46 CFR 188.25-1 - Electrical engineering details.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Electrical engineering details. 188.25-1 Section 188.25... GENERAL PROVISIONS General Electrical Engineering Requirements § 188.25-1 Electrical engineering details. (a) The electrical engineering details shall be in accordance with subchapter J (Electrical...
46 CFR 188.25-1 - Electrical engineering details.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Electrical engineering details. 188.25-1 Section 188.25... GENERAL PROVISIONS General Electrical Engineering Requirements § 188.25-1 Electrical engineering details. (a) The electrical engineering details shall be in accordance with subchapter J (Electrical...
46 CFR 188.25-1 - Electrical engineering details.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Electrical engineering details. 188.25-1 Section 188.25... GENERAL PROVISIONS General Electrical Engineering Requirements § 188.25-1 Electrical engineering details. (a) The electrical engineering details shall be in accordance with subchapter J (Electrical...
46 CFR 188.25-1 - Electrical engineering details.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Electrical engineering details. 188.25-1 Section 188.25... GENERAL PROVISIONS General Electrical Engineering Requirements § 188.25-1 Electrical engineering details. (a) The electrical engineering details shall be in accordance with subchapter J (Electrical...
46 CFR 188.25-1 - Electrical engineering details.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Electrical engineering details. 188.25-1 Section 188.25... GENERAL PROVISIONS General Electrical Engineering Requirements § 188.25-1 Electrical engineering details. (a) The electrical engineering details shall be in accordance with subchapter J (Electrical...
46 CFR 70.25-1 - Electrical engineering details.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 3 2013-10-01 2013-10-01 false Electrical engineering details. 70.25-1 Section 70.25-1... General Electrical Engineering Requirements § 70.25-1 Electrical engineering details. All electrical engineering details and installations shall be designed and installed in accordance with subchapter J...
46 CFR 70.25-1 - Electrical engineering details.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Electrical engineering details. 70.25-1 Section 70.25-1... General Electrical Engineering Requirements § 70.25-1 Electrical engineering details. All electrical engineering details and installations shall be designed and installed in accordance with subchapter J...
46 CFR 90.25-1 - Electrical engineering details.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Electrical engineering details. 90.25-1 Section 90.25-1... PROVISIONS General Electrical Engineering Requirements § 90.25-1 Electrical engineering details. (a) All electrical engineering details and installations shall be designed and installed in accordance with...
46 CFR 90.25-1 - Electrical engineering details.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Electrical engineering details. 90.25-1 Section 90.25-1... PROVISIONS General Electrical Engineering Requirements § 90.25-1 Electrical engineering details. (a) All electrical engineering details and installations shall be designed and installed in accordance with...
46 CFR 70.25-1 - Electrical engineering details.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 3 2011-10-01 2011-10-01 false Electrical engineering details. 70.25-1 Section 70.25-1... General Electrical Engineering Requirements § 70.25-1 Electrical engineering details. All electrical engineering details and installations shall be designed and installed in accordance with subchapter J...
46 CFR 70.25-1 - Electrical engineering details.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 3 2014-10-01 2014-10-01 false Electrical engineering details. 70.25-1 Section 70.25-1... General Electrical Engineering Requirements § 70.25-1 Electrical engineering details. All electrical engineering details and installations shall be designed and installed in accordance with subchapter J...
46 CFR 70.25-1 - Electrical engineering details.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 3 2012-10-01 2012-10-01 false Electrical engineering details. 70.25-1 Section 70.25-1... General Electrical Engineering Requirements § 70.25-1 Electrical engineering details. All electrical engineering details and installations shall be designed and installed in accordance with subchapter J...
46 CFR 90.25-1 - Electrical engineering details.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Electrical engineering details. 90.25-1 Section 90.25-1... PROVISIONS General Electrical Engineering Requirements § 90.25-1 Electrical engineering details. (a) All electrical engineering details and installations shall be designed and installed in accordance with...
46 CFR 90.25-1 - Electrical engineering details.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Electrical engineering details. 90.25-1 Section 90.25-1... PROVISIONS General Electrical Engineering Requirements § 90.25-1 Electrical engineering details. (a) All electrical engineering details and installations shall be designed and installed in accordance with...
46 CFR 90.25-1 - Electrical engineering details.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Electrical engineering details. 90.25-1 Section 90.25-1... PROVISIONS General Electrical Engineering Requirements § 90.25-1 Electrical engineering details. (a) All electrical engineering details and installations shall be designed and installed in accordance with...
46 CFR 91.25-30 - Electrical engineering equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Electrical engineering equipment. 91.25-30 Section 91.25... INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-30 Electrical engineering equipment. For inspection procedures of electrical engineering equipment and systems see subchapter J (Electrical...
46 CFR 91.25-30 - Electrical engineering equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Electrical engineering equipment. 91.25-30 Section 91.25... INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-30 Electrical engineering equipment. For inspection procedures of electrical engineering equipment and systems see subchapter J (Electrical...
46 CFR 91.25-30 - Electrical engineering equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Electrical engineering equipment. 91.25-30 Section 91.25... INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-30 Electrical engineering equipment. For inspection procedures of electrical engineering equipment and systems see subchapter J (Electrical...
46 CFR 91.25-30 - Electrical engineering equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Electrical engineering equipment. 91.25-30 Section 91.25... INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-30 Electrical engineering equipment. For inspection procedures of electrical engineering equipment and systems see subchapter J (Electrical...
46 CFR 91.25-30 - Electrical engineering equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Electrical engineering equipment. 91.25-30 Section 91.25... INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-30 Electrical engineering equipment. For inspection procedures of electrical engineering equipment and systems see subchapter J (Electrical...
Concentrating Solar Power Projects - Dahan Power Plant | Concentrating
Plant Country: China Location: Beijing Owner(s): Institute of Electrical Engineering of Chinese Academy Electricity Generation: 1,950 MWh/yr Contact(s): Fengli Du Company: Institute of Electrical Engineering of Electrical Engineering of Chinese Academy of Sciences Owner(s) (%): Institute of Electrical Engineering of
National Electrical Code in Power Engineering Course for Electrical Engineering Curriculum
ERIC Educational Resources Information Center
Azizur, Rahman M. M.
2011-01-01
In order to ensure the safety of their inhabitants and properties, the residential, industrial and business installations require complying with NEC (national electrical code) for electrical systems. Electrical design engineers and technicians rely heavily on these very important design guidelines. However, these design guidelines are not formally…
46 CFR 189.25-30 - Electrical engineering equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Electrical engineering equipment. 189.25-30 Section 189... VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 189.25-30 Electrical engineering equipment. (a) For inspection procedures of Electrical Engineering equipment and systems, see Subchapter J...
46 CFR 189.25-30 - Electrical engineering equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Electrical engineering equipment. 189.25-30 Section 189... VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 189.25-30 Electrical engineering equipment. (a) For inspection procedures of Electrical Engineering equipment and systems, see Subchapter J...
46 CFR 189.25-30 - Electrical engineering equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Electrical engineering equipment. 189.25-30 Section 189... VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 189.25-30 Electrical engineering equipment. (a) For inspection procedures of Electrical Engineering equipment and systems, see Subchapter J...
46 CFR 189.25-30 - Electrical engineering equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Electrical engineering equipment. 189.25-30 Section 189... VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 189.25-30 Electrical engineering equipment. (a) For inspection procedures of Electrical Engineering equipment and systems, see Subchapter J...
46 CFR 189.25-30 - Electrical engineering equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Electrical engineering equipment. 189.25-30 Section 189... VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 189.25-30 Electrical engineering equipment. (a) For inspection procedures of Electrical Engineering equipment and systems, see Subchapter J...
experience includes mechanical and electrical system modeling and analysis, data sensing and sensor placement . Education Ph.D. in Mechanical Engineering, University of Massachusetts at Amherst; M.S. in Electrical Engineering, Institute of Electrical Engineering, Chinese Academy of Sciences; B.S. in Electrical Engineering
46 CFR 111.01-15 - Temperature ratings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery rooms...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...
46 CFR 111.01-15 - Temperature ratings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... is assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...
46 CFR 111.01-15 - Temperature ratings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... is assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...
46 CFR 111.01-15 - Temperature ratings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... is assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...
46 CFR 111.01-15 - Temperature ratings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery rooms...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...
engineering, Penn State, 2013 B.S. in electrical engineering, University of Wyoming, 2005 Prior Work of Electrical and Electronics Engineers (IEEE) Featured Publications Barrows, Clayton, Trieu Mai and Electrical Structure of the North American Electric Power Infrastructure." IEEE Systems
1978-05-01
Program is a cooperative venture between RADC and some sixty-five universities eligible to participate in the program. Syracuse Uiaiversity (Department...of Electrical and Computer Engineering), Purdue University (School of Electrical Engineering), Georgia Institute of Technology (School of Electrical...Engineering), and State University of New York at Buffalo (Department of Electrical / ,./. / Engineering) act as prime contractor schools with other
ERIC Educational Resources Information Center
Tang, Wendy; Westgate, Charles; Liu, Pao-Lo; Gouzman, Michael
2014-01-01
The Online Bachelor of Science in Electrical Engineering is a collaborative effort among three University Centers at SUNY (State University of New York), namely Stony Brook, Binghamton, and Buffalo. The program delivers the complete electrical engineering curriculum at the bachelor level to students online and asynchronously. Students, however,…
78 FR 72552 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-03
... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... General Electric Company model GEnx-2B67 and GEnx-2B67B turbofan engines. This AD was prompted by the... certain serial number General Electric Company (GE) model GEnx-2B67 and GEnx-2B67B turbofan engines. The...
Monitoring means for combustion engine electric storage battery means
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, G. K.; Rautiola, R. E.; Taylor, R. E.
Disclosed, in combination, are a combustion engine, an electric storage battery, an electrically powered starter motor for at times driving the engine in order to start the engine, and an electrical system monitor; the electrical system monitor has a first monitoring portion which senses the actual voltage across the battery and a second monitoring portion which monitors the current through the battery; an electrical switch controls associated circuitry and is actuatable into open or closed conditions; whenever the first monitoring portion senses a preselected magnitude of the actual voltage across the battery or the second monitoring portion senses a preselectedmore » magnitude of the current flow through the battery, the electrical switch is actuated.« less
44. LOCK, ELECTRICAL SYSTEM, HAULAGE ENGINES, ELECTRICAL DETAILS AND LOCATION. ...
44. LOCK, ELECTRICAL SYSTEM, HAULAGE ENGINES, ELECTRICAL DETAILS AND LOCATION. February 1938 - Mississippi River 9-Foot Channel Project, Lock & Dam No. 17, Upper Mississippi River, New Boston, Mercer County, IL
46 CFR 167.40-1 - Electrical installations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (Electrical Engineering) of this chapter. (3) Institute of Electrical and Electronic Engineers, Inc. (IEEE... 46 Shipping 7 2011-10-01 2011-10-01 false Electrical installations. 167.40-1 Section 167.40-1... SHIPS Certain Equipment Requirements § 167.40-1 Electrical installations. (a) Except as otherwise...
46 CFR 167.40-1 - Electrical installations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... (Electrical Engineering) of this chapter. (3) Institute of Electrical and Electronic Engineers, Inc. (IEEE... 46 Shipping 7 2012-10-01 2012-10-01 false Electrical installations. 167.40-1 Section 167.40-1... SHIPS Certain Equipment Requirements § 167.40-1 Electrical installations. (a) Except as otherwise...
46 CFR 167.40-1 - Electrical installations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (Electrical Engineering) of this chapter. (3) Institute of Electrical and Electronic Engineers, Inc. (IEEE... 46 Shipping 7 2014-10-01 2014-10-01 false Electrical installations. 167.40-1 Section 167.40-1... SHIPS Certain Equipment Requirements § 167.40-1 Electrical installations. (a) Except as otherwise...
46 CFR 167.40-1 - Electrical installations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... (Electrical Engineering) of this chapter. (3) Institute of Electrical and Electronic Engineers, Inc. (IEEE... 46 Shipping 7 2013-10-01 2013-10-01 false Electrical installations. 167.40-1 Section 167.40-1... SHIPS Certain Equipment Requirements § 167.40-1 Electrical installations. (a) Except as otherwise...
Electric turbocompound control system
Algrain, Marcelo C [Dunlap, IL
2007-02-13
Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.
Integrated engine-generator concept for aircraft electric secondary power
NASA Technical Reports Server (NTRS)
Secunde, R. R.; Macosko, R. P.; Repas, D. S.
1972-01-01
The integrated engine-generator concept of locating an electric generator inside an aircraft turbojet or turbofan engine concentric with, and driven by, one of the main engine shafts is discussed. When properly rated, the generator can serve as an engine starter as well as a generator of electric power. The electric power conversion equipment and generator controls are conveniently located in the aircraft. Preliminary layouts of generators in a large engine together with their physical sizes and weights indicate that this concept is a technically feasible approach to aircraft secondary power.
Designing, Implementing and Maintaining a First Year Project Course in Electrical Engineering
ERIC Educational Resources Information Center
Lillieskold, J.; Ostlund, S.
2008-01-01
Being a modern electrical engineer does not only require state of the art skills in areas such as transfer and processing of information, electronics, systems engineering, and biomedical electrical engineering; it also requires generic engineering skills such as oral and written communication, team building, interpersonal skills, and the ability…
Space Electric Research Test in the Electric Propulsion Laboratory
1964-06-21
Technicians prepare the Space Electric Research Test (SERT-I) payload for a test in Tank Number 5 of the Electric Propulsion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. These electric engines created and accelerated small particles of propellant material to high exhaust velocities. Electric engines have a very small amount of thrust, but once lofted into orbit by workhorse chemical rockets, they are capable of small, continuous thrust for periods up to several years. The electron bombardment thruster operated at a 90-percent efficiency during testing in the Electric Propulsion Laboratory. The package was rapidly rotated in a vacuum to simulate its behavior in space. The SERT-I mission, launched from Wallops Island, Virginia, was the first flight test of Kaufman’s ion engine. SERT-I had one cesium engine and one mercury engine. The suborbital flight was only 50 minutes in duration but proved that the ion engine could operate in space. The Electric Propulsion Laboratory included two large space simulation chambers, one of which is seen here. Each uses twenty 2.6-foot diameter diffusion pumps, blowers, and roughing pumps to remove the air inside the tank to create the thin atmosphere. A helium refrigeration system simulates the cold temperatures of space.
78 FR 56594 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... General Electric Company (GE) GE90-76B, -85B, -90B, -94B, -110B1, and - 115B turbofan engines. This AD was...) Applicability This AD applies to General Electric Company (GE): (1) GE90-76B, -85B, -90B, and -94B turbofan...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-17
... CFR Parts 1724 and 1726 RIN 0572-AC20 Electric Engineering, Architectural Services, Design Policies... standard forms of contracts promulgated by RUS for construction, procurement, engineering services and... XVII of title 7 of the Code of Federal Regulations as follows: PART 1724--ELECTRIC ENGINEERING...
14 CFR 25.1165 - Engine ignition systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... automatically available as an alternate source of electrical energy to allow continued engine operation if any... simultaneous demands of the engine ignition system and the greatest demands of any electrical system components that draw electrical energy from the same source. (c) The design of the engine ignition system must...
14 CFR 25.1165 - Engine ignition systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... automatically available as an alternate source of electrical energy to allow continued engine operation if any... simultaneous demands of the engine ignition system and the greatest demands of any electrical system components that draw electrical energy from the same source. (c) The design of the engine ignition system must...
, testing, and commissioning of electrical infrastructure, facilities, and equipment. Education M.S ., Electrical Engineering, University of Arizona B.S., Electrical Engineering, University of Arizona
Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle
Boberg, Evan S.; Gebby, Brian P.
1999-09-28
A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.
Code of Federal Regulations, 2010 CFR
2010-01-01
... scope and procedures given in Test Method B of Institute of Electrical and Electronics Engineers (IEEE... the Institute of Electrical and Electronics Engineers, Inc. NEMA means the National Electrical...
78 FR 76045 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-16
... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... (AD) for General Electric Company (GE) GE90-110B1 and GE90-115B turbofan engines with certain high... turbofan engines with high pressure compressor (HPC) rotor stage 2-5 spools, part numbers (P/Ns) 351-103...
78 FR 50320 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... Electric Company (GE) model GEnx-2B67B turbofan engines with booster anti-ice (BAI) air duct, part number...-2B67 turbofan engine be removed from the Applicability section of this AD. The commenters noted that...
78 FR 72567 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-03
... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... General Electric Company (GE) GE90-110B1 and -115B turbofan engines. This AD was prompted by multiple... turbofan engines with variable bypass valve (VBV) actuator fuel supply tube, part number (P/N) 2165M22P01...
77 FR 3088 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-23
... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... Electric Company (GE) CF34-10E series turbofan engines. This AD was prompted by a report of heavy wear... turbofan engines installed on airplanes of U.S. registry. We also estimate that it will take about 8 work...
electric motor provides additional power when needed, such as for accelerating and passing. This allows a at an intersection. Electric Motor: The electric motor assists the gasoline engine when additional braking into electricity and stores it in the battery. It also starts the gasoline engine instantly when
Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopman, Ulrich,; Kruiswyk, Richard W.
2005-07-05
Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuelmore » economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.« less
First-year Engineering Education with the Creative Electrical Engineering Laboratory
NASA Astrophysics Data System (ADS)
Tsukamoto, Takehiko; Sugito, Tetsumasa; Ozeki, Osamu; Ushiroda, Sumio
The Department of Electrical and Electronic Engineering in Toyota National College of Technology has put great emphasis on fundamental subjects. We introduced the creative electrical engineering laboratory into the first-year engineering education since 1998. The laboratory concentrates on the practice exercise. The final questionnaire of students showed that our first-year education is very effective to promote students motivation and their scholastic ability in engineering.
46 CFR 96.05-1 - Installation and details.
Code of Federal Regulations, 2013 CFR
2013-10-01
... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...
46 CFR 77.05-1 - Installation and details.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...
46 CFR 77.05-1 - Installation and details.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...
46 CFR 96.05-1 - Installation and details.
Code of Federal Regulations, 2012 CFR
2012-10-01
... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...
46 CFR 77.05-1 - Installation and details.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...
46 CFR 96.05-1 - Installation and details.
Code of Federal Regulations, 2014 CFR
2014-10-01
... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...
46 CFR 96.05-1 - Installation and details.
Code of Federal Regulations, 2011 CFR
2011-10-01
... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...
46 CFR 96.05-1 - Installation and details.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...
46 CFR 77.05-1 - Installation and details.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...
46 CFR 77.05-1 - Installation and details.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...
Laboratory Manual, Electrical Engineering 25.
ERIC Educational Resources Information Center
Syracuse Univ., NY. Dept. of Electrical Engineering.
Developed as part of a series of materials in the electrical engineering sequence developed under contract with the United States Office of Education, this laboratory manual provides nine laboratory projects suitable for a second course in electrical engineering. Dealing with resonant circuits, electrostatic fields, magnetic devices, and…
46 CFR 112.50-5 - Electric starting.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Electric starting. 112.50-5 Section 112.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-5 Electric starting...
46 CFR 112.50-5 - Electric starting.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Electric starting. 112.50-5 Section 112.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-5 Electric starting...
46 CFR 112.50-5 - Electric starting.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Electric starting. 112.50-5 Section 112.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-5 Electric starting...
Stationary diesel engines for use with generators to supply electric power
NASA Technical Reports Server (NTRS)
1977-01-01
The procurement of stationary diesel engines for on-site generation of electric power deals with technical criteria and policy relating to federal agency, not electrical components of diesel-generator sets or for the design of electric-power generating plants or their air-pollution or noise control equipment.
46 CFR 112.50-5 - Electric starting.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Electric starting. 112.50-5 Section 112.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-5 Electric starting...
46 CFR 112.50-5 - Electric starting.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Electric starting. 112.50-5 Section 112.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-5 Electric starting...
78 FR 38195 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-26
... Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... all General Electric Company (GE) GE90-110B1 and GE90-115B turbofan engines. This emergency AD was.... owners and operators of these GE90-110B1 and GE90-115B turbofan engines. This action was prompted by...
78 FR 19983 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... Electric Company (GE) CF34-8C and CF34-8E turbofan engines with certain part numbers (P/N) of operability...-8E6, and CF34-8E6A1 turbofan engines, with an operability bleed valve (OBV) part number (P/N...
Alternative Fuels Data Center: Vehicle Search
ZeroTruck Search Engines and Hybrid Systems For medium- and heavy-duty vehicles: Engine & Power Sources Hydraulic hybrid Hybrid - CNG Hybrid - Diesel Electric Hybrid - LNG Hybrid Search x Pick Engine Fuel Natural Gas Propane Electric Plug-in Hybrid Electric Hydraulic hybrid Hybrid Search x Pick Engine Fuel
Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Baharvand, Hossein; Kiani, Sahar; Al-Deyab, Salem S; Ramakrishna, Seeram
2011-04-01
Among the numerous attempts to integrate tissue engineering concepts into strategies to repair nearly all parts of the body, neuronal repair stands out. This is partially due to the complexity of the nervous anatomical system, its functioning and the inefficiency of conventional repair approaches, which are based on single components of either biomaterials or cells alone. Electrical stimulation has been shown to enhance the nerve regeneration process and this consequently makes the use of electrically conductive polymers very attractive for the construction of scaffolds for nerve tissue engineering. In this review, by taking into consideration the electrical properties of nerve cells and the effect of electrical stimulation on nerve cells, we discuss the most commonly utilized conductive polymers, polypyrrole (PPy) and polyaniline (PANI), along with their design and modifications, thus making them suitable scaffolds for nerve tissue engineering. Other electrospun, composite, conductive scaffolds, such as PANI/gelatin and PPy/poly(ε-caprolactone), with or without electrical stimulation, are also discussed. Different procedures of electrical stimulation which have been used in tissue engineering, with examples on their specific applications in tissue engineering, are also discussed. Copyright © 2011 John Wiley & Sons, Ltd.
Heat engine generator control system
Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.
1998-05-12
An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.
Heat engine generator control system
Rajashekara, Kaushik; Gorti, Bhanuprasad Venkata; McMullen, Steven Robert; Raibert, Robert Joseph
1998-01-01
An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.
Interior of Vacuum Tank at the Electric Propulsion Laboratory
1961-08-21
Interior of the 20-foot diameter vacuum tank at the NASA Lewis Research Center’s Electric Propulsion Laboratory. Lewis researchers had been studying different electric rocket propulsion methods since the mid-1950s. Harold Kaufman created the first successful ion engine, the electron bombardment ion engine, in the early 1960s. These engines used electric power to create and accelerate small particles of propellant material to high exhaust velocities. Electric engines have a very small thrust, but can operate for long periods of time. The ion engines are often clustered together to provide higher levels of thrust. The Electric Propulsion Laboratory, which began operation in 1961, contained two large vacuum tanks capable of simulating a space environment. The tanks were designed especially for testing ion and plasma thrusters and spacecraft. The larger 25-foot diameter tank included a 10-foot diameter test compartment to test electric thrusters with condensable propellants. The portals along the chamber floor lead to the massive exhauster equipment that pumped out the air to simulate the low pressures found in space.
: Institute of Electrical and Electronics Engineers (IEEE). NREL/CP-5500-54165. doi:10.1109/EnergyTech 2011. Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE). NREL/CP-5500-53565. doi Electrical and Electronics Engineers (IEEE). NREL/CP-550-47061. doi:10.1109/pes.2009.5275358 Mooney, D., M
An Undergraduate Electrical Engineering Course on Computer Organization.
