electrical power is a vital but limited resource. Almost every spacecraft system, from avionics to life support systems, relies on electrical power. Since power can be limited by the generation system s performance, available consumables, solar array shading, or heat rejection capability, vehicle power management is a critical consideration in spacecraft design, mission planning, and real-time operations. The purpose of this paper is to capture the powerdown philosophies used during the Space Shuttle Program. This paper will discuss how electrical equipment is managed real-time to adjust the overall vehicle power level to ensure that systems and consumables will support changing mission objectives, as well as how electrical equipment is managed following system anomalies. We will focus on the power related impacts of anomalies in the generation systems, air and liquid cooling systems, and significant environmental events such as a fire, decrease in cabin pressure, or micrometeoroid debris strike. Additionally, considerations for executing powerdowns by crew action or by ground commands from Mission Control will be presented. General lessons learned from nearly 30 years of Space Shuttle powerdowns will be discussed, including an in depth case-study of STS-117. During this International Space Station (ISS) assembly mission, a failure of computers controlling the ISS guidance, navigation, and control system required that the Space Shuttle s maneuvering system be used to maintain attitude control. A powerdown was performed to save power generation consumables, thus extending the docked mission duration and allowing more time to resolve the issue.
Design, Specification, and Synthesis of Aircraft Electric Power Systems Control Logic
NASA Astrophysics Data System (ADS)
Xu, Huan
Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, actuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based specifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considerations for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area. This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller. The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and dynamic state estimation is explored. Given a set placement of sensors on an electric power system, measurements from these sensors can be used in conjunction with control logic to infer the state of the system.
Electric utility pole yard training facility: Designing an effective learning environment
NASA Astrophysics Data System (ADS)
Topping, Robert P.
The primary responsibility of electric utilities is to supply consistent, dependable, and affordable energy to private customers, businesses, and industries. As with many businesses, electric utilities are experiencing the effects of an aging workforce and expending considerable resources to train their current and replacement workers. Community colleges can partner with electric utilities to provide effective learning environments for these workers, and gain access to new sources of revenue and community support for the colleges. The purpose of this study was to describe the functions, features, and major design issues of an effective learning environment for training electric utility industry workers, the electric utility line-worker pole yard. Case studies of three "state of the art" line-worker pole yard training environments provide the basis for the study's findings and implications. The study was guided by the following research questions: (1) What is the function of a line-worker pole yard in supporting effective training? (2) What are the features of present day ("state of the art") line-worker pole yard learning environments? and (3) What are the major issues that need to be addressed in designing a line-worker pole yard learning environment for the future? The study participants included industry representatives, training coordinators, instructors, and students from the three selected "state of the art" line-worker pole yard sites. The overall findings from the study resulted in composites of the desired features of learning outcomes, learning process, and learning environment for a line-worker pole yard training program and major issues that are affecting the future design of these training programs. Composite findings of a pole-yard training environment included unique features associated with: (a) outdoor, (b) indoor, (c) underground, (d) classroom, (e) gathering places, and (f) work-based learning components. Composite findings with regard to major issues that need to be considered in future designs of pole-yard training environments included: (a) available unrestricted land for expansion, (b) resource commitment level, (c) workforce demographics, (d) aging industrial infrastructure, (e) electronic information and communication capability, (f) quality and quantity of available instructors, and (g) environmental and economic impact.
Design of Inkjet-Printed RFID-Based Sensor on Paper: Single- and Dual-Tag Sensor Topologies.
Kim, Sangkil; Georgiadis, Apostolos; Tentzeris, Manos M
2018-06-17
The detailed design considerations for the printed RFID-based sensor system is presented in this paper. Starting from material selection and metallization method, this paper discusses types of RFID-based sensors (single- & dual-tag sensor topologies), design procedures, and performance evaluation methods for the wireless sensor system. The electrical properties of the paper substrates (cellulose-based and synthetic papers) and the silver nano-particle-based conductive film are thoroughly characterized for RF applications up to 8 GHz. The reported technology could potentially set the foundation for truly “green”, low-cost, scalable wireless topologies for autonomous Internet-of-Things (IoT), bio-monitoring, and “smart skin” applications.
Multipurpose microcontroller design for PUGAS 2
NASA Technical Reports Server (NTRS)
Weber, David M.; Deckard, Todd W.
1987-01-01
This paper will report on the past year's work on the development of the microcontroller design for the second Purdue University small self-contained payload. A first report on this effort was given at last year's conference by Ritter (1985). At that time, the project was still at the conceptual stage. Now a specific design has been set, prototyping has begun, and layout of the two-sided circuit board using CAD-techniques is nearing completion. A redesign of the overall concept of the circuit board was done to take advantage of the facilities available to students. An additional controller has been added to take large quantities of data concerning the shuttle environment during takeoff. The importance of setting a design time-line is discussed along with the electrical design considerations given to the controllers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, R.G.; Finney, D.; Davidson, D.F.
1988-07-01
The construction, testing, and installation of a 6500 r/min 15 000-hp adjustable-speed electric drive for a centrifugal gas compressor is presented. A power electronic converter is applied to control the speed of a 5-kV motor. The motor is directly coupled to a 6500 r/min compressor and replaced a steam turbine. Dual converters are used in a twelve-pulse arrangement at both the utility and the motor. The motor is of solid rotor construction, with dual 30/sup 0/ displaced stator windings. Finite-element analysis is used to optimize the motor designs for use with a variable-frequency static converter. Full-power tests are completed whichmore » confirm theoretical predictions on losses, performance, and operation. The electrical drive takes up considerably less space and is much more efficient than the steam turbine it replaced.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
... discuss safety considerations for electric vehicles powered by lithium-ion (Li-ion) batteries. The... technical symposium to discuss regulatory and safety considerations for lithium-ion (Li-ion) battery-powered... Li-ion batteries and Li-ion battery-powered vehicles, as well as presentations by the Department of...
Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles
in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability -electric vehicles (EVs)-also called electric-drive vehicles collectively-use electricity either as their charge the battery. Some can travel more than 70 miles on electricity alone, and all can operate solely
NERVA-Derived Nuclear Thermal Propulsion Dual Mode Operation
NASA Astrophysics Data System (ADS)
Zweig, Herbert R.; Hundal, Rolv
1994-07-01
Generation of electrical power using the nuclear heat source of a NERVA-derived nuclear thermal rocket engine is presented. A 111,200 N thrust engine defined in a study for NASA-LeRC in FY92 is the reference engine for a three-engine vehicle for which a 50 kWe capacity is required. Processes are described for energy extraction from the reactor and for converting the energy to electricity. The tie tubes which support the reactor fuel elements are the source of thermal energy. The study focuses on process systems using Stirling cycle energy conversion operating at 980 K and an alternate potassium-Rankine system operating at 1,140 K. Considerations are given of the effect of the power production on turbopump operation, ZrH moderator dissociation, creep strain in the tie tubes, hydrogen permeation through the containment materials, requirements for a backup battery system, and the effects of potential design changes on reactor size and criticality. Nuclear considerations include changing tie tube materials to TZM, changing the moderator to low vapor-pressure yttrium hydride, and changing the fuel form from graphite matrix to a carbon-carbide composite.
Viper cabin-fuselage structural design concept with engine installation and wing structural design
NASA Technical Reports Server (NTRS)
Marchesseault, B.; Carr, D.; Mccorkle, T.; Stevens, C.; Turner, D.
1993-01-01
This report describes the process and considerations in designing the cabin, nose, drive shaft, and wing assemblies for the 'Viper' concept aircraft. Interfaces of these assemblies, as well as interfaces with the sections of the aircraft aft of the cabin, are also discussed. The results of the design process are included. The goal of this project is to provide a structural design which complies with FAR 23 requirements regarding occupant safety, emergency landing loads, and maneuvering loads. The design must also address the interfaces of the various systems in the cabin, nose, and wing, including the drive shaft, venting, vacuum, electrical, fuel, and control systems. Interfaces between the cabin assembly and the wing carrythrough and empennage assemblies were required, as well. In the design of the wing assemblies, consistency with the existing cabin design was required. The major areas considered in this report are materials and construction, loading, maintenance, environmental considerations, wing assembly fatigue, and weight. The first three areas are developed separately for the nose, cabin, drive shaft, and wing assemblies, while the last three are discussed for the entire design. For each assembly, loading calculations were performed to determine the proper sizing of major load carrying components. Table 1.0 lists the resulting margins of safety for these key components, along with the types of the loads involved, and the page number upon which they are discussed.
Surface and interface modification science and technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.-H.
1999-07-19
Surface modification of solids is of scientific and technological interest due to its significant benefits in a wide variety of applications. Various coatings applications such as corrosion protection and electrical insulators and conductors are required for proper engineering design based on geometrical relationships between interfaces and on thermodynamic/kinetic considerations for the development of surface modifications. This paper will explore three basic examples: the proton conductor BaCeO{sub 3}, high-temperature protective coatings, and epitaxial relationships between interfaces.
2010-03-24
currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 24-03-2010 2. REPORT TYPE...Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER A Study of Solar Thermal Propulsion System...explored here are the optimization of thermal storage using a phase change material, design considerations assuming a microsatellite system in low Earth
Design considerations of a thermally stabilized continuous flow electrophoresis chamber 2
NASA Technical Reports Server (NTRS)
Jandebeur, T. S.
1982-01-01
The basic adjustable parameters of a Beckman Continouous Particle Electrophoresis (CPE) Apparatus are investigated to determine the optimum conditions for ground based operation for comparison with space experiments. The possible application of electrically insulated copper/aluminum chamber walls is evaluated as a means to thermally stabilize or equilibrate lateral temperature gradients which exist on the walls of conventional plastic chambers and which distort the rectilinear base flow of buffer through the chamber, significantly affecting sample resolution.
Motor efficiency: compare apples to apples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keinz, J.R.
1982-08-01
The efficiency differences between electric motors are now a significant cost consideration for many companies, but evaluating motor efficiency is not as straightforward as it should be. The buyer must look beyond the manufacturer's designated efficiency, which is too generalized, and the results of independent tests, which vary because of the difficulty in establishing standard conditions. Manufacturers may be following established testing procedures, but not labeling in accordance with the standards. Manufacturers should also supply efficiency versus load-curve data. (DCK)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nero, A.V.; Quinby-Hunt, M.S.
1977-01-01
This report sets forth methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities for electric power generation. The review is divided into a Notice of Intention process and an Application for Certification process, in accordance with the structure to be used by the California Energy Resources Conservation and Development Commission, the first emphasizing site-specific considerations, the second examining the detailed facility design as well. The Notice of Intention review is divided into three possible stages: an examination of emissions and site characteristics, a basic impact analysis, and an assessment of publicmore » impacts. The Application for Certification review is divided into five possible stages: a review of the Notice of Intention treatment, review of the emission control equipment, review of the safety design, review of the general facility design, and an overall assessment of site and facility acceptability.« less
Conceptual Design of a 100kW Energy Integrated Type Bi-Directional Tidal Current Turbine
NASA Astrophysics Data System (ADS)
Kim, Ki Pyoung; Ahmed, M. Rafiuddin; Lee, Young Ho
2010-06-01
The development of a tidal current turbine that can extract maximum energy from the tidal current will be extremely beneficial for supplying continuous electric power. The present paper presents a conceptual design of a 100kW energy integrated type tidal current turbine for tidal power generation. The instantaneous power density of a flowing fluid incident on an underwater turbine is proportional to the cubic power of current velocity which is approximately 2.5m/s. A cross-flow turbine, provided with a nozzle and a diffuser, is designed and analyzed. The potential advantages of ducted and diffuser-augmented turbines were taken into consideration in order to achieve higher output at a relatively low speed. This study looks at a cross-flow turbine system which is placed in an augmentation channel to generate electricity bi-directionally. The compatibility of this turbine system is verified using a commercial CFD code, ANSYSCFX. This paper presents the results of the numerical analysis in terms of pressure, streaklines, velocity vectors and performance curves for energy integrated type bi-directional tidal current turbine (BDT) with augmentation.
Liu, Jui-Nung; Schulmerich, Matthew V.; Bhargava, Rohit; Cunningham, Brian T.
2011-01-01
An alternative to the well-established Fourier transform infrared (FT-IR) spectrometry, termed discrete frequency infrared (DFIR) spectrometry, has recently been proposed. This approach uses narrowband mid-infrared reflectance filters based on guided-mode resonance (GMR) in waveguide gratings, but filters designed and fabricated have not attained the spectral selectivity (≤ 32 cm−1) commonly employed for measurements of condensed matter using FT-IR spectroscopy. With the incorporation of dispersion and optical absorption of materials, we present here optimal design of double-layer surface-relief silicon nitride-based GMR filters in the mid-IR for various narrow bandwidths below 32 cm−1. Both shift of the filter resonance wavelengths arising from the dispersion effect and reduction of peak reflection efficiency and electric field enhancement due to the absorption effect show that the optical characteristics of materials must be taken into consideration rigorously for accurate design of narrowband GMR filters. By incorporating considerations for background reflections, the optimally designed GMR filters can have bandwidth narrower than the designed filter by the antireflection equivalence method based on the same index modulation magnitude, without sacrificing low sideband reflections near resonance. The reported work will enable use of GMR filters-based instrumentation for common measurements of condensed matter, including tissues and polymer samples. PMID:22109445
An experimental analysis of electricity conservation procedures1
Palmer, Michael H.; Lloyd, Margaret E.; Lloyd, Kenneth E.
1977-01-01
Daily electricity consumption of four families was recorded for 106 days. A reversal design, consisting of various experimental conditions interspersed between repeated baseline conditions, was used. During experimental conditions, daily prompts (written conservation slogans attached to front doors) and/or daily feedback (daily kilowatts consumed and daily cost information) were in effect. Maximum consumption occurred during the initial baseline; minimum consumption occurred during different experimental conditions for different families. The mean decrease from the maximum to the minimum for all families was 35%. Reversals in consumption were demonstrated in three families, although successive baselines tended to decrease. No clear differences in effectiveness between prompting and feedback conditions were apparent. The procedures used resulted in considerable dollar savings for the families. PMID:16795572
NASA Technical Reports Server (NTRS)
Chamberlain, R. G.; Mcmaster, K. M.
1981-01-01
The utility owned solar electric system methodology is generalized and updated. The net present value of the system is determined by consideration of all financial benefits and costs (including a specified return on investment). Life cycle costs, life cycle revenues, and residual system values are obtained. Break even values of system parameters are estimated by setting the net present value to zero. While the model was designed for photovoltaic generators with a possible thermal energy byproduct, it applicability is not limited to such systems. The resulting owner-dependent methodology for energy generation system assessment consists of a few equations that can be evaluated without the aid of a high-speed computer.
The OTEC connection - Power from the sea
NASA Astrophysics Data System (ADS)
Petty, D.
1980-02-01
OTEC is discussed as a means of contributing to United States energy self-sufficiency. The technology involved in the conversion of ocean thermal gradients found in tropical regions to electricity transmittable by submarine cable is examined, with attention given to the operating principles of open- and closed-cycle Rankine engines and design considerations for the evaporators, condensers and heat exchangers. The environmental impact and economics of OTEC are considered, and Department of Energy research projects in areas of OTEC technology including heat transfer, biofouling, environmental assessment, underwater electrical transmission and mooring and test plants are indicated. It is pointed out that US islands presently offer excellent markets for early commercial OTEC plants, with Gulf Coast markets requiring further technology developments to be economically attractive.
Detecting technology of biophotons
NASA Astrophysics Data System (ADS)
Ma, Junfu; Zhu, Zhaohui; Zhu, Yanbin
2002-03-01
A key technique of detecting the ultra-weak photon emission from biological system (UPE) is to change the light signal of an extremely weak level into electric signal of a considerable level when the photo-electric detecting system were be applied. This paper analyzed the difficult for detecting the ultra-weak photon emission from biological system (UPE) mainly is in the absence of high sensitivity detector in UV-visible-infra spectra region. An experimental setup for testing UPE in different spectral region was designed. Using the experimental setup the test data of different several spectral regions from 300 nm to 1060 nm has were tested. The test result show the UPE of living biological system exists in wide spectra region from UV- visible to infrared.
Application of Solar-Electric Propulsion to Robotic and Human Missions in Near-Earth Space
NASA Technical Reports Server (NTRS)
Woodcock, Gordon
2006-01-01
Solar-electric propulsion (SEP) is becoming of interest for application to a wide range of missions. The benefits of SEP are strongly influenced by system element performance, especially that for the power system. Solar array performance is increasing rapidly and promises to continue to do so for another 10 to 20 years (Fig. 1). At the same time, cost per watt is decreasing. Radiation hardness is increasing. New concepts for how to design a SEP are emerging. These improvements lead to changes in the best ways to apply SEP technology to missions, and broadening of the practical uses of SEP technology compared to competing technologies. This paper addresses the evolving characteristics of SEP technology from the point of view of mission design, and how mission profile characteristics can be designed to best take advantage of evolving SEP characteristics. Mission concepts include robotic lunar landers and orbiters; scientific planetary spacecraft; delivery of spacecraft to geosynchronous orbit from inclined and low-inclination launch orbits; and lunar cargo delivery from Earth orbit to lunar orbit. Expendable and re-usable SEP profiles are considered. Flight control considerations are abstracted from recent papers by the author to describe how these influence SEP design and operations.
Low-cost modular array-field designs for flat-panel and concentrator photovoltaic systems
NASA Astrophysics Data System (ADS)
Post, H. N.; Carmichael, D. C.; Alexander, G.; Castle, J. A.
1982-09-01
Described are the design and development of low-cost, modular array fields for flat-panel and concentrator photovoltaic (PV) systems. The objective of the work was to reduce substantially the cost of the array-field Balance-of-System (BOS) subsystems and site-specific design costs as compared to previous PV installations. These subsystems include site preparation, foundations, support structures, electrical writing, grounding, lightning protection, electromagnetic interference considerations, and controls. To reduce these BOS and design costs, standardized modular (building-block) designs for flat-panel and concentrator array fields have been developed that are fully integrated and optimized for lowest life-cycle costs. Using drawings and specifications now available, these building-block designs can be used in multiples to install various size array fields. The developed designs are immediately applicable (1982) and reduce the array-field BOS costs to a fraction of previous costs.
Piezoelectric line moment actuator for active radiation control from light-weight structures
NASA Astrophysics Data System (ADS)
Jandak, Vojtech; Svec, Petr; Jiricek, Ondrej; Brothanek, Marek
2017-11-01
This article outlines the design of a piezoelectric line moment actuator used for active structural acoustic control. Actuators produce a dynamic bending moment that appears in the controlled structure resulting from the inertial forces when the attached piezoelectric stripe actuators start to oscillate. The article provides a detailed theoretical analysis necessary for the practical realization of these actuators, including considerations concerning their placement, a crucial factor in the overall system performance. Approximate formulas describing the dependency of the moment amplitude on the frequency and the required electric voltage are derived. Recommendations applicable for the system's design based on both theoretical and empirical results are provided.
Su, Jiaye; Guo, Hongxia
2011-01-25
The transport of water molecules through nanopores is not only crucial to biological activities but also useful for designing novel nanofluidic devices. Despite considerable effort and progress that has been made, a controllable and unidirectional water flow is still difficult to achieve and the underlying mechanism is far from being understood. In this paper, using molecular dynamics simulations, we systematically investigate the effects of an external electric field on the transport of single-file water molecules through a carbon nanotube (CNT). We find that the orientation of water molecules inside the CNT can be well-tuned by the electric field and is strongly coupled to the water flux. This orientation-induced water flux is energetically due to the asymmetrical water-water interaction along the CNT axis. The wavelike water density profiles are disturbed under strong field strengths. The frequency of flipping for the water dipoles will decrease as the field strength is increased, and the flipping events vanish completely for the relatively large field strengths. Most importantly, a critical field strength E(c) related to the water flux is found. The water flux is increased as E is increased for E ≤ E(c), while it is almost unchanged for E > E(c). Thus, the electric field offers a level of governing for unidirectional water flow, which may have some biological applications and provides a route for designing efficient nanopumps.
Truong, Dennis Q; Hüber, Mathias; Xie, Xihe; Datta, Abhishek; Rahman, Asif; Parra, Lucas C; Dmochowski, Jacek P; Bikson, Marom
2014-01-01
Computational models of brain current flow during transcranial electrical stimulation (tES), including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), are increasingly used to understand and optimize clinical trials. We propose that broad dissemination requires a simple graphical user interface (GUI) software that allows users to explore and design montages in real-time, based on their own clinical/experimental experience and objectives. We introduce two complimentary open-source platforms for this purpose: BONSAI and SPHERES. BONSAI is a web (cloud) based application (available at neuralengr.com/bonsai) that can be accessed through any flash-supported browser interface. SPHERES (available at neuralengr.com/spheres) is a stand-alone GUI application that allow consideration of arbitrary montages on a concentric sphere model by leveraging an analytical solution. These open-source tES modeling platforms are designed go be upgraded and enhanced. Trade-offs between open-access approaches that balance ease of access, speed, and flexibility are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.
Reyes, Miguel Angel; Novak, Thomas
2016-03-01
Large lead-acid batteries are predominantly used throughout the mining industry to power haulage, utility, and personnel-carrier vehicles. Without proper operation and maintenance, the use of these batteries can introduce mechanical and electrical hazards, particularly in the confined, and potentially dangerous, environment of an underground coal mine. A review of the Mine Safety and Health Administration accident/illness/injury database reveals that a significant number of injuries occur during the maintenance and repair of lead-acid batteries. These injuries include burns from electrical arcing and acid exposure, as well as strained muscles and crushed hands. The National Institute for Occupational Safety and Health investigated the design and implementation of these batteries to identify safety interventions that can mitigate these inherent hazards. This paper promotes practical design modifications, such as reducing the size and weight of battery assembly lids in conjunction with lift assists, as well as using five-pole cable connectors to improve safety.
High Efficiency Nuclear Power Plants using Liquid Fluoride Thorium Reactor Technology
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan
2009-01-01
An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITS of 950 K and 1200 K are presented. Power plant performance data were obtained for TITS ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo -generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.
Reyes, Miguel Angel; Novak, Thomas
2016-01-01
Large lead-acid batteries are predominantly used throughout the mining industry to power haulage, utility, and personnel-carrier vehicles. Without proper operation and maintenance, the use of these batteries can introduce mechanical and electrical hazards, particularly in the confined, and potentially dangerous, environment of an underground coal mine. A review of the Mine Safety and Health Administration accident/illness/injury database reveals that a significant number of injuries occur during the maintenance and repair of lead-acid batteries. These injuries include burns from electrical arcing and acid exposure, as well as strained muscles and crushed hands. The National Institute for Occupational Safety and Health investigated the design and implementation of these batteries to identify safety interventions that can mitigate these inherent hazards. This paper promotes practical design modifications, such as reducing the size and weight of battery assembly lids in conjunction with lift assists, as well as using five-pole cable connectors to improve safety. PMID:27784953
A photovoltaic generator on coconut island
NASA Astrophysics Data System (ADS)
Sheridan, N. R.
A description is given of the design principles of a photovoltaic—diesel power generator that has been constructed on Coconut Island, Torres Strait, to supply a village of 130 people with 240 V: 50 Hz electricity. Even though the solar fraction is only 0.4, the system sets a precedent for Australia with an array size of 23 kW. The uniqueness arises, however, from the fact that it is a stand-alone, inverter-driven system of considerable size with a sine-wave output.
Specifications and Standards for the Electric Warship
2013-04-01
number of professional societies issue standards documents. For the electric warship, IEEE, IEC, NEMA , ASTM, SAE and API are likely to be the sources...consideration should be given to referencing National Electrical Manufacturers Association ( NEMA ) specifications such as NEMA 250 Enclosures for Electrical
Development of Parametric Mass and Volume Models for an Aerospace SOFC/Gas Turbine Hybrid System
NASA Technical Reports Server (NTRS)
Tornabene, Robert; Wang, Xiao-yen; Steffen, Christopher J., Jr.; Freeh, Joshua E.
2005-01-01
In aerospace power systems, mass and volume are key considerations to produce a viable design. The utilization of fuel cells is being studied for a commercial aircraft electrical power unit. Based on preliminary analyses, a SOFC/gas turbine system may be a potential solution. This paper describes the parametric mass and volume models that are used to assess an aerospace hybrid system design. The design tool utilizes input from the thermodynamic system model and produces component sizing, performance, and mass estimates. The software is designed such that the thermodynamic model is linked to the mass and volume model to provide immediate feedback during the design process. It allows for automating an optimization process that accounts for mass and volume in its figure of merit. Each component in the system is modeled with a combination of theoretical and empirical approaches. A description of the assumptions and design analyses is presented.
Is It Better to Burn or Bury Waste for Clean Electricity Generation?
The generation of electricity through renewables has increased 5% since 2002. Although considerably less prominent than solar and wind, the use of municipal solid waste (MSW) to generate electricity represents roughly 14 percent of U.S. non-hydro renewable electricity generation....
High-Lift Propeller Noise Prediction for a Distributed Electric Propulsion Flight Demonstrator
NASA Technical Reports Server (NTRS)
Nark, Douglas M.; Buning, Pieter G.; Jones, William T.; Derlaga, Joseph M.
2017-01-01
Over the past several years, the use of electric propulsion technologies within aircraft design has received increased attention. The characteristics of electric propulsion systems open up new areas of the aircraft design space, such as the use of distributed electric propulsion (DEP). In this approach, electric motors are placed in many different locations to achieve increased efficiency through integration of the propulsion system with the airframe. Under a project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR), NASA is designing a flight demonstrator aircraft that employs many "high-lift propellers" distributed upstream of the wing leading edge and two cruise propellers (one at each wingtip). As the high-lift propellers are operational at low flight speeds (take-off/approach flight conditions), the impact of the DEP configuration on the aircraft noise signature is also an important design consideration. This paper describes efforts toward the development of a mulit-fidelity aerodynamic and acoustic methodology for DEP high-lift propeller aeroacoustic modeling. Specifically, the PAS, OVERFLOW 2, and FUN3D codes are used to predict the aerodynamic performance of a baseline high-lift propeller blade set. Blade surface pressure results from the aerodynamic predictions are then used with PSU-WOPWOP and the F1A module of the NASA second generation Aircraft NOise Prediction Program to predict the isolated high-lift propeller noise source. Comparisons of predictions indicate that general trends related to angle of attack effects at the blade passage frequency are captured well with the various codes. Results for higher harmonics of the blade passage frequency appear consistent for the CFD based methods. Conversely, evidence of the need for a study of the effects of increased azimuthal grid resolution on the PAS based results is indicated and will be pursued in future work. Overall, the results indicate that the computational approach is acceptable for fundamental assessment of low-noise high-lift propeller designs. The extent to which the various approaches may be used in a complementary manner will be further established as measured data becomes available for validation. Ultimately, it is anticipated that this combined approach may be used to provide realistic incident source fields for acoustic shielding/scattering studies on various aircraft configurations.
NASA Astrophysics Data System (ADS)
Jia; Lu
2016-01-01
The considerable electric-induced shape change, together with the attributes of lightweight, high efficiency, and inexpensive cost, makes dielectric elastomer, a promising soft active material for the realization of actuators in broad applications. Although, a number of prototype devices have been demonstrated in the past few years, the further development of this technology necessitates adequate analytical and numerical tools. Especially, previous theoretical studies always neglect the influence of surrounding medium. Due to the large deformation and nonlinear equations of states involved in dielectric elastomer, finite element method (FEM) is anticipated; however, the few available formulations employ homemade codes, which are inconvenient to implement. The aim of this work is to present a numerical approach with the commercial FEM package COMSOL to investigate the nonlinear response of dielectric elastomer under electric stimulation. The influence of surrounding free space on the electric field is analyzed and the corresponding electric force is taken into account through an electric surface traction on the circumstances edge. By employing Maxwell stress tensor as actuation pressure, the mechanical and electric governing equations for dielectric elastomer are coupled, and then solved simultaneously with the Gent model of stain energy to derive the electric induced large deformation as well as the electromechanical instability. The finite element implementation presented here may provide a powerful computational tool to help design and optimize the engineering applications of dielectric elastomer.
SP-100 GES/NAT radiation shielding systems design and development testing
NASA Astrophysics Data System (ADS)
Disney, Richard K.; Kulikowski, Henry D.; McGinnis, Cynthia A.; Reese, James C.; Thomas, Kevin; Wiltshire, Frank
1991-01-01
Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.
Modular space station detailed preliminary design. Volume 1: Sections 1 through 4.4
NASA Technical Reports Server (NTRS)
1971-01-01
Detailed configuration and subsystems preliminary design data are presented for the modular space station concept. Each module comprising the initial space station is described in terms of its external and internal configuration, its functional responsibilities to the initial cluster, and its orbital build up sequence. Descriptions of the subsequent build up to the growth space station are also presented. Analytical and design techniques, tradeoff considerations, and depth of design detail are discussed for each subsystem. The subsystems include the following: structural/mechanical; crew habitability and protection; experiment support; electrical power; environmental control/life support; guidance, navigation, and control; propulsion; communications; data management; and onboard checkout subsystems. The interfaces between the station and other major elements of the program are summarized. The rational for a zero-gravity station, in lieu of one with artificial-gravity capability, is also summarized.
NASA Technical Reports Server (NTRS)
1974-01-01
The task phase concerned with the requirements, design, and planning studies for the carry-on laboratory (COL) began with a definition of biomedical research areas and candidate research equipment, and then went on to develop conceptual layouts for COL which were each evaluated in order to arrive at a final conceptual design. Each step in this design/evaluation process concerned itself with man/systems integration research and hardware, and life support and protective systems research and equipment selection. COL integration studies were also conducted and include attention to electrical power and data management requirements, operational considerations, and shuttle/Spacelab interface specifications. A COL program schedule was compiled, and a cost analysis was finalized which takes into account work breakdown, annual funding, and cost reduction guidelines.
Electrostrictive Polymers for Mechanical-to-Electrical Energy Harvesting
usable electrical energy. Piezoelectric ceramic-based devices have long been used in energy harvesting for converting mechanical motion to electrical ...typically softer and more flexible, the translated electrical energy output is considerably higher under the same mechanical force. Currently...investigations in using electroactive polymers for energy harvesting, and mechanical-to- electrical energy conversion, are beginning to show potential for
Losses in chopper-controlled DC series motors
NASA Technical Reports Server (NTRS)
Hamilton, H. B.
1982-01-01
Motors for electric vehicle (EV) applications must have different features than dc motors designed for industrial applications. The EV motor application is characterized by the following requirements: (1) the need for highest possible efficiency from light load to overload, for maximum EV range, (2) large short time overload capability (The ratio of peak to average power varies from 5/1 in heavy city traffic to 3/1 in suburban driving situations) and (3) operation from power supply voltage levels of 84 to 144 volts (probably 120 volts maximum). A test facility utilizing a dc generator as a substitute for a battery pack was designed and utilized. Criteria for the design of such a facility are presented. Two motors, differing in design detail, commercially available for EV use were tested. Losses measured are discussed, as are waves forms and their harmonic content, the measurements of resistance and inductance, EV motor/chopper application criteria, and motor design considerations.
NASA Astrophysics Data System (ADS)
Wang, Hong; Duan, Huanlin; Chen, Aidong
2018-02-01
In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.
Portelli, Lucas A; Falldorf, Karsten; Thuróczy, György; Cuppen, Jan
2018-04-01
Experiments on cell cultures exposed to extremely low frequency (ELF, 3-300 Hz) magnetic fields are often subject to multiple sources of uncertainty associated with specific electric and magnetic field exposure conditions. Here we systemically quantify these uncertainties based on exposure conditions described in a group of bioelectromagnetic experimental reports for a representative sampling of the existing literature. The resulting uncertainties, stemming from insufficient, ambiguous, or erroneous description, design, implementation, or validation of the experimental methods and systems, were often substantial enough to potentially make any successful reproduction of the original experimental conditions difficult or impossible. Without making any assumption about the true biological relevance of ELF electric and magnetic fields, these findings suggest another contributing factor which may add to the overall variability and irreproducibility traditionally associated with experimental results of in vitro exposures to low-level ELF magnetic fields. Bioelectromagnetics. 39:231-243, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Simulation of an Asynchronous Machine by using a Pseudo Bond Graph
NASA Astrophysics Data System (ADS)
Romero, Gregorio; Felez, Jesus; Maroto, Joaquin; Martinez, M. Luisa
2008-11-01
For engineers, computer simulation, is a basic tool since it enables them to understand how systems work without actually needing to see them. They can learn how they work in different circumstances and optimize their design with considerably less cost in terms of time and money than if they had to carry out tests on a physical system. However, if computer simulation is to be reliable it is essential for the simulation model to be validated. There is a wide range of commercial brands on the market offering products for electrical domain simulation (SPICE, LabVIEW PSCAD,Dymola, Simulink, Simplorer,...). These are powerful tools, but require the engineer to have a perfect knowledge of the electrical field. This paper shows an alternative methodology to can simulate an asynchronous machine using the multidomain Bond Graph technique and apply it in any program that permit the simulation of models based in this technique; no extraordinary knowledge of this technique and electric field are required to understand the process .
