Sample records for electrical engineering laboratory

  1. First-year Engineering Education with the Creative Electrical Engineering Laboratory

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Takehiko; Sugito, Tetsumasa; Ozeki, Osamu; Ushiroda, Sumio

    The Department of Electrical and Electronic Engineering in Toyota National College of Technology has put great emphasis on fundamental subjects. We introduced the creative electrical engineering laboratory into the first-year engineering education since 1998. The laboratory concentrates on the practice exercise. The final questionnaire of students showed that our first-year education is very effective to promote students motivation and their scholastic ability in engineering.

  2. Laboratory Manual, Electrical Engineering 25.

    ERIC Educational Resources Information Center

    Syracuse Univ., NY. Dept. of Electrical Engineering.

    Developed as part of a series of materials in the electrical engineering sequence developed under contract with the United States Office of Education, this laboratory manual provides nine laboratory projects suitable for a second course in electrical engineering. Dealing with resonant circuits, electrostatic fields, magnetic devices, and…

  3. Space Electric Research Test in the Electric Propulsion Laboratory

    NASA Image and Video Library

    1964-06-21

    Technicians prepare the Space Electric Research Test (SERT-I) payload for a test in Tank Number 5 of the Electric Propulsion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. These electric engines created and accelerated small particles of propellant material to high exhaust velocities. Electric engines have a very small amount of thrust, but once lofted into orbit by workhorse chemical rockets, they are capable of small, continuous thrust for periods up to several years. The electron bombardment thruster operated at a 90-percent efficiency during testing in the Electric Propulsion Laboratory. The package was rapidly rotated in a vacuum to simulate its behavior in space. The SERT-I mission, launched from Wallops Island, Virginia, was the first flight test of Kaufman’s ion engine. SERT-I had one cesium engine and one mercury engine. The suborbital flight was only 50 minutes in duration but proved that the ion engine could operate in space. The Electric Propulsion Laboratory included two large space simulation chambers, one of which is seen here. Each uses twenty 2.6-foot diameter diffusion pumps, blowers, and roughing pumps to remove the air inside the tank to create the thin atmosphere. A helium refrigeration system simulates the cold temperatures of space.

  4. The Development and Evaluation of Industrial Case Studies to Support a New Laboratory Course in Electrical Engineering.

    ERIC Educational Resources Information Center

    Bolton, B.; Adderley, K. J.

    1978-01-01

    After viewing videotaped case studies indicating the relevance of electrical laboratory work to professional engineers, student attitudes showed a positive improvement toward laboratory work. Semantic differential tests, questionnaires, and interviews were used. (Author/MH)

  5. Pedagogical Evaluation of Remote Laboratories in eMerge Project

    ERIC Educational Resources Information Center

    Lang, Daniela; Mengelkamp, Christoph; Jaeger, Reinhold S.; Geoffroy, Didier; Billaud, Michel; Zimmer, Thomas

    2007-01-01

    This study investigates opportunities for conducting electrical engineering experiments via the Internet rather than in an actual laboratory. Eighty-four French students of electrical engineering (semester 1, 2004) at Bordeaux University 1 participated in practical courses. Half of the students performed experiments in a laboratory while the other…

  6. Department of Defense Instrumentation Award.

    DTIC Science & Technology

    1985-07-01

    Office of Scientific Research Prepared by The Electrical Engineering Department and The Laboratory for Plasma and Fusion Energy Studies University of...Electrical Engineering Department Laboratory for Plasma and Fusion Energy Studies University of Maryland College Park, Maryland 20742 Principal Investigator

  7. Interior of Vacuum Tank at the Electric Propulsion Laboratory

    NASA Image and Video Library

    1961-08-21

    Interior of the 20-foot diameter vacuum tank at the NASA Lewis Research Center’s Electric Propulsion Laboratory. Lewis researchers had been studying different electric rocket propulsion methods since the mid-1950s. Harold Kaufman created the first successful ion engine, the electron bombardment ion engine, in the early 1960s. These engines used electric power to create and accelerate small particles of propellant material to high exhaust velocities. Electric engines have a very small thrust, but can operate for long periods of time. The ion engines are often clustered together to provide higher levels of thrust. The Electric Propulsion Laboratory, which began operation in 1961, contained two large vacuum tanks capable of simulating a space environment. The tanks were designed especially for testing ion and plasma thrusters and spacecraft. The larger 25-foot diameter tank included a 10-foot diameter test compartment to test electric thrusters with condensable propellants. The portals along the chamber floor lead to the massive exhauster equipment that pumped out the air to simulate the low pressures found in space.

  8. United States Air Force Summer Research Program -- 1993 Summer Research Program Final Reports. Volume 10. Wright Laboratory

    DTIC Science & Technology

    1993-01-01

    LABORATORIES 5800 Uplander Way Culver City, CA 90230-6608 Program Director, RDL Program Manager , AFOSR Gary Moore Col. Hal Rhoades Program Manager , RDL...Laboratory: PL/RK Aerospace Engineering University of Cinc nati Vol-Page No: 8-10 Cincinnati, OH 45221-0000 Burns, Paul Field: Electrical Engineering as...Laboratory: PL/GP Electrical Engineering Boston University Vol-Page No: a- 5 Boston, MA 2215-0000 GSRP Participant Data Stauffer, Joseph Field: Management MS

  9. Reengineering Electrical Engineering Undergraduate Laboratories at Escola Politecnica, University of Sao Paulo.

    ERIC Educational Resources Information Center

    Seabra, Antonio C.; Consonni, Denise

    Brazilian engineering schools are under a strict program to reengineer their courses with the financial support of the federal agencies. At the electronic engineering department at the University of Sao Paulo, this process started by modifying the Basic Electricity and Electronic Laboratories. This paper describes the new structure of these labs…

  10. The Advancement in Using Remote Laboratories in Electrical Engineering Education: A Review

    ERIC Educational Resources Information Center

    Almarshoud, A. F.

    2011-01-01

    The rapid development in Internet technology and its big popularity has led some universities around the world to incorporate web-based learning in some of their programmes. The present paper introduces a comprehensive survey of the publications about using remote laboratories in electrical engineering education. Remote laboratories are web-based,…

  11. Online-BSEE (Online Bachelor of Science in Electrical Engineering): An Asynchronous Online Electrical Engineering Degree Program with Laboratory

    ERIC Educational Resources Information Center

    Tang, Wendy; Westgate, Charles; Liu, Pao-Lo; Gouzman, Michael

    2014-01-01

    The Online Bachelor of Science in Electrical Engineering is a collaborative effort among three University Centers at SUNY (State University of New York), namely Stony Brook, Binghamton, and Buffalo. The program delivers the complete electrical engineering curriculum at the bachelor level to students online and asynchronously. Students, however,…

  12. Motivational project-based laboratory for a common first year electrical engineering course

    NASA Astrophysics Data System (ADS)

    Nedic, Zorica; Nafalski, Andrew; Machotka, Jan

    2010-08-01

    Over the past few years many universities worldwide have introduced a common first year for all engineering disciplines. This is despite the opinion of many academics that large classes have negative effects on the learning outcomes of first year students. The University of South Australia is also faced with low motivation amongst engineering students studying non-major courses. In 2006, a project-based laboratory was successfully introduced for first year students enrolled in electrical disciplines, which increased student satisfaction, reduced the attrition rate and improved students' success rate. This paper presents the experiences with the project-based laboratory's implementation in three different projects in the common first year course, Electrical and Energy Systems, where each project aims to increase the motivation of students in one of three disciplines: electrical, mechanical or civil engineering.

  13. Teaching Sustainability Analysis in Electrical Engineering Lab Courses

    ERIC Educational Resources Information Center

    Braun, D.

    2010-01-01

    Laboratory courses represent an incompletely tapped opportunity to teach sustainability concepts. This work introduces and evaluates a simple strategy used to teach sustainability concepts in electrical engineering laboratory courses. The technique would readily adapt to other disciplines. The paper presents assessment data and a wiki containing…

  14. Development and Testing of an Experimental Mobile Instructional Facility for Applied Courses in Engineering Technology.

    ERIC Educational Resources Information Center

    Kleine, Louis W.

    The experimental pilot project was conducted to determine whether students who take the laboratory phase of an engineering technology applied electricity course in a mobile laboratory at branch schools demonstrate proficiency comparable to students who take the applied electricity course in permanent facilities at the parent institution. The…

  15. Decoding Student Satisfaction: How to Manage and Improve the Laboratory Experience

    ERIC Educational Resources Information Center

    Nikolic, Sasha; Ritz, Christian; Vial, Peter James; Ros, Montserrat; Stirling, David

    2015-01-01

    The laboratory plays an important role in teaching engineering skills. An Electrical Engineering department at an Australian University implemented a reform to monitor and improve student satisfaction with the teaching laboratories. A Laboratory Manager was employed to oversee the quality of 27 courses containing instructional laboratories.…

  16. Efficacy of a Virtual Teaching Assistant in an Open Laboratory Environment for Electric Circuits

    ERIC Educational Resources Information Center

    Saleheen, Firdous; Wang, Zicong; Picone, Joseph; Butz, Brian P.; Won, Chang-Hee

    2018-01-01

    In order to provide an on-demand, open electrical engineering laboratory, we developed an innovative software-based Virtual Open Laboratory Teaching Assistant (VOLTA). This web-based virtual assistant provides laboratory instructions, equipment usage videos, circuit simulation assistance, and hardware implementation diagnostics. VOLTA allows…

  17. Educational-research laboratory "electric circuits" on the base of digital technologies

    NASA Astrophysics Data System (ADS)

    Koroteyev, V. I.; Florentsev, V. V.; Florentseva, N. I.

    2017-01-01

    The problem of research activity of trainees' activation in the educational-research laboratory "Electric Circuits" using innovative methodological solutions and digital technologies is considered. The main task is in creation of the unified experimental research information-educational environment "Electrical Engineering". The problems arising during the developing and application of the modern software and hardware, experimental and research stands and digital control and measuring systems are presented. This paper presents the main stages of development and creation of educational-research laboratory "Electrical Circuits" at the Department of Electrical Engineering of NRNU MEPhI. The authors also consider the analogues of the described research complex offered by various educational institutions and companies. The analysis of their strengths and weaknesses, on which the advantages of the proposed solution are based, is held.

  18. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  19. Distance Learning and Skill Acquisition in Engineering Sciences: Present State and Prospects

    ERIC Educational Resources Information Center

    Potkonjak, Veljko; Jovanovic, Kosta; Holland, Owen; Uhomoibhi, James

    2013-01-01

    Purpose: The purpose of this paper is to present an improved concept of software-based laboratory exercises, namely a Virtual Laboratory for Engineering Sciences (VLES). Design/methodology/approach: The implementation of distance learning and e-learning in engineering sciences (such as Mechanical and Electrical Engineering) is still far behind…

  20. A One-Credit Hands-On Introductory Course in Electrical and Computer Engineering Using a Variety of Topic Modules

    ERIC Educational Resources Information Center

    Pierre, J. W.; Tuffner, F. K.; Anderson, J. R.; Whitman, D. L.; Ula, A. H. M. S.; Kubichek, R. F.; Wright, C. H. G.; Barrett, S. F.; Cupal, J. J.; Hamann, J. C.

    2009-01-01

    This paper describes a one-credit laboratory course for freshmen majoring in electrical and computer engineering (ECE). The course is motivational in nature and exposes the students to a wide range of areas of electrical and computer engineering. The authors believe it is important to give freshmen a broad perspective of what ECE is all about, and…

  1. ETR ELECTRICAL BUILDING, TRA648, INTERIOR. SWITCHGEAR. INL NEGATIVE NO. 563794. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR ELECTRICAL BUILDING, TRA-648, INTERIOR. SWITCHGEAR. INL NEGATIVE NO. 56-3794. Jack L. Anderson, Photographer, 11/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  2. ETR ELECTRICAL BUILDING, TRA648. BATTERY ROOM. INL NEGATIVE NO. 563785. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR ELECTRICAL BUILDING, TRA-648. BATTERY ROOM. INL NEGATIVE NO. 56-3785. Jack L. Anderson, Photographer, 11/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. 46 CFR 194.15-19 - Electrical.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....15-19 Electrical. (a) All electrical equipment located within 18 inches of the deck of the chemical laboratory shall be in accordance with the applicable requirements of Subchapter J (Electrical Engineering...

  4. 46 CFR 194.15-19 - Electrical.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....15-19 Electrical. (a) All electrical equipment located within 18 inches of the deck of the chemical laboratory shall be in accordance with the applicable requirements of Subchapter J (Electrical Engineering...

  5. 46 CFR 194.15-19 - Electrical.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....15-19 Electrical. (a) All electrical equipment located within 18 inches of the deck of the chemical laboratory shall be in accordance with the applicable requirements of Subchapter J (Electrical Engineering...

  6. 46 CFR 194.15-19 - Electrical.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....15-19 Electrical. (a) All electrical equipment located within 18 inches of the deck of the chemical laboratory shall be in accordance with the applicable requirements of Subchapter J (Electrical Engineering...

  7. 46 CFR 194.15-19 - Electrical.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....15-19 Electrical. (a) All electrical equipment located within 18 inches of the deck of the chemical laboratory shall be in accordance with the applicable requirements of Subchapter J (Electrical Engineering...

  8. Elevating Learner Achievement Using Formative Electronic Lab Assessments in the Engineering Laboratory: A Viable Alternative to Weekly Lab Reports

    ERIC Educational Resources Information Center

    Chen, Baiyun; DeMara, Ronald F.; Salehi, Soheil; Hartshorne, Richard

    2018-01-01

    A laboratory pedagogy interweaving weekly student portfolios with onsite formative electronic laboratory assessments (ELAs) is developed and assessed within the laboratory component of a required core course of the electrical and computer engineering (ECE) undergraduate curriculum. The approach acts to promote student outcomes, and neutralize…

  9. Engineer Examines Cluster of Ion Engines in the Electric Propulsion Laboratory

    NASA Image and Video Library

    1963-01-21

    New staff member Paul Margosian inspects a cluster of ion engines in the Electric Propulsion Laboratory’s 25-foot diameter vacuum tank at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. These engines used electric power to create and accelerate small particles of propellant material to high exhaust velocities. Electric engines have a very small thrust, and but can operate for long periods of time. The ion engines are often clustered together to provide higher levels of thrust. The Electric Propulsion Laboratory contained two large vacuum tanks capable of simulating the space environment. The tanks were designed especially for testing ion and plasma thrusters and spacecraft. The larger 25-foot diameter tank was intended for testing electric thrusters with condensable propellants. The tank’s test compartment, seen here, was 10 feet in diameter. Margosian joined Lewis in late 1962 during a major NASA hiring phase. The Agency reorganized in 1961 and began expanding its ranks through a massive recruiting effort. Lewis personnel increased from approximately 2,700 in 1961 to over 4,800 in 1966. Margosian, who worked with Bill Kerslake in the Electromagnetic Propulsion Division’s Propulsion Systems Section, wrote eight technical reports on mercury and electron bombardment thrusters, thermoelectrostatic generators, and a high voltage insulator.

  10. MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENT NO. 1. INL NEGATIVE NO. 6510. Unknown Photographer, 9/29/1959 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. United States Air Force Summer Research Program -- 1993. Volume 9. Rome Laboratory

    DTIC Science & Technology

    1993-12-01

    Walter Field: Electrical Engineering MS Laboratory: RL/IR Electrical Engineering University of Maine Vol-Page No: 9- 9 Orono, ME 4469-0000 Swindal, J...0000 Tipton, Kevin Field: Zoology MS Laboratory: AL/CF Nutrition and Food Scienc Auburn University Vol-Page No: 7-11 Auburn, AL 36849-5605 Tornow ...deterministic analysis assumed only 1-17 one handling. w ~vA-A-, PPIMAJý PATH Legen(3ND P"ysCaI LinK (forwarid VPC P’ýs Cal L-,* (reverse VPC) Figure 8. OPNET

  12. Introducing Creativity in a Design Laboratory for a Freshman Level Electrical and Computer Engineering Course

    ERIC Educational Resources Information Center

    Burkett, Susan L.; Kotru, Sushma; Lusth, John C.; McCallum, Debra; Dunlap, Sarah

    2014-01-01

    Dunlap, The University of Alabama, USA ABSTRACT In the electrical and computer engineering (ECE) curriculum at The University of Alabama, freshmen are introduced to fundamental electrical concepts and units, DC circuit analysis techniques, operational amplifiers, circuit simulation, design, and professional ethics. The two credit course has both…

  13. Juan Torres - Associate Laboratory Director, Energy Systems Integration |

    Science.gov Websites

    Facility (ESIF) to strengthen the security and resilience of the nation's electrical grid. He leads NREL's Laboratories as an electrical engineer, in several management positions, and most recently as deputy to the effort to modernize the nation's electrical grid. Torres holds a bachelor's degree in electronics

  14. Investigation of the General Electric I-40 Jet-Propulsion Engine in the Cleveland Altitude Wind Tunnel. 2 - Analysis of Compressor Performance Characteristics

    DTIC Science & Technology

    1946-11-18

    INVESTIGATION OF THE GENERAL ELECTRIC 1-40 JET -PROPULSION ENGINE IN THE CLEVELAND ALTITUDE WIND TUNNEL .; II - ANALYSIS OF COMPRESSOR PERFORMANCE...CHARACTERISTICS By Robert 0. Dietz, Jr. and Robert M. Gelsenheyner Aircraft Engine Research Laboratory 1 Cleveland, Ohio !f -NOT FM ED", P 0 W DESTROY...Command, Army Air Forces INVESTIGATION OF THE GENERAL ELECTRIC 1-40 JET -PROPULSION ENGINE IN THE CLEVELAND ALTITUDE WIND TUNNEL II - ANALYSIS OF

  15. Concept Development and Meaningful Learning among Electrical Engineering Students Engaged in a Problem-Based Laboratory Experience

    ERIC Educational Resources Information Center

    Bledsoe, Karen E.; Flick, Lawrence

    2012-01-01

    This phenomenographic study documented changes in student-held electrical concepts the development of meaningful learning among students with both low and high prior knowledge within a problem-based learning (PBL) undergraduate electrical engineering course. This paper reports on four subjects: two with high prior knowledge and two with low prior…

  16. Electromagnetic compatibility of PLC adapters for in-home/domestic networks

    NASA Astrophysics Data System (ADS)

    Potisk, Lukas; Hallon, Jozef; Orgon, Milos; Fujdiak, Radek

    2018-01-01

    The use of programable logic controllers (PLC) technology in electrical networks 230 V causes electromagnetic radiation that interferes with other electrical equipment connected to the network [1-4]. Therefore, this article describes the issues of electromagnetic compatibility (EMC) of new PLC adapters used in IP broadband services in a multi-user environment. The measurements of disturbing electromagnetic field originated in PLC adapters were made in a certified laboratory EMC (laboratory of electromagnetic compatibility) in the Institute of Electrical Engineering at Faculty of Electrical Engineering and Information Technology of the Slovak University of Technology in Bratislava. The measured spectra of the radiated electromagnetic field will be compared with the results obtained when testing older PLC modems [5].

  17. Engineering Technology Education: Bibliography 1989.

    ERIC Educational Resources Information Center

    Dyrud, Marilyn A., Comp.

    1990-01-01

    Over 200 references divided into 24 different areas are presented. Topics include administration, aeronautics, architecture, biomedical technology, CAD/CAM, civil engineering, computers, curriculum, electrical/electronics engineering, industrial engineering, industry and employment, instructional technology, laboratories, lasers, liberal studies,…

  18. Design of Electronic Experiments Using Computer Generated Virtual Instruments

    DTIC Science & Technology

    1994-03-01

    work associated with the classical electronics laboratory experiments required in a tpical Electrical Engineering program. This thesis reports the...requiremnents for the degree of MASTER OF SCIENCE IN ELECITRICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL March 1994 Aufhfi_...Thcdore Joseph SerbinskI Approved by: Sherif Michael, Thesis Advisor Department of Electrical and Comte Engineering ii ABSIRACT The recent availability

  19. Supercharger Research at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1944-01-21

    A researcher in the Supercharger Research Division at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory measures the blade thickness on a supercharger. Superchargers were developed at General Electric used to supply additional air to reciprocating engines. The extra air resulted in increased the engine’s performance, particularly at higher altitudes. The Aircraft Engine Research Laboratory had an entire division dedicated to superchargers during World War II. General Electric developed the supercharger in response to a 1917 request from the NACA to develop a device to enhance high-altitude flying. The supercharger pushed larger volumes of air into the engine manifold. The extra oxygen allowed the engine to operate at its optimal sea-level rating even when at high altitudes. Thus, the aircraft could maintain its climb rate, maneuverability and speed as it rose higher into the sky. NACA work on the supercharger ceased after World War II due to the arrival of the turbojet engine. The Supercharger Research Division was disbanded in October 1945 and reconstituted as the Compressor and Turbine Division.

  20. ETR ELECTRICAL BUILDING, TRA648. EMERGENCY STANDBY GENERATOR AND DIESEL UNIT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR ELECTRICAL BUILDING, TRA-648. EMERGENCY STANDBY GENERATOR AND DIESEL UNIT. METAL ROOF AND PUMICE BLOCK WALLS. CAMERA FACING SOUTHWEST. INL NEGATIVE NO. 56-3708. R.G. Larsen, Photographer, 11/13/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. ETR ELECTRICAL BUILDING, TRA648. FLOOR PLANS FOR FIRST FLOOR AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR ELECTRICAL BUILDING, TRA-648. FLOOR PLANS FOR FIRST FLOOR AND BASEMENT. SECTIONS. KAISER ETR-5528-MTR-648-A-2, 12/1955. INL INDEX NO. 532-0648-00-486-101402, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  2. ETR ELECTRICAL BUILDING, TRA648. ELEVATIONS AND DETAILS. ROOF PLAN. DOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR ELECTRICAL BUILDING, TRA-648. ELEVATIONS AND DETAILS. ROOF PLAN. DOOR SCHEDULE. KAISER ETR-5528-MTR-648-A-3, 1/1956. INL INDEX NO. 532-0648-00-486-101403, REV. 5. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. PROCESS WATER BUILDING, TRA605, INTERIOR. FIRST FLOOR. ELECTRICAL EQUIPMENT IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605, INTERIOR. FIRST FLOOR. ELECTRICAL EQUIPMENT IN LEFT HALF OF VIEW. CAMERA IS IN NORTHWEST CORNER FACING SOUTHEAST. INL NEGATIVE NO. HD46-27-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. ETR, TRA642. ELEVATIONS. METAL SIDING. OFFICE BUILDING (TRA647) AND ELECTRICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. ELEVATIONS. METAL SIDING. OFFICE BUILDING (TRA-647) AND ELECTRICAL BUILDING (TRA-648) ATTACHED. KAISER ETR-5528-MTR-642-A-11, 11/1955. INL INDEX NO. 532-0642-00-486-100919, REV. 3. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  5. ETR, TRA642. WALL SECTION DETAILS. METAL SIDING JOINS TO ELECTRICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. WALL SECTION DETAILS. METAL SIDING JOINS TO ELECTRICAL BUILDING, OFFICE BUILDING, AND ROOF. KAISER ETR-5528-MTR-A-13, 11/1955. INL INDEX NO. 532-0642-00-486-100920, REV. 4. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  6. Chemical Sciences and Engineering - US China Electric Vehicle and Battery

    Science.gov Websites

    Technology Workshop Argonne National Laboratory Chemical Sciences & Engineering DOE Logo Photo Gallery Hotels Maps Bus Schedule Contact Us TCS Building and Conference Center, Argonne National Lab TCS Building and Conference Center United States Flag China flag 2011 U.S.-China Electric Vehicle

  7. Improving the Laboratory Learning Experience: A Process to Train and Manage Teaching Assistants

    ERIC Educational Resources Information Center

    Nikolic, Sasha; Vial, Peter James; Ros, Montserrat; Stirling, David; Ritz, Christian

    2015-01-01

    This paper describes in detail a successful training program developed for sessional (part-time or nonpermanent) laboratory demonstrators employed in the Electrical Engineering Department of an Australian university. Such demonstrators play an important role in teaching practical concepts and skills in engineering. The success of the program…

  8. Pre-Employment Laboratory Training. General Agricultural Mechanics Volume I. Instructional Materials.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This course outline, the first volume of a two-volume set, consists of lesson plans for pre-employment laboratory training in general agricultural mechanics. Covered in the 12 lessons included in this volume are selecting tractors and engines, diagnosing engine conditions, servicing electrical systems, servicing cooling systems, servicing fuel and…

  9. Performance Enhancement of the NPS Transient Electromagnetic Scattering Laboratory

    DTIC Science & Technology

    1991-09-01

    MASTER OF SCIENCE IN ELECTRICAL ENGINEERING MASTER OF SCIENCE IN SYSTEMS ENGINEERING (ELECTRONIC WARFARE) from NAVAL POSTGRADUATE S OOL Author: JvAlo...Bresani Approved by: Michael A. Morgan, Thesis Advisor Jeffrey B. Knorr, Second Reader Michael A. Morgan, Chairman, Department of Electrical & Computer...SYSTEM REPRESENTATION ... .......... 13 B. MATHEMATICAL MODEL ......... ..... 15 C. TRANSIENT RESPONSE EVALUATION .. ......... . 17 IV. MEASUREMENT

  10. 10 CFR 431.12 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and Electronics Engineers, Inc. NEMA means the National Electrical Manufacturers Association. Nominal... Electric Motors § 431.12 Definitions. The following definitions apply for purposes of this subpart, and of... accreditation body that a laboratory is competent to test the efficiency of electric motors according to the...

  11. Development of Servo Motor Trainer for Basic Control System in Laboratory of Electrical Engineering Control System Faculty of Engineering Universitas Negeri Surabaya

    NASA Astrophysics Data System (ADS)

    Endryansyah; Wanarti Rusimamto, Puput; Ridianto, Adam; Sugiarto, Hariyadi

    2018-04-01

    In the Department of Electrical Engineering FT Unesa, there are 3 majors: S1 Electrical Engineering Education, S1 Electrical Engineering, and D3 Electrical Engineering. Courses the Basic System Settings go to in the curriculum of the three programs. Team lecturer college of basic system settings seek learning innovation, focused on the development of trainer to student practicum at the laboratory of systems control. Trainer developed is a servo motor along with the lab module that contains a wide variety of theories about the servo motor and guide the practicum. This research type is development research using methods Research & development (R & D). In which the steps are applied in this study is as follows: pay attention to the potential and existing problems, gather information and study the literature, design the product, validate the design, revise the design, a limited trial. The results of the validation of learning device in the form of modules and trainer obtained as follows: score validation of learning device is 3,64; score validation lab module Servo Motor is 3,47; and questionnaire responses of students is 3,73. The result of the whole validation value is located in the interval >of 3.25 s/d 4 with the category of “Very Valid”, so it can be concluded that all instruments have a level of validity “Very Valid” and worthy of use for further learning.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, Jason

    Jason Harper, an electrical engineer in Argonne National Laboratory's EV-Smart Grid Interoperability Center, discusses his SpEC Module invention that will enable fast charging of electric vehicles in under 15 minutes. The module has been licensed to BTCPower.

  13. Design and implementation of an internet-based electrical engineering laboratory.

    PubMed

    He, Zhenlei; Shen, Zhangbiao; Zhu, Shanan

    2014-09-01

    This paper describes an internet-based electrical engineering laboratory (IEE-Lab) with virtual and physical experiments at Zhejiang University. In order to synthesize the advantages of both experiment styles, the IEE-Lab is come up with Client/Server/Application framework and combines the virtual and physical experiments. The design and workflow of IEE-Lab are introduced. The analog electronic experiment is taken as an example to show Flex plug-in design, data communication based on XML (Extensible Markup Language), experiment simulation modeled by Modelica and control terminals' design. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  14. Web-Based Evaluation System for a Problem-Based Laboratory

    ERIC Educational Resources Information Center

    Azli, Naziha Ahmadi; Othman, Mohd Shahizan

    2008-01-01

    The Faculty of Electrical Engineering, University Technology Malaysia is currently moving towards a Problem-Based Laboratory implementation rather than the conventional instructional-based laboratory for final year students. The laboratory has commenced session with about 500 students' registration in the 2007/08/1. The Problem-Based Laboratory…

  15. Engineer pedals STS-37 CETA electrical cart along track in JSC MAIL Bldg 9A

    NASA Technical Reports Server (NTRS)

    1990-01-01

    McDonnell Douglas engineer Gary Peters operates crew and equipment translation aid (CETA) electrical hand pedal cart in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Peters, wearing extravehicular mobility unit (EMU) boots and positioned in portable foot restraint (PFR), is suspended above CETA cart and track via harness to simulate weightlessness. The electrical cart is moved by electricity generated from turning hand pedals. CETA will be tested in orbit in the payload bay of Atlantis, Orbiter Vehicle (OV) 104, during STS-37.

  16. ELECTRICAL LINES ARRIVE FROM CENTRAL FACILITIES AREA, SOUTH OF MTR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ELECTRICAL LINES ARRIVE FROM CENTRAL FACILITIES AREA, SOUTH OF MTR. EXCAVATION RUBBLE IN FOREGROUND. CONTRACTOR CRAFT SHOPS, CRANES, AND OTHER MATERIALS ON SITE. CAMERA FACES EAST, WITH LITTLE BUTTE AND MIDDLE BUTTE IN DISTANCE. INL NEGATIVE NO. 335. Unknown Photographer, 7/1/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  17. Argonne's SpEC Module

    ScienceCinema

    Harper, Jason

    2018-03-02

    Jason Harper, an electrical engineer in Argonne National Laboratory's EV-Smart Grid Interoperability Center, discusses his SpEC Module invention that will enable fast charging of electric vehicles in under 15 minutes. The module has been licensed to BTCPower.

  18. Engineering Technology Education: Bibliography, 1988.

    ERIC Educational Resources Information Center

    Dyrud, Marilyn A.

    1989-01-01

    Lists articles and books related to engineering technology education published in 1988. Items are grouped administration, aeronautical, architectural, CAD/CAM, civil, computers, curriculum, electrical/electronics, industrial, industry/government/employers, instructional technology, laboratories, lasers, liberal studies, manufacturing, mechanical,…

  19. The Astronautics Laboratory of the Air Force Systems Command electric propulsion projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanks, T.M.; Andrews, J.C.

    1989-01-01

    Ongoing projects at the Astronautics Laboratory (AL) of the USAF Systems Command are described. Particular attention is given to experiments with arcjets, magnetoplasmadynamic thrusters, ion engines, and the Electric Insertion Transfer Experiment (ELITE). ELITE involves the integration of high-power ammonia arcjets, low-power xenon ion thrusters, advanced photovoltaic solar arrays, and an autononomous flight control system. It is believed that electric propulsion will become a dominant element in the military and industrial use of space. 6 refs.

  20. Engine Propeller Research Building at the Lewis Flight Propulsion Laboratory

    NASA Image and Video Library

    1955-02-21

    The Engine Propeller Research Building, referred to as the Prop House, emits steam from its acoustic silencers at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. In 1942 the Prop House became the first completed test facility at the new NACA laboratory in Cleveland, Ohio. It contained four test cells designed to study large reciprocating engines. After World War II, the facility was modified to study turbojet engines. Two of the test cells were divided into smaller test chambers, resulting in a total of six engine stands. During this period the NACA Lewis Materials and Thermodynamics Division used four of the test cells to investigate jet engines constructed with alloys and other high temperature materials. The researchers operated the engines at higher temperatures to study stress, fatigue, rupture, and thermal shock. The Compressor and Turbine Division utilized another test cell to study a NACA-designed compressor installed on a full-scale engine. This design sought to increase engine thrust by increasing its airflow capacity. The higher stage pressure ratio resulted in a reduction of the number of required compressor stages. The last test cell was used at the time by the Engine Research Division to study the effect of high inlet densities on a jet engine. Within a couple years of this photograph the Prop House was significantly altered again. By 1960 the facility was renamed the Electric Propulsion Research Building to better describe its new role in electric propulsion.

  1. Engineering Technology Education Bibliography, 1990.

    ERIC Educational Resources Information Center

    Dyrud, Marilyn A.