ERIC Educational Resources Information Center
Commission on Engineering Education, Washington, DC.
Outlined is an undergraduate electrical engineering course on computer organization designed to meet the need for electrical engineers familiar with digital system design. The program includes both hardware and software aspects of digital systems essential to design function and correlates design and organizational aspects of the subject. The…
Investigating Student Motivation and Performance in Electrical Engineering and Its Subdisciplines
ERIC Educational Resources Information Center
Foley, Justin M.; Daly, Shanna; Lenaway, Catherine; Phillips, Jamie
2016-01-01
Factors influencing choice of major in electrical engineering and later curricular and professional choices are investigated. Studies include both quantitative and qualitative analyses via student transcripts, surveys, and focus groups. Student motivation for choosing an electrical engineering major and later subdiscipline in the field is…
Experimental Economics for Teaching the Functioning of Electricity Markets
ERIC Educational Resources Information Center
Guevara-Cedeno, J. Y.; Palma-Behnke, R.; Uribe, R.
2012-01-01
In the field of electricity markets, the development of training tools for engineers has been extremely useful. A novel experimental economics approach based on a computational Web platform of an electricity market is proposed here for the practical teaching of electrical engineering students. The approach is designed to diminish the gap that…
78 FR 24671 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-26
... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... certain General Electric Company (GE) CF6-80C2 series turbofan engines. That AD currently requires.../B1F/B2F/B4F/B6F/B7F/D1F turbofan engines with any of the following installed: (1) Fuel tube, part...
78 FR 47534 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... directive (AD) 2013-14-51 for General Electric Company (GE) GE90-110B1 and GE90-115B turbofan engines with... all known U.S. owners and operators of GE90-110B1 and GE90-115B turbofan engines. AD 2013-14-51...
Electric ants: A cross-disciplinary approach to understanding insect behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slowik, T.J.; Thorvilson, H.G.; Green, B.L.
1996-12-31
The response and attraction of the red imported fire ant, Solenopsis invicta, to electrical equipment was examined using an interdisciplinary approach. Entomologists specializing in fire ant behavior combined expertise with electrical engineers to investigate the economically damaging interaction of fire ants with electrical circuitry. Knowledge from the realms of physics, engineering, and biology were integrated in experimentation to test for a fire ant response to electric fields and magnetic fields associated with electrical equipment. It was determined that fire ants react to electrified conductive material and the alternating-current magnetic fields associated with electricity.
Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen
2014-01-01
Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge machining ZnO/Al2O3 ceramic.
China’s Aerospace Industry: Technology, Funding and Modernization
1992-01-01
7 was to use a General Electric F404 engine (from the F-20 Tigershark) along with other foreign engines as candidates but that program was again...firms like General Electric and Pratt & Whitney. As the Chinese engine industry gets more behind, more foreign engines are chosen, and the factories have... Electric since 1984.81 Liming Engine Plant makes compressor disks and turbine disks for GE and turbine disks for Pratt & Whitney while the Chengdu Engine
NASA Astrophysics Data System (ADS)
Yang, Chao; Song, Jian; Li, Liang; Li, Shengbo; Cao, Dongpu
2016-08-01
This paper presents an economical launching and accelerating mode, including four ordered phases: pure electrical driving, clutch engagement and engine start-up, engine active charging, and engine driving, which can be fit for the alternating conditions and improve the fuel economy of hybrid electric bus (HEB) during typical city-bus driving scenarios. By utilizing the fast response feature of electric motor (EM), an adaptive controller for EM is designed to realize the power demand during the pure electrical driving mode, the engine starting mode and the engine active charging mode. Concurrently, the smoothness issue induced by the sequential mode transitions is solved with a coordinated control logic for engine, EM and clutch. Simulation and experimental results show that the proposed launching and accelerating mode and its control methods are effective in improving the fuel economy and ensure the drivability during the fast transition between the operation modes of HEB.
NASA Technical Reports Server (NTRS)
Johnson, Dexter; Brown, Gerald V.
2005-01-01
Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.
Data Documentation for Navy Civilian Manpower Study,
1986-09-01
Engineering 0830 Mechanical Engineer 0840 Nuclear Engineering 0850 Electrical Engineering 0855 Electronics Engineering 0856 Electronics ...OCCUPATIONAL LEVEL (DONOL) CODES DONOL code Title 1060 Engineering Drafting 1061 Electronics Technician w 1062 Engineering Technician 1063 Industrial...Architect 2314 Electrical Engineer 2315 Electronic Engineer 2316 Industrial Engineer 2317 Mechanical Engineer 2318
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-22
... professions including consultant economists, lawyers, and electrical engineers. The costs of engaging these... economist, lawyer, and electrical engineer according to Salary.com data. (See http://salary.com ). Public... electrical engineer according to Salary.com data, for the hours required in 18 CFR 35.37(a) for market power...
ERIC Educational Resources Information Center
Keltikangas, K.; Wallen, H.
2010-01-01
This paper investigates electrical engineers' perceptions on their education in Finland, with particular emphasis on the basic electromagnetic field theory courses and their applicability in working life, using two online surveys (n = 99 and n = 120). The answers show a reasonably good satisfaction with the electrical engineering studies in…
NASA Astrophysics Data System (ADS)
1995-05-01
English abstracts contained are from papers authored by the research staff of the Research Institute of Electrical Communication and the departments of Electrical Engineering, Electrical Communications, Electronic Engineering, and Information Engineering, Tohoku University, which originally appeared in scientific journals in 1994. The abstracts are organized under the following disciplines: electromagnetic theory; physics; fundamental theory of information; communication theory and systems; signal and image processing; systems control; computers; artificial intelligence; recording; acoustics and speech; ultrasonic electronics; antenna, propagation, and transmission; optoelectronics and optical communications; quantum electronics; superconducting materials and applications; magnetic materials and magnetics; semiconductors; electronic materials and parts; electronic devices and integrated circuits; electronic circuits; medical electronics and bionics; measurements and applied electronics; electric power; and miscellaneous.
Micro- and Macroscale Ideas of Current among Upper-Division Electrical Engineering Students
ERIC Educational Resources Information Center
Adam, Gina C.; Harlow, Danielle B.; Lord, Susan M.; Kautz, Christian H.
2017-01-01
The concept of electric current is fundamental in the study of electrical engineering (EE). Students are often exposed to this concept in their daily lives and early in middle school education. Lower-division university courses are usually limited to the study of passive electronic devices and simple electric circuits. Semiconductor physics is an…
Code of Federal Regulations, 2010 CFR
2010-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Planning... long-term needs for plant additions, improvements, replacements, and retirements for their electric systems. The primary components of the planning system consist of long-range engineering plans and...
Electric machine for hybrid motor vehicle
Hsu, John Sheungchun
2007-09-18
A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.
Electron Bombardment Ion Thruster
1970-08-21
Researchers at the Lewis Research Center had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. Over the ensuing decades Lewis researchers continued to advance the original ion thruster concept. A Space Electric Rocket Test (SERT) spacecraft was launched in June 1964 to test Kaufman’s engine in space. SERT I had one cesium engine and one mercury engine. The suborbital flight was only 50 minutes in duration but proved that the ion engine could operate in space. This was followed in 1966 by the even more successful SERT II, which operated on and off for over ten years. Lewis continued studying increasingly more powerful ion thrusters. These electric engines created and accelerated small particles of propellant material to high exhaust velocities. Electric engines have a very small amount of thrust and are therefore not capable of lifting a spaceship from the surface of the Earth. Once lofted into orbit, however, electric engines are can produce small, continuous streams of thrust for several years.
Electrical system for a motor vehicle
Tamor, Michael Alan
1999-01-01
In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.
Electrical system for a motor vehicle
Tamor, M.A.
1999-07-20
In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.
Engineer Examines Cluster of Ion Engines in the Electric Propulsion Laboratory
1963-01-21
New staff member Paul Margosian inspects a cluster of ion engines in the Electric Propulsion Laboratory’s 25-foot diameter vacuum tank at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. These engines used electric power to create and accelerate small particles of propellant material to high exhaust velocities. Electric engines have a very small thrust, and but can operate for long periods of time. The ion engines are often clustered together to provide higher levels of thrust. The Electric Propulsion Laboratory contained two large vacuum tanks capable of simulating the space environment. The tanks were designed especially for testing ion and plasma thrusters and spacecraft. The larger 25-foot diameter tank was intended for testing electric thrusters with condensable propellants. The tank’s test compartment, seen here, was 10 feet in diameter. Margosian joined Lewis in late 1962 during a major NASA hiring phase. The Agency reorganized in 1961 and began expanding its ranks through a massive recruiting effort. Lewis personnel increased from approximately 2,700 in 1961 to over 4,800 in 1966. Margosian, who worked with Bill Kerslake in the Electromagnetic Propulsion Division’s Propulsion Systems Section, wrote eight technical reports on mercury and electron bombardment thrusters, thermoelectrostatic generators, and a high voltage insulator.
Thermoacoustic magnetohydrodynamic electrical generator
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1984-11-16
A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.
Thermoacoustic magnetohydrodynamic electrical generator
Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1986-01-01
A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Electrical Accident Occupation Blue collar supervisors. 1 Electrical and electronic engineers. 1 Electrical... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices § 1910.332 Training. (a... electric shock that is not reduced to a safe level by the electrical installation requirements of §§ 1910...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Electrical Accident Occupation Blue collar supervisors. 1 Electrical and electronic engineers. 1 Electrical... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices § 1910.332 Training. (a... electric shock that is not reduced to a safe level by the electrical installation requirements of §§ 1910...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Electrical Accident Occupation Blue collar supervisors. 1 Electrical and electronic engineers. 1 Electrical... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices § 1910.332 Training. (a... electric shock that is not reduced to a safe level by the electrical installation requirements of §§ 1910...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Electrical Accident Occupation Blue collar supervisors. 1 Electrical and electronic engineers. 1 Electrical... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices § 1910.332 Training. (a... electric shock that is not reduced to a safe level by the electrical installation requirements of §§ 1910...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Electrical Accident Occupation Blue collar supervisors. 1 Electrical and electronic engineers. 1 Electrical... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices § 1910.332 Training. (a... electric shock that is not reduced to a safe level by the electrical installation requirements of §§ 1910...
NASA Researcher Adjusts a Travelling Magnetic Wave Plasma Engine
1964-02-21
Raymond Palmer, of the Electromagnetic Propulsion Division’s Plasma Flow Section, adjusts the traveling magnetic wave plasma engine being operated in the Electric Power Conversion at the National Aeronautics and Space Administration (NASA) Lewis Research Center. During the 1960s Lewis researchers were exploring several different methods of creating electric propulsion systems, including the traveling magnetic wave plasma engine. The device operated similarly to alternating-current motors, except that a gas, not a solid, was used to conduct the electricity. A magnetic wave induced a current as it passed through the plasma. The current and magnetic field pushed the plasma in one direction. Palmer and colleague Robert Jones explored a variety of engine configurations in the Electric Propulsion Research Building. The engine is seen here mounted externally on the facility’s 5-foot diameter and 16-foot long vacuum tank. The four magnetic coils are seen on the left end of the engine. The researchers conducted two-minute test runs with varying configurations and used of both argon and xenon as the propellant. The Electric Propulsion Research Building was built in 1942 as the Engine Propeller Research Building, often called the Prop House. It contained four test cells to study large reciprocating engines with their propellers. After World War II, the facility was modified to study turbojet engines. By the 1960s, the facility was modified again for electric propulsion research and given its current name.
Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen
2014-01-01
Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge machining ZnO/Al2O3 ceramic. PMID:25364912
Hybrid Turbine Electric Vehicle
NASA Technical Reports Server (NTRS)
Viterna, Larry A.
1997-01-01
Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.
Development of instruction in hospital electrical safety for medical education.
Yoo, J H; Broderick, W A
1978-01-01
Although hospital electrical safety is receiving increased attention in the literature of engineers, it is not, at present, reflected in the curricula of medical schools. A possible reason for this omission is that biomedical and/or clinical engineers knowledgeable in electrical safety are not usually trained to teach. One remedy for this problem is to combine the knowledge of engineers with that of instructional developers to design a systematic curriculum for a course in hospital electrical safety. This paper describes such an effort at the University of Texas Health Science Center at San Antonio (UTHSCSA). A biomedical engineer and an instructional developer designed an instructional module in hospital electrical safety; the engineer taught the module, and both evaluated the results. The process and outcome of their collaboration are described. This model was effectively applied in the classroom as a four-hour segment in hospital electrical safety for first-year medical students at UTHSCSA. It is hoped that an additional benefit of this system will be that it offers an opportunity for continuing improvement in this kind of instruction at other medical schools and hospitals.
Space electric power design study. [laser energy conversion
NASA Technical Reports Server (NTRS)
Martini, W. R.
1976-01-01
The conversion of laser energy to electrical energy is discussed. Heat engines in which the laser heats the gas inside the engine through a window as well as heat engines in which the gas is heated by a thermal energy storage reservoir which has been heated by laser radiation are both evaluated, as well as the necessary energy storage, transmission and conversion components needed for a full system. Preliminary system concepts are presented and a recommended development program is outlined. It appears possible that a free displacer Stirling engine operating directly a linear electric generator can convert 65% of the incident laser energy into electricity.
Integrated engine generator for aircraft secondary power
NASA Technical Reports Server (NTRS)
Secunde, R. R.
1972-01-01
An integrated engine-generator for aircraft secondary power generation is described. The concept consists of an electric generator located inside a turbojet or turbofan engine and both concentric with and driven by one of the main engine shafts. The electric power conversion equipment and generator controls are located in the aircraft. When properly rated, the generator serves as an engine starter as well as a source of electric power. This configuration reduces or eliminates the need for an external gear box on the engine and permits reduction in the nacelle diameter.
Experimental research made during a city cycle on the feasibility of electrically charged SI engines
NASA Astrophysics Data System (ADS)
Kocsis, Levente B.; Burnete, Nicolae
2014-06-01
The paper presents experimental research on performance improvements in a city cycle (operating mostly transient) of a compact class vehicle equipped with a turbocharged SI engine which had attached an electric charger, to improve engine response at low operational speeds. During tests, functional parameters, energy consumption of the electric charger and vehicle performances were measured while driving in two operating conditions: with active and inactive electric charger. The tests were carried out on a well-defined path, in the same driving style, by the same driver.
Fault Identification Based on Nlpca in Complex Electrical Engineering
NASA Astrophysics Data System (ADS)
Zhang, Yagang; Wang, Zengping; Zhang, Jinfang
2012-07-01
The fault is inevitable in any complex systems engineering. Electric power system is essentially a typically nonlinear system. It is also one of the most complex artificial systems in this world. In our researches, based on the real-time measurements of phasor measurement unit, under the influence of white Gaussian noise (suppose the standard deviation is 0.01, and the mean error is 0), we used mainly nonlinear principal component analysis theory (NLPCA) to resolve fault identification problem in complex electrical engineering. The simulation results show that the fault in complex electrical engineering is usually corresponding to the variable with the maximum absolute value coefficient in the first principal component. These researches will have significant theoretical value and engineering practical significance.
A Novel Electro Conductive Graphene/Silicon-Dioxide Thermo-Electric Generator
NASA Astrophysics Data System (ADS)
Rahman, Ataur; Abdi, Yusuf
2017-03-01
Thermoelectric generators are all solid-state devices that convert heat energy into electrical energy. The total energy (fuel) supplied to the engine, approximately 30 to 40% is converted into useful mechanical work; whereas the remaining is expelled to the environment as heat through exhaust gases and cooling systems, resulting in serious green house gas (GHG) emission. By converting waste energy into electrical energy is the aim of this manuscript. The technologies reported on waste heat recovery from exhaust gas of internal combustion engines (ICE) are thermo electric generators (TEG) with finned type, Rankine cycle (RC) and Turbocharger. This paper has presented an electro-conductive graphene oxide/silicon-dioxide (GO-SiO2) composite sandwiched by phosphorus (P) and boron (B) doped silicon (Si) TEG to generate electricity from the IC engine exhaust heat. Air-cooling and liquid cooling techniques adopted conventional TEG module has been tested individually for the electricity generation from IC engine exhausts heat at engine speed of 1000-3000rpm. For the engine speed of 7000 rpm, the maximum voltage was recorded as 1.12V and 4.00V for the air-cooling and liquid cooling respectively. The GO-SiO2 simulated result shows that it’s electrical energy generation is about 80% more than conventional TEG for the exhaust temperature of 500°C. The GO-SiO2 composite TEG develops 524W to 1600W at engine speed 1000 to 5000 rpm, which could contribute to reduce the 10-12% of engine total fuel consumption and improve emission level by 20%.
46 CFR 111.85-1 - Electric oil immersion heaters.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...
46 CFR 111.85-1 - Electric oil immersion heaters.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...
46 CFR 111.85-1 - Electric oil immersion heaters.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...
46 CFR 111.85-1 - Electric oil immersion heaters.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...
46 CFR 111.85-1 - Electric oil immersion heaters.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...
Compact Hybrid Automotive Propulsion System
NASA Technical Reports Server (NTRS)
Lupo, G.
1986-01-01
Power train proposed for experimental vehicle powered by internal combustion engine and electric motor. Intended for front-wheel drive automobile, power train mass produced using existing technology. System includes internal-combustion engine, electric motor, continuously variable transmission, torque converter, differential, and control and adjustment systems for electric motor and transmission. Continuously variable transmission integrated into hydraulic system that also handles power steering and power brakes. Batteries for electric motor mounted elsewhere in vehicle.
46 CFR 194.15-19 - Electrical.
Code of Federal Regulations, 2014 CFR
2014-10-01
....15-19 Electrical. (a) All electrical equipment located within 18 inches of the deck of the chemical laboratory shall be in accordance with the applicable requirements of Subchapter J (Electrical Engineering...
46 CFR 194.15-19 - Electrical.
Code of Federal Regulations, 2010 CFR
2010-10-01
....15-19 Electrical. (a) All electrical equipment located within 18 inches of the deck of the chemical laboratory shall be in accordance with the applicable requirements of Subchapter J (Electrical Engineering...
46 CFR 194.15-19 - Electrical.
Code of Federal Regulations, 2011 CFR
2011-10-01
....15-19 Electrical. (a) All electrical equipment located within 18 inches of the deck of the chemical laboratory shall be in accordance with the applicable requirements of Subchapter J (Electrical Engineering...
46 CFR 194.15-19 - Electrical.
Code of Federal Regulations, 2013 CFR
2013-10-01
....15-19 Electrical. (a) All electrical equipment located within 18 inches of the deck of the chemical laboratory shall be in accordance with the applicable requirements of Subchapter J (Electrical Engineering...
46 CFR 194.15-19 - Electrical.
Code of Federal Regulations, 2012 CFR
2012-10-01
....15-19 Electrical. (a) All electrical equipment located within 18 inches of the deck of the chemical laboratory shall be in accordance with the applicable requirements of Subchapter J (Electrical Engineering...
Active Reconfigurable Metamaterial Unit Cell Based on Non-Foster Elements
2013-10-01
Krois Ivan Bonic Aleksandar Kiricenko Damir Muha University of Zagreb Faculty of Electrical Engineering and Computing Unksa 3 Zagreb ...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Zagreb Faculty of Electrical Engineering and Computing Unksa 3 Zagreb , HR-10000 CROATIA 8...Electrical Engineering and Computing University of Zagreb Unska 3 Zagreb , HR-10000, Croatia 14 October 2013 Distribution A: Approved for
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-18
... Airworthiness Directives; General Electric Company CF6-45 and CF6-50 Series Turbofan Engines AGENCY: Federal... airworthiness directive (AD) for General Electric Company (GE) CF6-45 and CF6-50 series turbofan engines. That..., and MD-10- 30F. The commenter stated that the proposed AD only listed these airplanes as a series. We...
ERIC Educational Resources Information Center
Pierre, J. W.; Tuffner, F. K.; Anderson, J. R.; Whitman, D. L.; Ula, A. H. M. S.; Kubichek, R. F.; Wright, C. H. G.; Barrett, S. F.; Cupal, J. J.; Hamann, J. C.
2009-01-01
This paper describes a one-credit laboratory course for freshmen majoring in electrical and computer engineering (ECE). The course is motivational in nature and exposes the students to a wide range of areas of electrical and computer engineering. The authors believe it is important to give freshmen a broad perspective of what ECE is all about, and…
Injection Laser Structure Design.
1985-01-30
A. Linz and J. Butler Electrical Engineering Department Southern Methodist University Dallas, Texas 75275 Abstract A numerical method and the... NUMERICAL AND EFFECTIVE-INDEX METHODS FOR A CLASS OF DIELECTRIC WAVEGUIDES* H-.2 A. Linz and J.K. Butler Electrical Engineering Department Southern...University, Dallas, TX, where he is now Professor of Electrical methd w usd i notpraticl fr etensve odeingdue Engineering . His primary research areas are solid
46 CFR 111.95-1 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-1 Applicability. (a) The electric installation of each electric power-operated boat winch must meet the requirements in this subpart, except that limit...
46 CFR 111.95-1 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-1 Applicability. (a) The electric installation of each electric power-operated boat winch must meet the requirements in this subpart, except that limit...
46 CFR 111.95-1 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-1 Applicability. (a) The electric installation of each electric power-operated boat winch must meet the requirements in this subpart, except that limit...
46 CFR 111.95-1 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-1 Applicability. (a) The electric installation of each electric power-operated boat winch must meet the requirements in this subpart, except that limit...
46 CFR 111.95-1 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-1 Applicability. (a) The electric installation of each electric power-operated boat winch must meet the requirements in this subpart, except that limit...
Kana, Kujaany; Song, Hannah; Laschinger, Carol; Zandstra, Peter W; Radisic, Milica
2015-09-01
Myocardial infarction, a prevalent cardiovascular disease, is associated with cardiomyocyte cell death, and eventually heart failure. Cardiac tissue engineering has provided hopes for alternative treatment options, and high-fidelity tissue models for drug discovery. The signal transduction mechanisms relayed in response to mechanoelectrical (physical) stimulation or biochemical stimulation (hormones, cytokines, or drugs) in engineered heart tissues (EHTs) are poorly understood. In this study, an EHT model was used to elucidate the signaling mechanisms involved when insulin was applied in the presence of electrical stimulation, a stimulus that mimics functional heart tissue environment in vitro. EHTs were insulin treated, electrically stimulated, or applied in combination (insulin and electrical stimulation). Electrical excitability parameters (excitation threshold and maximum capture rate) were measured. Protein kinase B (AKT) and phosphatidylinositol-3-kinase (PI3K) phosphorylation revealed that insulin and electrical stimulation relayed electrical excitability through two separate signaling cascades, while there was a negative crosstalk between sustained activation of AKT and PI3K.
Electrical Prototype Power Processor for the 30-cm Mercury electric propulsion engine
NASA Technical Reports Server (NTRS)
Biess, J. J.; Frye, R. J.
1978-01-01
An Electrical Prototpye Power Processor has been designed to the latest electrical and performance requirements for a flight-type 30-cm ion engine and includes all the necessary power, command, telemetry and control interfaces for a typical electric propulsion subsystem. The power processor was configured into seven separate mechanical modules that would allow subassembly fabrication, test and integration into a complete power processor unit assembly. The conceptual mechanical packaging of the electrical prototype power processor unit demonstrated the relative location of power, high voltage and control electronic components to minimize electrical interactions and to provide adequate thermal control in a vacuum environment. Thermal control was accomplished with a heat pipe simulator attached to the base of the modules.