Potentialities of TEC topping: A simplified view of parametric effects
NASA Technical Reports Server (NTRS)
Morris, J. F.
1980-01-01
An examination of the benefits of thermionic-energy-conversion (TEC)-topped power plants and methods of increasing conversion efficiency are discussed. Reductions in the cost of TEC modules yield direct decreases in the cost of electricity (COE) from TEC-topped central station power plants. Simplified COE, overall-efficiency charts presented illustrate this trend. Additional capital-cost diminution results from designing more compact furnaces with considerably increased heat transfer rates allowable and desirable for high temperature TEC and heat pipes. Such improvements can evolve of the protection from hot corrosion and slag as well as the thermal expansion compatibilities offered by silicon-carbide clads on TEC-heating surfaces. Greater efficiencies and far fewer modules are possible with high-temperature, high-power-density TEC: This decreases capital and fuel costs much more and substantially increases electric power outputs for fixed fuel inputs. In addition to more electricity, less pollution, and lower costs, TEC topping used directly in coal-combustion products contributes balance-of-payment gains.
Power harvesting using PZT ceramics embedded in orthopedic implants.
Chen, Hong; Liu, Ming; Jia, Chen; Wang, Zihua
2009-09-01
Battery lifetime has been the stumbling block for many power-critical or maintenance-free real-time embedded applications, such as wireless sensors and orthopedic implants. Thus a piezoelectric material that could convert human motion into electrical energy provides a very attractive solution for clinical implants. In this work, we analyze the power generation characteristics of stiff lead zirconate titanate (PZT) ceramics and the equivalent circuit through extensive experiments. Our experimental framework allows us to explore many important design considerations of such a PZT-based power generator. Overall we can achieve a PZT element volume of 0.5 x 0.5 x 1.8 cm, which is considerably smaller than the results reported so far. Finally, we outline the application of our PZT elements in a total knee replacement (TKR) implant.
Going Green with Electric Vehicles
ERIC Educational Resources Information Center
Deal, Walter F., III
2010-01-01
There is considerable interest in electric and hybrid cars because of environmental and climate change concerns, tougher fuel efficiency standards, and increasing dependence on imported oil. In this article, the author describes the history of electric vehicles in the automotive world and discusses the components of a hybrid electric vehicle.…
Application of multi-function display and control technology
NASA Technical Reports Server (NTRS)
Spiger, R. J.; Farrell, R. J.; Holcomb, G. A.
1982-01-01
The NASA orbiter spacecraft incorporates a complex array of systems, displays, and controls. The incorporation of discrete dedicated controls into a multifunction display and control system (MFDCS) offers the potential for savings in weight, power, panel space, and crew training time. Technology identified as applicable to a MFDCS is applied to the orbiter orbital maneuvering system (OMS) and the electrical power distribution and control system (EPDCS) to derive concepts for a MFDCS design. Several concepts of varying degrees of performance and complexity are discussed and a suggested concept for further development is presented in greater detail. Both the hardware and software aspects and the human factors considerations of the designs are included.
Wind energy - A utility perspective
NASA Astrophysics Data System (ADS)
Fung, K. T.; Scheffler, R. L.; Stolpe, J.
1981-03-01
Broad consideration is given to the siting, demand, capital and operating cost and wind turbine design factors involved in a utility company's incorporation of wind powered electrical generation into existing grids. With the requirements of the Southern California Edison service region in mind, it is concluded that although the economic and legal climate for major investments in windpower are favorable, the continued development of large only wind turbine machines (on the scale of NASA's 2.5 MW Mod-2 design) is imperative in order to reduce manpower and maintenance costs. Stress is also put on the use of demonstration projects for both vertical and horizontal axis devices, in order to build up operational experience and confidence.
AC Loss Analysis of MgB2-Based Fully Superconducting Machines
NASA Astrophysics Data System (ADS)
Feddersen, M.; Haran, K. S.; Berg, F.
2017-12-01
Superconducting electric machines have shown potential for significant increase in power density, making them attractive for size and weight sensitive applications such as offshore wind generation, marine propulsion, and hybrid-electric aircraft propulsion. Superconductors exhibit no loss under dc conditions, though ac current and field produce considerable losses due to hysteresis, eddy currents, and coupling mechanisms. For this reason, many present machines are designed to be partially superconducting, meaning that the dc field components are superconducting while the ac armature coils are conventional conductors. Fully superconducting designs can provide increases in power density with significantly higher armature current; however, a good estimate of ac losses is required to determine the feasibility under the machines intended operating conditions. This paper aims to characterize the expected losses in a fully superconducting machine targeted towards aircraft, based on an actively-shielded, partially superconducting machine from prior work. Various factors are examined such as magnet strength, operating frequency, and machine load to produce a model for the loss in the superconducting components of the machine. This model is then used to optimize the design of the machine for minimal ac loss while maximizing power density. Important observations from the study are discussed.
Design and development of an IoT-based web application for an intelligent remote SCADA system
NASA Astrophysics Data System (ADS)
Kao, Kuang-Chi; Chieng, Wei-Hua; Jeng, Shyr-Long
2018-03-01
This paper presents a design of an intelligent remote electrical power supervisory control and data acquisition (SCADA) system based on the Internet of Things (IoT), with Internet Information Services (IIS) for setting up web servers, an ASP.NET model-view- controller (MVC) for establishing a remote electrical power monitoring and control system by using responsive web design (RWD), and a Microsoft SQL Server as the database. With the web browser connected to the Internet, the sensing data is sent to the client by using the TCP/IP protocol, which supports mobile devices with different screen sizes. The users can provide instructions immediately without being present to check the conditions, which considerably reduces labor and time costs. The developed system incorporates a remote measuring function by using a wireless sensor network and utilizes a visual interface to make the human-machine interface (HMI) more instinctive. Moreover, it contains an analog input/output and a basic digital input/output that can be applied to a motor driver and an inverter for integration with a remote SCADA system based on IoT, and thus achieve efficient power management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, A.; Noravian, H.; Or, C.
1997-12-31
This paper presents the background and introduction to the OSC AMTEC (Alkali Metal Thermal-to-Electrical Conversion) studies, which were conducted for the Department of energy (DOE) and NASA`s jet Propulsion Laboratory (JPL). After describing the basic principle of AMTEC, the paper describes and explains the operation of multi-tube vapor/vapor cells, which have been under development by AMPS (Advance Modular Power Systems, Inc.) for the Air Force Phillips Laboratory (AFPL) and JPL for possible application to the Europa Orbiter, Pluto Express, and other space missions. It then describes a novel OSC-generated methodology for analyzing the performance of such cells. This methodology consistsmore » of an iterative procedure for the coupled solution of the interdependent thermal, electrical, and fluid flow differential and integral equations governing the performance of AMTEC cells and generators, taking proper account of the non-linear axial variations of temperature, pressure, open-circuit voltage, inter-electrode voltages, current density, axial current, sodium mass flow rate, and power density. The paper illustrates that analytical procedure by applying it to OSC`s latest cell design and by presenting detailed analytical results for that design. The OSC-developed analytic methodology constitutes a unique and powerful tool for accurate parametric analyses and design optimizations of the multi-tube AMTEC cells and of radioisotope power systems. This is illustrated in two companion papers in these proceedings. The first of those papers applies the OSC-derived program to determine the effect of various design parameters on the performance of single AMTEC cells with adiabatic side walls, culminating in an OSC-recommended revised cell design. And the second describes a number of OSC-generated AMTEC generator designs consisting of 2 and 3 GPHS heat source modules, 16 multi-tube converter cells, and a hybrid insulation design, and presents the results of applying the above analysis program to determine the applicability of those generators to possible future missions under consideration by NASA.« less
Magnetic-Assisted, Self-Healable, Yarn-Based Supercapacitor.
Huang, Yang; Huang, Yan; Zhu, Minshen; Meng, Wenjun; Pei, Zengxia; Liu, Chang; Hu, Hong; Zhi, Chunyi
2015-06-23
Yarn-based supercapacitors have received considerable attention recently, offering unprecedented opportunities for future wearable electronic devices (e.g., smart clothes). However, the reliability and lifespan of yarn-based supercapacitors can be seriously limited by accidental mechanical damage during practical applications. Therefore, a supercapacitor endowed with mechanically and electrically self-healing properties is a brilliant solution to the challenge. Compared with the conventional planar-like or large wire-like structure, the reconnection of the broken yarn electrode composed of multiple tiny fibers (diameter <20 μm) is much more difficult and challenging, which directly affects the restoration of electrical conductivity after damage. Herein, a self-healable yarn-based supercapacitor that ensures the reconnection of broken electrodes has been successfully developed by wrapping magnetic electrodes around a self-healing polymer shell. The strong force from magnetic attraction between the broken yarn electrodes benefits reconnection of fibers in the yarn electrodes during self-healing and thus offers an effective strategy for the restoration of electric conductivity, whereas the polymer shell recovers the configuration integrity and mechanical strength. With the design, the specific capacitance of our prototype can be restored up to 71.8% even after four breaking/healing cycles with great maintenance of the whole device's mechanical properties. This work may inspire the design and fabrication of other distinctive self-healable and wearable electronic devices.
Electromagnetic Pumps for Conductive-Propellant Feed Systems
NASA Technical Reports Server (NTRS)
Markusic, T. E.; Polzin, K. A.
2005-01-01
There has been a recent, renewed interest in high-power electric thrusters for application in nuclear-electric propulsion systems. Two of the most promising thrusters utilize liquid metal propellants: the lithium-fed magnetoplasmadynamic thruster and the bismuth-fed Hall thruster. An important element of part of the maturation of these thrusters will be the development of compact, reliable conductive-propellant feed system components. In the present paper we provide design considerations and experimental calibration data for electromagnetic (EM) pumps. The role of an electromagnetic pump in a liquid metal feed system is to establish a pressure gradient between the propellant reservoir and the thruster - to establish the requisite mass flow rate. While EM pumps have previously been used to a limited extent in nuclear reactor cooling loops, they have never been implemented in electric propulsion (EP) systems. The potential benefit of using EM pumps for EP are reliability (no moving parts) and the ability to precisely meter the propellant flow rate. We have constructed and tested EM pumps that use gallium, lithium, and bismuth propellants. Design details, test results (pressure developed versus current), and material compatibility issues are reported. It is concluded that EM pumps are a viable technology for application in both laboratory and flight EP conductive-propellant feed systems.
A quantitative method for photovoltaic encapsulation system optimization
NASA Technical Reports Server (NTRS)
Garcia, A., III; Minning, C. P.; Cuddihy, E. F.
1981-01-01
It is pointed out that the design of encapsulation systems for flat plate photovoltaic modules requires the fulfillment of conflicting design requirements. An investigation was conducted with the objective to find an approach which will make it possible to determine a system with optimum characteristics. The results of the thermal, optical, structural, and electrical isolation analyses performed in the investigation indicate the major factors in the design of terrestrial photovoltaic modules. For defect-free materials, minimum encapsulation thicknesses are determined primarily by structural considerations. Cell temperature is not strongly affected by encapsulant thickness or thermal conductivity. The emissivity of module surfaces exerts a significant influence on cell temperature. Encapsulants should be elastomeric, and ribs are required on substrate modules. Aluminum is unsuitable as a substrate material. Antireflection coating is required on cell surfaces.
Skylab electronic technological advancements
NASA Technical Reports Server (NTRS)
Hornback, G. L.
1974-01-01
The present work describes three electronic devices designed for use in the Skylab airlock module: the teleprinter system, the quartz crystal microbalance contamination monitor (QCM), and the speaker. Design considerations, operation, characteristics, and system development are described for these systems, with accompanying diagrams, graphs, and photographs. The teleprinter is a thermal dot printer used to produce hard copy messages by electrically heating print elements in contact with heat-sensitive paper. The QCM was designed to estimate contamination buildup on optical surfaces of the earth resources experiment package. A vibrating quartz crystal is used as a microbalance relating deposited mass to shifts in the crystal's resonant frequency. Audio devices provide communication between crew members and between crew and STDN, and also provide audible alarms, via the caution and warning system, of out-of-limit-conditions.
NASA Astrophysics Data System (ADS)
Nyangon, Joseph
Expansion of distributed energy resources (DERs) including solar photovoltaics, small- and medium-sized wind farms, gas-fired distributed generation, demand-side management, and energy storage poses significant complications to the design, operation, business model, and regulation of electricity systems. Using statistical regression analysis, this dissertation assesses if increased use of natural gas results in reduced renewable energy capacity, and if natural gas growth is correlated with increased or decreased non-fossil renewable fuels demand. System Generalized Method of Moments (System GMM) estimation of the dynamic relationship was performed on the indicators in the econometric model for the ten states with the fastest growth in solar generation capacity in the U.S. (e.g., California, North Carolina, Arizona, Nevada, New Jersey, Utah, Massachusetts, Georgia, Texas, and New York) to analyze the effect of natural gas on renewable energy diffusion and the ratio of fossil fuels increase for the period 2001-2016 to policy driven solar demand. The study identified ten major drivers of change in electricity systems, including growth in distributed energy generation systems such as intermittent renewable electricity and gas-fired distributed generation; flat to declining electricity demand growth; aging electricity infrastructure and investment gaps; proliferation of affordable information and communications technologies (e.g., advanced meters or interval meters), increasing innovations in data and system optimization; and greater customer engagement. In this ongoing electric power sector transformation, natural gas and fast-flexing renewable resources (mostly solar and wind energy) complement each other in several sectors of the economy. The dissertation concludes that natural gas has a positive impact on solar and wind energy development: a 1% rise in natural gas capacity produces 0.0304% increase in the share of renewable energy in the short-run (monthly) compared to the long-term effect estimated at 0.9696% (15-year period). Evidence from the main policy, environmental, and economic indicators for solar and wind-power development such as feed-in tariffs, state renewable portfolio standards, public benefits fund, net metering, interconnection standards, environmental quality, electricity import ratio, per-capita energy-related carbon dioxide emissions, average electricity price, per-capita real gross domestic product, and energy intensity are discussed and evaluated in detail in order to elucidate their effectiveness in supporting the utility industry transformation. The discussion is followed by a consideration of a plausible distributed utility framework that is tailored for major DERs development that has emerged in New York called Reforming the Energy Vision. This framework provides a conceptual base with which to imagine the utility of the future as well as a practical solution to study the potential of DERs in other states. The dissertation finds this grid and market modernization initiative has considerable influence and importance beyond New York in the development of a new market economy in which customer choice and distributed utilities are prominent.
Kim, Hyehwang; Segal, Dvira
2017-04-28
The electrical conductance of molecular junctions may depend strongly on the temperature and weakly on molecular length, under two distinct mechanisms: phase-coherent resonant conduction, with charges proceeding via delocalized molecular orbitals, and incoherent thermally assisted multi-step hopping. While in the case of coherent conduction, the temperature dependence arises from the broadening of the Fermi distribution in the metal electrodes, in the latter case it corresponds to electron-vibration interaction effects on the junction. With the objective to distill the thermally activated hopping component, thus exposing intrinsic electron-vibration interaction phenomena on the junction, we suggest the design of molecular junctions with "spacers," extended anchoring groups that act to filter out phase-coherent resonant electrons. Specifically, we study the electrical conductance of fixed-gap and variable-gap junctions that include a tunneling block, with spacers at the boundaries. Using numerical simulations and analytical considerations, we demonstrate that in our design, resonant conduction is suppressed. As a result, the electrical conductance is dominated by two (rather than three) mechanisms: superexchange (deep tunneling) and multi-step thermally induced hopping. We further exemplify our analysis on DNA junctions with an A:T block serving as a tunneling barrier. Here, we show that the electrical conductance is insensitive to the number of G:C base-pairs at the boundaries. This indicates that the tunneling-to-hopping crossover revealed in such sequences truly corresponds to the properties of the A:T barrier.
Closed-Cycle Engine Program Used to Study Brayton Power Conversion
NASA Technical Reports Server (NTRS)
Johnson, Paul K.
2005-01-01
One form of power conversion under consideration in NASA Glenn Research Center's Thermal Energy Conversion Branch is the closed-Brayton-cycle engine. In the tens-of-kilowatts to multimegawatt class, the Brayton engine lends itself to potential space nuclear power applications such as electric propulsion or surface power. The Thermal Energy Conversion Branch has most recently concentrated its Brayton studies on electric propulsion for Prometheus. One piece of software used for evaluating such designs over a limited tradeoff space has been the Closed Cycle Engine Program (CCEP). The CCEP originated in the mid-1980s from a Fortran aircraft engine code known as the Navy/NASA Engine Program (NNEP). Components such as a solar collector, heat exchangers, ducting, a pumped-loop radiator, a nuclear heat source, and radial turbomachinery were added to NNEP, transforming it into a high-fidelity design and performance tool for closed-Brayton-cycle power conversion and heat rejection. CCEP was used in the 1990s in conjunction with the Solar Dynamic Ground Test Demonstration conducted at Glenn. Over the past year, updates were made to CCEP to adapt it for an electric propulsion application. The pumped-loop radiator coolant can now be n-heptane, water, or sodium-potassium (NaK); liquid-metal pump design tables were added to accommodate the NaK fluid. For the reactor and shield, a user can now elect to calculate a higher fidelity mass estimate. In addition, helium-xenon working-fluid properties were recalculated and updated.
Recommended design and fabrication sequence of AMTEC test assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, A.; Kumar, V.; Noravian, H.
1998-01-01
A series of previous OSC papers described: 1) a novel methodology for the coupled thermal, fluid flow, and electrical analysis of multitube AMTEC (Alkali Metal Thermal-to-Electric Conversion) cells; 2) the application of that methodology to determine the effect of numerous design variations on the cell{close_quote}s performance, leading to selection and performance characterization of an OSC-recommended cell design; and 3) the design, analysis, and characterization of an OSC-generated power system design combining sixteen of the above AMTEC cells with two or three GPHS (General Purpose Heat Source) radioisotope heat source modules, and the applicability of those power systems to future spacemore » missions ({ital e.g.} Pluto Express and Europa Orbiter) under consideration by NASA. The OSC system design studies demonstrated the critical importance of the thermal insulation subsystem, and culminated in a design in which the eight AMTEC cells on each end of the heat source stack are embedded in Min-K fibrous insulation, and the Min-K and the GPHS modules are surrounded by graded-length Mo multifoil insulation. The present paper depicts the OSC-recommended AMTEC cell and generator designs, and identifies the need for an electrically heated (scaled-down but otherwise prototypic) test assembly for the experimental validation of the generator{close_quote}s system performance predictions. It then describes the design of an OSC-recommended test assembly consisting of an electrical heater enclosed in a graphite box to simulate the radioisotope heat source, four series-connected prototypic AMTEC cells of the OSC-recommended configuration, and a prototypic hybrid insulation package consisting of Min-K and graded-length Mo multifoils. Finally, the paper describes and illustrates an OSC-recommended detailed fabrication sequence and procedure for the above cell and test assembly. That fabrication procedure is being implemented by AMPS, Inc. with the support of DOE{close_quote}s Oak Ridge and Mound Laboratories, and the Air Force Phillips Laboratory (AFPL) will test the performance of the assembly over a range of input thermal powers and output voltages. The experimentally measured performance will be compared with the results of OSC analyses of the same insulated test assembly over the same range of operating parameters. {copyright} {ital 1998 American Institute of Physics.}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The report presents the results of a study prepared by Burns and Roe for the Electricity Generating Authority of Thailand to examine the technical feasibility and economic attractiveness for building a 50 MW Atmospheric Fluidized Bed Combustion lignite fired power plant at Krabi, southern Thailand. The study is divided into seven main sections, plus an executive summary and appendices: (1) Introduction; (2) Atmospheric Fluidized Bed Combustion Technology Overview; (3) Fuel and Limestone Tests; (4) Site Evaluation; (5) Station Design and Arrangements; (6) Environmental Considerations; (7) Economic Analysis.
Bonded foil pressure transducers
NASA Astrophysics Data System (ADS)
Daube, Bernie W.
The design of bonded-foil pressure transducers is discussed, with consideration given to individual components of both the electrical and the mechanical sections of the bonded-foil pressure transducers, as well as to the temperature control and the accuracy specification of these devices. Particular attention is given to applications of bonded foil pressure transducers, which include solid and liquid rocket engine testing for fuel and exhaust pressures, fuel and oil pressure monitoring on jet engines, and nuclear underground safety system pressure monitoring and nuclear test monitoring. A diagram of a transducer cutaway view is included.
The high intensity solar cell: Key to low cost photovoltaic power
NASA Technical Reports Server (NTRS)
Sater, B. L.; Goradia, C.
1975-01-01
The design considerations and performance characteristics of the 'high intensity' (HI) solar cell are presented. A high intensity solar system was analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency. It is shown that residential sized systems can be produced at less than $1000/kW peak electric power. Due to their superior high intensity performance characteristics compared to the conventional and VMJ cells, HI cells and light concentrators may be the key to low cost photovoltaic power.
T700 power turbine rotor multiplane/multispeed balancing demonstration
NASA Technical Reports Server (NTRS)
Burgess, G.; Rio, R.
1979-01-01
Research was conducted to demonstrate the ability of influence coefficient based multispeed balancing to control rotor vibration through bending criticals. Rotor dynamic analyses were conducted of the General Electric T700 power turbine rotor. The information was used to generate expected rotor behavior for optimal considerations in designing a balance rig and a balance technique. The rotor was successfully balanced 9500 rpm. Uncontrollable coupling behavior prevented observations through the 16,000 rpm service speed. The balance technique is practical and with additional refinement it can meet production standards.
Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study
NASA Astrophysics Data System (ADS)
Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan
2016-09-01
Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100-250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.
Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study
Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan
2016-01-01
Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2–3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100–250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation. PMID:27634482
Design Considerations for Clean QED Fusion Propulsion Systems
NASA Astrophysics Data System (ADS)
Bussard, Robert W.; Jameson, Lorin W.
1994-07-01
The direct production of electric power appears possible from fusion reactions between fuels whose products consist solely of charged particles and thus do not present radiation hazards from energetic neutron production, as do reactions involving deuteron-bearing fuels. Among these are the fuels p, 11B, 3He, and 6Li. All of these can be ``burned'' in inertial-electrostatic-fusion (IEF) devices to power QED fusion-electric rocket engines. These IEF sources provide direct-converted electrical power at high voltage (MeV) to drive e-beams for efficient propellant heating to extreme temperatures, with resulting high specific impulse performance capabilities. IEF/QED engine systems using p11B can outperform all other advanced concepts for controlled fusion propulsion by 2-3 orders of magnitude, while 6Li6Li fusion yields one order of magnitude less advance. Either of these fusion rocket propulsion systems can provide very rapid transit for solar system missions, with high payload fractions in single-stage vehicles. The 3He3He reaction can not be used practically for direct electric conversion because of the wide spread in energy of its fusion products. However, it may eventually prove useful for thermal/electrical power generation in central station power plants, or for direct-fusion-product (DFP) propellant heatingin advanced deep-space rocket engines.
Topping cycle for coal-fueled electric power plants using the ceramic helical expander
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, B.; Landingham, R.; Mohr, P.
Ceramic helical expanders are advocated as the work output element in a 2500/sup 0/F direct coal-fired Brayton topping cycle for central power station application. When combined with a standard steam electric power plant cycle, such a cycle could result in an overall thermal conversion efficiency in excess of 50 percent. The performance, coal tolerance, and system-development-time advantages of the ceramic helical expander approach are enumerated. A perspective on the choice of design and materials is provided. A preliminary consideration of physical properties, economic questions, and service experience has led us to a preference for the silicon nitride and silicon carbidemore » family of materials. A program to confirm the performance and coal tolerance aspects of a ceramic helical expander system is planned.« less
Accommodating electric propulsion on SMART-1
NASA Astrophysics Data System (ADS)
Kugelberg, Joakim; Bodin, Per; Persson, Staffan; Rathsman, Peter
2004-07-01
This paper focuses on the technical challenges that arise when electric propulsion is used on a small spacecraft such as SMART-1. The choice of electric propulsion influences not only the attitude control system and the power system, but also the thermal control as well as the spacecraft structure. A description is given on how the design of the attitude control system uses the possibility to control the alignment of the thrust vector in order to reduce the momentum build-up. An outline is made of the philosophy of power generation and distribution and shows how the thermal interfaces to highly dissipating units have been solved. Areas unique for electric propulsion are the added value of a thrust vector orientation mechanism and the special consideration given to the electromagnetic compatibility. SMART-1 is equipped with a thruster gimbal mechanism providing a 10° cone in which the thrust vector can be pointed. Concerning the electromagnetic compatibility, a discussion on how to evaluate the available test results is given keeping in mind that one of the main objectives of the SMART-1 mission is to assess the impact of electric propulsion on the scientific instruments and on other spacecraft systems. Finally, the assembly, integration and test of the spacecraft is described. Compared to traditional propulsion systems, electric propulsion puts different requirements on the integration sequence and limits the possibilities to verify the correct function of the thruster since it needs high quality vacuum in order to operate. Prime contractor for SMART-1 is the Swedish Space Corporation (SSC). The electric propulsion subsystem is procured directly by ESA from SNECMA, France and is delivered to SSC as a customer furnished item. The conclusion of this paper is that electric propulsion is possible on a small spacecraft, which opens up possibilities for a new range of missions for which a large velocity increment is needed. The paper will also present SMART-1 and show how the problems related to the accommodation of electric propulsion have been solved during design and planning of the project.
Space Weather Concerns for All-Electric Propulsion Satellites
NASA Astrophysics Data System (ADS)
Horne, Richard B.; Pitchford, David
2015-08-01
The introduction of all-electric propulsion satellites is a game changer in the quest for low-cost access to space. It also raises new questions for satellite manufacturers, operators, and the insurance industry regarding the general risks and specifically the threat of adverse space weather. The issues surrounding this new concept were discussed by research scientists and up to 30 representatives from the space industry at a special meeting at the European Space Weather Week held in November 2014. Here we report on the discussions at that meeting. We show that for a satellite undergoing electric orbit raising for 200 days the radiation dose due to electrons is equivalent to approximately 6.7 year operation at geostationary orbit or approximately half the typical design life. We also show that electrons can be injected into the slot region (8000 km) where they pose a risk of satellite internal charging. The results highlight the importance of additional radiation protection. We also discuss the benefits, the operational considerations, the other risks from the Van Allen radiation belts, the new business opportunities for space insurance, and the need for space situation awareness in medium Earth orbit where electric orbit raising takes place.
Discharge current distribution in stratified soil under impulse discharge
NASA Astrophysics Data System (ADS)
Eniola Fajingbesi, Fawwaz; Shahida Midi, Nur; Elsheikh, Elsheikh M. A.; Hajar Yusoff, Siti
2017-06-01
The mobility of charge particles traversing a material defines its electrical properties. Soil (earth) have long been the universal grounding before and after the inception of active ground systems for electrical appliance purpose due to it semi-conductive properties. The soil can thus be modelled as a single material exhibiting semi-complex inductive-reactive impedance. Under impulse discharge such as lightning strikes to soil this property of soil could result in electric potential level fluctuation ranging from ground potential rise/fall to electromagnetic pulse coupling that could ultimately fail connected electrical appliance. In this work we have experimentally model the soil and lightning discharge using point to plane electrode setup to observe the current distribution characteristics at different soil conductivity [mS/m] range. The result presented from this research indicate above 5% shift in conductivity before and after discharge which is significant for consideration when dealing with grounding designs. The current distribution in soil have also be successfully observed and analysed from experimental result using mean current magnitude in relation to electrode distance and location, current density variation with depth all showing strong correlation with theoretical assumptions of a semi-complex impedance material.
NASA Astrophysics Data System (ADS)
Shi, Shuanhu; Li, Peng; Jin, Feng
2018-01-01
A theoretical thermo-magneto-electric (TME) bilayer model is established based on the Hamilton principle, in which both surface effect and flexoelectricity are all taken into account. The governing equations are proposed with the aid of the nonlinear constitutive relations of giant magnetostrictive materials. These equations are general, which can be applied to analyze the coupled extensional, shear and bending deformations at both macroscale and nanoscale. As a specific example, the coupled extensional and bending motion of a slender beam suffering from external magnetic field and thermal variation is investigated, in which the Miller-Shenoy coefficient, magneto-electric (ME) effect, strain gradient and displacement are discussed in detail. After the necessary verification, a critical thickness of the TME model is proposed, below which the surface effect exhibits a remarkable influence on the mechanical behaviors and can not be ignored. It is revealed that the surface effect, flexoelectric effect and temperature increment are beneficial for the enhancement of the induced electric field. This study can provide theoretical basis for the design of nanoscale laminates, especially for the performance evaluation of ME composites under complex environment.
NASA Technical Reports Server (NTRS)
Hall, J.; Chen, T. M.
1991-01-01
Virtually every device that makes use of the new ceramic superconductors will need normal conductor to superconductor contacts. The current-voltage and electrical noise characteristics of these contacts could become important design considerations. I-V and low frequency electrical noise measurements are presented on contacts between a normal conductor and superconducting polycrystalline YBa2Cu3O7. The contacts were formed by first sputtering gold palladium pads onto the surface of the bulk superconductor and then using silver epoxy to attach a wire(s) to each pad. Voltage across the contacts was found for small current densities. The voltage spectral density, S sub v(f), a quantity often used to characterize electrical noise, very closely followed an empirical relationship given by S sub v(f) = C(VR)sq/f, where V is the DC voltage across the contact, R is the contact resistance, F is frequency, and C is a contant found to be 2 x 10(exp -10)/Omega sq at 78 K. This relationship was found to be independent of contact area, contact geometry, sample fabrication technique, and sample density.
NASA Technical Reports Server (NTRS)
Hall, J.; Chen, T. M.
1990-01-01
Virtually every device that makes use of the new ceramic superconductors will need normal conductor to supercondutor contacts. The current-voltage and electrical noise characteristics of these contacts could be become important design considerations. I-V and low frequency electrical noise measurements are presented on contacts between a normal conductor and superconducting polycrystalline YBa2Cu3O7. The contacts were formed by first sputtering gold palladium pads onto the surface of the bulk superconductor and then using silver epoxy to attach a wire(s) to each pad. Voltage across the contacts was found for small current densities. The voltage spectral density, S sub v(f), a quanity often used to characterize electrical noise, very closely followed an empirical relationship given by, S sub v(f) = C(VR)sq/f, where V is the DC voltage across the contact, R is the contact resistance, F is frequency, and C is a contant found to be 2 x 10(exp -10)/Omega sq at 78 K. This relationship was found to be independent of contact area, contact geometry, sample fabrication technique, and sample density.
Milly, P J; Toledo, R T; Kerr, W L; Armstead, D
2008-08-01
A Shockwave Power Reactor consisting of an annulus with a rotating pock-marked inner cylinder was used to induce hydrodynamic cavitation in calcium-fortified apple juice flowing in the annular space. Lethality on Saccharomyces cerevisiae was assessed at processing temperatures of 65 and 76.7 degrees C. Details of the novel equipment design were presented and energy consumption was compared to conventional and pulsed electric fields processing technologies. The mean log cycle reduction of S. cerevisiae was 6.27 CFU/mL and all treatments resulted in nonrecoverable viable cells. Induced lethality from hydrodynamic cavitation on S. cerevisiae exceeded the predicted values based on experimentally determined thermal resistance. Rotation of 3000 and 3600 rpm at flow rates greater than 1.0 L/min raised product temperature from 20 to 65.6 or 76.7 degrees C, respectively, and energy input was less than 220 kJ/kg. Conversion efficiency from electrical to thermal was 55% to 84%. Hydrodynamic cavitation enhanced lethality of spoilage microorganisms in minimally processed juices and reduced energy usage.
Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric
... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability vehicles do. When measuring well-to-wheel emissions, the electricity source is important: for PHEVs and EVs , part or all of the power provided by the battery comes from off-board sources of electricity. There are
Shields, Richard K.; Dudley-Javoroski, Shauna; Littmann, Andrew E.
2012-01-01
Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI. PMID:16575026
Shields, Richard K; Dudley-Javoroski, Shauna; Littmann, Andrew E
2006-08-01
Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI.