    1991-01-01

    Lists over 340 materials published in 1990 related to engineering technology education and grouped under the following headings: administration; architectural; computer-assisted design/management (CAD/CAM); civil; computers; curriculum; electrical/electronics; industrial; industry/government/employers; instructional technology; laboratories;…

  2. Electric Propulsion Laboratory Vacuum Chamber

    NASA Image and Video Library

    1964-06-21

    Engineer Paul Reader and his colleagues take environmental measurements during testing of a 20-inch diameter ion engine in a vacuum tank at the Electric Propulsion Laboratory (EPL). Researchers at the Lewis Research Center were investigating the use of a permanent-magnet circuit to create the magnetic field required power electron bombardment ion engines. Typical ion engines use a solenoid coil to create this magnetic field. It was thought that the substitution of a permanent magnet would create a comparable magnetic field with a lower weight. Testing of the magnet system in the EPL vacuum tanks revealed no significant operational problems. Reader found the weight of the two systems was similar, but that the thruster’s efficiency increased with the magnet. The EPL contained a series of large vacuum tanks that could be used to simulate conditions in space. Large vacuum pumps reduced the internal air pressure, and a refrigeration system created the cryogenic temperatures found in space.

  3. Efficient Optoelectronics Teaching in Undergraduate Engineering Curriculum

    ERIC Educational Resources Information Center

    Matin, M. A.

    2005-01-01

    The Engineering Department's vision for undergraduate education for the next century is to develop a set of laboratory experiences that are thoughtfully sequenced and integrated to promote the full development of students in all courses. Optoelectronics is one of the most important and most demanding courses in Electrical and Computer Engineering.…

  4. Experimental Evaluation of the Free Piston Engine - Linear Alternator (FPLA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leick, Michael T.; Moses, Ronald W.

    2015-03-01

    This report describes the experimental evaluation of a prototype free piston engine - linear alternator (FPLA) system developed at Sandia National Laboratories. The opposed piston design wa developed to investigate its potential for use in hybrid electric vehicles (HEVs). The system is mechanically simple with two - stroke uniflow scavenging for gas exchange and timed port fuel injection for fuel delivery, i.e. no complex valving. Electrical power is extracted from piston motion through linear alternators wh ich also provide a means for passive piston synchronization through electromagnetic coupling. In an HEV application, this electrical power would be used to chargemore » the batteries. The engine - alternator system was designed, assembled and operated over a 2 - year period at Sandia National Laboratories in Livermore, CA. This report primarily contains a description of the as - built system, modifications to the system to enable better performance, and experimental results from start - up, motoring, and hydrogen combus tion tests.« less

  5. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, K.L.; Ramuhali, P.; Brenchley, D.L.

    2012-09-01

    Executive Summary [partial] The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, and NDE instrumentation development from the U.S.more » Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), universities, commercial NDE service vendors and cable manufacturers, and the Electric Power Research Institute (EPRI).« less

  6. ARC-1941-AAL-1731

    NASA Image and Video Library

    1941-12-23

    NACA Ames Aeronautical Laboratory aerial; 16ft, 7X10ft#1, 7x10ft#2 wind tunnels, Technical Services Bldg N-220, Utilities later Electrical Services Bldg N-219 and construction on the Science Laboratory, later Engineering Services Bldg N-203

  7. NE TARDIS Banner Event

    NASA Image and Video Library

    2017-12-08

    Inside the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida, engineers and technicians hold a banner marking the successful delivery of a liquid oxygen test tank called Tardis. From left, are Todd Steinrock, chief, Fabrication and Development Branch, Prototype Development Lab; David McLaughlin, electrical engineering technician; Phil Stroda, mechanical engineering technician; Perry Dickey, lead electrical engineering technician; and Harold McAmis, lead mechanical engineering technician. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.

  8. Argonne National Laboratory Smart Grid Technology Interactive Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Bohn

    2009-10-13

    As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid to not only handle the new load, but make electricity cheap and efficient for everyone? Argonne engineer Ted Bohn explains a model of a "smart grid" that gives consumers the power to choose their own prices and sources of electricity.

  9. Argonne National Laboratory Smart Grid Technology Interactive Model

    ScienceCinema

    Ted Bohn

    2017-12-09

    As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid to not only handle the new load, but make electricity cheap and efficient for everyone? Argonne engineer Ted Bohn explains a model of a "smart grid" that gives consumers the power to choose their own prices and sources of electricity.

  10. Training the Future - Swamp Work Activities

    NASA Image and Video Library

    2017-07-19

    In the Swamp Works laboratory at NASA's Kennedy Space Center in Florida, student interns, from the left, Jeremiah House, Thomas Muller and Austin Langdon are joining agency scientists, contributing in the area of Exploration Research and Technology. House is studying computer/electrical engineering at John Brown University in Siloam Springs, Arkansas. Muller is pursuing a degree in computer engineering and control systems and Florida Tech. Langdon is an electrical engineering major at the University of Kentucky. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  11. Ideas in Practice. Nuturing Creativity in a Measurements Course

    ERIC Educational Resources Information Center

    Neal, James P.

    1972-01-01

    Describes the conduct of a one-semester laboratory course for electrical engineering sophomores through the use of rack-mounted instruments and printed circuits. Concluded there was greater student and instructor interest and creativity in both lectures and laboratory. (CC)

  12. Innovative technologies in course Electrical engineering and electronics

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. V.; Kiselev, V. I.; Kulikova, E. A.

    2017-11-01

    Department of Electrical Engineering and Nondestructive Testing, NRU “MPEI”, has been working on development Electronic Learning Resources (ELRs) in course Electrical Engineering and Electronics for several years. This work have been focused on education intensification and effectiveness while training bachelors in nonelectrical specializations including students from Thermal and Atomic Power Engineering Institute. The developed ELRs are united in a tutorial module consisting of three parts (Electrical Circuits, Electrical Machines, Basics of Electronics): electronic textbook and workbook (ETW); virtual laboratory sessions (VLS); training sessions (ETS); personal tasks (PT); testing system that contains electronic tests in all course subjects and built-in verification of a student’s work results in ETW, VLS, ETS, PT. The report presents samples of different ELRs in html format and MathCAD, MatLAB Simulink applications, copyrighted programs in Java2, Delphi, VB6, C++. The report also contains the experience description, advantages and disadvantages of the new technologies. It is mentioned that ELRs provide new opportunities in course studying.

  13. 9. Credit JPL. Photographic copy of drawing, engineering drawing showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Credit JPL. Photographic copy of drawing, engineering drawing showing structure of Test Stand 'A' (Building 4202/E-3) and its relationship to the Monitor Building or blockhouse (Building 4203/E-4) when a reinforced concrete machinery room was added to the west side of Test Stand 'A' in 1955. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Electrical Layout - Muroc, Test Stand & Refrigeration Equipment Room,' drawing no. E3/7-0, April 6, 1955. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA

  14. ROBOTICS IN HAZARDOUS ENVIRONMENTS - REAL DEPLOYMENTS BY THE SAVANNAH RIVER NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriikku, E.; Tibrea, S.; Nance, T.

    The Research & Development Engineering (R&DE) section in the Savannah River National Laboratory (SRNL) engineers, integrates, tests, and supports deployment of custom robotics, systems, and tools for use in radioactive, hazardous, or inaccessible environments. Mechanical and electrical engineers, computer control professionals, specialists, machinists, welders, electricians, and mechanics adapt and integrate commercially available technology with in-house designs, to meet the needs of Savannah River Site (SRS), Department of Energy (DOE), and other governmental agency customers. This paper discusses five R&DE robotic and remote system projects.

  15. MTR CONTROL ROOM WITH CONTROL CONSOLE AND STATUS READOUTS ALONG ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR CONTROL ROOM WITH CONTROL CONSOLE AND STATUS READOUTS ALONG WALL. WORKERS MAKE ELECTRICAL AND OTHER CONNECTIONS. INL NEGATIVE NO. 4289. Unknown Photographer, 2/26/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. Thirsk and De Winne shave in the U.S. Laboratory

    NASA Image and Video Library

    2009-06-19

    ISS020-E-012634 (19 June 2009) --- Canadian Space Agency astronaut Robert Thirsk (left) and European Space Agency astronaut Frank De Winne, both Expedition 20 flight engineers, shave with electric razors in the Destiny laboratory of the International Space Station.

  17. Thirsk and De Winne shave in the U.S. Laboratory

    NASA Image and Video Library

    2009-06-19

    ISS020-E-012635 (19 June 2009) --- Canadian Space Agency astronaut Robert Thirsk (left) and European Space Agency astronaut Frank De Winne, both Expedition 20 flight engineers, shave with electric razors in the Destiny laboratory of the International Space Station.

  18. Mechanic watches a General Electric I-40 Engine Fire

    NASA Image and Video Library

    1948-01-21

    A mechanic watches the firing of a General Electric I-40 turbojet at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The military selected General Electric’s West Lynn facility in 1941 to secretly replicate the centrifugal turbojet engine designed by British engineer Frank Whittle. General Electric’s first attempt, the I-A, was fraught with problems. The design was improved somewhat with the subsequent I-16 engine. It was not until the engine's next reincarnation as the I-40 in 1943 that General Electric’s efforts paid off. The 4000-pound thrust I-40 was incorporated into the Lockheed Shooting Star airframe and successfully flown in June 1944. The Shooting Star became the US’s first successful jet aircraft and the first US aircraft to reach 500 miles per hour. NACA Lewis studied all of General Electric’s centrifugal turbojet models during the 1940s. In 1945 the entire Shooting Star aircraft was investigated in the Altitude Wind Tunnel. Engine compressor performance and augmentation by water injection; comparison of different fuel blends in a single combustor; and air-cooled rotors were studied. The mechanic in this photograph watches the firing of a full-scale I-40 in the Jet Propulsion Static Laboratory. The facility was quickly built in 1943 specifically in order to test the early General Electric turbojets. The I-A was secretly analyzed in the facility during the fall of 1943.

  19. The Implementation and Evaluation of a University-Based Outreach Laboratory Program in Electrical Engineering

    ERIC Educational Resources Information Center

    Smaill, Chris R.

    2010-01-01

    In the current climate of shortages of high-quality engineering graduates, exacerbated by reduced high school enrollments in physics and mathematics, engineering faculties are becoming increasingly aware of the importance of K-12 outreach programs. Such programs can result in students being better prepared for and better informed about engineering…

  20. ETR BUILDING, TRA642. SOUTH SIDE VIEW INCLUDES SOUTH SIDES OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR BUILDING, TRA-642. SOUTH SIDE VIEW INCLUDES SOUTH SIDES OF ETR BUILDING (HIGH ROOF LINE); ELECTRICAL BUILDING (ONE-STORY, MADE OF PUMICE BLOCKS), TRA-648; AND HEAT EXCHANGER BUILDING (WITH BUILDING NUMBERS), TRA-644. NOTE PROJECTION OF ELECTRICAL BUILDING AT LEFT EDGE OF VIEW. CAMERA FACES NORTH. INL NEGATIVE NO. HD46-37-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. Integrated Studies of Electric Propulsion Engines during Flights in the Earth's Ionosphere

    NASA Astrophysics Data System (ADS)

    Marov, M. Ya.; Filatyev, A. S.

    2018-03-01

    Fifty years ago, on October 1, 1966, the first Yantar satellite laboratory with a gas plasma-ion electric propulsion was launched into orbit as part of the Yantar Soviet space program. In 1966-1971, the program launched a total of four laboratories with thrusters operating on argon, nitrogen, and air with jet velocities of 40, 120, and 140 km/s, respectively. These space experiments were the first to demonstrate the long-term stable operation of these thrusters, which exceed chemical rocket engines in specific impulse by an order of magnitude and provide effective jet charge compensation, under the conditions of a real flight at altitudes of 100-400 km. In this article, we have analyzed the potential modern applications of the scientific results obtained by the Yantar space program for the development of air-breathing electric propulsion that ensure the longterm operation of spacecraft in very low orbits.

  2. How to Motivate Students to Work in the Laboratory: A New Approach for an Electrical Machines Laboratory

    ERIC Educational Resources Information Center

    Saavedra Montes, A. J.; Botero Castro, H. A.; Hernandez Riveros, J. A.

    2010-01-01

    Many laboratory courses have become iterative processes in which students only seek to meet the requirements and pass the course. Some students believe these courses are boring and do not give them training as engineers. To provide a solution to the poor motivation of students in laboratories with few resources, this work proposes the method…

  3. Nelson Spencer (1918-2002)

    NASA Astrophysics Data System (ADS)

    Brace, Larry; Carignan, George; Donahue, Tom; Nagy, Andrew; Hunten, Donald

    Nelson Spencer, former chief of the Laboratory for Atmospheres at NASA/Goddard Space Flight Center, died on 31 August 2002 in Bethesda, Maryland, at the age of 84 due to complications from Parkinson's disease. He had been an AGU member (SPA) since 1950.He was born in Buffalo, New York, and graduated from the University of Michigan in 1941 with a degree in electrical engineering. Spencer served as a naval officer during World War II and attended Harvard and the Massachusetts Institute of Technology while in the service. After the war, he returned to the University of Michigan for graduate studies, earning his master's degree in electrical engineering in 1953. He soon became director of that department's Space Physics Research Laboratory (SPRL), and later, a full professor. In 1960, Spencer moved to Washington D.C. to lead Goddard's upper atmosphere research effort, serving for many years as chief of the Laboratory for Atmospheres. He retired in 1986.

  4. 2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Grey; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporationmore » conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.« less

  5. Engineers test STS-37 CETA electrical hand pedal cart in JSC MAIL Bldg 9A

    NASA Technical Reports Server (NTRS)

    1990-01-01

    McDonnell Douglas engineers Noland Talley (left) and Gary Peters (center) and ILC-Dover engineer Richard Richard Smallcombe prepare test setup for the evaluation of the crew and equipment translation aid (CETA) electrical hand pedal cart in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Peters, wearing extravehicular mobility unit (EMU) boots and positioned in portable foot restraint (PFR), is suspended above CETA cart and track via harness to simulate weightlessness. CETA will be tested in orbit in the payload bay of Atlantis, Orbiter Vehicle (OV) 104, during STS-37.

  6. Design and Configuration of a Medical Imaging Systems Computer Laboratory Syllabus

    ERIC Educational Resources Information Center

    Selver, M. Alper

    2016-01-01

    Medical imaging systems (MIS) constitute an important emergent subdiscipline of engineering studies. In the context of electrical and electronics engineering (EEE) education, MIS courses cover physics, instrumentation, data acquisition, image formation, modeling, and quality assessment of various modalities. Many well-structured MIS courses are…

  7. Chlor-Alkali Industry: A Laboratory Scale Approach

    ERIC Educational Resources Information Center

    Sanchez-Sanchez, C. M.; Exposito, E.; Frias-Ferrer, A.; Gonzalez-Garaia, J.; Monthiel, V.; Aldaz, A.

    2004-01-01

    A laboratory experiment for students in the last year of degree program in chemical engineering, chemistry, or industrial chemistry is presented. It models the chlor-alkali process, one of the most important industrial applications of electrochemical technology and the second largest industrial consumer of electricity after aluminium industry.

  8. Engineering and Technical Efforts to Design and Construct a 10 MW gyrotron Laboratory

    DTIC Science & Technology

    1989-01-18

    coupling coefficients are proptional to the square of the effective electric field at the beam. The effective electric field, Es, is given in...develop- ed to alleviate shorts in the body current beam diagnostic and baking constraints that previous o-ring designs have experienced. The prototype

  9. SPERTI Electric Control Building (PER608). Plan, elevations, and details. Gibbs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Electric Control Building (PER-608). Plan, elevations, and details. Gibbs and Hill, Inc. 1087-PER-608-S5. Date: August 1956. INEEL index no. 760-0608-00-312-108328 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  10. United States Air Force Summer Research Program -- 1993. Volume 6. Arnold Engineering Development Center, Frank J. Seiler Research Laboratory, Wilford Hall Medical Center

    DTIC Science & Technology

    1993-12-01

    where negative charge state. The local symmetry of the Ge(I) and Ge(II) centers are CI and C2 respectively. (See also Fig. 1.) q=- 1 Ge(I) Ge(II) s p...Raymond Field: Dept. of Computer Science Dept, CEM. M•e s , PhD Laboratory: / 3200 Willow Creek Road zmbry-Riddle Aeronautical Univ Vol-Page No: 0- 0...Field: Electrical Engineering Assistant Professor, PhD Laboratory: PL/WS 2390 S . York Street University of Denver Vol-Page No: 3-35 Denver, CO 80209-0177

  11. Seven Principles of Instructional Content Design for a Remote Laboratory: A Case Study on ERRL

    ERIC Educational Resources Information Center

    Cagiltay, N. E.; Aydin, E.; Aydin, C. C.; Kara, A.; Alexandru, M.

    2011-01-01

    This paper discusses the results of a study of the requirements for developing a remote radio frequency (RF) laboratory for electrical engineering students. It investigates students' preferred usage of the technical content of a state-of-the-art RF laboratory. The results of this study are compared to previous findings, which dealt with other user…

  12. ETR BUILDING, TRA642, INTERIOR. CONSOLE FLOOR, SOUTH HALF. CABLE TUNNEL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR BUILDING, TRA-642, INTERIOR. CONSOLE FLOOR, SOUTH HALF. CABLE TUNNEL. CAMERA FACING SOUTH INTO ETR ELECTRICAL BUILDING (TRA-648). INL NEGATIVE NO. HD46-20-2. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. Q&A with Dick DeBlasio-38 Years of Engineering at NREL | Energy Systems

    Science.gov Websites

    first director, Paul Rappaport, made it very clear that we were there to build a new laboratory and he him in my first year. He told me to build up SERI's electrical engineering area. He wanted to bring in

  14. Applications of hybrid and digital computation methods in aerospace-related sciences and engineering. [problem solving methods at the University of Houston

    NASA Technical Reports Server (NTRS)

    Huang, C. J.; Motard, R. L.

    1978-01-01

    The computing equipment in the engineering systems simulation laboratory of the Houston University Cullen College of Engineering is described and its advantages are summarized. The application of computer techniques in aerospace-related research psychology and in chemical, civil, electrical, industrial, and mechanical engineering is described in abstracts of 84 individual projects and in reprints of published reports. Research supports programs in acoustics, energy technology, systems engineering, and environment management as well as aerospace engineering.

  15. Development of Facilities for an Ocean Engineering Laboratory. Final Report.

    ERIC Educational Resources Information Center

    Nash, W. A.; And Others

    A collection of seven laboratory facilities and processes dedicated to improving student understanding of the fundamental concepts associated with the structural mechanics of oceanic structures is described. Complete working drawings covering all mechanical and electrical aspects of these systems are presented so that the systems may be reproduced…

  16. Virtual Mechatronic/Robotic Laboratory--A Step Further in Distance Learning

    ERIC Educational Resources Information Center

    Potkonjak, Veljko; Vukobratovi, Miomir; Jovanovi, Kosta; Medenica, Miroslav

    2010-01-01

    The implementation of the distance learning and e-learning in technical disciplines (like Mechanical and Electrical Engineering) is still far behind the grown practice in narrative disciplines (like Economy, management, etc.). This comes out from the fact that education in technical disciplines inevitably involves laboratory exercises and this…

  17. 156. ARAIII Reactor building (ARA608) Electrical and control details of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    156. ARA-III Reactor building (ARA-608) Electrical and control details of mobile work bridge over reactor and pipiing pits. Aerojet-general 880-area/GCRE-608-E-6. Date: November 1958. Ineel index code no. 063-0608-10-013-102621. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  18. Laboratory Manual for Power Processing, Part 1. Electric Machinery Analysis.

    ERIC Educational Resources Information Center

    Hamilton, Howard B.

    This publication was developed as a portion of a two-semester sequence commencing at either the sixth or seventh term of the undergraduate program in electrical engineering at the University of Pittsburgh. The materials of the two courses, produced by a National Science Foundation grant, are concerned with power conversion systems comprising power…

  19. Web-Based Testing Tools for Electrical Engineering Courses

    DTIC Science & Technology

    2001-09-01

    ideas of distance learning are based on forming “ virtual teams” [2]. Each team is equipped with the same software packages and share information via...using virtual laboratories where they can simulate a laboratory experience in a web-based environment. They can also control laboratory devices over...possible to create a set of virtual laboratories that allow students to interact with the learning material at the same time that the student is

  20. Tim Johansson | NREL

    Science.gov Websites

    performed maintenance, operation, and repair on laboratory support systems, including some minor /electrical technician Chief Engineer, Tim leads the maintenance crew at NWTC. Prior to joining NREL, Tim was

  1. General Electric I-40 Engine at the Lewis Flight Propulsion Laboratory

    NASA Image and Video Library

    1946-08-21

    A mechanic works on a General Electric I-40 turbojet at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The military selected General Electric’s West Lynn facility in 1941 to secretly replicate the centrifugal turbojet engine designed by British engineer Frank Whittle. General Electric’s first attempt, the I-A, was fraught with problems. The design was improved somewhat with the subsequent I-16 engine. It was not until the engine's next reincarnation as the I-40 in 1943 that General Electric’s efforts paid off. The 4000-pound thrust I-40 was incorporated into the Lockheed Shooting Star airframe and successfully flown in June 1944. The Shooting Star became the US’s first successful jet aircraft and the first US aircraft to reach 500 miles per hour. The NACA’s Lewis Flight Propulsion Laboratory studied all of General Electric’s centrifugal turbojets both during World War II and afterwards. The entire Shooting Star aircraft was investigated in the Altitude Wind Tunnel during 1945. The researchers studied the engine compressor performance, thrust augmentation using a water injection, and compared different fuel blends in a single combustor. The mechanic in this photograph is inserting a combustion liner into one of the 14 combustor cans. The compressor, which is not yet installed in this photograph, pushed high pressure air into these combustors. There the air mixed with the fuel and was heated. The hot air was then forced through a rotating turbine that powered the engine before being expelled out the nozzle to produce thrust.

  2. ETR BUILDING, TRA642, INTERIOR. FIRST FLOOR. INSIDE UTILITY CORRIDOR ALONG ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR BUILDING, TRA-642, INTERIOR. FIRST FLOOR. INSIDE UTILITY CORRIDOR ALONG SOUTH PERIMETER WALL (COMMON TO ELECTRICAL BUILDING, TRA-648). CAMERA FACES WEST. INL NEGATIVE NO. HD46-16-2. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. ETR, TRA642. FLOOR PLAN UNDER BALCONY ON CONSOLE FLOOR. MOTORGENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. FLOOR PLAN UNDER BALCONY ON CONSOLE FLOOR. MOTOR-GENERATOR SETS AND OTHER ELECTRICAL EQUIPMENT. PHILLIPS PETROLEUM COMPANY ETR-D-1781, 7/1960. INL INDEX NO. 532-0642-00-706-020384, REV. 1. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. A Thermal Management of Electronics Course and Laboratory for Undergraduates

    ERIC Educational Resources Information Center

    Okamoto, Nicole; Hsu, Tai-Ran; Bash, Cullen E.

    2009-01-01

    A novel thermal management of electronics course with an associated laboratory has been developed for mechanical, electrical, and computer engineering students. The lecture topics, term project, computer modeling project, and six associated experiments that were built from scratch are described. Over half of the course lectures as well as all lab…

  5. Laboratory and Field Evaluation of In-Place Asphalt Recycling Technologies for Small Airfield Repair

    DTIC Science & Technology

    2013-06-01

    Mariely Mejías-Santiago and William D. Carruth Geotechnical and Structures Laboratory US Army Engineer Research and Development Center 3909 Halls...24. Pavement structure at Test Site 1. ....................................................................................... 28  Figure 25. Pavement... structure at ERDC test site. ................................................................................ 30  Figure 26. Heatwurx HWX-30 electric

  6. A Network Steganography Lab on Detecting TCP/IP Covert Channels

    ERIC Educational Resources Information Center

    Zseby, Tanja; Vázquez, Félix Iglesias; Bernhardt, Valentin; Frkat, Davor; Annessi, Robert

    2016-01-01

    This paper presents a network security laboratory to teach data analysis for detecting TCP/IP covert channels. The laboratory is mainly designed for students of electrical engineering, but is open to students of other technical disciplines with similar background. Covert channels provide a method for leaking data from protected systems, which is a…

  7. Requirements for Remote RF Laboratory Applications: An Educators' Perspective

    ERIC Educational Resources Information Center

    Cagiltay, N. E.; Aydin, E.; Oktem, R.; Kara, A.; Alexandru, M.; Reiner, B.

    2009-01-01

    This paper discusses the results of a study of the requirements for developing a remote RF laboratory. This study draws on the perspectives of educators in university electrical engineering departments and in technical colleges, on the teaching of the radio frequency (RF) domain. The study investigates how these educators would like the technical…

  8. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1990-01-01

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.

  9. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    NASA Astrophysics Data System (ADS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.

  10. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1990-01-01

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's

  11. Operation of Grid-tied 5 kWDC solar array to develop Laboratory Experiments for Solar PV Energy System courses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos, Jaime

    2012-12-14

    To unlock the potential of micro grids we plan to build, commission and operate a 5 kWDC PV array and integrate it to the UTPA Engineering building low voltage network, as a micro grid; and promote community awareness. Assisted by a solar radiation tracker providing on-line information of its measurements and performing analysis for the use by the scientific and engineering community, we will write, perform and operate a set of Laboratory experiments and computer simulations supporting Electrical Engineering (graduate and undergraduate) courses on Renewable Energy, as well as Senior Design projects.

  12. Safety leadership in the teaching laboratories of electrical and electronic engineering departments at Taiwanese Universities.

    PubMed

    Wu, Tsung-Chih

    2008-01-01

    Safety has always been one of the principal goals in teaching laboratories. Laboratories cannot serve their educational purpose when accidents occur. The leadership of department heads has a major impact on laboratory safety, so this study discusses the factors affecting safety leadership in teaching laboratories. This study uses a mail survey to explore the perceived safety leadership in electrical and electronic engineering departments at Taiwanese universities. An exploratory factor analysis shows that there are three main components of safety leadership, as measured on a safety leadership scale: safety controlling, safety coaching, and safety caring. The descriptive statistics also reveals that among faculty, the perception of department heads' safety leadership is in general positive. A two-way MANOVA shows that there are interaction effects on safety leadership between university size and instructor age; there are also interaction effects between presence of a safety committee and faculty gender and faculty age. It is therefore necessary to assess organizational factors when determining whether individual factors are the cause of differing perceptions among faculty members. The author also presents advice on improving safety leadership for department heads at small universities and at universities without safety committees.

  13. 142. ARAIII General plan of GCRE area, including electrical distribution ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    142. ARA-III General plan of GCRE area, including electrical distribution plan for power and lighting. Includes detail of floodlight and security lighting poles and fixtures. Aerojet-general 880-area/GCRE-406-1. Date: February 1958. Ineel index code no. 063-0406-00-013-102539. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  14. 37. ELECTRICAL PLAN AND DETAILS. SHOWS PLANNED LOCATION OF PORTABLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. ELECTRICAL PLAN AND DETAILS. SHOWS PLANNED LOCATION OF PORTABLE GENERATOR. FUNCTION OF FOUR-FOOT SQUARE PIT IS SHOWN AS 'D.C. POWER SUPPLY PIT.' F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-E-1. INEL INDEX CODE NUMBER: 075 0701 10 851 151973. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  15. Designing a hands-on brain computer interface laboratory course.

    PubMed

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima

    2016-08-01

    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI.

  16. Wright R–2600–8 Engine in the Engine Propeller Research Building

    NASA Image and Video Library

    1943-03-21

    A Wright Aeronautical R–2600 Cyclone piston engine installed in the Engine Propeller Research Building, or Prop House, at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory. The R–2600 was among the most powerful engines that emerged during World War II. The engine, which was developed for commercial applications in 1939, was used to power the North American B–25 bomber and several other midsize military aircraft. The higher altitudes required by the military caused problems with the engine's cooling and fuel systems. The military requested that the Aircraft Engine Research Laboratory analyze the performance of the R–2600, improve its cooling system, and reduce engine knock. The NACA researchers subjected the engine to numerous tests in its Prop House. The R–2600 was the subject of the laboratory's first technical report, which was written by members of the Fuels and Lubricants Division. The Prop House contained soundproof test cells in which piston engines and propellers were mounted and operated at high powers. Electrically driven fans drew air through ducts to create a stream of cooling air over the engines. Researchers tested the performance of fuels, turbochargers, water-injection and cooling systems here during World War II. The facility was also investigated a captured German V–I buzz bomb during the war.

  17. Analog simulation of a hybrid gasoline-electric vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, D.B.

    1982-03-01

    Hybrid vehicles using both internal combustion engines and electric motors represent one way to reduce fuel consumption. Our demonstration project envisioned more than halving the fuel consumption of a passenger vehicle by reducing greatly the capacity of its engine and adding regenerative braking and an all-electric range. We also envisaged maintaining the same performance as current passenger vehicles. A 0-6 000 rpm gasoline-driven internal combustion engine, two 0-7 800 rpm electric motors, a 0-7 800 rpm flywheel, and lead-acid batteries are the major components assembled using a mechnical epicyclic gear box. An EAI 681 analog computer allowed us to examinemore » quickly the effects of engine capacity, flywheel size, battery voltage, gear ratios, and mode of operation. An external potentiometer control on the computer allowed the operator to drive the vehicle through any acceleration cycle on level ground. We have shown that a 1.3 litre gasoline engine, two 13 kW separately excited direct current electric motors, a 38 kg flywheel, and a 48-volt battery pack will provide the same maximum performance as a conventional 4.1 litre internal combustion engine with automatic transmission at vehicle speeds below 60 km/h, and lower but satisfactory highway performance up to a top speed of 130 km/h. The transmission has undergone laboratory tests; it is to be road-tested in the first half of 1982.« less

  18. Joint Services Electronics Program. Annual Report (16th). Appendix

    DTIC Science & Technology

    1993-10-01

    Lee and R.J. Burkholder, "A Three-Dimensional Implementation of the Hybrid Ray-FDTD Method for Modeling Electromagnetic Scattering from Electrically ...thin material-coated metallic surfaces. Each of the It is noted that expressions for the constants A1 electrically thin material coatings is modeled by...ElectroSdiece Laboratory Department of Electrical Engineering Columbus, Ohio 43212I ODTIC.. . •L•ELECTIE 1 Annual Report Appendix 721563-6 JAN I At ,94

  19. Industry-Oriented Laboratory Development for Mixed-Signal IC Test Education

    ERIC Educational Resources Information Center

    Hu, J.; Haffner, M.; Yoder, S.; Scott, M.; Reehal, G.; Ismail, M.

    2010-01-01

    The semiconductor industry is lacking qualified integrated circuit (IC) test engineers to serve in the field of mixed-signal electronics. The absence of mixed-signal IC test education at the collegiate level is cited as one of the main sources for this problem. In response to this situation, the Department of Electrical and Computer Engineering at…

  20. MEMSlab: A Practical MEMS Course for the Fabrication, Packaging, and Testing of a Single-Axis Accelerometer

    ERIC Educational Resources Information Center

    Grundbacher, R.; Hoetzel, J. E.; Hierold, C.

    2009-01-01

    A microelectro-mechanical systems (MEMS) laboratory course (MEMSlab) in the Mechanical and Process Engineering Department at the Swiss Federal Institute of Technology (ETH Zurich), is presented. The course has been taught for four years and has been attended primarily by Master's students from mechanical and electrical engineering; since fall…

  1. Motivational Project-Based Laboratory for a Common First Year Electrical Engineering Course

    ERIC Educational Resources Information Center

    Nedic, Zorica; Nafalski, Andrew; Machotka, Jan

    2010-01-01

    Over the past few years many universities worldwide have introduced a common first year for all engineering disciplines. This is despite the opinion of many academics that large classes have negative effects on the learning outcomes of first year students. The University of South Australia is also faced with low motivation amongst engineering…

  2. Development and Experimental Validation of a Thermoelectric Test Bench for Laboratory Lessons

    ERIC Educational Resources Information Center

    Rodríguez García, Antonio; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Aranguren Garacochea, Patricia; Pérez Artieda, Gurutze

    2013-01-01

    The refrigeration process reduces the temperature of a space or a given volume while the power generation process employs a source of thermal energy to generate electrical power. Because of the importance of these two processes, training of engineers in this area is of great interest. In engineering courses it is normally studied the vapor…

  3. From Archi Torture to Architecture: Undergraduate Students Design and Implement Computers Using the Multimedia Logic Emulator

    ERIC Educational Resources Information Center

    Stanley, Timothy D.; Wong, Lap Kei; Prigmore, Daniel; Benson, Justin; Fishler, Nathan; Fife, Leslie; Colton, Don

    2007-01-01

    Students learn better when they both hear and do. In computer architecture courses "doing" can be difficult in small schools without hardware laboratories hosted by computer engineering, electrical engineering, or similar departments. Software solutions exist. Our success with George Mills' Multimedia Logic (MML) is the focus of this paper. MML…

  4. The CGE-PLATO Electronic Laboratory Instructional Programs. (August 1, 1972 Through June 30, 1975).

    ERIC Educational Resources Information Center

    Neal, J. P.