Code of Ethics for Electrical Engineers
NASA Astrophysics Data System (ADS)
Matsuki, Junya
The Institute of Electrical Engineers of Japan (IEEJ) has established the rules of practice for its members recently, based on its code of ethics enacted in 1998. In this paper, first, the characteristics of the IEEJ 1998 ethical code are explained in detail compared to the other ethical codes for other fields of engineering. Secondly, the contents which shall be included in the modern code of ethics for electrical engineers are discussed. Thirdly, the newly-established rules of practice and the modified code of ethics are presented. Finally, results of questionnaires on the new ethical code and rules which were answered on May 23, 2007, by 51 electrical and electronic students of the University of Fukui are shown.
Dual motor drive vehicle speed synchronization and coordination control strategy
NASA Astrophysics Data System (ADS)
Huang, Hao; Tu, Qunzhang; Jiang, Chenming; Ma, Limin; Li, Pei; Zhang, Hongxing
2018-04-01
Multi-motor driven systems are more and more widely used in the field of electric engineering vehicles, as a result of the road conditions and the variable load of engineering vehicles, makes multi-motors synchronization coordinated control system as a key point of the development of the electric vehicle drive system. This paper based on electrical machinery transmission speed in the process of engineering vehicles headed for coordinated control problem, summarized control strategies at home and abroad in recent years, made analysis and comparison of the characteristics, finally discussed the trend of development of the multi-motor coordination control, provided a reference for synchronized control system research of electric drive engineering vehicles.
Engine-start Control Strategy of P2 Parallel Hybrid Electric Vehicle
NASA Astrophysics Data System (ADS)
Xiangyang, Xu; Siqi, Zhao; Peng, Dong
2017-12-01
A smooth and fast engine-start process is important to parallel hybrid electric vehicles with an electric motor mounted in front of the transmission. However, there are some challenges during the engine-start control. Firstly, the electric motor must simultaneously provide a stable driving torque to ensure the drivability and a compensative torque to drag the engine before ignition. Secondly, engine-start time is a trade-off control objective because both fast start and smooth start have to be considered. To solve these problems, this paper first analyzed the resistance of the engine start process, and established a physic model in MATLAB/Simulink. Then a model-based coordinated control strategy among engine, motor and clutch was developed. Two basic control strategy during fast start and smooth start process were studied. Simulation results showed that the control objectives were realized by applying given control strategies, which can meet different requirement from the driver.
Code of Federal Regulations, 2010 CFR
2010-01-01
.../Institute of Electrical and Electronics Engineers, Inc. (ANSI/IEEE) C2-1997, National Electrical Safety Code (NESC). The National Electrical Code ® and NEC ® are registered trademarks of the National Fire... have been made by the RUS borrower or the engineer delegated by the RUS borrower. (f) Only a qualified...
Code of Federal Regulations, 2012 CFR
2012-01-01
.../Institute of Electrical and Electronics Engineers, Inc. (ANSI/IEEE) C2-1997, National Electrical Safety Code (NESC). The National Electrical Code ® and NEC ® are registered trademarks of the National Fire... have been made by the RUS borrower or the engineer delegated by the RUS borrower. (f) Only a qualified...
Code of Federal Regulations, 2011 CFR
2011-01-01
.../Institute of Electrical and Electronics Engineers, Inc. (ANSI/IEEE) C2-1997, National Electrical Safety Code (NESC). The National Electrical Code ® and NEC ® are registered trademarks of the National Fire... have been made by the RUS borrower or the engineer delegated by the RUS borrower. (f) Only a qualified...
Code of Federal Regulations, 2013 CFR
2013-01-01
.../Institute of Electrical and Electronics Engineers, Inc. (ANSI/IEEE) C2-1997, National Electrical Safety Code (NESC). The National Electrical Code ® and NEC ® are registered trademarks of the National Fire... have been made by the RUS borrower or the engineer delegated by the RUS borrower. (f) Only a qualified...
Code of Federal Regulations, 2014 CFR
2014-01-01
.../Institute of Electrical and Electronics Engineers, Inc. (ANSI/IEEE) C2-1997, National Electrical Safety Code (NESC). The National Electrical Code ® and NEC ® are registered trademarks of the National Fire... have been made by the RUS borrower or the engineer delegated by the RUS borrower. (f) Only a qualified...
10 CFR 431.445 - Determination of small electric motor efficiency.
Code of Federal Regulations, 2011 CFR
2011-01-01
... COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Test Procedures § 431.445 Determination of small... the mechanical and electrical characteristics of that basic model, and (ii) Based on engineering or... Department of Energy records showing the method or methods used; the mathematical model, the engineering or...
14 CFR 25.1165 - Engine ignition systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... automatically available as an alternate source of electrical energy to allow continued engine operation if any... that draw electrical energy from the same source. (c) The design of the engine ignition system must...
14 CFR 25.1165 - Engine ignition systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... automatically available as an alternate source of electrical energy to allow continued engine operation if any... that draw electrical energy from the same source. (c) The design of the engine ignition system must...
46 CFR 107.305 - Plans and information.
Code of Federal Regulations, 2013 CFR
2013-10-01
... systems. Marine Engineering (z) Plans required for marine engineering equipment and systems by Subchapter F of this chapter. Electrical Engineering (aa) Plans required for electrical engineering equipment... materials that do not conform to ABS or ASTM specifications, complete specifications, including chemical and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-23
... Engineering, Architectural Services, Design Policies and Construction Standards AGENCY: Rural Utilities..., engineering services and architectural services for transactions above the established threshold dollar levels... Code of Federal Regulations as follows: PART 1724--ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND...
1946-11-18
INVESTIGATION OF THE GENERAL ELECTRIC 1-40 JET -PROPULSION ENGINE IN THE CLEVELAND ALTITUDE WIND TUNNEL .; II - ANALYSIS OF COMPRESSOR PERFORMANCE...CHARACTERISTICS By Robert 0. Dietz, Jr. and Robert M. Gelsenheyner Aircraft Engine Research Laboratory 1 Cleveland, Ohio !f -NOT FM ED", P 0 W DESTROY...Command, Army Air Forces INVESTIGATION OF THE GENERAL ELECTRIC 1-40 JET -PROPULSION ENGINE IN THE CLEVELAND ALTITUDE WIND TUNNEL II - ANALYSIS OF
Decision Models for Conducting an Economic Analysis of Alternative Fuels for the Ice Engine.
1983-03-01
p.cduc.d ICE vehicles. This analysis focusqs on electric vehicles d=.signed for commercial use. Electric hybrid vehicles which combine electric...ccntain -:he minimum gross veicle weight, engine size, and other characterist-ca of vehicles generally procured by the Federal governmen. The ir...Electric and Hybrid Vehicles, Energy Technology Review Nc. 44 published by Noyes Data Corpora’-ion. It summarizes data cn characteristics, cost, maints
A comparison of Stirling engines for use with a 25 kW dish-electric conversion system
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.
1987-01-01
Two designs for an advanced Stirling conversion system (ASCS) are described. The objective of the ASCS is to generate about 25 kW of electric power to an electric utility grid at an engine/alternator target cost of $300.00/kW at the manufacturing rate of 10,000 unit/yr. Both designs contain a free-piston Stirling engine (FPSE), a heat transport system, solar receiver, a means to generate electric power, the necessary auxiliaries, and a control system. The major differences between the two concepts are: one uses a 25 kWe single-piston FPSE which incorporates a linear alternator to directly convert the energy to electricity on the utility grid; and in the second design, electrical power is generated indirectly using a hydraulic output to a ground based hydraulic motor coupled to a rotating alternator. Diagrams of the two designs are presented.
Electric converters of electromagnetic strike machine with battery power
NASA Astrophysics Data System (ADS)
Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.
2018-03-01
At present, the application of pulse linear electromagnetic engines to drive strike machines for immersion of rod elements into the soil, strike drilling of shallow wells, dynamic probing of soils is recognized as quite effective. The pulse linear electromagnetic engine performs discrete consumption and conversion of electrical energy into mechanical work. Pulse dosing of a stream transmitted by the battery source to the pulse linear electromagnetic engine of the energy is provided by the electrical converter. The electric converters with the control of an electromagnetic strike machine as functions of time and armature movement, which form the unipolar supply pulses of voltage and current necessary for the normal operation of a pulse linear electromagnetic engine, are proposed. Electric converters are stable in operation, implement the necessary range of output parameters control determined by the technological process conditions, have noise immunity and automatic disconnection of power supply in emergency modes.
EMERGE: Engineered Materials that Create Environments for ReGeneration via Electric Field
2016-10-01
Recruitment of multiple cell lines by collagen-synthetic copolymer matrices in corneal regeneration ,” Biomaterials (2004). A) B) REDD-2016-537...AWARD NUMBER: W81XWH-14-1-0542 TITLE: EMERGE: Engineered Materials that Create Environments for ReGeneration via Electric Field PRINCIPAL...23 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER EMERGE: Engineered Materials that Create Environments for ReGeneration via Electric Field
7 CFR 1724.50 - Compliance with National Electrical Safety Code (NESC).
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 11 2013-01-01 2013-01-01 false Compliance with National Electrical Safety Code (NESC... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.50 Compliance with National Electrical Safety Code...
7 CFR 1724.50 - Compliance with National Electrical Safety Code (NESC).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false Compliance with National Electrical Safety Code (NESC... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.50 Compliance with National Electrical Safety Code...
7 CFR 1724.50 - Compliance with National Electrical Safety Code (NESC).
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 11 2011-01-01 2011-01-01 false Compliance with National Electrical Safety Code (NESC... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.50 Compliance with National Electrical Safety Code...
7 CFR 1724.50 - Compliance with National Electrical Safety Code (NESC).
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 11 2012-01-01 2012-01-01 false Compliance with National Electrical Safety Code (NESC... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.50 Compliance with National Electrical Safety Code...
7 CFR 1724.50 - Compliance with National Electrical Safety Code (NESC).
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 11 2014-01-01 2014-01-01 false Compliance with National Electrical Safety Code (NESC... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.50 Compliance with National Electrical Safety Code...
46 CFR 111.106-17 - Piping: electrical bonding.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Piping: electrical bonding. 111.106-17 Section 111.106-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations on OSVs § 111.106-17 Piping: electrical bonding. (a...
INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd Kollross; Mike Connolly
2004-06-30
Engine-driven chillers are quickly gaining popularity in the market place (increased from 7,000 tons in 1994 to greater than 50,000 tons in 1998) due to their high efficiency, electric peak shaving capability, and overall low operating cost. The product offers attractive economics (5 year pay back or less) in many applications, based on areas cooling requirements and electric pricing structure. When heat is recovered and utilized from the engine, the energy resource efficiency of a natural gas engine-driven chiller is higher than all competing products. As deregulation proceeds, real time pricing rate structures promise high peak demand electric rates, butmore » low off-peak electric rates. An emerging trend with commercial building owners and managers who require air conditioning today is to reduce their operating costs by installing hybrid chiller systems that combine gas and electric units. Hybrid systems not only reduce peak electric demand charges, but also allow customers to level their energy load profiles and select the most economical energy source, gas or electricity, from hour to hour. Until recently, however, all hybrid systems incorporated one or more gas-powered chillers (engine driven and/or absorption) and one or more conventional electric units. Typically, the cooling capacity of hybrid chiller plants ranges from the hundreds to thousands of refrigeration tons, with multiple chillers affording the user a choice of cooling systems. But this flexibility is less of an option for building operators who have limited room for equipment. To address this technology gap, a hybrid chiller was developed by Alturdyne that combines a gas engine, an electric motor and a refrigeration compressor within a single package. However, this product had not been designed to realize the full features and benefits possible by combining an engine, motor/generator and compressor. The purpose of this project is to develop a new hybrid chiller that can (1) reduce end-user energy costs, (2) lower building peak electric load, (3) increase energy efficiency, and (4) provide standby power. This new hybrid product is designed to allow the engine to generate electricity or drive the chiller's compressor, based on the market price and conditions of the available energy sources. Building owners can minimize cooling costs by operating with natural gas or electricity, depending on time of day energy rates. In the event of a backout, the building owner could either operate the product as a synchronous generator set, thus providing standby power, or continue to operate a chiller to provide air conditioning with support of a small generator set to cover the chiller's electric auxiliary requirements. The ability to utilize the same piece of equipment as a hybrid gas/electric chiller or a standby generator greatly enhances its economic attractiveness and would substantially expand the opportunities for high efficiency cooling products.« less
Primary electric power generation systems for advanced-technology engines
NASA Technical Reports Server (NTRS)
Cronin, M. J.
1983-01-01
The advantages of the all electric airplane are discussed. In the all electric airplane the generator is the sole source of electric power; it powers the primary and secondary flight controls, the environmentals, and the landing gear. Five candidates for all electric power systems are discussed and compared. Cost benefits of the all electric airplane are discussed.
ERIC Educational Resources Information Center
Burkett, Susan L.; Kotru, Sushma; Lusth, John C.; McCallum, Debra; Dunlap, Sarah
2014-01-01
Dunlap, The University of Alabama, USA ABSTRACT In the electrical and computer engineering (ECE) curriculum at The University of Alabama, freshmen are introduced to fundamental electrical concepts and units, DC circuit analysis techniques, operational amplifiers, circuit simulation, design, and professional ethics. The two credit course has both…
Alternative Fuels Data Center: Hybrid Electric Vehicles
alternative fuel in combination with an electric motor that uses energy stored in a battery. HEVs combine the combustion engine and an electric motor, which uses energy stored in batteries. The extra power provided by uses regenerative braking and the internal combustion engine to charge. The vehicle captures energy
2009-12-01
vehicles so do some electric vehicle braking systems (MIT, 2008). e. Brakes Regenerative braking on electric vehicles recoups some of the energy lost...engine is required to replace the energy lost by braking . Regenerative braking takes some of the lost energy during braking and turns it into...Motors and Tesla Motors offer regenerative breaking in their respective electric vehicles. Tesla explains regenerative braking as “engine braking
7 CFR 1788.11 - Minimum insurance requirements for contractors, engineers, and architects.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REQUIREMENTS FOR ELECTRIC AND TELECOMMUNICATIONS BORROWERS Insurance for Contractors, Engineers, and Architects, Electric Borrowers § 1788.11 Minimum insurance requirements for contractors, engineers, and architects. (a..., engineers, and architects. 1788.11 Section 1788.11 Agriculture Regulations of the Department of Agriculture...
7 CFR 1788.11 - Minimum insurance requirements for contractors, engineers, and architects.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REQUIREMENTS FOR ELECTRIC AND TELECOMMUNICATIONS BORROWERS Insurance for Contractors, Engineers, and Architects, Electric Borrowers § 1788.11 Minimum insurance requirements for contractors, engineers, and architects. (a..., engineers, and architects. 1788.11 Section 1788.11 Agriculture Regulations of the Department of Agriculture...
7 CFR 1788.11 - Minimum insurance requirements for contractors, engineers, and architects.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REQUIREMENTS FOR ELECTRIC AND TELECOMMUNICATIONS BORROWERS Insurance for Contractors, Engineers, and Architects, Electric Borrowers § 1788.11 Minimum insurance requirements for contractors, engineers, and architects. (a..., engineers, and architects. 1788.11 Section 1788.11 Agriculture Regulations of the Department of Agriculture...
7 CFR 1788.11 - Minimum insurance requirements for contractors, engineers, and architects.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REQUIREMENTS FOR ELECTRIC AND TELECOMMUNICATIONS BORROWERS Insurance for Contractors, Engineers, and Architects, Electric Borrowers § 1788.11 Minimum insurance requirements for contractors, engineers, and architects. (a..., engineers, and architects. 1788.11 Section 1788.11 Agriculture Regulations of the Department of Agriculture...
7 CFR 1788.11 - Minimum insurance requirements for contractors, engineers, and architects.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REQUIREMENTS FOR ELECTRIC AND TELECOMMUNICATIONS BORROWERS Insurance for Contractors, Engineers, and Architects, Electric Borrowers § 1788.11 Minimum insurance requirements for contractors, engineers, and architects. (a..., engineers, and architects. 1788.11 Section 1788.11 Agriculture Regulations of the Department of Agriculture...
46 CFR 129.560 - Engine-order telegraphs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Engine-order telegraphs. 129.560 Section 129.560 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Miscellaneous Electrical Systems § 129.560 Engine-order telegraphs. No OSV need carry an engine...
46 CFR 129.560 - Engine-order telegraphs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Engine-order telegraphs. 129.560 Section 129.560 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Miscellaneous Electrical Systems § 129.560 Engine-order telegraphs. No OSV need carry an engine...
46 CFR 129.560 - Engine-order telegraphs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Engine-order telegraphs. 129.560 Section 129.560 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Miscellaneous Electrical Systems § 129.560 Engine-order telegraphs. No OSV need carry an engine...
46 CFR 129.560 - Engine-order telegraphs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Engine-order telegraphs. 129.560 Section 129.560 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Miscellaneous Electrical Systems § 129.560 Engine-order telegraphs. No OSV need carry an engine...
Parallel Hybrid Gas-Electric Geared Turbofan Engine Conceptual Design and Benefits Analysis
NASA Technical Reports Server (NTRS)
Lents, Charles; Hardin, Larry; Rheaume, Jonathan; Kohlman, Lee
2016-01-01
The conceptual design of a parallel gas-electric hybrid propulsion system for a conventional single aisle twin engine tube and wing vehicle has been developed. The study baseline vehicle and engine technology are discussed, followed by results of the hybrid propulsion system sizing and performance analysis. The weights analysis for the electric energy storage & conversion system and thermal management system is described. Finally, the potential system benefits are assessed.
Electric Vehicle Modeling and Simulation.
1983-08-01
RD-RI39 709 ELECTRIC VEHICLE MODELING RHD SIMULRTION(U) AIR FORCE lit INST OF TECH NRIGHT-PRTTERSON RFD OH SCHOOL OF ENGINEERING A R DEMISPELARE RUG...for Public Release Distribution Unlimited Fl School of Engineering Air Force Institute of Technology Wright-Patterson Air Force Base, Ohio Table of... Engineering , 49: 49-51 (27 August 1979). 36. Renner -Smith, S. "Battery-Saving Flywheel Gives Electric Car Freeway Zip," Popular Science, 215(10): 82-84
Electric vehicle life cycle cost analysis : final research project report.
DOT National Transportation Integrated Search
2017-02-01
This project compared total life cycle costs of battery electric vehicles (BEV), plug-in hybrid electric vehicles (PHEV), hybrid electric vehicles (HEV), and vehicles with internal combustion engines (ICE). The analysis considered capital and operati...
ELECTRICAL TECHNIQUES FOR ENGINEERING APPLICATIONS.
Bisdorf, Robert J.
1985-01-01
Surface electrical geophysical methods have been used in such engineering applications as locating and delineating shallow gravel deposits, depth to bedrock, faults, clay zones, and other geological phenomena. Other engineering applications include determining water quality, tracing ground water contaminant plumes and locating dam seepages. Various methods and electrode arrays are employed to solve particular geological problems. The sensitivity of a particular method or electrode array depends upon the physics on which the method is based, the array geometry, the electrical contrast between the target and host materials, and the depth to the target. Each of the available electrical methods has its own particular advantages and applications which the paper discusses.
76 FR 68634 - Airworthiness Directives; General Electric Company (GE) CF6 Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-07
... Airworthiness Directives; General Electric Company (GE) CF6 Turbofan Engines AGENCY: Federal Aviation... ``(c) This AD applies to * * * and CF6-80A3 turbofan engines with left-hand links * * *.'' to ``(c) This AD applies to * * * and CF6-80A3 turbofan engines, including engines marked on the engine data...
Trajectories of Electrical Engineering and Computer Engineering Students by Race and Gender
ERIC Educational Resources Information Center
Lord, S. M.; Layton, R. A.; Ohland, M. W.
2011-01-01
Electrical engineering (EE) is one of the largest engineering disciplines. Computer engineering (CpE) has a similar curriculum, but different demographics and student outcomes. Using a dataset from universities in the U.S. that includes over 70,000 students who majored in engineering, this paper describes the outcomes for students matriculating in…
46 CFR 169.693 - Engine order telegraph systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Engine order telegraph systems. 169.693 Section 169.693... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.693 Engine order telegraph systems. An engine order telegraph system is not required. ...
14 CFR 23.1165 - Engine ignition systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Controls and Accessories § 23.1165 Engine ignition systems. (a) Each battery ignition system must be... ignition. (e) Each turbine engine ignition system must be independent of any electrical circuit that is not... commuter category airplanes, each turbine engine ignition system must be an essential electrical load. [Doc...
46 CFR 169.693 - Engine order telegraph systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Engine order telegraph systems. 169.693 Section 169.693... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.693 Engine order telegraph systems. An engine order telegraph system is not required. ...
46 CFR 169.693 - Engine order telegraph systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Engine order telegraph systems. 169.693 Section 169.693... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.693 Engine order telegraph systems. An engine order telegraph system is not required. ...
46 CFR 169.693 - Engine order telegraph systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Engine order telegraph systems. 169.693 Section 169.693... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.693 Engine order telegraph systems. An engine order telegraph system is not required. ...
46 CFR 169.693 - Engine order telegraph systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Engine order telegraph systems. 169.693 Section 169.693... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.693 Engine order telegraph systems. An engine order telegraph system is not required. ...
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Electrical Engineering § 31.35-5... vessels are subject to the regulations contained in subchapter J (Electrical Engineering) of this chapter...
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Electrical Engineering § 31.35-5... vessels are subject to the regulations contained in subchapter J (Electrical Engineering) of this chapter...
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Electrical Engineering § 31.35-5... vessels are subject to the regulations contained in subchapter J (Electrical Engineering) of this chapter...
35. SITE BUILDING 004 ELECTRIC POWER STATION CONTROL ...
35. SITE BUILDING 004 - ELECTRIC POWER STATION - CONTROL ROOM OF ELECTRIC POWER STATION WITH DIESEL ENGINE POWERED ELECTRIC GENERATION EQUIPMENT IN BACKGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA
ERIC Educational Resources Information Center
Bledsoe, Karen E.; Flick, Lawrence
2012-01-01
This phenomenographic study documented changes in student-held electrical concepts the development of meaningful learning among students with both low and high prior knowledge within a problem-based learning (PBL) undergraduate electrical engineering course. This paper reports on four subjects: two with high prior knowledge and two with low prior…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-14
... Approval and Records for Electrical Engineering Regulations--Title 46 CFR Subchapter J. The sixty-day... hours to 6,754 hours a year. 4. Title: Plan Approval and Records for Electrical Engineering Regulations.... Abstract: The information sought here is needed to ensure compliance with our rules on electrical...
Secondary electric power generation with minimum engine bleed
NASA Technical Reports Server (NTRS)
Tagge, G. E.
1983-01-01
Secondary electric power generation with minimum engine bleed is discussed. Present and future jet engine systems are compared. The role of auxiliary power units is evaluated. Details of secondary electric power generation systems with and without auxiliary power units are given. Advanced bleed systems are compared with minimum bleed systems. A cost model of ownership is given. The difference in the cost of ownership between a minimum bleed system and an advanced bleed system is given.
76 FR 64844 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-19
... Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... General Electric Company (GE) CF6-45 and CF6-50 series turbofan engines with certain low-pressure turbine... series turbofan engines with certain LPT rotor stage 3 disks installed. That AD requires initial and...
40 CFR 1042.505 - Testing engines using discrete-mode or ramped-modal duty cycles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... used with) controllable-pitch propellers or with electrically coupled propellers, unless these engines... engines that are used with (or intended to be used with) controllable-pitch propellers or with electrically coupled propellers. Use this duty cycle also for variable-speed propulsion marine engines that are...