Wang, K F; Wang, B L
2018-06-22
Determining the electric potential in a bent piezoelectric nanowire (NW) is a fundamental issue of nanogenerators and nanopiezotronics. The combined influence of the flexoelectric effect, the semiconducting performance and the angle of atomic force microscope (AFM) tip has never been studied previously and will be investigated in this paper. The exact solution for the electric potential of a bent piezoelectric semiconductor NW is derived. The electric potential of the present model with consideration of flexoelectric effect varies along the length of the NW and is different from that of the classical piezoelectric model. Flexoelectric effect enhances but the semiconducting performance reduces the electric potential of the NW. In addition, it is found that if the angle of the AFM tip reaches 30°, the error of the electric potential obtained from the model ignored the effect of the angle of the AFM tip is almost 16%, which is unacceptable.
NASA Astrophysics Data System (ADS)
Wang, K. F.; Wang, B. L.
2018-06-01
Determining the electric potential in a bent piezoelectric nanowire (NW) is a fundamental issue of nanogenerators and nanopiezotronics. The combined influence of the flexoelectric effect, the semiconducting performance and the angle of atomic force microscope (AFM) tip has never been studied previously and will be investigated in this paper. The exact solution for the electric potential of a bent piezoelectric semiconductor NW is derived. The electric potential of the present model with consideration of flexoelectric effect varies along the length of the NW and is different from that of the classical piezoelectric model. Flexoelectric effect enhances but the semiconducting performance reduces the electric potential of the NW. In addition, it is found that if the angle of the AFM tip reaches 30°, the error of the electric potential obtained from the model ignored the effect of the angle of the AFM tip is almost 16%, which is unacceptable.
Delucchi, M A; Yang, C; Burke, A F; Ogden, J M; Kurani, K; Kessler, J; Sperling, D
2014-01-13
Concerns about climate change, urban air pollution and dependence on unstable and expensive supplies of foreign oil have led policy-makers and researchers to investigate alternatives to conventional petroleum-fuelled internal-combustion-engine vehicles in transportation. Because vehicles that get some or all of their power from an electric drivetrain can have low or even zero emissions of greenhouse gases (GHGs) and urban air pollutants, and can consume little or no petroleum, there is considerable interest in developing and evaluating advanced electric vehicles (EVs), including pure battery-electric vehicles, plug-in hybrid electric vehicles and hydrogen fuel-cell electric vehicles. To help researchers and policy-makers assess the potential of EVs to mitigate climate change and reduce petroleum use, this paper discusses the technology of EVs, the infrastructure needed for their development, impacts on emissions of GHGs, petroleum use, materials use, lifetime costs, consumer acceptance and policy considerations.
NASA Astrophysics Data System (ADS)
Zhang, Xianjun
The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy market, considered to be an effective solution to promote energy efficiency. In the urban environment, the electricity, water and natural gas distribution networks are becoming increasingly interconnected with the growing penetration of the CHP-based DG. Subsequently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and siting for a larger test bed with the given information of energy infrastructures. In this context, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The proposed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation performances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electricity, gas, and water system models were developed individually and coupled by the developed CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical output and recovered thermal output, which are affected by multiple factors and thus analyzed in different case studies. The results indicate that the designed typical gas system is capable of supplying sufficient natural gas for the DG normal operation, while the present water system cannot support the complete recovery of the exhaust heat from the DG units.
MOD-0A 200 kW wind turbine generator design and analysis report
NASA Astrophysics Data System (ADS)
Anderson, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.
1980-08-01
The design, analysis, and initial performance of the MOD-OA 200 kW wind turbine generator at Clayton, NM is documented. The MOD-OA was designed and built to obtain operation and performance data and experience in utility environments. The project requirements, approach, system description, design requirements, design, analysis, system tests, installation, safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the wind turbine are discussed. The design and analysis of the rotor, drive train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electricl system, and control systems are presented. The rotor includes the blades, hub, and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control are discussed. Systems analyses on dynamic loads and fatigue are presented.
MOD-0A 200 kW wind turbine generator design and analysis report
NASA Technical Reports Server (NTRS)
Anderson, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.
1980-01-01
The design, analysis, and initial performance of the MOD-OA 200 kW wind turbine generator at Clayton, NM is documented. The MOD-OA was designed and built to obtain operation and performance data and experience in utility environments. The project requirements, approach, system description, design requirements, design, analysis, system tests, installation, safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the wind turbine are discussed. The design and analysis of the rotor, drive train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electricl system, and control systems are presented. The rotor includes the blades, hub, and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control are discussed. Systems analyses on dynamic loads and fatigue are presented.
SP-100 GES/NAT radiation shielding systems design and development testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.
1991-01-10
Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield,more » the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.« less
Qiu, Rangjian; Liu, Chunwei; Wang, Zhenchang; Yang, Zaiqiang; Jing, Yuanshu
2017-08-03
We investigated whether leaching fraction (LF) is able to modify the effects of irrigation water salinity (EC iw ) on evapotranspiration (ET). We conducted an experiment with a completely randomized block design using five levels of EC iw and two LFs. Results showed that the electrical conductivity of drainage water (EC dw ) in an LF of 0.29 was considerably higher during the 21-36 days after transplanting (DAT), and considerably lower after 50 DAT than in an LF of 0.17. The hourly, nighttime, daily, cumulative and seasonal ET all decreased considerably as a result of an increase in the EC iw . The daily ET started to be considerably higher in the LF of 0.29 than in the LF of 0.17 from 65 DAT. Compared with the LF of 0.17, the seasonal ET in the LF of 0.29 under various EC iw levels increased by 4.8%-8.7%. The Maas and Hoffman and van Genuchten and Hoffman models both corresponded well with the measured relative seasonal ET and the LF had no marked effects on these model parameters. Collectively, an increase in the level of EC iw always decreased the ET substantially. An increase in the LF increased the ET considerably, but there was a time lag.
Parabolic dish collectors - A solar option
NASA Astrophysics Data System (ADS)
Truscello, V. C.
1981-05-01
A description is given of several parabolic-dish high temperature solar thermal systems currently undergoing performance trials. A single parabolic dish has the potential for generating 20 to 30 kW of electricity with fluid temperatures from 300 to 1650 C. Each dish is a complete power-producing unit, and may function either independently or as part of a group of linked modules. The two dish designs under consideration are of 11 and 12 meter diameters, yielding receiver operating temperatures of 925 and 815 C, respectively. The receiver designs described include (1) an organic working fluid (toluene) Rankine cycle engine; (2) a Brayton open cycle unit incorporating a hybrid combustion chamber and nozzle and a shaft-coupled permanent magnet alternator; and (3) a modified Stirling cycle device originally designed for automotive use. Also considered are thermal buffer energy storage and thermochemical transport and storage.
Travelling wave effects in large space structures
NASA Technical Reports Server (NTRS)
Vonflotow, A.
1983-01-01
Several aspects of travelling waves in Large Space Structures(LSS) are discussed. The dynamic similarity among LSS's, electric power systems, microwave circuits and communications network is noted. The existence of time lag between actuation and response is illuminated with the aid of simple examples, and their prediction is demonstrated. To prevent echoes, communications lines have matched terminations; this idea is applied to the design of dampers of one dimensional structures. Periodic structures act as mechanical band pass filters. Implications of this behavior are examined on a simple example. It is noted that the implication is twofold; continuum models of periodic lattice structures may err considerably; on the other hand, it is possible to design favorable transmission (and resonance) characteristics into the structure.
Exploring dynamic lighting, colour and form with smart textiles
NASA Astrophysics Data System (ADS)
Cabral, I.; Silva, C.; Worbin, L.; Souto, A. P.
2017-10-01
This paper addresses an ongoing research, aiming at the development of smart textiles that transform the incident light that passes through them - light transmittance - to design dynamic light without acting upon the light source. A colour and shape change prototype was developed with the objective of studying textile changes in time; to explore temperature as a dynamic variable through electrical activation of the smart materials and conductive threads integrated in the textile substrate; and to analyse the relation between textile chromic and morphologic behaviour in interaction with light. Based on the experiments conducted, results have highlighted some considerations of the dynamic parameters involved in the behaviour of thermo-responsive textiles and demonstrated design possibilities to create interactive lighting scenarios.
Long-term radiation effects on GaAs solar cell characteristics
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.; Doviak, M. J.
1978-01-01
This report investigates preliminary design considerations which should be considered for a space experiment involving Gallium Arsenide (GaAs) solar cells. The electron radiation effects on GaAs solar cells were conducted in a laboratory environment, and a statistical analysis of the data is presented. In order to augment the limited laboratory data, a theoretical investigation of the effect of radiation on GaAs solar cells is also developed. The results of this study are empirical prediction equations which can be used to estimate the actual damage of electrical characteristics in a space environment. The experimental and theoretical studies also indicate how GaAs solar cell parameters should be designed in order to withstand the effects of electron radiation damage.
NASA Astrophysics Data System (ADS)
Liu, Chengcheng; Zhu, Jianguo; Wang, Youhua; Guo, Youguang; Lei, Gang; Liu, Xiaojing
2015-05-01
This paper proposes a low-cost double rotor axial flux motor (DRAFM) with low cost soft magnetic composite (SMC) core and ferrite permanent magnets (PMs). The topology and operating principle of DRAFM and design considerations for best use of magnetic materials are presented. A 905 W 4800 rpm DRAFM is designed for replacing the high cost NdFeB permanent magnet synchronous motor (PMSM) in a refrigerator compressor. By using the finite element method, the electromagnetic parameters and performance of the DRAFM operated under the field oriented control scheme are calculated. Through the analysis, it is shown that that the SMC and ferrite PM materials can be good candidates for low-cost electric motor applications.
Integrating Carbon Nanotubes For Atomic Force Microscopy Imaging Applications
NASA Technical Reports Server (NTRS)
Ye, Qi; Cassell, Alan M.; Liu, Hongbing; Han, Jie; Meyyappan, Meyya
2004-01-01
Carbon nanotube (CNT) related nanostructures possess remarkable electrical, mechanical, and thermal properties. To produce these nanostructures for real world applications, a large-scale controlled growth of carbon nanotubes is crucial for the integration and fabrication of nanodevices and nanosensors. We have taken the approach of integrating nanopatterning and nanomaterials synthesis with traditional silicon micro fabrication techniques. This integration requires a catalyst or nanomaterial protection scheme. In this paper, we report our recent work on fabricating wafer-scale carbon nanotube AFM cantilever probe tips. We will address the design and fabrication considerations in detail, and present the preliminary scanning probe test results. This work may serve as an example of rational design, fabrication, and integration of nanomaterials for advanced nanodevice and nanosensor applications.
NASA Astrophysics Data System (ADS)
Carpenter, A. C.; Herrmann, H. W.; Beeman, B. V.; Lopez, F. E.; Hernandez, J. E.
2016-09-01
This paper covers the performance of a high speed analogue data transmission system. This system uses multiple Mach- Zehnder optical modulators to transmit and record fusion burn history data for the Gas Cherenkov Detector (GCD) on the National Ignition Facility. The GCD is designed to measure the burn duration of high energy gamma rays generated by Deuterium-Tritium (DT) interactions in the NIF. The burn duration of DT fusion can be as short as 10ps and the optical photons generated in the gas Cherenkov cell are measured using a vacuum photodiode with a FWHM of 55ps. A recording system with a 3dB bandwidth of ≥10GHz and a signal to noise ratio of ≥5 for photodiode output voltage of 50mV is presented. The data transmission system uses two or three Mach-Zehnder modulators and an RF amplifier to transmit data optically. This signal is received and recorded by optical to electrical converts and a high speed digital oscilloscope placed outside of the NIF Target Bay. Electrical performance metrics covered include signal to noise ratio (SNR), signal to peak to peak noise ratio, single shot dynamic range, shot to shot dynamic range, system bandwidth, scattering parameters, are shown. Design considerations such as self-test capabilities, the NIF radiation environment, upgrade compatibility, Mach-Zehnder (MZ) biasing, maintainability, and operating considerations for the use of MZs are covered. This data recording system will be used for the future upgrade of the GCD to be used with a Pulse Dilation PMT, currently under development.
Newman Unit 1 advanced solar repowering advanced conceptual design. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-04-01
The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical powermore » generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)« less
Designing 4H-SiC P-shielding trench gate MOSFET to optimize on-off electrical characteristics
NASA Astrophysics Data System (ADS)
Kyoung, Sinsu; Hong, Young-sung; Lee, Myung-hwan; Nam, Tae-jin
2018-02-01
In order to enhance specific on-resistance (Ron,sp), the trench gate structure was also introduced into 4H-SiC MOSFET as Si MOSFET. But the 4H-SiC trench gate has worse off-state characteristics than the Si trench gate due to the incomplete gate oxidation process (Šimonka et al., 2017). In order to overcome this problem, P-shielding trench gate MOSFET (TMOS) was proposed and researched in previous studies. But P-shielding has to be designed with minimum design rule in order to protect gate oxide effectively. P-shielding TMOS also has the drawback of on-state characteristics degradation corresponding to off state improvement for minimum design rule. Therefore optimized design is needed to satisfy both on and off characteristics. In this paper, the design parameters were analyzed and optimized so that the 4H-SiC P-shielding TMOS satisfies both on and off characteristics. Design limitations were proposed such that P-shielding is able to defend the gate oxide. The P-shielding layer should have the proper junction depth and concentration to defend the electric field to gate oxide during the off-state. However, overmuch P-shielding junction depth disturbs the on-state current flow, a problem which can be solved by increasing the trench depth. As trench depth increases, however, the breakdown voltage decreases. Therefore, trench depth should be designed with due consideration for on-off characteristics. For this, design conditions and modeling were proposed which allow P-shielding to operate without degradation of on-state characteristics. Based on this proposed model, the 1200 V 4H-SiC P-shielding trench gate MOSFET was designed and optimized.
Alternative Fuels Data Center: Electricity Fuel Basics
, coal, nuclear energy, hydropower, natural gas, wind energy, solar energy, and stored hydrogen. Plug-in Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics
NASA Astrophysics Data System (ADS)
Chamrat, Suthida
2018-01-01
The standard evaluation of Thai education relies excessively on the Ordinary National Educational Test, widely known as O-NET. However, a focus on O-Net results can lead to unsatisfactory teaching practices, especially in science subjects. Among the negative consequences, is that schools frequently engage in "cramming" practices in order to elevate their O-NET scores. Higher education, which is committed to generating and applying knowledge by socially engaged scholars, needs to take account of this situation. This research article portrays the collaboration between the faculty of education at Chiang Mai University and an educational service area to develop the model of science camp. The activities designed for the Science Camp Model were based on the Tinkering and Maker Movement. Specifically, the Science Camp Model was designed to enhance the conceptualization of electricity for Middle School Students in order to meet the standard evaluation of the Ordinary National Educational Test. The hands-on activities consisted of 5 modules which were simple electrical circuits, paper circuits, electrical measurement roleplay motor art robots and Force from Motor. The data were collected by 11 items of Electricity Socratic-based Test adapted from cumulative published O-NET tests focused on the concept of electricity concept. The qualitative data were also collected virtually via Flinga.com. The results indicated that students after participating in 5modules of science camp based on the Maker Movement and tinkering activity developed average percentage of test scores from 33.64 to 65.45. Gain score analysis using dependent t-test compared pretest and posttest mean scores. The p value was found to be statistically significant (less than 0.001). The posttest had a considerably higher mean score compared with the pretest. Qualitative data also indicated that students could explain the main concepts of electrical circuits, and the transformation of electrical energy to mechanical energy. The schools were satisfied, and expressed greater confidence in the Science Camp Model as an alternative way to improve Standard Evaluation of Ordinary National Educational Test.
Phase 1 Space Fission Propulsion System Design Considerations
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Carter, Robert; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a "Phase 1" fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system.
Phase 1 space fission propulsion system design considerations
NASA Astrophysics Data System (ADS)
Houts, Mike; van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert
2002-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a ``Phase 1'' fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system. .
NASA Astrophysics Data System (ADS)
Challa, Vinod R.; Prasad, M. G.; Fisher, Frank T.
2009-09-01
Vibration energy harvesting is being pursued as a means to power wireless sensors and ultra-low power autonomous devices. From a design standpoint, matching the electrical damping induced by the energy harvesting mechanism to the mechanical damping in the system is necessary for maximum efficiency. In this work two independent energy harvesting techniques are coupled to provide higher electrical damping within the system. Here the coupled energy harvesting device consists of a primary piezoelectric energy harvesting device to which an electromagnetic component is added to better match the total electrical damping to the mechanical damping in the system. The first coupled device has a resonance frequency of 21.6 Hz and generates a peak power output of ~332 µW, compared to 257 and 244 µW obtained from the optimized, stand-alone piezoelectric and electromagnetic energy harvesting devices, respectively, resulting in a 30% increase in power output. A theoretical model has been developed which closely agrees with the experimental results. A second coupled device, which utilizes the d33 piezoelectric mode, shows a 65% increase in power output in comparison to the corresponding stand-alone, single harvesting mode devices. This work illustrates the design considerations and limitations that one must consider to enhance device performance through the coupling of multiple harvesting mechanisms within a single energy harvesting device.
High-velocity DC-VPS for diffusion and protecting barrier layers in solid oxide fuel cells (SOFCs)
NASA Astrophysics Data System (ADS)
Henne, R. H.; Franco, T.; Ruckdäschel, R.
2006-12-01
High-temperature fuel cells of the solid oxide fuel cell (SOFC) type as direct converter of chemical into electrical energy show a high potential for reducing considerably the specific energy consumption in different application fields. Of particular interest are advanced lightweight planar cells for electricity supply units in cars and other mobile systems. Such cells, in one new design, consist mainly of metallic parts, for example, of ferrite steels. These cells shall operate in the temperature range of 700 to 800 °C where oxidation and diffusion processes can be of detrimental effect on cell performance for long-term operation. Problems arise in particular by diffusion of chromium species from the interconnect or the cell containment into the electrolyte/cathode interface forming insulating phases and by the mutual diffusion of substrate and anode material, for example, iron and chromium from the ferrite into the anode and nickel from the anode into the ferrite, which in both cases reduces performance and system lifetime. Additional intermediate layers of perovskite-type material, (e.g., doped LaCrO3) applied with high-velocity direct-current vacuum plasma spraying (DC-VPS) can reduce such effects considerably if they are stable and of high electronic conductivity.
Manchester Coding Option for SpaceWire: Providing Choices for System Level Design
NASA Technical Reports Server (NTRS)
Rakow, Glenn; Kisin, Alex
2014-01-01
This paper proposes an optional coding scheme for SpaceWire in lieu of the current Data Strobe scheme for three reasons. First reason is to provide a straightforward method for electrical isolation of the interface; secondly to provide ability to reduce the mass and bend radius of the SpaceWire cable; and thirdly to provide a means for a common physical layer over which multiple spacecraft onboard data link protocols could operate for a wide range of data rates. The intent is to accomplish these goals without significant change to existing SpaceWire design investments. The ability to optionally use Manchester coding in place of the current Data Strobe coding provides the ability to DC balanced the signal transitions unlike the SpaceWire Data Strobe coding; and therefore the ability to isolate the electrical interface without concern. Additionally, because the Manchester code has the clock and data encoded on the same signal, the number of wires of the existing SpaceWire cable could be optionally reduced by 50. This reduction could be an important consideration for many users of SpaceWire as indicated by the already existing effort underway by the SpaceWire working group to reduce the cable mass and bend radius by elimination of shields. However, reducing the signal count by half would provide even greater gains. It is proposed to restrict the data rate for the optional Manchester coding to a fixed data rate of 10 Megabits per second (Mbps) in order to make the necessary changes simple and still able to run in current radiation tolerant Field Programmable Gate Arrays (FPGAs). Even with this constraint, 10 Mbps will meet many applications where SpaceWire is used. These include command and control applications and many instruments applications with have moderate data rate. For most NASA flight implementations, SpaceWire designs are in rad-tolerant FPGAs, and the desire to preserve the heritage design investment is important for cost and risk considerations. The Manchester coding option can be accommodated in existing designs with only changes to the FPGA.
A 3D contact analysis approach for the visualization of the electrical contact asperities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roussos, Constantinos C.; Swingler, Jonathan
The electrical contact is an important phenomenon that should be given into consideration to achieve better performance and long term reliability for the design of devices. Based upon this importance, the electrical contact interface has been visualized as a “3D Contact Map” and used in order to investigate the contact asperities. The contact asperities describe the structures above and below the contact spots (the contact spots define the 3D contact map) to the two conductors which make the contact system. The contact asperities require the discretization of the 3D microstructures of the contact system into voxels. A contact analysis approachmore » has been developed and introduced in this paper which shows the way to the 3D visualization of the contact asperities of a given contact system. For the discretization of 3D microstructure of contact system into voxels, X-ray Computed Tomography (CT) method is used in order to collect the data of a 250 V, 16 A rated AC single pole rocker switch which is used as a contact system for investigation.« less
Electromagnetic wave energy conversion research
NASA Technical Reports Server (NTRS)
Bailey, R. L.; Callahan, P. S.
1975-01-01
Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.
A 3D contact analysis approach for the visualization of the electrical contact asperities
Swingler, Jonathan
2017-01-01
The electrical contact is an important phenomenon that should be given into consideration to achieve better performance and long term reliability for the design of devices. Based upon this importance, the electrical contact interface has been visualized as a ‘‘3D Contact Map’’ and used in order to investigate the contact asperities. The contact asperities describe the structures above and below the contact spots (the contact spots define the 3D contact map) to the two conductors which make the contact system. The contact asperities require the discretization of the 3D microstructures of the contact system into voxels. A contact analysis approach has been developed and introduced in this paper which shows the way to the 3D visualization of the contact asperities of a given contact system. For the discretization of 3D microstructure of contact system into voxels, X-ray Computed Tomography (CT) method is used in order to collect the data of a 250 V, 16 A rated AC single pole rocker switch which is used as a contact system for investigation. PMID:28105383
A 3D contact analysis approach for the visualization of the electrical contact asperities
Roussos, Constantinos C.; Swingler, Jonathan
2017-01-11
The electrical contact is an important phenomenon that should be given into consideration to achieve better performance and long term reliability for the design of devices. Based upon this importance, the electrical contact interface has been visualized as a “3D Contact Map” and used in order to investigate the contact asperities. The contact asperities describe the structures above and below the contact spots (the contact spots define the 3D contact map) to the two conductors which make the contact system. The contact asperities require the discretization of the 3D microstructures of the contact system into voxels. A contact analysis approachmore » has been developed and introduced in this paper which shows the way to the 3D visualization of the contact asperities of a given contact system. For the discretization of 3D microstructure of contact system into voxels, X-ray Computed Tomography (CT) method is used in order to collect the data of a 250 V, 16 A rated AC single pole rocker switch which is used as a contact system for investigation.« less
Wang, Jing-Min; Yang, Ming-Ta; Chen, Po-Lin
2017-01-01
With the advance of science and technology, people have a desire for convenient and comfortable living. Creating comfortable and healthy indoor environments is a major consideration for designing smart homes. As handheld devices become increasingly powerful and ubiquitous, this paper proposes an innovative use of smart handheld devices (SHD), using MIT App Inventor and fuzzy control, to perform the real-time monitoring and smart control of the designed intelligent windowsill system (IWS) in a smart home. A compact weather station that consists of environment sensors was constructed in the IWS for measuring of indoor illuminance, temperature-humidity, carbon dioxide (CO2) concentration and outdoor rain and wind direction. According to the measured environment information, the proposed system can automatically send a command to a fuzzy microcontroller performed by Arduino UNO to fully or partly open the electric curtain and electric window for adapting to climate changes in the indoor and outdoor environment. Moreover, the IWS can automatically close windows for rain splashing on the window. The presented novel control method for the windowsill not only expands the SHD applications, but greatly enhances convenience to users. To validate the feasibility and effectiveness of the IWS, a laboratory prototype was built and confirmed experimentally. PMID:28398266
Wang, Jing-Min; Yang, Ming-Ta; Chen, Po-Lin
2017-04-11
With the advance of science and technology, people have a desire for convenient and comfortable living. Creating comfortable and healthy indoor environments is a major consideration for designing smart homes. As handheld devices become increasingly powerful and ubiquitous, this paper proposes an innovative use of smart handheld devices (SHD), using MIT App Inventor and fuzzy control, to perform the real-time monitoring and smart control of the designed intelligent windowsill system (IWS) in a smart home. A compact weather station that consists of environment sensors was constructed in the IWS for measuring of indoor illuminance, temperature-humidity, carbon dioxide (CO₂) concentration and outdoor rain and wind direction. According to the measured environment information, the proposed system can automatically send a command to a fuzzy microcontroller performed by Arduino UNO to fully or partly open the electric curtain and electric window for adapting to climate changes in the indoor and outdoor environment. Moreover, the IWS can automatically close windows for rain splashing on the window. The presented novel control method for the windowsill not only expands the SHD applications, but greatly enhances convenience to users. To validate the feasibility and effectiveness of the IWS, a laboratory prototype was built and confirmed experimentally.
Transformer overload characteristics---Bubble evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, E.E.; Wendel, R.C.; Dresser, R.D.
1988-08-01
Project RP1289-3 explores significant parameters affecting bubble evolution from transformer oil under high temperature operating conditions to address the question: Does ''real life'' operation of a transformer cause harmful bubbling conditions. Studies outlined in the project are designed to determine when bubbling occurs in transformers and if bubbling can be harmful during the normal operation of these transformers. Data obtained from these studies should provide a basis for utilities to perform risk assessments in relation to their loading practices. The program is designed to demonstrate those conditions under which bubbling occurs in transformers by using controlled models and actual signalmore » phase transformers that were designed to give access to both high and low voltage windings for the purpose of viewing bubble generation. Results and observations from tests on the full-size transformers, thermal models, and electrical models have led to the conclusion that bubbles can occur under operating conditions. The electrical models show that dielectric strength can be reduced by as much as 40 percent due to the presence of bubbles. Because of factory safety considerations, the transformers could not be tested at hot spot temperatures greater than 140/degree/C. Therefore, there is no information on the dielectric strength of the full-size transformers under bubbling conditions. 4 refs., 28 figs., 45 tabs.« less
NASA Astrophysics Data System (ADS)
Liang, Jiejunyi; Yang, Haitao; Wu, Jinglai; Zhang, Nong; Walker, Paul D.
2018-05-01
To improve the overall efficiency of electric vehicles and guarantee the driving comfort and vehicle drivability under the concept of simplifying mechanism complexity and minimizing manufacturing cost, this paper proposes a novel clutchless power-shifting transmission system with shifting control strategy and power sharing control strategy. The proposed shifting strategy takes advantage of the transmission architecture to achieve power-on shifting, which greatly improves the driving comfort compared with conventional automated manual transmission, with a bump function based shifting control method. To maximize the overall efficiency, a real-time power sharing control strategy is designed to solve the power distribution problem between the two motors. Detailed mathematical model is built to verify the effectiveness of the proposed methods. The results demonstrate the proposed strategies considerably improve the overall efficiency while achieve non-interrupted power-on shifting and maintain the vehicle jerk during shifting under an acceptable threshold.
Application of nonlinear magnetic vibro-impact vibration suppressor and energy harvester
NASA Astrophysics Data System (ADS)
Afsharfard, Aref
2018-01-01
In the present study, application of a single unit vibro-impact system is improved. For this reason, in the so-called "magnetic impact damper" the impact mass is replaced by a permanent magnet, which moves in coil of gap enclosure. In the magnetic impact damper, wasting energy during inelastic contacts of masses and converting energy into electrical energy during the mass movement inside the coil, leads to suppress undesired vibrations. In this study it is shown that the magnetic impact dampers are not only good vibration suppressors but also they can harvest electrical energy. Effect of changing the main parameters of this system including gap size, load resistance and electromagnetic coupling coefficient is studied on the vibratory and energy behavior of the magnetic impact dampers. Finally using several user oriented charts, it is shown that energy-based and vibration-based design considerations can effectively improve application of the discussed vibro-impact system.
Ishii, Tomoaki; Yamakawa, Hiromichi; Kanaki, Toshiki; Miyamoto, Tatsuya; Kida, Noriaki; Okamoto, Hiroshi; Tanaka, Masaaki; Ohya, Shinobu
2018-05-02
High-speed magnetization control of ferromagnetic films using light pulses is attracting considerable attention and is increasingly important for the development of spintronic devices. Irradiation with a nearly monocyclic terahertz pulse, which can induce strong electromagnetic fields in ferromagnetic films within an extremely short time of less than ~1 ps, is promising for damping-free high-speed coherent control of the magnetization. Here, we successfully observe a terahertz response in a ferromagnetic-semiconductor thin film. In addition, we find that a similar terahertz response is observed even in a non-magnetic semiconductor and reveal that the electric-field component of the terahertz pulse plays a crucial role in the magnetization response through the spin-carrier interactions in a ferromagnetic-semiconductor thin film. Our findings will provide new guidelines for designing materials suitable for ultrafast magnetization reversal.
NASA Technical Reports Server (NTRS)
Gosney, W. M.
1977-01-01
Electrically alterable read-only memories (EAROM's) or reprogrammable read-only memories (RPROM's) can be fabricated using a single-level metal-gate p-channel MOS technology with all conventional processing steps. Given the acronym DIFMOS for dual-injector floating-gate MOS, this technology utilizes the floating-gate technique for nonvolatile storage of data. Avalanche injection of hot electrons through gate oxide from a special injector diode in each bit is used to charge the floating gates. A second injector structure included in each bit permits discharge of the floating gate by avalanche injection of holes through gate oxide. The overall design of the DIFMOS bit is dictated by the physical considerations required for each of the avalanche injector types. The end result is a circuit technology which can provide fully decoded bit-erasable EAROM-type circuits using conventional manufacturing techniques.
Solar electric propulsion cargo spacecraft for Mars missions
NASA Technical Reports Server (NTRS)
1991-01-01
One of the topics available to the 1990-91 Aerospace Engineering senior class was the development of a preliminary design of an unmanned cargo ferry that would support the Mars mission by bringing equipment and supplies from a low Earth orbit (LEO) to a low Mars orbit (LMO). Several previous studies initiated by NASA have indicated that low-thrust transportation systems seem to offer the best performance for Mars missions. Such systems are characterized by long spiral times during escape and capture maneuvers, high payload mass fractions, and, typically, low propellant mass fractions. Of two main low-thrust candidates, nuclear electric propulsion (NEP) and solar electric propulsion (SEP), only the first one received extensive consideration because it seemed to represent the most promising concept for a manned mission to Mars. However, any sustained Mars initiative will have to include an unmanned cargo transportation system, for which an SEP concept deserves very careful consideration. The key assumptions and requirements established in cooperation with the Space Exploration Initiative office at the NASA Langley Research Center were (1) vehicle is assembled at the Space Station Freedom (SSF); (2) Earth-to-orbit delivery of the vehicle components, propellant, and payload is via shuttle-C; (3) vehicle's cargo mass is 61,000 kg; (4) vehicle delivers cargo to LMO at an altitude of 500 km and inclination of 70 deg; (5) vehicle returns (without cargo) to SSF; (6) vehicle should be reusable for at least three missions; and (7) vehicle is powered by ion argon thrusters. Two configurations were developed by two student teams, working mostly independently.
NASA Astrophysics Data System (ADS)
Durfee, David; Johnson, Walter; McLeod, Scott
2007-04-01
Un-cooled microbolometer sensors used in modern infrared night vision systems such as driver vehicle enhancement (DVE) or thermal weapons sights (TWS) require a mechanical shutter. Although much consideration is given to the performance requirements of the sensor, supporting electronic components and imaging optics, the shutter technology required to survive in combat is typically the last consideration in the system design. Electro-mechanical shutters used in military IR applications must be reliable in temperature extremes from a low temperature of -40°C to a high temperature of +70°C. They must be extremely light weight while having the ability to withstand the high vibration and shock forces associated with systems mounted in military combat vehicles, weapon telescopic sights, or downed unmanned aerial vehicles (UAV). Electro-mechanical shutters must have minimal power consumption and contain circuitry integrated into the shutter to manage battery power while simultaneously adapting to changes in electrical component operating parameters caused by extreme temperature variations. The technology required to produce a miniature electro-mechanical shutter capable of fitting into a rifle scope with these capabilities requires innovations in mechanical design, material science, and electronics. This paper describes a new, miniature electro-mechanical shutter technology with integrated power management electronics designed for extreme service infra-red night vision systems.