    Twelve PLATO lessons are reproduced in this document to show the status of computer guided experimentation (CGE) instructional programs. The lesson topics include a description of the CGE-PLATO instructional laboratory, an introduction to CGE-PLATO tests and special software routines, router lesson for two electrical engineering courses, and an…

  5. A Low-Cost Computer-Controlled Arduino-Based Educational Laboratory System for Teaching the Fundamentals of Photovoltaic Cells

    ERIC Educational Resources Information Center

    Zachariadou, K.; Yiasemides, K.; Trougkakos, N.

    2012-01-01

    We present a low-cost, fully computer-controlled, Arduino-based, educational laboratory (SolarInsight) to be used in undergraduate university courses concerned with electrical engineering and physics. The major goal of the system is to provide students with the necessary instrumentation, software tools and methodology in order to learn fundamental…

  6. Evaluation of 2004 Toyota Prius Hybrid Electic Drive System Interim Report - Revised

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayers, C.W.; Hsu, J.S.; Marlino, L.D.

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery-powered electric motor. Both of these motive power sources are capable of providing mechanical drive power for the vehicle. The engine can deliver a peak power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak power output of 50 kW at 1300 rpm. Together, this engine-motor combination has a specified peak power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy comparedmore » to conventionally powered automobiles. Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.« less

  7. Stirling engines for hybrid electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Ernst, William D.

    Laboratory and vehicle chassis dynamometer test data based on natural gas fuel are presented for kinematic Stirling engine emissions levels over a range of air/fuel ratios and exhaust gas recirculation levels. It is concluded that the natural-gas-fired Stirling engine is capable of producing exhaust pipe emissions levels significantly below those of other engines. The projected emissions levels are found to be compliant with the 1995 California Air Resources Board Mobile Source Emission Standards for ultra-low-emissions vehicles.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zwicker, Andrew P.; Bloom, Josh; Albertson, Robert

    3D printing has become popular for a variety of users, from industrial to the home hobbyist, to scientists and engineers interested in producing their own laboratory equipment. In order to determine the suitability of 3D printed parts for our plasma physics laboratory, we measured the accuracy, strength, vacuum compatibility, and electrical properties of pieces printed in plastic. The flexibility of rapidly creating custom parts has led to the 3D printer becoming an invaluable resource in our laboratory and is equally suitable for producing equipment for advanced undergraduate laboratories.

  9. Joint electrical engineering/physics course sequence for optics fundamentals and design

    NASA Astrophysics Data System (ADS)

    Magnusson, Robert; Maldonado, Theresa A.; Black, Truman D.

    2000-06-01

    Optics is a key technology in a broad range of engineering and science applications of high national priority. Engineers and scientists with a sound background in this field are needed to preserve technical leadership and to establish new directions of research and development. To meet this educational need, a joint Electrical Engineering/Physics optics course sequence was created as PHYS 3445 Fundamentals of Optics and EE 4444 Optical Systems Design, both with a laboratory component. The objectives are to educate EE and Physics undergraduate students in the fundamentals of optics; in interdisciplinary problem solving; in design and analysis; in handling optical components; and in skills such as communications and team cooperation. Written technical reports in professional format are required, formal presentations are given, and participation in paper design contests is encouraged.

  10. Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Holloway

    2005-09-30

    Beginning the fall semester of 1999, The University of Maryland, Departments of Mechanical and Electrical Engineering and the Institute for Systems Research served as a U.S. Department of Energy (USDOE) Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies. A key goal was to produce a graduate level education program that educated and prepared students to address the technical challenges of designing and developing hybrid electric vehicles, as they progressed into the workforce. A second goal was to produce research that fostered the advancement of hybrid electric vehicles, their controls, and other related automotive technologies. Participationmore » ended at the University of Maryland after the 2004 fall semester. Four graduate courses were developed and taught during the course of this time, two of which evolved into annually-taught undergraduate courses, namely Vehicle Dynamics and Control Systems Laboratory. Five faculty members from Mechanical Engineering, Electrical Engineering, and the Institute for Systems Research participated. Four Ph.D. degrees (two directly supported and two indirectly supported) and seven Master's degrees in Mechanical Engineering resulted from the research conducted. Research topics included thermoelectric waste heat recovery, fuel cell modeling, pre- and post-transmission hybrid powertrain control and integration, hybrid transmission design, H{sub 2}-doped combustion, and vehicle dynamics. Many of the participating students accepted positions in the automotive industry or government laboratories involved in automotive technology work after graduation. This report discusses the participating faculty, the courses developed and taught, research conducted, the students directly and indirectly supported, and the publication list. Based on this collection of information, the University of Maryland firmly believes that the key goal of the program was met and that the majority of the participating students are now contributing to the advancement of automotive technology in this country.« less

  11. Reference Points: Engineering Technology Education Bibliography, 1987.

    ERIC Educational Resources Information Center

    Engineering Education, 1989

    1989-01-01

    Lists articles and books published in 1987. Selects the following headings: administration, aeronautical, architectural, CAD/CAM, civil, computers, curriculum, electrical/electronics, industrial, industry/government/employers, instructional technology, laboratories, liberal studies, manufacturing, mechanical, minorities, research, robotics,…

  12. The classification of explosion-proof protected induction motor into adequate temperature and efficiency class

    NASA Astrophysics Data System (ADS)

    Brinovar, Iztok; Srpčič, Gregor; Seme, Sebastijan; Štumberger, Bojan; Hadžiselimović, Miralem

    2017-07-01

    This article deals with the classification of explosion-proof protected induction motors, which are used in hazardous areas, into adequate temperature and efficiency class. Hazardous areas are defined as locations with a potentially explosive atmosphere where explosion may occur due to present of flammable gasses, liquids or combustible dusts (industrial plants, mines, etc.). Electric motors and electrical equipment used in such locations must be specially designed and tested to prevent electrical initiation of explosion due to high surface temperature and arcing contacts. This article presents the basic tests of three-phase explosion-proof protected induction motor with special emphasis on the measuring system and temperature rise test. All the measurements were performed with high-accuracy instrumentation and accessory equipment and carried out at the Institute of energy technology in the Electric machines and drives laboratory and Applied electrical engineering laboratory.

  13. Designing a Hands-On Brain Computer Interface Laboratory Course

    PubMed Central

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima

    2017-01-01

    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI. PMID:28268946

  14. ETRCF, TRA654, INTERIOR. CAMERA IS ON MAIN FLOOR. NOTE CRANE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR-CF, TRA-654, INTERIOR. CAMERA IS ON MAIN FLOOR. NOTE CRANE HOOKS. ELECTRICAL EQUIPMENT IS PART OF PAST EXPERIMENT. DOOR AT LEFT EDGE OF VIEW LEADS TO REACTOR SERVICE BUILDING, TRA-635. INL NEGATIVE NO. HD24-1-2. Mike Crane, Photographer, ca. 2003 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. ETR BUILDING, TRA642, INTERIOR. FIRST FLOOR. REACTOR IS IN CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR BUILDING, TRA-642, INTERIOR. FIRST FLOOR. REACTOR IS IN CENTER OF VIEW. CAMERA FACES NORTHWEST. NOTE CRANE RAILS AND DANGLING ELECTRICAL CABLE AT UPPER PART OF VIEW FOR "MOFFETT 2 TON" CRANE. INL NEGATIVE NO. HD46-14-4. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. Numerical assessment of bureau of mines electric arc melter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paik, S.; Hawkes, G.; Nguyen, H.D.

    1994-12-31

    An electric arc melter used for the waste treatment process at Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM) has been numerically studied. The arc melter is being used for vitrification of thermally oxidized, buried, transuranic (TRU) contaminated wastes by INEL in conjunction with the USBM as a part of the Buried Waste Integrated Demonstration project. The purpose of this study is to numerically investigate the performance of the laboratory-scale arc melter simulating the USBM arc melter. Initial results of modeling the full-scale USBM arc melter are also reported in this paper.

  17. Fuel Cells Provide Reliable Power to U.S. Postal Service Facility in Anchorage, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Steven

    2003-01-01

    Working together, the U.S. Postal Service (USPS) and Chugach Electric Association, partnering with the Department of Defense (DOD), Department of Energy (DOE), US Army Corps of Engineers Construction Engineering Research Laboratories (USA CERL), Electric Power Research Institute (EPRI), and National Rural Electric Cooperative Association (NRECA), developed and installed one of the largest fuel cell installations in the world. The one-megawatt fuel cell combined heat and power plant sits behind the Anchorage U.S. Postal Service Mail Processing and Distribution Facility. Chugach Electric owns, operates, and maintains the fuel cell power plant, which provides clean, reliable power to the USPS facility. Inmore » addition, heat recovered from the fuel cells, in the form of hot water, is used to heat the USPS Mail Processing and Distribution Facility. By taking a leadership role, the USPS will save over $800,000 in electricity and natural gas costs over the 5 1/2-year contract term with Chugach Electric.« less

  18. Systems-Level Energy Audit for Main Complex, Construction Engineering Research Laboratory

    DTIC Science & Technology

    2003-08-01

    gas-fired boilers. Cooling is provided by two York electric chillers housed in the Utilities Building. Electric- ity and gas are metered by...small “instant recovery” electric water heater with a 20-gal size tank. Cooling In the spring of 1993, two R-22 (HCFC) York chiller units (rated at 180...tons each, but which can be peaked at 230 tons under favorable conditions) were in- stalled to replace the old chiller in the Utilities Building

  19. Bi-Directional Fast Charging Study Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray

    2012-02-01

    This report details the hardware and software infrastructure needed to demonstrate the possibility of utilizing battery power in plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) with a bi directional fast charger to support/offset peak building loads. This document fulfills deliverable requirements for Tasks 1.2.1.2, 1.2.1.3, and 1.2.1.4 of Statement of Work (SOW) No.5799 for Electric Transportation Engineering Corporation, now ECOtality North America (NA) support for the Idaho National Laboratory (INL).

  20. A thermoacoustic Stirling heat engine

    NASA Astrophysics Data System (ADS)

    Backhaus, S.; Swift, G. W.

    1999-05-01

    Electrical and mechanical power, together with other forms of useful work, are generated worldwide at a rate of about 1012 watts, mostly using heat engines. The efficiency of such engines is limited by the laws of thermodynamics and by practical considerations such as the cost of building and operating them. Engines with high efficiency help to conserve fossil fuels and other natural resources, reducing global-warming emissions and pollutants. In practice, the highest efficiencies are obtained only in the most expensive, sophisticated engines, such as the turbines in central utility electrical plants. Here we demonstrate an inexpensive thermoacoustic engine that employs the inherently efficient Stirling cycle. The design is based on a simple acoustic apparatus with no moving parts. Our first small laboratory prototype, constructed using inexpensive hardware (steel pipes), achieves an efficiency of 0.30, which exceeds the values of 0.10-0.25 attained in other heat engines, with no moving parts. Moreover, the efficiency of our prototype is comparable to that of the common internal combustion engine (0.25-0.40) and piston-driven Stirling engines, (0.20-0.38).

  1. Selective Screening of High Temperature Superconductors by Resonant Eddy Current Analysis

    DTIC Science & Technology

    1990-11-01

    observable electronic parameters are both stable and well defined. Further, if the circuit possesses a resonance , then it has well characterized parameters and...Engineers Construction Engineering Research Laboratory - AD-A230 194 Selective Screening of High Temperature Superconductors by Resonant Eddy Current...electrical systems or electronic components from the effects of unwanted electromagnetic energy. With the discovery of High Transition Critical Temperature

  2. A Pilot Study of the Effectiveness of Augmented Reality to Enhance the Use of Remote Labs in Electrical Engineering Education

    ERIC Educational Resources Information Center

    Borrero, A. Mejias; Marquez, J. M. Andujar

    2012-01-01

    Lab practices are an essential part of teaching in Engineering. However, traditional laboratory lessons developed in classroom labs (CL) must be adapted to teaching and learning strategies that go far beyond the common concept of e-learning, in the sense that completely virtualized distance education disconnects teachers and students from the real…

  3. Bulletin of the Division of Electrical Engineering, 1987-1988, volume 3, number 2

    NASA Astrophysics Data System (ADS)

    1988-05-01

    A report is provided on the activities of the Division of Electrical Engineering of the National Research Council of Canada. The Division engages in the development of standards and test procedures, and undertakes applied research in support of Canadian industry, government departments, and universities. Technology transfer and collaborative research continue to grow in importance as focuses of Division activities. The Division is comprised of three sections: the Laboratory for Biomedical Engineering, the Laboratory for Electromagnetic and Power Engineering, and the Laboratory for Intelligent Systems. An agreement has been reached to commercially exploit the realtime multiprocessor operating system Harmony. The dielectrics group has made contract research agreements with industry from both Canada and the United States. The possibility of employing a new advanced laser vision camera, which can be mounted on a robot arm in a variety of industrial applications is being explored. Potential short-term spinoffs related to intelligent wheelchairs are being sought as part of the new interlaboratory program which has as its long-term objective the development of a mobile robot for health care applications. A program in applied artificial intelligence has been established. Initiatives in collaboration with outside groups include proposals for major institutes in areas ranging from police and security research to rehabilitation research, programs to enhance Canadian industrial competence working with the Canadian Manufacturers' Association and other government departments, and approaches to the utilization of existing facilities which will make them more valuable without significant financial expenditures.

  4. Three-dimensional printing physiology laboratory technology.

    PubMed

    Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R

    2013-12-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.

  5. Sodium sulfur electric vehicle battery engineering program final report, September 2, 1986--June 15, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-06-01

    In September 1986 a contract was signed between Chloride Silent Power Limited (CSPL) and Sandia National Laboratories (SNL) entitled ``Sodium Sulfur Electric Vehicle Battery Engineering Program``. The aim of the cost shared program was to advance the state of the art of sodium sulfur batteries for electric vehicle propulsion. Initially, the work statement was non-specific in regard to the vehicle to be used as the design and test platform. Under a separate contract with the DOE, Ford Motor Company was designing an advanced electric vehicle drive system. This program, called the ETX II, used a modified Aerostar van for itsmore » platform. In 1987, the ETX II vehicle was adopted for the purposes of this contract. This report details the development and testing of a series of battery designs and concepts which led to the testing, in the US, of three substantial battery deliverables.« less

  6. Collaborative Modular Pumped Hydro Energy Storage Design Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bibeault, Mark Leonide; Roybal, Adam; Bailey, Jr., Richard J.

    In May of 2017, Los Alamos National Laboratory (LANL) through the Applied Engineering Technology Division, Jemez Mountain Electric Cooperative Inc. (JMEC), and Northern New Mexico College (NNMC) agreed to enter into a small, joint, non-binding Modular Pumped Hydro (MPH) design study related to grid level energy storage to begin a process of collaboration. Los Alamos National Laboratory's mission is to solve national security challenges through scientific excellence. The mission of Northern New Mexico College is to ensure student success by providing access to affordable, community-based learning opportunities that meet the educational, cultural, and economic needs of the region. Jemez Mountainmore » Electric Cooperative Inc. is the largest electric co-op in the State of New Mexico providing affordable and reliable electricity to customers in the five counties of Rio Arriba, Santa Fe, San Juan, McKinley and Sandoval.« less

  7. NASA Center for Intelligent Robotic Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE.

  8. Groundbreaking for the NACA’s Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1941-01-21

    Local politicians and National Advisory Committee for Aeronautics (NACA) officials were on hand for the January 23, 1941 groundbreaking for the NACA’s Aircraft Engine Research Laboratory (AERL). The NACA was established in 1915 to coordinate the nation’s aeronautical research. The committee opened a research laboratory at Langley Field in 1920. By the late 1930s, however, European nations, Germany in particular, were building faster and higher flying aircraft. The NACA decided to expand with a new Ames Aeronautical Laboratory dedicated to high-speed flight and the AERL to handle engine-related research. The NACA examined a number of Midwest locations for its new engine lab before deciding on Cleveland. At the time, Cleveland possessed the nation’s most advanced airport, several key aircraft manufacturing companies, and was home to the National Air Races. Local officials were also able to broker a deal with the power company to discount its electricity rates if the large wind tunnels were operated overnight. The decision was made in October 1940, and the groundbreaking alongside the airport took place on January 23, 1941. From left to right: William Hopkins, John Berry, Ray Sharp, Frederick Crawford, George Brett, Edward Warner, Sydney Kraus, Edward Blythin, and George Lewis

  9. Alkali metal thermal to electric conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sievers, R.K.; Ivanenok, J.F. III; Hunt, T.K.

    1995-10-01

    With potential efficiencies of up to 40%, AMTEC technology offers reliability and fuel flexibility for aerospace and ground power applications. Alkali Metal Thermal to Electric Conversion (AMTEC), a direct power-conversion technology, is emerging from the laboratory for use in a number of applications that require lightweight, long-running, efficient power systems. AMTEC is compatible with many heat and fuel sources, and it offers the reliability of direct (that is, no moving parts) thermal to electric conversion. These features make it an attractive technology for small spacecraft used in deep-space missions and for ground power applications, such as self-powered furnaces and themore » generators used in recreational vehicles. Researchers at Ford Scientific Laboratories, in Dearborn, Michigan, first conceived AMTEC technology in 1968 when they identified and patented a converter known as the sodium heat engine. This heat engine was based on the unique properties of {beta}-alumina solid electrolyte (BASE), a ceramic material that is an excellent sodium ion conductor but a poor electronic conductor. BASE was used to form a structural barrier across which a sodium concentration gradient could be produced from thermal energy. The engine provided a way to isothermally expand sodium through the BASE concentration gradient without moving mechanical components. Measured power density and calculated peak efficiencies were impressive, which led to funding from the Department of Energy for important material technology development.« less

  10. New Class of Excimer-Pumped Atomic Lasers (XPALS)

    DTIC Science & Technology

    2017-01-27

    quantum efficiency greater thnn one, has been demonstrated. We believe this laser to represent a breakthrough in laser technology because the system...navy.mil Prepared by J. G. Eden and A. E. Mironov Laboratory For Optical Physics and Engineering Department of Electrical and Computer Engineering...viability of an atomic laser having a quantum efficiency greater than one. We believe this laser to represent a breakthrough in laser technology

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from workmore » on this project (since project inception) are listed in Appendix A.« less

  12. 136. ARRII Plot plan as it appeared in 1980, when ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    136. ARR-II Plot plan as it appeared in 1980, when interior modifications were being prepared to remodel electrical apparatus in ARA-602 in connection with use as a research and development joining laboratory. EG&G, Idaho, Inc. 1570-ARA-II-100-1. Date: April 1980. Ineel index code no. 070-0199-00-220-159749. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  13. 8. ARAI Shop and maintenance building ARA627 interior view. Remains ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. ARA-I Shop and maintenance building ARA-627 interior view. Remains of cabinetry and electrical switch panel in one of rooms. Ineel photo no. 1-11. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  14. CERTS Microgrid Laboratory Test Bed - PIER Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Joseph H.; Eto, Joseph H.; Lasseter, Robert

    2008-07-25

    The objective of the CERTS Microgrid Laboratory Test Bed project was to enhance the ease of integrating small energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of small generating sources. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation; 2) an approach to electrical protection within the microgrid that does not depend on highmore » fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications. The techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers 1547 and power quality requirements. The electrical protections system was able to distinguish between normal and faulted operation. The controls were found to be robust and under all conditions, including difficult motor starts. The results from these test are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or mroe of the CERTS Microgrid concepts.« less

  15. Electrical Transport and Channel Length Modulation in Semiconducting Carbon Nanotube Field-Effect Transistors

    DTIC Science & Technology

    2013-11-25

    a ballistic one-dimensional conductor is / = £>(£) ■ VgiE)[fR(E) - fdEME , (1) where Vg(E) is the group velocity, D(E) is the density of states... AEROSPACE REPORT NO. ATR-2013-01138 Electrical Transport and Channel Length Modulation in Semiconducting Carbon Nanotube Field-Effect Transistors...SCIENCES LABORATORIES The Aerospace Corporation functions as an "architect-engineer" for national security programs, specializing in advanced military

  16. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.

    2012-09-14

    The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineeringmore » Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).« less

  17. LPT. Low power test (TAN641) interior. Heating and ventilating pneumatic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Low power test (TAN-641) interior. Heating and ventilating pneumatic and electrical control panel. Contract nearly complete. Photographer: Jack L. Anderson. Date: December 19, 1957. INEEL negative no. 57-6198 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  18. Topics in Mitigating Radar Bias

    DTIC Science & Technology

    2012-01-01

    LABORATORY SPACE VEHICLES DIRECTORATE AFRL/VSSV 3550 ABERDEEN AVE SE KIRTLAND AFB NM 87117 NON-DOD ACTIVITIES (CONUS) ALI T ALOUANI 1/1 PROFESSOR...ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT TENNESSEE TECHNOLOGICAL UNIVERSITY BOX 5004 COOKEVILLE TN 38505 Copies Paper/CD YAAKOV BAR- SHALOM 1/1 BOARD OF

  19. ETR COOLING TOWER. PUMP HOUSE (TRA645) IN SHADOW OF TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR COOLING TOWER. PUMP HOUSE (TRA-645) IN SHADOW OF TOWER ON LEFT. AT LEFT OF VIEW, HIGH-BAY BUILDING IS ETR. ONE STORY ATTACHMENT IS ETR ELECTRICAL BUILDING. STACK AT RIGHT IS ETR STACK; MTR STACK IS TOWARD LEFT. CAMERA FACING NORTHEAST. INL NEGATIVE NO. 56-3799. Jack L. Anderson, 11/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  20. Training the Future - Swamp Work Activities

    NASA Image and Video Library

    2017-07-19

    In the Swamp Works laboratory at NASA's Kennedy Space Center in Florida, student interns such as Thomas Muller, left, and Austin Langdon are joining agency scientists, contributing in the area of Exploration Research and Technology. Muller is pursuing a degree in computer engineering and control systems and Florida Tech. Langdon is an electrical engineering major at the University of Kentucky. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  1. Development of Short Gate FET’s.

    DTIC Science & Technology

    1983-12-01

    Electrical Engineering AREA OK UIT NUMBERS S School of Engineering, Howard University 61102F 2300 Sixth St. N.W. Washington D.C. 20059 2305/Cl CITROLLING... Howard University Washington# D.C. 20059 64 04 24 021 RESEARCH OBJECTIVES The principal objective of this research is to try to under- stand the... Howard University Washington, D.C. 20059 (202)636-6684 James Comas Naval Research Laboratory, Code 6823 Washington, D.C. 20375 (202)767-3097

  2. Advanced Engineering Environment FY09/10 pilot project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamph, Jane Ann; Kiba, Grant W.; Pomplun, Alan R.

    2010-06-01

    The Advanced Engineering Environment (AEE) project identifies emerging engineering environment tools and assesses their value to Sandia National Laboratories and our partners in the Nuclear Security Enterprise (NSE) by testing them in our design environment. This project accomplished several pilot activities, including: the preliminary definition of an engineering bill of materials (BOM) based product structure in the Windchill PDMLink 9.0 application; an evaluation of Mentor Graphics Data Management System (DMS) application for electrical computer-aided design (ECAD) library administration; and implementation and documentation of a Windchill 9.1 application upgrade. The project also supported the migration of legacy data from existing corporatemore » product lifecycle management systems into new classified and unclassified Windchill PDMLink 9.0 systems. The project included two infrastructure modernization efforts: the replacement of two aging AEE development servers for reliable platforms for ongoing AEE project work; and the replacement of four critical application and license servers that support design and engineering work at the Sandia National Laboratories/California site.« less

  3. Survey of Laboratories and Implementation of the Federal Defense Laboratory Diversification Program. Annex A. Department of the Army Domestic Technology Transfer

    DTIC Science & Technology

    1993-11-01

    Recover Nitramine (Yxidizers from Solid Propellants Using Liquid Ammonia * Co~ial Engine for Ducted Hybrid , and Gel BI-propu~uion Systems S ltravolet...Surface Optical Testing Device * Electron Beam Driven Negative Ion Source * Method of Manufacturing Hybrid Fber-Reinforced Composite Nozzle Materials...Modeling Software FRED Partner I ty * Class VDrnng Simulation Parow. Academia * Combustion and Tribology Partne. Academia * Hybrid Electric Drive/High

  4. Teaching Network Security with IP Darkspace Data

    ERIC Educational Resources Information Center

    Zseby, Tanja; Iglesias Vázquez, Félix; King, Alistair; Claffy, K. C.

    2016-01-01

    This paper presents a network security laboratory project for teaching network traffic anomaly detection methods to electrical engineering students. The project design follows a research-oriented teaching principle, enabling students to make their own discoveries in real network traffic, using data captured from a large IP darkspace monitor…

  5. Local Area Networks and the Learning Lab of the Future.

    ERIC Educational Resources Information Center

    Ebersole, Dennis C.

    1987-01-01

    Considers educational applications of local area computer networks and discusses industry standards for design established by the International Standards Organization (ISO) and Institute of Electrical and Electronic Engineers (IEEE). A futuristic view of a learning laboratory using a local area network is presented. (Author/LRW)

  6. Virtual Control Systems Environment (VCSE)

    ScienceCinema

    Atkins, Will

    2018-02-14

    Will Atkins, a Sandia National Laboratories computer engineer discusses cybersecurity research work for process control systems. Will explains his work on the Virtual Control Systems Environment project to develop a modeling and simulation framework of the U.S. electric grid in order to study and mitigate possible cyberattacks on infrastructure.

  7. Proceedings of the Flat-Plate Solar Array Project Research Forum on the Design of Flat-Plate Photovoltaic Arrays for Central Stations

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.

  8. Environmental Measurements in the Beaufort Sea, Spring 1988

    DTIC Science & Technology

    1989-03-01

    electrical cable. The sensor package consisted of a thermistor (Sea-Bird), a conductivity cell (Sea-Bird), a pressure sensor (Paroscientific Digiquartz), and... Frankenstein and Garner9 based on the measured temperature (0Q and salinity (%o): Vb = S (-52.56/T - 2.28) for -0.5 >T >-2.06 Vb =S (-45.917/T + 0.93...Science and Engineering Monograph II-C3, Cold Regions Research and Engineer- ing Laboratory, Hanover, NH, 1967. 9. F. Frankenstein and R. Garner

  9. Near-Field Propagation of Sub-Nanosecond Electric Pulses into Amorphous Masses

    DTIC Science & Technology

    2012-02-01

    the Idaho National Engineering Laboratory, Idaho Falls, ID, as a Senior Research Engineer, involved with fission reactor diagnostic measurements. He...temperature probe tip was just submerged in the cell buffer, less than 1 mm deep. For other positions, the maximum temperatures decreased to 34 ± 1 ◦C...422, Apr. 2008. [21] R. P. Joshi, J. Song, K. H. Schoenbach, and V. Sridhara, “Aspects of lipid membrane bio -responses to subnanosecond, ultrahigh

  10. A&M. Outdoor turntable. Workings and design exposed during demolition. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Outdoor turntable. Workings and design exposed during demolition. View between two of the four rails of the track. Note motor and electrical conduit. Date: February 3, 2003. INEEL negative no. HD-37-1-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  11. Swanson during Day 2 of CDRA IFM

    NASA Image and Video Library

    2014-04-09

    ISS039-E-010367 (9 April 2014) --- In the Kibo laboratory aboard the International Space Station, Expedition 39 Flight Engineer Steve Swanson works during in-flight maintenance to mate electrical connectors in Tranquility's Carbon Dioxide Removal Assembly (CDRA). The image was taken during the second day of CDRA in-flight maintenance.

  12. ACTIVATION AND REACTIVITY OF NOVEL CALCIUM-BASED SORBENTS FOR DRY SO2 CONTROL IN BOILERS

    EPA Science Inventory

    Chemically modified calcium hydroxide (Ca(OH)2) sorbents developed in the U.S. Environmental Protection Agency's Air and Energy Engineering Research Laboratory (AEERL) for sulfur dioxide (SO2) control in utility boilers were tested in an electrically heated, bench-scale isotherma...

  13. NREL Investigates Coatings Needed for Concentrating Solar Power | News |

    Science.gov Websites

    these systems," said Johney Green, associate laboratory director for mechanical and thermal engineering sciences. CSP plants with low-cost thermal storage enable facilities to deliver electricity heat-transfer fluid and thermal energy storage because they can withstand high temperatures and retain

  14. Presentation to Ohio State University Dept. of Electrical Engineering ElectroScience Laboratory

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene

    2002-01-01

    Presentation made during visit to The Ohio State University, ElectroScience Laboratory, on November 14, 2002. An overview of NASA and selected technology products from the Digital Communications Technology Branch (5650) for fiscal year 2003 are highlighted. The purpose of the meeting was to exchange technical information on current aeronautics and space communications research and technology being conducted at NASA Glenn Research Center and to promote faculty/student collaborations of mutual interest.

  15. Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.

    PubMed

    Kehagia, Fotini

    2009-05-01

    Metallurgical slags are by-products of the iron and steel industry and are subdivided into blast furnace slag and steel slag according to the different steel-producing processes. In Greece, slags are mostly produced from steelmaking using the electric arc furnace process, and subsequently are either disposed in a random way or utilized by the cement industry. Steel slag has been recently used, worldwide, as hard aggregates in wearing courses in order to improve the skidding resistance of asphalt pavements. At the Highway Laboratory, Department of Civil Engineering of Aristotle University of Thessaloniki research has been carried out in the field of steel slags, and especially in electric arc furnace (EAF) slag, to evaluate their possible use in highway engineering. In this paper, the recent results of anti-skidding performance of steel slag aggregates in highway pavements are presented.

  16. Personal Computer-less (PC-less) Microcontroller Training Kit

    NASA Astrophysics Data System (ADS)

    Somantri, Y.; Wahyudin, D.; Fushilat, I.

    2018-02-01

    The need of microcontroller training kit is necessary for practical work of students of electrical engineering education. However, to use available training kit not only costly but also does not meet the need of laboratory requirements. An affordable and portable microcontroller kit could answer such problem. This paper explains the design and development of Personal Computer Less (PC-Less) Microcontroller Training Kit. It was developed based on Lattepanda processor and Arduino microcontroller as target. The training kit equipped with advanced input-output interfaces that adopted the concept of low cost and low power system. The preliminary usability testing proved this device can be used as a tool for microcontroller programming and industrial automation training. By adopting the concept of portability, the device could be operated in the rural area which electricity and computer infrastructure are limited. Furthermore, the training kit is suitable for student of electrical engineering student from university and vocational high school.

  17. Solar Stirling power generation - Systems analysis and preliminary tests

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.; Wu, Y.-C.; Moynihan, P. I.; Day, F. D., III

    1977-01-01

    The feasibility of an electric power generation system utilizing a sun-tracking parabolic concentrator and a Stirling engine/linear alternator is being evaluated. Performance predictions and cost analysis of a proposed large distributed system are discussed. Design details and preliminary test results are presented for a 9.5 ft diameter parabolic dish at the Jet Propulsion Laboratory (Caltech) Table Mountain Test Facility. Low temperature calorimetric measurements were conducted to evaluate the concentrator performance, and a helium flow system is being used to test the solar receiver at anticipated working fluid temperatures (up to 650 or 1200 C) to evaluate the receiver thermal performance. The receiver body is designed to adapt to a free-piston Stirling engine which powers a linear alternator assembly for direct electric power generation. During the next phase of the program, experiments with an engine and receiver integrated into the concentrator assembly are planned.

  18. EMERGE: Engineered Materials that Create Environments for ReGeneration via Electric Field

    DTIC Science & Technology

    2015-10-01

    lactic  co-­‐glycolic   acid )  (PLGA)   Injury   Aminophylline  REDD-­‐2015-­‐424   6   3. Accomplishments...laboratories.  Previously,  we  used  specific   pharmacological  activators  (aminophylline,  ascorbic   acid *)  or...electric   signal  and  wound  healing  (shallow  epithelial  wounds).  Aminophylline  and  ascorbic   acid  (10  mM)

  19. A Sustainable Energy Laboratory Course for Non-Science Majors

    NASA Astrophysics Data System (ADS)

    Nathan, Stephen A.; Loxsom, Fred

    2016-10-01

    Sustainable energy is growing in importance as the public becomes more aware of climate change and the need to satisfy our society's energy demands while minimizing environmental impacts. To further this awareness and to better prepare a workforce for "green careers," we developed a sustainable energy laboratory course that is suitable for high school and undergraduate students, especially non-science majors. Thirteen hands-on exercises provide an overview of sustainable energy by demonstrating the basic principles of wind power, photovoltaics, electric cars, lighting, heating/cooling, insulation, electric circuits, and solar collectors. The order of content presentation and instructional level (secondary education or college) can easily be modified to suit instructor needs and/or academic programs (e.g., engineering, physics, renewable and/or sustainable energy).