40 CFR 1042.505 - Testing engines using discrete-mode or ramped-modal duty cycles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... used with) controllable-pitch propellers or with electrically coupled propellers, unless these engines... engines that are used with (or intended to be used with) controllable-pitch propellers or with electrically coupled propellers. Use this duty cycle also for variable-speed propulsion marine engines that are...
40 CFR 1042.505 - Testing engines using discrete-mode or ramped-modal duty cycles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... used with) controllable-pitch propellers or with electrically coupled propellers, unless these engines... engines that are used with (or intended to be used with) controllable-pitch propellers or with electrically coupled propellers. Use this duty cycle also for variable-speed propulsion marine engines that are...
46 CFR 91.55-5 - Plans and specifications required for new construction.
Code of Federal Regulations, 2010 CFR
2010-10-01
... systems. (e) Marine engineering. For plans required for marine engineering equipment and systems, see... electrical engineering, equipment and systems, see subchapter J (Electrical Engineering) of this chapter. (g... bottoms, etc., and including inboard and outboard profile. (b) Hull structure. 1 (1) *Inner Bottom Plating...
Students’ mental model in electric current
NASA Astrophysics Data System (ADS)
Pramesti, Y. S.; Setyowidodo, I.
2018-05-01
Electricity is one of essential topic in learning physics. This topic was studied in elementary until university level. Although electricity was related to our daily activities, but it doesn’t ensure that students have the correct concept. The aim of this research was to investigate and then categorized the students’ mental model. Subject consisted of 59 students of mechanical engineering that studied Physics for Engineering. This study was used a qualitative approach that used in this research is phenomenology. Data were analyzed qualitatively by using pre-test, post-test, and investigation for discovering further information. Three models were reported, showing a pattern which related to individual way of thinking about electric current. The mental model that was discovered in this research are: 1) electric current as a flow; 2) electric current as a source of energy, 3) electric current as a moving charge.
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.
1989-01-01
Engines promise cost-effective solar-power generation. Report describes two concepts for Stirling-engine systems for conversion of solar heat to electrical energy. Recognized most promising technologies for meeting U.S. Department of Energy goals for performance and cost for terrestrial electrical-energy sources.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-1 General. (a) Electric installations on vessels must ensure: (1) Maintenance of services... persons, and the vessel from electrical hazards. (3) Maintenance of system integrity through compliance...
46 CFR 110.30-5 - Inspection for certification.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Testing and Inspection § 110.30-5 Inspection for certification. Electric installations and electric... mechanical and electrical condition and performance. Particular note must be made of circuits added or...
46 CFR 110.30-5 - Inspection for certification.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Testing and Inspection § 110.30-5 Inspection for certification. Electric installations and electric... mechanical and electrical condition and performance. Particular note must be made of circuits added or...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-1 General. (a) Electric installations on vessels must ensure: (1) Maintenance of services... persons, and the vessel from electrical hazards. (3) Maintenance of system integrity through compliance...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-1 General. (a) Electric installations on vessels must ensure: (1) Maintenance of services... persons, and the vessel from electrical hazards. (3) Maintenance of system integrity through compliance...
46 CFR 111.01-9 - Degrees of protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-9 Degrees of protection. (a) Interior electrical equipment exposed... service intended. (b) Electrical equipment in locations requiring exceptional degrees of protection as...
46 CFR 110.30-5 - Inspection for certification.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Testing and Inspection § 110.30-5 Inspection for certification. Electric installations and electric... mechanical and electrical condition and performance. Particular note must be made of circuits added or...
46 CFR 111.01-9 - Degrees of protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-9 Degrees of protection. (a) Interior electrical equipment exposed... service intended. (b) Electrical equipment in locations requiring exceptional degrees of protection as...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Electrical and Electronics Engineers, Inc. NEMA means National Electrical Manufacturers Association. Small... Small Electric Motors § 431.442 Definitions. The following definitions are applicable to this subpart: Alternative efficiency determination method, or AEDM, means, with respect to a small electric motor, a method...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Electrical and Electronics Engineers, Inc. NEMA means National Electrical Manufacturers Association. Small... Small Electric Motors § 431.442 Definitions. The following definitions are applicable to this subpart: Alternative efficiency determination method, or AEDM, means, with respect to a small electric motor, a method...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Electrical and Electronics Engineers, Inc. NEMA means National Electrical Manufacturers Association. Small... Small Electric Motors § 431.442 Definitions. The following definitions are applicable to this subpart: Alternative efficiency determination method, or AEDM, means, with respect to a small electric motor, a method...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Electrical and Electronics Engineers, Inc. NEMA means National Electrical Manufacturers Association. Small... Small Electric Motors § 431.442 Definitions. The following definitions are applicable to this subpart: Alternative efficiency determination method, or AEDM, means, with respect to a small electric motor, a method...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Electrical and Electronics Engineers, Inc. NEMA means National Electrical Manufacturers Association. Small... Small Electric Motors § 431.442 Definitions. The following definitions are applicable to this subpart: Alternative efficiency determination method, or AEDM, means, with respect to a small electric motor, a method...
Ito, Akira; Yamamoto, Yasunori; Sato, Masanori; Ikeda, Kazushi; Yamamoto, Masahiro; Fujita, Hideaki; Nagamori, Eiji; Kawabe, Yoshinori; Kamihira, Masamichi
2014-04-24
Electrical impulses are necessary for proper in vivo skeletal muscle development. To fabricate functional skeletal muscle tissues in vitro, recapitulation of the in vivo niche, including physical stimuli, is crucial. Here, we report a technique to engineer skeletal muscle tissues in vitro by electrical pulse stimulation (EPS). Electrically excitable tissue-engineered skeletal muscle constructs were stimulated with continuous electrical pulses of 0.3 V/mm amplitude, 4 ms width, and 1 Hz frequency, resulting in a 4.5-fold increase in force at day 14. In myogenic differentiation culture, the percentage of peak twitch force (%Pt) was determined as the load on the tissue constructs during the artificial exercise induced by continuous EPS. We optimized the stimulation protocol, wherein the tissues were first subjected to 24.5%Pt, which was increased to 50-60%Pt as the tissues developed. This technique may be a useful approach to fabricate tissue-engineered functional skeletal muscle constructs.
Innovative technologies in course Electrical engineering and electronics
NASA Astrophysics Data System (ADS)
Kuznetsov, E. V.; Kiselev, V. I.; Kulikova, E. A.
2017-11-01
Department of Electrical Engineering and Nondestructive Testing, NRU “MPEI”, has been working on development Electronic Learning Resources (ELRs) in course Electrical Engineering and Electronics for several years. This work have been focused on education intensification and effectiveness while training bachelors in nonelectrical specializations including students from Thermal and Atomic Power Engineering Institute. The developed ELRs are united in a tutorial module consisting of three parts (Electrical Circuits, Electrical Machines, Basics of Electronics): electronic textbook and workbook (ETW); virtual laboratory sessions (VLS); training sessions (ETS); personal tasks (PT); testing system that contains electronic tests in all course subjects and built-in verification of a student’s work results in ETW, VLS, ETS, PT. The report presents samples of different ELRs in html format and MathCAD, MatLAB Simulink applications, copyrighted programs in Java2, Delphi, VB6, C++. The report also contains the experience description, advantages and disadvantages of the new technologies. It is mentioned that ELRs provide new opportunities in course studying.
Electricity from the Silk Cocoon Membrane
Tulachan, Brindan; Meena, Sunil Kumar; Rai, Ratan Kumar; Mallick, Chandrakant; Kusurkar, Tejas Sanjeev; Teotia, Arun Kumar; Sethy, Niroj Kumar; Bhargava, Kalpana; Bhattacharya, Shantanu; Kumar, Ashok; Sharma, Raj Kishore; Sinha, Neeraj; Singh, Sushil Kumar; Das, Mainak
2014-01-01
Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management. PMID:24961354
Electricity from the silk cocoon membrane.
Tulachan, Brindan; Meena, Sunil Kumar; Rai, Ratan Kumar; Mallick, Chandrakant; Kusurkar, Tejas Sanjeev; Teotia, Arun Kumar; Sethy, Niroj Kumar; Bhargava, Kalpana; Bhattacharya, Shantanu; Kumar, Ashok; Sharma, Raj Kishore; Sinha, Neeraj; Singh, Sushil Kumar; Das, Mainak
2014-06-25
Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management.
Electricity from the Silk Cocoon Membrane
NASA Astrophysics Data System (ADS)
Tulachan, Brindan; Meena, Sunil Kumar; Rai, Ratan Kumar; Mallick, Chandrakant; Kusurkar, Tejas Sanjeev; Teotia, Arun Kumar; Sethy, Niroj Kumar; Bhargava, Kalpana; Bhattacharya, Shantanu; Kumar, Ashok; Sharma, Raj Kishore; Sinha, Neeraj; Singh, Sushil Kumar; Das, Mainak
2014-06-01
Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management.
Variable Temperature Scanning Tunneling Microscopy
1991-07-01
Tomazin, both Electrical Engineering. Build a digital integrator for the STM feedback loop: Kyle Drewry, Electrical Engineering. Write an AutoLisp ...program to automate the AutoCad design of UHV-STM chambers: Alfred Pierce (minority), Mechanical Engineering. Design a 32-bit interface board for the EISA
Sodium heat engine system: Space application
NASA Astrophysics Data System (ADS)
Betz, Bryan H.; Sungu, Sabri; Vu, Hung V.
1994-08-01
This paper explores the possibility of utilizing the Sodium Heat Engine (SHE) or known as AMTEC (Alkali Metal Thermoelectric Converter), for electrical power generation in ``near earth'' geosynchronous orbit. The Sodium Heat Engine principle is very flexible and adapts well to a variety of physical geometries. The proposed system can be easily folded and then deployed into orbit without the need for on site assembly in space. Electric power generated from SHE engine can be used in communication satellites, in space station, and other applications such as electrical recharging of vehicles in space is one of the applications the Sodium Heat Engine could be adapted to serve.
Comparison of Stirling engines for use with a 25-kW disk-electric conversion system
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.
1987-01-01
Heat engines were evaluated for terrestrial solar heat receivers. The Stirling Engine was identified as one of the most promising engines for terrestrial applications. The potential to meet the Department of Energy (DOE) goals for performance and cost can be met by the free-piston Stirling engine. NASA Lewis is providing technical management for an Advanced Stirling Conversion System (ASCS) through a cooperative interagency agreement with DOE. Parallel contracts were awarded for conceptual designs of an ASCS. Each design will feature a free-piston Stirling engine, a liquid-metal heat pipe receiver, and a means to provide about 25 kW of electric power to a utility grid while meeting long-term performance and goals. The Mechanical Technology, Ins. (MTI) design incorporates a linear alternator to directly convert the solar energy to electricity while the Stirling Technology Company (STC) generates electrical power indirectly by using a hydraulic output to a ground-bases hydraulic pump/motor coupled to a rotating alternator. Both designs use technology which can reasonably be expected to be available in the 1980's. The ASCS designs using a free-piston Stirling engine, a heat transport system, a receiver, and the methods of providing electricity to the utility grid will be discussed.
Hybrid vehicle motor alignment
Levin, Michael Benjamin
2001-07-03
A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.
1986-01-01
7 O-AI6 175 TWO- 1NENSION L SIGNAL PROCESSING AD STORAGE AND IA-1 ATLANTA SCHOOL OF ELECTRICAL ENGINEERING.. ULRSSIFIED R SCHAFER ET AL. SI JAN... ELECTRICAL ENGINEERING L’- ATLANTA, GEORGIA 30332 .’ -.. .. ~ i 4 2 i 2 " , I IT= J ., . 4 2.~ i1 ov--.,-w. A -A *- t . . . SECURITY CLASSIFICATION O0...School of Electrical Engineering Atlanta, Georgia 30332 Research Triangle Park, NC 27709 •e. NAME OP PUNOINGMSONSORING 0b. OPPIC SYMBOL L PROCUREMENT
1 At speeds above mid-range, both the engine and electric motor are used to propel the vehicle. The gasoline engine provides power to the drive-train directly and to the electric motor via the generator. Go , generator, power split device, and electric motor visible. The car is moving. There are blue arrows flowing
46 CFR 111.50-2 - Systems integration.
Code of Federal Regulations, 2012 CFR
2012-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Overcurrent Protection § 111.50-2 Systems integration. The electrical characteristics of each... the design of the entire protective system. Note to § 111.50-2: The electrical characteristics of...
46 CFR 111.50-2 - Systems integration.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Overcurrent Protection § 111.50-2 Systems integration. The electrical characteristics of each... the design of the entire protective system. Note to § 111.50-2: The electrical characteristics of...
46 CFR 111.50-2 - Systems integration.
Code of Federal Regulations, 2013 CFR
2013-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Overcurrent Protection § 111.50-2 Systems integration. The electrical characteristics of each... the design of the entire protective system. Note to § 111.50-2: The electrical characteristics of...
46 CFR 111.50-2 - Systems integration.
Code of Federal Regulations, 2011 CFR
2011-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Overcurrent Protection § 111.50-2 Systems integration. The electrical characteristics of each... the design of the entire protective system. Note to § 111.50-2: The electrical characteristics of...
46 CFR 111.97-1 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-1 Applicability. This subpart applies to electric power-operated watertight door systems required under Subpart H of Part 170 of this chapter. [CGD...
46 CFR 111.97-1 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-1 Applicability. This subpart applies to electric power-operated watertight door systems required under Subpart H of Part 170 of this chapter. [CGD...
46 CFR 111.97-1 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-1 Applicability. This subpart applies to electric power-operated watertight door systems required under Subpart H of Part 170 of this chapter. [CGD...
46 CFR 111.97-1 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-1 Applicability. This subpart applies to electric power-operated watertight door systems required under Subpart H of Part 170 of this chapter. [CGD...
46 CFR 111.97-1 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-1 Applicability. This subpart applies to electric power-operated watertight door systems required under Subpart H of Part 170 of this chapter. [CGD...
30 CFR 75.1719-2 - Lighting fixtures; requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... forth in the Institute of Electrical and Electronics Engineers, Inc. Standard No. 32 (IEEE Std. 32-1972... the Institute of Electrical and Electronics Engineers, Inc., Publications Office, 10662 Los Vaqueros...
30 CFR 75.1719-2 - Lighting fixtures; requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... forth in the Institute of Electrical and Electronics Engineers, Inc. Standard No. 32 (IEEE Std. 32-1972... the Institute of Electrical and Electronics Engineers, Inc., Publications Office, 10662 Los Vaqueros...
30 CFR 75.1719-2 - Lighting fixtures; requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... forth in the Institute of Electrical and Electronics Engineers, Inc. Standard No. 32 (IEEE Std. 32-1972... the Institute of Electrical and Electronics Engineers, Inc., Publications Office, 10662 Los Vaqueros...
30 CFR 75.1719-2 - Lighting fixtures; requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... forth in the Institute of Electrical and Electronics Engineers, Inc. Standard No. 32 (IEEE Std. 32-1972... the Institute of Electrical and Electronics Engineers, Inc., Publications Office, 10662 Los Vaqueros...
The current status of rehabilitation engineering
NASA Technical Reports Server (NTRS)
Reswick, J. B.
1974-01-01
Mechanical and electrical engineering devices for paralytic patient care are discussed as they are applied to medical problems. These include means of preventing bedsores, mobility aids, upper extremity orthoses, and electrical stimulation.
30 CFR 75.1719-2 - Lighting fixtures; requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... forth in the Institute of Electrical and Electronics Engineers, Inc. Standard No. 32 (IEEE Std. 32-1972... the Institute of Electrical and Electronics Engineers, Inc., Publications Office, 10662 Los Vaqueros...
ERIC Educational Resources Information Center
Rieh, Hae-young
1993-01-01
Describes a study that investigated the citation patterns of publications by scientists and engineers in electrical and electronics engineering in Korea. Citation behavior of personnel in government, universities, and industry is compared; and citation patterns from articles in Korean and non-Korean publications are contrasted. (Contains 27…
battery, engine, and electric motor visible. The car is moving. There are red arrows flowing from the gasoline engine to the front wheels. There are blue arrows flowing from the gasoline engine to the electric car is moving. There are red arrows flowing from the gasoline engine to the front wheels. There are
16 CFR 1101.32 - Reasonable steps to assure information is accurate.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., an electrical engineer, or an attending physician) conducts an investigation or an inspection which... fire marshal, a fire investigator, an electrical engineer, an ambulance attendant, or an attending...
16 CFR 1101.32 - Reasonable steps to assure information is accurate.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., an electrical engineer, or an attending physician) conducts an investigation or an inspection which... fire marshal, a fire investigator, an electrical engineer, an ambulance attendant, or an attending...
16 CFR 1101.32 - Reasonable steps to assure information is accurate.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., an electrical engineer, or an attending physician) conducts an investigation or an inspection which... fire marshal, a fire investigator, an electrical engineer, an ambulance attendant, or an attending...
16 CFR 1101.32 - Reasonable steps to assure information is accurate.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., an electrical engineer, or an attending physician) conducts an investigation or an inspection which... fire marshal, a fire investigator, an electrical engineer, an ambulance attendant, or an attending...
2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler Grey; Chester Motloch; James Francfort
2010-01-01
The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporationmore » conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.« less
State-of-the-art assessment of electric vehicles and hybrid vehicles
NASA Technical Reports Server (NTRS)
1977-01-01
The Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976 (PL 94-413) requires that data be developed to characterize the state of the art of vehicles powered by an electric motor and those propelled by a combination of an electric motor and an internal combustion engine or other power sources. Data obtained from controlled tests of a representative number of sample vehicles, from information supplied by manufacturers or contained in the literature, and from surveys of fleet operators of individual owners of electric vehicles is discussed. The results of track and dynamometer tests conducted by NASA on 22 electric, 2 hybrid, and 5 conventional vehicles, as well as on 5 spark-ignition-engine-powered vehicles, the conventional counterparts of 5 of the vehicles, are presented.
46 CFR 111.01-19 - Inclination of the vessel.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must be.... Additionally, electrical equipment necessary for the maneuvering, navigation, and safety of the vessel or its...
46 CFR 111.87-1 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Applicability. 111.87-1 Section 111.87-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Air Heating Equipment § 111.87-1 Applicability. This subpart applies to electrically...
46 CFR 111.87-1 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Applicability. 111.87-1 Section 111.87-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Air Heating Equipment § 111.87-1 Applicability. This subpart applies to electrically...
46 CFR 111.87-1 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Applicability. 111.87-1 Section 111.87-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Air Heating Equipment § 111.87-1 Applicability. This subpart applies to electrically...
46 CFR 111.87-1 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Applicability. 111.87-1 Section 111.87-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Air Heating Equipment § 111.87-1 Applicability. This subpart applies to electrically...
46 CFR 111.87-1 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Applicability. 111.87-1 Section 111.87-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Air Heating Equipment § 111.87-1 Applicability. This subpart applies to electrically...
46 CFR 111.01-19 - Inclination of the vessel.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must be.... Additionally, electrical equipment necessary for the maneuvering, navigation, and safety of the vessel or its...
46 CFR 111.01-19 - Inclination of the vessel.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must be.... Additionally, electrical equipment necessary for the maneuvering, navigation, and safety of the vessel or its...
46 CFR 111.01-19 - Inclination of the vessel.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must be.... Additionally, electrical equipment necessary for the maneuvering, navigation, and safety of the vessel or its...
Code of Federal Regulations, 2012 CFR
2012-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...
Code of Federal Regulations, 2013 CFR
2013-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...
Code of Federal Regulations, 2010 CFR
2010-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...
Code of Federal Regulations, 2011 CFR
2011-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...
Code of Federal Regulations, 2014 CFR
2014-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...
Engineer pedals STS-37 CETA electrical cart along track in JSC MAIL Bldg 9A
NASA Technical Reports Server (NTRS)
1990-01-01
McDonnell Douglas engineer Gary Peters operates crew and equipment translation aid (CETA) electrical hand pedal cart in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Peters, wearing extravehicular mobility unit (EMU) boots and positioned in portable foot restraint (PFR), is suspended above CETA cart and track via harness to simulate weightlessness. The electrical cart is moved by electricity generated from turning hand pedals. CETA will be tested in orbit in the payload bay of Atlantis, Orbiter Vehicle (OV) 104, during STS-37.
Rethinking chiller plant design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meckler, M.
1998-07-01
While most refrigeration chillers operate today on electricity, the use of natural gas is becoming an increasingly attractive alternative. This is largely because electricity does not use energy very efficiency (because of transmission and combustion fuel losses), high demand charges, and the high incremental cost of electricity to operate chillers. The use of gas engine-driven chillers eliminates the high incremental cost of electricity. Additionally, gas engine-driven systems can operate with COPs up to 1.8 and, therefore, are economically viable alternatives. Recent advances in gas engine-driven and DFA absorption chillers, and in commercially viable solid and liquid desiccant-cooling systems, suggest amore » bright future for the gas industry. The use of such equipment in conjunction with or in place of commercially available electrical-powered alternatives can significantly impact demand-side management savings for utility ratepayers in the short run and provide significant hybrid opportunities for deregulated markets in the intermediate to long term.« less
Rethinking chiller plant design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meckler, M.
1998-01-01
While most refrigeration chillers operate today on electricity, the use of natural gas is becoming an increasingly attractive alternative. This is largely because electricity does not use energy very efficiently (due to transmission and combustion fuel losses), high demand charges, and the high incremental cost of electricity to operate chillers. The use of gas engine-driven chillers eliminates the high incremental cost of electricity. Additionally, gas engine-driven systems can operate with COPs up to 1.8 and therefore are economically viable alternatives. Recent advances in gas engine-driven and direct-fired absorption chillers and in commercially viable solid- and liquid-desiccant cooling systems suggest amore » bright future for the gas industry. The use of such equipment in conjunction with or in place of commercially available electrical-powered alternatives can significantly impact demand-side management savings for utility ratepayers in the short run and provide significant hybrid opportunities for deregulated markets in the intermediate to long term.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-23
... Airworthiness Directives; General Electric Company (GE) CJ610 Series Turbojet Engines and CF700 Series Turbofan... adopting a new airworthiness directive (AD) for GE CJ610 series turbojet engines and CF700 turbofan engines... part 39 with a proposed AD. The proposed AD applies to GE CJ610 series turbojet engines and CF700...
78 FR 44899 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-25
... Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Electric Company (GE) GE90-110B1 and -115B turbofan engines. This proposed AD was prompted by multiple...) 2165M22P01, installed on GE90-110B1 and -115B turbofan engines. One of the leaks led to an under cowl engine...
NASA Astrophysics Data System (ADS)
Joyner, Claude Russell; Fowler, Bruce; Matthews, John
2003-01-01
In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt & Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level.
16 CFR § 1101.32 - Reasonable steps to assure information is accurate.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., an electrical engineer, or an attending physician) conducts an investigation or an inspection which... fire marshal, a fire investigator, an electrical engineer, an ambulance attendant, or an attending...
Motivational project-based laboratory for a common first year electrical engineering course
NASA Astrophysics Data System (ADS)
Nedic, Zorica; Nafalski, Andrew; Machotka, Jan
2010-08-01
Over the past few years many universities worldwide have introduced a common first year for all engineering disciplines. This is despite the opinion of many academics that large classes have negative effects on the learning outcomes of first year students. The University of South Australia is also faced with low motivation amongst engineering students studying non-major courses. In 2006, a project-based laboratory was successfully introduced for first year students enrolled in electrical disciplines, which increased student satisfaction, reduced the attrition rate and improved students' success rate. This paper presents the experiences with the project-based laboratory's implementation in three different projects in the common first year course, Electrical and Energy Systems, where each project aims to increase the motivation of students in one of three disciplines: electrical, mechanical or civil engineering.