NASA Astrophysics Data System (ADS)
Dong, Xu; Sun, Jianmeng; Li, Jun; Gao, Hui; Liu, Xuefeng; Wang, Jinjie
2015-08-01
Gas shale has shown considerable force in gas production worldwide, but little attention has been paid to its electrical properties, which are essential for reservoir evaluation and differentiating absorbed gas and free gas. In this study, experiments are designed to research water saturation establishment methods and electrical properties of gas shale. Nuclear magnetic resonance (NMR) with short echo space (TE) is used to identify water saturation and distribution of saturated pores which contribute to the conductivity. The experimental results indicate that NMR with shorter TE can estimate porosity and fluid distribution better than NMR with longer TE. A full range of water saturation is established by the combination of new-type spontaneous imbibition and semi-permeable plate drainage techniques. Spontaneous imbibition gains water saturation from 0% to near irreducible water saturation, and, semi-permeable plate drainage desaturates from 100% to irreducible water saturation. The RI-Sw curve shows a nonlinear relationship, and can be divided into three parts with different behaviors. The comparative analysis of transverse relaxation time (T2) distribution and RI-Sw curves, indicates that free water, and water trapped by capillarity in the non-clay matrix, differ in terms of electrical conductivity from water absorbed in clay. The new experiments prove the applicability of imbibition, drainage and NMR in investigating electrical properties of gas shale and differentiating fluid distribution which makes contribution to conductivity.
Drilling electrode for real-time measurement of electrical impedance in bone tissues.
Dai, Yu; Xue, Yuan; Zhang, Jianxun
2014-03-01
In order to prevent possible damages to soft tissues, reliable monitoring methods are required to provide valuable information on the condition of the bone being cut. This paper describes the design of an electrical impedance sensing drill developed to estimate the relative position between the drill and the bone being drilled. The two-electrode method is applied to continuously measure the electrical impedance during a drill feeding movement: two copper wire brushes are used to conduct electricity in the rotating drill and then the drill is one electrode; a needle is inserted into the soft tissues adjacent to the bone being drilled and acts as another electrode. Considering that the recorded electrical impedance is correlated with the insertion depth of the drill, we theoretically calculate the electrode-tissue contact impedance and prove that the rate of impedance change varies considerably when the drill bit crosses the boundary between two different bone tissues. Therefore, the rate of impedance change is used to determine whether the tip of the drill is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue. In vitro experiments in porcine thoracic spines were performed to demonstrate the feasibility of the impedance sensing drill. The experimental results indicate that the drill, used with the proposed data-processing method, can provide accurate and reliable breakthrough detection in the bone-drilling process.
Forecast analysis of optical waveguide bus performance
NASA Technical Reports Server (NTRS)
Ledesma, R.; Rourke, M. D.
1979-01-01
Elements to be considered in the design of a data bus include: architecture; data rate; modulation, encoding, detection; power distribution requirements; protocol, work structure; bus reliability, maintainability; interterminal transmission medium; cost; and others specific to application. Fiber- optic data bus considerations for a 32 port transmissive star architecture, are discussed in a tutorial format. General optical-waveguide bus concepts, are reviewed. The electrical and optical performance of a 32 port transmissive star bus, and the effects of temperature on the performance of optical-waveguide buses are examined. A bibliography of pertinent references and the bus receiver test results are included.
Formalization, equivalence and generalization of basic resonance electrical circuits
NASA Astrophysics Data System (ADS)
Penev, Dimitar; Arnaudov, Dimitar; Hinov, Nikolay
2017-12-01
In the work are presented basic resonance circuits, which are used in resonance energy converters. The following resonant circuits are considered: serial, serial with parallel load parallel capacitor, parallel and parallel with serial loaded inductance. For the circuits under consideration, expressions are generated for the frequencies of own oscillations and for the equivalence of the active power emitted in the load. Mathematical expressions are graphically constructed and verified using computer simulations. The results obtained are used in the model based design of resonant energy converters with DC or AC output. This guaranteed the output indicators of power electronic devices.
Power quality considerations for nuclear spectroscopy applications: Grounding
NASA Astrophysics Data System (ADS)
García-Hernández, J. M.; Ramírez-Jiménez, F. J.; Mondragón-Contreras, L.; López-Callejas, R.; Torres-Bribiesca, M. A.; Peña-Eguiluz, R.
2013-11-01
Traditionally the electrical installations are designed for supplying power and to assure the personnel safety. In nuclear analysis laboratories, additional issues about grounding also must be considered for proper operation of high resolution nuclear spectroscopy systems. This paper shows the traditional ways of grounding nuclear spectroscopy systems and through different scenarios, it shows the effects on the more sensitive parameter of these systems: the energy resolution, it also proposes the constant monitoring of a power quality parameter as a way to preserve or to improve the resolution of the systems, avoiding the influence of excessive extrinsic noise.
Lyapunov vector function method in the motion stabilisation problem for nonholonomic mobile robot
NASA Astrophysics Data System (ADS)
Andreev, Aleksandr; Peregudova, Olga
2017-07-01
In this paper we propose a sampled-data control law in the stabilisation problem of nonstationary motion of nonholonomic mobile robot. We assume that the robot moves on a horizontal surface without slipping. The dynamical model of a mobile robot is considered. The robot has one front free wheel and two rear wheels which are controlled by two independent electric motors. We assume that the controls are piecewise constant signals. Controller design relies on the backstepping procedure with the use of Lyapunov vector-function method. Theoretical considerations are verified by numerical simulation.
On a computational model of building thermal dynamic response
NASA Astrophysics Data System (ADS)
Jarošová, Petra; Vala, Jiří
2016-07-01
Development and exploitation of advanced materials, structures and technologies in civil engineering, both for buildings with carefully controlled interior temperature and for common residential houses, together with new European and national directives and technical standards, stimulate the development of rather complex and robust, but sufficiently simple and inexpensive computational tools, supporting their design and optimization of energy consumption. This paper demonstrates the possibility of consideration of such seemingly contradictory requirements, using the simplified non-stationary thermal model of a building, motivated by the analogy with the analysis of electric circuits; certain semi-analytical forms of solutions come from the method of lines.
How to Transform Mechanical Work into Electrical Energy Using a Capacitor
ERIC Educational Resources Information Center
Skumiel, A.
2011-01-01
In this paper the method of converting mechanical work into electrical energy with the participation of a preliminarily charged condenser while the electrodes are sliding in it is presented. Using this method, we can obtain a considerable increase of converted electrical power, depending on the initial energy of the charged condenser, distance…
Accelerated stress testing of terrestrial solar cells
NASA Technical Reports Server (NTRS)
Lathrop, J. W.; Hawkins, D. C.; Prince, J. L.; Walker, H. A.
1982-01-01
The development of an accelerated test schedule for terrestrial solar cells is described. This schedule, based on anticipated failure modes deduced from a consideration of IC failure mechanisms, involves bias-temperature testing, humidity testing (including both 85-85 and pressure cooker stress), and thermal-cycle thermal-shock testing. Results are described for 12 different unencapsulated cell types. Both gradual electrical degradation and sudden catastrophic mechanical change were observed. These effects can be used to discriminate between cell types and technologies relative to their reliability attributes. Consideration is given to identifying laboratory failure modes which might lead to severe degradation in the field through second quadrant operation. Test results indicate that the ability of most cell types to withstand accelerated stress testing depends more on the manufacturer's design, processing, and worksmanship than on the particular metallization system. Preliminary tests comparing accelerated test results on encapsulated and unencapsulated cells are described.
Polarity control in WSe2 double-gate transistors
NASA Astrophysics Data System (ADS)
Resta, Giovanni V.; Sutar, Surajit; Balaji, Yashwanth; Lin, Dennis; Raghavan, Praveen; Radu, Iuliana; Catthoor, Francky; Thean, Aaron; Gaillardon, Pierre-Emmanuel; de Micheli, Giovanni
2016-07-01
As scaling of conventional silicon-based electronics is reaching its ultimate limit, considerable effort has been devoted to find new materials and new device concepts that could ultimately outperform standard silicon transistors. In this perspective two-dimensional transition metal dichalcogenides, such as MoS2 and WSe2, have recently attracted considerable interest thanks to their electrical properties. Here, we report the first experimental demonstration of a doping-free, polarity-controllable device fabricated on few-layer WSe2. We show how modulation of the Schottky barriers at drain and source by a separate gate, named program gate, can enable the selection of the carriers injected in the channel, and achieved controllable polarity behaviour with ON/OFF current ratios >106 for both electrons and holes conduction. Polarity-controlled WSe2 transistors enable the design of compact logic gates, leading to higher computational densities in 2D-flatronics.
21 THz quantum-cascade laser operating up to 144 K based on a scattering-assisted injection design
Khanal, Sudeep; Reno, John L.; Kumar, Sushil
2015-07-22
A 2.1 THz quantum cascade laser (QCL) based on a scattering-assisted injection and resonant-phonon depopulation design scheme is demonstrated. The QCL is based on a four-well period implemented in the GaAs/Al 0.15Ga 0.85As material system. The QCL operates up to a heat-sink temperature of 144 K in pulsed-mode, which is considerably higher than that achieved for previously reported THz QCLs operating around the frequency of 2 THz. At 46 K, the threshold current-density was measured as ~745 A/cm 2 with a peak-power output of ~10 mW. Electrically stable operation in a positive differential-resistance regime is achieved by a careful choicemore » of design parameters. The results validate the robustness of scattering-assisted injection schemes for development of low-frequency (ν < 2.5 THz) QCLs.« less
Development of a wearable plantar force measurement device for gait analysis in remote conditions.
Hamid, Rawnak; Wijesundara, Suharshani; McMillan, Lachlan; Scott, David; Redoute, Jean-Michel; Ebeling, Peter R; Yuce, Mehmet Rasit
2017-07-01
The pressure field that exists between the foot and the supporting surface is identified as the foot plantar pressure. The information obtained from foot plantar pressure measurements has useful applications that include diagnosis of gait disturbances, optimization of footwear design, sport biomechanics and prevention of injury. Using wearable technology to measure foot plantar pressure continuously allows the collection of comprehensive real-life data sets while interfering minimally with the subject's daily activities. This paper presents the design of a wearable device to measure foot plantar pressure. Mechanical and electrical design considerations as well as data analysis are discussed. A pilot study involving 20 physically fit volunteers (15 males and 5 females, ageing from 20 - 45) performing a variety of physical activities (such as standing, walking, jumping and climbing up and down stairs) illustrate the potential of the device in terms of its wearability, and suitability for unobtrusive long-term monitoring.
NASA Astrophysics Data System (ADS)
El-Helby, Abdel Ghany A.; Ayyad, Rezk R.; Sakr, Helmy M.; Abdelrahim, Adel S.; El-Adl, K.; Sherbiny, Farag S.; Eissa, Ibrahim H.; Khalifa, Mohamed M.
2017-02-01
In view of their expected anticonvulsant activity, some novel derivatives of 2,3-dihydrophthalazine-1,4-dione 4-22 were designed, synthesized and evaluated using pentylenetetrazole (PTZ) and picrotoxin as convulsion-inducing models. Moreover, the most active compounds were tested against electrical induced convulsion using maximal electroshock (MES) models of seizures. Most of the tested compounds showed considerable anticonvulsant activity in at least one of the anticonvulsant tests. Compounds 13 and 14g were proved to be the most potent compounds of this series with relatively low toxicity in the median lethal dose test when compared with the reference drug. Molecular modeling studies were done to verify the biological activity. The obtained results showed that the most potent compounds could be useful as a template for future design, optimization, and investigation to produce more active analogues.
Adaptive change in electrically stimulated muscle: a framework for the design of clinical protocols.
Salmons, Stanley
2009-12-01
Adult mammalian skeletal muscles have a remarkable capacity for adapting to increased use. Although this behavior is familiar from the changes brought about by endurance exercise, it is seen to a much greater extent in the response to long-term neuromuscular stimulation. The associated phenomena include a markedly increased resistance to fatigue, and this is the key to several clinical applications. However, a more rational basis is needed for designing regimes of stimulation that are conducive to an optimal outcome. In this review I examine relevant factors, such as the amount, frequency, and duty cycle of stimulation, the influence of force generation, and the animal model. From these considerations a framework emerges for the design of protocols that yield an overall functional profile appropriate to the application. Three contrasting examples illustrate the issues that need to be addressed clinically.
2.1 THz quantum-cascade laser operating up to 144 K based on a scattering-assisted injection design.
Khanal, Sudeep; Reno, John L; Kumar, Sushil
2015-07-27
A 2.1 THz quantum cascade laser (QCL) based on a scattering-assisted injection and resonant-phonon depopulation design scheme is demonstrated. The QCL is based on a four-well period implemented in the GaAs/Al0.15Ga0.85As material system. The QCL operates up to a heat-sink temperature of 144 K in pulsed-mode, which is considerably higher than that achieved for previously reported THz QCLs operating around the frequency of 2 THz. At 46 K, the threshold current-density was measured as ∼ 745 A/cm2 with a peak-power output of ∼10 mW. Electrically stable operation in a positive differential-resistance regime is achieved by a careful choice of design parameters. The results validate the robustness of scattering-assisted injection schemes for development of low-frequency (ν < 2.5 THz) QCLs.
Henley, W Hampton; He, Yan; Mellors, J Scott; Batz, Nicholas G; Ramsey, J Michael; Jorgenson, James W
2017-11-10
Ultra-high voltage capillary electrophoresis with high electric field strength has been applied to the separation of the charge variants, drug conjugates, and disulfide isomers of monoclonal antibodies. Samples composed of many closely related species are difficult to resolve and quantify using traditional analytical instrumentation. High performance instrumentation can often save considerable time and effort otherwise spent on extensive method development. Ideally, the resolution obtained for a given CE buffer system scales with the square root of the applied voltage. Currently available commercial CE instrumentation is limited to an applied voltage of approximately 30kV and a maximum electric field strength of 1kV/cm due to design limitations. The instrumentation described here is capable of safely applying potentials of at least 120kV with electric field strengths over 2000V/cm, potentially doubling the resolution of the best conventional CE buffer/capillary systems while decreasing analysis time in some applications. Separations of these complex mixtures using this new instrumentation demonstrate the potential of ultra-high voltage CE to identify the presence of previously unresolved components and to reduce analysis time for complex mixtures of antibody variants and drug conjugates. Copyright © 2017 Elsevier B.V. All rights reserved.
The feasibility of inflight measurement of lightning strike parameters
NASA Technical Reports Server (NTRS)
Crouch, K. E.; Plumer, J. A.
1978-01-01
The appearance of nonmetallic structural materials and microelectronics in aircraft design has resulted in a need for better knowledge of hazardous environments such as lightning and the effects these environments have on the aircraft. This feasibility study was performed to determine the lightning parameters in the greatest need of clarification and the performance requirements of equipment necessary to sense and record these parameters on an instrumented flight research aircraft. It was found that electric field rate of change, lightning currents, and induced voltages in aircraft wiring are the parameters of greatest importance. Flat-plate electric field sensors and resistive current shunts are proposed for electric field and current sensors, to provide direct measurements of these parameters. Six bit analog-to-digital signal conversion at a 5 nanosecond sampling rate, short-term storage of 85000 bits and long term storage of 5 x 10 to the 7th power bits of electric field, current and induced voltage data on the airplane are proposed, with readout and further analysis to be accomplished on the ground. A NASA F-106B was found to be suitable for use as the research aircraft because it has a minimum number of possible lightning attachment points, space for the necessary instrumentation, and appears to meet operational requirements. Safety considerations are also presented.
NASA Astrophysics Data System (ADS)
Rodgers, John P.; Bent, Aaron A.; Hagood, Nesbitt W.
1996-05-01
The primary objective of this work is to develop a standard methodology for characterizing structural actuation systems intended for operation in high electrical and mechanical loading environments. The designed set of tests evaluates the performance of the active materials system under realistic operating conditions. The tests are also used to characterize piezoelectric fiber composites which have been developed as an alternative to monolithic piezoceramic wafers for structural actuation applications. The performance of this actuator system has been improved using an interdigitated electrode pattern, which orients the primary component of the electric field into the plane of the structure, enabling the use of the primary piezoelectric effect along the active fibers. One possible application of this technology is in the integral twist actuation of helicopter rotor blades for higher harmonic control. This application requires actuators which can withstand the harsh rotor blade operating environment. This includes large numbers of electrical and mechanical cycles with considerable centripetal and bending loads. The characterization tests include standard active material tests as well as application-driven tests which evaluate the performance of the actuators during simulated operation. Test results for several actuator configurations are provided, including S2 glass- reinforced and E-glass laminated actuators. The study concludes that the interdigitated electrode piezoelectric fiber composite actuator has great potential for high loading applications.
Hall effect in the presence of rotation
NASA Astrophysics Data System (ADS)
Zubkov, M. A.
2018-02-01
A rotating relativistic fermion system is considered. The consideration is based on the Dirac equation written in the laboratory (non-rotating) reference frame. Rotation in this approach gives rise to the effective magnetic and electric fields that act in the same way both on positive and negative electric charges. In the presence of external electric field in the given system the electric current appears orthogonal to both the electric field and the axis of rotation. The possible applications to the physics of quark-gluon plasma are discussed.
Emerging Novel Metal Electrodes for Photovoltaic Applications.
Lu, Haifei; Ren, Xingang; Ouyang, Dan; Choy, Wallace C H
2018-04-01
Emerging novel metal electrodes not only serve as the collector of free charge carriers, but also function as light trapping designs in photovoltaics. As a potential alternative to commercial indium tin oxide, transparent electrodes composed of metal nanowire, metal mesh, and ultrathin metal film are intensively investigated and developed for achieving high optical transmittance and electrical conductivity. Moreover, light trapping designs via patterning of the back thick metal electrode into different nanostructures, which can deliver a considerable efficiency improvement of photovoltaic devices, contribute by the plasmon-enhanced light-mattering interactions. Therefore, here the recent works of metal-based transparent electrodes and patterned back electrodes in photovoltaics are reviewed, which may push the future development of this exciting field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Hockensmith, R.; Devine, E.; Digiacomo, M.; Hager, F.; Moss, R.
1983-01-01
Satellites that use the NASA Tracking and Data Relay Satellite System (TDRSS) require antennas that are crucial for performing and achieving reliable TDRSS link performance at the desired data rate. Technical guidelines are presented to assist the prospective TDRSS medium-and high-data rate user in selecting and procuring a viable, steerable high-gain antenna system. Topics addressed include the antenna gain/transmitter power/data rate relationship; Earth power flux-density limitations; electromechanical requirements dictated by the small beam widths, desired angular coverage, and minimal torque disturbance to the spacecraft; weight and moment considerations; mechanical, electrical and thermal interfaces; design lifetime failure modes; and handling and storage. Proven designs are cited and space-qualified assemblies and components are identified.
Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate
NASA Astrophysics Data System (ADS)
Choi, J.-H.; Cho, C.-H.; Cha, H.-Y.
2018-06-01
Gallium oxide (Ga2O3) based vertical Schottky barrier diodes (SBDs) were designed for high voltage switching applications. Since p-type Ga2O3 epitaxy growth or p-type ion implantation technique has not been developed yet, a field plate structure was employed in this study to maximize the breakdown voltage by suppressing the electric field at the anode edge. TCAD simulation was used for the physical analysis of Ga2O3 SBDs from which it was found that careful attention must be paid to the insulator under the field plate. Due to the extremely high breakdown field property of Ga2O3, an insulator with both high permittivity and high breakdown field must be used for the field plate formation.
Review: Semiconductor Piezoresistance for Microsystems.
Barlian, A Alvin; Park, Woo-Tae; Mallon, Joseph R; Rastegar, Ali J; Pruitt, Beth L
2009-01-01
Piezoresistive sensors are among the earliest micromachined silicon devices. The need for smaller, less expensive, higher performance sensors helped drive early micromachining technology, a precursor to microsystems or microelectromechanical systems (MEMS). The effect of stress on doped silicon and germanium has been known since the work of Smith at Bell Laboratories in 1954. Since then, researchers have extensively reported on microscale, piezoresistive strain gauges, pressure sensors, accelerometers, and cantilever force/displacement sensors, including many commercially successful devices. In this paper, we review the history of piezoresistance, its physics and related fabrication techniques. We also discuss electrical noise in piezoresistors, device examples and design considerations, and alternative materials. This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of piezoresistivity, process and material selection and design guidance useful to researchers and device engineers.
A Novel Transverse Flux Machine for Vehicle Traction Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Zhao; Ahmed, Adeeb; Husain, Iqbal
2015-10-05
A novel transverse flux machine topology for electric vehicle traction application using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to Halbach-array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from Finite Element Analysis (FEA) show the motor achieved comparable torquemore » density to conventional rare-earth permanent magnet machines. This machine is a viable candidate for direct drive applications with low cost and high torque density.« less
A High-power Electric Propulsion Test Platform in Space
NASA Technical Reports Server (NTRS)
Petro, Andrew J.; Reed, Brian; Chavers, D. Greg; Sarmiento, Charles; Cenci, Susanna; Lemmons, Neil
2005-01-01
This paper will describe the results of the preliminary phase of a NASA design study for a facility to test high-power electric propulsion systems in space. The results of this design study are intended to provide a firm foundation for subsequent detailed design and development activities leading to the deployment of a valuable space facility. The NASA Exploration Systems Mission Directorate is sponsoring this design project. A team from the NASA Johnson Space Center, Glenn Research Center, the Marshall Space Flight Center and the International Space Station Program Office is conducting the project. The test facility is intended for a broad range of users including government, industry and universities. International participation is encouraged. The objectives for human and robotic exploration of space can be accomplished affordably, safely and effectively with high-power electric propulsion systems. But, as thruster power levels rise to the hundreds of kilowatts and up to megawatts, their testing will pose stringent and expensive demands on existing Earth-based vacuum facilities. These considerations and the human access to near-Earth space provided by the International Space Station (ISS) have led to a renewed interest in space testing. The ISS could provide an excellent platform for a space-based test facility with the continuous vacuum conditions of the natural space environment and no chamber walls to modify the open boundary conditions of the propulsion system exhaust. The test platform could take advantage of the continuous vacuum conditions of the natural space environment. Space testing would provide open boundary conditions without walls, micro-gravity and a realistic thermal environment. Testing on the ISS would allow for direct observation of the test unit, exhaust plume and space-plasma interactions. When necessary, intervention by on-board personnel and post-test inspection would be possible. The ISS can provide electrical power, a location for diagnostic instruments, data handling and thermal control. The platform will be designed to accommodate the side-by-side testing of multiple types of electric thrusters. It is intended to be a permanent facility in which different thrusters can be tested over time. ISS crews can provide maintenance for the platform and change out thruster test units as needed. The primary objective of this platform is to provide a test facility for electric propulsion devices of interest for future exploration missions. These thrusters are expected to operate in the range of hundreds of kilowatts and above. However, a platform with this capability could also accommodate testing of thrusters that require much lower power levels. Testing at the higher power levels would be accomplished by using power fiom storage devices on the platform, which would be gradually recharged by the ISS power generation system. This paper will summarize the results of the preliminary phase of the study with an explanation of the user requirements and the initial conceptual design. The concept for test operations will also be described. The NASA project team is defining the requirements but they will also reflect the inputs of the broader electric propulsion community including those at universities, commercial enterprises and other government laboratories. As a facility on the International Space Station, the design requirements are also intended to encompass the needs of international users. Testing of electric propulsion systems on the space station will help advance the development of systems needed for exploration and could also serve the needs of other customers. Propulsion systems being developed for commercial and military applications could be tested and certification testing of mature thrusters could be accomplished in the space environment.
Alternative Fuels Data Center: Benefits and Considerations of Electricity
tailpipe emissions when in all-electric mode. The life cycle emissions of an EV or PHEV depend on the low-polluting energy sources for electricity production, plug-in vehicles typically have a life cycle strong life cycle emissions benefit. Use the Vehicle Cost Calculator to compare life cycle emissions of
ERIC Educational Resources Information Center
Taber, Keith S.; de Trafford, Tom; Quail, Teresa
2006-01-01
The topic of electricity offers considerable challenge for the teacher hoping to provide students with an insight into scientific ways of thinking about circuits. The concepts used to make sense of electric circuits are abstract and students are expected to develop conceptual models of the relationship between non-observable qualities (current,…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-06
... Class Groups and Equipment Classes a. Electric Motor Design Letter b. Fire Pump Electric Motors c. Brake... [Compliance starting December 19, 2015] Electric motor Horsepower Pole Equipment class group design type... Conservation Standards for NEMA Design C Electric Motors (Excluding Non-Integral Brake Electric Motors and...
Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics
Chan, Walker R.; Bermel, Peter; Pilawa-Podgurski, Robert C. N.; Marton, Christopher H.; Jensen, Klavs F.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan
2013-01-01
The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system design, which we name the microthermophotovoltaic (μTPV) generator. The approach is predicted to be capable of up to 32% efficient heat-to-electricity conversion within a millimeter-scale form factor. Although considerable technological barriers need to be overcome to reach full performance, we have performed a robust experimental demonstration that validates the theoretical framework and the key system components. Even with a much-simplified μTPV system design with theoretical efficiency prediction of 2.7%, we experimentally demonstrate 2.5% efficiency. The μTPV experimental system that was built and tested comprises a silicon propane microcombustor, an integrated high-temperature photonic crystal selective thermal emitter, four 0.55-eV GaInAsSb thermophotovoltaic diodes, and an ultra-high-efficiency maximum power-point tracking power electronics converter. The system was demonstrated to operate up to 800 °C (silicon microcombustor temperature) with an input thermal power of 13.7 W, generating 344 mW of electric power over a 1-cm2 area. PMID:23440220
Terahertz beam switching by electrical control of graphene-enabled tunable metasurface.
Zhang, Yin; Feng, Yijun; Zhao, Junming; Jiang, Tian; Zhu, Bo
2017-10-26
Controlling the terahertz wave, especially the dynamical and full control of terahertz wavefront, is highly demanded due to the increasing development of practical devices and application systems. Recently considerable efforts have been made to fill the 'terahertz gap' with the help of artificial metamaterial or metasurface incorporated with graphene material. Here, we propose a scheme to design tunable metasurface consisting of metallic patch array on a grounded polymer substrate embedded with graphene layers to electrically control the electromagnetic beam reflection at terahertz frequency. By adjusting geometric dimension of the patch elements, 360 degree reflection phase range may be achieved, thus abrupt phase shifts can be introduced along the metasurface for tailoring the reflected wavefront. Moreover, the reflective phase gradient over the metasurface can be switched between 90 and 360 degree by controlling the Fermi energy of the embedded graphene through voltage biasing, hence dynamically switching the reflective beam directions. Numerical simulations demonstrate that either single beam or dual beam dynamically switching between normal and oblique reflection angles can be well attained at working frequency. The proposed approach will bring much freedom in the design of beam manipulation devices and may be applied to terahertz radiation control.
Nutrition and Foods as Related to Space Flight
NASA Technical Reports Server (NTRS)
Lane, Helen W.; Smith, Scott M.; Bourland, Charles T.; Paloski, W. H. (Technical Monitor)
1999-01-01
U.S. space food development began with highly engineered foods that met rigid requirements imposed by the spacecraft design and short mission durations of the Mercury and Gemini programs. The lack of adequate bathroom facilities and limited food storage capacity promoted the development of low fiber diets to reduce fecal output. As missions lengthened, space food systems evolved, with the most basic design consideration always being the method of water supply. On the Apollo spacecraft, where water was abundant as a byproduct of fuel cell electricity generation, dehydrated food was used extensively. Such food has little advantage when water has to be transported to space to rehydrate it; therefore, more complex food systems were planned for Skylab, which used solar panels rather than fuel cells for electricity generation. The Skylab food system, the most advanced used in space to date, included freezers and refrigerators, increasing the palatability, variety, and nutritional value of the diet. On the Space Shuttle, power and weight constraints precluded the use of freezers, refrigerators, and microwave ovens. The availability of fuel cell by-product water was conducive to a shelf-stable food system with approximately half of the food dehydrated and the remainder made up of thermostabilized, irradiated, and intermediate-moisture foods.
Systems for deep brain stimulation: review of technical features.
Amon, A; Alesch, F
2017-09-01
The use of deep brain stimulation (DBS) is an important treatment option for movement disorders and other medical conditions. Today, three major manufacturers provide implantable systems for DBS. Although the underlying principle is basically the same for all available systems, the differences in the technical features vary considerably. This article outlines aspects regarding the technical features of DBS systems. The differences between voltage and current sources are addressed and their effect on stimulation is shown. To maintain clinical benefit and minimize side effects the stimulation field has to be adapted to the requirements of the patient. Shaping of the stimulation field can be achieved by the electrode design and polarity configuration. Furthermore, the electric signal consisting of stimulation rate, stimulation amplitude and pulse width affect the stimulation field. Interleaving stimulation is an additional concept, which permits improved treatment outcomes. Therefore, the electrode design, the polarity, the electric signal, and the concept of interleaving stimulation are presented. The investigated systems can be also categorized as rechargeable and non-rechargeable, which is briefly discussed. Options for interconnecting different system components from various manufacturers are presented. The present paper summarizes the technical features and their combination possibilities, which can have a major impact on the therapeutic effect.
State-of-the-art and emerging technologies for atrial fibrillation ablation.
Dewire, Jane; Calkins, Hugh
2010-03-01
Catheter ablation is an important treatment modality for patients with atrial fibrillation (AF). Although the superiority of catheter ablation over antiarrhythmic drug therapy has been demonstrated in middle-aged patients with paroxysmal AF, the role the procedure in other patient subgroups-particularly those with long-standing persistent AF-has not been well defined. Furthermore, although AF ablation can be performed with reasonable efficacy and safety by experienced operators, long-term success rates for single procedures are suboptimal. Fortunately, extensive ongoing research will improve our understanding of the mechanisms of AF, and considerable funds are being invested in developing new ablation technologies to improve patient outcomes. These technologies include ablation catheters designed to electrically isolate the pulmonary veins with improved safety, efficacy, and speed, catheters designed to deliver radiofrequency energy with improved precision, robotic systems to address the technological demands of the procedure, improved imaging and electrical mapping systems, and MRI-guided ablation strategies. The tools, technologies, and techniques that will ultimately stand the test of time and become the standard approach to AF ablation in the future remain unclear. However, technological advances are sure to result in the necessary improvements in the safety and efficacy of AF ablation procedures.
Pratt & Whitney ESCORT derivative for mars surface power
NASA Astrophysics Data System (ADS)
Feller, Gerald J.; Joyner, Russell
1999-01-01
The purpose of this paper is to address the applicability of a common reactor system design from the Pratt & Whitney ESCORT nuclear thermal rocket engine concept to support current NASA mars surface-based power requirements. The ESCORT is a bimodal engine capable of supporting a wide range of propulsive thermal and vehicle electrical power requirements. The ESCORT engine is powered by a fast-spectrum beryllium-reflected CERMET-fueled nuclear reactor. In addition to an expander cycle propulsive mode, the ESCORT is capable of operating in an electrical power mode. In this mode, the reactor is used to heat a mixture of helium and xenon to drive a closed-loop Brayton cycle in order to generate electrical energy. Recent Design Reference Mission requirements (DRM) from NASA Johnson Space Center and NASA Lewis Research Center studies in 1997 and 1998 have detailed upgraded requirements for potential mars transfer missions. The current NASA DRM requires a nuclear thermal propulsion system capable of delivering total mission requirements of 200170 N (45000 lbf) thrust and 50 kWe of spacecraft electrical power. Additionally, these requirements detailed a surface power system capable of providing approximately 160 kW of electrical energy over an approximate 10 year period within a given weight and volume envelope. Current NASA studies use a SP-100 reactor (0.8 MT) and a NERVA derivative (1.6 MT) as baseline systems. A mobile power cart of approximate dimensions 1.7 m×4.5 m×4.4 m has been conceptualized to transport the reactor power system on the Mars Surface. The 63.25 cm diameter and 80.25 cm height of the ESCORT and its 1.3 MT of weight fit well within the current weight and volume target range of the NASA DRM requirements. The modifications required to the ESCORT reactor system to support this upgraded electrical power requirements along with operation in the Martian atmospheric conditions are addressed in this paper. Sufficient excess reactivity and burnup capability were designed into the ESCORT reactor system to support these upgraded requirements. Only slight modifications to reactor hardware were required to address any environmental considerations. These modifications involved sealing any refractory metal alloy components from the CO2 in the Martian Atmosphere. Also, the Brayton cycle Power Conversion Unit (PCU) hardware was modified to support the upgraded requirements. This paper discusses the design analysis performed and provides information on the final common reactor concept to be used on the Mars surface to support manned missions.
Electric injury, Part II: Specific injuries.
Fish, R M
2000-01-01
Electric injury can cause disruption of cardiac rhythm and breathing, burns, fractures, dislocations, rhabdomyolysis, eye and ear injury, oral and gastrointestinal injury, vascular damage, disseminated intravascular coagulation, peripheral and spinal cord injury, and Reflex Sympathetic Dystrophy. Secondary trauma from falls, fires, flying debris, and inhalation injury can complicate the clinical picture. Diagnostic and treatment considerations for electric injuries are described in this article, which is the second part of a three-part series on electric injuries.