  20. Creep Laboratory manual

    NASA Astrophysics Data System (ADS)

    Osgerby, S.; Loveday, M. S.

    1992-06-01

    A manual for the NPL Creep Laboratory, a collective name given to two testing laboratories, the Uniaxial Creep Laboratory and the Advanced High Temperature Mechanical Testing Laboratory, is presented. The first laboratory is devoted to uniaxial creep testing and houses approximately 50 high sensitivity creep machines including 10 constant stress cam lever machines. The second laboratory houses a low cycle fatigue testing machine of 100 kN capacity driven by a servo-electric actuator, five machines for uniaxial tensile creep testing of engineering ceramics at temperatures up to 1600C, and an electronic creep machine. Details of the operational procedures for carrying out uniaxial creep testing are given. Calibration procedures to be followed in order to comply with the specifications laid down by British standards, and to provide traceability back to the primary standards are described.

  1. WATER PUMP HOUSE, TRA619. VIEW OF PUMP HOUSE UNDER CONSTRUCTION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PUMP HOUSE, TRA-619. VIEW OF PUMP HOUSE UNDER CONSTRUCTION. CAMERA IS ON WATER TOWER AND FACES NORTHWEST. TWO RESERVOIR TANKS ALREADY ARE COMPLETED. NOTE EXCAVATIONS FOR PIPE LINES EXITING FROM BELOW GROUND ON SOUTH SIDE OF PUMP HOUSE. BUILDING AT LOWER RIGHT IS ELECTRICAL CONTROL BUILDING, TRA-623. SWITCHYARD IS IN LOWER RIGHT CORNER OF VIEW. INL NEGATIVE NO. 2753. Unknown Photographer, ca. 6/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  2. PUMP HOUSE FOR MTR WELL NO. 1, TRA601. FLOOR PLAN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PUMP HOUSE FOR MTR WELL NO. 1, TRA-601. FLOOR PLAN, ELEVATIONS, SECTION SHOWING WELL CASING, ROOF FRAMING PLAN. AS BUILT. WELL HOUSE FOR WELL NO. 2, TRA-602, WAS IDENTICAL IN ALL PARTICULARS EXCEPT FLOOR DIMENSIONS AND ARRANGEMENT OF PUMP AND ELECTRICAL EQUIPMENT INSIDE. IDAHO OPERATIONS OFFICE MTR-601-IDO-1, 12/1954. INL INDEX NO. 531-0601-00-396-110463, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. MTRETR MAINTENANCE SHOP, TRA653. FLOOR PLAN FOR FIRST FLOOR: MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR-ETR MAINTENANCE SHOP, TRA-653. FLOOR PLAN FOR FIRST FLOOR: MACHINE SHOP, ELECTRICAL AND INSTRUMENT SHOP, TOOL CRIB, ELECTRONIC SHOP, LOCKER ROOM, SPECIAL TEMPERATURE CONTROLLED ROOM, AND OFFICES. "NEW" ON DRAWING REFERS TO REVISION OF 11/1956 DRAWING ON WHICH AREAS WERE DESIGNATED AS "FUTURE." HUMMEL HUMMEL & JONES 810-MTR-ETR-653-A-7, 5/1957. INL INDEX NO. 532-0653-00-381-101839, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economymore » compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].« less

  5. The Design, Construction, and Experimental Evaluation of a Compact Thermoacoustic-Stirling Engine Generator for Use in a micro-CHP Appliance

    NASA Astrophysics Data System (ADS)

    Wilcox, Douglas A., Jr.

    Micro combined heat and power or micro-CHP is the simultaneous generation of useful heat and electricity on a residential scale. The heat and electricity are produced at the point of use, avoiding the distribution losses associated with a centralized power plant. These appliances combine a conventional gas-fired condensing boiler with an electric power module capable of generating electricity from the heat of combustion. Currently, the leading power modules for micro-CHP appliances are free-piston Stirling engines (FPSEs) which can generate 1050 watts of electricity at a thermal-to-electric efficiency of 26%.[1] These external combustion engines have been under development for the last 25 years, with FPSE micro-CHP appliances only recently being introduced to the commercial market. Publications by developers assert unlimited service life and high efficiency, with low noise and emissions; but despite these claims, the actual reliability and cost of manufacturing has prevented their successful mass-market adoption. A Thermoacoustic-Stirling Engine Generator or TaSEG is one possible alternative to FPSE's. A TaSEG uses a thermoacoustic engine, or acoustic heat engine, which can efficiently convert high temperature heat into acoustic power while maintaining a simple design with fewer moving parts than traditional FPSE's. This simpler engine is coupled to an electrodynamic alternator capable of converting acoustic power into electricity. This thesis outlines the design, construction, and experimental evaluation of a TaSEG which is appropriate for integration with a gas burner inside of a residential micro- CHP appliance. The design methodology is discussed, focusing on how changes in the geometry affected the predicted performance. Details of its construction are given and the performance of the TaSEG is then outlined. The TaSEG can deliver 132 watts of electrical output power to an electric load with an overall measured thermal-to-electric (first law) efficiency of eta T-E=8.32%, corresponding to 14% of Carnot etac. The volumetric power density of this TaSEG is 8.9 kW/m3. While the demonstrated overall efficiency is modest (for reasons that are largely understood), this TaSEG has moved the technology away from laboratory prototypes toward a commercially viable power module having a design configuration suitable for implementation in a micro-CHP appliance. Based on the TaSEG's measured experimental performance results, recommendations for future work that might improve the overall efficiency of the TaSEG are also presented.

  6. Development of an All Solid State 6 kHz Pulse Generator for Driving Free Electron Laser Amplifiers

    DTIC Science & Technology

    1990-07-16

    programs. 1-6 SCIENCE RESEARCH LABORATORY In these efforts, Science Research Laboratory is exploiting recent progress in Silicon Con- trolled Rectifier...electrons in silicon as opposed to the low pressure gas in the thyratron. In addition these all-solid-state SCR-switched drivers can be engineered to...nsec PFN 2-5 C Li Figure 2.3: Electrical schematic and cross-sectional view of SNOMAD-11 SCR corn - mutated pulse compression driver. 2-5 SCIENCE

  7. STS_135_SAIL

    NASA Image and Video Library

    2011-07-12

    JSC2011-E-067674 (12 July 2011) --- Chris St. Julian, left, a Prairie View A&M electrical engineering major who is interning at NASA for the summer, pilots the shuttle for a simulated landing in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston, July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. The facility bears the orbiter designation of Orbiter Vehicle 095. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  8. Rapid Thermal Processing of 3-5 Compound Semiconductors with Application to the Fabrication of Microwave Devices

    DTIC Science & Technology

    1988-05-01

    LE i GOD~’Q~/ SOLID STATE ELECTRONICS LABORATORY STANFORD ELECTRON ICS LABORATORIES DEPARTMENT OF ELECTRICAL ENGINEERING L STANFORD UNIVERSITY...defects in the growth of subsequent layers. Test structures consisting 325 zEP-H~ PrzC~ LE of multiple layers of GaAs or alternating lay ers of GaAs...QA5) ~erhfellowship. ’J L Ho~ viand ) IF Gibtxn,. itecr Res Soc S% mp Proc 52. 15119t 36 Rapid thermal annealing of Si-implanted GaAs with

  9. Energy Storage Systems Program Report for FY99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOYES,JOHN D.

    2000-06-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy's Office of Power Technologies. The goal of this program is to develop cost-effective electric energy storage systems for many high-value stationary applications in collaboration with academia and industry. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1999.

  10. Workshop on the Physics and Modeling of Submicron Structures.

    DTIC Science & Technology

    1983-10-01

    Health and Safety Research Division Oak Ridge National Laboratory P.O. Box X Oak Ridge, TN 37830 60. M. A. Littlejohn Electrical Engineering Dept. 232...HB16 Anaheim, CA 92803 76. Dick Reynolds ARPA 1400 Wilson Boulevard Arlington, VA 22209 77. R. H. Ritchie Oak Ridge National Lab Oak Ridge, TN 37830

  11. LaboREM--A Remote Laboratory for Game-Like Training in Electronics

    ERIC Educational Resources Information Center

    Luthon, Franck; Larroque, Benoît

    2015-01-01

    The advances in communication networks and web technologies, in conjunction with the improved connectivity of test and measurement devices make it possible to implement e-learning applications that encompass the whole learning process. In the field of electrical engineering, automation or mechatronics, it means not only lectures, tutorials, demos…

  12. SPERTI Terminal Building (PER604). Oblique view of front entry and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Terminal Building (PER-604). Oblique view of front entry and one side. Electrical transformers at right of building. Note "Butler" logo. Photographer: R.G. Larsen. Date: June 22, 1955. INEEL negative no. 55-1700 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  13. An Assessment of Remote Laboratory Experiments in Radio Communication

    ERIC Educational Resources Information Center

    Gampe, Andreas; Melkonyan, Arsen; Pontual, Murillo; Akopian, David

    2014-01-01

    Today's electrical and computer engineering graduates need marketable skills to work with electronic devices. Hands-on experiments prepare students to deal with real-world problems and help them to comprehend theoretical concepts and relate these to practical tasks. However, shortage of equipment, high costs, and a lack of human resources for…

  14. REPORT TO SAED OF GESAED-BUHRC TRAINING STUDY.

    ERIC Educational Resources Information Center

    HARRISON, ROGER; OSHRY, BARRY

    A RESEARCH STUDY CONDUCTED BY THE SMALL AIRCRAFT ENGINE DEPARTMENT OF GENERAL ELECTRIC AND BOSTON UNIVERSITY HUMAN RELATIONS CENTER EXPLORED THE PERSONAL CHARACTERISTICS OF 47 T-GROUP PARTICIPANTS. IN PART 1, THE AUTHORS DISCUSS THE PREDICTOR MEASURES THAT WERE FORMED BEFORE TRAINING. AT THE END OF EACH LABORATORY EACH MEMBER AND THE TRAINERS…

  15. LOFT. Reactor apparatus leaves A&M building (TAN607). Shielded locomotive has ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Reactor apparatus leaves A&M building (TAN-607). Shielded locomotive has aerojet logo, which replaced old general electric logo, pulls reactor from assembly shop on dolly. Camera facing easterly. Date: 1973. INEEL negative no. 73-3700 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  16. 75 FR 9196 - Letter From Secretary of Energy Accepting Defense Nuclear Facilities Safety Board (Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... capability for non- vital laboratory room electrical loads that provides an engineered control to reduce..., approximately two orders of magnitude higher than our evaluation guideline for selecting safety class controls. Approval of the DSA included recognition of weaknesses in the facility's control set and the need to...

  17. Remote control circuit breaker evaluation testing. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Bemko, L. M.

    1974-01-01

    Engineering evaluation tests were performed on several models/types of remote control circuit breakers marketed in an attempt to gain some insight into their potential suitability for use on the space shuttle vehicle. Tests included the measurement of several electrical and operational performance parameters under laboratory ambient, space simulation, acceleration and vibration environmental conditions.

  18. Zero-gravity cloud physics laboratory: Candidate experiments definition and preliminary concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, R. V.; Hollinden, A. B.

    1973-01-01

    The candidate definition studies on the zero-g cloud physics laboratory are covered. This laboratory will be an independent self-contained shuttle sortie payload. Several critical technology areas have been identified and studied to assure proper consideration in terms of engineering requirements for the final design. Areas include chambers, gas and particle generators, environmental controls, motion controls, change controls, observational techniques, and composition controls. This unique laboratory will allow studies to be performed without mechanical, aerodynamics, electrical, or other type techniques to support the object under study. This report also covers the candidate experiment definitions, chambers and experiment classes, laboratory concepts and plans, special supporting studies, early flight opportunities and payload planning data for overall shuttle payload requirements assessments.

  19. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staunton, R. H.; Ayers, C. W.; Marlino, L. D.

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200–1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economymore » compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) – Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available. This report summarizes vehicle-level and subsystem-level test results obtained for the 2004 Prius and various electrical and mechanical subassemblies of its hybrid electric drive system. The primary objective of these tests was to (1) characterize the electrical and mechanical performance of the 2004 Prius, and (2) map the performance of the inverter/motor system over the full design speed and load ranges.« less

  20. 2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

  1. SPHINX Satellite Testing in the Electric Propulsion Laboratory

    NASA Image and Video Library

    1973-12-21

    Researchers examine the Space Plasma-High Voltage Interaction Experiment (SPHINX) satellite in the Electric Propulsion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis’ Spacecraft Technology Division designed SPHINX to study the electrical interaction of its experimental surfaces with space plasma. They sought to determine if higher orbits would improve the transmission quality of communications satellites. Robert Lovell, the Project Manager, oversaw vibrational and plasma simulation testing of the satellite in the Electric Propulsion Laboratory, seen here. SPHINX was an add-on payload for the first Titan/Centaur proof launch in early 1974. Lewis successfully managed the Centaur Program since 1962, but this would be the first Centaur launch with a Titan booster. Since the proof test did not have a scheduled payload, the Lewis-designed SPHINX received a free ride. The February 11, 1974 launch, however, proved to be one of the Launch Vehicle Division’s lowest days. Twelve minutes after the vehicle departed the launch pad, the booster and Centaur separated as designed, but Centaur’s two RL-10 engines failed to ignite. The launch pad safety officer destroyed the vehicle, and SPHINX never made it into orbit. Overall Centaur has an excellent success rate, but the failed SPHINX launch attempt caused deep disappointment across the center.

  2. Determination of Soil Moisture Content using Laboratory Experimental and Field Electrical Resistivity Values

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Rosli, S.; Fauziah, A.; Wijeyesekera, D. C.; Ashraf, M. I. M.; Faizal, T. B. M.; Kamarudin, A. F.; Rais, Y.; Dan, M. F. Md; Azhar, A. T. S.; Hafiz, Z. M.

    2018-04-01

    The efficiency of civil engineering structure require comprehensive geotechnical data obtained from site investigation. In the past, conventional site investigation was heavily related to drilling techniques thus suffer from several limitations such as time consuming, expensive and limited data collection. Consequently, this study presents determination of soil moisture content using laboratory experimental and field electrical resistivity values (ERV). Field and laboratory electrical resistivity (ER) test were performed using ABEM SAS4000 and Nilsson400 soil resistance meter. Soil sample used for resistivity test was tested for characterization test specifically on particle size distribution and moisture content test according to BS1377 (1990). Field ER data was processed using RES2DINV software while laboratory ER data was analyzed using SPSS and Excel software. Correlation of ERV and moisture content shows some medium relationship due to its r = 0.506. Moreover, coefficient of determination, R2 analyzed has demonstrate that the statistical correlation obtain was very good due to its R2 value of 0.9382. In order to determine soil moisture content based on statistical correlation (w = 110.68ρ-0.347), correction factor, C was established through laboratory and field ERV given as 19.27. Finally, this study has shown that soil basic geotechnical properties with particular reference to water content was applicably determined using integration of laboratory and field ERV data analysis thus able to compliment conventional approach due to its economic, fast and wider data coverage.

  3. Secure Control Systems for the Energy Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Rhett; Stewart, John; Chavez, Adrian

    The Padlock Project is an alliance between Tennessee Valley Authority (TVA), Sandia National Laboratories (SNL), and Schweitzer Engineering Laboratories Inc. (SEL). SEL is the prime contractor on the Padlock project. Rhett Smith (SEL) is the project director and Adrian Chaves (SNL) and John Stewart (TVA) are principle investigators. SEL is the world’s leader in microprocessor-based electronic equipment for protecting electric power systems. The Tennessee Valley Authority, a corporation owned by the U.S. government, provides electricity for 9 million people in parts of seven southeastern states at prices below the national average. TVA, which receives no taxpayer money and makes nomore » profits, also provides flood control, navigation and land management for the Tennessee River system and assists utilities, and state and local governments with economic development.« less

  4. Radiation cooler for 10 micrometer wavelength engineering model receiver model no. 7172, serial no. 201

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The design, fabrication, and testing of a radiative cooler are described. This cooler is an engineering model suitable for bench testing in the laboratory as a part of the 10-micrometer wavelength engineering model receiver, and conforms to the standard radiative cooler configuration, except that the inner stage and its support system were redesigned to accommodate the larger, heavier SAT detector. This radiative cooler will cool the detector to cryogenic temperature levels when the receiver is in a space environment or in a suitable thermal vacuum chamber. Equipment specifications are given along with the results of thermal tests, vibration tests, and electrical integrity tests.

  5. Testing of electrical equipment for a commercial grade dedication program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.L.; Srinivas, N.

    1995-10-01

    The availability of qualified safety related replacement parts for use in nuclear power plants has decreased over time. This has caused many nuclear power plants to purchase commercial grade items (CGI) and utilize the commercial grade dedication process to qualify the items for use in nuclear safety related applications. The laboratories of Technical and Engineering Services (the testing facility of Detroit Edison) have been providing testing services for verification of critical characteristics of these items. This paper presents an overview of the experience in testing electrical equipment with an emphasis on fuses.

  6. Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT)

    Science.gov Websites

    Laboratory Battery Design LLC CD-adapco EC Power ESim Ford General Motors (GM) Johnson Controls, Inc battery modeling" April 2013: R. Spotnitz, Design and Simulation of Spirally-Wound, Lithium-Ion Cells ;Effect of Tab Design on Large-Format Li-ion Cell Performance," Journal of Power Sources 257 70-79

  7. Air Force Research Laboratory Technology Milestones 2007

    DTIC Science & Technology

    2007-01-01

    Propulsion Fuel Pumps and Fuel Systems Liquid Rockets and Combustion Gas Generators Micropropulsion Gears Monopropellants High-Cycle Fatigue and Its... Systems Electric Propulsion Engine Health Monitoring Systems High-Energy-Density Matter Exhaust Nozzles Injectors and Spray Measurements Fans Laser...of software models to drive development of component-based systems and lightweight domain-specific specification and verification technology. Highly

  8. An Educational Laboratory Virtual Instrumentation Suite Assisted Experiment for Studying Fundamentals of Series Resistance-Inductance-Capacitance Circuit

    ERIC Educational Resources Information Center

    Rana, K. P. S.; Kumar, Vineet; Mendiratta, Jatin

    2017-01-01

    One of the most elementary concepts in freshmen Electrical Engineering subject comprises the Resistance-Inductance-Capacitance (RLC) circuit fundamentals, that is, their time and frequency domain responses. For a beginner, generally, it is difficult to understand and appreciate the step and the frequency responses, particularly the resonance. This…

  9. Testing of a flat conductor cable baseboard system for residential and commercial wiring

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.

    1974-01-01

    The results of extensive testing (mechanical, electrical, chemical, environmental, thermal, and analytical) are reported for a flat conductor cable baseboard system for residential and commercial wiring. In all of the tests, Underwriters Laboratories (UL) Standards, UL Tentative Test Programs, or Accepted Engineering Practices were followed during test selection, test setup, and test accomplishment.

  10. Control Performance of General Electric Fuel and Torque Regulator Operating on T31-3 Turbine-Propeller Engine in Sea-Level Test Stand

    NASA Technical Reports Server (NTRS)

    Oppenheimer, Frank L.; Lazar, James

    1951-01-01

    A .General Electric fuel and torque regulator was tested in conjunction with a T31-3 turbine-propeller engine in the sea-level static test stand at the NACA Lewis laboratory. The engine and control were operated over the entire speed range: 11,000 rpm, nominal flight idle, to 13,000 rpm, full power. Steady-state and transient data were recorded and are presented with a description of the four control loops being used in the system. Results of this investigation indicated that single-lever control operation was satisfactory under conditions of test. Transient data presented showed that turbine-outlet temperature did overshoot maximum operating value on acceleration but that the time duration of overshoot did not exceed approximately 1 second. This temperature limiting resulted from a control on fuel flow as a function of engine speed. Speed and torque first reached their desired values 0.4 second from the time of change in power-setting lever position. Maximum speed overshoot was 3 percent.

  11. Spacelab - From early integration to first flight. I

    NASA Astrophysics Data System (ADS)

    Thirkettle, A.; di Mauro, F.; Stephens, R.

    1984-05-01

    Spacelab is a series of flight elements that can be assembled together in different configurations. The laboratory is designed to accommodate many payloads with totally different characteristics. Two models were built: one was tested functionally, integrated into an Engineering Model and delivered to NASA. The other was used for subsystem testing. The Spacelab system consists of several functional elements within the Module, Igloo and Pallet structures: an Electric Power Distribution Subsystem, a Command and Data Management Subsystem, Software, Caution-and-Warning Subsystem and an Environmental Control Subsystem. The Engineering Model tests were conducted in Europe from April 1978 through October 1980, delivery of the laboratory to JFK Space Center, Florida was in December 1980, and the first flight was made in November 1983 on Space Shuttle STS-9.

  12. Ronald N. Bracewell: An Appreciation

    NASA Astrophysics Data System (ADS)

    Thompson, A. Richard; Frater, Robert H.

    2010-11-01

    Ronald Newbold Bracewell (1921-2007) made fundamental contributions to the development of radio astronomy in the areas of interferometry, signal processing, and imaging, and also to tomography, various areas of data analysis, and the understanding of Fourier transforms. He was born in Sydney, Australia, and received a B.Sc. degree in mathematics and physics, and B.E. and M.E. degrees in electrical engineering from the University of Sydney, and his Ph.D. from the University of Cambridge, U.K., for research on the ionosphere. In 1949 he joined the Radiophysics Laboratory of CSIRO, where he became interested in radio astronomy. In 1955 he moved to Stanford University, California, where he became Lewis M. Terman Professor of Electrical Engineering. He retired from teaching in 1991, but continued to be active in radio astronomy and other applications of imaging techniques, etc. During his career he published ten books and more than 250 papers. Honors that he received include the Duddell Premium of the Institute of Electrical Engineers, London, the Hertz Medal of the IEEE, and the Order of Australia. For his work on imaging in tomography he was elected to Associate Membership of the Institute of Medicine of the U.S. National Academy of Sciences.

  13. Overview of the 1986 free-piston Stirling activities at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Alger, Donald L.

    1986-01-01

    An overview of the NASA Lewis Research Center's free-piston Stirling engine research is presented, including efforts to improve and advance its design for use in specific space power applications. These efforts are a part of the SP-100 program being conducted to support the Department of Defense (DOD), Department of Energy (DOE) and NASA. Such efforts include: (1) the testing and improvement of 25 kWe Stirling Space Power Demonstrator Engine (SPDE); (2) the preliminary design of 25 kWe single-cylinder Experimental stirling Space Engine (ESSE); and, (3) a study to determine the feasibility of scaling a single-cylinder free-piston Stirling engine/linear alternator to 150 kWe. Other NASA Lewis free-piston Stirling engine activities will be described, directed toward the advancement of general free-piston Stirling engine technology and its application in specific terrestrial applications. One such effort, supported by DOE/Oak Ridge National Laboratory (DRNL), is the development of a free-piston Stirling engine which produces hydraulic power. Finally, a terrestrial solar application involving a conceptual design of a 25 kWe Solar Advanced Stirling Conversion System (ASCS) capable of delivering power to an electric utility grid will be discussed. The latter work is supported by DOE/Sandia National Laboratory (SNLA).

  14. CELCAP: A Computer Model for Cogeneration System Analysis

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A description of the CELCAP cogeneration analysis program is presented. A detailed description of the methodology used by the Naval Civil Engineering Laboratory in developing the CELCAP code and the procedures for analyzing cogeneration systems for a given user are given. The four engines modeled in CELCAP are: gas turbine with exhaust heat boiler, diesel engine with waste heat boiler, single automatic-extraction steam turbine, and back-pressure steam turbine. Both the design point and part-load performances are taken into account in the engine models. The load model describes how the hourly electric and steam demand of the user is represented by 24 hourly profiles. The economic model describes how the annual and life-cycle operating costs that include the costs of fuel, purchased electricity, and operation and maintenance of engines and boilers are calculated. The CELCAP code structure and principal functions of the code are described to how the various components of the code are related to each other. Three examples of the application of the CELCAP code are given to illustrate the versatility of the code. The examples shown represent cases of system selection, system modification, and system optimization.

  15. Gait Analysis Laboratory

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Complete motion analysis laboratory has evolved out of analyzing walking patterns of crippled children at Stanford Children's Hospital. Data is collected by placing tiny electrical sensors over muscle groups of child's legs and inserting step-sensing switches in soles of shoes. Miniature radio transmitters send signals to receiver for continuous recording of abnormal walking pattern. Engineers are working to apply space electronics miniaturization techniques to reduce size and weight of telemetry system further as well as striving to increase signal bandwidth so analysis can be performed faster and more accurately using a mini-computer.

  16. Surface accuracy measurement sensor test on a 50-meter antenna surface model

    NASA Technical Reports Server (NTRS)

    Spiers, R. B.; Burcher, E. E.; Stump, C. W.; Saunders, C. G.; Brooks, G. F.

    1984-01-01

    The Surface Accuracy Measurement Sensor (SAMS) is a telescope with a focal plane photo electric detector that senses the lateral position of light source targets in its field of view. After extensive laboratory testing the engineering breadboard sensor system was installed and tested on a 30 degree segment of a 50-meter diameter, mesh surface, antenna model. Test results correlated well with the laboratory tests and indicated accuracies of approximately 0.59 arc seconds at 21 meters range. Test results are presented and recommendations given for sensor improvements.

  17. Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach.

    PubMed

    Čorović, Selma; Mahnič-Kalamiza, Samo; Miklavčič, Damijan

    2016-04-07

    Electroporation-based applications require multidisciplinary expertise and collaboration of experts with different professional backgrounds in engineering and science. Beginning in 2003, an international scientific workshop and postgraduate course electroporation based technologies and treatments (EBTT) has been organized at the University of Ljubljana to facilitate transfer of knowledge from leading experts to researches, students and newcomers in the field of electroporation. In this paper we present one of the integral parts of EBTT: an e-learning practical work we developed to complement delivery of knowledge via lectures and laboratory work, thus providing a blended learning approach on electrical phenomena involved in electroporation-based therapies and treatments. The learning effect was assessed via a pre- and post e-learning examination test composed of 10 multiple choice questions (i.e. items). The e-learning practical work session and both of the e-learning examination tests were carried out after the live EBTT lectures and other laboratory work. Statistical analysis was performed to compare and evaluate the learning effect measured in two groups of students: (1) electrical engineers and (2) natural scientists (i.e. medical doctors, biologists and chemists) undergoing the e-learning practical work in 2011-2014 academic years. Item analysis was performed to assess the difficulty of each item of the examination test. The results of our study show that the total score on the post examination test significantly improved and the item difficulty in both experimental groups decreased. The natural scientists reached the same level of knowledge (no statistical difference in total post-examination test score) on the post-course test take, as do electrical engineers, although the engineers started with statistically higher total pre-test examination score, as expected. The main objective of this study was to investigate whether the educational content the e-learning practical work presented to the students with different professional backgrounds enhanced their knowledge acquired via lectures during EBTT. We compared the learning effect assessed in two experimental groups undergoing the e-learning practical work: electrical engineers and natural scientists. The same level of knowledge on the post-course examination was reached in both groups. The results indicate that our e-learning platform supported by blended learning approach provides an effective learning tool for populations with mixed professional backgrounds and thus plays an important role in bridging the gap between scientific domains involved in electroporation-based technologies and treatments.

  18. Thermionic system evaluated test (TSET) facility description

    NASA Astrophysics Data System (ADS)

    Fairchild, Jerry F.; Koonmen, James P.; Thome, Frank V.

    1992-01-01

    A consortium of US agencies are involved in the Thermionic System Evaluation Test (TSET) which is being supported by the Strategic Defense Initiative Organization (SDIO). The project is a ground test of an unfueled Soviet TOPAZ-II in-core thermionic space reactor powered by electrical heat. It is part of the United States' national thermionic space nuclear power program. It will be tested in Albuquerque, New Mexico at the New Mexico Engineering Research Institute complex by the Phillips Laboratoty, Sandia National Laboratories, Los Alamos National Laboratory, and the University of New Mexico. One of TSET's many objectives is to demonstrate that the US can operate and test a complete space nuclear power system, in the electrical heater configuration, at a low cost. Great efforts have been made to help reduce facility costs during the first phase of this project. These costs include structural, mechanical, and electrical modifications to the existing facility as well as the installation of additional emergency systems to mitigate the effects of utility power losses and alkali metal fires.

  19. Design and development of FZU-32/B bomb fuze initiator. Final report 23 Jun 72--15 Nov 73

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miazza, J.

    1974-05-01

    The primary objective of this program was to develop a cost effective, production engineered FZU-24/B Bomb Fuze Initiator. The initiator is an electric generating device which, when installed in the fuze charging well of general purpose bombs, is capable of deriving energy from the airstream passing the bomb in free fall and converting the energy into electric energy suitable for powering a bomb fuze. The objective was to be accomplished by means of a production engineering effort carried through the evolution of design, fabrication, assembly, test, and evaluation. The baseline for the design was Harry Diamond Laboratories' Drawing No. 11716160.more » A quantity of 60 units was fabricated and tested, in accordance with the production engineered design. After some additional redesign to correct identified deficiencies, 220 units were fabricated. These units were subjected to environmental, wind tunnel, and flight testing and performance requirements were met. The final unit design was designated the FZU-32/B Bomb Fuze Initiator.« less

  20. Hybrid and plug-in hybrid electric vehicle performance testing by the US Department of Energy Advanced Vehicle Testing Activity

    NASA Astrophysics Data System (ADS)

    Karner, Donald; Francfort, James

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and vehicle development programs. The AVTA has tested full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting baseline performance, battery benchmark and fleet tests of hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Testing has included all HEVs produced by major automotive manufacturers and spans over 2.5 million test miles. Testing is currently incorporating PHEVs from four different vehicle converters. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory.

  1. Electric vehicle test report Cutler-Hammer Corvette

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Vehicles were characterized for the state of the art assessment of electric vehicles. The vehicle evaluated was a Chevrolet Corvette converted to electric operation. The original internal combustion engine was replaced by an electric traction motor. Eighteen batteries supplied the electrical energy. A controller, an onboard battery charger, and several dashboard instruments completed the conversion. The emphasis was on the electrical portion of the drive train, although some analysis and discussion of the mechanical elements are included. Tests were conducted both on the road (actually a mile long runway) and in a chassis dynamometer equipped laboratory. The majority of the tests performed were according to SAE Procedure J227a and included maximum effort accelerations, constant speed range, and cyclic range. Some tests that are not a part of the SAE Procedure J227a are described and the analysis of the data from all tests is discussed.

  2. University Nanosatellite Program ION-F Constellation

    NASA Technical Reports Server (NTRS)

    Swenson, Charles; Fullmer, Rees; Redd, Frank

    2002-01-01

    The Space Engineering program at Utah State University has developed a small satellite, known as USUSat, under funding from AFOSR, AFRL, NASA and Utah State University's Space Dynamics Laboratory. This satellite was designed and significantly manufactured by students in the Mechanical and Aerospace Engineering and the Electrical and Computer Engineering Departments within the College of Engineering. USUSat is one of three spacecraft being designed for the Ionospheric Observation Nanosatellite Formation (ION- F). This formation comprises three 15 kg. spacecraft designed and built in cooperation by Utah State University, University of Washington, and Virginia Polytechnic Institute. The ION-F satellites are being designed and built by students at the three universities, with close coordination to insure compatibility for launch, deployment, and the formation flying mission. The JON-F mission is part of the U.S. Air Force Research Laboratory (AFRL) University Nanosatellite Program, which provides technology development and demonstrations for the TechSat2l Program. The University Nanosatellite Program involves 10 universities building nanosatellites for a launch in 2004 on two separate space shuttle missions. Additional support for the formation flying demonstration has been provided by NASA's Goddard Space Flight Center.

  3. FET. Control and equipment building (TAN630). Basement floor plan. Tunnel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FET. Control and equipment building (TAN-630). Basement floor plan. Tunnel to hangar (TAN-629). Electrical and chemical services. Ralph M. Parsons 1229-2 ANP/GE-630-A-1. Date: March 1957. Approved by INEEL Classification Office for public release. INEEL index code no. 036-0630-00-693-107080 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  4. 148. ARAIII Reactor building (ARA608) Floor plan. Shows location of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    148. ARA-III Reactor building (ARA-608) Floor plan. Shows location of reactor, heater, and mechanical loop pits; mechanical and electrical equipment rooms; and other work areas. Aerojet-general 880-area/GCRE-608-A-1. Date: February 1958. Ineel index code no. 063-0608-00-013-102612. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  5. 137. ARAII Building ARA602 floor plan as it appeared in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    137. ARA-II Building ARA-602 floor plan as it appeared in 1980 when electrical modifications were being made. Shows partial layout of floor plan. EG&G Idaho, Inc. 1570-ARA-II-602-E-3. Date: April 1980. Ineel index code no. 070--0602-10-220-159761. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  6. Enhancing space transportation: The NASA program to develop electric propulsion

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Watkins, Marcus A.; Byers, David C.; Barnett, John W.