The kinematic advantage of electric cars
NASA Astrophysics Data System (ADS)
Meyn, Jan-Peter
2015-11-01
Acceleration of a common car with with a turbocharged diesel engine is compared to the same type with an electric motor in terms of kinematics. Starting from a state of rest, the electric car reaches a distant spot earlier than the diesel car, even though the latter has a better specification for engine power and average acceleration from 0 to 100 km h-1. A three phase model of acceleration as a function of time fits the data of the electric car accurately. The first phase is a quadratic growth of acceleration in time. It is shown that the tenfold higher coefficient for the first phase accounts for most of the kinematic advantage of the electric car.
Main stage: See through car with battery, engine, generator, power split device, and electric motor the power split device to the front wheels. Main stage: See through car with battery, engine : See through car with battery, engine, generator, power split device, and electric motor visible while
46 CFR 111.95-3 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false General requirements. 111.95-3 Section 111.95-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-3 General requirements. (a) Each electrical...
46 CFR 111.95-3 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false General requirements. 111.95-3 Section 111.95-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-3 General requirements. (a) Each electrical...
46 CFR 111.95-3 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false General requirements. 111.95-3 Section 111.95-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-3 General requirements. (a) Each electrical...
46 CFR 111.95-3 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false General requirements. 111.95-3 Section 111.95-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-3 General requirements. (a) Each electrical...
30 CFR 77.503-1 - Electric conductors.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Cable Engineers Association—National Electric Manufacturers Association in effect when such cables are... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric conductors. 77.503-1 Section 77.503-1... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical...
30 CFR 77.503-1 - Electric conductors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Cable Engineers Association—National Electric Manufacturers Association in effect when such cables are... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric conductors. 77.503-1 Section 77.503-1... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical...
30 CFR 77.503-1 - Electric conductors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Cable Engineers Association—National Electric Manufacturers Association in effect when such cables are... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric conductors. 77.503-1 Section 77.503-1... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical...
30 CFR 77.503-1 - Electric conductors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Cable Engineers Association—National Electric Manufacturers Association in effect when such cables are... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric conductors. 77.503-1 Section 77.503-1... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical...
30 CFR 77.503-1 - Electric conductors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Cable Engineers Association—National Electric Manufacturers Association in effect when such cables are... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric conductors. 77.503-1 Section 77.503-1... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical...
46 CFR 111.95-3 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false General requirements. 111.95-3 Section 111.95-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-3 General requirements. (a) Each electrical...
NASA Puffin Electric Tailsitter VTOL Concept
NASA Technical Reports Server (NTRS)
Moore, Mark D.
2010-01-01
Electric propulsion offers dramatic new vehicle mission capabilities, not possible with turbine or reciprocating engines; including high reliability and efficiency, low engine weight and maintenance, low cooling drag and volume required, very low noise and vibration, and zero emissions. The only penalizing characteristic of electric propulsion is the current energy storage technology level, which is set to triple over the next 5-10 years through huge new investments in this field. Most importantly, electric propulsion offers incredible new degrees of freedom in aircraft system integration to achieve unprecedented levels of aerodynamic, propulsive, control, and structural synergistic coupling. A unique characteristic of electric propulsion is that the technology is nearly scale-free, permitting small motors to be parallelized for fail-safe redundancy, or distributed across the airframe for tightly coupled interdisciplinary functionality without significant impacts in motor-controller efficiency or specific weight. Maximizing the potential benefit of electric propulsion is dependent on applying this technology to synergistic mission concepts. The vehicle missions with the most benefit include those which constrain environmental impact (or limit noise, exhaust, or emission signatures) are short range, or where large differences exist in the propulsion system sizing between takeoff and cruise conditions. Electric propulsion offers the following unique capabilities that other propulsion systems can t provide for short range Vertical Takeoff and Landing (VTOL) aircraft; elimination of engine noise and emissions, drastic reduction in engine cooling and radiated heat, drastic reduction in vehicle vibration levels, drastic improvement in reliability and operating costs, variable speed output at full power, for improved cruise efficiency at low tip-speed, elimination of high/hot sizing penalty, and reduction of engine-out penalties.
1986-03-01
Dietzmann L.R. Smith Engines, Emissions, and Vehicle Research Division Southwest Research Institute San Antonio, Texas Prepared for Belvoir Fuels and...replacing the currently used electric forklift with diesel engine-powered forklifts in handling hazardous materials. Electric -powered forklifts have no...diesel engines considered as potential candidates for forklift vehicles used to handle hazardous materials. The first program was conducted to
77 FR 58471 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-21
... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA.../P1, GEnx-1B75/P1, GEnx- 2B67, and GEnx-2B67B turbofan engines. This AD requires initial and... this AD will affect 11 GE GEnx turbofan engines installed on airplanes of U.S. registry. We also...
78 FR 19628 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-02
... Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Electric Company (GE) GE90-76B, -85B, -90B, -94B, - 110B1, and -115B turbofan engines. This proposed AD was... of stage 1 HPT stator shroud distress resulting in engine removals on airplanes with GE90 turbofan...
Cost Effective Repair Techniques for Turbine Airfoils. Volume 2
1979-04-01
BLADES , *GUIDE VANES , *REPAIR, TURBOFAN ENGINES , DIFFUSION BONDING, COST EFFECTIVENESS Identifiers: (U) * Turbine vanes , TF-39 engines , Activated...REPAIR TECHNIQUES FOR TURBINE AIRFOILS J. A. WEIN W. R. YOUNG GENERAL ELECTRIC COMPANY AIRCRAFT ENGINE GROUP CINCINNATI, OHIO 45215 APRIL 1979...Author: GENERAL ELECTRIC CO CINCINNATI OH AIRCRAFT ENGINE BUSINESS GROUP Unclassified Title: (U) Cost Effective Repair Techniques for
ERIC Educational Resources Information Center
Lord, Susan M.; Layton, Richard A.; Ohland, Matthew W.
2015-01-01
Electrical Engineering (EE) and Computer Engineering (CpE) programs have similar curricula, but different demographics and student outcomes. This paper extends earlier longitudinal studies to a larger and more diverse dataset with 90,000 first-time-in-college and 26,000 transfer students who majored in engineering at USA institutions, including…
Power processing and control requirements of dispersed solar thermal electric generation systems
NASA Technical Reports Server (NTRS)
Das, R. L.
1980-01-01
Power Processing and Control requirements of Dispersed Receiver Solar Thermal Electric Generation Systems are presented. Kinematic Stirling Engines, Brayton Engines and Rankine Engines are considered as prime movers. Various types of generators are considered for ac and dc link generations. It is found that ac-ac Power Conversion is not suitable for implementation at this time. It is also found that ac-dc-ac Power Conversion with a large central inverter is more efficient than ac-dc-ac Power Conversion using small dispersed inverters. Ac-link solar thermal electric plants face potential stability and synchronization problems. Research and development efforts are needed in improving component performance characteristics and generation efficiency to make Solar Thermal Electric Generation economically attractive.
46 CFR 111.87-3 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false General requirements. 111.87-3 Section 111.87-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Air Heating Equipment § 111.87-3 General requirements. (a) Each electric heater must meet...
46 CFR 111.87-3 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false General requirements. 111.87-3 Section 111.87-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Air Heating Equipment § 111.87-3 General requirements. (a) Each electric heater must meet...
46 CFR 111.87-3 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false General requirements. 111.87-3 Section 111.87-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Air Heating Equipment § 111.87-3 General requirements. (a) Each electric heater must meet...
46 CFR 111.87-3 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false General requirements. 111.87-3 Section 111.87-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Air Heating Equipment § 111.87-3 General requirements. (a) Each electric heater must meet...
46 CFR 111.95-7 - Wiring of boat winch components.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-7 Wiring of boat winch... electric installation from all sources of potential. The switch must be in series with and on the supply...
46 CFR 111.95-7 - Wiring of boat winch components.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-7 Wiring of boat winch... electric installation from all sources of potential. The switch must be in series with and on the supply...
46 CFR 111.87-3 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false General requirements. 111.87-3 Section 111.87-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Air Heating Equipment § 111.87-3 General requirements. (a) Each electric heater must meet...
46 CFR 111.95-7 - Wiring of boat winch components.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-7 Wiring of boat winch... electric installation from all sources of potential. The switch must be in series with and on the supply...
46 CFR 111.95-7 - Wiring of boat winch components.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-7 Wiring of boat winch... electric installation from all sources of potential. The switch must be in series with and on the supply...
7 CFR 1724.74 - List of electric program standard contract forms.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 11 2014-01-01 2014-01-01 false List of electric program standard contract forms... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES RUS Contract Forms § 1724.74 List of electric program standard contract forms. (a...
7 CFR 1724.74 - List of electric program standard contract forms.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 11 2011-01-01 2011-01-01 false List of electric program standard contract forms... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES RUS Contract Forms § 1724.74 List of electric program standard contract forms. (a...
7 CFR 1724.74 - List of electric program standard contract forms.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 11 2013-01-01 2013-01-01 false List of electric program standard contract forms... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES RUS Contract Forms § 1724.74 List of electric program standard contract forms. (a...
7 CFR 1724.74 - List of electric program standard contract forms.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false List of electric program standard contract forms... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES RUS Contract Forms § 1724.74 List of electric program standard contract forms. (a...
7 CFR 1724.74 - List of electric program standard contract forms.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 11 2012-01-01 2012-01-01 false List of electric program standard contract forms... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES RUS Contract Forms § 1724.74 List of electric program standard contract forms. (a...
Microprocessors in U.S. Electrical Engineering Departments, 1974-1975.
ERIC Educational Resources Information Center
Sloan, M. E.
Drawn from a survey of engineering departments known to be teaching microprocessor courses, this paper shows that the adoption of microprocessors by Electrical Engineering Departments has been rapid compared with their adoption of minicomputers. The types of courses that are being taught can be categorized as: surveys of microprocessors, intensive…
ERIC Educational Resources Information Center
Ozogul, G.; Johnson, A. M.; Moreno, R.; Reisslein, M.
2012-01-01
Technological literacy education involves the teaching of basic engineering principles and problem solving, including elementary electrical circuit analysis, to non-engineering students. Learning materials on circuit analysis typically rely on equations and schematic diagrams, which are often unfamiliar to non-engineering students. The goal of…
NASA Astrophysics Data System (ADS)
Wilcox, Douglas A., Jr.
Micro combined heat and power or micro-CHP is the simultaneous generation of useful heat and electricity on a residential scale. The heat and electricity are produced at the point of use, avoiding the distribution losses associated with a centralized power plant. These appliances combine a conventional gas-fired condensing boiler with an electric power module capable of generating electricity from the heat of combustion. Currently, the leading power modules for micro-CHP appliances are free-piston Stirling engines (FPSEs) which can generate 1050 watts of electricity at a thermal-to-electric efficiency of 26%.[1] These external combustion engines have been under development for the last 25 years, with FPSE micro-CHP appliances only recently being introduced to the commercial market. Publications by developers assert unlimited service life and high efficiency, with low noise and emissions; but despite these claims, the actual reliability and cost of manufacturing has prevented their successful mass-market adoption. A Thermoacoustic-Stirling Engine Generator or TaSEG is one possible alternative to FPSE's. A TaSEG uses a thermoacoustic engine, or acoustic heat engine, which can efficiently convert high temperature heat into acoustic power while maintaining a simple design with fewer moving parts than traditional FPSE's. This simpler engine is coupled to an electrodynamic alternator capable of converting acoustic power into electricity. This thesis outlines the design, construction, and experimental evaluation of a TaSEG which is appropriate for integration with a gas burner inside of a residential micro- CHP appliance. The design methodology is discussed, focusing on how changes in the geometry affected the predicted performance. Details of its construction are given and the performance of the TaSEG is then outlined. The TaSEG can deliver 132 watts of electrical output power to an electric load with an overall measured thermal-to-electric (first law) efficiency of eta T-E=8.32%, corresponding to 14% of Carnot etac. The volumetric power density of this TaSEG is 8.9 kW/m3. While the demonstrated overall efficiency is modest (for reasons that are largely understood), this TaSEG has moved the technology away from laboratory prototypes toward a commercially viable power module having a design configuration suitable for implementation in a micro-CHP appliance. Based on the TaSEG's measured experimental performance results, recommendations for future work that might improve the overall efficiency of the TaSEG are also presented.
46 CFR 111.50-1 - Protection of equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric equipment must meet the following listed subparts of this chapter: (a) Appliances, Subpart 111.77...) Transformers, Subpart 111.20. ...
Energy Conversion and Storage Requirements for Hybrid Electric Aircraft
NASA Technical Reports Server (NTRS)
Misra, Ajay
2016-01-01
Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.
Army Net Zero Prove Out. Net Zero Energy Best Practices
2014-11-18
energy which is then used to drive a heat engine to generate electrical power. Geothermal Power – These systems use thermal energy generated and...stored in the earth as a generating source for electricity. Several pilot installations are investigating this technology by conducting geothermal ...concentrate solar thermal energy which is then used to drive a heat engine to generate electrical power. • Geothermal Power - These systems use thermal energy
ETR ELECTRICAL BUILDING, TRA648, INTERIOR. SWITCHGEAR. INL NEGATIVE NO. 563794. ...
ETR ELECTRICAL BUILDING, TRA-648, INTERIOR. SWITCHGEAR. INL NEGATIVE NO. 56-3794. Jack L. Anderson, Photographer, 11/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
ETR ELECTRICAL BUILDING, TRA648. BATTERY ROOM. INL NEGATIVE NO. 563785. ...
ETR ELECTRICAL BUILDING, TRA-648. BATTERY ROOM. INL NEGATIVE NO. 56-3785. Jack L. Anderson, Photographer, 11/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
gasoline engine does not run when the vehicle is at rest. When pulling out, the electric starter/generator the gasoline engine when pulling out from a stop and generating electricity which is stored in the
Missouri S&T formula electric racing.
DOT National Transportation Integrated Search
2014-05-01
The Formula Electric racing team will promote Missouri S&Ts engineering excellence by successfully competing against other top : engineering universities in the US and around the world. Students on the team will have the opportunity to reinforce t...
Department of Defense Instrumentation Award.
1985-07-01
Office of Scientific Research Prepared by The Electrical Engineering Department and The Laboratory for Plasma and Fusion Energy Studies University of...Electrical Engineering Department Laboratory for Plasma and Fusion Energy Studies University of Maryland College Park, Maryland 20742 Principal Investigator
Optimization of Electrical Stimulation Parameters for Cardiac Tissue Engineering
Tandon, Nina; Marsano, Anna; Maidhof, Robert; Wan, Leo; Park, Hyoungshin; Vunjak-Novakovic, Gordana
2010-01-01
In vitro application of pulsatile electrical stimulation to neonatal rat cardiomyocytes cultured on polymer scaffolds has been shown to improve the functional assembly of cells into contractile cardiac tissue constrcuts. However, to date, the conditions of electrical stimulation have not been optimized. We have systematically varied the electrode material, amplitude and frequency of stimulation, to determine the conditions that are optimal for cardiac tissue engineering. Carbon electrodes, exhibiting the highest charge-injection capacity and producing cardiac tissues with the best structural and contractile properties, and were thus used in tissue engineering studies. Cardiac tissues stimulated at 3V/cm amplitude and 3Hz frequency had the highest tissue density, the highest concentrations of cardiac troponin-I and connexin-43, and the best developed contractile behavior. These findings contribute to defining bioreactor design specifications and electrical stimulation regime for cardiac tissue engineering. PMID:21604379
Radisic, Milica; Park, Hyoungshin; Shing, Helen; Consi, Thomas; Schoen, Frederick J; Langer, Robert; Freed, Lisa E; Vunjak-Novakovic, Gordana
2004-12-28
The major challenge of tissue engineering is directing the cells to establish the physiological structure and function of the tissue being replaced across different hierarchical scales. To engineer myocardium, biophysical regulation of the cells needs to recapitulate multiple signals present in the native heart. We hypothesized that excitation-contraction coupling, critical for the development and function of a normal heart, determines the development and function of engineered myocardium. To induce synchronous contractions of cultured cardiac constructs, we applied electrical signals designed to mimic those in the native heart. Over only 8 days in vitro, electrical field stimulation induced cell alignment and coupling, increased the amplitude of synchronous construct contractions by a factor of 7, and resulted in a remarkable level of ultrastructural organization. Development of conductive and contractile properties of cardiac constructs was concurrent, with strong dependence on the initiation and duration of electrical stimulation.
Electrical innovations, authority and consulting expertise in late Victorian Britain
Arapostathis, Stathis
2013-01-01
In this article I examine the practices of electrical engineering experts, with special reference to their role in the implementation of innovations in late Victorian electrical networks. I focus on the consulting work of two leading figures in the scientific and engineering world of the period, Alexander Kennedy and William Preece. Both were Fellows of the Royal Society and both developed large-scale consulting activities in the emerging electrical industry of light and power. At the core of the study I place the issues of trust and authority, and the bearing of these on the engineering expertise of consultants in late Victorian Britain. I argue that the ascription of expertise to these engineers and the trust placed in their advice were products of power relations on the local scale. The study seeks to unravel both the technical and the social reasons for authoritative patterns of consulting expertise. PMID:24686584
Control system for, and a method of, heating an operator station of a work machine
Baker, Thomas M.; Hoff, Brian D.; Akasam, Sivaprasad
2005-04-05
There are situations in which an operator remains in an operator station of a work machine when an engine of the work machine is inactive. The present invention includes a control system for, and a method of, heating the operator station when the engine is inactive. A heating system of the work machine includes an electrically-powered coolant pump, a power source, and at least one piece of warmed machinery. An operator heat controller is moveable between a first and a second position, and is operable to connect the electrically-powered coolant pump to the power source when the engine is inactive and the operator heat controller is in the first position. Thus, by deactivating the engine and then moving the operator heat controller to the first position, the operator may supply electrical energy to the electrically-powered coolant pump, which is operably coupled to heat the operator station.
Solar-Powered Electric Propulsion Systems: Engineering and Applications
NASA Technical Reports Server (NTRS)
Stearns, J. W.; Kerrisk, D. J.
1966-01-01
Lightweight, multikilowatt solar power arrays in conjunction with electric propulsion offer potential improvements to space exploration, extending the usefulness of existing launch vehicles to higher-energy missions. Characteristics of solar-powered electric propulsion missions are outlined, and preliminary performance estimates are shown. Spacecraft system engineering is discussed with respect to parametric trade-offs in power and propulsion system design. Relationships between mission performance and propulsion system performance are illustrated. The present state of the art of electric propulsion systems is reviewed and related to the mission requirements identified earlier. The propulsion system design and test requirements for a mission spacecraft are identified and discussed. Although only ion engine systems are currently available, certain plasma propulsion systems offer some advantages in over-all system design. These are identified, and goals are set for plasma-thrustor systems to make them competitive with ion-engine systems for mission applications.
Technological Evolution of High Temperature Superconductors
2015-12-01
turbo-electric drive system (Navy 2015). Since then, naval warships have become increasingly more dependent on electrical power for weapons, sensors ...and propulsion as well, as the USS Makin Island became the first hybrid-electric ship that used gas turbine engines and electric motors to drive the... turbine generators (Naval Sea Systems Command 2013). As the demands for electrical power distribution throughout a ship has increased, the need for
NASA Astrophysics Data System (ADS)
Harmon, Frederick G.
2005-11-01
Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater range as compared to electric-powered UAVs and stealth modes not available with gasoline-powered UAVs. This dissertation contributes to the research fields of small unmanned aerial vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion system. The resulting hybrid-electric propulsion system is a two-point design that includes an engine primarily sized for cruise speed and an electric motor and battery pack that are primarily sized for a slower endurance speed. The electric motor provides additional power for take-off, climbing, and acceleration and also serves as a generator during charge-sustaining operation or regeneration. The intelligent control of the hybrid-electric propulsion system is based on an instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization algorithm is flexible and allows the operator/user to assign relative importance between the use of gasoline, electricity, and recharging depending on the intended mission. A MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model Arithmetic Computer (CMAC) associative memory neural network is applied to the control of the UAVs parallel hybrid-electric propulsion system. The CMAC neural network approximates the hyper-plane generated from the instantaneous optimization algorithm and produces torque commands for the internal combustion engine and electric motor. The CMAC neural network controller saves on the required memory as compared to a large look-up table by two orders of magnitude. The CMAC controller also prevents the need to compute a hyper-plane or complex logic every time step.
Electrical stimulation: a novel tool for tissue engineering.
Balint, Richard; Cassidy, Nigel J; Cartmell, Sarah H
2013-02-01
New advances in tissue engineering are being made through the application of different types of electrical stimuli to influence cell proliferation and differentiation. Developments made in the last decade have allowed us to improve the structure and functionality of tissue-engineered products through the use of growth factors, hormones, drugs, physical stimuli, bioreactor use, and two-dimensional (2-D) and three-dimensional (3-D) artificial extracellular matrices (with various material properties and topography). Another potential type of stimulus is electricity, which is important in the physiology and development of the majority of all human tissues. Despite its great potential, its role in tissue regeneration and its ability to influence cell migration, orientation, proliferation, and differentiation has rarely been considered in tissue engineering. This review highlights the importance of endogenous electrical stimulation, gathering the current knowledge on its natural occurrence and role in vivo, discussing the novel methods of delivering this stimulus and examining its cellular and tissue level effects, while evaluating how the technique could benefit the tissue engineering discipline in the future.
MEMS CLOSED CHAMBER HEAT ENGINE AND ELECTRIC GENERATOR
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A. (Inventor)
2005-01-01
A heat engine, preferably combined with an electric generator, and advantageously implemented using micro-electromechanical system (MEMS) technologies as an array of one or more individual heat engine/generators. The heat engine is based on a closed chamber containing a motive medium, preferably a gas; means for alternately enabling and disabling transfer of thermal energy from a heat source to the motive medium; and at least one movable side of the chamber that moves in response to thermally-induced expansion and contraction of the motive medium, thereby converting thermal energy to oscillating movement. The electrical generator is combined with the heat engine to utilize movement of the movable side to convert mechanical work to electrical energy, preferably using electrostatic interaction in a generator capacitor. Preferably at least one heat transfer side of the chamber is placed alternately into and out of contact with the heat source by a motion capacitor, thereby alternately enabling and disabling conductive transfer of heat to the motive medium.
Electrically heated DPF start-up strategy
Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI
2012-04-10
An exhaust system that processes exhaust generated by an engine has a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates in the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates. Heat generated by combustion of particulates in the heater induces combustion of particulates within the DPF. A control module selectively enables current flow to the electrical heater for an initial period of a DPF regeneration cycle, and limits exhaust flow while the electrical heater is heating to a predetermined soot combustion temperature.
Alternative Fuels Data Center: How Do All-Electric Cars Work?
charge while charging the pack. Power electronics controller: This unit manages the flow of electrical of the engine, electric motor, power electronics, and other components. Traction battery pack: Stores
ERIC Educational Resources Information Center
BALABANIAN, NORMAN; LEPAGE, WILBUR R.