Potential barriers to electric vehicle commercialization : A. insurance B. vehicle recharging
DOT National Transportation Integrated Search
1981-03-01
An assessment of the potential barriers to the commercialization of electric and hybrid vehicles due to insurance considerations and the absence of a range extension infrastructure was performed. Availability of operator and manufacturers liability i...
Soft Ionic Electroactive Polymer Actuators with Tunable Non-Linear Angular Deformation
Hong, Wangyujue; Almomani, Abdallah; Chen, Yuanfen; Jamshidi, Reihaneh; Montazami, Reza
2017-01-01
The most rational approach to fabricate soft robotics is the implementation of soft actuators. Conventional soft electromechanical actuators exhibit linear or circular deformation, based on their design. This study presents the use of conjugated polymers, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) to locally vary ion permeability of the ionic electroactive polymer actuators and manipulate ion motion through means of structural design to realize intrinsic angular deformation. Such angular deformations are closer to biomimetic systems and have potential applications in bio-robotics. Electrochemical studies reveal that the mechanism of actuation is mainly associated with the charging of electric double layer (EDL) capacitors by ion accumulation and the PEDOT:PSS layer’s expansion by ion interchange and penetration. Dependence of actuator deformation on structural design is studied experimentally and conclusions are verified by analytical and finite element method modeling. The results suggest that the ion-material interactions are considerably dominated by the design of the drop-cast PEDOT:PSS on Nafion. PMID:28773036
Soft Ionic Electroactive Polymer Actuators with Tunable Non-Linear Angular Deformation.
Hong, Wangyujue; Almomani, Abdallah; Chen, Yuanfen; Jamshidi, Reihaneh; Montazami, Reza
2017-06-21
The most rational approach to fabricate soft robotics is the implementation of soft actuators. Conventional soft electromechanical actuators exhibit linear or circular deformation, based on their design. This study presents the use of conjugated polymers, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) to locally vary ion permeability of the ionic electroactive polymer actuators and manipulate ion motion through means of structural design to realize intrinsic angular deformation. Such angular deformations are closer to biomimetic systems and have potential applications in bio-robotics. Electrochemical studies reveal that the mechanism of actuation is mainly associated with the charging of electric double layer (EDL) capacitors by ion accumulation and the PEDOT:PSS layer's expansion by ion interchange and penetration. Dependence of actuator deformation on structural design is studied experimentally and conclusions are verified by analytical and finite element method modeling. The results suggest that the ion-material interactions are considerably dominated by the design of the drop-cast PEDOT:PSS on Nafion.
NASA Technical Reports Server (NTRS)
1980-01-01
Cost benefit considerations are extremely important in obtaining the acceptance of dispersed storage and generation (DSG) by the electric utilities. These considerations involved somewhat different economic analyses depending on whether the generation is utility, customer, or combined ownership. It is necessary to get acceptance of more easily understood methods for evaluating the economics of DSG because much of the benefits of DSG may accrue in the generation and transmission portions of the utility system while the costs tend to be centered in the distribution portion of that system. The influence of factors, such as reliability, capital costs, and other economic measures were also investigated.
Reduction of lighting energy consumption in office buildings through improved daylight design
NASA Astrophysics Data System (ADS)
Papadouri, Maria Violeta Prado
This study aims to investigate the lighting energy consumption in office buildings and the options for its reduction. One way to reduce lighting energy consumption is by improving the daylight design. A better use of daylight in buildings might be an outcome from the effort made in different directions. Like the improvement of a building's fabric and layout, the materials, even the furniture in a space influences the daylight quality considerably. Also very important role in lighting energy consumption has the development of more efficient lighting technology like the electric lighting control systems, such as photo sensors and occupancy sensors. Both systems are responsible so that the electric light is not used without reason. As the focusing area of this study, is to find ways to improve the daylight use in buildings, a consequent question is which are the methods provided in order to achieve this The accuracy of the methodology used is also an important issue in order to achieve reliable results. The methodology applied in this study includes the analysis of a case study by taking field measurements and computer simulations. The first stage included gathering information about the lighting design of the building and monitoring the light levels, both from natural and from the electric lighting. The second stage involved testing with computer simulations, different parameters that were expected to improve the daylight exploitation of the specific area. The results of the field measurements showed that the main problems of the space were the low natural light levels and the poor daylight distribution. The annual electric lighting energy consumption, as it was calculated with the use of computer simulations, represented the annual energy consumption of a typical air-conditioned prestige office building (energy consumption guide 19, for energy use in offices, 2000). After several computer simulations, the results showed that initial design parameters of the building can affect the lighting energy consumption of the space significantly. On the other hand, relatively small changes, like changing the reflectance of the surfaces and the lighting control systems can make even more difference to the light quality of the space and the reduction of lighting energy consumption.
Method of multi-mode vibration control for the carbody of high-speed electric multiple unit trains
NASA Astrophysics Data System (ADS)
Gong, Dao; Zhou, Jinsong; Sun, Wenjing; Sun, Yu; Xia, Zhanghui
2017-11-01
A method of multi-mode vibration control for the carbody of high-speed electric multiple unit (EMU) trains by using the onboard and suspended equipments as dynamic vibration absorbers (DVAs) is proposed. The effect of the multi-mode vibration on the ride quality of a high-speed EMU train was studied, and the target modes of vibration control were determined. An equivalent mass identification method was used to determine the equivalent mass for the target modes at the device installation positions. To optimize the vibration acceleration response of the carbody, the natural frequencies and damping ratios of the lateral and vertical vibration were designed based on the theory of dynamic vibration absorption. In order to realize the optimized design values of the natural frequencies for the lateral and vertical vibrations simultaneously, a new type of vibration absorber was designed in which a belleville spring and conventional rubber parts are connected in parallel. This design utilizes the negative stiffness of the belleville spring. Results show that, as compared to rigid equipment connections, the proposed method effectively reduces the multi-mode vibration of a carbody in a high-speed EMU train, thereby achieving the control objectives. The ride quality in terms of the lateral and vertical vibration of the carbody is considerably improved. Moreover, the optimal value of the damping ratio is effective in dissipating the vibration energy, which reduces the vibration of both the carbody and the equipment.
National Electrical Code in Power Engineering Course for Electrical Engineering Curriculum
ERIC Educational Resources Information Center
Azizur, Rahman M. M.
2011-01-01
In order to ensure the safety of their inhabitants and properties, the residential, industrial and business installations require complying with NEC (national electrical code) for electrical systems. Electrical design engineers and technicians rely heavily on these very important design guidelines. However, these design guidelines are not formally…
Thermal Management Considerations in Energy Conversion Devices
2001-05-01
1000 W). Thermal Conversion Devices: Thermoelectrics (TE) Thermophotovoltaics (TPV) Alkali Metal Thermal to Electric Conversion (AMTEC) Free...300 - 400C Heat Input 700 - 850C Na vapor Electrodes Alkali Metal Thermal - to - Electric Conversion: Sodium is vaporized and condensed in a thermally
NASA Astrophysics Data System (ADS)
Xie, Longhan; Li, Jiehong; Li, Xiaodong; Huang, Ledeng; Cai, Siqi
2018-01-01
Hydraulic dampers are used to decrease the vibration of a vehicle, where vibration energy is dissipated as heat. In addition to resulting in energy waste, the damping coefficient in hydraulic dampers cannot be changed during operation. In this paper, an energy-harvesting vehicle damper was proposed to replace traditional hydraulic dampers. The goal is not only to recover kinetic energy from suspension vibration but also to change the damping coefficient during operation according to road conditions. The energy-harvesting damper consists of multiple generators that are independently controlled by switches. One of these generators connects to a tunable resistor for fine tuning the damping coefficient, while the other generators are connected to a control and rectifying circuit, each of which both regenerates electricity and provides a constant damping coefficient. A mathematical model was built to investigate the performance of the energy-harvesting damper. By controlling the number of switched-on generators and adjusting the value of the external tunable resistor, the damping can be fine tuned according to the requirement. In addition to the capability of damping tuning, the multiple controlled generators can output a significant amount of electricity. A prototype was built to test the energy-harvesting damper design. Experiments on an MTS testing system were conducted, with results that validated the theoretical analysis. Experiments show that changing the number of switched-on generators can obviously tune the damping coefficient of the damper and simultaneously produce considerable electricity.
Erbium-doped zinc-oxide waveguide amplifiers for hybrid photonic integrated circuits
NASA Astrophysics Data System (ADS)
O'Neal, Lawrence; Anthony, Deion; Bonner, Carl; Geddis, Demetris
2016-02-01
CMOS logic circuits have entered the sub-100nm regime, and research is on-going to investigate the quantum effects that are apparent at this dimension. To avoid some of the constraints imposed by fabrication, entropy, energy, and interference considerations for nano-scale devices, many have begun designing hybrid and/or photonic integrated circuits. These circuits consist of transistors, light emitters, photodetectors, and electrical and optical waveguides. As attenuation is a limiting factor in any communications system, it is advantageous to integrate a signal amplifier. There are numerous examples of electrical amplifiers, but in order to take advantage of the benefits provided by optically integrated systems, optical amplifiers are necessary. The erbium doped fiber amplifier is an example of an optical amplifier which is commercially available now, but the distance between the amplifier and the device benefitting from amplification can be decreased and provide greater functionality by providing local, on-chip amplification. Zinc oxide is an attractive material due to its electrical and optical properties. Its wide bandgap (≍3.4 eV) and high refractive index (≍2) make it an excellent choice for integrated optics systems. Moreover, erbium doped zinc oxide (Er:ZnO) is a suitable candidate for optical waveguide amplifiers because of its compatibility with semiconductor processing technology, 1.54 μm luminescence, transparency, low resistivity, and amplification characteristics. This research presents the characterization of radio frequency magnetron sputtered Er:ZnO, the design and fabrication of integrated waveguide amplifiers, and device analysis.
Wang, Hsiang-Yu; Bhunia, Arun K; Lu, Chang
2006-12-15
Interest in electrical lysis of biological cells on a microfludic platform has increased because it allows for the rapid recovery of intracellular contents without introducing lytic agents. In this study we demonstrated a simple microfluidic flow-through device which lysed Escherichia coli cells under a continuous dc voltage. The E. coli cells had previously been modified to express green fluorescent protein (GFP). In our design, the cell lysis only happened in a defined section of a microfluidic channel due to the local field amplification by geometric modification. The geometric modification also effectively decreased the required voltage for lysis by several folds. We found that local field strength of 1000-1500 V/cm was required for nearly 100% cell death. This threshold field strength was considerably lower than the value reported in the literature, possibly due to the longer duration of the field [Lee, S.W., Tai, Y.C., 1999. Sens. Actuators A: Phys. 73, 74-79]. Cell lysis was detected by both plate count and fluorescence spectroscopy. The cell membrane was completely disintegrated in the lysis section of the microfluidic device, when the field strength was higher than 2000 V/cm. The devices were fabricated using low-cost soft lithography with channel widths considerably larger than the cell size to avoid clogging and ensure stable performance. Our tool will be ideal for high throughput processing of bacterial cells for chemical analysis of intracellular contents such as DNA and proteins. The application of continuous dc voltage greatly simplified the instrumentation compared to devices using electrical pulses for similar purposes. In principle, the same approach can also be applied for lysis of mammalian cells and electroporative transfection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraas, A.P.
1971-08-01
The facts of fuel supply limitations, environmental quality demands, and spiraling electric generating costs strongly favor development of electric power plants that simultaneously run at higher efficiency, i.e., higher temperature, use to advantage clean fuels, and have as low a capital cost as possible. Both fuel supply and thermal pollution considerations that are becoming progressively more important strongly favor the development of a higher temperature, and more efficient, thermodynamic cycle for electric power plants. About 200,000 hr of operation of boiling potassium systems, including over 15,000 hr of potassium vapor turbine operation under the space power plant program, suggest thatmore » a potassium vapor topping cycle with a turbine inlet temperature of approximately 1500/sup 0/F merits consideration. A design study has been carried out to indicate the size, cost, and development problems of the new types of equipment required. The results indicate that a potassium vapor cycle superimposed on a conventional 1050/sup 0/F steam cycle would give an overall thermal efficiency of about 54% as compared to only 40% from a conventional steam cycle. Thus the proposed system would have a fuel consumption only 75% and a heat rejection rate only 50% that of a conventional plant. The system requires clean fuel, and takes advantage of the present trend toward eliminating SO/sub 2/, NO/sub x/ and ash emissions. Surprisingly, at first sight, the assessment at this stage shows that the capital cost may be less than that of a conventional plant. The main reason for this is use of pressurized combustion, which leads to a much smaller combustor, and thin tube walls to contain potassium at about the same pressure.« less
Electric field stimulated growth of Zn whiskers
NASA Astrophysics Data System (ADS)
Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana
2016-07-01
We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.
Pulse power 350 V nickel-metal hydride battery power-D-005-00181
NASA Astrophysics Data System (ADS)
Eskra, Michael D.; Ralston, Paula; Salkind, Alvin; Plivelich, Robert F.
Energy-storage devices are needed for applications requiring very high-power over short periods of time. Such devices have various military (rail guns, electromagnetic launchers, and DEW) and commercial applications, such as hybrid electric vehicles, vehicle starting (SLI), and utility peak shaving. The storage and delivery of high levels of burst power can be achieved with a capacitor, flywheel, or rechargeable battery. In order to reduce the weight and volume of many systems they must contain advanced state-of-the-art electrochemical or electromechanical power sources. There is an opportunity and a need to develop energy-storage devices that have improved high-power characteristics compared to existing ultra capacitors, flywheels or rechargeable batteries. Electro Energy, Inc. has been engaged in the development of bipolar nickel-metal hydride batteries, which may fulfil the requirements of some of these applications. This paper describes a module rated at 300 V (255 cells) (6 Ah). The volume of the module is 23 L and the mass is 56 kg. The module is designed to deliver 50 kW pulses of 10 s duration at 50% state-of-charge. Details of the mechanical design of the module, safety considerations, along with the results of initial electrical characterization testing by the customer will be discussed. Some discussion of the possibilities for design optimization is also included.
NASA Astrophysics Data System (ADS)
Trowler, Derik Wesley
The research objective of this study was to develop a sizing method for community energy storage systems with emphasis on preventing distribution transformer overloading due to plug-in electric vehicle charging. The method as developed showed the formulation of a diversified load profile based upon residential load data for several customers on the American Electric Power system. Once a load profile was obtained, plug-in electric vehicle charging scenarios which were based upon expected adoption and charging trends were superimposed on the load profile to show situations where transformers (in particular 25 kVA, 50 kVA, and 100 kVA) would be overloaded during peak hours. Once the total load profiles were derived, the energy and power requirements of community energy storage systems were calculated for a number of scenarios with different combinations of numbers of homes and plug-in electric vehicles. The results were recorded and illustrated into charts so that one could determine the minimum size per application. Other topics that were covered in this thesis were the state of the art and future trends in plug-in electric vehicle and battery chemistry adoption and development. The goal of the literature review was to confirm the already suspected notion that Li-ion batteries are best suited and soon to be most cost-effective solution for applications requiring small, efficient, reliable, and light-weight battery systems such as plug-in electric vehicles and community energy storage systems. This thesis also includes a chapter showing system modeling in MATLAB/SimulinkRTM. All in all, this thesis covers a wide variety of considerations involved in the designing and deploying of community energy storage systems intended to mitigate the effects of distribution transformer overloading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darghouth, Naim; Barbose, Galen; Wiser, Ryan
2010-03-30
Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods aremore » under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.« less
Cabin fuselage structural design with engine installation and control system
NASA Technical Reports Server (NTRS)
Balakrishnan, Tanapaal; Bishop, Mike; Gumus, Ilker; Gussy, Joel; Triggs, Mike
1994-01-01
Design requirements for the cabin, cabin system, flight controls, engine installation, and wing-fuselage interface that provide adequate interior volume for occupant seating, cabin ingress and egress, and safety are presented. The fuselage structure must be sufficient to meet the loadings specified in the appropriate sections of Federal Aviation Regulation Part 23. The critical structure must provide a safe life of 10(exp 6) load cycles and 10,000 operational mission cycles. The cabin seating and controls must provide adjustment to account for various pilot physiques and to aid in maintenance and operation of the aircraft. Seats and doors shall not bind or lockup under normal operation. Cabin systems such as heating and ventilation, electrical, lighting, intercom, and avionics must be included in the design. The control system will consist of ailerons, elevator, and rudders. The system must provide required deflections with a combination of push rods, bell cranks, pulleys, and linkages. The system will be free from slack and provide smooth operation without binding. Environmental considerations include variations in temperature and atmospheric pressure, protection against sand, dust, rain, humidity, ice, snow, salt/fog atmosphere, wind and gusts, and shock and vibration. The following design goals were set to meet the requirements of the statement of work: safety, performance, manufacturing and cost. To prevent the engine from penetrating the passenger area in the event of a crash was the primary safety concern. Weight and the fuselage aerodynamics were the primary performance concerns. Commonality and ease of manufacturing were major considerations to reduce cost.
Transceiver Design for CMUT-Based Super-Resolution Ultrasound Imaging.
Behnamfar, Parisa; Molavi, Reza; Mirabbasi, Shahriar
2016-04-01
A recently introduced structure for the capacitive micromachined ultrasonic transducers (CMUTs) has focused on the applications of the asymmetric mode of vibration and has shown promising results in construction of super-resolution ultrasound images. This paper presents the first implementation and experimental results of a transceiver circuit to interface such CMUT structures. The multiple input/multiple output receiver in this work supports both fundamental and asymmetric modes of operation and includes transimpedance amplifiers and low-power variable-gain stages. These circuit blocks are designed considering the trade-offs between gain, input impedance, noise, linearity and power consumption. The high-voltage transmitter can generate pulse voltages up to 60 V while occupying a considerably small area. The overall circuit is designed and laid out in a 0.35 μm CMOS process and a four-channel transceiver occupies 0.86 × 0.38 mm(2). The prototype chip is characterized in both electrical and mechanical domains. Measurement results show that each receiver channel has a nominal gain of 110 dBΩ with a 3 dB bandwidth of 9 MHz while consuming 1.02 mW from a 3.3 V supply. The receiver is also highly linear, with 1 dB compression point of minimum 1.05 V which is considerably higher than the previously reported designs. The transmitter consumes 98.1 mW from a 30 V supply while generating 1.38 MHz, 30 V pulses. The CMOS-CMUT system is tested in the transmit mode and shows full functionality in air medium.
Electrical safety during transplantation.
Amicucci, G L; Di Lollo, L; Fiamingo, F; Mazzocchi, V; Platania, G; Ranieri, D; Razzano, R; Camin, G; Sebastiani, G; Gentile, P
2010-01-01
Technologic innovations enable management of medical equipment and power supply systems, with improvements that can affect the technical aspects, economics, and quality of medical service. Herein are outlined some technical guidelines, proposed by Istituto Superiore per la Prevenzione e la Sicurezza del Lavoro, for increasing the effectiveness of the power supply system and the safety of patients and surgeons in the operating room, with particular focus on transplantation. The dependence of diagnoses and therapies on operation of the electrical equipment can potentially cause great risk to patients. Moreover, it is possible that faulty electrical equipment could produce current that may flow through the patient. Because patients are particularly vulnerable when their natural protection is considerably decreased, as during transplantation or other surgery, power supply systems must operate with a high degree of reliability and quality to prevent risk, and must be designed to reduce hazards from direct and indirect contact. Reliability of the power supply system is closely related to the quality of the project, choice of materials, and management of the system (eg, quality and frequency of servicing). Among the proposed guidelines, other than normal referencing, are (1) adoption of a monitoring system to improve the quality of the electrical parameters in the operating room, (2) institution of emergency procedures for management of electrical faults, (3) a procedure for management of fires in the operating room, (4) and maintenance interventions and inspections of medical devices to maintain minimal requirements of safety and performance. Copyright 2010 Elsevier Inc. All rights reserved.
Rehabilitation after the replantation on a 2-year-old girl with both amputated legs.
Kim, Hyo Heon; Jeong, Jae-Ho; Kim, Yong Ha; Seul, Jung Hyun; Shon, Oog Jin
2005-04-01
We had an opportunity to perform replantation of both legs on a 2-year-old girl, and our decision to perform replantation rather than amputation surgery was carefully made taking her age, degree of crushing injury, ischaemic time and level of the amputation into consideration. Painstakingly designed rehabilitation treatments were continuously performed on this girl from the early stage after the operation, and the treatments were comprised of four parts; that is, flexion and extension exercise for the ankle in order to prevent it from stiffness or contracture, functional electrical stimulation (FES) in order to prevent muscular atrophy on the lower extremities, muscle strengthening exercise for the lower extremities, and electrical stimulation to regenerate the damaged nerves and to prevent muscular atrophy from occurring. For an objective assessment of the postoperative conditions, total active motion angles of the ankle joint were measured, and also EMG and NCV were conducted at the end of the first month as well as at the end of the 6th month. Total active motion angles of the ankle joint were increased progressively as time went on, from 15 to 60 degrees on the right and from 10 to 45 degrees on the left. NCV did not show any sensation or response from motor nerves, or amplitude decreased considerably 1 month after the operation; however, at the end of the 6th month conditions improved a great deal with both amplitude and latency. And most muscles that did not show any signals on EMG or showed less than normal at the end of the first month after the operation eventually recovered at the end of the 6th month. The patient had no particular difficulties in walking after 6 months or rather she started running in small steps showing her legs functioning superbly. An infant with both of lower extremities amputated is quite a rare case. We believe that the replantation surgery was successful due to the fact that carefully selected preoperative factors were taken into consideration and well designed postoperative rehabilitation program consisted of four parts was carried out continuously.
Description of a 2.3 kW power transformer for space applications
NASA Technical Reports Server (NTRS)
Hansen, I.
1979-01-01
The principle features and special testing of a high voltage high power transformer designed and developed for space application are described. The transformer is operated in a series resonant inverter supplying beam power to a 30 cm mercury ion thruster. Electrical requirements include operation of 2.3 kW continuous power output, primary currents to 35 amps rms, and frequencies up to 20 kHz. High efficiency was obtained through detailed considerations of the tradeoffs available in core materials, wire selection, coil configurations and thermal control. A number of novel heat removal techniques are discussed which control the winding temperature using only the available conductive cooling.
Electromagnetic sensors for general lightning application
NASA Technical Reports Server (NTRS)
Baum, C. E.; Breen, E. L.; Onell, J. P.; Moore, C. B.; Sower, G. D.
1980-01-01
Electromagnetic sensors for general lightning applications in measuring environment are discussed as well as system response to the environment. This includes electric and magnetic fields, surface current and charge densities, and currents on conductors. Many EMP sensors are directly applicable to lightning measurements, but there are some special cases of lightning measurements involving direct strikes which require special design considerations for the sensors. The sensors and instrumentation used by NMIMT in collecting data on lightning at South Baldy peak in central New Mexico during the 1978 and 1979 lightning seasons are also discussed. The Langmuir Laboratory facilities and details of the underground shielded instrumentation room and recording equipment are presented.
Wiesmeth, Hans; Häckl, Dennis
2011-09-01
This paper investigates the concept of extended producer responsibility (EPR) from an economic point of view. Particular importance will be placed on the concept of 'economic feasibility' of an EPR policy, which should guide decision-making in this context. Moreover, the importance of the core EPR principle of 'integrating signals throughout the product chain' into the incentive structure will be demonstrated with experiences from Germany. These examples refer to sales packaging consumption, refillable drinks packages and waste electrical and electronic equipment collection. As a general conclusion, the interaction between economic principles and technological development needs to be observed carefully when designing incentive-compatible EPR policies.
Pressurized fluidized bed combustion of coal for electric power generation the AEP approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markowsky J.J.; Wickstrom, B.
1982-08-01
American Electric Power (AEP), STAL-LAVAL Turbine A.B. (SL), and Deutsche Babcock Anlagen AG (DBA) are working on a program estimated to cost $250 million that will lead toward the construction of a large (170,000 KW) commercial demonstration of an advanced electric power plant incorporating Pressurized Fluidized Bed Combustion (PFBC) of coal. A pilot plant test program carried out during 1977-1980 verified combustor performance and demonstrated long gas turbine blade life. Parallel efforts during this period involved the design of the 170,000 kW Commercial Demonstration Plant (CDP) and a 500,000 kW Commercial Plant which essentially consists of two CDP combustors-gas turbinemore » modules and a larger capacity steam cycle. These efforts showed considerable economic advantages of PFBC-combined cycle power generation over other alternative technologies. A 15,000 KW (thermal) component test facility (CTF) is presently under construction in Sweden. Extensive testing is scheduled to begin in early 1982. Upon successful completion of these tests, AEP intends to start construction of the CDP in 1983; the plant is expected to supply power to the AEP network by 1986.« less
NASA Technical Reports Server (NTRS)
Liebert, B. E.
1986-01-01
A metal-hydride heat pump (HHP) has been proposed to provide an advanced regenerable nonventing thermal sink for the liquid-cooled garment worn during an extravehicular activity (EVA). The conceptual design indicates that there is a potential for significant advantages over the one presently being used by shuttle crew personnel as well as those that have been proposed for future use with the space station. Compared to other heat pump designs, a HHP offers the potential for extended use with no electrical power requirements during the EVA. In addition, a reliable, compact design is possible due to the absence of moving parts other than high-reliability check valves. Because there are many subtleties in the properties of metal hydrides for heat pump applications, it is essential that a prototype hydride heat pump be constructed with the selected materials before a committment is made for the final design. Particular care must be given to the evaporator heat exchanger worn by the astronaut since the performance of hydride heat pumps is generally heat transfer limited.
Controlled Ecological Life Support Systems (CELSS) conceptual design option study
NASA Technical Reports Server (NTRS)
Oleson, Melvin; Olson, Richard L.
1986-01-01
Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.
Upgrades to the NSTX HHFW antenna
NASA Astrophysics Data System (ADS)
Ellis, R.; Brunkhorst, C.; Hosea, J.
2014-02-01
The High Harmonic Fast Wave (HHFW) antenna for the National Spherical Torus Experiment (NSTX) at PPPL will be upgraded as part of the NSTX upgrade project. Higher magnetic fields and plasma current result in disruption forces on the current straps that can be up to four times the original design values. The current straps on the HHFW antenna are presently fed by coaxial feedthroughs with rigid center conductors. The additional forces on the current straps require a compliant section in the center conductor in order to minimize the forces on the feedthrough. The design of this compliant section has been an integrated effort involving electrostatic calculations in parallel with mechanical and thermal analyses, in order to arrive at a design that is optimized for mechanical, thermal and electrical considerations. The voltage standoff obtained from this design will be verified when a prototype antenna is evaluated on our RF test stand. This paper describes the design of the compliant section of the center conductor, mechanical, thermal and electrostatic calculations, and plans for full implementation of the upgrade on NSTX.
Solar Array Structures for 300 kW-Class Spacecraft
NASA Technical Reports Server (NTRS)
Pappa, Richard; Rose, Geoff; Mann, Troy O.; Warren, Jerry E.; Mikulas, Martin M., Jr.; Kerslake, Tom; Kraft, Tom; Banik, Jeremy
2013-01-01
State-of-the-art solar arrays for spacecraft provide on the order of 20 kW of electrical power, and they usually consist of 3J solar cells bonded to hinged rigid panels about 1 inch in thickness. This structural construction allows specific mass and packaging volumes of up to approximately 70 W/kg and 15 kW/m3 to be achieved. Significant advances in solar array structures are required for future very-high-power spacecraft (300+ kW), such as those proposed for pre-positioning heavy cargo on or near the Moon, Mars, or asteroids using solar electric propulsion. These applications will require considerable increases in both W/kg and kW/m3, and will undoubtedly require the use of flexible-substrate designs. This presentation summarizes work sponsored by NASA's Game Changing Development Program since Oct. 2011 to address the challenge of developing 300+ kW solar arrays. The work is primarily being done at NASA Langley, NASA Glenn, and two contractor teams (ATK and DSS), with technical collaboration from AFRL/Kirtland. The near-tem objective of the project is design, analysis, and testing of 30-50 kW solar array designs that are extensible to the far-term objective of 300+ kW. The work is currently focused on three designs: the MegaFlex concept by ATK, the Mega-ROSA concept by DSS, and an in-house 300-kW Government Reference Array concept. Each of these designs will be described in the presentation. Results obtained to date by the team, as well as future work plans, for the design, analysis, and testing of these large solar array structures will be summarized.
Novel Transverse Flux Machine for Vehicle Traction Applications: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Z.; Ahmed, A.; Husain, I.
2015-04-02
A novel transverse flux machine topology for electric vehicle traction applications using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to the Halbach array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite-element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from finite element analysis (FEA) show that the motor achievedmore » comparable torque density to conventional rare-earth permanent magnet (PM) machines. This machine is a viable candidate for direct-drive applications with low cost and high torque density.« less
NASA Technical Reports Server (NTRS)
Bailey, M. C.
1994-01-01
A beam waveguide was designed that is based upon the propagation characteristics of the fundamental Gaussian beam and the focusing properties of spherical dielectric lenses. The 20-GHz, two-horn, four-lens system was constructed and experimentally evaluated by probing the field in a plane perpendicular to the beam axis at the center of the beam waveguide system. The critical parameters were determined by numerical sensitivity studies, and the lens-horn critical spacing was adjusted to better focus the beam at the probe plane. The measured performance was analyzed by consideration of higher order Gaussian-Laguerre beam modes. The beam waveguide system was successfully used in the measurements of the electromagnetic transmission properties of Shuttle thermal-protection tiles while the tile surface was being heated to reentry-level temperatures with a high-power laser.
NASA Technical Reports Server (NTRS)
Wu, S. T.; Christensen, D. L.; Head, R. R.; Whitacre, W. E.
1975-01-01
Topics related to architectural and institutional considerations are discussed along with studies of components and subsystems. Subjects in the area of system design and analysis are also explored. Residential and commercial applications are considered, taking into account hot-water usage in a typical single-family residence, solar heating and cooling of mobile homes, aspects of design and performance in the case of a solar heating system using a reflective pyramid optical condenser, solar heating in a Boston school, a performance analysis of solar service hot water systems, comparative performance analyses of three solar heated and cooled buildings, and the use of solar energy in a soybeam processing operation. Applications related to power generation are also examined, giving attention to solar thermal electric power systems and photovoltaic research. Individual items are announced in this issue.
Review: Semiconductor Piezoresistance for Microsystems
Barlian, A. Alvin; Park, Woo-Tae; Mallon, Joseph R.; Rastegar, Ali J.; Pruitt, Beth L.
2010-01-01
Piezoresistive sensors are among the earliest micromachined silicon devices. The need for smaller, less expensive, higher performance sensors helped drive early micromachining technology, a precursor to microsystems or microelectromechanical systems (MEMS). The effect of stress on doped silicon and germanium has been known since the work of Smith at Bell Laboratories in 1954. Since then, researchers have extensively reported on microscale, piezoresistive strain gauges, pressure sensors, accelerometers, and cantilever force/displacement sensors, including many commercially successful devices. In this paper, we review the history of piezoresistance, its physics and related fabrication techniques. We also discuss electrical noise in piezoresistors, device examples and design considerations, and alternative materials. This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of piezoresistivity, process and material selection and design guidance useful to researchers and device engineers. PMID:20198118
Design considerations for a 10-kW integrated hydrogen-oxygen regenerative fuel cell system
NASA Technical Reports Server (NTRS)
Hoberecht, M. A.; Miller, T. B.; Rieker, L. L.; Gonzalez-Sanabria, O. D.
1984-01-01
Integration of an alkaline fuel cell subsystem with an alkaline electrolysis subsystem to form a regenerative fuel cell (RFC) system for low earth orbit (LEO) applications characterized by relatively high overall round trip electrical efficiency, long life, and high reliability is possible with present state of the art technology. A hypothetical 10 kW system computer modeled and studied based on data from ongoing contractual efforts in both the alkaline fuel cell and alkaline water electrolysis areas. The alkaline fuel cell technology is under development utilizing advanced cell components and standard Shuttle Orbiter system hardware. The alkaline electrolysis technology uses a static water vapor feed technique and scaled up cell hardware is developed. The computer aided study of the performance, operating, and design parameters of the hypothetical system is addressed.