    1990-01-01

    The NASA Office of Aeronautics, Exploration, and Technology (OAET) supports a research and technology (R and T) program in electric propulsion to provide the basis for increased performance and life of electric thruster systems which can have a major impact on space system performance, including orbital transfer, stationkeeping, and planetary exploration. The program is oriented toward providing high-performance options that will be applicable to a broad range of near-term and far-term missions and vehicles. The program, which is being conducted through the Jet Propulsion Laboratory (JPL) and Lewis Research Center (LeRC) includes research on resistojet, arcjets, ion engines, magnetoplasmadynamic (MPD) thrusters, and electrodeless thrusters. Planning is also under way for nuclear electric propulsion (NEP) as part of the Space Exploration Initiative (SEI).

  7. Power Quality and Reliability Project

    NASA Technical Reports Server (NTRS)

    Attia, John O.

    2001-01-01

    One area where universities and industry can link is in the area of power systems reliability and quality - key concepts in the commercial, industrial and public sector engineering environments. Prairie View A&M University (PVAMU) has established a collaborative relationship with the University of'Texas at Arlington (UTA), NASA/Johnson Space Center (JSC), and EP&C Engineering and Technology Group (EP&C) a small disadvantage business that specializes in power quality and engineering services. The primary goal of this collaboration is to facilitate the development and implementation of a Strategic Integrated power/Systems Reliability and Curriculum Enhancement Program. The objectives of first phase of this work are: (a) to develop a course in power quality and reliability, (b) to use the campus of Prairie View A&M University as a laboratory for the study of systems reliability and quality issues, (c) to provide students with NASA/EPC shadowing and Internship experience. In this work, a course, titled "Reliability Analysis of Electrical Facilities" was developed and taught for two semesters. About thirty seven has benefited directly from this course. A laboratory accompanying the course was also developed. Four facilities at Prairie View A&M University were surveyed. Some tests that were performed are (i) earth-ground testing, (ii) voltage, amperage and harmonics of various panels in the buildings, (iii) checking the wire sizes to see if they were the right size for the load that they were carrying, (iv) vibration tests to test the status of the engines or chillers and water pumps, (v) infrared testing to the test arcing or misfiring of electrical or mechanical systems.

  8. General Electric TG-180 Turbojet in the Altitude Wind Tunnel

    NASA Image and Video Library

    1947-09-21

    A General Electric TG-180 turbojet installed in the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. In 1943 the military asked General Electric to develop an axial-flow jet engine which became the TG-180. The military understood that the TG-180 would not be ready during World War II but recognized the axial-flow compressor’s long-term potential. Although the engine was bench tested in April 1944, it was not flight tested until February 1946. The TG-180 was brought to the Altitude Wind Tunnel in 1945 for a series of investigations. The studies, which continued intermittently into 1948, analyzed an array of performance issues. NACA modifications steadily improved the TG-180’s performance, including the first successful use of an afterburner. The Lewis researchers studied a 29-inch diameter afterburner over a range of altitude conditions using several different types of flameholders and fuel systems. Lewis researchers concluded that a three-stage flameholder with its largest stage upstream was the best burner configuration. Although the TG-180 (also known as the J35) was not the breakthrough engine that the military had hoped for, it did power the Douglas D-558-I Skystreak to a world speed record on August 20, 1947. The engines were also used on the Republic F-84 Thunderjet and the Northrup F-89 Scorpion.

  9. Final design of a free-piston hydraulic advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  10. Final design of a free-piston hydraulic advanced Stirling conversion system

    NASA Astrophysics Data System (ADS)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  11. Advanced Vehicle system concepts. [nonpetroleum passenger transportation

    NASA Technical Reports Server (NTRS)

    Hardy, K. S.; Langendoen, J. M.

    1983-01-01

    Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.

  12. 46 CFR 188.25-1 - Electrical engineering details.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Electrical engineering details. 188.25-1 Section 188.25... GENERAL PROVISIONS General Electrical Engineering Requirements § 188.25-1 Electrical engineering details. (a) The electrical engineering details shall be in accordance with subchapter J (Electrical...

  13. 46 CFR 188.25-1 - Electrical engineering details.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Electrical engineering details. 188.25-1 Section 188.25... GENERAL PROVISIONS General Electrical Engineering Requirements § 188.25-1 Electrical engineering details. (a) The electrical engineering details shall be in accordance with subchapter J (Electrical...

  14. 46 CFR 188.25-1 - Electrical engineering details.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Electrical engineering details. 188.25-1 Section 188.25... GENERAL PROVISIONS General Electrical Engineering Requirements § 188.25-1 Electrical engineering details. (a) The electrical engineering details shall be in accordance with subchapter J (Electrical...

  15. 46 CFR 188.25-1 - Electrical engineering details.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Electrical engineering details. 188.25-1 Section 188.25... GENERAL PROVISIONS General Electrical Engineering Requirements § 188.25-1 Electrical engineering details. (a) The electrical engineering details shall be in accordance with subchapter J (Electrical...

  16. 46 CFR 188.25-1 - Electrical engineering details.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Electrical engineering details. 188.25-1 Section 188.25... GENERAL PROVISIONS General Electrical Engineering Requirements § 188.25-1 Electrical engineering details. (a) The electrical engineering details shall be in accordance with subchapter J (Electrical...

  17. Electrical safety Q&A. A reference guide for the clinical engineer.

    PubMed

    2005-02-01

    This guide, which ECRI developed to answer the electrical safety questions most frequently asked by member hospitals, features practical advice for addressing electrical safety concerns in the healthcare environment. Questions addressed include: STANDARDS AND APPROVALS: What electrical safety standards apply? How do NFPA 99 and IEC 60601-1 differ? What organizations approve medical devices? LEAKAGE CURRENT LIMITS AND TESTING: How are leakage current limits established? What limits apply to equipment used in the hospital? And how should the limits be applied in special cases, such as the use of PCs in the patient care area or equipment used in the clinical laboratory? ISOLATED POWER: What are its advantages and disadvantages, and is isolated power needed in the operating room? Other topics addressed include double insulation, ground-fault circuit interrupters (GFCIs), and requirements for medical devices used in the home. Supplementary articles discuss acceptable alternatives to UL listing, the use of Hospital Grade plugs, the limitations of leakage current testing of devices connected to isolated power systems, and the debate about whether to designate ORs as wet locations. Experienced clinical engineers should find this guide to be a handy reference, while those new to the field should find it to be a helpful educational resource.

  18. Electrostatic Charging of the Pathfinder Rover

    NASA Technical Reports Server (NTRS)

    Siebert, Mark W.; Kolecki, Joseph C.

    1996-01-01

    The Mars Pathfinder mission will send a lander and a rover to the martian surface. Because of the extremely dry conditions on Mars, electrostatic charging of the rover is expected to occur as it moves about. Charge accumulation may result in high electrical potentials and discharge through the martian atmosphere. Such discharge could interfere with the operation of electrical elements on the rover. A strategy was sought to mitigate this charge accumulation as a precautionary measure. Ground tests were performed to demonstrate charging in laboratory conditions simulating the surface conditions expected at Mars. Tests showed that a rover wheel, driven at typical rover speeds, will accumulate electrical charge and develop significant electrical potentials (average observed, 110 volts). Measurements were made of wheel electrical potential, and wheel capacitance. From these quantities, the amount of absolute charge was estimated. An engineering solution was developed and recommended to mitigate charge accumulation. That solution has been implemented on the actual rover.

  19. The Two Cultures of Electricity: Between Entertainment and Edification in Victorian Science

    NASA Astrophysics Data System (ADS)

    Morus, Iwan Rhys

    2007-06-01

    Reviewing Fleeming Jenkin's Electricity and Magnetism in Nature in 1873 an anonymous reviewer (probably James Clerk Maxwell) remarked that "at the present time there are two sciences of electricity — one that of the lecture-room and the popular treatise; the other that of the testing-office and the engineer's specifications." In this paper I want to look behind Maxwell's remark and examine the relationship between the "two sciences" of electricity during the third quarter or so of the 19th century. In particular I want to look at them in terms of their instrumental technologies. How did apparatus travel between the lecture-room or exhibition-hall and the testing-office or the laboratory? How did skills cross between these different spaces? How did the earlier Victorian culture of electricity as "entertainment and edification" become transformed into late 19th century metrological culture? How did these cultures overlap and how did they differ?

  20. Preliminary summary of the ETF conceptual studies

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Bercaw, R. W.; Pearson, C. V.; Owens, W. R.

    1978-01-01

    Power plant studies have shown the attractiveness of MHD topped steam power plants for baseload utility applications. To realize these advantages, a three-phase development program was initiated. In the first phase, the engineering data and experience were developed for the design and construction of a pilot plant, the Engineering Test Facility (ETF). Results of the ETF studies are reviewed. These three parallel independent studies were conducted by industrial teams led by the AVCO Everett Research Laboratory, the General Electric Corporation, and the Westinghouse Corporation. A preliminary analysis and the status of the critical evaluation of these results are presented.

  1. Meier associates and Pacific Northwest Laboratory staff exchange: Transfer of corrosion monitoring expertise to assess and develop in-line inspection tools for corrosion control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, N.J.; Meier, T.E.

    1995-04-01

    Staff exchanges, such as the one described in this report, are intended to facilitate communication and collaboration among scientists and engineers at DOE laboratories, in US industry, and academia. During the past 5 years, PNL has developed prototype instrumentation to automate the data collection required for electrochemical determination of corrosion rates and behavior of materials in various electrically conductive environments. The last version is labeled the Sentry 100 prototype corrosion data scanner. Applications include these in the pulp and paper industry and at hazardous waste sites.

  2. A Glowing Recommendation: A Project-Based Cooperative Laboratory Activity to Promote Use of the Scientific and Engineering Practices

    ERIC Educational Resources Information Center

    Carmel, Justin H.; Ward, Joseph S.; Cooper, Melanie M.

    2017-01-01

    One of the most mystifying products on the market for people at any age is the glow stick: a plastic tube that, when snapped, creates a flood of bright, brilliantly colored light without the use of electricity or significant production of heat. In this case, the chemiluminescence reaction also provides an exciting phenomenon through which we can…

  3. Environmental Assessment (EA): Proposed Software Facilities, Hill Air Force Base, Utah

    DTIC Science & Technology

    2011-04-19

    retention facilities ; • connections to adjacent buried utilities consisting of water, electricity, natural gas, telephone/ data , sanitary sewer, and storm...engineering, development, and testing workloads for F-22 and F-35 aircraft. Military construction (MILCON) project data explain existing facilities ...Existing Facilities MILCON project data state there are no facilities on Hill AFB with adequate security to house the specialized laboratory space or

  4. Air Force Research Laboratory High Power Electric Propulsion Technology Development

    DTIC Science & Technology

    2009-10-27

    Plasmas in a Coaxial Double Theta Pinch, “ Doctoral Dissertation, Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, 2008. [6...surpasses the level of DARPA FAST goals. Several evolving propulsion concepts may enable a viable high-power plasma propulsion device suitable for...of PEPL) 5 performance operation with multiple cathodes or in a single- shared cathode configuration [4]. However, the local plasma properties

  5. LOFT. Interior view of entry to reactor building, TAN650. Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Interior view of entry to reactor building, TAN-650. Camera is inside entry (TAN-624) and facing north. At far end of domed chamber are penetrations in wall for electrical and other connections. Reactor and other equipment has been removed. Date: March 2004. INEEL negative no. HD-39-5-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  6. Combining Low-Energy Electrical Resistance Heating with Biotic and Abiotic Reactions for Treatment of Chlorinated Solvent DNAPL Source Area

    DTIC Science & Technology

    2012-12-01

    DEPTH DRILLED INTO ROCK NIA 18. TOTAL CORE RECOVERY FOR BORING 9. TOTAL DEPTH OF HOLE 3o.o I 19. SIGNATURE OF INSPECT/’fi1’ ~V.U.. ELEVATION...EPA/540/-93/ 505 , U.S. Environmental Protection Agency Risk Reduction Engineering Laboratory, Cincinnati, OH. Farrell, J., Kason, M., Melitas, N., Li

  7. Irredundant Sequential Machines Via Optimal Logic Synthesis

    DTIC Science & Technology

    1989-10-01

    1989 Irredundant Sequential Machines Via Optimal Logic Synthesis NSrinivas Devadas , Hi-Keung Tony Ma, A. Richard Newton, and Alberto Sangiovanni- S...Agency under contract N00014-87-K-0825, and a grant from AT & T Bell Laboratories. Author Information Devadas : Department of Electrical Engineering...Sequential Machines Via Optimal Logic Synthesis Srinivas Devadas * Hi-Keung Tony ha. A. Richard Newton and Alberto Sangiovanni-Viucentelli Department of

  8. Effects of In-Class Hands-On Laboratories in a Large Enrollment, Multiple Section Blended Linear Circuits Course

    ERIC Educational Resources Information Center

    Ferri, Bonni H.; Ferri, Aldo A.; Majerich, David M.; Madden, Amanda G.

    2016-01-01

    This paper examines the effects of hands-on learning in an undergraduate circuits class that is taught to non-majors; i.e., students outside of electrical and computing engineering. The course, ECE3710, is taught in a blended format facilitated by the video lectures prepared for two Massive Open Online Courses developed for the Coursera Platform.…

  9. Workshop on III-V Integrated Optoelectronics Held in Hilton Head, South Carolina on 28-30 March 1989

    DTIC Science & Technology

    1990-01-01

    Barney De Loach AT&T Bell Laboratories MH 2D-351 600 Mountain Avenue Murray Hill, NJ 07974 Tel: 201-582-3382 Fax: 201-582-2451 Dr. M.A. Di Giuseppe AT...Park, NC 27709-2211 Tel: 919-549-0641 Fax: 919-549-9399 Professor T. Ken Gustafson Department of Electrical Engineering and Computer Sciences

  10. 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activitymore » for the Vehicle Technologies Program of the U.S. Department of Energy.« less

  11. 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activitymore » for the Vehicle Technologies Program of the U.S. Department of Energy.« less

  12. 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activitymore » for the Vehicle Technologies Program of the U.S. Department of Energy.« less

  13. 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activitymore » for the Vehicle Technologies Program of the U.S. Department of Energy.« less

  14. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for themore » Vehicle Technologies Program of the U.S. Department of Energy.« less

  15. Cassini's RTGs undergo mechanical and electrical verification testing in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) engineers examine the interface surface on the Cassini spacecraft prior to installation of the third radioisotope thermoelectric generator (RTG). The other two RTGs, at left, already are installed on Cassini. The three RTGs will be used to power Cassini on its mission to the Saturnian system. They are undergoing mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate far from the Sun where solar power systems are not feasible. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL.

  16. Exploratory study of the acceptance of two individual practical classes with remote labs

    NASA Astrophysics Data System (ADS)

    Tirado-Morueta, Ramón; Sánchez-Herrera, Reyes; Márquez-Sánchez, Marco A.; Mejías-Borrero, Andrés; Andujar-Márquez, José Manuel

    2018-03-01

    Remote lab experiences are proliferating in higher education, although there are still few studies that manage to build a theoretical framework for educational assessment and design of this technology. In order to explore to what extent the use of facilitators of proximity to the laboratory and the autonomy of the experiment makes remote laboratories a technology accepted by students, two remote labs different yet similar educational conditions in laboratories are used. A sample of 98 undergraduate students from a degree course in Energy Engineering was used for this study; 57 of these students ran experiments in a laboratory of electrical machines and 41 in a photovoltaic systems laboratory. The data suggest using conditions that facilitate the proximity of the laboratory and the autonomy in the realisation of the experiment; in both laboratories the experience was positively valued by the students. Also, data suggest that the types of laboratory and experiment have influences on usability - autonomy and lab proximity - perceived by students.

  17. Research trend in thermally stimulated current method for development of materials and devices in Japan

    NASA Astrophysics Data System (ADS)

    Iwamoto, Mitsumasa; Taguchi, Dai

    2018-03-01

    Thermally stimulated current (TSC) measurement is widely used in a variety of research fields, i.e., physics, electronics, electrical engineering, chemistry, ceramics, and biology. TSC is short-circuit current that flows owing to the displacement of charges in samples during heating. TSC measurement is very simple, but TSC curves give very important information on charge behaviors. In the 1970s, TSC measurement contributed greatly to the development of electrical insulation engineering, semiconductor device technology, and so forth. Accordingly, the TSC experimental technique and its analytical method advanced. Over the past decades, many new molecules and advanced functional materials have been discovered and developed. Along with this, TSC measurement has attracted much attention in industries and academic laboratories as a way of characterizing newly discovered materials and devices. In this review, we report the latest research trend in the TSC method for the development of materials and devices in Japan.

  18. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) worker Mary Reaves mates connectors on a radioisotope thermoelectric generator (RTG) to power up the Cassini spacecraft, while quality assurance engineer Peter Sorci looks on. The three RTGs which will be used on Cassini are undergoing mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL.

  19. Bill Kerslake Preparing a Test in the Rocket Laboratory

    NASA Image and Video Library

    1952-10-21

    William Kerslake, a combustion researcher at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory, examines the setup of a transparent rocket in a Rocket Laboratory test cell. Kerslake joined NACA Lewis the previous summer after graduating from the Case Institute of Technology with a chemistry degree. His earliest professional research concentrated on combustion instability in small rocket engines. While at Case the quiet, 250-pound Kerslake also demonstrated his athletic prowess on the wrestling team. He continued wrestling for roughly a decade afterwards while conducting his research with the NACA. Kerslake participated in Olympic competitions in Helsinki (1952), Melbourne (1956), and Rome (1960). He won 30 national championships in three different weight classes and captured the gold at the 1955 Pan American Games in Mexico City. Kerslake accomplished all this while maintaining his research career, raising a family, and paying his own expenses. As his wrestling career was winding down in the early 1960s, Kerslake’s professional career changed, as well. He was transferred to Harold Kaufman’s Electrostatic Propulsion Systems Section in the new Electromagnetic Propulsion Division. Kaufman was developing the first successful ion engine at the time, and Kerslake spent the remainder of his career working in the electric propulsion field. He was heavily involved in the two Space Electric Rocket Test (SERT) missions which demonstrated that the ion thrusters could successfully operate in space. Kerslake retired in 1985 with over 30 years of service.

  20. 46 CFR 70.25-1 - Electrical engineering details.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Electrical engineering details. 70.25-1 Section 70.25-1... General Electrical Engineering Requirements § 70.25-1 Electrical engineering details. All electrical engineering details and installations shall be designed and installed in accordance with subchapter J...

  1. 46 CFR 70.25-1 - Electrical engineering details.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Electrical engineering details. 70.25-1 Section 70.25-1... General Electrical Engineering Requirements § 70.25-1 Electrical engineering details. All electrical engineering details and installations shall be designed and installed in accordance with subchapter J...

  2. 46 CFR 90.25-1 - Electrical engineering details.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electrical engineering details. 90.25-1 Section 90.25-1... PROVISIONS General Electrical Engineering Requirements § 90.25-1 Electrical engineering details. (a) All electrical engineering details and installations shall be designed and installed in accordance with...

  3. 46 CFR 90.25-1 - Electrical engineering details.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electrical engineering details. 90.25-1 Section 90.25-1... PROVISIONS General Electrical Engineering Requirements § 90.25-1 Electrical engineering details. (a) All electrical engineering details and installations shall be designed and installed in accordance with...

  4. 46 CFR 70.25-1 - Electrical engineering details.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Electrical engineering details. 70.25-1 Section 70.25-1... General Electrical Engineering Requirements § 70.25-1 Electrical engineering details. All electrical engineering details and installations shall be designed and installed in accordance with subchapter J...

  5. 46 CFR 70.25-1 - Electrical engineering details.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Electrical engineering details. 70.25-1 Section 70.25-1... General Electrical Engineering Requirements § 70.25-1 Electrical engineering details. All electrical engineering details and installations shall be designed and installed in accordance with subchapter J...

  6. 46 CFR 70.25-1 - Electrical engineering details.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Electrical engineering details. 70.25-1 Section 70.25-1... General Electrical Engineering Requirements § 70.25-1 Electrical engineering details. All electrical engineering details and installations shall be designed and installed in accordance with subchapter J...

  7. 46 CFR 90.25-1 - Electrical engineering details.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electrical engineering details. 90.25-1 Section 90.25-1... PROVISIONS General Electrical Engineering Requirements § 90.25-1 Electrical engineering details. (a) All electrical engineering details and installations shall be designed and installed in accordance with...

  8. 46 CFR 90.25-1 - Electrical engineering details.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electrical engineering details. 90.25-1 Section 90.25-1... PROVISIONS General Electrical Engineering Requirements § 90.25-1 Electrical engineering details. (a) All electrical engineering details and installations shall be designed and installed in accordance with...

  9. 46 CFR 90.25-1 - Electrical engineering details.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electrical engineering details. 90.25-1 Section 90.25-1... PROVISIONS General Electrical Engineering Requirements § 90.25-1 Electrical engineering details. (a) All electrical engineering details and installations shall be designed and installed in accordance with...

  10. Impact of the injection dose of exhaust gases, on work parameters of combustion engine

    NASA Astrophysics Data System (ADS)

    Marek, W.; Śliwiński, K.

    2016-09-01

    This article is another one from the series in which were presented research results indicated the possible areas of application of the pneumatic injection using hot combustion gases proposed by Professor Jarnuszkiewicz. This publication present the results of the control system of exhaust gas recirculation. The main aim of this research was to determine the effect of exhaust gas recirculation to the operating parameters of the internal combustion engine on the basis of laboratory measurements. All measurements were performed at a constant engine speed. These conditions correspond to the operation of the motor operating an electrical generator. The study was conducted on the four-stroke two-cylinder engine with spark ignition. The study were specifically tested on the air injection system and therefore the selection of the rotational speed was not bound, as in conventional versions of operating parameters of the electrical machine. During the measurement there were applied criterion which used power control corresponding to the requirements of load power, at minimal values of engine speed. Recirculation value determined by the following recurrent position control valve of the injection doses inflator gas for pneumatic injection system. They were studied and recorded, the impact of dose of gases recirculation to the operating and ecological engine parameters such as power, torque, specific fuel consumption, efficiency, air fuel ratio, exhaust gas temperature and nitrogen oxides and hydrocarbons.

  11. Altitude Wind Tunnel Operating at Night

    NASA Image and Video Library

    1945-04-21

    The Altitude Wind Tunnel (AWT) during one of its overnight runs at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory in Cleveland, Ohio. The AWT was run during night hours so that its massive power loads were handled when regional electric demands were lowest. At the time the AWT was among the most complex wind tunnels ever designed. In order to simulate conditions at high altitudes, NACA engineers designed innovative new systems that required tremendous amounts of electricity. The NACA had an agreement with the local electric company that it would run its larger facilities overnight when local demand was at its lowest. In return the utility discounted its rates for the NACA during those hours. The AWT could produce wind speeds up to 500 miles per hour through its 20-foot-diameter test section at the standard operating altitude of 30,000 feet. The airflow was created by a large fan that was driven by an 18,000-horsepower General Electric induction motor. The altitude simulation was accomplished by large exhauster and refrigeration systems. The cold temperatures were created by 14 Carrier compressors and the thin atmosphere by four 1750-horsepower exhausters. The first and second shifts usually set up and broke down the test articles, while the third shift ran the actual tests. Engineers would often have to work all day, then operate the tunnel overnight, and analyze the data the next day. The night crew usually briefed the dayshift on the tests during morning staff meetings.

  12. Experiments in optics for younger students by and for older students

    NASA Astrophysics Data System (ADS)

    Masi, James V.

    1995-10-01

    Under the auspices of a joint NSF/DOE grant for science and mathematics, the Electrical Engineering Department of the Engineering School at Western New England College developed a program of instruction in optics and optical applications for local Junior High School students. College level juniors and professors in the electrical engineering department, after the juniors had taken a one semester introductory course in optics and electro-optics, served as instructors in teaching and laboratory instruction in such diverse areas as solar cells/light detection, light sources, simple optics, optical fibers, liquid crystals, and lasers. Concepts such as seismic monitoring, Fourier transforms, power generation, information transfer, and many other applications were explained at level by the college students to the junior high school students with great effectiveness. Students at the lower level caught the enthusiasm of those at the upper level and learned with retention. Seven years into the program, the pros and cons are presented, the now- college bound students and their observations are detailed, and the learning experience for all is assessed, with scenarios for alternate programs suggested.

  13. The VASIMR[registered trademark] VF-200-1 ISS Experiment as a Laboratory for Astrophysics

    NASA Technical Reports Server (NTRS)

    Glover Tim W.; Squire, Jared P.; Longmier, Benjamin; Cassady, Leonard; Ilin, Andrew; Carter, Mark; Olsen, Chris S.; McCaskill, Greg; Diaz, Franklin Chang; Girimaji, Sharath; hide

    2010-01-01

    The VASIMR[R] Flight Experiment (VF-200-1) will be tested in space aboard the International Space Station (ISS) in about four years. It will consist of two 100 kW parallel plasma engines with opposite magnetic dipoles, resulting in a near zero-torque magnetic system. Electrical energy will come from ISS at low power level, be stored in batteries and used to fire the engine at 200 kW. The VF-200-1 project will provide a unique opportunity on the ISS National Laboratory for astrophysicists and space physicists to study the dynamic evolution of an expanding and reconnecting plasma loop. Here, we review the status of the project and discuss our current plans for computational modeling and in situ observation of a dynamic plasma loop on an experimental platform in low-Earth orbit. The VF-200-1 project is still in the early stages of development and we welcome new collaborators.

  14. A description of results from the handbook on signal fade degradation for the land mobile satellite service

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1990-01-01

    During the period 1983 to 1988 a series of experiments were undertaken by the Electrical Engineering Research Laboratory of the University of Texas and the Applied Physics Laboratory of the Johns Hopkins University in which propagation impairment effects were investigated for the Land Mobile Satellite Service (LMSS). The results of these efforts have appeared in a number of publications, technical reports, and conference proceedings. The rationale for the development of a 'handbook' was to locate the salient and useful results in one single document for use by communications engineers, designers of planned LMSS communications systems, and modelers of propagation effects. Where applicable, the authors have also drawn from the results of other related investigations. A description of sample results contained in this handbook which should be available in the latter part of 1990 is given.

  15. The VASIMR® VF-200-1 ISS Experiment as a Laboratory for Astrophysics

    NASA Astrophysics Data System (ADS)

    Glover, T.; Squire, J. P.; Longmier, B. W.; Carter, M. D.; Ilin, A. V.; Cassady, L. D.; Olsen, C. S.; Chang Díaz, F.; McCaskill, G. E.; Bering, E. A.; Garrison, D.; Girimaji, S.; Araya, D.; Morin, L.; Shebalin, J. V.

    2010-12-01

    The VASIMR® Flight Experiment (VF-200-1) will be tested in space aboard the International Space Station (ISS) in about four years. It will consist of two 100 kW parallel plasma engines with opposite magnetic dipoles, resulting in a near zero-torque magnetic system. Electrical energy will come from ISS at low power level, be stored in batteries and used to fire the engine at 200 kW. The VF-200-1 project will provide a unique opportunity on the ISS National Laboratory for astrophysicists and space physicists to study the dynamic evolution of an expanding and reconnecting plasma loop. Here, we review the status of the project and discuss our current plans for computational modeling and in situ observation of a dynamic plasma loop on an experimental platform in low-Earth orbit. The VF-200-1 project is still in the early stages of development and we welcome new collaborators.

  16. A description of results from the handbook on signal fade degradation for the land mobile satellite service

    NASA Astrophysics Data System (ADS)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1990-07-01

    During the period 1983 to 1988 a series of experiments were undertaken by the Electrical Engineering Research Laboratory of the University of Texas and the Applied Physics Laboratory of the Johns Hopkins University in which propagation impairment effects were investigated for the Land Mobile Satellite Service (LMSS). The results of these efforts have appeared in a number of publications, technical reports, and conference proceedings. The rationale for the development of a 'handbook' was to locate the salient and useful results in one single document for use by communications engineers, designers of planned LMSS communications systems, and modelers of propagation effects. Where applicable, the authors have also drawn from the results of other related investigations. A description of sample results contained in this handbook which should be available in the latter part of 1990 is given.

  17. Electrical Conductivity Distributions in Discrete Fluid-Filled Fractures

    NASA Astrophysics Data System (ADS)

    James, S. C.; Ahmmed, B.; Knox, H. A.; Johnson, T.; Dunbar, J. A.

    2017-12-01

    It is commonly asserted that hydraulic fracturing enhances permeability by generating new fractures in the reservoir. Furthermore, it is assumed that in the fractured system predominant flow occurs in these newly formed and pre-existing fractures. Among the phenomenology that remains enigmatic are fluid distributions inside fractures. Therefore, determining fluid distribution and their associated temporal and spatial evolution in fractures is critical for safe and efficient hydraulic fracturing. Previous studies have used both forward modeling and inversion of electrical data to show that a geologic system consisting of fluid filled fractures has a conductivity distribution, where fractures act as electrically conductive bodies when the fluids are more conductive than the host material. We will use electrical inversion for estimating electrical conductivity distribution within multiple fractures from synthetic and measured data. Specifically, we will use data and well geometries from an experiment performed at Blue Canyon Dome in Socorro, NM, which was used as a study site for subsurface technology, engineering, and research (SubTER) funded by DOE. This project used a central borehole for energetically stimulating the system and four monitoring boreholes, emplaced in the cardinal directions. The electrical data taken during this project used 16 temporary electrodes deployed in the stimulation borehole and 64 permanent electrodes in the monitoring wells (16 each). We present results derived using E4D from scenarios with two discrete fractures, thereby discovering the electric potential response of both spatially and temporarily variant fluid distribution and the resolution of fluid and fracture boundaries. These two fractures have dimensions of 3m × 0.01m × 7m and are separated by 1m. These results can be used to develop stimulation and flow tests at the meso-scale that will be important for model validation. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  18. Truck Thermoacoustic Generator and Chiller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keolian, Robert

    2011-03-31

    This Final Report describes the accomplishments of the US Department of Energy (DOE) cooperative agreement project DE-FC26-04NT42113 - Truck Thermoacoustic Generator and Chiller - whose goal is to design, fabricate and test a thermoacoustic piezoelectric generator and chiller system for use on over-the-road heavy-duty-diesel trucks, driven alternatively by the waste heat of the main diesel engine exhaust or by a burner integrated into the thermoacoustic system. The thermoacoustic system would utilize engine exhaust waste heat to generate electricity and cab air conditioning, and would also function as an auxiliary power unit (APU) for idle reduction. The unit was to bemore » tested in Volvo engine performance and endurance test cells and then integrated onto a Class 8 over-the-road heavy-duty-diesel truck for further testing on the road. The project has been a collaboration of The Pennsylvania State University Applied Research Laboratory, Los Alamos National Laboratory, Clean Power Resources Inc., and Volvo Powertrain (Mack Trucks Inc.). Cost share funding was provided by Applied Research Laboratory, and by Clean Power Resources Inc via its grant from Innovation Works - funding that was derived from the Commonwealth of Pennsylvania. Los Alamos received its funding separately through DOE Field Work Proposal 04EE09.« less

  19. IET. Coupling station (TAN620) and service room section and details. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Coupling station (TAN-620) and service room section and details. Interior electrical features inside coupling station. Cable terminal assembly for patch panel for plug. Ralph M. Parsons 902-4-ANP-620-E 401. Date: February 1954. Approved by INEEL Classification Office for public release. INEEL index code no. 035-0620-10-693-106958 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  20. Human-in-the-loop Control of Multi-agent Aerial Systems Under Intermittent Communication

    DTIC Science & Technology

    2015-06-08

    Bogdan FAKULTET ELEKTROTEHNIKE I RACUNARS UNSKA 3 ZAGREB 10000 CROATIA EOARD GRANT #FA8655-13-1-3055 Report Date: June 2015...ELEKTROTEHNIKE I RACUNARS UNSKA 3 ZAGREB 10000 CROATIA 8. PERFORMING ORGANIZATION REPORT NUMBER N/A 9. SPONSORING/MONITORING AGENCY NAME...Laboratory for Robotics and Intelligent Control Systems Faculty of Electrical Engineering and Computing University of Zagreb PI:Prof.dr.sc. Stjepan Bogdan

  1. Air Force Research Laboratory Success Stories: A Review of 1997/1998

    DTIC Science & Technology

    1999-03-01

    one year). Assuming that 60 percent of the electrical power required for these sites could be generated with solar cells , the higher efficiency AMTEC ...engineers ability to meet the cost goal of the Mars Pathfinder program. Accomplishment High efficiency solar cells and non-rechargeable batteries developed...integrated manufacturing system to efficiently mix low volume and high volume processing. MPCL metrics have been defined in categories which reflect

  2. GRC-2006-C-01252

    NASA Image and Video Library

    2002-08-09

    Performance Acceptance Test of a prototype-model NEXT (NASA Evolutionary Xenon Thruster) ion engine that was delivered to NASA Glenn Research Center by Aerojet. The test dates were May 10 - May 17, 2006. The test was conducted in the Vacuum Facility 6 test facility located in the Electric Power Laboratory. The test successfully demonstrated the PM manufacturing process carried out by Aerojet under the guidance of NASA Glenn Research Center and PM1 acceptable functionality

  3. PBF Reactor Building (PER620). Camera is in cab of electricpowered ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera is in cab of electric-powered rail crane and facing east. Reactor pit and storage canal have been shaped. Floors for wings on east and west side are above and below reactor in view. Photographer: Larry Page. Date: August 23, 1967. INEEL negative no. 67-4403 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  4. Mission Impact Through Neuro-Inspired Design (MIND) Laboratory: Design Principles and Performance Characteristics

    DTIC Science & Technology

    2013-09-01

    sprinkler , fire alarm, and mass-notification systems ). Piping required for the sprinkler system uses dielectric couplers at each penetration of the...environment for neuroscience research designed for studying Soldier- system interactions in support of the U.S. Army Research Laboratory’s (ARL’s...Engineers, of Towson, MD, —designed the heating, ventilation, and air conditioning and electrical systems ; Hi-Tech Services, Inc., of Ferndale, WA

  5. Remote access laboratories in Australia and Europe

    NASA Astrophysics Data System (ADS)

    Ku, H.; Ahfock, T.; Yusaf, T.