THIS INSTRUCTIONAL PROGRAM, A ONE-YEAR COURSE IN ELECTRICAL ENGINEERING SEEKS TO REMEDY LONG-STANDING INADEQUACIES IN AMERICAN ENGINEERING EDUCATION, WHICH HAVE EXISTED BECAUSE ENGINEERING TEACHERS' HAVE LACKED AWARENESS OF (1) INTRICACIES OF THE LEARNING PROCESS, AND (2) ADVANCES IN BEHAVIORAL SCIENCE RELATED TO THE EDUCATIONAL PROCESS. IN THE…
49 CFR 579.21 - Reporting requirements for manufacturers of 5,000 or more light vehicles annually.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (compressed natural gas), CIF (compression ignition fuel), EBP (electric battery power), FCP (fuel-cell power... (electric battery power), FCP (fuel-cell power), HEV (hybrid electric vehicle), HCP (hydrogen combustion... and engine cooling system, 07 fuel system, 10 power train, 11 electrical system, 12 exterior lighting...
Code of Federal Regulations, 2012 CFR
2012-01-01
... standard may be obtained from the Institute of Electrical and Electronics Engineers, Inc., 345 East 47th... 10 Energy 1 2012-01-01 2012-01-01 false Environmental qualification of electric equipment... Regulatory Approvals § 50.49 Environmental qualification of electric equipment important to safety for...
Advanced Propulsion for Geostationary Orbit Insertion and North-South Station Keeping
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; Myers, Roger M.; Kluever, Craig A.; Riehl, John P.; Curran, Francis M.
1995-01-01
Solar electric propulsion (SEP) technology is currently being used for geostationary satellite station keeping to increase payload mass. Analyses show that advanced electric propulsion technologies can be used to obtain additional increases in payload mass by using these same technologies to perform part of the orbit transfer. In this work three electric propulsion technologies are examined at two power levels for an Atlas 2AS class spacecraft. The on-board chemical propulsion apogee engine fuel is reduced to allow the use of electric propulsion. A numerical optimizer is used to determine the chemical burns which will minimize the electric propulsion transfer time. Results show that for a 1550 kg Atlas 2AS class payload, increases in net mass (geostationary satellite mass less wet propulsion system mass) of 150 to 800 kg are possible using electric propulsion for station keeping, advanced chemical engines for part of the transfer, and electric propulsion for the remainder of the transfer. Trip times are between one and four months.
Carbon or graphite foam as a heating element and system thereof
Ott, Ronald D [Knoxville, TN; McMillan, April D [Knoxville, TN; Choudhury, Ashok [Oak Ridge, TN
2004-05-04
A temperature regulator includes at least one electrically conductive carbon foam element. The foam element includes at least two locations adapted for receiving electrical connectors thereto for heating a fluid, such as engine oil. A combustion engine includes an engine block and at least one carbon foam element, the foam element extending into the engine block or disposed in thermal contact with at least one engine fluid.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-20
... Frost, Aerospace Engineer, Engine Certification Office, FAA, Engine & Propeller Directorate, 12 New..., Massachusetts, on May 10, 2010. Peter A. White, Assistant Manager, Engine and Propeller Directorate, Aircraft... Airworthiness Directives; General Electric Company CF34-1A, -3A, -3A1, -3A2, -3B, and -3B1 Turbofan Engines...
Embedding Academic Literacy Support within the Electrical Engineering Curriculum: A Case Study
ERIC Educational Resources Information Center
Skinner, I.; Mort, P.
2009-01-01
This paper reports the integration of supplementary training in academic literacy, for those without the assumed entry standard, into a standard electrical engineering program without compromising any other educational objectives. All students who commenced an engineering degree were tested as part of their first session's assessment activities.…
A Successful Experience of ABET Accreditation of an Electrical Engineering Program
ERIC Educational Resources Information Center
Al-Yahya, S. A.; Abdel-Halim, M. A.
2013-01-01
The procedures followed and the various factors that led to the ABET accreditation of the College of Engineering, Qassim University, Buraidah, Saudi Arabia, are illustrated and evaluated for the benefit of other similar colleges. Taking the Electrical Engineering (EE) program as an example, this paper describes the procedures followed to implement…
Project ITCH: Interactive Digital Simulation in Electrical Engineering Education.
ERIC Educational Resources Information Center
Bailey, F. N.; Kain, R. Y.
A two-stage project is investigating the educational potential of a low-cost time-sharing system used as a simulation tool in Electrical Engineering (EE) education. Phase I involves a pilot study and Phase II a full integration. The system employs interactive computer simulation to teach engineering concepts which are not well handled by…
Electrical Engineering | Classification | College of Engineering & Applied
) 229-6916bsra@uwm.eduEng & Math Sciences 995 profile photo Robert Cuzner, Ph.D.Assistant ChairDepartment Chair of Electrical Engineering(414) 229-3885george@uwm.eduEng & Math Sciences 1245 profile photo Hossein Hosseini, Ph.D.ProfessorComputer Science(414) 229-5184hosseini@uwm.eduEng & Math
77 FR 48110 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-13
... Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... certain General Electric Company (GE) CF6-80C2 series turbofan engines. The existing AD requires... 2000-04-14, Amendment 39-11597 (65 FR 10698, February 29, 2000), for all GE CF6-80C2 series turbofan...
77 FR 76977 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Supplemental notice... proposed airworthiness directive (AD) for certain General Electric Company (GE) CF6-80C2 series turbofan... part 39 to include an AD that would apply to certain GE CF6-80C2 series turbofan engines. That NPRM...
University Policies under Varying Market Conditions: The Training of Electrical Engineers.
ERIC Educational Resources Information Center
Eckstein, Zvi; And Others
1988-01-01
Analyzes an Israeli university's problem in optimizing the quality and quantity of electrical engineers in response to fluctuating enrollment. An equilibrium model considers the effect of students' occupation choice and the university's decision on the current and future demand and supply of engineers, in order to predict the equilibrium number of…
Learning Platform for Study of Power Electronic Application in Power Systems
ERIC Educational Resources Information Center
Bauer, P.; Rompelman, O.
2005-01-01
Present engineering has to deal with increasingly complex systems. In particular, this is the case in electrical engineering. Though this is obvious in microelectronics, also in the field of power systems engineers have to design, operate and maintain highly complex systems such as power grids, energy converters and electrical drives. This is…
ERIC Educational Resources Information Center
Seabra, Antonio C.; Consonni, Denise
Brazilian engineering schools are under a strict program to reengineer their courses with the financial support of the federal agencies. At the electronic engineering department at the University of Sao Paulo, this process started by modifying the Basic Electricity and Electronic Laboratories. This paper describes the new structure of these labs…
accelerating or when additional power is needed, the gasoline engine and electric motor are both used to propel . The car is passing another vehicle. There are red arrows flowing from the gasoline engine to the front wheels. There are blue arrows flowing from the battery to the electric engine to the front wheels. Main
Electrical engineering research support for FDOT Traffic Statistics Office
DOT National Transportation Integrated Search
2010-03-01
The aim of this project was to provide electrical engineering support for the telemetered traffic monitoring sites (TTMSs) operated by the Statistics Office of the Florida Department of Transportation. This project was a continuation of project BD-54...
MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION ...
MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENT NO. 1. INL NEGATIVE NO. 6510. Unknown Photographer, 9/29/1959 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Chen, Yun-Yu
2016-12-01
As a kind of mass transfer process as well as the basis of separating and purifying mixtures, interfacial adsorption has been widely applied to fields like chemical industry, medical industry and purification engineering in recent years. Influencing factors of interfacial adsorption, in addition to the traditional temperature, intensity of pressure, amount of substance and concentration, also include external fields, such as magnetic field, electric field and electromagnetic field, etc. Starting from the point of thermodynamics and taking the Gibbs adsorption as the model, the combination of energy axiom and the first law of thermodynamics was applied to boundary phase, and thus the theoretical expression for the volume of interface absorption under electric field as well as the mathematical relationship between surface tension and electric field intensity was obtained. In addition, according to the obtained theoretical expression, the volume of interface absorption of ethanol solution under different electric field intensities and concentrations was calculated. Moreover, the mechanism of interfacial adsorption was described from the perspective of thermodynamics and the influence of electric field on interfacial adsorption was explained reasonably, aiming to further discuss the influence of thermodynamic mechanism of interfacial adsorption on purifying air-conditioning engineering under intensification of electric field.
Johnson, T L; Keith, D W
2001-10-01
The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.
Johnson, Timothy L; Keith, David W
2001-10-01
The decoupling of fossil-fueled electricity production from atmospheric CO 2 emissions via CO 2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO 2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO 2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.
NASA Technical Reports Server (NTRS)
Barnett, John W.
1991-01-01
Nuclear propulsion technology offers substantial benefits to the ambitious piloted and robotic solar system exploration missions of the Space Exploration Initiative (SEI). This paper summarizes a workshop jointly sponsored by NASA, DoE, and DoD to assess candidate nuclear electric propulsion technologies. Twenty-one power and propulsion concepts are reviewed. Nuclear power concepts include solid and gaseous fuel concepts, with static and dynamic power conversion. Propulsion concepts include steady state and pulsed electromagnetic engines, a pulsed electrothermal engine, and a steady state electrostatic engine. The technologies vary widely in maturity. The workshop review panels concluded that compelling benefits would accrue from the development of nuclear electric propulsion systems, and that a focused, well-funded program is required to prepare the technologies for SEI missions.
The performance simulation of single cylinder electric power confined piston engine
NASA Astrophysics Data System (ADS)
Gou, Yanan
2017-04-01
A new type of power plant. i.e, Electric Power Confined Piston Engine, is invented by combining the free piston engine and the crank connecting rod mechanism of the traditional internal combustion engine. Directly using the reciprocating movement of the piston, this new engine converts the heat energy produced by fuel to electrical energy and output it. The paper expounds the working mechanism of ECPE and establishes the kinematics and dynamics equations. Furthermore, by using the analytic method, the ECPE electromagnetic force is solved at load cases. Finally, in the simulation environment of MARLAB, the universal characteristic curve is obtained in the condition of rotational speed n between 1000 r/min and 2400 r/min, throttle opening α between 30% and 100%.
A model for the development of university curricula in nanoelectronics
NASA Astrophysics Data System (ADS)
Bruun, E.; Nielsen, I.
2010-12-01
Nanotechnology is having an increasing impact on university curricula in electrical engineering and in physics. Major influencers affecting developments in university programmes related to nanoelectronics are discussed and a model for university programme development is described. The model takes into account that nanotechnology affects not only physics but also electrical engineering and computer engineering because of the advent of new nanoelectronics devices. The model suggests that curriculum development tends to follow one of three major tracks: physics; electrical engineering; computer engineering. Examples of European curricula following this framework are identified and described. These examples may serve as sources of inspiration for future developments and the model presented may provide guidelines for a systematic selection of topics in the university programmes.
Activity and accomplishments of dish/Stirling electric power system development
NASA Technical Reports Server (NTRS)
Livingston, F. R.
1985-01-01
The development of the solar parabolic-dish/Stirling-engine electricity generating plant known as the dish/Stirling electric power system is described. The dish/Stirling electric power system converts sunlight to electricity more efficiently than any known existing solar electric power system. The fabrication and characterization of the test bed concentrators that were used for Stirling module testing and of the development of parabolic dish concentrator No. 2, an advanced solar concentrator unit considered for use with the Stirling power conversion unit is discussed.
Hybrid Electric Vehicle Basics | NREL
design-In this design, the energy conversion unit and an electric propulsion system are connected . Series design-In this design, the primary engine is connected to a generator that produces electricity
Economic impacts of electric vehicle adoption.
DOT National Transportation Integrated Search
2017-02-01
The objective of the Economic Impacts of Electric Vehicle Adoption research project was to : examine the predicted levels of electric vehicle (EV) adoption, to analyze the life cycle costs of : EVs compared to internal combustion engine vehicles and ...
7 CFR 1788.12 - Contractors' bonds.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AGRICULTURE (CONTINUED) RUS FIDELITY AND INSURANCE REQUIREMENTS FOR ELECTRIC AND TELECOMMUNICATIONS BORROWERS Insurance for Contractors, Engineers, and Architects, Electric Borrowers § 1788.12 Contractors' bonds. Electric borrowers shall require contractors to obtain contractors' bonds when required by part 1726...
7 CFR 1788.12 - Contractors' bonds.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AGRICULTURE (CONTINUED) RUS FIDELITY AND INSURANCE REQUIREMENTS FOR ELECTRIC AND TELECOMMUNICATIONS BORROWERS Insurance for Contractors, Engineers, and Architects, Electric Borrowers § 1788.12 Contractors' bonds. Electric borrowers shall require contractors to obtain contractors' bonds when required by part 1726...
7 CFR 1788.12 - Contractors' bonds.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AGRICULTURE (CONTINUED) RUS FIDELITY AND INSURANCE REQUIREMENTS FOR ELECTRIC AND TELECOMMUNICATIONS BORROWERS Insurance for Contractors, Engineers, and Architects, Electric Borrowers § 1788.12 Contractors' bonds. Electric borrowers shall require contractors to obtain contractors' bonds when required by part 1726...
7 CFR 1788.12 - Contractors' bonds.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AGRICULTURE (CONTINUED) RUS FIDELITY AND INSURANCE REQUIREMENTS FOR ELECTRIC AND TELECOMMUNICATIONS BORROWERS Insurance for Contractors, Engineers, and Architects, Electric Borrowers § 1788.12 Contractors' bonds. Electric borrowers shall require contractors to obtain contractors' bonds when required by part 1726...
Strain-engineered inverse charge-funnelling in layered semiconductors.
De Sanctis, Adolfo; Amit, Iddo; Hepplestone, Steven P; Craciun, Monica F; Russo, Saverio
2018-04-25
The control of charges in a circuit due to an external electric field is ubiquitous to the exchange, storage and manipulation of information in a wide range of applications. Conversely, the ability to grow clean interfaces between materials has been a stepping stone for engineering built-in electric fields largely exploited in modern photovoltaics and opto-electronics. The emergence of atomically thin semiconductors is now enabling new ways to attain electric fields and unveil novel charge transport mechanisms. Here, we report the first direct electrical observation of the inverse charge-funnel effect enabled by deterministic and spatially resolved strain-induced electric fields in a thin sheet of HfS 2 . We demonstrate that charges driven by these spatially varying electric fields in the channel of a phototransistor lead to a 350% enhancement in the responsivity. These findings could enable the informed design of highly efficient photovoltaic cells.
Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field
NASA Astrophysics Data System (ADS)
Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao
2017-03-01
External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.
Analog simulation of a hybrid gasoline-electric vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmore, D.B.
1982-03-01
Hybrid vehicles using both internal combustion engines and electric motors represent one way to reduce fuel consumption. Our demonstration project envisioned more than halving the fuel consumption of a passenger vehicle by reducing greatly the capacity of its engine and adding regenerative braking and an all-electric range. We also envisaged maintaining the same performance as current passenger vehicles. A 0-6 000 rpm gasoline-driven internal combustion engine, two 0-7 800 rpm electric motors, a 0-7 800 rpm flywheel, and lead-acid batteries are the major components assembled using a mechnical epicyclic gear box. An EAI 681 analog computer allowed us to examinemore » quickly the effects of engine capacity, flywheel size, battery voltage, gear ratios, and mode of operation. An external potentiometer control on the computer allowed the operator to drive the vehicle through any acceleration cycle on level ground. We have shown that a 1.3 litre gasoline engine, two 13 kW separately excited direct current electric motors, a 38 kg flywheel, and a 48-volt battery pack will provide the same maximum performance as a conventional 4.1 litre internal combustion engine with automatic transmission at vehicle speeds below 60 km/h, and lower but satisfactory highway performance up to a top speed of 130 km/h. The transmission has undergone laboratory tests; it is to be road-tested in the first half of 1982.« less
7 CFR 1724.70 - Standard forms of contracts for borrowers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND... construction, procurement, engineering services, and architectural services financed by a loan made or... prescribes RUS procedures in promulgating electric program standard contract forms and identifies those forms...
Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad
2006-06-06
A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES General § 1724.3... authorized assistants and representatives. Engineer means a registered or licensed person, who may be a staff... Government Printing Office. NESC means the National Electrical Safety Code. RE Act means the Rural...
Code of Federal Regulations, 2014 CFR
2014-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES General § 1724.3... authorized assistants and representatives. Engineer means a registered or licensed person, who may be a staff... Government Printing Office. NESC means the National Electrical Safety Code. RE Act means the Rural...
Code of Federal Regulations, 2013 CFR
2013-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES General § 1724.3... authorized assistants and representatives. Engineer means a registered or licensed person, who may be a staff... Government Printing Office. NESC means the National Electrical Safety Code. RE Act means the Rural...
Code of Federal Regulations, 2011 CFR
2011-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES General § 1724.3... authorized assistants and representatives. Engineer means a registered or licensed person, who may be a staff... Government Printing Office. NESC means the National Electrical Safety Code. RE Act means the Rural...
Code of Federal Regulations, 2012 CFR
2012-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES General § 1724.3... authorized assistants and representatives. Engineer means a registered or licensed person, who may be a staff... Government Printing Office. NESC means the National Electrical Safety Code. RE Act means the Rural...
A review of Soviet plasma engine development
NASA Technical Reports Server (NTRS)
Barnett, John W.
1990-01-01
The Soviet Union has maintained a substantial and successful electric propulsion research and development effort since the 1950s; however, American researchers are generally unfamiliar with the Soviet accomplishments. Sources of information about Soviet electric propulsion research are noted. The development of plasma engines, a subset of the electric propulsion effort, is reviewed using numerous Soviet sources. The operational principles and status of several engines of the closed electron drift and high-current types are discussed. With recognition of the limited knowledge of the current Soviet program, the Soviet and American programs are compared, revealing some differences in program formulation and emphasis.
Investigating students' view on STEM in learning about electrical current through STS approach
NASA Astrophysics Data System (ADS)
Tupsai, Jiraporn; Yuenyong, Chokchai
2018-01-01
This study aims to investigate Grade 11 students' views on Science Technology Engineering Mathematics (STEM) with the integration of learning about electrical current based on Science Technology Society (STS) approach [8]. The participants were 60 Grade 11 students in Demonstration Secondary School, Khon Kaen University, Khon Kaen Province, Thailand. The methodology is in the respect of interpretive paradigm. The teaching and learning about Electrical Current through STS approach carried out over 6 weeks. The Electrical Current unit through STS approach was developed based on framework[8] that consists of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision making, and (5) socialization stage. To start with, the question "what if this world is lack of electricity" was challenged in the class in order to move students to find the problem of how to design Electricity Generation from Clean Energy. Students were expected to apply scientific and other knowledge to design of Electricity Generation. Students' views on STEM were collected during their learning by participant' observation and students' tasks. Their views on STEM were categorized when they applied their knowledge for designing the Electricity Generation. The findings indicated that students cooperatively work to solve the problem when applying knowledge about the content of Science and Mathematics and processing skill of Technology and Engineering. It showed that students held the integration of science, technology, engineering and mathematics to design their possible solutions in learning about Electrical Current. The paper also discusses implications for science teaching and learning through STS in Thailand.
Microbial fuel cells - Applications for generation of electrical power and beyond.
Mathuriya, Abhilasha Singh; Yakhmi, J V
2016-01-01
A Microbial Fuel Cell is a bioelectrochemical device that exploits metabolic activities of living microorganisms for generation of electric current. The usefulness and unique and exclusive architecture of this device has received wide attention recently of engineers and researchers of various disciplines such as microbiologists, chemical engineers, biotechnologists, environment engineers and mechanical engineers, and the subject of MFCs has thereby progressed as a well-developed technology. Sustained innovations and continuous development efforts have established the usefulness of MFCs towards many specialized and value-added applications beyond electricity generation, such as wastewater treatment and implantable body devices. This review is an attempt to provide an update on this rapidly growing technology.
7 CFR 1724.21 - Architectural services contracts.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES... RUS financed electric system facilities. (a) RUS Form 220, Architectural Services Contract, must be used by electric borrowers when obtaining architectural services. (b) The borrower shall ensure that...
46 CFR 110.30-3 - Initial inspection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS... inspections during the construction of the vessel, includes a complete inspection of the electric installation and electric equipment or apparatus. The inspection is to determine that the arrangement, materials...
46 CFR 110.30-3 - Initial inspection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS... inspections during the construction of the vessel, includes a complete inspection of the electric installation and electric equipment or apparatus. The inspection is to determine that the arrangement, materials...
46 CFR 110.30-3 - Initial inspection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS... inspections during the construction of the vessel, includes a complete inspection of the electric installation and electric equipment or apparatus. The inspection is to determine that the arrangement, materials...
NASA Technical Reports Server (NTRS)
1979-01-01
Report characterizes state-of-the-art electric and hybrid (combined electric and heat engine) vehicles. Performance data for representative number of these vehicles were obtained from track and dynamometer tests. User experience information was obtained from fleet operators and individual owners of electric vehicles. Data on performance and physical characteristics of large number of vehicles were obtained from manufacturers and available literature.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
..., Aerospace Engineer, Engine Certification Office, FAA, Engine & Propeller Directorate, 12 New England... Directives; General Electric Company (GE) CF34-1A, CF34-3A, and CF34-3B Series Turbofan Engines; Correction... to GE CF34-1A, CF34-3A, and CF34-3B series turbofan engines. The docket number is incorrect in all...
Educational-research laboratory "electric circuits" on the base of digital technologies
NASA Astrophysics Data System (ADS)
Koroteyev, V. I.; Florentsev, V. V.; Florentseva, N. I.
2017-01-01
The problem of research activity of trainees' activation in the educational-research laboratory "Electric Circuits" using innovative methodological solutions and digital technologies is considered. The main task is in creation of the unified experimental research information-educational environment "Electrical Engineering". The problems arising during the developing and application of the modern software and hardware, experimental and research stands and digital control and measuring systems are presented. This paper presents the main stages of development and creation of educational-research laboratory "Electrical Circuits" at the Department of Electrical Engineering of NRNU MEPhI. The authors also consider the analogues of the described research complex offered by various educational institutions and companies. The analysis of their strengths and weaknesses, on which the advantages of the proposed solution are based, is held.
Automated manual transmission clutch controller
Lawrie, Robert E.; Reed, Jr., Richard G.; Rausen, David J.
1999-11-30
A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.
Automated manual transmission shift sequence controller
Lawrie, Robert E.; Reed, Richard G.; Rausen, David J.
2000-02-01
A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both, an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.
Automated manual transmission mode selection controller
Lawrie, Robert E.
1999-11-09
A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.
Automated manual transmission controller
Lawrie, Robert E.; Reed, Jr., Richard G.; Bernier, David R.
1999-12-28
A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.
Flexible 2D RF Nanoelectronics based on Layered Semiconductor Transistor (NBIT III)
2016-11-11
Experimental and computational studies in multidisciplinary fields of electrical, mechanical engineering , and materials science were conducted to achieve...plan for this project. Experimental and computational studies in multidisciplinary fields of electrical, mechanical engineering , and materials...electrostatic or physisorption gating, defect engineering , and substitutional doping during the growth. These methods result in uniform doping or composition
ERIC Educational Resources Information Center
Dodridge, Melvyn; Kassinopoulos, Marios
2003-01-01
The programmes offered by both institutions are geared to the application of current technology. All the University of Derby programmes, including the BSc(Hons) degree in Electrical and Electronic Engineering and the Higher Technical Institute Diploma in Electrical Engineering, are accredited in the UK at Incorporated Engineer level by the…
1984-12-01
AFLRL No. 178 By oi Harry E. Dietzmann ,< Engines, Emissions.and Vehicle Research Division Southwest Research Institute San Antonio, Texas Prppared...the possibility of replacing the currently used electric forklift with diesel engine-powered forklifts in handling hazardous materials. Electric ...concern; however, these concerns may be amplified when the vehicle is operating under a malfunction mode. Malfunctions include simulating a plugged
Implementation of a Multidisciplinary Professional Skills Course at an Electrical Engineering School
ERIC Educational Resources Information Center
Gider, F.; Likar, B.; Kern, T.; Miklavcic, D.