An extended car-following model with consideration of the electric vehicle's driving range
NASA Astrophysics Data System (ADS)
Tang, Tie-Qiao; Chen, Liang; Yang, Shi-Chun; Shang, Hua-Yan
2015-07-01
In this paper, we propose a car-following model to explore the influences of the electric vehicle's driving range on the driving behavior under four traffic situations. The numerical results illustrate that the electric vehicle's behavior of exchanging battery at the charge station can destroy the stability of traffic flow and produce some prominent jams, and that the influences are related to the electric vehicle's driving range, i.e., the shorter the driving range is, the greater the effects are.
Performance Issues for a Changing Electric Power Industry
1995-01-01
Provides an overview of some of the factors affecting reliability within the electric bulk power system. Historical and projected data related to reliability issues are discussed on a national and regional basis. Current research on economic considerations associated with reliability levels is also reviewed.
78 FR 43875 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
... that the Commission received the following electric corporate filings: Docket Numbers: EC13-129-000... Expedited Consideration and Confidential Treatment. Filed Date: 7/12/13. Accession Number: 20130712-5183... Commission received the following electric rate filings: Docket Numbers: ER13-1970-000. Applicants: PJM...
78 FR 11635 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... that the Commission received the following electric corporate filings: Docket Numbers: EC13-71-000... for Expedited Consideration, Waivers and Confidential Treatment. Filed Date: 2/6/13. Accession Number... following electric rate filings: Docket Numbers: ER13-675-001. Applicants: Catalina Solar, LLC. Description...
78 FR 16847 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-19
... that the Commission received the following electric corporate filings: Docket Numbers: EC13-79-000... Expedited Consideration and Confidential Treatment. Filed Date: 3/11/13. Accession Number: 20130311-5080.... ET 4/1/13. Take notice that the Commission received the following electric rate filings: Docket...
DOT National Transportation Integrated Search
1976-01-01
It was concluded that the electrical resistivity test was not ideally suitable as an inspection tool, but was the only currently available nondestructive test for determining the effectiveness of a waterproof membrane system. Considerable judgment an...
Local uniqueness solution of illuminated solar cell intrinsic electrical parameters.
Jarray, Abdennaceur; Abdelkrim, Mahdi; Bouchiba, Mohamed; Boukricha, Abderrahman
2014-01-01
Starting from an electrical dissipative illuminated one-diode solar cell with a given model data at room temperature (I sc , V oc , R s0 , R sh0 , I max ); we present under physical considerations a specific mathematical method (using the Lambert function) for unique determination of the intrinsic electrical parameters (n, I s , I ph , R s , R sh ). This work proves that for a given arbitrary fixed shunt resistance R sh , the saturation current I S and the ideality factor n are uniquely determined as a function of the photocurrent I ph , and the series resistance R s . The correspondence under the cited physical considerations: R s does not exceed ]0, 20[Ω and n is between ]0, 3[ and I ph and I s are arbitrary positive [Formula: see text] , is biunivocal. This study concludes that for both considered solar cells, the five intrinsic electrical parameters that were determined numerically are unique.
NASA Astrophysics Data System (ADS)
Saboori, Abdollah; Pavese, Matteo; Badini, Claudio; Fino, Paolo
2018-01-01
Copper/graphene nanoplatelet (GNP) nanocomposites were produced by a wet mixing method followed by a classical powder metallurgy technique. A qualitative evaluation of the structure of graphene after mixing indicated that wet mixing is an appropriate dispersion method. Thereafter, the effects of two post-processing techniques such as repressing-annealing and hot isostatic pressing (HIP) on density, interfacial bonding, hardness, and thermal and electrical conductivity of the nanocomposites were analyzed. Density evaluations showed that the relative density of specimens increased after the post-processing steps so that after HIPing almost full densification was achieved. The Vickers hardness of specimens increased considerably after the post-processing techniques. The thermal conductivity of pure copper was very low in the case of the as-sintered samples containing 2 to 3 pct porosity and increased considerably to a maximum value in the case of HIPed samples which contained only 0.1 to 0.2 pct porosity. Electrical conductivity measurements showed that by increasing the graphene content electrical conductivity decreased.
Hybrid Electric Vehicle Basics | NREL
design-In this design, the energy conversion unit and an electric propulsion system are connected . Series design-In this design, the primary engine is connected to a generator that produces electricity
Electrical Properties and Power Considerations of a Piezoelectric Actuator
NASA Technical Reports Server (NTRS)
Jordan, T.; Ounaies, Z.; Tripp, J.; Tcheng, P.
1999-01-01
This paper assesses the electrical characteristics of piezoelectric wafers for use in aeronautical applications such as active noise control in aircraft. Determination of capacitive behavior and power consumption is necessary to optimize the system configuration and to design efficient driving electronics. Empirical relations are developed from experimental data to predict the capacitance and loss tangent of a PZT5A ceramic as nonlinear functions of both applied peak voltage and driving frequency. Power consumed by the PZT is the rate of energy required to excite the piezoelectric system along with power dissipated due to dielectric loss and mechanical and structural damping. Overall power consumption is thus quantified as a function of peak applied voltage and driving frequency. It was demonstrated that by incorporating the variation of capacitance and power loss with voltage and frequency, satisfactory estimates of power requirements can be obtained. These relations allow general guidelines in selection and application of piezoelectric actuators and driving electronics for active control applications.
Lightning protection guidelines and test data for adhesively bonded aircraft structures
NASA Technical Reports Server (NTRS)
Pryzby, J. E.; Plumer, J. A.
1984-01-01
The highly competitive marketplace and increasing cost of energy has motivated manufacturers of general aviation aircraft to utilize composite materials and metal-to-metal bonding in place of conventional fasteners and rivets to reduce weight, obtain smoother outside surfaces and reduce drag. The purpose of this program is protection of these new structures from hazardous lightning effects. The program began with a survey of advance-technology materials and fabrication methods under consideration for future designs. Sub-element specimens were subjected to simulated lightning voltages and currents. Measurements of bond line voltages, electrical sparking, and mechanical strength degradation were made to comprise a data base of electrical properties for new technology materials and basic structural configurations. The second hase of the program involved tests on full scale wing structures which contained integral fuel tanks and which were representative of examples of new technology structures and fuel systems. The purpose of these tests was to provide a comparison between full scale structural measurements and those obtained from the sub-element specimens.
Bacenetti, Jacopo; Lovarelli, Daniela; Ingrao, Carlo; Tricase, Caterina; Negri, Marco; Fiala, Marco
2015-10-01
In Europe, thanks to public subsidy, the production of electricity from anaerobic digestion (AD) of agricultural feedstock has considerably grown and several AD plants were built. When AD plants are concentrated in specific areas (e.g., Northern Italy), increases of feedstock' prices and transport distances can be observed. In this context, as regards low-energy density feedstock, the present research was designed to estimate the influence of the related long-distance transport on the environmental performances of the biogas-to-electricity process. For this purpose the following transport systems were considered: farm trailers and trucks. For small distances (<5 km), the whole plant silage shows the lowest impact; however, when distances increase, silages with higher energy density (even though characterised by lower methane production per hectare) become more environmentally sustainable. The transport by trucks achieves better environmental performances especially for distances greater than 25 km. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Lei; Sanada, Masayuki; Morimoto, Shigeo; Takeda, Yoji; Kaido, Chikara; Wakisaka, Takeaki
Loss evaluation is an important issue in the design of electrical machines. Due to the complicate structure and flux distribution, it is difficult to predict the iron loss in the machines exactly. This paper studies the iron loss in interior permanent magnet synchronous motors based on the finite element method. The iron loss test data of core material are used in the fitting of the hysteresis and eddy current loss constants. For motors in practical operation, additional iron losses due to the appearance of rotation of flux density vector and harmonic flux density distribution makes the calculation data deviates from the measured ones. Revision is made to account for these excess iron losses which exist in the practical operating condition. Calculation results show good consistence with the experimental ones. The proposed method provides a possible way to predict the iron loss of the electrical machine with good precision, and may be helpful in the selection of the core material which is best suitable for a certain machine.
Recent Progress on Flexible and Wearable Supercapacitors.
Xue, Qi; Sun, Jinfeng; Huang, Yan; Zhu, Minshen; Pei, Zengxia; Li, Hongfei; Wang, Yukun; Li, Na; Zhang, Haiyan; Zhi, Chunyi
2017-12-01
Recently, wearable electronic devices including electrical sensors, flexible displays, and health monitors have received considerable attention and experienced rapid progress. Wearable supercapacitors attract tremendous attention mainly due to their high stability, low cost, fast charging/discharging, and high efficiency; properties that render them value for developing fully flexible devices. In this Concept, the recent achievements and advances made in flexible and wearable supercapacitors are presented, especially highlighting the promising performances of yarn/fiber-shaped and planar supercapacitors. On the basis of their working mechanism, electrode materials including carbon-based materials, metal oxide-based materials, and conductive polymers with an emphasis on the performance-optimization method are introduced. The latest representative techniques and active materials of recently developed supercapacitors with superior performance are summarized. Furthermore, the designs of 1D and 2D electrodes are discussed according to their electrically conductive supporting materials. Finally, conclusions, challenges, and perspective in optimizing and developing the electrochemical performance and function of wearable supercapacitors for their practical utility are addressed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
75 FR 18194 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
..., 2010. Take notice that the Commission received the following electric corporate filings: Docket Numbers... Generating Co. Pursuant to Section 203 of the Federal Power Act and Request for Expedited Consideration and.... Eastern Time on Thursday, April 22, 2010. Take notice that the Commission received the following electric...
Mission roles for the solar electric propulsion stage with the space transportation system
NASA Technical Reports Server (NTRS)
1974-01-01
A briefing outline is presented of the mission roles for the solar electric propulsion stage (SEPS). Topics outlined include operational considerations and mission characteristics, trade studies and technology assessments influencing SEPS configuration definition, program support requirements, and development and operations cost estimates.
75 FR 25223 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
..., 2010. Take notice that the Commission received the following electric corporate filings: Docket Numbers... Jurisdictional Facilities, Request for Confidential Treatment, and Request for Expedited Consideration of AG... Commission received the following electric rate filings: Docket Numbers: ER01-1099-014; ER02-1406-015; ER99...
PV cells electrical parameters measurement
NASA Astrophysics Data System (ADS)
Cibira, Gabriel
2017-12-01
When measuring optical parameters of a photovoltaic silicon cell, precise results bring good electrical parameters estimation, applying well-known physical-mathematical models. Nevertheless, considerable re-combination phenomena might occur in both surface and intrinsic thin layers within novel materials. Moreover, rear contact surface parameters may influence close-area re-combination phenomena, too. Therefore, the only precise electrical measurement approach is to prove assumed cell electrical parameters. Based on theoretical approach with respect to experiments, this paper analyses problems within measurement procedures and equipment used for electrical parameters acquisition within a photovoltaic silicon cell, as a case study. Statistical appraisal quality is contributed.
NASA Astrophysics Data System (ADS)
Suzuki, Ikuo; Ishibashi, Yoshihiro
1987-02-01
The electric field induced phase transitions are discussed in the improper ferroelectrics and ferroelastics, where the high symmetry phase is assumed to be piezoelectric as in the gadolinium molybdate (GMO). The dependence on the electric field of the polarization is discussed, and the D-E hysteresis loops are compared with the one experimentally observed in GMO.
Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari
2015-01-01
Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC). PMID:26218470
Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari
2015-07-28
Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC).
Advanced Fusion Reactors for Space Propulsion and Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, John J.
In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Protonmore » triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.« less
Advanced Fusion Reactors for Space Propulsion and Power Systems
NASA Technical Reports Server (NTRS)
Chapman, John J.
2011-01-01
In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.
Land-Use Intensity of Electricity Production: Comparison Across Multiple Sources
NASA Astrophysics Data System (ADS)
Swain, M.; Lovering, J.; Blomqvist, L.; Nordhaus, T.; Hernandez, R. R.
2015-12-01
Land is an increasingly scarce global resource that is subject to competing pressures from agriculture, human settlement, and energy development. As countries concerned about climate change seek to decarbonize their power sectors, renewable energy sources like wind and solar offer obvious advantages. However, the land needed for new energy infrastructure is also an important environmental consideration. The land requirement of different electricity sources varies considerably, but there are very few studies that offer a normalized comparison. In this paper, we use meta-analysis to calculate the land-use intensity (LUI) of the following electricity generation sources: wind, solar photovoltaic (PV), concentrated solar power (CSP), hydropower, geothermal, nuclear, biomass, natural gas, and coal. We used data from existing studies as well as original data gathered from public records and geospatial analysis. Our land-use metric includes land needed for the generation facility (e.g., power plant or wind farm) as well as the area needed to mine fuel for natural gas, coal, and nuclear power plants. Our results found the lowest total LUI for nuclear power (115 ha/TWh/y) and the highest LUI for biomass (114,817 ha/TWh/y). Solar PV and CSP had a considerably lower LUI than wind power, but both were an order of magnitude higher than fossil fuels (which ranged from 435 ha/TWh/y for natural gas to 579 ha/TWh/y for coal). Our results suggest that a large build-out of renewable electricity, though it would offer many environmental advantages over fossil fuel power sources, would require considerable land area. Among low-carbon energy sources, relatively compact sources like nuclear and solar have the potential to reduce land requirements.
High sensitivity capacitive MEMS microphone with spring supported diaphragm
NASA Astrophysics Data System (ADS)
Mohamad, Norizan; Iovenitti, Pio; Vinay, Thurai
2007-12-01
Capacitive microphones (condenser microphones) work on a principle of variable capacitance and voltage by the movement of its electrically charged diaphragm and back plate in response to sound pressure. There has been considerable research carried out to increase the sensing performance of microphones while reducing their size to cater for various modern applications such as mobile communication and hearing aid devices. This paper reviews the development and current performance of several condenser MEMS microphone designs, and introduces a microphone with spring supported diaphragm to further improve condenser microphone performance. The numerical analysis using Coventor FEM software shows that this new microphone design has a higher mechanical sensitivity compared to the existing edge clamped flat diaphragm condenser MEMS microphone. The spring supported diaphragm is shown to have a flat frequency response up to 7 kHz and more stable under the variations of the diaphragm residual stress. The microphone is designed to be easily fabricated using the existing silicon fabrication technology and the stability against the residual stress increases its reproducibility.
Space Propulsion Research Facility (B-2): An Innovative, Multi-Purpose Test Facility
NASA Technical Reports Server (NTRS)
Hill, Gerald M.; Weaver, Harold F.; Kudlac, Maureen T.; Maloney, Christian T.; Evans, Richard K.
2011-01-01
The Space Propulsion Research Facility, commonly referred to as B-2, is designed to hot fire rocket engines or upper stage launch vehicles with up to 890,000 N force (200,000 lb force), after environmental conditioning of the test article in simulated thermal vacuum space environment. As NASA s third largest thermal vacuum facility, and the largest designed to store and transfer large quantities of propellant, it is uniquely suited to support developmental testing associated with large lightweight structures and Cryogenic Fluid Management (CFM) systems, as well as non-traditional propulsion test programs such as Electric and In-Space propulsion. B-2 has undergone refurbishment of key subsystems to support the NASA s future test needs, including data acquisition and controls, vacuum, and propellant systems. This paper details the modernization efforts at B-2 to support the Nation s thermal vacuum/propellant test capabilities, the unique design considerations implemented for efficient operations and maintenance, and ultimately to reduce test costs.
18 CFR 375.311 - Delegations to the Director of the Office of Enforcement.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Federal Power Act for the purpose of directing the Electric Reliability Organization or the applicable... the Commission for consideration. (u) Direct the Electric Reliability Organization or the applicable... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Delegations to the...
78 FR 45984 - Yankee Atomic Electric Company, Yankee Nuclear Power Station
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... Electric Company, Yankee Nuclear Power Station AGENCY: Nuclear Regulatory Commission. ACTION: Environmental... (YAEC) is the holder of Possession-Only License DPR-3 for the Yankee Nuclear Power Station (YNPS... on the site of any nuclear power reactor. In its Statement of Considerations (SOC) for the Final Rule...
Electrical resistance determination of actual contact area of cold welded metal joints
NASA Technical Reports Server (NTRS)
Hordon, M. J.
1970-01-01
Method measures the area of the bonded zone of a compression weld by observing the electrical resistance of the weld zone while the load changes from full compression until the joint ruptures under tension. The ratio of bonding force to maximum tensile load varies considerably.
A comparative study of electrical probe techniques for plasma diagnostics
NASA Technical Reports Server (NTRS)
Szuszczewicz, E. P.
1972-01-01
Techniques for using electrical probes for plasma diagnostics are reviewed. Specific consideration is given to the simple Langmuir probe, the symmetric double probe of Johnson and Malter, the variable-area probe of Fetz and Oeschsner, and a floating probe technique. The advantages and disadvantages of each technique are discussed.
75 FR 4310 - Credit Reforms in Organized Wholesale Electric Markets
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-27
... electricity markets typically use bilateral contracts such as the Western Systems Power Pool (WSPP) standard... scanned image format. Commenters filing electronically do not need to make a paper filing. Commenters that..., Secretary. In consideration of the foregoing, the Commission proposes to amend part 35, Chapter J, Title 18...
NASA Astrophysics Data System (ADS)
Doyle, Derek
The space industry has predominantly relied on high gain reflector dish antenna apertures for performing communications, but is constantly investing in phase array antenna concepts to provide increased signal flexibility at reduced system costs in terms of finances and system resources. The problem with traditional phased arrays remains the significantly greater program cost and complexity added to the satellite by integrating arrays of antenna elements with dedicated amplifier and phase shifters to perform adaptive beam forming. Liquid Crystal Reflectarrays (LiCRas) offer some of the electrical beam forming capability of a phased array system with the component and design complexity in lines with a traditional reflector antenna aperture but without the risks associated with mechanical steering systems. The final solution is believed to be a hybrid approach that performs in between the boundaries set by the two current disparate approaches. Practical reflectarrays have been developed since the 90's as a means to control reflection of incident radiation off a flat structure that is electrically curved based on radiating elements and their reflection characteristics with tailored element phase delay. In the last decade several methods have been proposed to enable tunable reflectarrays where the electrical shape of the reflector can be steered by controlling the resonating properties of the elements on the reflector using a DC bias. These approaches range from complex fast switching MEMS and ferroelectric devices, to more robust but slower chemical changes. The aim of this work is to investigate the feasibility of a molecular transition approach in the form of liquid crystals which change permittivity based on the electrical field they are subjected to. In this work, particular attention will be paid to the impact of space environment on liquid crystal reflectarray materials and reflector architectures. Of particular interest are the effects on performance induced by the temperature extremes of space and the electromagnetic particle environment. These two items tend to drive much of the research and development for various space technologies and based on these physical influences, assertions can be made toward the space worthiness of such a material approach and can layout future R&D; needs to make certain LC RF devices feasible for space use. Moreover, in this work the performance metrics of such a technology will be addressed along with methods of construction from a space perspective where specific design considerations must be made based on the extreme environment that a typical space asset must endure.
NASA Astrophysics Data System (ADS)
Zhang, Lian-Chang; Shi, Zhi-Wen; Yang, Rong; Huang, Jian
2014-09-01
Quasi-monolayer graphene is successfully grown by the plasma enhanced chemical vapor deposition heteroepitaxial method we reported previously. To measure its electrical properties, the prepared graphene is fabricated into Hall ball shaped devices by the routine micro-fabrication method. However, impurity molecules adsorbed onto the graphene surface will impose considerable doping effects on the one-atom-thick film material. Our experiment demonstrates that pretreatment of the device by heat radiation baking and electrical annealing can dramatically influence the doping state of the graphene and consequently modify the electrical properties. While graphene in the as-fabricated device is highly p-doped, as confirmed by the position of the Dirac point at far more than +60 V, baking treatment at temperatures around 180°C can significantly lower the doping level and reduce the conductivity. The following electrical annealing is much more efficient to desorb the extrinsic molecules, as confirmed by the in situ measurement, and as a result, further modify the doping state and electrical properties of the graphene, causing a considerable drop of the conductivity and a shifting of Dirac point from beyond +60 V to 0 V.
Optical Vector Near-Field Imaging for the Design of Impedance Matched Optical Antennas and Devices
NASA Astrophysics Data System (ADS)
Olmon, Robert L.
Antennas control and confine electromagnetic energy, transforming free-space propagating modes to localized regions. This is not only true for the traditional classical radio antenna, but also for structures that interact resonantly at frequencies throughout the visible regime, that are on the micro- and nanometer size scales. The investigation of these optical antennas has increased dramatically in recent years. They promise to bring the transformative capabilities of radio antennas to the nanoscale in fields such as plasmonics, photonics, spectroscopy, and microscopy. However, designing optical antennas with desired properties is not straightforward due to different material properties and geometric considerations in the optical regime compared to the RF. New antenna characterization tools and techniques must be developed for the optical frequency range. Here, the optical analogue of the vector network analyzer, based on a scattering-type scanning near-field optical microscope, is described and demonstrated for the investigation of the electric and magnetic properties of optical antennas through their electromagnetic vector near-field. Specifically, bringing this microwave frequency tool to the optical regime enables the study of antenna resonant length scaling, optical frequency electromagnetic parameters including current density and impedance, optical antenna coupling to waveguides and nanoloads, local electric field enhancement, and electromagnetic duality of complementary optical antenna geometries.
Generator voltage stabilisation for series-hybrid electric vehicles.
Stewart, P; Gladwin, D; Stewart, J; Cowley, R
2008-04-01
This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Fan, Guodong; Pan, Ke; Wei, Guo; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello
2017-11-01
The design of a lumped parameter battery model preserving physical meaning is especially desired by the automotive researchers and engineers due to the strong demand for battery system control, estimation, diagnosis and prognostics. In light of this, a novel simplified fractional order electrochemical model is developed for electric vehicle (EV) applications in this paper. In the model, a general fractional order transfer function is designed for the solid phase lithium ion diffusion approximation. The dynamic characteristics of the electrolyte concentration overpotential are approximated by a first-order resistance-capacitor transfer function in the electrolyte phase. The Ohmic resistances and electrochemical reaction kinetics resistance are simplified to a lumped Ohmic resistance parameter. Overall, the number of model parameters is reduced from 30 to 9, yet the accuracy of the model is still guaranteed. In order to address the dynamics of phase-change phenomenon in the active particle during charging and discharging, variable solid-state diffusivity is taken into consideration in the model. Also, the observability of the model is analyzed on two types of lithium ion batteries subsequently. Results show the fractional order model with variable solid-state diffusivity agrees very well with experimental data at various current input conditions and is suitable for electric vehicle applications.
The design of electric vehicle intelligent charger
NASA Astrophysics Data System (ADS)
Xu, Yangyang; Wang, Ying
2018-05-01
As the situation of the lack of energy and environment pollution deteriorates rapidly, electric vehicle, a new type of traffic tool, is being researched worldwide. As the core components of electric vehicle, the battery and charger's performance play an important roles in the quality of electric vehicle. So the design of the Electric Vehicle Intelligent Charger based on language-C is designed in this paper. The hardware system is used to produce the input signals of Electric Vehicle Intelligent Charger. The software system adopts the language-C software as development environment. The design can accomplish the test of the parametric such as voltage-current and temperature.
The fact of uncertainty, the uncertainty of facts and the cultural resonance of doubt.
Oreskes, Naomi
2015-11-28
Sixty years after industry executives first decided to fight the facts of tobacco, the exploitation of doubt and uncertainty as a defensive tactic has spread to a diverse set of industries and issues with an interest in challenging scientific evidence. However, one can find examples of doubt-mongering before tobacco. One involves the early history of electricity generation in the USA. In the 1920s, the American National Electric Light Association ran a major propaganda campaign against public sector electricity generation, focused on the insistence that privately generated electricity was cheaper and that public power generation was socialistic and therefore un-American. This campaign included advertisements, editorials (generally ghost-written), the rewriting of textbooks and the development of high school and college curricula designed to cast doubt on the cost-effectiveness of public electricity generation and extol the virtues of laissez-faire capitalism. It worked in large part by finding, cultivating and paying experts to endorse the industry's claims in the mass media and the public debate, and to legitimatize the alterations to textbooks and curricula. The similarities between the electric industry strategy and the defence of tobacco, lead paint and fossil fuels suggests that these strategies work for reasons that are not specific to the particular technical claims under consideration. This paper argues that a reason for the cultural persistence of doubt is what we may label the 'fact of uncertainty'. Uncertainty is intrinsic to science, and this creates vulnerabilities that interested parties may, and commonly do, exploit, both by attempting to challenge the specific conclusions of technical experts and by implying that those conclusions threaten other social values. © 2015 The Author(s).
Electric emissions from electrical appliances.
Leitgeb, N; Cech, R; Schröttner, J
2008-01-01
Electric emissions from electric appliances are frequently considered negligible, and standards consider electric appliances to comply without testing. By investigating 122 household devices of 63 different categories, it could be shown that emitted electric field levels do not justify general disregard. Electric reference values can be exceeded up to 11-fold. By numerical dosimetry with homogeneous human models, induced intracorporal electric current densities were determined and factors calculated to elevate reference levels to accounting for reduced induction efficiency of inhomogeneous fields. These factors were found not high enough to allow generally concluding on compliance with basic restrictions without testing. Electric appliances usually simultaneously emit both electric and magnetic fields exposing almost the same body region. Since the sum of induced current densities is limited, one field component reduces the available margin for the other. Therefore, superposition of electric current densities induced by either field would merit consideration.
Regenerative fuel cells for High Altitude Long Endurance Solar Powered Aircraft
NASA Astrophysics Data System (ADS)
Mitlitsky, F.; Colella, N. J.; Myers, B.; Anderson, C. J.
1993-06-01
High Altitude Long Endurance (HALE) unmanned missions appear to be feasible using a lightweight, high efficiency, span-loaded, Solar Powered Aircraft (SPA) which includes a Regenerative Fuel Cell (RFC) system and novel tankage for energy storage. An existing flightworthy electric powered flying wing design was modified to incorporate present and near-term technologies in energy storage, power electronics, aerodynamics, and guidance and control in order to substantiate feasibility. The design philosophy was to work with vendors to identify affordable near-term technological opportunities that could be applied to existing designs in order to reduce weight, increase reliability, and maintain adequate efficiency of components for delivery within 18 months. The energy storage subsystem for a HALE SPA is a key driver for the entire vehicle because it can represent up to half of the vehicle weight and most missions of interest require the specific energy to be considerably higher than 200 W-hr/kg for many cycles. This stringent specific energy requirement precludes the use of rechargeable batteries or flywheels and suggests examination of various RFC designs. An RFC system using lightweight tankage, a single fuel cell (FC) stack, and a single electrolyzer (EC) stack separated by the length of a spar segment (up to 39 ft), has specific energy of approximately 300 W-hr/kg with 45% efficiency, which is adequate for HALE SPA requirements. However, this design has complexity and weight penalties associated with thermal management, electrical wiring, plumbing, and structural weight. A more elegant solution is to use unitized RFC stacks (reversible stacks that act as both FC's and EC's) because these systems have superior specific energy, scale to smaller systems more favorably, and have intrinsically simpler thermal management.
Lin, Yin-Yan; Wu, Hau-Tieng; Hsu, Chi-An; Huang, Po-Chiun; Huang, Yuan-Hao; Lo, Yu-Lun
2016-12-07
Physiologically, the thoracic (THO) and abdominal (ABD) movement signals, captured using wearable piezo-electric bands, provide information about various types of apnea, including central sleep apnea (CSA) and obstructive sleep apnea (OSA). However, the use of piezo-electric wearables in detecting sleep apnea events has been seldom explored in the literature. This study explored the possibility of identifying sleep apnea events, including OSA and CSA, by solely analyzing one or both the THO and ABD signals. An adaptive non-harmonic model was introduced to model the THO and ABD signals, which allows us to design features for sleep apnea events. To confirm the suitability of the extracted features, a support vector machine was applied to classify three categories - normal and hypopnea, OSA, and CSA. According to a database of 34 subjects, the overall classification accuracies were on average 75.9%±11.7% and 73.8%±4.4%, respectively, based on the cross validation. When the features determined from the THO and ABD signals were combined, the overall classification accuracy became 81.8%±9.4%. These features were applied for designing a state machine for online apnea event detection. Two event-byevent accuracy indices, S and I, were proposed for evaluating the performance of the state machine. For the same database, the S index was 84.01%±9.06%, and the I index was 77.21%±19.01%. The results indicate the considerable potential of applying the proposed algorithm to clinical examinations for both screening and homecare purposes.
Progress toward an optimized hydrogen series hybrid engine
NASA Astrophysics Data System (ADS)
Smith, J. Ray; Aceves, Salvador M.; Johnson, Norman L.; Amsden, Anthony A.
1995-06-01
The design considerations and computational fluid dynamics (CFD) modeling of a high efficiency, low emissions, hydrogen-fueled engine for use as the prime mover of a series hybrid automobile is described. The series hybrid automobile uses the engine to generate electrical energy via a lightweight generator, the electrical energy is stored in a power peaking device (like a flywheel or ultracapacitor) and used as required to meet the tractive drive requirements (plus accessory loads) through an electrical motor. The engine/generator is stopped whenever the energy storage device is fully charged. Engine power output required was determined with a vehicle simulation code to be 15 to 20 kW steady state with peak output of 40 to 45 kW for hill climb. Combustion chamber and engine geometry were determined from a critical review of the hydrogen engine experiments in the literature combined with a simplified global engine model. Two different engine models are employed to guide engine design. The models are a simplified global engine performance model that relies strongly on correlations with literature data for heat transfer and friction losses, and a state-of-the-art CFD combustion model, KIVA-3, to elucidate fluid mechanics and combustion details through full three-dimensional modeling. Both intake and exhaust processes as well as hydrogen combustion chemistry and thermal NO(sub x) production are simulated. Ultimately, a comparison between the simulation and experimental results will lead to improved modeling and will give guidance to changes required in the next generation engine to achieve the goal of 45% brake thermal efficiency.
Photovoltaic performance models - A report card
NASA Technical Reports Server (NTRS)
Smith, J. H.; Reiter, L. R.
1985-01-01
Models for the analysis of photovoltaic (PV) systems' designs, implementation policies, and economic performance, have proliferated while keeping pace with rapid changes in basic PV technology and extensive empirical data compiled for such systems' performance. Attention is presently given to the results of a comparative assessment of ten well documented and widely used models, which range in complexity from first-order approximations of PV system performance to in-depth, circuit-level characterizations. The comparisons were made on the basis of the performance of their subsystem, as well as system, elements. The models fall into three categories in light of their degree of aggregation into subsystems: (1) simplified models for first-order calculation of system performance, with easily met input requirements but limited capability to address more than a small variety of design considerations; (2) models simulating PV systems in greater detail, encompassing types primarily intended for either concentrator-incorporating or flat plate collector PV systems; and (3) models not specifically designed for PV system performance modeling, but applicable to aspects of electrical system design. Models ignoring subsystem failure or degradation are noted to exclude operating and maintenance characteristics as well.
An electric stimulation system for electrokinetic particle manipulation in microfluidic devices.
Lopez-de la Fuente, M S; Moncada-Hernandez, H; Perez-Gonzalez, V H; Lapizco-Encinas, B H; Martinez-Chapa, S O
2013-03-01
Microfluidic devices have grown significantly in the number of applications. Microfabrication techniques have evolved considerably; however, electric stimulation systems for microdevices have not advanced at the same pace. Electric stimulation of micro-fluidic devices is an important element in particle manipulation research. A flexible stimulation instrument is desired to perform configurable, repeatable, automated, and reliable experiments by allowing users to select the stimulation parameters. The instrument presented here is a configurable and programmable stimulation system for electrokinetic-driven microfluidic devices; it consists of a processor, a memory system, and a user interface to deliver several types of waveforms and stimulation patterns. It has been designed to be a flexible, highly configurable, low power instrument capable of delivering sine, triangle, and sawtooth waveforms with one single frequency or two superimposed frequencies ranging from 0.01 Hz to 40 kHz, and an output voltage of up to 30 Vpp. A specific stimulation pattern can be delivered over a single time period or as a sequence of different signals for different time periods. This stimulation system can be applied as a research tool where manipulation of particles suspended in liquid media is involved, such as biology, medicine, environment, embryology, and genetics. This system has the potential to lead to new schemes for laboratory procedures by allowing application specific and user defined electric stimulation. The development of this device is a step towards portable and programmable instrumentation for electric stimulation on electrokinetic-based microfluidic devices, which are meant to be integrated with lab-on-a-chip devices.
An electric stimulation system for electrokinetic particle manipulation in microfluidic devices
NASA Astrophysics Data System (ADS)
Lopez-de la Fuente, M. S.; Moncada-Hernandez, H.; Perez-Gonzalez, V. H.; Lapizco-Encinas, B. H.; Martinez-Chapa, S. O.