    2011-06-01

    Remote access laboratories (RALs) were first developed in 1994 in Australia and Switzerland. The main purposes of developing them are to enable students to do their experiments at their own pace, time and locations and to enable students and teaching staff to get access to facilities beyond their institutions. Currently, most of the experiments carried out through RALs in Australia are heavily biased towards electrical, electronic and computer engineering disciplines. However, the experiments carried out through RALs in Europe had more variety, in addition to the traditional electrical, electronic and computer engineering disciplines, there were experiments in mechanical and mechatronic disciplines. It was found that RALs are now being developed aggressively in Australia and Europe and it can be argued that RALs will develop further and faster in the future with improving Internet technology. The rising costs of real experimental equipment will also speed up their development because by making the equipment remotely accessible, the cost can be shared by more universities or institutions and this will improve their cost-effectiveness. Their development would be particularly rapid in large countries with small populations such as Australia, Canada and Russia, because of the scale of economy. Reusability of software, interoperability in software implementation, computer supported collaborative learning and convergence with learning management systems are the required development of future RALs.

  6. Real-time measurements of nitrogen oxide emissions from in-use New York City transit buses using a chase vehicle.

    PubMed

    Shorter, Joanne H; Herndon, Scott; Zahniser, Mark S; Nelson, David D; Wormhoudt, Joda; Demerjian, Kenneth L; Kolb, Charles E

    2005-10-15

    New diesel engine technologies and alternative fuel engines are being introduced into fleets of mass transit buses to try to meet stricter emission regulations of nitrogen oxides and particulates: Real-time instruments including an Aerodyne Research tunable infrared laser differential absorption spectrometer (TILDAS) were deployed in a mobile laboratory to assess the impact of the implementation of the new technologies on nitrogen oxide emissions in real world driving conditions. Using a "chase" vehicle sampling strategy, the mobile laboratory followed target vehicles, repeatedly sampling their exhaust. Nitrogen oxides from approximately 170 in-use New York City mass transit buses were sampled during the field campaigns. Emissions from conventional diesel buses, diesel buses with continuously regenerating technology (CRT), diesel hybrid electric buses, and compressed natural gas (CNG) buses were compared. The chase vehicle sampling method yields real world emissions that can be included in more realistic emission inventories. The NO, emissions from the diesel and CNG buses were comparable. The hybrid electric buses had approximately one-half the NOx emissions. In CRT diesels, NO2 accounts for about one-third of the NOx emitted in the exhaust, while for non-CRT buses the NO2 fraction is less than 10%.

  7. A miniature fuel reformer system for portable power sources

    NASA Astrophysics Data System (ADS)

    Dolanc, Gregor; Belavič, Darko; Hrovat, Marko; Hočevar, Stanko; Pohar, Andrej; Petrovčič, Janko; Musizza, Bojan

    2014-12-01

    A miniature methanol reformer system has been designed and built to technology readiness level exceeding a laboratory prototype. It is intended to feed fuel cells with electric power up to 100 W and contains a complete setup of the technological elements: catalytic reforming and PROX reactors, a combustor, evaporators, actuation and sensing elements, and a control unit. The system is engineered not only for performance and quality of the reformate, but also for its lightweight and compact design, seamless integration of elements, low internal electric consumption, and safety. In the paper, the design of the system is presented by focussing on its miniaturisation, integration, and process control.

  8. The Brazilian research and teaching center in biomedicine and aerospace biomedical engineering.

    PubMed

    Russomano, T; Falcao, P F; Dalmarco, G; Martinelli, L; Cardoso, R; Santos, M A; Sparenberg, A

    2008-08-01

    The recent engagement of Brazil in the construction and utilization of the International Space Station has motivated several Brazilian research institutions and universities to establish study centers related to Space Sciences. The Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS) is no exception. The University initiated in 1993 the first degree course training students to operate commercial aircraft in South America (the School of Aeronautical Sciences. A further step was the decision to build the first Brazilian laboratory dedicated to the conduct of experiments in ground-based microgravity simulation. Established in 1998, the Microgravity Laboratory, which was located in the Instituto de Pesquisas Cientificas e Tecnologicas (IPCT), was supported by the Schools of Medicine, Aeronautical Sciences and Electrical Engineering/Biomedical Engineering. At the end of 2006, the Microgravity Laboratory became a Center and was transferred to the School of Engineering. The principal activities of the Microgravity Centre are the development of research projects related to human physiology before, during and after ground-based microgravity simulation and parabolic flights, to aviation medicine in the 21st century and to aerospace biomedical engineering. The history of Brazilian, and why not say worldwide, space science should unquestionably go through PUCRS. As time passes, the pioneering spirit of our University in the aerospace area has become undeniable. This is due to the group of professionals, students, technicians and staff in general that have once worked or are still working in the Center of Microgravity, a group of faculty and students that excel in their undeniable technical-scientific qualifications.

  9. The Vanderbilt University nanoscale science and engineering fabrication laboratory

    NASA Astrophysics Data System (ADS)

    Hmelo, Anthony B.; Belbusti, Edward F.; Smith, Mark L.; Brice, Sean J.; Wheaton, Robert F.

    2005-08-01

    Vanderbilt University has realized the design and construction of a 1635 sq. ft. Class 10,000 cleanroom facility to support the wide-ranging research mission associated with the Vanderbilt Institute for Nanoscale Science and Engineering (VINSE). By design we have brought together disparate technologies and researchers formerly dispersed across the campus to work together in a small contiguous space intended to foster interaction and synergy of nano-technologies not often found in close proximity. The space hosts a variety of tools for lithographic patterning of substrates, the deposition of thin films, the synthesis of diamond nanostructures and carbon nanotubes, and a variety of reactive ion etchers for the fabrication of nanostructures on silicon substrates. In addition, a separate 911 sq. ft. chemistry laboratory supports nanocrystal synthesis and the investigation of biomolecular films. The design criteria required an integrated space that would support the scientific agenda of the laboratory while satisfying all applicable code and safety concerns. This project required the renovation of pre-existing laboratory space with minimal disruption to ongoing activities in a mixed-use building, while meeting the requirements of the 2000 edition of the International Building Code for the variety of potentially hazardous processes that have been programmed for the space. In this paper we describe how architectural and engineering challenges were met in the areas of mitigating floor vibration issues, shielding our facility against EMI emanations, design of the contamination control facility itself, chemical storage and handling, toxic gas use and management, as well as mechanical, electrical, plumbing, lab security, fire and laboratory safety issues.

  10. The NASA-JPL advanced propulsion program

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1994-01-01

    The NASA Advanced Propulsion Concepts (APC) program at the Jet Propulsion Laboratory (JPL) consists of two main areas: The first involves cooperative modeling and research activities between JPL and various universities and industry; the second involves research at universities and industry that is directly supported by JPL. The cooperative research program consists of mission studies, research and development of ion engine technology using C-60 (Buckminsterfullerene) propellant, and research and development of lithium-propellant Lorentz-force accelerator (LFA) engine technology. The university/industry- supported research includes research (modeling and proof-of-concept experiments) in advanced, long-life electric propulsion, and in fusion propulsion. These propulsion concepts were selected primarily to cover a range of applications from near-term to far-term missions. For example, the long-lived pulsed-xenon thruster research that JPL is supporting at Princeton University addresses the near-term need for efficient, long-life attitude control and station-keeping propulsion for Earth-orbiting spacecraft. The C-60-propellant ion engine has the potential for good efficiency in a relatively low specific impulse (Isp) range (10,000 - 30,000 m/s) that is optimum for relatively fast (less than 100 day) cis-lunar (LEO/GEO/Lunar) missions employing near-term, high-specific mass electric propulsion vehicles. Research and modeling on the C-60-ion engine are currently being performed by JPL (engine demonstration), Caltech (C-60 properties), MIT (plume modeling), and USC (diagnostics). The Li-propellant LFA engine also has good efficiency in the modest Isp range (40,000 - 50,000 m/s) that is optimum for near-to-mid-term megawatt-class solar- and nuclear-electric propulsion vehicles used for Mars missions transporting cargo (in support of a piloted mission). Research and modeling on the Li-LFA engine are currently being performed by JPL (cathode development), Moscow Aviation Institute (engine testing), Thermacore (electrode development), as well as at MIT (plume modeling), and USC (diagnostics). Also, the mission performance of a nuclear-electric propulsion (NEP) Li-LFA Mars cargo vehicle is being modeled by JPL (mission analysis; thruster and power processor modeling) and the Rocketdyne Energy Technology and Engineering Center (ETEC) (power system modeling). Finally, the fusion propulsion research activities that JPL is supporting at Pennsylvania State University (PSU) and at Lawrenceville Plasma Physics (LPP) are aimed at far-term fast (less than 100 day round trip) piloted Mars missions and, in the very far term, interstellar missions.

  11. 46 CFR 91.25-30 - Electrical engineering equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electrical engineering equipment. 91.25-30 Section 91.25... INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-30 Electrical engineering equipment. For inspection procedures of electrical engineering equipment and systems see subchapter J (Electrical...

  12. 46 CFR 91.25-30 - Electrical engineering equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electrical engineering equipment. 91.25-30 Section 91.25... INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-30 Electrical engineering equipment. For inspection procedures of electrical engineering equipment and systems see subchapter J (Electrical...

  13. 46 CFR 91.25-30 - Electrical engineering equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electrical engineering equipment. 91.25-30 Section 91.25... INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-30 Electrical engineering equipment. For inspection procedures of electrical engineering equipment and systems see subchapter J (Electrical...

  14. 46 CFR 91.25-30 - Electrical engineering equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electrical engineering equipment. 91.25-30 Section 91.25... INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-30 Electrical engineering equipment. For inspection procedures of electrical engineering equipment and systems see subchapter J (Electrical...

  15. 46 CFR 91.25-30 - Electrical engineering equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electrical engineering equipment. 91.25-30 Section 91.25... INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-30 Electrical engineering equipment. For inspection procedures of electrical engineering equipment and systems see subchapter J (Electrical...

  16. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on themore » AVTA for the Vehicle Technologies Program of the DOE.« less

  17. KSC-97PC1092

    NASA Image and Video Library

    1997-07-19

    Jet Propulsion Laboratory (JPL) worker Mary Reaves mates connectors on a radioisotope thermoelectric generator (RTG) to power up the Cassini spacecraft, while quality assurance engineer Peter Sorci looks on. The three RTGs which will be used on Cassini are undergoing mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL

  18. Telemetry Data Collection from Oscar Satellite

    NASA Technical Reports Server (NTRS)

    Haddock, Paul C.; Horan, Stephen

    1998-01-01

    This paper discusses the design, configuration, and operation of a satellite station built for the Center for Space Telemetering and Telecommunications Laboratory in the Klipsch School of Electrical and Computer Engineering Engineering at New Mexico State University (NMSU). This satellite station consists of a computer-controlled antenna tracking system, 2m/70cm transceiver, satellite tracking software, and a demodulator. The satellite station receives satellite,telemetry, allows for voice communications, and will be used in future classes. Currently this satellite station is receiving telemetry from an amateur radio satellite, UoSAT-OSCAR-11. Amateur radio satellites are referred to as Orbiting Satellites Carrying Amateur Radio (OSCAR) satellites as discussed in the next section.

  19. ETR COMPLEX. CAMERA FACING EAST. FROM LEFT TO RIGHT: ETRCRITICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR COMPLEX. CAMERA FACING EAST. FROM LEFT TO RIGHT: ETR-CRITICAL FACILITY BUILDING, ETR CONTROL BUILDING (ATTACHED TO HIGH-BAY ETR), ETR, ONE-STORY SECTION OF ETR BUILDING, ELECTRICAL BUILDING, COOLING TOWER PUMP HOUSE, COOLING TOWER. COMPRESSOR AND HEAT EXCHANGER BUILDING ARE PARTLY IN VIEW ABOVE ETR. DARK-COLORED DUCTS PROCEED FROM GROUND CONNECTION TO ETR WASTE GAS STACK. OTHER STACK IS MTR STACK WITH FAN HOUSE IN FRONT OF IT. RECTANGULAR STRUCTURE NEAR TOP OF VIEW IS SETTLING BASIN. INL NEGATIVE NO. 56-4102. Unknown Photographer, ca. 1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  20. ETR, TRA642. ETR COMPLEX NEARLY COMPLETE. CAMERA FACES NORTHWEST, PROBABLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. ETR COMPLEX NEARLY COMPLETE. CAMERA FACES NORTHWEST, PROBABLY FROM TOP DECK OF COOLING TOWER. SHADOW IS CAST BY COOLING TOWER UNITS OFF LEFT OF VIEW. HIGH-BAY REACTOR BUILDING IS SURROUNDED BY ITS ATTACHED SERVICES: ELECTRICAL (TRA-648), HEAT EXCHANGER (TRA-644 WITH U-SHAPED YARD), AND COMPRESSOR (TRA-643). THE CONTROL BUILDING (TRA-647) ON THE NORTH SIDE IS HIDDEN FROM VIEW. AT UPPER RIGHT IS MTR BUILDING, TRA-603. INL NEGATIVE NO. 56-3798. Jack L. Anderson, Photographer, 11/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. Controls and guidance research

    NASA Technical Reports Server (NTRS)

    Homaifar, Abdollah; Dunn, Derome; Song, Yong-Duan; Lai, Steven H.-Y.

    1992-01-01

    The objectives of the control group are concentrated on research and education. The control problem of the hypersonic space vehicle represents an important and challenging issue in aerospace engineering. The work described in this report is part of our effort in developing advanced control strategies for such a system. In order to achieve the objectives stated in the NASA-CORE proposal, the tasks were divided among the group based upon their educational expertise. Within the educational component we are offering a Linear Systems and Control course for students in electrical and mechanical engineering. Also, we are proposing a new course in Digital Control Systems with a corresponding laboratory.

  2. In Operation Detection and Correction of Rotor Imbalance in Jet Engines Using Active Vibration Control

    NASA Technical Reports Server (NTRS)

    Manchala, Daniel W.; Palazzolo, Alan B.; Kascak, Albert F.; Montague, Gerald T.; Brown, Gerald V.; Lawrence, Charles; Klusman, Steve

    1994-01-01

    Jet Engines may experience severe vibration due to the sudden imbalance caused by blade failure. This research investigates employment of on board magnetic bearings or piezoelectric actuators to cancel these forces in flight. This operation requires identification of the source of the vibrations via an expert system, determination of the required phase angles and amplitudes for the correction forces, and application of the desired control signals to the magnetic bearings or piezo electric actuators. This paper will show the architecture of the software system, details of the control algorithm used for the sudden imbalance correction project described above, and the laboratory test results.

  3. Evidence-based analysis of field testing of medical electrical equipment.

    PubMed

    Taktak, A G; Brown, M C

    2006-01-01

    Field testing of medical electrical equipment remains a topic of debate amongst biomedical engineers. A questionnaire was circulated among members of the main professional body for Medical Engineering Departments in the UK and Ireland and in the Medical Physics and Engineering Mailbase Server. The aim of the questionnaire was to establish consensus on common practice on the frequency and type of safety tests carried out in the field and common sources of hazards and risk management. Twenty-six replies were received in total. A clear majority of 54% of the respondents reported that they carried out safety tests on hospital-based medical equipment on a yearly basis. For other equipment, regular tests were carried out by 58% on loan equipment and by 69% on medical electrical systems. Laboratory equipment on the other hand were not tested in 42% of the cases. Domiciliary and research equipment were only tested in 11% and 15% of the cases respectively. A clear majority of 93% said that they label equipment after tests, 34% said that they always record the actual values (as opposed to pass or fail) and 54% said they carry out functional test as part of the safety test. Although 61% of failures were attributed to the mains lead, only 50% of the respondents said that they had a management system in place for detachable mains leads.

  4. Concentrating Solar Power Projects - Dahan Power Plant | Concentrating

    Science.gov Websites

    Plant Country: China Location: Beijing Owner(s): Institute of Electrical Engineering of Chinese Academy Electricity Generation: 1,950 MWh/yr Contact(s): Fengli Du Company: Institute of Electrical Engineering of Electrical Engineering of Chinese Academy of Sciences Owner(s) (%): Institute of Electrical Engineering of

  5. Astronaut Judy Resnik Visits Lewis Research Center

    NASA Image and Video Library

    1979-07-21

    Astronaut Judy Resnik visits the National Aeronautics and Space Administration (NASA) Lewis Research Center on July 18, 1979, the tenth anniversary of the Apollo 11 mission. The event, sponsored by the center’s Public Information Office, was attended by Lewis staff, Cleveland-area media and personalities, and the public. During her time in Cleveland, Resnik appeared on a local television program, gave a press conference, lunched with NASA officials, addressed employees at Lewis, and then met the public at the center’s Visitors Information Center. Resnik related her recent experiences as one of the first US female astronauts and her duties as a mission specialist. The Akron, Ohio native earned a Bachelor’s degree in electrical engineering from Carnegie-Mellon University in 1970 and a doctorate in electrical engineering from the University of Maryland in 1977. Resnik served as a biomedic engineer and staff fellow in the Laboratory of Neurophysiology at the National Institutes of Health from 1974 to 1977, where she performed biological research experiments on visual systems. She served as a senior systems engineer in private industry prior to her selection as an astronaut. Resnik first flew as a mission specialist on STS 41-D, Discovery’s maiden flight, in 1984. Resnik was killed in the January 28, 1986 Challenger accident.

  6. Experiments assigned to determine the acceleration of 8000kN shear laboratory model elements

    NASA Astrophysics Data System (ADS)

    Budiul Berghian, A.; Vasiu, T.; Abrudean, C.

    2017-01-01

    In this paper presents an experimental kinetics study by measuring accelerations using a bi-axial accelerometer constructed in the basis of a miniature integrated circuit, included in the class of micro-electrical and mechanical systems - MMA6261Q on the experimental installation reduced to the 1:5 dividing rule by comparison with the shear existent in exploitation, conceived and projected at the Faculty of Engineering in Hunedoara.

  7. Physics Flash December 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth

    This is the December 2016 issue of Physics Flash, the newsletter of the Physics Division of Los Alamos National Laboratory (LANL). In this issue, the following topics are covered: Novel liquid helium technique to aid highly sensitive search for a neutron electrical dipole moment; Silverleaf: Prototype Red Sage experiments performed at Q-site; John L. Kline named 2016 APS Fellow; Physics students in the news; First Entropy Engine quantum random number generator hits the market; and celebrating service.

  8. Aircraft Simulator: Multiple-Cockpit Combat Mission Trainer Network.

    DTIC Science & Technology

    1984-01-01

    Force Human Resources Laboratory (AFHRL), the Air Force Office of Scientific Research (AFOSR), and the Southeastern Center for Electrical Engineering...New York: IEEE Press. Rapumno, R. A. , A Shimsaki, N. (1974). Synchronization of earth stations to satellite-switched sequences. Comunications ...Satellite Technology, 33 (Progress in Astronautics and Aeronautics) , 411-429. Tobagi, F. A. (1980). Multiaccess protocols in packet comunication systems. IEEE TMS. C". , 4 (vol. CO-28), 468-488. 27 ORR .0--000

  9. Investigation of Antennas for a High-Sensitivity Polarization Measurement Sensor

    DTIC Science & Technology

    2010-09-01

    Burkholder and Chi-Chih Chen The Ohio State University ElectroScience Laboratory Department of Electrical Engineering Columbus, Ohio 43212 Final Report...Antennas for a High-Sensitivity Polarization Measurement Sensor 5. Report Date September 2010 6. 7. Author(s) Robert J. Burkholder and Chi-Chih Chen...POLARIZATION Mustafa Kuloglu, Robert J. Burkholder , and Chi-Chih Chen kuloglu.l@osu.edu, rjb@electroscience.osu.edu, chen.l 18@osu.edu ElectroScience

  10. Naval Postgraduate School Research. Volume 8, Number 2, June 1998

    DTIC Science & Technology

    1998-06-01

    N P S R E S E A R C H Volume 8, Number 2 June 1998 Office of the Dean of Research • Naval Postgraduate School • Monterey, California...LABORATORY Department of Electrical and Computer Engineering Research Associate Professor Richard W. Adler Research Associate Wilbur R . Vincent Visiting...electromagnetic environmental effects. RESEARCH LAB SIGNAL ENHANCEMENT LAB, continued from page 1 -- continued on page 3 Wilbur R . Vincent is a Research

  11. Site operator program final report for fiscal years 1992 through 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francfort, J.E.; Bassett, R.R.; Birasco, S.

    The Site Operator Program was an electric vehicle testing and evaluation program sponsored by US Department of Energy and managed at the Idaho National Engineering and Environmental Laboratory. The Program`s goals included the field evaluation of electric vehicles in real-world applications and environments; the support of electric vehicle technology advancement; the development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of electric vehicles. This report covers Program activities from 1992 to 1996. The Site Operator Program ended in September 1996, when it was superseded by the Field Operations Program. Electric vehicle testingmore » included baseline performance testing, which was performed in conjunction with EV America. The baseline performance parameters included acceleration, braking, range, energy efficiency, and charging time. The Program collected fleet operations data on electric vehicles operated by the Program`s thirteen partners, comprising electric utilities, universities, and federal agencies. The Program`s partners had over 250 electric vehicles, from vehicle converters and original equipment manufacturers, in their operating fleets. Test results are available via the World Wide Web site at http://ev.inel.gov/sop.« less

  12. Langley Aerospace Research Summer Scholars. Part 2

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  13. Technical Reports: Langley Aerospace Research Summer Scholars. Part 1

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  14. Altitude Test Cell in the Four Burner Area

    NASA Image and Video Library

    1947-10-21

    One of the two altitude simulating-test chambers in Engine Research Building at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The two chambers were collectively referred to as the Four Burner Area. NACA Lewis’ Altitude Wind Tunnel was the nation’s first major facility used for testing full-scale engines in conditions that realistically simulated actual flight. The wind tunnel was such a success in the mid-1940s that there was a backlog of engines waiting to be tested. The Four Burner chambers were quickly built in 1946 and 1947 to ease the Altitude Wind Tunnel’s congested schedule. The Four Burner Area was located in the southwest wing of the massive Engine Research Building, across the road from the Altitude Wind Tunnel. The two chambers were 10 feet in diameter and 60 feet long. The refrigeration equipment produced the temperatures and the exhauster equipment created the low pressures present at altitudes up to 60,000 feet. In 1947 the Rolls Royce Nene was the first engine tested in the new facility. The mechanic in this photograph is installing a General Electric J-35 engine. Over the next ten years, a variety of studies were conducted using the General Electric J-47 and Wright Aeronautical J-65 turbojets. The two test cells were occasionally used for rocket engines between 1957 and 1959, but other facilities were better suited to the rocket engine testing. The Four Burner Area was shutdown in 1959. After years of inactivity, the facility was removed from the Engine Research Building in late 1973 in order to create the High Temperature and Pressure Combustor Test Facility.

  15. Integration of NASA Research into Undergraduate Education in Math, Science, Engineering and Technology at North Carolina A&T State University

    NASA Technical Reports Server (NTRS)

    Monroe, Joseph; Kelkar, Ajit

    2003-01-01

    The NASA PAIR program incorporated the NASA-Sponsored research into the undergraduate environment at North Carolina Agricultural and Technical State University. This program is designed to significantly improve undergraduate education in the areas of mathematics, science, engineering, and technology (MSET) by directly benefiting from the experiences of NASA field centers, affiliated industrial partners and academic institutions. The three basic goals of the program were enhancing core courses in MSET curriculum, upgrading core-engineering laboratories to compliment upgraded MSET curriculum, and conduct research training for undergraduates in MSET disciplines through a sophomore shadow program and through Research Experience for Undergraduates (REU) programs. Since the inception of the program nine courses have been modified to include NASA related topics and research. These courses have impacted over 900 students in the first three years of the program. The Electrical Engineering circuit's lab is completely re-equipped to include Computer controlled and data acquisition equipment. The Physics lab is upgraded to implement better sensory data acquisition to enhance students understanding of course concepts. In addition a new instrumentation laboratory in the department of Mechanical Engineering is developed. Research training for A&T students was conducted through four different programs: Apprentice program, Developers program, Sophomore Shadow program and Independent Research program. These programs provided opportunities for an average of forty students per semester.

  16. 46 CFR 189.25-30 - Electrical engineering equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Electrical engineering equipment. 189.25-30 Section 189... VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 189.25-30 Electrical engineering equipment. (a) For inspection procedures of Electrical Engineering equipment and systems, see Subchapter J...

  17. 46 CFR 189.25-30 - Electrical engineering equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Electrical engineering equipment. 189.25-30 Section 189... VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 189.25-30 Electrical engineering equipment. (a) For inspection procedures of Electrical Engineering equipment and systems, see Subchapter J...

  18. 46 CFR 189.25-30 - Electrical engineering equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Electrical engineering equipment. 189.25-30 Section 189... VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 189.25-30 Electrical engineering equipment. (a) For inspection procedures of Electrical Engineering equipment and systems, see Subchapter J...

  19. 46 CFR 189.25-30 - Electrical engineering equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Electrical engineering equipment. 189.25-30 Section 189... VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 189.25-30 Electrical engineering equipment. (a) For inspection procedures of Electrical Engineering equipment and systems, see Subchapter J...

  20. 46 CFR 189.25-30 - Electrical engineering equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Electrical engineering equipment. 189.25-30 Section 189... VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 189.25-30 Electrical engineering equipment. (a) For inspection procedures of Electrical Engineering equipment and systems, see Subchapter J...

  1. Evidence-based approach to the maintenance of laboratory and medical equipment in resource-poor settings.

    PubMed

    Malkin, Robert; Keane, Allison

    2010-07-01

    Much of the laboratory and medical equipment in resource-poor settings is out-of-service. The most commonly cited reasons are (1) a lack of spare parts and (2) a lack of highly trained technicians. However, there is little data to support these hypotheses, or to generate evidence-based solutions to the problem. We studied 2,849 equipment-repair requests (of which 2,529 were out-of-service medical equipment) from 60 resource-poor hospitals located in 11 nations in Africa, Europe, Asia, and Central America. Each piece of equipment was analyzed by an engineer or an engineering student and a repair was attempted using only locally available materials. If the piece was placed back into service, we assumed that the engineer's problem analysis was correct. A total of 1,821 pieces of medical equipment were placed back into service, or 72%, without requiring the use of imported spare parts. Of those pieces repaired, 1,704 were sufficiently documented to determine what knowledge was required to place the equipment back into service. We found that six domains of knowledge were required to accomplish 99% of the repairs: electrical (18%), mechanical (18%), power supply (14%), plumbing (19%), motors (5%), and installation or user training (25%). A further analysis of the domains shows that 66% of the out-of-service equipment was placed back into service using only 107 skills covering basic knowledge in each domain; far less knowledge than that required of a biomedical engineer or biomedical engineering technician. We conclude that a great majority of laboratory and medical equipment can be put back into service without importing spare parts and using only basic knowledge. Capacity building in resource-poor settings should first focus on a limited set of knowledge; a body of knowledge that we call the biomedical technician's assistant (BTA). This data set suggests that a supported BTA could place 66% of the out-of-service laboratory and medical equipment in their hospital back into service.

  2. General Electric TG-100A Turboprop in the Altitude Wind Tunnel

    NASA Image and Video Library

    1946-12-21

    A General Electric TG-100A seen from the rear in the test section of the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory in Cleveland, Ohio. The Altitude Wind Tunnel was used to study almost every model of US turbojet that emerged in the 1940s, as well as some ramjets and turboprops. In the early 1940s the military was interested in an engine that would use less fuel than the early jets but would keep up with them performance-wise. Turboprops seemed like a plausible solution. They could move a large volume of air and thus required less engine speed and less fuel. Researchers at General Electric’s plant in Schenectady, New York worked on the turboprop for several years in the 1930s. They received an army contract in 1941 to design a turboprop engine using an axial-flow compressor. The result was the 14-stage TG-100, the nation's first turboprop aircraft engine. Development of the engine was slow, however, and the military asked NACA Lewis to analyze the engine’s performance. The TG-100A was tested in the Altitude Wind Tunnel and it was determined that the compressors, combustion chamber, and turbine were impervious to changes in altitude. The researchers also established the optimal engine speed and propeller angle at simulated altitudes up to 35,000 feet. Despite these findings, development of the TG-100 was cancelled in May 1947. Twenty-eight of the engines were produced, but they were never incorporated into production aircraft.

  3. Electrical Engineering in Los Alamos Neutron Science Center Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Michael James

    The field of electrical engineering plays a significant role in particle accelerator design and operations. Los Alamos National Laboratories LANSCE facility utilizes the electrical energy concepts of power distribution, plasma generation, radio frequency energy, electrostatic acceleration, signals and diagnostics. The culmination of these fields produces a machine of incredible potential with uses such as isotope production, neutron spallation, neutron imaging and particle analysis. The key isotope produced in LANSCE isotope production facility is Strontium-82 which is utilized for medical uses such as cancer treatment and positron emission tomography also known as PET scans. Neutron spallation is one of the verymore » few methods used to produce neutrons for scientific research the other methods are natural decay of transuranic elements from nuclear reactors. Accelerator produce neutrons by accelerating charged particles into neutron dense elements such as tungsten imparting a neutral particle with kinetic energy, this has the benefit of producing a large number of neutrons as well as minimizing the waste generated. Utilizing the accelerator scientist can gain an understanding of how various particles behave and interact with matter to better understand the natural laws of physics and the universe around us.« less

  4. Putting the “Spark” into Physical Science and Algebra

    NASA Astrophysics Data System (ADS)

    Dagenais, Andre; Pill, B.

    2006-12-01

    The presenters will describe a number of laboratory activities developed in collaboration with the Department of Electrical Engineering at the University of Delaware as part of their outreach program to help make math and science more authentic on the pre-college level. Lessons relating to electrical topics are often abstract and appropriate only for advanced students in math and science. We have devised lessons that rely on simple equipment. They promote skills that are included in National and State Standards. They emphasize the connections between math and science; they are appropriate for an algebra course, a physical science course, a PhysicsFirst course or a traditional physics course. Students benefit from seeing that what they learn in math and science courses can lead to cutting-edge work in areas such as passive wave imaging, photonics, wireless communication and high performance computing. The collaboration has been meaningful because it has motivated us to tailor our lessons to reflect what is happening in the research lab of our local university. Written materials for use in teacher training workshops will also be available. Funded by NSF Research Experience for Teachers(RET #0322633) program under the direction of Dr. Dennis Prather, University of Delaware Electrical Engineering

  5. Design and optimization of smart grid system based on renewable energy in Nyamuk Island, Karimunjawa district, Central Java

    NASA Astrophysics Data System (ADS)

    Novitasari, D.; Indartono, Y. S.; Rachmidha, T. D.; Reksowardojo, I. K.; Irsyad, M.