2012-01-01
This paper describes a case study of an innovative approach to teaching at an engineering school. The postgraduate course "Project Work and Communication in Research and Development (R&D)" was developed at the Faculty of Electrical Engineering of the University of Ljubljana, Ljubljana, Slovenia. The main aim of the course was to make…
NASA Astrophysics Data System (ADS)
Kondrashov, V. P.; Pogrebisskiy, M. Ya; Lykov, A. G.; Rabinovich, V. L.; Bulgakov, A. S.
2018-02-01
Ways of increase of ore-heating electric furnaces, used for production of silicomanganese, engineering-and-economical performance are analyzed. Questions of data of the electric, thermal and technological modes of the furnace functioning collecting and processing for use in operation of an advanced control system of the furnace providing increase in technical and economic efficiency of technological process and an adaptability to quality of burden stock are considered.
MARSnet: Mission-aware Autonomous Radar Sensor Network for Future Combat Systems 12/8/06 to 12/31/09
2010-01-01
8/06 to 12/31/09. Qilian Liang Department of Electrical Engineering 416 Yates Street, Room 518 University of Texas at Arlington Arlington, TX 76019...Modeling in Foliage Environment Jing Liang and Qilian Liang, Senior Member, IEEE Department of Electrical Engineering University of Texas at Arlington E...32 46 of 816 NEW: Network-enabled Electronic Warfare for Target Recognition Qilian Liang Xiuzhen Cheng Sherwood W. Samn Dept of Electrical
Nuclear electric propulsion mission engineering study. Volume 2: Final report
NASA Technical Reports Server (NTRS)
1973-01-01
Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.
Vector optical fields with polarization distributions similar to electric and magnetic field lines.
Pan, Yue; Li, Si-Min; Mao, Lei; Kong, Ling-Jun; Li, Yongnan; Tu, Chenghou; Wang, Pei; Wang, Hui-Tian
2013-07-01
We present, design and generate a new kind of vector optical fields with linear polarization distributions modeling to electric and magnetic field lines. The geometric configurations of "electric charges" and "magnetic charges" can engineer the spatial structure and symmetry of polarizations of vector optical field, providing additional degrees of freedom assisting in controlling the field symmetry at the focus and allowing engineering of the field distribution at the focus to the specific applications.
What`s available in industrial vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzhauer, R.
A large assortment of material handling vehicles are available for transporting and lifting products. Equipment is offered with electric (battery) and internal combustion power, operator walking alongside or riding, and inside or outside applications. Factors such as load capacity, turning radius, aisle width, travel speed, lifting height, controls, and cost also enter the selection equation. The various types of vehicles serving the industrial truck market are broken into seven classes, according to guidelines established by the Industrial Truck Association (ITA). This association deals with issues of common interests to manufacturers of fork lifts, tow tractors, rough terrain vehicles, hand palletmore » trucks, automated guided vehicles, and their suppliers; develops voluntary engineering practices; and collects and disseminates statistical information relating to the industrial truck marketplace. The seven classes are: Electric Motor Rider Trucks; Electric Motor Narrow Aisle Trucks; Electric Motor Hand Trucks; Internal Combustion Engine Trucks, cushion tired; Internal Combustion Engine Trucks, pneumatic tired; Electric and Internal Combustion Engine Tractors; and Rough Terrain Fork Lift Trucks. The following pages present a descriptive and pictorial overview of the equipment available in the first five vehicle classes. The last two categories are not covered because of their limited industrial use.« less
Electrical engineering support of telemetered traffic monitoring sites : final report, March 2009.
DOT National Transportation Integrated Search
2009-03-01
"The aim of this project was to provide electrical engineering support for the telemetered traffic monitoring sites (TTMS) operated by the Statistics Office of the Florida Department of Transportation. This project was a companion to project BD-543-1...
ERIC Educational Resources Information Center
Bolton, B.; Adderley, K. J.
1978-01-01
After viewing videotaped case studies indicating the relevance of electrical laboratory work to professional engineers, student attitudes showed a positive improvement toward laboratory work. Semantic differential tests, questionnaires, and interviews were used. (Author/MH)
Professional Adaptation of the Cuban Electrical Engineer in the U. S., 1959-69
ERIC Educational Resources Information Center
Moncarz, Raul
1972-01-01
An analysis of the re-adaptation of education and training brought to the U.S. by Cuban electrical engineers in an effort to discover which personal and occupational characteristics provided better adjustment to the new environment. (Author/PR)
The Computer-Job Salary Picture.
ERIC Educational Resources Information Center
Basta, Nicholas
1987-01-01
Discusses starting salaries for graduates with various degrees in computer science and electrical engineering. Summarizes the results of a recent study by the Institute of Electrical and Electronics Engineers (IEEE) which provides salary estimates for graduates in different specialties and in different geographical locations. (TW)
Tacit Knowledge Capture and the Brain-Drain at Electrical Utilities
NASA Astrophysics Data System (ADS)
Perjanik, Nicholas Steven
As a consequence of an aging workforce, electric utilities are at risk of losing their most experienced and knowledgeable electrical engineers. In this research, the problem was a lack of understanding of what electric utilities were doing to capture the tacit knowledge or know-how of these engineers. The purpose of this qualitative research study was to explore the tacit knowledge capture strategies currently used in the industry by conducting a case study of 7 U.S. electrical utilities that have demonstrated an industry commitment to improving operational standards. The research question addressed the implemented strategies to capture the tacit knowledge of retiring electrical engineers and technical personnel. The research methodology involved a qualitative embedded case study. The theories used in this study included knowledge creation theory, resource-based theory, and organizational learning theory. Data were collected through one time interviews of a senior electrical engineer or technician within each utility and a workforce planning or training professional within 2 of the 7 utilities. The analysis included the use of triangulation and content analysis strategies. Ten tacit knowledge capture strategies were identified: (a) formal and informal on-boarding mentorship and apprenticeship programs, (b) formal and informal off-boarding mentorship programs, (c) formal and informal training programs, (d) using lessons learned during training sessions, (e) communities of practice, (f) technology enabled tools, (g) storytelling, (h) exit interviews, (i) rehiring of retirees as consultants, and (j) knowledge risk assessments. This research contributes to social change by offering strategies to capture the know-how needed to ensure operational continuity in the delivery of safe, reliable, and sustainable power.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Applicability § 110.01-1 General. (a) This subchapter applies to all electrical installations on vessels subject to... electrical installation to be in accordance with this subchapter. (b) This subchapter applies only to...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Applicability § 110.01-1 General. (a) This subchapter applies to all electrical installations on vessels subject to... electrical installation to be in accordance with this subchapter. (b) This subchapter applies only to...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Applicability § 110.01-1 General. (a) This subchapter applies to all electrical installations on vessels subject to... electrical installation to be in accordance with this subchapter. (b) This subchapter applies only to...
49 CFR 1248.101 - Commodity codes required.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Hardware. 343 Plumbing Fixtures and Heating Apparatus, Except Electric. 3433 Heating equipment, except electric. 344 Fabricated structural metal products. 3441 Fabricated structural metal products. 345 Bolts... fabricated pipe fittings. 35 Machinery, Except Electrical. 351 Engines and Turbines. 352 Farm Machinery and...
49 CFR 1248.101 - Commodity codes required.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Hardware. 343 Plumbing Fixtures and Heating Apparatus, Except Electric. 3433 Heating equipment, except electric. 344 Fabricated structural metal products. 3441 Fabricated structural metal products. 345 Bolts... fabricated pipe fittings. 35 Machinery, Except Electrical. 351 Engines and Turbines. 352 Farm Machinery and...
49 CFR 1248.101 - Commodity codes required.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Hardware. 343 Plumbing Fixtures and Heating Apparatus, Except Electric. 3433 Heating equipment, except electric. 344 Fabricated structural metal products. 3441 Fabricated structural metal products. 345 Bolts... fabricated pipe fittings. 35 Machinery, Except Electrical. 351 Engines and Turbines. 352 Farm Machinery and...
7 CFR 1730.63 - IDR policy criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
... policies must be consistent with prudent electric utility practice. (2) IDR policies must incorporate the Institute of Electrical and Electronic Engineers (IEEE): IEEE 1547TM—Standard for Interconnecting... AGRICULTURE ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.63 IDR...
Teaching Electrostatics in University Courses
ERIC Educational Resources Information Center
Hughes, J. F.
1974-01-01
Describes an optional course on applied electrostatics that was offered to electrical engineers in their final year. Topics included the determination of electric fields, nature of the charging process, static electricity in liquids, solid state processes, charged particle applications, and electrostatic ignition. (GS)
10 CFR 431.15 - Materials incorporated by reference.
Code of Federal Regulations, 2012 CFR
2012-01-01
....03, IBR approved for § 431.12. (2) Institute of Electrical and Electronics Engineers, Inc., Standard... INDUSTRIAL EQUIPMENT Electric Motors Test Procedures, Materials Incorporated and Methods of Determining... provisions of National Electrical Manufacturers Association Standards Publication MG1-1993, Motors and...
7 CFR 1730.63 - IDR policy criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
... policies must be consistent with prudent electric utility practice. (2) IDR policies must incorporate the Institute of Electrical and Electronic Engineers (IEEE): IEEE 1547TM—Standard for Interconnecting... AGRICULTURE ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.63 IDR...
7 CFR 1730.63 - IDR policy criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
... policies must be consistent with prudent electric utility practice. (2) IDR policies must incorporate the Institute of Electrical and Electronic Engineers (IEEE): IEEE 1547TM—Standard for Interconnecting... AGRICULTURE ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.63 IDR...
7 CFR 1730.63 - IDR policy criteria.
Code of Federal Regulations, 2011 CFR
2011-01-01
... policies must be consistent with prudent electric utility practice. (2) IDR policies must incorporate the Institute of Electrical and Electronic Engineers (IEEE): IEEE 1547TM—Standard for Interconnecting... AGRICULTURE ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.63 IDR...
49 CFR 1248.101 - Commodity codes required.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Hardware. 343 Plumbing Fixtures and Heating Apparatus, Except Electric. 3433 Heating equipment, except electric. 344 Fabricated structural metal products. 3441 Fabricated structural metal products. 345 Bolts... fabricated pipe fittings. 35 Machinery, Except Electrical. 351 Engines and Turbines. 352 Farm Machinery and...
Electrical stimulation systems for cardiac tissue engineering
Tandon, Nina; Cannizzaro, Christopher; Chao, Pen-Hsiu Grace; Maidhof, Robert; Marsano, Anna; Au, Hoi Ting Heidi; Radisic, Milica; Vunjak-Novakovic, Gordana
2009-01-01
We describe a protocol for tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cells with the application of pulsatile electrical fields designed to mimic those present in the native heart. Tissue culture is conducted in a customized chamber built to allow for cultivation of (i) engineered three-dimensional (3D) cardiac tissue constructs, (ii) cell monolayers on flat substrates or (iii) cells on patterned substrates. This also allows for analysis of the individual and interactive effects of pulsatile electrical field stimulation and substrate topography on cell differentiation and assembly. The protocol is designed to allow for delivery of predictable electrical field stimuli to cells, monitoring environmental parameters, and assessment of cell and tissue responses. The duration of the protocol is 5 d for two-dimensional cultures and 10 d for 3D cultures. PMID:19180087
Aircraft Photovoltaic Power-Generating System.
NASA Astrophysics Data System (ADS)
Doellner, Oscar Leonard
Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet -engine design modifications incorporating this concept not only save weight (and thus fuel), but are--in themselves --favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project. This new electrical power-generating system offers solid-state reliability with electrical power-output capability comparable to that of existing aircraft electromechanical power-generating systems (alternators and generators). In addition to improvements in aircraft performance, significant aircraft fuel- and weight-saving advantages are projected.
Active control of thermoacoustic amplification in a thermo-acousto-electric engine
NASA Astrophysics Data System (ADS)
Olivier, Come; Penelet, Guillaume; Poignand, Gaelle; Lotton, Pierrick
2014-05-01
In this paper, a new approach is proposed to control the operation of a thermoacoustic Stirling electricity generator. This control basically consists in adding an additional acoustic source to the device, connected through a feedback loop to a reference microphone, a phase-shifter, and an audio amplifier. Experiments are performed to characterize the impact of the feedback loop (and especially that of the controlled phase-shift) on the overall efficiency of the thermal to electric energy conversion performed by the engine. It is demonstrated that this external forcing of thermoacoustic self-sustained oscillations strongly impacts the performance of the engine, and that it is possible under some circumstances to improve the efficiency of the thermo-electric transduction, compared to the one reached without active control. Applicability and further directions of investigation are also discussed.
In-line stirling energy system
Backhaus, Scott N [Espanola, NM; Keolian, Robert [State College, PA
2011-03-22
A high efficiency generator is provided using a Stirling engine to amplify an acoustic wave by heating the gas in the engine in a forward mode. The engine is coupled to an alternator to convert heat input to the engine into electricity. A plurality of the engines and respective alternators can be coupled to operate in a timed sequence to produce multi-phase electricity without the need for conversion. The engine system may be operated in a reverse mode as a refrigerator/heat pump.
Start-up and control method and apparatus for resonant free piston Stirling engine
Walsh, Michael M.
1984-01-01
A resonant free-piston Stirling engine having a new and improved start-up and control method and system. A displacer linear electrodynamic machine is provided having an armature secured to and movable with the displacer and having a stator supported by the Stirling engine housing in juxtaposition to the armature. A control excitation circuit is provided for electrically exciting the displacer linear electrodynamic machine with electrical excitation signals having substantially the same frequency as the desired frequency of operation of the Stirling engine. The excitation control circuit is designed so that it selectively and controllably causes the displacer electrodynamic machine to function either as a generator load to extract power from the displacer or the control circuit selectively can be operated to cause the displacer electrodynamic machine to operate as an electric drive motor to apply additional input power to the displacer in addition to the thermodynamic power feedback to the displacer whereby the displacer linear electrodynamic machine also is used in the electric drive motor mode as a means for initially starting the resonant free-piston Stirling engine.
Job Prospects for Electrical Engineers.
ERIC Educational Resources Information Center
Basta, Nicholas
1986-01-01
Discusses the career outlook for electrical/electronics engineers. Explains that the number of bachelor degree graduates continues to rise, along with average starting salaries. Reveals that although the availability of jobs in the computer industry is leveling off, prospects in the robotics and telecommunication fields are growing. (TW)
40 CFR 92.106 - Equipment for loading the engine.
Code of Federal Regulations, 2011 CFR
2011-07-01
... loading the locomotive engine-alternator/generator assembly electrically, and for measurement of the... angle compensation; meter(s) for measurement of the current through the load bank (a calibrated electrical shunt and voltmeter is allowed for current measurement); meter(s) to measure the voltage across...
40 CFR 92.106 - Equipment for loading the engine.
Code of Federal Regulations, 2012 CFR
2012-07-01
... loading the locomotive engine-alternator/generator assembly electrically, and for measurement of the... angle compensation; meter(s) for measurement of the current through the load bank (a calibrated electrical shunt and voltmeter is allowed for current measurement); meter(s) to measure the voltage across...
40 CFR 92.106 - Equipment for loading the engine.
Code of Federal Regulations, 2014 CFR
2014-07-01
... loading the locomotive engine-alternator/generator assembly electrically, and for measurement of the... angle compensation; meter(s) for measurement of the current through the load bank (a calibrated electrical shunt and voltmeter is allowed for current measurement); meter(s) to measure the voltage across...
40 CFR 92.106 - Equipment for loading the engine.
Code of Federal Regulations, 2013 CFR
2013-07-01
... loading the locomotive engine-alternator/generator assembly electrically, and for measurement of the... angle compensation; meter(s) for measurement of the current through the load bank (a calibrated electrical shunt and voltmeter is allowed for current measurement); meter(s) to measure the voltage across...
Applications of aerospace technology in the electric power industry
NASA Technical Reports Server (NTRS)
Johnson, F. D.; Heins, C. F.
1974-01-01
Existing applications of NASA contributions to disciplines such as combustion engineering, mechanical engineering, materials science, quality assurance and computer control are outlined to illustrate how space technology is used in the electric power industry. Corporate strategies to acquire relevant space technology are described.
Charge It! Translating Electric Vehicle Research Results to Engage 7th and 8th Grade Girls
NASA Astrophysics Data System (ADS)
Egbue, Ona; Long, Suzanna; Ng, Ean-Harn
2015-10-01
Despite attempts to generate interest in science and technology careers, US students continue to show reduced interest in science, technology, engineering and mathematics (STEM) majors at the collegiate level. If girls are not engaged in STEM learning by the middle school level, studies show that they are even less likely to choose a science- or engineering-related major. This article presents results from a workshop for 7th and 8th grade girls designed to promote knowledge building in the area of sustainability and alternative energy use in transportation and to stimulate greater interest in STEM subjects. The workshop based on research conducted at University X focused on basic concepts of electric vehicles and electric vehicles' batteries. Tests were conducted to evaluate the students' knowledge and perceptions of electric vehicles and to determine the impact of the workshop. Early exposure to meaningful engineering experiences for these young girls may boost interest and the eventual pursuit of engineering and technology education paths.
46 CFR 52.25-7 - Electric boilers (modifies PEB-1 through PEB-19).
Code of Federal Regulations, 2011 CFR
2011-10-01
... ENGINEERING POWER BOILERS Other Boiler Types § 52.25-7 Electric boilers (modifies PEB-1 through PEB-19). Electric boilers required to comply with this part must meet the applicable provisions in this part and the... 46 Shipping 2 2011-10-01 2011-10-01 false Electric boilers (modifies PEB-1 through PEB-19). 52.25...
46 CFR 52.25-7 - Electric boilers (modifies PEB-1 through PEB-19).
Code of Federal Regulations, 2010 CFR
2010-10-01
... ENGINEERING POWER BOILERS Other Boiler Types § 52.25-7 Electric boilers (modifies PEB-1 through PEB-19). Electric boilers required to comply with this part must meet the applicable provisions in this part and the... 46 Shipping 2 2010-10-01 2010-10-01 false Electric boilers (modifies PEB-1 through PEB-19). 52.25...
46 CFR 52.25-7 - Electric boilers (modifies PEB-1 through PEB-19).
Code of Federal Regulations, 2012 CFR
2012-10-01
... ENGINEERING POWER BOILERS Other Boiler Types § 52.25-7 Electric boilers (modifies PEB-1 through PEB-19). Electric boilers required to comply with this part must meet the applicable provisions in this part and the... 46 Shipping 2 2012-10-01 2012-10-01 false Electric boilers (modifies PEB-1 through PEB-19). 52.25...
46 CFR 52.25-7 - Electric boilers (modifies PEB-1 through PEB-19).
Code of Federal Regulations, 2014 CFR
2014-10-01
... ENGINEERING POWER BOILERS Other Boiler Types § 52.25-7 Electric boilers (modifies PEB-1 through PEB-19). Electric boilers required to comply with this part must meet the applicable provisions in this part and the... 46 Shipping 2 2014-10-01 2014-10-01 false Electric boilers (modifies PEB-1 through PEB-19). 52.25...
NASA Technical Reports Server (NTRS)
Schwarz, F. C.
1971-01-01
Processing of electric power has been presented as a discipline that draws on almost every field of electrical engineering, including system and control theory, communications theory, electronic network design, and power component technology. The cost of power processing equipment, which often equals that of expensive, sophisticated, and unconventional sources of electrical energy, such as solar batteries, is a significant consideration in the choice of electric power systems.
46 CFR 52.25-7 - Electric boilers (modifies PEB-1 through PEB-19).
Code of Federal Regulations, 2013 CFR
2013-10-01
... ENGINEERING POWER BOILERS Other Boiler Types § 52.25-7 Electric boilers (modifies PEB-1 through PEB-19). Electric boilers required to comply with this part must meet the applicable provisions in this part and the... 46 Shipping 2 2013-10-01 2013-10-01 false Electric boilers (modifies PEB-1 through PEB-19). 52.25...
Argonne National Laboratory Smart Grid Technology Interactive Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Bohn
2009-10-13
As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid to not only handle the new load, but make electricity cheap and efficient for everyone? Argonne engineer Ted Bohn explains a model of a "smart grid" that gives consumers the power to choose their own prices and sources of electricity.
Argonne National Laboratory Smart Grid Technology Interactive Model
Ted Bohn
2017-12-09
As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid to not only handle the new load, but make electricity cheap and efficient for everyone? Argonne engineer Ted Bohn explains a model of a "smart grid" that gives consumers the power to choose their own prices and sources of electricity.
Subsonic Ultra Green Aircraft Research: Phase 2. Volume 2; Hybrid Electric Design Exploration
NASA Technical Reports Server (NTRS)
Bradley, Marty K.; Droney, Christopher K.
2015-01-01
This report summarizes the hybrid electric concept design, analysis, and modeling work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech.Performance and sizing tasks were conducted for hybrid electric versions of a conventional tube-and-wing aircraft and a hybrid wing body. The high wing Truss Braced Wing (TBW) SUGAR Volt was updated based on results from the TBW work (documented separately) and new engine performance models. Energy cost and acoustic analyses were conducted and technology roadmaps were updated for hybrid electric and battery technology. NOx emissions were calculated for landing and takeoff (LTO) and cruise. NPSS models were developed for hybrid electric components and tested using an integrated analysis of superconducting and non-superconducting hybrid electric engines. The hybrid electric SUGAR Volt was shown to produce significant emissions and fuel burn reductions beyond those achieved by the conventionally powered SUGAR High and was able to meet the NASA goals for fuel burn. Total energy utilization was not decreased but reduced energy cost can be achieved for some scenarios. The team was not able to identify a technology development path to meet NASA's noise goals
Yang, Sumi; Jang, LindyK; Kim, Semin; Yang, Jongcheol; Yang, Kisuk; Cho, Seung-Woo; Lee, Jae Young
2016-11-01
Electrically conductive biomaterials that can efficiently deliver electrical signals to cells or improve electrical communication among cells have received considerable attention for potential tissue engineering applications. Conductive hydrogels are desirable particularly for neural applications, as they can provide electrical signals and soft microenvironments that can mimic native nerve tissues. In this study, conductive and soft polypyrrole/alginate (PPy/Alg) hydrogels are developed by chemically polymerizing PPy within ionically cross-linked alginate hydrogel networks. The synthesized hydrogels exhibit a Young's modulus of 20-200 kPa. Electrical conductance of the PPy/Alg hydrogels could be enhanced by more than one order of magnitude compared to that of pristine alginate hydrogels. In vitro studies with human bone marrow-derived mesenchymal stem cells (hMSCs) reveal that cell adhesion and growth are promoted on the PPy/Alg hydrogels. Additionally, the PPy/Alg hydrogels support and greatly enhance the expression of neural differentiation markers (i.e., Tuj1 and MAP2) of hMSCs compared to tissue culture plate controls. Subcutaneous implantation of the hydrogels for eight weeks induces mild inflammatory reactions. These soft and conductive hydrogels will serve as a useful platform to study the effects of electrical and mechanical signals on stem cells and/or neural cells and to develop multifunctional neural tissue engineering scaffolds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Testing and Inspection... vessels in other parts of this chapter. (b) In the inspection of electric equipment and installations, the...) This subpart must not be construed to imply that shop tests or factory inspections of electric...
Code of Federal Regulations, 2010 CFR
2010-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES General § 1724.1... standard form of loan documents between the Rural Utilities Service (RUS) and its electric borrowers. (b... to design, construction standards, and the use of RUS accepted material on their electric systems. (c...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Testing and Inspection... vessels in other parts of this chapter. (b) In the inspection of electric equipment and installations, the...) This subpart must not be construed to imply that shop tests or factory inspections of electric...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Testing and Inspection... vessels in other parts of this chapter. (b) In the inspection of electric equipment and installations, the...) This subpart must not be construed to imply that shop tests or factory inspections of electric...