2013-03-01
Microfluidic devices have grown significantly in the number of applications. Microfabrication techniques have evolved considerably; however, electric stimulation systems for microdevices have not advanced at the same pace. Electric stimulation of micro-fluidic devices is an important element in particle manipulation research. A flexible stimulation instrument is desired to perform configurable, repeatable, automated, and reliable experiments by allowing users to select the stimulation parameters. The instrument presented here is a configurable and programmable stimulation system for electrokinetic-driven microfluidic devices; it consists of a processor, a memory system, and a user interface to deliver several types of waveforms and stimulation patterns. It has been designed to be a flexible, highly configurable, low power instrument capable of delivering sine, triangle, and sawtooth waveforms with one single frequency or two superimposed frequencies ranging from 0.01 Hz to 40 kHz, and an output voltage of up to 30 Vpp. A specific stimulation pattern can be delivered over a single time period or as a sequence of different signals for different time periods. This stimulation system can be applied as a research tool where manipulation of particles suspended in liquid media is involved, such as biology, medicine, environment, embryology, and genetics. This system has the potential to lead to new schemes for laboratory procedures by allowing application specific and user defined electric stimulation. The development of this device is a step towards portable and programmable instrumentation for electric stimulation on electrokinetic-based microfluidic devices, which are meant to be integrated with lab-on-a-chip devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eto, Joseph; Divan, Deepak; Brumsickle, William
2004-02-01
Power-quality events are of increasing concern for the economy because today's equipment, particularly computers and automated manufacturing devices, is susceptible to these imperceptible voltage changes. A small variation in voltage can cause this equipment to shut down for long periods, resulting in significant business losses. Tiny variations in power quality are difficult to detect except with expensive monitoring equipment used by trained technicians, so many electricity customers are unaware of the role of power-quality events in equipment malfunctioning. This report describes the findings from a pilot study coordinated through the Silicon Valley Manufacturers Group in California to explore the capabilitiesmore » of I-Grid(R), a new power-quality monitoring system. This system is designed to improve the accessibility of power-quality in formation and to increase understanding of the growing importance of electricity reliability and power quality to the economy. The study used data collected by I-Grid sensors at seven Silicon Valley firms to investigate the impacts of power quality on individual study participants as well as to explore the capabilities of the I-Grid system to detect events on the larger electricity grid by means of correlation of data from the sensors at the different sites. In addition, study participants were interviewed about the value they place on power quality, and their efforts to address electricity-reliability and power-quality problems. Issues were identified that should be taken into consideration in developing a larger, potentially nationwide, network of power-quality sensors.« less
Second Insulin Pump Safety Meeting: Summary Report
Zhang, Yi; Jones, Paul L.; Klonoff, David C.
2010-01-01
Diabetes Technology Society facilitated a second meeting of insulin pump experts at Mills-Peninsula Health Services, San Mateo, California on November 4, 2009, at the request of the Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories. The first such meeting was held in Bethesda, Maryland, on November 12, 2008. The group of physicians, nurses, diabetes educators, and engineers from across the United States discussed safety issues in insulin pump therapy and recommended adjustments to current insulin pump design and use to enhance overall safety. The meeting discussed safety issues in the context of pump operation; software; hardware; physical structure; electrical, biological, and chemical considerations; use; and environment from engineering, medical, nursing, and pump/user perspectives. There was consensus among meeting participants that insulin pump designs have made great progress in improving the quality of life of people with diabetes, but much more remains to be done. PMID:20307411
Feasibility study of self-powered magnetorheological damper systems
NASA Astrophysics Data System (ADS)
Chen, Chao; Liao, Wei-Hsin
2012-04-01
This paper is aimed to provide a feasibility study of self-powered magnetorheological (MR) damper systems, which could convert vibration and shock energy into electrical energy to power itself under control. The self-powered feature could bring merits such as higher reliability, energy saving, and less maintenance for the MR damper systems. A self-powered MR damper system is proposed and modeled. The criterion whether the MR damper system is self-powered or not is proposed. A prototype of MR damper with power generation is designed, fabricated, and tested. The modeling of this damper is experimentally validated. Then the damper is applied to a 2 DOF suspension system under on-off skyhook controller, to obtain the self-powered working range and vibration control performance. Effects of key factors on the self-powered MR damper systems are studied. Design considerations are given in order to increase the self-powered working range.
Enabling fast charging - Battery thermal considerations
NASA Astrophysics Data System (ADS)
Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler; Wood, Eric; Ahmed, Shabbir; Bloom, Ira; Dufek, Eric; Shirk, Matthew; Meintz, Andrew; Kreuzer, Cory; Michelbacher, Christopher; Burnham, Andrew; Stephens, Thomas; Francfort, James; Carlson, Barney; Zhang, Jiucai; Vijayagopal, Ram; Hardy, Keith; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Jansen, Andrew N.; Tanim, Tanvir; Markel, Anthony
2017-11-01
Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.
Human Mars Surface Mission Nuclear Power Considerations
NASA Technical Reports Server (NTRS)
Rucker, Michelle A.
2018-01-01
A key decision facing Mars mission designers is how to power a crewed surface field station. Unlike the solar-powered Mars Exploration Rovers (MER) that could retreat to a very low power state during a Martian dust storm, human Mars surface missions are estimated to need at least 15 kilowatts of electrical (kWe) power simply to maintain critical life support and spacecraft functions. 'Hotel' loads alone for a pressurized crew rover approach two kWe; driving requires another five kWe-well beyond what the Curiosity rover’s Radioisotope Power System (RPS) was designed to deliver. Full operation of a four-crew Mars field station is estimated at about 40 kWe. Clearly, a crewed Mars field station will require a substantial and reliable power source, beyond the scale of robotic mission experience. This paper explores the applications for both fission and RPS nuclear options for Mars.
Some design considerations for a satellite-borne magnetograph
NASA Technical Reports Server (NTRS)
Rust, D. M.
1985-01-01
The design criteria for a compact magnetograph that can monitor solar magnetic fields from a free-flying satellite for 5 to 10 years are reviewed. The signal-to-noise ratio that can be obtained with a 10-cm f/10 refractor operated with a Fabry-Perot filter and a solid-state detector array is derived. The telescope measures the longitudinal component of the magnetic field for the entire solar disk in a few minutes at a 20-G threshold and at 3-arcsec resolution. The Fabry-Perot filter has a lithium niobate etalon, which can be tuned electrically and operated at a fixed tilt angle in such a manner that it cancels the solar rotational Doppler shifts in the transmitted spectrum. Principles of operation of various types of polarization modulators are presented, and it is concluded that photoelastic modulators and liquid-crystal devices hold the most promise for use in a satellite-borne magnetograph,
NASA Astrophysics Data System (ADS)
López-Estrada, F. R.; Astorga-Zaragoza, C. M.; Theilliol, D.; Ponsart, J. C.; Valencia-Palomo, G.; Torres, L.
2017-12-01
This paper proposes a methodology to design a Takagi-Sugeno (TS) descriptor observer for a class of TS descriptor systems. Unlike the popular approach that considers measurable premise variables, this paper considers the premise variables depending on unmeasurable vectors, e.g. the system states. This consideration covers a large class of nonlinear systems and represents a real challenge for the observer synthesis. Sufficient conditions to guarantee robustness against the unmeasurable premise variables and asymptotic convergence of the TS descriptor observer are obtained based on the H∞ approach together with the Lyapunov method. As a result, the designing conditions are given in terms of linear matrix inequalities (LMIs). In addition, sensor fault detection and isolation are performed by means of a generalised observer bank. Two numerical experiments, an electrical circuit and a rolling disc system, are presented in order to illustrate the effectiveness of the proposed method.
29 CFR 1910.302 - Electric utilization systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 5 2012-07-01 2012-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...
29 CFR 1910.302 - Electric utilization systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 5 2013-07-01 2013-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...
29 CFR 1910.302 - Electric utilization systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 5 2014-07-01 2014-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...
7 CFR 1724.50 - Compliance with National Electrical Safety Code (NESC).
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 11 2013-01-01 2013-01-01 false Compliance with National Electrical Safety Code (NESC... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.50 Compliance with National Electrical Safety Code...
7 CFR 1724.50 - Compliance with National Electrical Safety Code (NESC).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false Compliance with National Electrical Safety Code (NESC... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.50 Compliance with National Electrical Safety Code...
7 CFR 1724.50 - Compliance with National Electrical Safety Code (NESC).
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 11 2011-01-01 2011-01-01 false Compliance with National Electrical Safety Code (NESC... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.50 Compliance with National Electrical Safety Code...
7 CFR 1724.50 - Compliance with National Electrical Safety Code (NESC).
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 11 2012-01-01 2012-01-01 false Compliance with National Electrical Safety Code (NESC... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.50 Compliance with National Electrical Safety Code...
7 CFR 1724.50 - Compliance with National Electrical Safety Code (NESC).
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 11 2014-01-01 2014-01-01 false Compliance with National Electrical Safety Code (NESC... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.50 Compliance with National Electrical Safety Code...
29 CFR 1910.302 - Electric utilization systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 5 2011-07-01 2011-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...
29 CFR 1910.302 - Electric utilization systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 5 2010-07-01 2010-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...
An Undergraduate Electrical Engineering Course on Computer Organization.
ERIC Educational Resources Information Center
Commission on Engineering Education, Washington, DC.
Outlined is an undergraduate electrical engineering course on computer organization designed to meet the need for electrical engineers familiar with digital system design. The program includes both hardware and software aspects of digital systems essential to design function and correlates design and organizational aspects of the subject. The…
NASA Technical Reports Server (NTRS)
Baumann, T. L.; Pattern, T. C.; Mckee, H. B.
1972-01-01
Two alternate oxygen-hydrogen auxiliary propulsion system concepts for use with the space shuttle vehicle were evaluated. The two concepts considered were: (1) gaseous oxygen-hydrogen systems with electric or hydraulic motor driven pumps to provide system pressure and (2) liquid oxygen-hydrogen systems which delivered propellants to the engines in a liquid state without the need for pumps. The various means of implementing each of the concepts are compared on the basis of weight, technology requirements, and operational considerations. It was determined that the liquid oxygen-hydrogen system concepts have the potential to produce substantial weight reductions in the space shuttle orbiter total impulse range.
Propulsion system study for Small Transport Aircraft Technology (STAT)
NASA Technical Reports Server (NTRS)
Smith, C. E.; Hirschkron, R.; Warren, R. E.
1981-01-01
Propulsion system technologies applicable to the generation of commuter airline aircraft expected to enter service in the 1990's are identified and evaluated in terms of their impact on aircraft operating economics and fuel consumption. The most promising technologies in the areas of engine, propeller, gearbox, and nacelle design are recommended for future research. Each item under consideration is evaluated relative to a modern baseline engine, the General Electric CT7-5, in a current technology aircraft flying a fixed range and payload. The analysis is presented for two aircraft sizes (30 and 50 passenger), over a range of mission lengths (100 to 1100 km) and fuel costs ($264 to $396 per cu m).
Description of operation of fast-response solenoid actuator in diesel fuel system model
NASA Astrophysics Data System (ADS)
Zhao, J.; Grekhov, L. V.; Fan, L.; Ma, X.; Song, E.
2018-03-01
The performance of the fast-response solenoid actuator (FRSA) of engine fuel systems is characterized by the response time of less than 0.1 ms and the necessity to take into consideration the non-stationary peculiarities of mechanical, hydraulic, electrical and magnetic processes. Simple models for magnetization in static and dynamic hysteresis are used for this purpose. The experimental study of the FRSA performance within the electro-hydraulic injector of the Common Rail demonstrated an agreement between the computational and experimental results. The computation of the processes is not only a tool for analysis, but also a tool for design and optimization of the solenoid actuator of new engine fuels systems.
Development of a Compact Efficient Cooling Pump for Space Suit Life Support Systems
NASA Technical Reports Server (NTRS)
vanBoeyen, Roger W.; Reeh, Jonathan A.; Trevino, Luis
2008-01-01
With the increasing demands placed on extravehicular activity (EVA) for the International Space Station (ISS) assembly and maintenance, along with planned lunar and Martian missions, the need for increased human productivity and capability becomes ever more critical. This is most readily achieved by reduction in space suit weight and volume, and increased hardware reliability, durability, and operating lifetime. Considerable progress has been made with each successive generation of space suit design; from the Apollo A7L suit, to the current Shuttle Extravehicular Mobile Unit (EMU) suit, and the next generation Constellation Space Suit Element (CSSE). However, one area of space suit design which has continued to lag is the fluid pump used to drive the water cooling loop of the Primary Life Support System (PLSS). The two main types of fluid pumps typically used in space applications are rotodynamic pumps (pumping is achieved through a rotary vaned impeller) and displacement pumps (which includes rotary and diaphragm pumps). The rotating and moving parts found in the pumps and electric motor add significantly to the susceptibility to wear and friction, thermal mismatch, and complexity of the pumps. Electric motor-driven pumps capable of achieving high operational reliability are necessarily large, heavy, and energy inefficient. This report describes a development effort conducted for NASA by Lynntech, Inc., who recently demonstrated the feasibility of an electrochemically-driven fluid cooling pump. With no electric motor and minimal lightweight components, an electrochemically-driven pump is expected to be significantly smaller, lighter and achieve a longer life time than conventional rotodynamic and displacement pumps. By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. It was also demonstrated that these membranes possess the necessary mechanical strength, durability, and temperature range for long life space operation. The preliminary design for a Phase II prototype pump compares very favorably to the fluid cooling pumps currently used in space suit portable life support systems (PLSS). Characteristics of the electrochemically-driven pump are described and the benefits of the technology as a replacement for electric motor pumps in mechanically pumped single-phase fluid loops (MPFLs) is discussed.
NASA Technical Reports Server (NTRS)
Yim, John T.; Burt, Jonathan M.
2015-01-01
The background gas in a vacuum facility for electric propulsion ground testing is examined in detail through a series of cold flow simulations using a direct simulation Monte Carlo (DSMC) code. The focus here is on the background gas itself, its structure and characteristics, rather than assessing its interaction and impact on thruster operation. The background gas, which is often incorrectly characterized as uniform, is found to have a notable velocity within a test facility. The gas velocity has an impact on the proper measurement of pressure and the calculation of ingestion flux to a thruster. There are also considerations for best practices for tests that involve the introduction of supplemental gas flows to artificially increase the background pressure. All of these effects need to be accounted for to properly characterize the operation of electric propulsion thrusters across different ground test vacuum facilities.
Renewable Electricity Futures for the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, Trieu; Hand, Maureen; Baldwin, Sam F.
2014-04-14
This paper highlights the key results from the Renewable Electricity (RE) Futures Study. It is a detailed consideration of renewable electricity in the United States. The paper focuses on technical issues related to the operability of the U. S. electricity grid and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. The results indicate that the future U. S. electricity system that is largely powered by renewable sources is possible and the further work is warranted to investigate this clean generation pathway. The central conclusion of the analysis ismore » that renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of the total U. S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the United States.« less
Considerations for the Optimal Design of a Two-Way Interactive Distance Education Classroom.
ERIC Educational Resources Information Center
Gregg, Joe; Persichitte, Kay
To make effective use of a two-way interactive distance education system, classroom design should be a primary consideration. A properly designed classroom will enhance content objectives and increase acceptance of this type of instructional delivery. This paper describes key considerations for optimal design. Construction considerations include…
Design and Implementation of Effective Electrical Power System for Surya Satellite-1
NASA Astrophysics Data System (ADS)
Sulistya, A. H.; Hasbi, W.; Muhida, R.
2018-05-01
Surya Satellite-1 is a nanosatellite developed by students of Surya University. The subject of this paper is the design and implementation of effective electrical power system for Surya Satellite 1. The electrical power system role is to supply other systems of the satellite with appropriate electrical power. First, the requirements of the electrical power system are defined. The architecture of the electrical power system is then designed to build the prototype. The orbit simulation is calculated to predict the power production. When prototype test and simulation data is gained, we make an operation scenario to keep the produced power and the consumed power in balance. The design of the modules of the electrical power system is carried out with triple junction solar cells, lithium ion batteries, maximum power point trackers, charging controllers, power distributions, and protection systems. Finally, the prototypes of the electrical power system are presented.
Variable-Reluctance Motor For Electric Vehicles
NASA Technical Reports Server (NTRS)
Lang, Jeffrey H.
1987-01-01
Report describes research on variable-reluctance electric-motor drive for eventual use in electric-vehicle propulsion. Primary design and performance criteria were torque and power output per unit mass of motor, cost, and drive efficiency. For each criterion, optimized drive design developed, and designs unified to yield single electric-vehicle drive. Scaled-down motor performed as expected. Prototype of paraplegic lift operated by toggle switch and joystick. Lift plugs into household electrical outlet for recharging when not in use.
Enhanced Learning through Design Problems--Teaching a Components-Based Course through Design
ERIC Educational Resources Information Center
Jensen, Bogi Bech; Hogberg, Stig; Jensen, Frida av Flotum; Mijatovic, Nenad
2012-01-01
This paper describes a teaching method used in an electrical machines course, where the students learn about electrical machines by designing them. The aim of the course is not to teach design, albeit this is a side product, but rather to teach the fundamentals and the function of electrical machines through design. The teaching method is…
77 FR 43279 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-24
... that the Commission received the following electric corporate filings: Docket Numbers: EC12-120-000... 203 of the Federal Power Act and Requests for Expedited Consideration and Confidential Treatment of... electric rate filings: Docket Numbers: ER10-2460-001; ER10-2461-001; ER12-682-002; ER10- 2463-001; ER11...
Electric power, melatonin, and breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, R.G.
1987-08-01
In this paper, the epidemiology of breast cancer will be discussed, followed by a brief description of the effect of electric fields on melatonin and the relation of melatonin to mammary cancer in rats. Finally, there will be a consideration of factors such as alcohol that affect melatonin and their relation to breast cancer risk. 55 refs.
Geometrical enhancement of the electric field: Application of fractional calculus in nanoplasmonics
NASA Astrophysics Data System (ADS)
Baskin, E.; Iomin, A.
2011-12-01
We developed an analytical approach, for a wave propagation in metal-dielectric nanostructures in the quasi-static limit. This consideration establishes a link between fractional geometry of the nanostructure and fractional integro-differentiation. The method is based on fractional calculus and permits to obtain analytical expressions for the electric-field enhancement.
Johansson, Johannes; Wårdell, Karin; Hemm, Simone
2018-01-01
The success of deep brain stimulation (DBS) relies primarily on the localization of the implanted electrode. Its final position can be chosen based on the results of intraoperative microelectrode recording (MER) and stimulation tests. The optimal position often differs from the final one selected for chronic stimulation with the DBS electrode. The aim of the study was to investigate, using finite element method (FEM) modeling and simulations, whether lead design, electrical setup, and operating modes induce differences in electric field (EF) distribution and in consequence, the clinical outcome. Finite element models of a MER system and a chronic DBS lead were developed. Simulations of the EF were performed for homogenous and patient-specific brain models to evaluate the influence of grounding (guide tube vs. stimulator case), parallel MER leads, and non-active DBS contacts. Results showed that the EF is deformed depending on the distance between the guide tube and stimulating contact. Several parallel MER leads and the presence of the non-active DBS contacts influence the EF distribution. The DBS EF volume can cover the intraoperatively produced EF, but can also extend to other anatomical areas. In conclusion, EF deformations between stimulation tests and DBS should be taken into consideration as they can alter the clinical outcome. PMID:29415442
Unbundling of electric power and energy services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keith, D.M.; Lewis, B.R.
1996-12-31
The world-wide movement to restructure the electric and power and energy industry is now well underway in the United States. The most recent thrust came this year, with the Federal Energy Regulatory Commission`s (FERC`s) issuance on April 24th of new regulations designed to open the interconnected transmission grid to all qualified wholesale users. Other movements have been in the many forms of earlier statutes and regulations promulgated in 1978 to make more efficient use of fuels burned; utility diversification efforts; utility creation of affiliate and subsidiary organizations and operations; introduction into the market of private non-utility power developers; utilities obtainingmore » clearance from the Securities and Exchange Commission (SEC) to venture in international markets; massive mergers and acquisitions; bankruptcies; the entry into the market of nonutility power marketers and brokers, including entities from the gas and securities industries not previously involved in the electric power and energy industry; additional congressional consideration of outright repeal of Holding Company legislation dating back to 1935; some states entering into an era of abandoning the control past in favor of complete re-regulation of the industry on the basis of performance; the coming of Independent System Operators (ISO`s), Regional Transmission Groups (RTG`s), and the possible coming of Capacity Reservation Tariffs (CRT`s), to name a few.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuller, M.J.; LeMire, R.A.; Horner-Richardson, K.
1995-12-31
The Phillips Laboratory Power and Thermal Management Division (PL/VTP), with the support of ORION International Technologies, is investigating new methods of advanced thermal to electric power conversion for space and terrestrial applications. The alkali metal thermal-to-electric converter (AMTEC), manufactured primarily by Advanced Modular Power Systems (AMPS) of Ann Arbor, MI, has reached a level of technological maturity which would allow its use in a constant, unattended thermal source, such as a geothermal field. Approximately 95,000 square miles in the western United States has hot dry rock with thermal gradients of 60 C/km and higher. Several places in the United Statesmore » and the world have thermal gradients of 500 C/km. Such heat sources represent an excellent thermal source for a system of modular power units using AMTEC devices to convert the heat to electricity. AMTEC cells using sodium as a working fluid require heat input at temperatures between 500 and 1,000 C to generate power. The present state of the art is capable of 15% efficiency with 800 C heat input and has demonstrated 18% efficiency for single cells. This paper discusses the basics of AMTEC operation, current drilling technology as a cost driver, design of modular AMTEC power units, heat rejection technologies, materials considerations, and estimates of power production from a geothermal AMTEC concept.« less
Testing methods and techniques: Testing electrical and electronic devices: A compilation
NASA Technical Reports Server (NTRS)
1972-01-01
The methods, techniques, and devices used in testing various electrical and electronic apparatus are presented. The items described range from semiconductor package leak detectors to automatic circuit analyzer and antenna simulators for system checkout. In many cases the approaches can result in considerable cost savings and improved quality control. The testing of various electronic components, assemblies, and systems; the testing of various electrical devices; and the testing of cables and connectors are explained.
A novel material screening platform for nanoporous gold-based neural electrodes
NASA Astrophysics Data System (ADS)
Chapman, Christopher Abbott Reece
Neural-electrical interfaces have emerged in the past decades as a promising modality to facilitate the understanding of the electropathophysiology of neurological disorders as well as the normal functioning of the central nervous system, and enable the treatment of neurological defects through electrical stimulation or electrically-controlled drug delivery. However, chronically implanted electrodes face a myriad of design challenges, including their coupling to neural tissue (biocompatibility), small form factor requirement, and their electrical properties (maintaining a low electrical impedance). Planar electrode materials such as planar platinum and gold experience a large increase in electrical impedance when electrode dimensions are reduced to increase spatial resolution of neural recordings. A decrease in electrode surface area reduces the total capacitance of the electrode double layer resulting in an increase in electrode impedance. This high impedance can reduce the signal amplitude and increase the thermal noise, resulting in degradation of signal-to-noise ratio. Conventionally, this increase in electrical impedance at small electrode dimensions has been mitigated by coatings with rough morphologies such as platinum black, conducting polymers, and titanium nitride. Porous surfaces have high effective surface area enabling low impedance at small electrode dimensions. However, achieving long-term stability of cellular coupling to the electrode surface has remained difficult. Designing electrodes that can physically couple with neurons successfully and maintain low impedance at small electrode dimensions necessitates consideration of novel electrode coatings, such as carbon nanotubes and gold nanopillars. Another promising material, and focus of this proposal, is thin film nanoporous gold (np-Au). Nanoporous gold is a promising material for addressing these limitations because of its inherently large effective surface area allows for lower impedances at small form factors, and its modifiable surface morphology can be used to control cell-electrode coupling. Additionally, thin film nanoporous gold is fabricated by traditional microfabrication methods, and thus can be directly adopted by the current state-of-the-art neural electrode fabrication processes. All these properties make thin film nanoporous gold a promising candidate for use in neural electrode surfaces. This dissertation seeks to characterize both the morphological and the electrical response of neural cells to thin film nanoporous gold morphologies using an in vitro electrode morphology screening platform. The specific aims for this proposal are to: (i) develop a electrode morphology library that displays varying topographies to study structure-property relationships of thin film nanoporous gold and cellular response, (ii) characterize neural cell response to identified nanoporous gold topographies that reduce adverse tissue response in vitro, and (iii) develop an electrophysiology platform to characterize neural coupling to each identified nanoporous gold topography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, R.A.; Cron, J.
This design analysis has shown that, on a conceptual level, the emplacement of drip shields is feasible with current technology and equipment. A plan for drip shield emplacement was presented using a Drip Shield Transporter, a Drip Shield Emplacement Gantry, a locomotive, and a Drip Shield Gantry Carrier. The use of a Drip Shield Emplacement Gantry as an emplacement concept results in a system that is simple, reliable, and interfaces with the numerous other exising repository systems. Using the Waste Emplacement/Retrieval System design as a basis for the drip shield emplacement concept proved to simplify the system by using existingmore » equipment, such as the gantry carrier, locomotive, Electrical and Control systems, and many other systems, structures, and components. Restricted working envelopes for the Drip Shield Emplacement System require further consideration and must be addressed to show that the emplacement operations can be performed as the repository design evolves. Section 6.1 describes how the Drip Shield Emplacement System may use existing equipment. Depending on the length of time between the conclusion of waste emplacement and the commencement of drip shield emplacement, this equipment could include the locomotives, the gantry carrier, and the electrical, control, and rail systems. If the exisiting equipment is selected for use in the Drip Shield Emplacement System, then the length of time after the final stages of waste emplacement and start of drip shield emplacement may pose a concern for the life cycle of the system (e.g., reliability, maintainability, availability, etc.). Further investigation should be performed to consider the use of existing equipment for drip shield emplacement operations. Further investigation will also be needed regarding the interfaces and heat transfer and thermal effects aspects. The conceptual design also requires further design development. Although the findings of this analysis are accurate for the assumptions made, further refinements of this analysis are needed as the project parameters change. The designs of the drip shield, the Emplacement Drift, and the other drip shield emplacement equipment all have a direct effect on the overall design feasibility.« less
Interplanetary spacecraft design using solar electric propulsion
NASA Technical Reports Server (NTRS)
Duxbury, J. H.; Paul, G. M.
1974-01-01
Emphasis of the electric propulsion technology program is now on the application of solar electric propulsion to scientific missions. Candidate planetary, cometary, and geosynchronous missions are being studied. The object of this paper is to describe a basic spacecraft design proposed as the means to accomplish (1) a comet Encke slow flyby, (2) a comet Encke rendezvous, and (3) an out-of-the-ecliptic mission. The discussion includes design differences foreseen for the various missions and indicates those areas where spacecraft design commonality is possible. Particular emphasis is placed on a solar electric propulsion module design which permits an attractive degree of design inheritance from mission to mission.
A preliminary analysis of recent HVAC energy projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaddy, P.J.; Haake, C.F.
A typical Government HVAC design over the last 30 years consisted of two oversized (equal tonnage) electric chillers, two oversized (equal NBTU ratings) boilers, an air economizer cycle, a constant air volume system and a central station pneumatic control system. This typical basic layout for plant design has certain advantages such as simplicity and ease to construct throughout the country. The cookie cutter design/build approach suited federal facilities, when utility costs were not a major consideration, in-house maintenance and operations personnel were plentiful and energy conservation was a moral priority and not an economic concern. Those days are history asmore » energy costs have escalated and operating budgets continue to shrink leaving fewer personnel to maintain the same buildings. Advances in HVAC technology and the reduction in costs for energy efficient systems have finally started affecting the Federal Government`s HVAC replacement and new construction designs. This paper is a brief description of three HVAC projects that go outside the traditional government HVAC design parameters. GSA`s Pacific Rim Region, covering the states of Hawaii, California, Nevada, and Arizona, has implemented three HVAC projects utilizing different technologies not normally found in GSA Federal facilities.« less
Blow molding electric drives of Mechanical Engineering
NASA Astrophysics Data System (ADS)
Bukhanov, S. S.; Ramazanov, M. A.; Tsirkunenko, A. T.
2018-03-01
The article considers the questions about the analysis of new possibilities, which gives the use of adjustable electric drives for blowing mechanisms of plastic production. Thus, the use of new semiconductor converters makes it possible not only to compensate the instability of the supply network by using special dynamic voltage regulators, but to improve (correct) the power factor. The calculation of economic efficiency in controlled electric drives of blowing mechanisms is given. On the basis of statistical analysis, the calculation of the reliability parameters of the regulated electric drives’ elements under consideration is given. It is shown that an increase in the reliability of adjustable electric drives is possible both due to overestimation of the electric drive’s installed power, and in simpler schemes with pulse-vector control.
NASA Astrophysics Data System (ADS)
Cech, R.; Leitgeb, N.; Pediaditis, M.
2008-01-01
The pregnant woman model SILVY was studied to ascertain to what extent the electric current densities induced by 50 Hz homogeneous electric and magnetic fields increase in the case of simultaneous exposure. By vectorial addition of the electric current densities, it could be shown that under worst case conditions the basic restrictions recommended by ICNIRP (International Commission on Non-Ionizing Radiation Protection) guidelines are exceeded within the central nervous system (CNS) of the mother, whereas in sole field exposure they are not. However, within the foetus the induced current densities do not comply with basic restrictions, either from single reference-level electric fields or from simultaneous exposure to electric and magnetic fields. Basic limits were considerably exceeded.
Miniature electrically operated diaphragm valve
Adkins, Douglas R.; Spletzer, Barry L.; Wong, Chungnin C.; Frye-Mason, Gregory C.; Fischer, Gary J.; Hesketh, Peter J.
2001-01-01
The present invention provides a miniature electrically operated valve that can stand off significant pressures, that can be inexpensively produced, and that can be made to operate without continuous electrical power. A valve according to the present invention comprises a housing and a beam mounted with the housing. A diaphragm mounted with the housing forms a sealed fluid volume. An electromagnetic energy source, such as an electromagnetic coil, mounts with the housing and when energized urges the beam in one direction. The beam can be urged in the opposing direction by passive means or by reversing the polarity of the electromagnetic energy source or by a second electromagnetic energy source. Two fluid ports mount with the housing. A first fluid port mounts so that, as the beam is urged in one direction or the opposite, the beam urges the diaphragm to move between engaging and substantially sealing the fluid port and disengaging and not substantially sealing the fluid port. A seat can be mounted with the diaphragm to aid in sealing the fluid port. Latching mechanisms such as permanent magnets can be mounted so that the valve remains in the open or closed positions without continuous electrical power input. Fluid can flow through the housing between the two fluid ports when the diaphragm does not seal the first fluid port, but can be prevented from flowing by urging the beam so that the diaphragm seals the first fluid port. Various embodiments accommodate various latching mechanisms, electromagnetic energy sources, number of fluid ports, and diaphragm design considerations.
Design Considerations for a Water Treatment System Utilizing Ultra-Violet Light Emitting Diodes
2014-03-27
DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...the United States. ii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...DISTRIBUTION UNLIMITED. iii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING
Summary of Lift and Lift/Cruise Fan Powered Lift Concept Technology
NASA Technical Reports Server (NTRS)
Cook, Woodrow L.
1993-01-01
A summary is presented of some of the lift and lift/cruise fan technology including fan performance, fan stall, ground effects, ingestion and thrust loss, design tradeoffs and integration, control effectiveness and several other areas related to vertical short takeoff and landing (V/STOL) aircraft conceptual design. The various subjects addressed, while not necessarily pertinent to specific short takeoff/vertical landing (STOVL) supersonic designs being considered, are of interest to the general field of lift and lift/cruise fan aircraft designs and may be of importance in the future. The various wind tunnel and static tests reviewed are: (1) the Doak VZ-4 ducted fan, (2) the 0.57 scale model of the Bell X-22 ducted fan aircraft, (3) the Avrocar, (4) the General Electric lift/cruise fan, (5) the vertical short takeoff and landing (V/STOL) lift engine configurations related to ingestion and consequent thrust loss, (6) the XV-5 and other fan-in-wing stall consideration, (7) hybrid configurations such as lift fan and lift/cruise fan or engines, and (8) the various conceptual design studies by air-frame contractors. Other design integration problems related to small and large V/STOL transport aircraft are summarized including lessons learned during more recent conceptual design studies related to a small executive V/STOL transport aircraft.