    2017-03-01

    Nyamuk Island in Karimunjawa District is one of the regions in Java that has no access to electricity grid. The electricity in Nyamuk Island relies on diesel engine which is managed by local government and only operated for 6 hours per day. It occurs as a consequence of high fuel cost. A study on smart micro grid system based on renewable energy was conducted in Combustion Engine and Propulsion System Laboratory of Institut Teknologi Bandung by using 1 kWp solar panels and a 3 kW bio based diesel engine. The fuels used to run the bio based diesel engine were diesel, virgin coconut oil and pure palm oil. The results show that the smart grid system run well at varying load and also with different fuel. Based on the experiments, average inverter efficiency was about 87%. This experiments proved that the use of biofuels had no effects to the overall system performance. Based on the results of prototype experiments, this paper will focus on design and optimization of smart micro grid system using HOMER software for Nyamuk Island. The design consists of (1) a diesel engine existing in Nyamuk Island whose fuel was diesel, (2) a lister engine whose fuel was from vegetable oil from Callophyllum inophyllum, (3) solar panels, (4) batteries and (5) converter. In this simulation, the existing diesel engine was set to operate 2 hours per day, while operating time of the lister engine has been varied with several scenarios. In scenario I, the lister engine was operated 5 hours per day, in scenario II the lister engine was operated 24 hours per day and in scenario III the lister engine was operated 8 hours per week in the weekend. In addition, a design using a modified diesel engine was conducted as well with an assumption that the modified cost was about 10% of new diesel engine cost. By modifying the diesel engine, the system will not need a lister engine. Assessments has been done to evaluate the designs, and the result shows that the optimal value obtains by the lister engine being operated for 24 hours a day in which the capacity of each component was 27 kWp PV, 7 kW lister engine, 26 kVA existing diesel engine, 40 kW converter and 128 batteries. The result is based on the lowest value of Net Present Cost (NPC) of 542.682 and Cost Of Electricity (COE) of 0.49.

  6. Shawn Sheng | NREL

    Science.gov Websites

    experience includes mechanical and electrical system modeling and analysis, data sensing and sensor placement . Education Ph.D. in Mechanical Engineering, University of Massachusetts at Amherst; M.S. in Electrical Engineering, Institute of Electrical Engineering, Chinese Academy of Sciences; B.S. in Electrical Engineering

  7. Propulsion Health Monitoring for Enhanced Safety

    NASA Technical Reports Server (NTRS)

    Butz, Mark G.; Rodriguez, Hector M.

    2003-01-01

    This report presents the results of the NASA contract Propulsion System Health Management for Enhanced Safety performed by General Electric Aircraft Engines (GE AE), General Electric Global Research (GE GR), and Pennsylvania State University Applied Research Laboratory (PSU ARL) under the NASA Aviation Safety Program. This activity supports the overall goal of enhanced civil aviation safety through a reduction in the occurrence of safety-significant propulsion system malfunctions. Specific objectives are to develop and demonstrate vibration diagnostics techniques for the on-line detection of turbine rotor disk cracks, and model-based fault tolerant control techniques for the prevention and mitigation of in-flight engine shutdown, surge/stall, and flameout events. The disk crack detection work was performed by GE GR which focused on a radial-mode vibration monitoring technique, and PSU ARL which focused on a torsional-mode vibration monitoring technique. GE AE performed the Model-Based Fault Tolerant Control work which focused on the development of analytical techniques for detecting, isolating, and accommodating gas-path faults.

  8. Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  9. KSC-97PC1066

    NASA Image and Video Library

    1997-07-18

    Jet Propulsion Laboratory (JPL) engineers examine the interface surface on the Cassini spacecraft prior to installation of the third radioisotope thermoelectric generator (RTG). The other two RTGs, at left, already are installed on Cassini. The three RTGs will be used to power Cassini on its mission to the Saturnian system. They are undergoing mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate far from the Sun where solar power systems are not feasible. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL

  10. Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Tim; Slezak, Lee; Johnson, Chris

    2008-12-31

    The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selectionsmore » and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.« less

  11. 91. ARAIII. GCRE reactor building (ARA608) at 48 percent completion. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    91. ARA-III. GCRE reactor building (ARA-608) at 48 percent completion. Camera faces west end of building; shows roll-up door. High bay section on right view. Petro-chem heater stack extends above roof of low-bay section on left. Excavation for 13, 8 kv electrical conduit in foreground. January 20, 1959. Ineel photo no. 59-322. Photographer: Jack L. Anderson. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  12. LPT. Aerial of low power test facility (TAN640 and 641) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Aerial of low power test facility (TAN-640 and -641) and shield test facility (TAN-645 and -646). Camera facing south. Low power reactor cells at left, then one-story control building; diagonal fence; shield test control building, then (high-bay) pool room. In foreground are electrical pad, water tanks and guard house. Photographer: Lowin. Date: February 24, 1965. INEEL negative no. 65-987 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  13. LOFT. Reactor support apparatus inside containment building (TAN650). Camera is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Reactor support apparatus inside containment building (TAN-650). Camera is on crane rail level and facing northerly. View shows top two banks of round conduit openings on wall for electrical and other connections to control room. Ladders and platforms provide access to reactor instrumentation. Note hatch in floor and drain at edge of floor near wall. Date: 1974. INEEL negative no. 74-219 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  14. Celebrating a Century of Flight

    NASA Technical Reports Server (NTRS)

    OKeefe, Sean O.; Jumper, John P.; Dailey, J. R.

    2002-01-01

    Since 1915, the National Advisory Committee for Aeronautics (NACA), transformed into NASA in 1958, has performed cutting-edge research to solve the problems of flight. Using a Grumman F4F-3 Wildcat during World War II, NACA engineers at the Langley Aeronautical Laboratory (now Langley Research Center) in Hampton, Virginia, used this aircraft to investigate the cuffs on the propeller blades to determine their efficiency. While not built to the full production standard of other Grumman Wildcats, research on this aircraft, the second F4F-3, proved most successful in advancing knowledge of the aerodynamics of this engine and propeller system. A close-up of the propeller blades with Curtiss Electric Propellers' logo is shown.

  15. Feasibility Study of SSTO Base Heating Simulation in Pulsed-Type Facilities

    NASA Technical Reports Server (NTRS)

    Park, Chung Sik; Sharma, Surendra; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    A laboratory simulation of the base heating environment of the proposed reusable Single-Stage-To-Orbit vehicle during its ascent flight was proposed. The rocket engine produces CO2 and H2, which are the main combustible components of the exhaust effluent. The burning of these species, known as afterburning, enhances the base region gas temperature as well as the base heating. To determine the heat flux on the SSTO vehicle, current simulation focuses on the thermochemistry of the afterburning, thermophysical properties of the base region gas, and ensuing radiation from the gas. By extrapolating from the Saturn flight data, the Damkohler number for the afterburning of SSTO vehicle is estimated to be of the order of 10. The limitations on the material strengths limit the laboratory simulation of the flight Damkohler number as well as other flow parameters. A plan is presented in impulse facilities using miniature rocket engines which generate the simulated rocket plume by electric ally-heating a H2/CO2 mixture.

  16. PV system field experience and reliability

    NASA Astrophysics Data System (ADS)

    Durand, Steven; Rosenthal, Andrew; Thomas, Mike

    1997-02-01

    Hybrid power systems consisting of battery inverters coupled with diesel, propane, or gasoline engine-driven electrical generators, and photovoltaic arrays are being used in many remote locations. The potential cost advantages of hybrid systems over simple engine-driven generator systems are causing hybrid systems to be considered for numerous applications including single-family residential, communications, and village power. This paper discusses the various design constraints of such systems and presents one technique for reducing hybrid system losses. The Southwest Technology Development Institute under contract to the National Renewable Energy Laboratory and Sandia National Laboratories has been installing data acquisition systems (DAS) on a number of small and large hybrid PV systems. These systems range from small residential systems (1 kW PV - 7 kW generator), to medium sized systems (10 kW PV - 20 kW generator), to larger systems (100 kW PV - 200 kW generator). Even larger systems are being installed with hundreds of kilowatts of PV modules, multiple wind machines, and larger diesel generators.

  17. Speech Quality Measurement

    DTIC Science & Technology

    1978-05-01

    Program is a cooperative venture between RADC and some sixty-five universities eligible to participate in the program. Syracuse Uiaiversity (Department...of Electrical and Computer Engineering), Purdue University (School of Electrical Engineering), Georgia Institute of Technology (School of Electrical...Engineering), and State University of New York at Buffalo (Department of Electrical / ,./. / Engineering) act as prime contractor schools with other

  18. National Electrical Code in Power Engineering Course for Electrical Engineering Curriculum

    ERIC Educational Resources Information Center

    Azizur, Rahman M. M.

    2011-01-01

    In order to ensure the safety of their inhabitants and properties, the residential, industrial and business installations require complying with NEC (national electrical code) for electrical systems. Electrical design engineers and technicians rely heavily on these very important design guidelines. However, these design guidelines are not formally…

  19. Exhaust-Gas Pressure and Temperature Survey of F404-GE-400 Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Walton, James T.; Burcham, Frank W., Jr.

    1986-01-01

    An exhaust-gas pressure and temperature survey of the General Electric F404-GE-400 turbofan engine was conducted in the altitude test facility of the NASA Lewis Propulsion System Laboratory. Traversals by a survey rake were made across the exhaust-nozzle exit to measure the pitot pressure and total temperature. Tests were performed at Mach 0.87 and a 24,000-ft altitude and at Mach 0.30 and a 30,000-ft altitude with various power settings from intermediate to maximum afterburning. Data yielded smooth pressure and temperature profiles with maximum jet temperatures approximately 1.4 in. inside the nozzle edge and maximum jet temperatures from 1 to 3 in. inside the edge. A low-pressure region located exactly at engine center was noted. The maximum temperature encountered was 3800 R.

  20. 78 FR 72552 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... General Electric Company model GEnx-2B67 and GEnx-2B67B turbofan engines. This AD was prompted by the... certain serial number General Electric Company (GE) model GEnx-2B67 and GEnx-2B67B turbofan engines. The...

  1. Advanced engineering environment collaboration project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weaponsmore » project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.« less

  2. 46 CFR 111.01-15 - Temperature ratings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery rooms...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...

  3. 46 CFR 111.01-15 - Temperature ratings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... is assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...

  4. 46 CFR 111.01-15 - Temperature ratings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... is assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...

  5. 46 CFR 111.01-15 - Temperature ratings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... is assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...

  6. 46 CFR 111.01-15 - Temperature ratings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery rooms...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...

  7. Clayton Barrows | NREL

    Science.gov Websites

    engineering, Penn State, 2013 B.S. in electrical engineering, University of Wyoming, 2005 Prior Work of Electrical and Electronics Engineers (IEEE) Featured Publications Barrows, Clayton, Trieu Mai and Electrical Structure of the North American Electric Power Infrastructure." IEEE Systems

  8. Brayton cycle solarized advanced gas turbine

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Described is the development of a Brayton Engine/Generator Set for solar thermal to electrical power conversion, authorized under DOE/NASA Contract DEN3-181. The objective was to design, fabricate, assemble, and test a small, hybrid, 20-kW Brayton-engine-powered generator set. The latter, called a power conversion assembly (PCA), is designed to operate with solar energy obtained from a parobolic dish concentrator, 11 meters in diameter, or with fossil energy supplied by burning fuels in a combustor, or by a combination of both (hybrid model). The CPA consists of the Brayton cycle engine, a solar collector, a belt-driven 20-kW generator, and the necessary control systems for automatic operation in solar-only, fuel-only, and hybrid modes to supply electrical power to a utility grid. The original configuration of the generator set used the GTEC Model GTP36-51 gas turbine engine for the PCA prime mover. However, subsequent development of the GTEC Model AGT101 led to its selection as the powersource for the PCA. Performance characteristics of the latter, thermally coupled to a solar collector for operation in the solar mode, are presented. The PCA was successfully demonstrated in the fuel-only mode at the GTEC Phoenix, Arizona, facilities prior to its shipment to Sandia National Laboratory in Albuquerque, New Mexico, for installation and testing on a test bed concentractor (parabolic dish). Considerations relative to Brayton-engine development using the all-ceramic AGT101 when it becomes available, which would satisfy the DOE heat engine efficiency goal of 35 to 41 percent, are also discussed in the report.

  9. Development of technical skills in Electrical Power Engineering students: A case study of Power Electronics as a Key Course

    NASA Astrophysics Data System (ADS)

    Hussain, I. S.; Azlee Hamid, Fazrena

    2017-08-01

    Technical skills are one of the attributes, an engineering student must attain by the time of graduation, as per recommended by Engineering Accreditation Council (EAC). This paper describes the development of technical skills, Programme Outcome (PO) number 5, in students taking the Bachelor of Electrical Power Engineering (BEPE) programme in Universiti Tenaga Nasional (UNITEN). Seven courses are identified to address the technical skills development. The course outcomes (CO) of the courses are designed to instill the relevant technical skills with suitable laboratory activities. Formative and summative assessments are carried out to gauge students’ acquisition of the skills. Finally, to measure the attainment of the technical skills, key course concept is used. The concept has been implemented since 2013, focusing on improvement of the programme instead of the cohort. From the PO attainment analysis method, three different levels of PO attainment can be calculated: from the programme level, down to the course and student levels. In this paper, the attainment of the courses mapped to PO5 is measured. It is shown that Power Electronics course, which is the key course for PO5, has a strong attainment at above 90%. PO5 of other six courses are also achieved. As a conclusion, by embracing outcome-based education (OBE), the BEPE programme has a sound method to develop technical psychomotor skills in the degree students.

  10. Designing, Implementing and Maintaining a First Year Project Course in Electrical Engineering

    ERIC Educational Resources Information Center

    Lillieskold, J.; Ostlund, S.

    2008-01-01

    Being a modern electrical engineer does not only require state of the art skills in areas such as transfer and processing of information, electronics, systems engineering, and biomedical electrical engineering; it also requires generic engineering skills such as oral and written communication, team building, interpersonal skills, and the ability…

  11. A remote laboratory for USRP-based software defined radio

    NASA Astrophysics Data System (ADS)

    Gandhinagar Ekanthappa, Rudresh; Escobar, Rodrigo; Matevossian, Achot; Akopian, David

    2014-02-01

    Electrical and computer engineering graduates need practical working skills with real-world electronic devices, which are addressed to some extent by hands-on laboratories. Deployment capacity of hands-on laboratories is typically constrained due to insufficient equipment availability, facility shortages, and lack of human resources for in-class support and maintenance. At the same time, at many sites, existing experimental systems are usually underutilized due to class scheduling bottlenecks. Nowadays, online education gains popularity and remote laboratories have been suggested to broaden access to experimentation resources. Remote laboratories resolve many problems as various costs can be shared, and student access to instrumentation is facilitated in terms of access time and locations. Labs are converted to homeworks that can be done without physical presence in laboratories. Even though they are not providing full sense of hands-on experimentation, remote labs are a viable alternatives for underserved educational sites. This paper studies remote modality of USRP-based radio-communication labs offered by National Instruments (NI). The labs are offered to graduate and undergraduate students and tentative assessments support feasibility of remote deployments.

  12. Data Documentation for Navy Civilian Manpower Study,

    DTIC Science & Technology

    1986-09-01

    Engineering 0830 Mechanical Engineer 0840 Nuclear Engineering 0850 Electrical Engineering 0855 Electronics Engineering 0856 Electronics ...OCCUPATIONAL LEVEL (DONOL) CODES DONOL code Title 1060 Engineering Drafting 1061 Electronics Technician w 1062 Engineering Technician 1063 Industrial...Architect 2314 Electrical Engineer 2315 Electronic Engineer 2316 Industrial Engineer 2317 Mechanical Engineer 2318

  13. A Conversation with Adam Heller.

    PubMed

    Heller, Adam; Cairns, Elton J

    2015-01-01

    Adam Heller, Ernest Cockrell Sr. Chair in Engineering Emeritus of the John J. McKetta Department of Chemical Engineering at The University of Texas at Austin, recalls his childhood in the Holocaust and his contributions to science and technology that earned him the US National Medal of Technology and Innovation in a conversation with Elton J. Cairns, Professor of Chemical and Biomolecular Engineering at the University of California, Berkeley. Dr. Heller, born in 1933, describes the enslavement of his father by Hungarians in 1942; the confiscation of his family's home, business, and all its belongings in 1944; and his incarceration in a brick factory with 18,000 Jews who were shipped by the Hungarians to be gassed by Germans in Auschwitz. Dr. Heller and his immediate family survived the Holocaust and arrived in Israel in 1945. He studied under Ernst David Bergmann at the Hebrew University, and then worked at Bell Laboratories and GTE Laboratories, where he headed Bell Lab's Electronic Materials Research Department. At GTE Laboratories, he built in 1966 the first neodymium liquid lasers and in 1973 with Jim Auborn conceived and engineered the lithium thionyl chloride battery, one of the first to be manufactured lithium batteries, which is still in use. After joining the faculty of engineering of The University of Texas at Austin, he cofounded with his son Ephraim Heller TheraSense, now a major part of Abbott Diabetes Care, which produced a microcoulometer that made the monitoring of glucose painless by accurately measuring the blood glucose concentration in 300 nL of blood. He also describes the electrical wiring of enzymes, the basis for Abbott's state-of-the-art continuous glucose monitoring system. He discusses his perspective of reducing the risk of catastrophic global warming in a wealth-accumulating, more-energy-consuming world and provides advice for students entering careers in science or engineering.

  14. A User’s Manual for: Electromagnetic Surface Patch Code (ESP).

    DTIC Science & Technology

    1981-07-01

    NEWMAN DAAG29-81-K-0020 UNCLASSIFIED ESL-713402- 1 AR0-17UU6.1-EL NL I OF | AD A 10 5 954 END DATE FILMED II-.8I1 DTIC SM * - III 1.0 :s...ma III ̂ ^= • ilia II I.I III— = 11.25 [I 11.4 1 ^6 t v 1 ...Ohio State University ElectroScience Laboratory Department of Electrical Engineering Columbu», Ohio 43212 Technical Report 713402- 1 Grant Number

  15. Environmental sciences information storage and retrieval system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engstrom, D.E.; White, M.G.; Dunaway, P.B.

    Reynolds Electrical and Engineering Co., Inc. (REECo), has since 1970 accumulated information relating to the AEC's Nevada Applied Ecology Group (NAEG) programs at the Nevada Test Site (NTS). These programs, involving extensive soil, vegetation, and small-animal studies, have generated informational data concerning the collecting, processing, analyzing, and shipping of sample materials to various program participants and contractors. Future plans include incorporation of Lawrence Livermore Laboratory's resuspension study data, REECo's on-site air data, and EPA's large-animal, off-site air, and off-site soil data. (auth)

  16. Integrated engine-generator concept for aircraft electric secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Macosko, R. P.; Repas, D. S.

    1972-01-01

    The integrated engine-generator concept of locating an electric generator inside an aircraft turbojet or turbofan engine concentric with, and driven by, one of the main engine shafts is discussed. When properly rated, the generator can serve as an engine starter as well as a generator of electric power. The electric power conversion equipment and generator controls are conveniently located in the aircraft. Preliminary layouts of generators in a large engine together with their physical sizes and weights indicate that this concept is a technically feasible approach to aircraft secondary power.

  17. Rydberg Dipole Antennas

    NASA Astrophysics Data System (ADS)

    Stack, Daniel; Rodenburg, Bradon; Pappas, Stephen; Su, Wangshen; St. John, Marc; Kunz, Paul; Simon, Matt; Gordon, Joshua; Holloway, Christopher

    2017-04-01

    Measurements of microwave frequency electric fields by traditional methods (i.e. engineered antennas) have limited sensitivity and can be difficult to calibrate properly. A useful tool to address this problem are highly-excited (Rydberg) neutral atoms which have very large electric-dipole moments and many dipole-allowed transitions in the range of 1-500 GHz. Using Rydberg states, it is possible to sensitively probe the electric field in this frequency range using the combination of two quantum interference phenomena: electromagnetically induced transparency and the Autler-Townes effect. This atom-light interaction can be modeled by the classical description of a harmonically bound electron. The classical damped, driven, coupled-oscillators model yields significant insights into the deep connections between classical and quantum physics. We will present a detailed experimental analysis of the noise processes in making such measurements in the laboratory and discuss the prospects for building a practical atomic microwave receiver.

  18. US Department of Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing

    NASA Astrophysics Data System (ADS)

    Karner, Donald; Francfort, James

    The advanced vehicle testing activity (AVTA), part of the US Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modelling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full-size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and internal combustion engine vehicles powered by hydrogen. Currently, the AVTA is conducting a significant evaluation of hybrid electric vehicles (HEVs) produced by major automotive manufacturers. The results are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the 'real world' performance of their hybrid energy systems, particularly the battery. The initial fuel economy of these vehicles has typically been less than that determined by the manufacturer and also varies significantly with environmental conditions. Nevertheless, the fuel economy and, therefore, battery performance, has remained stable over the life of a given vehicle (160 000 miles).

  19. Energy Systems Test Area (ESTA) Electrical Power Systems Test Operations: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Salinas, Michael J.

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ESTA Electrical Power Systems Test Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  20. Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle

    DOEpatents

    Boberg, Evan S.; Gebby, Brian P.

    1999-09-28

    A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Richard P.; Stamp, Jason E.; Eddy, John P.

    Many critical loads rely on simple backup generation to provide electricity in the event of a power outage. An Energy Surety Microgrid TM can protect against outages caused by single generator failures to improve reliability. An ESM will also provide a host of other benefits, including integration of renewable energy, fuel optimization, and maximizing the value of energy storage. The ESM concept includes a categorization for microgrid value proposi- tions, and quantifies how the investment can be justified during either grid-connected or utility outage conditions. In contrast with many approaches, the ESM approach explic- itly sets requirements based on unlikelymore » extreme conditions, including the need to protect against determined cyber adversaries. During the United States (US) Department of Defense (DOD)/Department of Energy (DOE) Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) effort, the ESM methodology was successfully used to develop the preliminary designs, which direct supported the contracting, construction, and testing for three military bases. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military installations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Melanie Johnson and Harold Sanborn of the U.S. Army Corps of Engineers Construc- tion Engineering Research Laboratory * Experts from the National Renewable Energy Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory« less

  2. ETR AND MTR COMPLEXES IN CONTEXT. CAMERA FACING NORTHERLY. FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR AND MTR COMPLEXES IN CONTEXT. CAMERA FACING NORTHERLY. FROM BOTTOM TO TOP: ETR COOLING TOWER, ELECTRICAL BUILDING AND LOW-BAY SECTION OF ETR BUILDING, HEAT EXCHANGER BUILDING (WITH U SHAPED YARD), COMPRESSOR BUILDING. MTR REACTOR SERVICES BUILDING IS ATTACHED TO SOUTH WALL OF MTR. WING A IS ATTACHED TO BALCONY FLOOR OF MTR. NEAR UPPER RIGHT CORNER OF VIEW IS MTR PROCESS WATER BUILDING. WING B IS AT FAR WEST END OF COMPLEX. NEAR MAIN GATE IS GAMMA FACILITY, WITH "COLD" BUILDINGS BEYOND: RAW WATER STORAGE TANKS, STEAM PLANT, MTR COOLING TOWER PUMP HOUSE AND COOLING TOWER. INL NEGATIVE NO. 56-4101. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in themore » further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.« less

  4. 76 FR 28333 - Electric Engineering, Architectural Services, Design Policies and Construction Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... CFR Parts 1724 and 1726 RIN 0572-AC20 Electric Engineering, Architectural Services, Design Policies... standard forms of contracts promulgated by RUS for construction, procurement, engineering services and... XVII of title 7 of the Code of Federal Regulations as follows: PART 1724--ELECTRIC ENGINEERING...

  5. 14 CFR 25.1165 - Engine ignition systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... automatically available as an alternate source of electrical energy to allow continued engine operation if any... simultaneous demands of the engine ignition system and the greatest demands of any electrical system components that draw electrical energy from the same source. (c) The design of the engine ignition system must...

  6. 14 CFR 25.1165 - Engine ignition systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... automatically available as an alternate source of electrical energy to allow continued engine operation if any... simultaneous demands of the engine ignition system and the greatest demands of any electrical system components that draw electrical energy from the same source. (c) The design of the engine ignition system must...

  7. This photocopy of an engineering drawing shows the floor plan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This photocopy of an engineering drawing shows the floor plan of the Liner Lab, including room functions. Austin, Field & Fry, Architects Engineers, 22311 West Third Street, Los Angeles 57, California: Edwards Test Station Complex Phase II, Jet Propulsion Laboratory, California Institute of Technology, Edwards Air Force Base, Edwards, California: "Liner Laboratory, Floor Plan and Schedules," drawing no. E33/4-2, 26 June 1962. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Liner Laboratory, Edwards Air Force Base, Boron, Kern County, CA

  8. Second Insulin Pump Safety Meeting: Summary Report

    PubMed Central

    Zhang, Yi; Jones, Paul L.; Klonoff, David C.

    2010-01-01

    Diabetes Technology Society facilitated a second meeting of insulin pump experts at Mills-Peninsula Health Services, San Mateo, California on November 4, 2009, at the request of the Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories. The first such meeting was held in Bethesda, Maryland, on November 12, 2008. The group of physicians, nurses, diabetes educators, and engineers from across the United States discussed safety issues in insulin pump therapy and recommended adjustments to current insulin pump design and use to enhance overall safety. The meeting discussed safety issues in the context of pump operation; software; hardware; physical structure; electrical, biological, and chemical considerations; use; and environment from engineering, medical, nursing, and pump/user perspectives. There was consensus among meeting participants that insulin pump designs have made great progress in improving the quality of life of people with diabetes, but much more remains to be done. PMID:20307411

  9. Mechanical stimulation in the engineering of heart muscle.

    PubMed

    Liaw, Norman Yu; Zimmermann, Wolfram-Hubertus

    2016-01-15

    Recreating the beating heart in the laboratory continues to be a formidable bioengineering challenge. The fundamental feature of the heart is its pumping action, requiring considerable mechanical forces to compress a blood filled chamber with a defined in- and outlet. Ventricular output crucially depends on venous loading of the ventricles (preload) and on the force generated by the preloaded ventricles to overcome arterial blood pressure (afterload). The rate of contraction is controlled by the spontaneously active sinus node and transmission of its electrical impulses into the ventricles. The underlying principles for these physiological processes are described by the Frank-Starling mechanism and Bowditch phenomenon. It is essential to consider these principles in the design and evaluation of tissue engineered myocardium. This review focuses on current strategies to evoke mechanical loading in hydrogel-based heart muscle engineering. Copyright © 2015. Published by Elsevier B.V.

  10. Monitoring means for combustion engine electric storage battery means

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, G. K.; Rautiola, R. E.; Taylor, R. E.

    Disclosed, in combination, are a combustion engine, an electric storage battery, an electrically powered starter motor for at times driving the engine in order to start the engine, and an electrical system monitor; the electrical system monitor has a first monitoring portion which senses the actual voltage across the battery and a second monitoring portion which monitors the current through the battery; an electrical switch controls associated circuitry and is actuatable into open or closed conditions; whenever the first monitoring portion senses a preselected magnitude of the actual voltage across the battery or the second monitoring portion senses a preselectedmore » magnitude of the current flow through the battery, the electrical switch is actuated.« less

  11. DOE Chair of Excellence in Environmental Disciplines-Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurunganty, Sastry; Loran, Roberto; Roque-Malherbe, Rolando

    The report Massie Chair of Excellence Program at Universidad del Turabo, contract DE-FG02-95EW12610, during the period of 9/29/1995 to 9/29/2011. The initial program aims included development of academic programs in the Environmental Sciences and Engineering, and Research and Development focused initially on environmentally friendly processes and later revised also include: renewable energy and international cooperation. From 1995 -2005, the Program at UT lead the establishment of the new undergraduate program in electrical engineering at the School of Engineering (SoE), worked on requirements to achieve ABET accreditation of the SoE B.S. Mechanical Engineering and B.S. Electrical Engineering programs, mentored junior faculty,more » taught undergraduate courses in electrical engineering, and revised the electrical engineering curriculum. Engineering undergraduate laboratories were designed and developed. The following research sub-project was developed: Research and development of new perovskite-alumina hydrogen permeable asymmetrical nanostructured membranes for hydrogen purification, and extremely high specific surface area silica materials for hydrogen storage in the form of ammonia, Dr. Rolando Roque-Malherbe Subproject PI, Dr. Santander Nieto and Mr. Will Gómez Research Assistants. In 2006, the Massie Chair of Excellence Program was transferred to the National Nuclear Security Agency, NNSA and DNN. DoE required a revised proposal aligned with the priorities of the Administration. The revised approved program aims included: (1) Research (2) Student Development: promote the development of minority undergraduate and graduate students through research teams, internships, conferences, new courses; and, (3) Support: (a) Research administration and (b) Dissemination through international conferences, the UT Distinguished Lecturer Series in STEM fields and at the annual Universidad del Turabo (UT) Researchers Conference. Research included: Sub-Project 1: Synthesis and Characterization of low Refractive Index Aerogel Silica for Cherenkov Counters- Dr. Rolando Roque-Malherbe Sub-project PI, Dr. Jose Duconge Sub-project Co-PI, Dr. Santander Nieto Assistant Researcher, Francisco Diaz and Carlos Neira Associate Researchers. The initial aim of this sub-project was changed to the synthesis and characterization of extremely high specific surface area aerogel silica for gas storage. A high specific surface area silica gel that has applications in gas drying, cleaning operation useful in nuclear industry in process was developed. Sub-Project 2: Investigation Study of Magnetic and Electronic Transport Properties at Material Interfaces in Magnetic Multilayer Heterostructure using Gd. – Dr. Yazan Hijazi, Sub-project Co-PI. UT developed the capability and infrastructure to produce high quality thin-film magnetic films and magnetic multilayer structures with fine control over film quality and thickness using sputter deposition capability to perform in-house electric and magnetic characterization of these films. The research experimentally quantified the effect of Gd incorporation within the magnetic multilayer structure and produce magnetic media with exchanged decoupled multilevel magnetic anisotropy. From September 2006 to September 2011 the Massie Chair produced nineteen (19) publications, (including 3 books), five (5) presentations and three (3) international conferences abstracts. A total of fourteen (14) undergraduates and (6) graduate students acquired research experience. Two Ph.D. students presented their dissertations on topics related to nuclear energy and graduated as follows: María Cotto (May 2009) and Eric Calderón (May 2011). Five of the participating undergraduate students graduated: Ramon Polanco (BSME, May 2009), Jason Pérez (BSEE, May 2008), Rafael Colón (BSME, May 2008), Jessenia Marfisi (BS Chemistry, May 2008). Eleven (11) students were sent to National Laboratories (LANL, SNL and LLNL), NNSA and DoE facilities for summer internships. Twenty eight (28) undergraduate students participated in Summer Internships (2010, 2011) at the Puerto Rico Energy Center (PREC). Four international energy symposiums were held aligned with the DoE and the NNSA missions and dissemination of Massie Chair research activities (660 attendees). Academic programs developed or revised under advice of the Massie Chair: Ph.D. in Environmental Sciences (revised); MSc in Environmental Sciences (revised); MSc in Mechanical Engineering with concentration in Alternative Energy (new); BS in Industrial Management & Engineering (revised to fulfill the ABET requirements); BS in Civil Engineering including an environmental option (new); BS in Electrical Engineering (revised); and, Associate in Renewable Energy (new). The Puerto Rico Energy Center (PREC) was designed and developed under the Massie Chair initiative. Thirty-three (33) proposals were developed and submitted during the period of which 12 were approved in the amount of $ $1,931,306.« less

  12. Statistical Analysis Tools for Learning in Engineering Laboratories.

    ERIC Educational Resources Information Center

    Maher, Carolyn A.