33 CFR 183.5 - Incorporation by reference.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Plastics § 183.114 Institute of Electrical and Electronics, Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854: IEEE 45 IEEE Recommended Practice for Electrical Installations on Shipboard—1983. Cable... Council, Inc., 3069 Solomons Island Road, Edgewater, Maryland 21037-1416: ABYC A-16 Electric Navigation...
33 CFR 183.5 - Incorporation by reference.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Plastics § 183.114 Institute of Electrical and Electronics, Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854: IEEE 45 IEEE Recommended Practice for Electrical Installations on Shipboard—1983. Cable... Council, Inc., 3069 Solomons Island Road, Edgewater, Maryland 21037-1416: ABYC A-16 Electric Navigation...
33 CFR 183.5 - Incorporation by reference.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Plastics § 183.114 Institute of Electrical and Electronics, Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854: IEEE 45 IEEE Recommended Practice for Electrical Installations on Shipboard—1983. Cable... Council, Inc., 3069 Solomons Island Road, Edgewater, Maryland 21037-1416: ABYC A-16 Electric Navigation...
10 CFR 431.17 - Determination of efficiency.
Code of Federal Regulations, 2013 CFR
2013-01-01
... state-registered professional engineer, who is qualified to perform an evaluation of electric motor... EQUIPMENT Electric Motors Test Procedures, Materials Incorporated and Methods of Determining Efficiency § 431.17 Determination of efficiency. When a party determines the energy efficiency of an electric motor...
Code of Federal Regulations, 2013 CFR
2013-01-01
... and Electronics Engineers, Inc. NEMA means the National Electrical Manufacturers Association. Nominal... Electric Motors § 431.12 Definitions. The following definitions apply for purposes of this subpart, and of... accreditation body that a laboratory is competent to test the efficiency of electric motors according to the...
33 CFR 183.5 - Incorporation by reference.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Plastics § 183.114 Institute of Electrical and Electronics, Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854: IEEE 45 IEEE Recommended Practice for Electrical Installations on Shipboard—1983. Cable... Council, Inc., 3069 Solomons Island Road, Edgewater, Maryland 21037-1416: ABYC A-16 Electric Navigation...
46 CFR 111.05-21 - Ground detection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... be ground detection for each: (a) Electric propulsion system; (b) Ship's service power system; (c) Lighting system; and (d) Power or lighting distribution system that is isolated from the ship's service...
46 CFR 111.05-21 - Ground detection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... be ground detection for each: (a) Electric propulsion system; (b) Ship's service power system; (c) Lighting system; and (d) Power or lighting distribution system that is isolated from the ship's service...
46 CFR 111.05-21 - Ground detection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... be ground detection for each: (a) Electric propulsion system; (b) Ship's service power system; (c) Lighting system; and (d) Power or lighting distribution system that is isolated from the ship's service...
46 CFR 113.35-3 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM...-propelled vessel, except as provided in paragraph (d) of this section, must have an electric or mechanical... must be electrically separate and independent, except that a single mechanical operator control device...
46 CFR 113.35-3 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM...-propelled vessel, except as provided in paragraph (d) of this section, must have an electric or mechanical... must be electrically separate and independent, except that a single mechanical operator control device...
46 CFR 113.35-3 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM...-propelled vessel, except as provided in paragraph (d) of this section, must have an electric or mechanical... must be electrically separate and independent, except that a single mechanical operator control device...
46 CFR 113.35-3 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM...-propelled vessel, except as provided in paragraph (d) of this section, must have an electric or mechanical... must be electrically separate and independent, except that a single mechanical operator control device...
46 CFR 113.35-3 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM...-propelled vessel, except as provided in paragraph (d) of this section, must have an electric or mechanical... must be electrically separate and independent, except that a single mechanical operator control device...
46 CFR 111.97-9 - Overcurrent protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-9 Overcurrent protection. Overcurrent devices must be arranged to isolate a fault with as little disruption of the system as possible...
46 CFR 113.35-7 - Electric engine order telegraph systems; operations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... transmitter handle automatically connects that transmitter electrically to the engineroom indicator and simultaneously disconnects electrically all other transmitters. The reply pointers of all transmitters must... manually operated transfer switch which will disconnect the system in the unattended navigating bridge must...
SSME Electrical Harness and Cable Development and Evolution
NASA Technical Reports Server (NTRS)
Abrams, Russ; Heflin, Johnny; Burns, Bob; Camper, Scott J.; Hill, Arthur J.
2010-01-01
The Space Shuttle Main Engine (SSME) electrical harness and cable system consists of the various interconnecting devices necessary for operation of complex rocket engine functions. Thirty seven harnesses incorporate unique connectors, backshell adapters, conductors, insulation, shielding, and physical barriers for a long maintenance-free life while providing the means to satisfy performance requirements and to mitigate adverse environmental influences. The objective of this paper is to provide a description of the SSME electrical harness and cable designs as well as the development history and lessons learned.
EHV systems technology - A look at the principles and current status. [Electric and Hybrid Vehicle
NASA Technical Reports Server (NTRS)
Kurtz, D. W.; Levin, R. R.
1983-01-01
An examination of the basic principles and practices of systems engineering is undertaken in the context of their application to the component and subsystem technologies involved in electric and hybrid vehicle (EHV) development. The limitations of purely electric vehicles are contrasted with hybrid, heat engine-incorporating vehicle technology, which is inherently more versatile. A hybrid vehicle concept assessment methodology is presented which employs current technology and yet fully satisfies U.S. Department of Energy petroleum displacement goals.
Colleges Offer New Alternative-Energy Degrees, Fueled by Student Demand
ERIC Educational Resources Information Center
Basken, Paul
2009-01-01
More U.S. college students are enrolling in power- and energy-engineering courses, but the increase is not enough to meet the need, says a new report by the IEEE, the professional association of electrical engineers. About 45% of engineers at electric utilities are expected to retire or leave their jobs within five years, creating as many as…
ERIC Educational Resources Information Center
Garcia, Oscar N.; Varanasi, Murali R.; Acevedo, Miguel F.; Guturu, Parthasarathy
2011-01-01
We analyze and study the beginning of a new Electrical Engineering Department, supported by an NSF Departmental Level Reform award, within a new College of Engineering in the 21st Century and also describe the academic approach and influences of an innovative cognitive-based approach to curriculum development. In addition, the approach taken…
ERIC Educational Resources Information Center
Institute of Electrical and Electronics Engineers, Inc., New York, NY.
The Institute of Electrical and Electronics Engineers (IEEE) validation program is designed to motivate persons practicing in electrical and electronics engineering to pursue quality technical continuing education courses offered by any responsible sponsor. The rapid acceptance of the validation program necessitated the additional development of a…
Design of Electronic Experiments Using Computer Generated Virtual Instruments
1994-03-01
work associated with the classical electronics laboratory experiments required in a tpical Electrical Engineering program. This thesis reports the...requiremnents for the degree of MASTER OF SCIENCE IN ELECITRICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL March 1994 Aufhfi_...Thcdore Joseph SerbinskI Approved by: Sherif Michael, Thesis Advisor Department of Electrical and Comte Engineering ii ABSIRACT The recent availability
ERIC Educational Resources Information Center
Periago, M. Cristina; Bohigas, Xavier
2005-01-01
The aim of this research was to evaluate and analyse second-year industrial engineering and chemical engineering students prior knowledge of conceptual aspects of "circuit theory". Specifically, we focused on the basic concepts of electric potential and current intensity and on the fundamental relationship between them as expressed by Ohm's law.…
Mechatronics education at Virginia Tech
NASA Astrophysics Data System (ADS)
Bay, John S.; Saunders, William R.; Reinholtz, Charles F.; Pickett, Peter; Johnston, Lee
1998-12-01
The advent of more complex mechatronic systems in industry has introduced new opportunities for entry-level and practicing engineers. Today, a select group of engineers are reaching out to be more knowledgeable in a wide variety of technical areas, both mechanical and electrical. A new curriculum in mechatronics developed at Virginia Tech is starting to bring students from both the mechanical and electrical engineering departments together, providing them wit an integrated perspective on electromechanical technologies and design. The course is cross-listed and team-taught by faculty from both departments. Students from different majors are grouped together throughout the course, each group containing at least one mechanical and one electrical engineering student. This gives group members the ability to learn from one another while working on labs and projects.
Design of electrical stimulation bioreactors for cardiac tissue engineering.
Tandon, N; Marsano, A; Cannizzaro, C; Voldman, J; Vunjak-Novakovic, G
2008-01-01
Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. Carbon electrodes were found in past studies to have the best current injection characteristics. The goal of this study was to develop rational experimental design principles for the electrodes and stimulation regime, in particular electrode configuration, electrode ageing, and stimulation amplitude. Carbon rod electrodes were compared via electrochemical impedance spectroscopy (EIS) and we identified a safety range of 0 to 8 V/cm by comparing excitation thresholds and maximum capture rates for neonatal rat cardiomyocytes cultured with electrical stimulation. We conclude with recommendations for studies involving carbon electrodes for cardiac tissue engineering.
NASA Astrophysics Data System (ADS)
Endryansyah; Wanarti Rusimamto, Puput; Ridianto, Adam; Sugiarto, Hariyadi
2018-04-01
In the Department of Electrical Engineering FT Unesa, there are 3 majors: S1 Electrical Engineering Education, S1 Electrical Engineering, and D3 Electrical Engineering. Courses the Basic System Settings go to in the curriculum of the three programs. Team lecturer college of basic system settings seek learning innovation, focused on the development of trainer to student practicum at the laboratory of systems control. Trainer developed is a servo motor along with the lab module that contains a wide variety of theories about the servo motor and guide the practicum. This research type is development research using methods Research & development (R & D). In which the steps are applied in this study is as follows: pay attention to the potential and existing problems, gather information and study the literature, design the product, validate the design, revise the design, a limited trial. The results of the validation of learning device in the form of modules and trainer obtained as follows: score validation of learning device is 3,64; score validation lab module Servo Motor is 3,47; and questionnaire responses of students is 3,73. The result of the whole validation value is located in the interval >of 3.25 s/d 4 with the category of “Very Valid”, so it can be concluded that all instruments have a level of validity “Very Valid” and worthy of use for further learning.
77 FR 21989 - Collection of Information Under Review by Office of Management and Budget
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-12
... Requests 1. Title: Title 46 CFR Subchapter Q: Lifesaving, Electrical, Engineering and Navigation Equipment... following collection of information: 1625-0035, Title 46 CFR Subchapter Q: Lifesaving, Electrical, Engineering and Navigation Equipment, Construction and Materials & Marine Sanitation Devices (33 CFR part 159...
Teaching Sustainability Analysis in Electrical Engineering Lab Courses
ERIC Educational Resources Information Center
Braun, D.
2010-01-01
Laboratory courses represent an incompletely tapped opportunity to teach sustainability concepts. This work introduces and evaluates a simple strategy used to teach sustainability concepts in electrical engineering laboratory courses. The technique would readily adapt to other disciplines. The paper presents assessment data and a wiki containing…
7 CFR 1724.32 - Inspection and certification of work order construction.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND... construction. The provisions of this section apply to all borrower electric system facilities regardless of the... performed within 6 months of the completion of construction, and are performed by a licensed engineer...
7 CFR 1724.32 - Inspection and certification of work order construction.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND... construction. The provisions of this section apply to all borrower electric system facilities regardless of the... performed within 6 months of the completion of construction, and are performed by a licensed engineer...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-23
... engine and engine parts manufacturing,'' ``Motor vehicle electrical and electronic equipment... manufacturing,'' ``Other motor vehicle electrical and electronic equipment manufacturing,'' and ``All other motor vehicle parts manufacturing'' in the second column from the list of required NAICS codes for the...
Electromagnetic compatibility of PLC adapters for in-home/domestic networks
NASA Astrophysics Data System (ADS)
Potisk, Lukas; Hallon, Jozef; Orgon, Milos; Fujdiak, Radek
2018-01-01
The use of programable logic controllers (PLC) technology in electrical networks 230 V causes electromagnetic radiation that interferes with other electrical equipment connected to the network [1-4]. Therefore, this article describes the issues of electromagnetic compatibility (EMC) of new PLC adapters used in IP broadband services in a multi-user environment. The measurements of disturbing electromagnetic field originated in PLC adapters were made in a certified laboratory EMC (laboratory of electromagnetic compatibility) in the Institute of Electrical Engineering at Faculty of Electrical Engineering and Information Technology of the Slovak University of Technology in Bratislava. The measured spectra of the radiated electromagnetic field will be compared with the results obtained when testing older PLC modems [5].
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC. Job Corps.
This self-study program for high-school level contains lessons on: Speed, Acceleration, and Velocity; Force, Mass, and Distance; Types of Motion and Rest; Electricity and Magnetism; Electrical, Magnetic, and Gravitational Fields; The Conservation and Conversion of Matter and Energy; Simple Machines and Work; Gas Laws; Principles of Heat Engines;…
46 CFR 111.01-17 - Voltage and frequency variations.
Code of Federal Regulations, 2013 CFR
2013-10-01
....01-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-17 Voltage and frequency variations. Unless otherwise stated, electrical equipment must function at variations of at least ±5 percent of rated frequency...
46 CFR 111.01-17 - Voltage and frequency variations.
Code of Federal Regulations, 2010 CFR
2010-10-01
....01-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-17 Voltage and frequency variations. Unless otherwise stated, electrical equipment must function at variations of at least ±5 percent of rated frequency...
46 CFR 111.01-17 - Voltage and frequency variations.
Code of Federal Regulations, 2011 CFR
2011-10-01
....01-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-17 Voltage and frequency variations. Unless otherwise stated, electrical equipment must function at variations of at least ±5 percent of rated frequency...
46 CFR 111.01-17 - Voltage and frequency variations.
Code of Federal Regulations, 2012 CFR
2012-10-01
....01-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-17 Voltage and frequency variations. Unless otherwise stated, electrical equipment must function at variations of at least ±5 percent of rated frequency...
46 CFR 111.01-17 - Voltage and frequency variations.
Code of Federal Regulations, 2014 CFR
2014-10-01
....01-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-17 Voltage and frequency variations. Unless otherwise stated, electrical equipment must function at variations of at least ±5 percent of rated frequency...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Appliances. 111.77-3 Section 111.77-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Appliances and Appliance Circuits § 111.77-3 Appliances. All electrical appliances, including, but...
7 CFR 1724.53 - Preparation of plans and specifications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.53 Preparation of plans and specifications. The provisions of this section apply to all borrower electric system facilities regardless of the source of financing. (a...
7 CFR 1724.53 - Preparation of plans and specifications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.53 Preparation of plans and specifications. The provisions of this section apply to all borrower electric system facilities regardless of the source of financing. (a...
7 CFR 1724.53 - Preparation of plans and specifications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.53 Preparation of plans and specifications. The provisions of this section apply to all borrower electric system facilities regardless of the source of financing. (a...
7 CFR 1724.53 - Preparation of plans and specifications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.53 Preparation of plans and specifications. The provisions of this section apply to all borrower electric system facilities regardless of the source of financing. (a...
30 CFR 250.1628 - Design, installation, and operation of production systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... mechanical and electrical systems to be installed was approved by registered professional engineers. After... Installation of Offshore Production Platform Piping Systems; (3) Electrical system information including a plan... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as...
46 CFR 111.97-9 - Overcurrent protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Overcurrent protection. 111.97-9 Section 111.97-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-9 Overcurrent protection...
46 CFR 111.97-9 - Overcurrent protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Overcurrent protection. 111.97-9 Section 111.97-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-9 Overcurrent protection...
46 CFR 111.97-9 - Overcurrent protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Overcurrent protection. 111.97-9 Section 111.97-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-9 Overcurrent protection...
46 CFR 111.97-9 - Overcurrent protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Overcurrent protection. 111.97-9 Section 111.97-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-9 Overcurrent protection...
46 CFR 111.60-17 - Connections and terminations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Connections and terminations. 111.60-17 Section 111.60-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC... general, connections and terminations to all conductors must retain the original electrical, mechanical...
46 CFR 111.60-17 - Connections and terminations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Connections and terminations. 111.60-17 Section 111.60-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC... general, connections and terminations to all conductors must retain the original electrical, mechanical...
46 CFR 111.60-17 - Connections and terminations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Connections and terminations. 111.60-17 Section 111.60-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC... general, connections and terminations to all conductors must retain the original electrical, mechanical...
46 CFR 111.50-2 - Systems integration.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Systems integration. 111.50-2 Section 111.50-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Overcurrent Protection § 111.50-2 Systems integration. The electrical characteristics of each...
Fuel Cells Provide Reliable Power to U.S. Postal Service Facility in Anchorage, Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Steven
2003-01-01
Working together, the U.S. Postal Service (USPS) and Chugach Electric Association, partnering with the Department of Defense (DOD), Department of Energy (DOE), US Army Corps of Engineers Construction Engineering Research Laboratories (USA CERL), Electric Power Research Institute (EPRI), and National Rural Electric Cooperative Association (NRECA), developed and installed one of the largest fuel cell installations in the world. The one-megawatt fuel cell combined heat and power plant sits behind the Anchorage U.S. Postal Service Mail Processing and Distribution Facility. Chugach Electric owns, operates, and maintains the fuel cell power plant, which provides clean, reliable power to the USPS facility. Inmore » addition, heat recovered from the fuel cells, in the form of hot water, is used to heat the USPS Mail Processing and Distribution Facility. By taking a leadership role, the USPS will save over $800,000 in electricity and natural gas costs over the 5 1/2-year contract term with Chugach Electric.« less
Investigation of the part-load performance of two 1.12 MW regenerative marine gas turbines
NASA Astrophysics Data System (ADS)
Korakianitis, T.; Beier, K. J.
1994-04-01
Regenerative and intercooled-regenerative gas turbine engines with low pressure ratio have significant efficiency advantages over traditional aero-derivative engines of higher pressure ratios, and can compete with modern diesel engines for marine propulsion. Their performance is extremely sensitive to thermodynamic-cycle parameter choices and the type of components. The performances of two 1.12 MW (1500 hp) regenerative gas turbines are predicted with computer simulations. One engine has a single-shaft configuration, and the other has a gas-generator/power-turbine combination. The latter arrangement is essential for wide off-design operating regime. The performance of each engine driving fixed-pitch and controllable-pitch propellers, or an AC electric bus (for electric-motor-driven propellers) is investigated. For commercial applications the controllable-pitch propeller may have efficiency advantages (depending on engine type and shaft arrangements). For military applications the electric drive provides better operational flexibility.
The performance of solar thermal electric power systems employing small heat engines
NASA Technical Reports Server (NTRS)
Pons, R. L.
1980-01-01
The paper presents a comparative analysis of small (10 to 100 KWe) heat engines for use with a solar thermal electric system employing the point-focusing, distributed receiver (PF-DR) concept. Stirling, Brayton, and Rankine cycle engines are evaluated for a nominal overall system power level of 1 MWe, although the concept is applicable to power levels up to at least 10 MWe. Multiple concentrators are electrically connected to achieve the desired plant output. Best performance is achieved with the Stirling engine, resulting in a system Levelized Busbar Energy Cost of just under 50 mills/kWH and a Capital Cost of $900/kW, based on the use of mass-produced components. Brayton and Rankine engines show somewhat less performance but are viable alternatives with particular benefits for special applications. All three engines show excellent performance for the small community application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirschkron, R.; Davis, R.H.; Warren, R.E.
1979-04-30
This study developed data on General Electric common core derivative engines for use in Maritime Patrol Aircraft (MPA) concept formulation studies. The study included the screening of potential General Electric turbofan and turboprop/turboshaft engines and the preparation of technical and planning information on three of the most promising engine candidates. Screening of General Electric derivative candidates was performed utilizing an analytical MPA model using synthesized mission profiles to rank the candidates in terms of fuel consumption, weight, cost and complexity. The three turboprop engines selected for further study were as follows: TF34 growth derivative version with boost and new LPTmore » (TF34/T7 Study A1), F404 derivative with booster stages and new LPT (F404/T1 Study A1), and GE27 scaled and boosted study engine (GE27/T3 Study A1). Volume I summarizes the screening analysis and contains technical, planning, installation, cost and development data for the three selected turboprop engines. Volumes II, III and IV of this report contain the detailed performance data estimates for the GE27/T3 Study A1, TF34/T7 Study A1 and F404/T1 Study A1 turboprop engines, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirschkron, R.; Davis, R.H.; Warren, R.E.
1979-04-30
This study developed data on General Electric common core derivative engines for use in Maritime Patrol Aircraft (MPA) concept formulation studies. The study included the screening of potential General Electric turbofan and turboprop/turboshaft engines and the preparation of technical and planning information on three of the most promising engine candidates. Screening of General Electric derivative candidates was performed utilizing an analytical MPA model using synthesized mission profiles to rank the candidates in terms of fuel consumption, weight, cost and complexity. The three turboprop engines selected for further study were as follows: TF34 growth derivative version with boost and new LPTmore » (TF34/T7 Study A1), F404 derivative with booster stages and new LPT (F404/T1 Study A1), and GE27 scaled and boosted study engine (GE27/T3 Study A1). Volume I summarizes the screening analysis and contains technical, planning, installation, cost and development data for the three selected turboprop engines. Volumes II, III and IV of this report contain the detailed performance data estimates for the GE27/T3 Study A1, TF34/T7 Study A1 and F404/T1 Study A1 turboprop engines, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirschkron, R.; Davis, R.H.; Warren, R.E.
1979-04-30
This study developed data on General Electric common core derivative engines for use in Maritime Patrol Aircraft (MPA) concept formulation studies. The study included the screening of potential General Electric turbofan and turboprop/turboshaft engines and the preparation of technical and planning information on three of the most promising engine candidates. Screening of General Electric derivative candidates was performed utilizing an analytical MPA model using synthesized mission profiles to rank the candidates in terms of fuel consumption, weight, cost and complexity. The three turboprop engines selected for further study were as follows: TF34 growth derivative version with boost and new LPTmore » (TF34/T7 Study A1), F404 derivative with booster stages and new LPT (F404/T1 Study A1), and GE27 scaled and boosted study engine (GE27/T3 Study A1). Volume I summarizes the screening analysis and contains technical, planning, installation, cost and development data for the three selected turboprop engines. Volumes II, III and IV of this report contain the detailed performance data estimates for the GE27/T3 Study A1, TF34/T7 Study A1 and F404/T1 Study A1 turboprop engines, respectively.« less
NASA Astrophysics Data System (ADS)
Ivanov, A. S.; Kalanchin, I. Yu; Pugacheva, E. E.
2017-09-01
One of the first electric motors, based on the use of electromagnets, was a reluctance motor in the XIX century. Due to the complexities in the implementation of control system the development of switched reluctance electric machines was repeatedly initiated only in 1960 thanks to the development of computers and power electronic devices. The main feature of these machines is the capacity to work both in engine mode and in generator mode. Thanks to a simple and reliable design in which there is no winding of the rotor, commutator, permanent magnets, a reactive gate-inductor electric drive operating in the engine mode is actively being introduced into various areas such as car industry, production of household appliances, wind power engineering, as well as responsible production processes in the oil and mining industries. However, the existing shortcomings of switched reluctance electric machines, such as nonlinear pulsations of electromagnetic moment, the presence of three or four phase supply system and sensor of rotor position prevent wide distribution of this kind of electric machines.