Essays on wholesale auctions in deregulated electricity markets
NASA Astrophysics Data System (ADS)
Baltaduonis, Rimvydas
2007-12-01
The early experience in the restructured electric power markets raised several issues, including price spikes, inefficiency, security, and the overall relationship of market clearing prices to generation costs. Unsatisfactory outcomes in these markets are thought to have resulted in part from strategic generator behaviors encouraged by inappropriate market design features. In this dissertation, I examine the performance of three auction mechanisms for wholesale power markets - Offer Cost Minimization auction, Payment Cost Minimization auction and Simple-Offer auction - when electricity suppliers act strategically. A Payment Cost Minimization auction has been proposed as an alternative to the traditional Offer Cost Minimization auction with the intention to solve the problem of inflated wholesale electricity prices. Efficiency concerns for this proposal were voiced due to insights predicated on the assumption of true production cost revelation. Using a game theoretic approach and an experimental method, I compare the two auctions, strictly controlling for the level of unilateral market power. A specific feature of these complex-offer auctions is that the sellers submit not only the quantities and the minimum prices that they are willing to sell at, but also the start-up fees, which are designed to reimburse the fixed start-up costs of the generation plants. I find that the complex structure of the offers leaves considerable room for strategic behavior, which consequently leads to anti-competitive and inefficient market outcomes. In the last chapter of my dissertation, I use laboratory experiments to contrast the performance of two complex-offer auctions against the performance of a simple-offer auction, in which the sellers have to recover all their generation costs - fixed and variable - through a uniform market-clearing price. I find that a simple-offer auction significantly reduces consumer prices and lowers price volatility. It mitigates anti-competitive effects that are present in the complex-offer auctions and achieves allocative efficiency more quickly.
Study on temperature distribution effect on internal charging by computer simulation
NASA Astrophysics Data System (ADS)
Yi, Zhong
2016-07-01
Internal charging (or deep dielectric charging) is a great threaten to spacecraft. Dielectric conductivity is an important parameter for internal charging and it is sensitive to temperature. Considering the exposed dielectric outside a spacecraft may experience a relatively large temperature range, temperature effect can't be ignored in internal charging assessment. We can see some reporters on techniques of computer simulation of internal charging, but the temperature effect has not been taken into accounts. In this paper, we realize the internal charging simulation with consideration of temperature distribution inside the dielectric. Geant4 is used for charge transportation, and a numerical method is proposed for solving the current reservation equation. The conductivity dependences on temperature, radiation dose rate and intense electric field are considered. Compared to the case of uniform temperature, the internal charging with temperature distribution is more complicated. Results show that temperature distribution can cause electric field distortion within the dielectric. This distortion refers to locally considerable enlargement of electric field. It usually corresponds to the peak electric field which is critical for dielectric breakdown judgment. The peak electric field can emerge inside the dielectric, or appear on the boundary. This improvement of internal charging simulation is beneficial for the assessment of internal charging under multiple factors.
Specification and Design of Electrical Flight System Architectures with SysML
NASA Technical Reports Server (NTRS)
McKelvin, Mark L., Jr.; Jimenez, Alejandro
2012-01-01
Modern space flight systems are required to perform more complex functions than previous generations to support space missions. This demand is driving the trend to deploy more electronics to realize system functionality. The traditional approach for the specification, design, and deployment of electrical system architectures in space flight systems includes the use of informal definitions and descriptions that are often embedded within loosely coupled but highly interdependent design documents. Traditional methods become inefficient to cope with increasing system complexity, evolving requirements, and the ability to meet project budget and time constraints. Thus, there is a need for more rigorous methods to capture the relevant information about the electrical system architecture as the design evolves. In this work, we propose a model-centric approach to support the specification and design of electrical flight system architectures using the System Modeling Language (SysML). In our approach, we develop a domain specific language for specifying electrical system architectures, and we propose a design flow for the specification and design of electrical interfaces. Our approach is applied to a practical flight system.
Nuclear power propulsion system for spacecraft
NASA Astrophysics Data System (ADS)
Koroteev, A. S.; Oshev, Yu. A.; Popov, S. A.; Karevsky, A. V.; Solodukhin, A. Ye.; Zakharenkov, L. E.; Semenkin, A. V.
2015-12-01
The proposed designs of high-power space tugs that utilize solar or nuclear energy to power an electric jet engine are reviewed. The conceptual design of a nuclear power propulsion system (NPPS) is described; its structural diagram, gas circuit, and electric diagram are discussed. The NPPS incorporates a nuclear reactor, a thermal-to-electric energy conversion system, a system for the conversion and distribution of electric energy, and an electric propulsion system. Two criterion parameters were chosen in the considered NPPS design: the temperature of gaseous working medium at the nuclear reactor outlet and the rotor speed of turboalternators. The maintenance of these parameters at a given level guarantees that the needed electric voltage is generated and allows for power mode control. The processes of startup/shutdown and increasing/reducing the power, the principles of distribution of electric energy over loads, and the probable emergencies for the proposed NPPS design are discussed.
Preliminary power train design for a state-of-the-art electric vehicle (executive summary)
NASA Technical Reports Server (NTRS)
1978-01-01
The preliminary design of a state-of-the-art electric power train is part of a national effort to reap the potential benefit of useful urban electric passenger vehicles. Outlined in a detailed presentation are: (1) assessment of the state-of-the-art in electric vehicle technology; (2) state-of-the-art power train design; (3) improved power train; and (4) summary and recommendations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...
Code of Federal Regulations, 2013 CFR
2013-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...
Code of Federal Regulations, 2010 CFR
2010-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...
Code of Federal Regulations, 2011 CFR
2011-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...
Code of Federal Regulations, 2014 CFR
2014-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...
A commercial isoelectric focusing apparatus for use in microgravity
NASA Astrophysics Data System (ADS)
Johnson, Jerald F.; Dandy, Jonathan S.; Johnson, Terry C.
2000-01-01
A series of studies have tested the possibility that the microgravity environment may be superior to laboratories on earth for several biomedical applications. One such application is isoelectric focusing (IEF). The purpose of our research is to design, build, test, and employ an analytical IEF instrument for use in the laboratory on the International Space Station (ISS) and to demonstrate the advantages of space-based IEF. This paper describes IEF in general, discusses the design considerations that arise for IEF in low-gravity, and presents design solutions to some of the systems under development. Isoelectric focusing is a powerful technique that has applications for both analytical analysis the preparative purification of macromolecules. IEF resolves proteins by net charge separation, in either liquid or semi-solid substrates, where the molecules migrate to their isoelectric point (pI). In earth-based IEF, separation media are usually semi-solids such as polyacrylamide and agarose gels. The matrix structure of these media is used to offset the gravity-induced diffusion and convection that occurs in free solutions. With these effects being greatly reduced, a free solution could be used as a superior media. Because diffusion in liquids is reduced in microgravity (Snyder, 1986), a given electrical field should result in more tightly focused bands. This would allow for the separation of proteins that have very closely spaced pI's. If superior results are achieved, there are numerous pharmaceutical and genetic engineering companies that would take advantage of this unique development. The design of the Commercial IsoElectric Focusing Apparatus (CIEFA) presents several significant engineering challenges specific to its operation in the microgravity environment. Three difficulties of particular importance are gases generated through electrolysis, temperature control and verification of protein separation. Gases generated through electrolysis must be isolated from electrodes to prevent current limiting. Special measures for temperature control must be made due to the absence of gravity-induced convective heat flow. In order for the experiment results to be examined, some mechanism must be in place to either document or preserve the protein bands. Preliminary testing aboard the space shuttle requires that the CIEFA be compatible with the shuttle's middeck locker. This requirement poses limits in the physical parameters of size, mass, power consumption, and heat generation. In addition, the design must be NASA certifiable for shuttle flight. This diverse list of design obstacles requires integration of biological, electrical, and mechanical solutions. .
Review of the GMD Benchmark Event in TPL-007-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backhaus, Scott N.; Rivera, Michael Kelly
2015-07-21
Los Alamos National Laboratory (LANL) examined the approaches suggested in NERC Standard TPL-007-1 for defining the geo-electric field for the Benchmark Geomagnetic Disturbance (GMD) Event. Specifically; 1. Estimating 100-year exceedance geo-electric field magnitude; The scaling of the GMD Benchmark Event to geomagnetic latitudes below 60 degrees north; and 3. The effect of uncertainties in earth conductivity data on the conversion from geomagnetic field to geo-electric field. This document summarizes the review and presents recommendations for consideration
Fetal exposure to low frequency electric and magnetic fields
NASA Astrophysics Data System (ADS)
Cech, R.; Leitgeb, N.; Pediaditis, M.
2007-02-01
To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary.
10 CFR 205.374 - Responses from “entities” designated in the application.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Electric Power System Permits and Reports; Applications; Administrative Procedures and Sanctions Emergency... appropriate Regional Electric Reliability Council. Pursuant to section 202(c) of the Federal Power Act, DOE... Electric Power § 205.374 Responses from “entities” designated in the application. Each “entity” designated...
10 CFR 431.383 - Enforcement process for electric motors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... general purpose electric motor of equivalent electrical design and enclosure rather than replacing the... equivalent electrical design and enclosure rather than machining and attaching an endshield. ... sample of up to 20 units will then be randomly selected from one or more subdivided groups within the...
INSTRUMENTATION AND CONTROLS DIVISION ELECTRICAL DESIGN STANDARDS AND GRAPHICAL SYMBOLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-11-01
Copies are presented of the American Standards Association graphical symbols for electrical and electronic equipment and systems. Recommendations are given for electrical elementary design layout, device codings, etc., for permanent type installations. Electrical diagrams copied from American Drafting Standards Manual are presented. (M.C.G.)
Connecting Colorado's Renewable Resources to the Markets in a Cabon-Constrained Electricity Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-12-31
The benchmark goal that drives the report is to achieve a 20 percent reduction in carbon dioxide (CO{sub 2}) emissions in Colorado's electricity sector below 2005 levels by 2020. We refer to this as the '20 x 20 goal.' In discussing how to meet this goal, the report concentrates particularly on the role of utility-scale renewable energy and high-voltage transmission. An underlying recognition is that any proposed actions must not interfere with electric system reliability and should minimize financial impacts on customers and utilities. The report also describes the goals of Colorado's New Energy Economy5 - identified here, in summary,more » as the integration of energy, environment, and economic policies that leads to an increased quality of life in Colorado. We recognize that a wide array of options are under constant consideration by professionals in the electric industry, and the regulatory community. Many options are under discussion on this topic, and the costs and benefits of the options are inherently difficult to quantify. Accordingly, this report should not be viewed as a blueprint with specific recommendations for the timing, siting, and sizing of generating plants and high-voltage transmission lines. We convened the project with the goal of supplying information inputs for consideration by the state's electric utilities, legislators, regulators, and others as we work creatively to shape our electricity sector in a carbon-constrained world. The report addresses various issues that were raised in the Connecting Colorado's Renewable Resources to the Markets report, also known as the SB07-91 Report. That report was produced by the Senate Bill 2007-91 Renewable Resource Generation Development Areas Task Force and presented to the Colorado General Assembly in 2007. The SB07-91 Report provided the Governor, the General Assembly, and the people of Colorado with an assessment of the capability of Colorado's utility-scale renewable resources to contribute electric power in the state from 10 Colorado generation development areas (GDAs) that have the capacity for more than 96,000 megawatts (MW) of wind generation and 26,000 MW of solar generation. The SB07-91 Report recognized that only a small fraction of these large capacity opportunities are destined to be developed. As a rough comparison, 13,964 MW of installed nameplate capacity was available in Colorado in 2008. The legislature did not direct the SB07-91 task force to examine several issues that are addressed in the REDI report. These issues include topics such as transmission, regulation, wildlife, land use, permitting, electricity demand, and the roles that different combinations of supply-side resources, demand-side resources, and transmission can play to meet a CO{sub 2} emissions reduction goal. This report, which expands upon research from a wide array of sources, serves as a sequel to the SB07-91 Report. Reports and research on renewable energy and transmission abound. This report builds on the work of many, including professionals who have dedicated their careers to these topics. A bibliography of information resources is provided, along with many citations to the work of others. The REDI Project was designed to present baseline information regarding the current status of Colorado's generation and transmission infrastructure. The report discusses proposals to expand the infrastructure, and identifies opportunities to make further improvements in the state's regulatory and policy environment. The report offers a variety of options for consideration as Colorado seeks pathways to meet the 20 x 20 goal. The primary goal of the report is to foster broader discussion regarding how the 20 x 20 goal interacts with electric resource portfolio choices, particularly the expansion of utility-scale renewable energy and the high-voltage transmission infrastructure. The report also is intended to serve as a resource when identifying opportunities stemming from the American Recovery and Reinvestment Act of 2009.« less
NASA Astrophysics Data System (ADS)
Gao, Yi
The development and utilization of wind energy for satisfying electrical demand has received considerable attention in recent years due to its tremendous environmental, social and economic benefits, together with public support and government incentives. Electric power generation from wind energy behaves quite differently from that of conventional sources. The fundamentally different operating characteristics of wind energy facilities therefore affect power system reliability in a different manner than those of conventional systems. The reliability impact of such a highly variable energy source is an important aspect that must be assessed when the wind power penetration is significant. The focus of the research described in this thesis is on the utilization of state sampling Monte Carlo simulation in wind integrated bulk electric system reliability analysis and the application of these concepts in system planning and decision making. Load forecast uncertainty is an important factor in long range planning and system development. This thesis describes two approximate approaches developed to reduce the number of steps in a load duration curve which includes load forecast uncertainty, and to provide reasonably accurate generating and bulk system reliability index predictions. The developed approaches are illustrated by application to two composite test systems. A method of generating correlated random numbers with uniform distributions and a specified correlation coefficient in the state sampling method is proposed and used to conduct adequacy assessment in generating systems and in bulk electric systems containing correlated wind farms in this thesis. The studies described show that it is possible to use the state sampling Monte Carlo simulation technique to quantitatively assess the reliability implications associated with adding wind power to a composite generation and transmission system including the effects of multiple correlated wind sites. This is an important development as it permits correlated wind farms to be incorporated in large practical system studies without requiring excessive increases in computer solution time. The procedures described in this thesis for creating monthly and seasonal wind farm models should prove useful in situations where time period models are required to incorporate scheduled maintenance of generation and transmission facilities. There is growing interest in combining deterministic considerations with probabilistic assessment in order to evaluate the quantitative system risk and conduct bulk power system planning. A relatively new approach that incorporates deterministic and probabilistic considerations in a single risk assessment framework has been designated as the joint deterministic-probabilistic approach. The research work described in this thesis illustrates that the joint deterministic-probabilistic approach can be effectively used to integrate wind power in bulk electric system planning. The studies described in this thesis show that the application of the joint deterministic-probabilistic method provides more stringent results for a system with wind power than the traditional deterministic N-1 method because the joint deterministic-probabilistic technique is driven by the deterministic N-1 criterion with an added probabilistic perspective which recognizes the power output characteristics of a wind turbine generator.
Renewable Electricity in the United States: The National Research Council Study and Recent Trends
NASA Astrophysics Data System (ADS)
Holmes, K. John; Papay, Lawrence T.
2011-11-01
The National Research Council issued Electricity from Renewables: Status, Prospects, and Impediments in 2009 as part of the America's Energy Future Study. The panel that authored this report, the Panel on Electricity from Renewable Sources, worked from 2007 to 2009 gathering information and analysis on the cost, performance and impacts of renewable electricity resources and technologies in the United States. The panel considered the magnitude and distribution of the resource base, the status of renewable electricity technologies, the economics of these technologies, their environmental footprint, and the issues related to scaling up renewables deployment. In its consideration of the future potential for renewable electricity, the panel emphasizes policy, technology, and capital equally because greatly scaling up renewable electricity encounters significant issues that go beyond resource availability or technical capabilities. Here we provide a summary of this report and discuss several recent trends that impact renewable electricity.
International Space Station USOS Crew Quarters Development
NASA Technical Reports Server (NTRS)
Broyan, James Lee, Jr.; Borrego, Melissa Ann; Bahr, Juergen F.
2008-01-01
The International Space Station (ISS) United States Operational Segment (USOS) currently provides a Temporary Sleep Station (TeSS) as crew quarters for one crewmember in the Laboratory Module. The Russian Segment provides permanent crew quarters (Kayutas) for two crewmembers in the Service Module. The TeSS provides limited electrical, communication, and ventilation functionality. A new permanent rack sized USOS ISS Crew Quarters (CQ) is being developed. Up to four CQs can be installed into the Node 2 element to increase the ISS crewmember size to six. The new CQs will provide private crewmember space with enhanced acoustic noise mitigation, integrated radiation reduction material, controllable airflow, communication equipment, redundant electrical systems, and redundant caution and warning systems. The rack sized CQ is a system with multiple crewmember restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crewmember to personalize their CQ workspace. Providing an acoustically quiet and visually isolated environment, while ensuring crewmember safety, is critical for obtaining crewmember rest and comfort to enable long term crewmember performance. The numerous human factor, engineering, and program considerations during the concept, design, and prototyping are outlined in the paper.
NASA Technical Reports Server (NTRS)
VanDyke, M. K.; Martin, J. J.; Houts, M. G.
2003-01-01
Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. At the power levels under consideration (3-300 kW electric power), almost all technical issues are thermal or stress related and will not be strongly affected by the radiation environment. These issues can be resolved more thoroughly, less expensively, and in a more timely fashing with nonnuclear testing, provided it is prototypic of the system in question. This approach was used for the safe, affordable fission engine test article development program and accomplished viz cooperative efforts with Department of Energy labs, industry, universiites, and other NASA centers. This Technical Memorandum covers the analysis, testing, and data reduction of a 30-kW simulated reactor as well as an end-to-end demonstrator, including a power conversion system and an electric propulsion engine, the first of its kind in the United States.
NASA Technical Reports Server (NTRS)
Frost, R. T.; Kornrumpf, W. P.; Napaluch, L. J.; Harden, J. D., Jr.; Walden, J. P.; Stockhoff, E. H.; Wouch, G.; Walker, L. H.
1974-01-01
Containerless processing facilities for the space laboratory and space shuttle are defined. Materials process examples representative of the most severe requirements for the facility in terms of electrical power, radio frequency equipment, and the use of an auxiliary electron beam heater were used to discuss matters having the greatest effect upon the space shuttle pallet payload interfaces and envelopes. Improved weight, volume, and efficiency estimates for the RF generating equipment were derived. Results are particularly significant because of the reduced requirements for heat rejection from electrical equipment, one of the principal envelope problems for shuttle pallet payloads. It is shown that although experiments on containerless melting of high temperature refractory materials make it desirable to consider the highest peak powers which can be made available on the pallet, total energy requirements are kept relatively low by the very fast processing times typical of containerless experiments and allows consideration of heat rejection capabilities lower than peak power demand if energy storage in system heat capacitances is considered. Batteries are considered to avoid a requirement for fuel cells capable of furnishing this brief peak power demand.
Transient Thermal Analyses of Passive Systems on SCEPTOR X-57
NASA Technical Reports Server (NTRS)
Chin, Jeffrey C.; Schnulo, Sydney L.; Smith, Andrew D.
2017-01-01
As efficiency, emissions, and noise become increasingly prominent considerations in aircraft design, turning to an electric propulsion system is a desirable solution. Achieving the intended benefits of distributed electric propulsion (DEP) requires thermally demanding high power systems, presenting a different set of challenges compared to traditional aircraft propulsion. The embedded nature of these heat sources often preclude the use of traditional thermal management systems in order to maximize performance, with less opportunity to exhaust waste heat to the surrounding environment. This paper summarizes the thermal analyses of X-57 vehicle subsystems that don't employ externally air-cooled heat sinks. The high-power battery, wires, high-lift motors, and aircraft outer surface are subjected to heat loads with stringent thermal constraints. The temperature of these components are tracked transiently, since they never reach a steady-state equilibrium. Through analysis and testing, this report demonstrates that properly characterizing the material properties is key to accurately modeling peak temperature of these systems, with less concern for spatial thermal gradients. Experimentally validated results show the thermal profile of these systems can be sufficiently estimated using reduced order approximations.
New science at the meso frontier: Dense nanostructure architectures for electrical energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubloff, Gary W.; Lee, Sang Bok
2015-08-01
We examine the scientific challenges and opportunities presented at the mesoscale in the context of employing nanostructures for electrical energy storage. In order to capitalize on the power–energy and charge/discharge cycling stability that nanostructures offer, massive assemblies of nanostructures in networks must be organized into dense mesoscale architectures. With a fairly wide variety of architectures already demonstrated and more expected, the essential questions are whether regular or random 3-D arrangements are favorable, which embodiments should show best performance, and at what dimensional scaling? Dense packing raises challenging new questions about ion available and transport in highly confined electrolyte nanoenvironments, asmore » well as designs to balance ion transport in electrolyte and electron transport in electrodes over distances long compared to nanostructure characteristic dimensions. Architectures and dimensional scaling present important issues of defects, statistical outliers, and their dynamic evolution, which in turn control degradation and failure phenomena. These considerations promise a rich set of mesoscale scientific challenges crucial to exploiting storage nanostructures in mesoscale architectures for energy storage.« less
A thermoacoustic Stirling heat engine
NASA Astrophysics Data System (ADS)
Backhaus, S.; Swift, G. W.
1999-05-01
Electrical and mechanical power, together with other forms of useful work, are generated worldwide at a rate of about 1012 watts, mostly using heat engines. The efficiency of such engines is limited by the laws of thermodynamics and by practical considerations such as the cost of building and operating them. Engines with high efficiency help to conserve fossil fuels and other natural resources, reducing global-warming emissions and pollutants. In practice, the highest efficiencies are obtained only in the most expensive, sophisticated engines, such as the turbines in central utility electrical plants. Here we demonstrate an inexpensive thermoacoustic engine that employs the inherently efficient Stirling cycle. The design is based on a simple acoustic apparatus with no moving parts. Our first small laboratory prototype, constructed using inexpensive hardware (steel pipes), achieves an efficiency of 0.30, which exceeds the values of 0.10-0.25 attained in other heat engines, with no moving parts. Moreover, the efficiency of our prototype is comparable to that of the common internal combustion engine (0.25-0.40) and piston-driven Stirling engines, (0.20-0.38).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalnaus, Sergiy; Kumar, Abhishek; Lebrun-Grandie, Damien T.
Safety is a key element of any device designed to store energy, in particular electrochemical batteries, which convert energy of chemical reactions to electrical energy. Safety considerations are especially important when applied to large automotive batteries designed for propulsion of electric vehicles (EV). The high amount of energy stored in EV battery packs translates to higher probability of fire in case of severe deformation of battery compartment due to automotive crash or impact caused by road debris. While such demand for safety has resulted in heavier protection of battery enclosure, the mechanisms leading to internal short circuit due to deformationmore » of the battery are not well understood even on the level of a single electrochemical cell. Moreover, not all internal shorts result in thermal runaway, and thus a criterion for catastrophic failure needs to be developed. This report summarizes the effort to pinpoint the critical deformation necessary to trigger a short via experimental study on large format automotive Li-ion cells in a rigid spherical indentation configuration. Cases of single cells and cell stacks undergoing indentation were investigated. Mechanical properties of cell components were determined via experimental testing and served as input for constitutive models of Finite Element (FE) analysis. The ability of the model to predict the behavior of cell(s) under spherical indentation and to predict failure leading to internal short circuit was validated against experiments. The necessity of resolving pairs of negative and positive electrodes in the FE formulation is clearly demonstrated by comparing layer-resolved simulations with simulations involving batteries with homogenized material properties. Finally, a coupled solution of electrochemical-electrical-thermal (EET) problem on a Nissan Leaf battery module was demonstrated towards the goal of extending the simulations to module level.« less
Electricity-free amplification and detection for molecular point-of-care diagnosis of HIV-1.
Singleton, Jered; Osborn, Jennifer L; Lillis, Lorraine; Hawkins, Kenneth; Guelig, Dylan; Price, Will; Johns, Rachel; Ebels, Kelly; Boyle, David; Weigl, Bernhard; LaBarre, Paul
2014-01-01
In resource-limited settings, the lack of decentralized molecular diagnostic testing and sparse access to centralized medical facilities can present a critical barrier to timely diagnosis, treatment, and subsequent control and elimination of infectious diseases. Isothermal nucleic acid amplification methods, including reverse transcription loop-mediated isothermal amplification (RT-LAMP), are well-suited for decentralized point-of-care molecular testing in minimal infrastructure laboratories since they significantly reduce the complexity of equipment and power requirements. Despite reduced complexity, however, there is still a need for a constant heat source to enable isothermal nucleic acid amplification. This requirement poses significant challenges for laboratories in developing countries where electricity is often unreliable or unavailable. To address this need, we previously developed a low-cost, electricity-free heater using an exothermic reaction thermally coupled with a phase change material. This heater achieved acceptable performance, but exhibited considerable variability. Furthermore, as an enabling technology, the heater was an incomplete diagnostic solution. Here we describe a more precise, affordable, and robust heater design with thermal standard deviation <0.5°C at operating temperature, a cost of approximately US$.06 per test for heater reaction materials, and an ambient temperature operating range from 16°C to 30°C. We also pair the heater with nucleic acid lateral flow (NALF)-detection for a visual readout. To further illustrate the utility of the electricity-free heater and NALF-detection platform, we demonstrate sensitive and repeatable detection of HIV-1 with a ß-actin positive internal amplification control from processed sample to result in less than 80 minutes. Together, these elements are building blocks for an electricity-free platform capable of isothermal amplification and detection of a variety of pathogens.
Oligonucleotide probes functionalization of nanogap electrodes.
Zaffino, Rosa Letizia; Mir, Mònica; Samitier, Josep
2017-11-01
Nanogap electrodes have attracted a lot of consideration as promising platform for molecular electronic and biomolecules detection. This is mainly for their higher aspect ratio, and because their electrical properties are easily accessed by current-voltage measurements. Nevertheless, application of standard current-voltages measurements used to characterize nanogap response, and/or to modify specific nanogap electrodes properties, represents an issue. Since the strength of electrical fields in nanoscaled devices can reach high values, even at low voltages. Here, we analyzed the effects induced by different methods of surface modification of nanogap electrodes, in test-voltage application, employed for the electrical detection of a desoxyribonucleic acid (DNA) target. Nanogap electrodes were functionalized with two antisymmetric oligo-probes designed to have 20 terminal bases complementary to the edges of the target, which after hybridization bridges the nanogap, closing the electrical circuit. Two methods of functionalization were studied for this purpose; a random self-assembling of a mixture of the two oligo-probes (OPs) used in the platform, and a selective method that controls the position of each OP at selected side of nanogap electrodes. We used for this aim, the electrophoretic effect induced on negatively charged probes by the application of an external direct current voltage. The results obtained with both functionalization methods where characterized and compared in terms of electrode surface covering, calculated by using voltammetry analysis. Moreover, we contrasted the electrical detection of a DNA target in the nanogap platform either in site-selective and in randomly assembled nanogap. According to our results, a denser, although not selective surface functionalization, is advantageous for such kind of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electricity-Free Amplification and Detection for Molecular Point-of-Care Diagnosis of HIV-1
Singleton, Jered; Osborn, Jennifer L.; Lillis, Lorraine; Hawkins, Kenneth; Guelig, Dylan; Price, Will; Johns, Rachel; Ebels, Kelly; Boyle, David; Weigl, Bernhard; LaBarre, Paul
2014-01-01
In resource-limited settings, the lack of decentralized molecular diagnostic testing and sparse access to centralized medical facilities can present a critical barrier to timely diagnosis, treatment, and subsequent control and elimination of infectious diseases. Isothermal nucleic acid amplification methods, including reverse transcription loop-mediated isothermal amplification (RT-LAMP), are well-suited for decentralized point-of-care molecular testing in minimal infrastructure laboratories since they significantly reduce the complexity of equipment and power requirements. Despite reduced complexity, however, there is still a need for a constant heat source to enable isothermal nucleic acid amplification. This requirement poses significant challenges for laboratories in developing countries where electricity is often unreliable or unavailable. To address this need, we previously developed a low-cost, electricity-free heater using an exothermic reaction thermally coupled with a phase change material. This heater achieved acceptable performance, but exhibited considerable variability. Furthermore, as an enabling technology, the heater was an incomplete diagnostic solution. Here we describe a more precise, affordable, and robust heater design with thermal standard deviation <0.5°C at operating temperature, a cost of approximately US$.06 per test for heater reaction materials, and an ambient temperature operating range from 16°C to 30°C. We also pair the heater with nucleic acid lateral flow (NALF)-detection for a visual readout. To further illustrate the utility of the electricity-free heater and NALF-detection platform, we demonstrate sensitive and repeatable detection of HIV-1 with a ß-actin positive internal amplification control from processed sample to result in less than 80 minutes. Together, these elements are building blocks for an electricity-free platform capable of isothermal amplification and detection of a variety of pathogens. PMID:25426953
Design and evaluation of brushless electrical generators
NASA Technical Reports Server (NTRS)
Collins, F. A.; Ellis, J. N.
1970-01-01
Ten design manuals assembled and nine computer programs are developed for evaluation of proposed designs of brushless rotating electrical generators. Design manual package provides all information required for generator design, and computer programs permit calculation of performance of specific designs including effects of materials.
Using a Genetic Algorithm to Design Nuclear Electric Spacecraft
NASA Technical Reports Server (NTRS)
Pannell, William P.
2003-01-01
The basic approach to to design nuclear electric spacecraft is to generate a group of candidate designs, see how "fit" the design are, and carry best design forward to the next generation. Some designs eliminated, some randomly modified and carried forward.
NASA Technical Reports Server (NTRS)
Manners, B.; Gholdston, E. W.; Karimi, K.; Lee, F. C.; Rajagopalan, J.; Panov, Y.
1996-01-01
As space direct current (dc) power systems continue to grow in size, switching power converters are playing an ever larger role in power conditioning and control. When designing a large dc system using power converters of this type, special attention must be placed on the electrical stability of the system and of the individual loads on the system. In the design of the electric power system (EPS) of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) and its contractor team led by Boeing Defense & Space Group has placed a great deal of emphasis on designing for system and load stability. To achieve this goal, the team has expended considerable effort deriving a dear concept on defining system stability in both a general sense and specifically with respect to the space station. The ISS power system presents numerous challenges with respect to system stability, such as high power, complex sources and undefined loads. To complicate these issues, source and load components have been designed in parallel by three major subcontractors (Boeing, Rocketdyne, and McDonnell Douglas) with interfaces to both sources and loads being designed in different countries (Russia, Japan, Canada, Europe, etc.). These issues, coupled with the program goal of limiting costs, have proven a significant challenge to the program. As a result, the program has derived an impedance specification approach for system stability. This approach is based on the significant relationship between source and load impedances and the effect of this relationship on system stability. This approach is limited in its applicability by the theoretical and practical limits on component designs as presented by each system segment. As a result, the overall approach to system stability implemented by the ISS program consists of specific hardware requirements coupled with extensive system analysis and hardware testing. Following this approach, the ISS program plans to begin construction of the world's largest orbiting power system in 1997.
Providing security assurance in line with national DBT assumptions
NASA Astrophysics Data System (ADS)
Bajramovic, Edita; Gupta, Deeksha
2017-01-01
As worldwide energy requirements are increasing simultaneously with climate change and energy security considerations, States are thinking about building nuclear power to fulfill their electricity requirements and decrease their dependence on carbon fuels. New nuclear power plants (NPPs) must have comprehensive cybersecurity measures integrated into their design, structure, and processes. In the absence of effective cybersecurity measures, the impact of nuclear security incidents can be severe. Some of the current nuclear facilities were not specifically designed and constructed to deal with the new threats, including targeted cyberattacks. Thus, newcomer countries must consider the Design Basis Threat (DBT) as one of the security fundamentals during design of physical and cyber protection systems of nuclear facilities. IAEA NSS 10 describes the DBT as "comprehensive description of the motivation, intentions and capabilities of potential adversaries against which protection systems are designed and evaluated". Nowadays, many threat actors, including hacktivists, insider threat, cyber criminals, state and non-state groups (terrorists) pose security risks to nuclear facilities. Threat assumptions are made on a national level. Consequently, threat assessment closely affects the design structures of nuclear facilities. Some of the recent security incidents e.g. Stuxnet worm (Advanced Persistent Threat) and theft of sensitive information in South Korea Nuclear Power Plant (Insider Threat) have shown that these attacks should be considered as the top threat to nuclear facilities. Therefore, the cybersecurity context is essential for secure and safe use of nuclear power. In addition, States should include multiple DBT scenarios in order to protect various target materials, types of facilities, and adversary objectives. Development of a comprehensive DBT is a precondition for the establishment and further improvement of domestic state nuclear-related regulations in the field of physical and cyber protection. These national regulations have to be met later on by I&C platform suppliers, electrical systems suppliers, system integrators and turn-key providers.