    1990-01-01

    Described are engineering programs that have used automated data acquisition systems to implement data collection and analyze experiments. Applications include a biochemical engineering laboratory, heat transfer performance, engineering materials testing, mechanical system reliability, statistical control laboratory, thermo-fluid laboratory, and a…

  13. Altitude Wind Tunnel Drive Motor Installation

    NASA Image and Video Library

    1943-07-21

    Construction workers install the drive motor for the Altitude Wind Tunnel (AWT) in the Exhauster Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory. The AWT was capable of operating full-scale engines in air density, speed, and temperature similar to that found at high altitudes. The tunnel could produce wind speeds up to 500 miles per hour through a 20-foot-diameter test section at the standard operating altitude of 30,000 feet. The airflow was created by a large wooden fan near the tunnel’s southeast corner. This photograph shows the installation of the 18,000-horsepower drive motor inside the adjoining Exhauster Building in July 1943. The General Electric motor, whose support frame is seen in this photograph, connected to a drive shaft that extended from the building, through the tunnel shell, and into a 12-bladed, 31-foot-diameter spruce wood fan. Flexible couplings on the shaft allowed for the movement of the shell. The corner of the Exhauster Building was built around the motor after its installation. The General Electric induction motor could produce 10 to 410 revolutions per minute and create wind speeds up to 500 miles per hour, or Mach 0.63, at 30,000 feet. The AWT became operational in January 1944 and tested piston, turbojet and ramjet engines for nearly 20 years.

  14. 78 FR 76045 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... (AD) for General Electric Company (GE) GE90-110B1 and GE90-115B turbofan engines with certain high... turbofan engines with high pressure compressor (HPC) rotor stage 2-5 spools, part numbers (P/Ns) 351-103...

  15. 78 FR 50320 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... Electric Company (GE) model GEnx-2B67B turbofan engines with booster anti-ice (BAI) air duct, part number...-2B67 turbofan engine be removed from the Applicability section of this AD. The commenters noted that...

  16. 78 FR 72567 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... General Electric Company (GE) GE90-110B1 and -115B turbofan engines. This AD was prompted by multiple... turbofan engines with variable bypass valve (VBV) actuator fuel supply tube, part number (P/N) 2165M22P01...

  17. 77 FR 3088 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... Electric Company (GE) CF34-10E series turbofan engines. This AD was prompted by a report of heavy wear... turbofan engines installed on airplanes of U.S. registry. We also estimate that it will take about 8 work...

  18. Observations of solar-cell metallization corrosion

    NASA Technical Reports Server (NTRS)

    Mon, G. R.

    1983-01-01

    The Engineering Sciences Area of the Jet Propulsion Laboratory (JPL) Flat-Plate Solar Array Project is performing long term environmental tests on photovoltaic modules at Wyle Laboratories in Huntsville, Alabama. Some modules have been exposed to 85 C/85% RH and 40 C/93% RH for up to 280 days. Other modules undergoing temperature-only exposures ( 3% RH) at 85 C and 100 C have been tested for more than 180 days. At least two modules of each design type are exposed to each environment - one with, and the other without a 100-mA forward bias. Degradation is both visually observed and electrically monitored. Visual observations of changes in appearance are recorded at each inspection time. Significant visual observations relating to metallization corrosion (and/or metallization-induced corrosion) include discoloration (yellowing and browning) of grid lines, migration of grid line material into the encapsulation (blossoming), the appearance of rainbow-like diffraction patterns on the grid lines, and brown spots on collectors and grid lines. All of these observations were recorded for electrically biased modules in the 280-day tests with humidity.

  19. World Record Magnetic Field 100T

    ScienceCinema

    McDonald, Ross; Mielke, Chuck; Rickel, Dwight

    2018-01-16

    Scientists at the Los Alamos National Laboratory campus of the National High Magnetic Field Laboratory have successfully produced the world's first 100 Tesla non-destructive magnetic field. The achievement was decades in the making, involving a diverse team of scientists and engineers. The 100 Tesla mark was reached at approximately 3:30 p.m. on March 22, 2012. A note about the sound you'll hear when the magnet is energized: The sound that the 100 T multi-shot magnet makes is due to the electrical current modulation from the 3 phase power converters (known as 12 pulse converters) and the harmonics associated with the chopping of the sinusoidal input power. The magnet vibrates at the electrical current frequencies multiplied by 12 (i.e. ~ 55 Hz x 12 = 660 Hz) hence making an audible sound. The generator is not run at full speed (1650 RPM instead of 1800 RPM) so the frequency is slightly lower than US Line frequency (i.e. 55 Hz instead of 60 Hz). A spectrograph of the sound from the magnet pulse shows the multiple harmonics as reddish horizontal bands as a function of time.

  20. Electric turbocompound control system

    DOEpatents

    Algrain, Marcelo C [Dunlap, IL

    2007-02-13

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  1. China’s Aerospace Industry: Technology, Funding and Modernization

    DTIC Science & Technology

    1992-01-01

    7 was to use a General Electric F404 engine (from the F-20 Tigershark) along with other foreign engines as candidates but that program was again...firms like General Electric and Pratt & Whitney. As the Chinese engine industry gets more behind, more foreign engines are chosen, and the factories have... Electric since 1984.81 Liming Engine Plant makes compressor disks and turbine disks for GE and turbine disks for Pratt & Whitney while the Chengdu Engine

  2. 78 FR 38195 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... all General Electric Company (GE) GE90-110B1 and GE90-115B turbofan engines. This emergency AD was.... owners and operators of these GE90-110B1 and GE90-115B turbofan engines. This action was prompted by...

  3. 78 FR 19983 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... Electric Company (GE) CF34-8C and CF34-8E turbofan engines with certain part numbers (P/N) of operability...-8E6, and CF34-8E6A1 turbofan engines, with an operability bleed valve (OBV) part number (P/N...

  4. Alternative Fuels Data Center: Vehicle Search

    Science.gov Websites

    ZeroTruck Search Engines and Hybrid Systems For medium- and heavy-duty vehicles: Engine & Power Sources Hydraulic hybrid Hybrid - CNG Hybrid - Diesel Electric Hybrid - LNG Hybrid Search x Pick Engine Fuel Natural Gas Propane Electric Plug-in Hybrid Electric Hydraulic hybrid Hybrid Search x Pick Engine Fuel

  5. Development and operation of a mobile test facility for education

    NASA Astrophysics Data System (ADS)

    Davis, Christopher T.

    The automotive industry saw a large shift towards vehicle electrification after the turn of the century. It became necessary to ensure that new and existing engineers were qualified to design and calibrate these new systems. To ensure this training, Michigan Tech received a grant to develop a curriculum based around vehicle electrification. As part of this agenda, the Michigan Tech Mobile Laboratory was developed to provide hands-on training for professional engineers and technicians in hybrid electric vehicles and vehicle electrification. The Mobile Lab has since then increased the scope of the delivered curriculum to include other automotive areas and even customizable course content to meet specific needs. This thesis outlines the development of the Mobile Laboratory and its powertrain test facilities. The focus of this thesis is to discuss the different hardware and software systems within the lab and test cells. Detailed instructions on the operation and maintenance of each of the systems are discussed. In addition, this thesis outlines the setup and operation of the necessary equipment for several of the experiments for the on and off campus courses and seminars.

  6. Qualification Testing of Engineering Camera and Platinum Resistance Thermometer (PRT) Sensors for Mars Science Laboratory (MSL) Project under Extreme Temperatures to Assess Reliability and to Enhance Mission Assurance

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Maki, Justin N.; Cucullu, Gordon C.

    2008-01-01

    Package Qualification and Verification (PQV) of advanced electronic packaging and interconnect technologies and various other types of qualification hardware for the Mars Exploration Rover/Mars Science Laboratory flight projects has been performed to enhance the mission assurance. The qualification of hardware (Engineering Camera and Platinum Resistance Thermometer, PRT) under extreme cold temperatures has been performed with reference to various project requirements. The flight-like packages, sensors, and subassemblies have been selected for the study to survive three times (3x) the total number of expected temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware including all relevant manufacturing, ground operations and mission phases. Qualification has been performed by subjecting above flight-like qual hardware to the environmental temperature extremes and assessing any structural failures or degradation in electrical performance due to either overstress or thermal cycle fatigue. Experiments of flight like hardware qualification test results have been described in this paper.

  7. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center developed a nonnuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASCs), Dual Convertor Controller (DCC) EMs (engineering models) 2 and 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to actively control a pair of ASCs. The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS), which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and super-capacitor. A load profile, created based on data from several missions, tested the RPS's and RSIL's ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 volts or exceeded 36 volts. Once operation was verified with the DASCS, the tests were repeated with actual operating ASCs. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  8. Theory and Observations of Plasma Waves Excited Space Shuttle OMS Burns in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Pfaff, R. F.; Schuck, P. W.; Hunton, D. E.; Hairston, M. R.

    2010-12-01

    Measurements of artificial plasma turbulence were obtained during two Shuttle Exhaust Ionospheric Turbulence Experiments (SEITE) conducted during the flights of the Space Shuttle (STS-127 and STS-129). Based on computer modeling at the NRL PPD and Laboratory for Computational Physics & Fluid Dynamics (LCP), two dedicated burns of the Space Shuttle Orbital Maneuver Subsystem (OMS) engines were scheduled to produce 200 to 240 kg exhaust clouds that passed over the Air Force Research Laboratory (AFRL) Communications, Navigation, and Outage Forecast System (C/NOFS) satellite. This operation required the coordination by the DoD Space Test Program (STP), the NASA Flight Dynamics Officer (FDO), the C/NOFS payload operations, and the C/NOFS instrument principal investigators. The first SEITE mission used exhaust from a 12 Second OMS burn to deposit 1 Giga-Joules of energy into the upper atmosphere at a range of 230 km from C/NOFS. The burn was timed so C/NOFS could fly though the center of the exhaust cloud at a range of 87 km above the orbit of the Space Shuttle. The first SEITE experiment is important because is provided plume detection by ionospheric plasma and electric field probes for direct sampling of irregularities that can scatter radar signals. Three types of waves were detected by C/NOFS during and after the first SEITE burn. With the ignition and termination of the pair of OMS engines, whistler mode signals were recorded at C/NOFS. Six seconds after ignition, a large amplitude electromagnetic pulse reached the satellite. This has been identified as a fast magnetosonic wave propagating across magnetic field lines to reach the electric field (VEFI) sensors on the satellite. Thirty seconds after the burn, the exhaust cloud reach C/NOFS and engulfed the satellite providing very strong electric field turbulence along with enhancements in electron and ion densities. Kinetic modeling has been used to track the electric field turbulence to an unstable velocity distribution produced after the supersonic exhaust molecules charge exchanged with ambient oxygen ions. Based on the success of the first SEITE mission, a second dedicated burn of the OMS engine was scheduled to intercept the C/NOFS satellite, this time at an initial range of 430 km. The trajectory of this exhaust cloud was not centered on the satellite so the turbulent edge was sampled by the C/NOFS instruments. The electromagnetic pulse and the in situ plasma turbulence was recorded during the second SEITE experiment. A comparison of the data from the two OMS burns shows that a wide range of plasma waves are consistently produced with rocket engines are fired in the ionosphere.

  9. 44. LOCK, ELECTRICAL SYSTEM, HAULAGE ENGINES, ELECTRICAL DETAILS AND LOCATION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. LOCK, ELECTRICAL SYSTEM, HAULAGE ENGINES, ELECTRICAL DETAILS AND LOCATION. February 1938 - Mississippi River 9-Foot Channel Project, Lock & Dam No. 17, Upper Mississippi River, New Boston, Mercer County, IL

  10. 78 FR 56594 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... General Electric Company (GE) GE90-76B, -85B, -90B, -94B, -110B1, and - 115B turbofan engines. This AD was...) Applicability This AD applies to General Electric Company (GE): (1) GE90-76B, -85B, -90B, and -94B turbofan...

  11. Simplified Ion Thruster Xenon Feed System for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Randolph, Thomas M.; Hofer, Richard R.; Goebel, Dan M.

    2009-01-01

    The successful implementation of ion thruster technology on the Deep Space 1 technology demonstration mission paved the way for its first use on the Dawn science mission, which launched in September 2007. Both Deep Space 1 and Dawn used a "bang-bang" xenon feed system which has proven to be highly successful. This type of feed system, however, is complex with many parts and requires a significant amount of engineering work for architecture changes. A simplified feed system, with fewer parts and less engineering work for architecture changes, is desirable to reduce the feed system cost to future missions. An attractive new path for ion thruster feed systems is based on new components developed by industry in support of commercial applications of electric propulsion systems. For example, since the launch of Deep Space 1 tens of mechanical xenon pressure regulators have successfully flown on commercial spacecraft using electric propulsion. In addition, active proportional flow controllers have flown on the Hall-thruster-equipped Tacsat-2, are flying on the ion thruster GOCE mission, and will fly next year on the Advanced EHF spacecraft. This present paper briefly reviews the Dawn xenon feed system and those implemented on other xenon electric propulsion flight missions. A simplified feed system architecture is presented that is based on assembling flight-qualified components in a manner that will reduce non-recurring engineering associated with propulsion system architecture changes, and is compared to the NASA Dawn standard. The simplified feed system includes, compared to Dawn, passive high-pressure regulation, a reduced part count, reduced complexity due to cross-strapping, and reduced non-recurring engineering work required for feed system changes. A demonstration feed system was assembled using flight-like components and used to operate a laboratory NSTAR-class ion engine. Feed system components integrated into a single-string architecture successfully operated the engine over the entire NSTAR throttle range over a series of tests. Flow rates were very stable with variations of at most 0.2%, and transition times between throttle levels were typically 90 seconds or less with a maximum of 200 seconds, both significant improvements over the Dawn bang-bang feed system.

  12. Electron Bombardment Ion Thruster

    NASA Image and Video Library

    1970-08-21

    Researchers at the Lewis Research Center had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. Over the ensuing decades Lewis researchers continued to advance the original ion thruster concept. A Space Electric Rocket Test (SERT) spacecraft was launched in June 1964 to test Kaufman’s engine in space. SERT I had one cesium engine and one mercury engine. The suborbital flight was only 50 minutes in duration but proved that the ion engine could operate in space. This was followed in 1966 by the even more successful SERT II, which operated on and off for over ten years. Lewis continued studying increasingly more powerful ion thrusters. These electric engines created and accelerated small particles of propellant material to high exhaust velocities. Electric engines have a very small amount of thrust and are therefore not capable of lifting a spaceship from the surface of the Earth. Once lofted into orbit, however, electric engines are can produce small, continuous streams of thrust for several years.

  13. 78 FR 24671 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... certain General Electric Company (GE) CF6-80C2 series turbofan engines. That AD currently requires.../B1F/B2F/B4F/B6F/B7F/D1F turbofan engines with any of the following installed: (1) Fuel tube, part...

  14. 78 FR 47534 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... directive (AD) 2013-14-51 for General Electric Company (GE) GE90-110B1 and GE90-115B turbofan engines with... all known U.S. owners and operators of GE90-110B1 and GE90-115B turbofan engines. AD 2013-14-51...

  15. Consolidated B-24M Liberator Equipped for Icing Research

    NASA Image and Video Library

    1946-07-21

    A Consolidated B-25M Liberator modified for icing research by the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. NACA Lewis performed a limited amount of icing research during World War II, but the program expanded significantly in 1946. The accumulation of ice on aircraft was a continual problem. The ice formations could result in extra weight, aerodynamic penalties, and blockage engine inlets. Although the Lewis icing researchers utilized numerous aircraft, the program’s two workhorses were the B-24M Liberator, seen here, and a North American XB-25E Mitchell. The Consolidated Aircraft Company created the four-engine bomber in the early 1940s. During World War II the bomber was employed on long-duration bombing missions in both Europe and the Pacific. Production of the B-24M version did not begin until October 1944 with the end of the war in Europe approaching. This resulted in scores of unneeded bombers when hostilities ended. This B-24M arrived at the NACA Lewis laboratory in November 1945. At Lewis the B-24M was repeatedly modified to study ice accretion on aircraft components. Researchers analyzed different anti-icing and deicing strategies and gathered statistical ice measurement data. The B-24M was also used to study ice buildup on jet engines. A General Electric I-16 engine was installed in the aircraft’s waist compartment with an air scoop on the top of the aircraft to duct air to the engine. Water spray nozzles inside the aircraft were employed to simulate icing conditions at the turbojet’s inlet.

  16. Direction of R&D and Current Status of Understanding of Advanced Gear Steels

    DTIC Science & Technology

    1986-02-01

    our laboratory. A-Z 9-4 CBS600 was developed by Timken as a carburizing grade bearing steel for service above 150C. The philosophy used in designing...melted (VIM-VAR) steels . The effect of long time aging at 230C on the Charpy energy for CBS600 is currently underway at AMMRC. M50 NIL General Electric, in...contact fatigue life and hot hardness as high as for P50 (the high hot hardness bearing steel widely used in aircraft gas turbine engines in the USA) the

  17. 46 CFR 96.05-1 - Installation and details.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...

  18. 46 CFR 77.05-1 - Installation and details.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...

  19. 46 CFR 77.05-1 - Installation and details.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...

  20. 46 CFR 96.05-1 - Installation and details.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...

  1. 46 CFR 77.05-1 - Installation and details.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...

  2. 46 CFR 96.05-1 - Installation and details.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...

  3. 46 CFR 96.05-1 - Installation and details.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...

  4. 46 CFR 96.05-1 - Installation and details.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...

  5. 46 CFR 77.05-1 - Installation and details.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...

  6. 46 CFR 77.05-1 - Installation and details.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...

  7. Student research laboratory for optical engineering

    NASA Astrophysics Data System (ADS)

    Tolstoba, Nadezhda D.; Saitgalina, Azaliya; Abdula, Polina; Butova, Daria

    2015-10-01

    Student research laboratory for optical engineering is comfortable place for student's scientific and educational activity. The main ideas of laboratory, process of creation of laboratory and also activity of laboratory are described in this article. At ITMO University in 2013-2014 were formed a lot of research laboratories. SNLO is a student research (scientific) laboratory formed by the Department of Applied and computer optics of the University ITMO (Information Technologies of Mechanics and Optics). Activity of laboratory is career guidance of entrants and students in the field of optical engineering. Student research laboratory for optical engineering is a place where student can work in the interesting and entertaining scientific atmosphere.

  8. Digital Avionics

    NASA Technical Reports Server (NTRS)

    Koelbl, Terry G.; Ponchak, Denise; Lamarche, Teresa

    2002-01-01

    The field of digital avionics experienced another year of important advances in civil aviation, military systems, and space applications. As a result of the events of 9/11/2001, NASA has pursued activities to apply its aerospace technologies toward improved aviation security. Both NASA Glenn Research Center and Langley Research Center have performed flight research demonstrations using advanced datalink concepts to transmit live pictures from inside a jetliner, and to downlink the contents of the plane's 'black box' recorder in real time. The U.S. Navy and General Electric demonstrated survivable engine control (SEC) algorithms during engine ground tests at the Weapons Survivability Laboratory at China Lake. The scientists at Boeing Satellite Systems advanced the field of stellar inertial technology with the development of a new method for positioning optical star trackers on satellites.

  9. 3D engineered cardiac tissue models of human heart disease: learning more from our mice.

    PubMed

    Ralphe, J Carter; de Lange, Willem J

    2013-02-01

    Mouse engineered cardiac tissue constructs (mECTs) are a new tool available to study human forms of genetic heart disease within the laboratory. The cultured strips of cardiac cells generate physiologic calcium transients and twitch force, and respond to electrical pacing and adrenergic stimulation. The mECT can be made using cells from existing mouse models of cardiac disease, providing a robust readout of contractile performance and allowing a rapid assessment of genotype-phenotype correlations and responses to therapies. mECT represents an efficient and economical extension to the existing tools for studying cardiac physiology. Human ECTs generated from iPSCMs represent the next logical step for this technology and offer significant promise of an integrated, fully human, cardiac tissue model. Copyright © 2013. Published by Elsevier Inc.

  10. Composite materials. Volume 3 - Engineering applications of composites. Volume 4 - Metallic matrix composites. Volume 8 - Structural design and analysis, Part 2

    NASA Technical Reports Server (NTRS)

    Noton, B. R. (Editor); Kreider, K. G.; Chamis, C. C.

    1974-01-01

    This volume discusses a vaety of applications of both low- and high-cost composite materials in a number of selected engineering fields. The text stresses the use of fiber-reinforced composites, along with interesting material systems used in the electrical and nuclear industries. As to technology transfer, a similarity is noted between many of the reasons responsible for the utilization of composites and those problems requiring urgent solution, such as mechanized fabrication processes and design for production. Features topics include road transportation, rail transportation, civil aircraft, space vehicles, builing industry, chemical plants, and appliances and equipment. The laminate orientation code devised by Air Force materials laboratory is included. Individual items are announced in this issue.

  11. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopman, Ulrich,; Kruiswyk, Richard W.

    2005-07-05

    Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuelmore » economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.« less

  12. Effects of the Physical Laboratory versus the Virtual Laboratory in Teaching Simple Electric Circuits on Conceptual Achievement and Attitudes Towards the Subject

    ERIC Educational Resources Information Center

    Tekbiyik, Ahmet; Ercan, Orhan

    2015-01-01

    Current study examined the effects of virtual and physical laboratory practices on students' conceptual achievement in the subject of electricity and their attitudes towards simple electric circuits. Two groups (virtual and physical) selected through simple random sampling was taught with web-aided material called "Electricity in Our…

  13. 46 CFR 167.40-1 - Electrical installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (Electrical Engineering) of this chapter. (3) Institute of Electrical and Electronic Engineers, Inc. (IEEE... 46 Shipping 7 2011-10-01 2011-10-01 false Electrical installations. 167.40-1 Section 167.40-1... SHIPS Certain Equipment Requirements § 167.40-1 Electrical installations. (a) Except as otherwise...

  14. 46 CFR 167.40-1 - Electrical installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (Electrical Engineering) of this chapter. (3) Institute of Electrical and Electronic Engineers, Inc. (IEEE... 46 Shipping 7 2012-10-01 2012-10-01 false Electrical installations. 167.40-1 Section 167.40-1... SHIPS Certain Equipment Requirements § 167.40-1 Electrical installations. (a) Except as otherwise...

  15. 46 CFR 167.40-1 - Electrical installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (Electrical Engineering) of this chapter. (3) Institute of Electrical and Electronic Engineers, Inc. (IEEE... 46 Shipping 7 2014-10-01 2014-10-01 false Electrical installations. 167.40-1 Section 167.40-1... SHIPS Certain Equipment Requirements § 167.40-1 Electrical installations. (a) Except as otherwise...

  16. 46 CFR 167.40-1 - Electrical installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (Electrical Engineering) of this chapter. (3) Institute of Electrical and Electronic Engineers, Inc. (IEEE... 46 Shipping 7 2013-10-01 2013-10-01 false Electrical installations. 167.40-1 Section 167.40-1... SHIPS Certain Equipment Requirements § 167.40-1 Electrical installations. (a) Except as otherwise...

  17. Integrated engine generator for aircraft secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1972-01-01

    An integrated engine-generator for aircraft secondary power generation is described. The concept consists of an electric generator located inside a turbojet or turbofan engine and both concentric with and driven by one of the main engine shafts. The electric power conversion equipment and generator controls are located in the aircraft. When properly rated, the generator serves as an engine starter as well as a source of electric power. This configuration reduces or eliminates the need for an external gear box on the engine and permits reduction in the nacelle diameter.

  18. Economical launching and accelerating control strategy for a single-shaft parallel hybrid electric bus

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Song, Jian; Li, Liang; Li, Shengbo; Cao, Dongpu

    2016-08-01

    This paper presents an economical launching and accelerating mode, including four ordered phases: pure electrical driving, clutch engagement and engine start-up, engine active charging, and engine driving, which can be fit for the alternating conditions and improve the fuel economy of hybrid electric bus (HEB) during typical city-bus driving scenarios. By utilizing the fast response feature of electric motor (EM), an adaptive controller for EM is designed to realize the power demand during the pure electrical driving mode, the engine starting mode and the engine active charging mode. Concurrently, the smoothness issue induced by the sequential mode transitions is solved with a coordinated control logic for engine, EM and clutch. Simulation and experimental results show that the proposed launching and accelerating mode and its control methods are effective in improving the fuel economy and ensure the drivability during the fast transition between the operation modes of HEB.

  19. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation and... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line beginning at the southeasternmost corner of the U.S. Navy Marine Engineering Laboratory sea wall and running...

  20. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation and... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line beginning at the southeasternmost corner of the U.S. Navy Marine Engineering Laboratory sea wall and running...

  1. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation and... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line beginning at the southeasternmost corner of the U.S. Navy Marine Engineering Laboratory sea wall and running...

  2. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation and... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line beginning at the southeasternmost corner of the U.S. Navy Marine Engineering Laboratory sea wall and running...

  3. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation and... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line beginning at the southeasternmost corner of the U.S. Navy Marine Engineering Laboratory sea wall and running...

  4. Inspection of the New 10- by 10-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1956-05-21

    Attendees listen during the May 22, 1956 Inspection of the new 10- by 10-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The facility, known at the time as the Lewis Unitary Plan Tunnel, was in its initial stages of operation. The $33 million 10- by 10 was the most powerful wind tunnel in the nation. Over 150 guests from industry, other NACA laboratories, and the media attended the event. The speakers, from left to right in the front row, addressed the crowd before the tour. Lewis Director Raymond Sharp began the event by welcoming the visitors to the laboratory. NACA Director Hugh Dryden discussed Congress’ Unitary Plan Act and its effect on the creation of the facility. Lewis Associate Director Abe Silverstein discussed the need for research tools and the 10- by 10’s place among the NACA’s other research facilities. Lewis Assistant Director Eugene Wasielewski described the detailed design work that went into the facility. Carl Schueller, Chief of the 10- by 10, described the tunnel’s components and how the facility operated. Robert Godman led the tour afterwards. The 10- by 10 can test engines up to five feet in diameter at supersonic speeds and simulated altitudes of 30 miles. Its main purpose is to investigate problems relating to engine inlet and outlet geometry, engine matching and interference effects, and overall drag. The tunnel’s 250,000-horsepower electric motor drive, the most powerful of its kind in the world, creates air speeds between Mach 2.0 and 3.5.

  5. Bob Butt | NREL

    Science.gov Websites

    , testing, and commissioning of electrical infrastructure, facilities, and equipment. Education M.S ., Electrical Engineering, University of Arizona B.S., Electrical Engineering, University of Arizona

  6. David Mooney | NREL

    Science.gov Websites

    : Institute of Electrical and Electronics Engineers (IEEE). NREL/CP-5500-54165. doi:10.1109/EnergyTech 2011. Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE). NREL/CP-5500-53565. doi Electrical and Electronics Engineers (IEEE). NREL/CP-550-47061. doi:10.1109/pes.2009.5275358 Mooney, D., M

  7. An Undergraduate Electrical Engineering Course on Computer Organization.

    ERIC Educational Resources Information Center

    Commission on Engineering Education, Washington, DC.

    Outlined is an undergraduate electrical engineering course on computer organization designed to meet the need for electrical engineers familiar with digital system design. The program includes both hardware and software aspects of digital systems essential to design function and correlates design and organizational aspects of the subject. The…

  8. Investigating Student Motivation and Performance in Electrical Engineering and Its Subdisciplines

    ERIC Educational Resources Information Center

    Foley, Justin M.; Daly, Shanna; Lenaway, Catherine; Phillips, Jamie

    2016-01-01

    Factors influencing choice of major in electrical engineering and later curricular and professional choices are investigated. Studies include both quantitative and qualitative analyses via student transcripts, surveys, and focus groups. Student motivation for choosing an electrical engineering major and later subdiscipline in the field is…

  9. 10 CFR 431.12 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... scope and procedures given in Test Method B of Institute of Electrical and Electronics Engineers (IEEE... the Institute of Electrical and Electronics Engineers, Inc. NEMA means the National Electrical...

  10. An Engineering Tool for the Prediction of Internal Dielectric Charging

    NASA Astrophysics Data System (ADS)

    Rodgers, D. J.; Ryden, K. A.; Wrenn, G. L.; Latham, P. M.; Sorensen, J.; Levy, L.

    1998-11-01

    A practical internal charging tool has been developed. It provides an easy-to-use means for satellite engineers to predict whether on-board dielectrics are vulnerable to electrostatic discharge in the outer radiation belt. The tool is designed to simulate irradiation of single-dielectric planar or cylindrical structures with or without shielding. Analytical equations are used to describe current deposition in the dielectric. This is fast and gives charging currents to sufficient accuracy given the uncertainties in other aspects of the problem - particularly material characteristics. Time-dependent internal electric fields are calculated, taking into account the effect on conductivity of electric field, dose rate and temperature. A worst-case model of electron fluxes in the outer belt has been created specifically for the internal charging problem and is built into the code. For output, the tool gives a YES or NO decision on the susceptibility of the structure to internal electrostatic breakdown and if necessary, calculates the required changes to bring the system below the breakdown threshold. A complementary programme of laboratory irradiations has been carried out to validate the tool. The results for Epoxy-fibreglass samples show that the code models electric field realistically for a wide variety of shields, dielectric thicknesses and electron spectra. Results for Teflon samples indicate that some further experimentation is required and the radiation-induced conductivity aspects of the code have not been validated.

  11. Mechatronics as a technological basis for an innovative learning environment in engineering

    NASA Astrophysics Data System (ADS)

    Garner, Gavin Thomas

    Mechatronic systems that couple mechanical and electrical systems with the help of computer control are forcing a paradigm shift in the design, manufacture, and implementation of mechanical devices. The inherently interdisciplinary nature of these systems generates exciting new opportunities for developing a hands-on, inventive, and creativity-focused educational program while still embracing rigorous scientific fundamentals. The technologies associated with mechatronics are continually evolving (e.g., integrated circuit chips, miniature and new types of sensors, and state-of-the-art actuators). As a result, a mechatronics curriculum must prepare students to adapt along with these rapidly changing technologies---and perhaps even advance these technologies themselves. Such is the inspiring and uncharted new world that is presented for student exploration and experimentation in the University of Virginia's Mechatronics Laboratory. The underlying goal of this research has been to develop a framework for teaching mechatronics that helps students master fundamental concepts and build essential technical and analytical skills. To this end, two courses involving over fifty hours worth of technologically-innovative and educationally-effective laboratory experiments have been developed along with open-ended projects in response to the unique and new challenges associated with teaching mechatronics. These experiments synthesize an unprecedentedly vast array of skills from many different disciplines and enable students to haptically absorb the fundamental concepts involved in designing mechatronic systems. They have been optimized through several iterations to become highly efficient. Perspectives on the development of these courses and on the field of mechatronics in general are included. Furthermore, this dissertation demonstrates the integration of new technologies within a learning environment specifically designed to teach mechatronics to mechanical engineers. For mechanical engineering in particular, mechatronics poses considerable challenges, and necessitates a fundamental evolution in the understanding of the relationship between the various engineering disciplines. Consequently, this dissertation helps to define the role that mechatronics must play in mechanical engineering and presents unique laboratory experiments, creative projects, and modeling and simulation exercises as effective tools for teaching mechatronics to the modern mechanical engineering student.

  12. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering.

    PubMed

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Baharvand, Hossein; Kiani, Sahar; Al-Deyab, Salem S; Ramakrishna, Seeram

    2011-04-01

    Among the numerous attempts to integrate tissue engineering concepts into strategies to repair nearly all parts of the body, neuronal repair stands out. This is partially due to the complexity of the nervous anatomical system, its functioning and the inefficiency of conventional repair approaches, which are based on single components of either biomaterials or cells alone. Electrical stimulation has been shown to enhance the nerve regeneration process and this consequently makes the use of electrically conductive polymers very attractive for the construction of scaffolds for nerve tissue engineering. In this review, by taking into consideration the electrical properties of nerve cells and the effect of electrical stimulation on nerve cells, we discuss the most commonly utilized conductive polymers, polypyrrole (PPy) and polyaniline (PANI), along with their design and modifications, thus making them suitable scaffolds for nerve tissue engineering. Other electrospun, composite, conductive scaffolds, such as PANI/gelatin and PPy/poly(ε-caprolactone), with or without electrical stimulation, are also discussed. Different procedures of electrical stimulation which have been used in tissue engineering, with examples on their specific applications in tissue engineering, are also discussed. Copyright © 2011 John Wiley & Sons, Ltd.

  13. 32 CFR 555.2 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Experiment Station (WES), the U.S. Army Construction Engineering Research Laboratory (CERL), the U.S. Army Engineer Topographic Laboratories (ETL), the U.S. Army Coastal Engineering Research Center (CERC), the U.S... CEMETERIES CORPS OF ENGINEERS, RESEARCH AND DEVELOPMENT, LABORATORY RESEARCH AND DEVELOPMENT AND TESTS, WORK...

  14. NASA Researcher Adjusts a Travelling Magnetic Wave Plasma Engine

    NASA Image and Video Library

    1964-02-21

    Raymond Palmer, of the Electromagnetic Propulsion Division’s Plasma Flow Section, adjusts the traveling magnetic wave plasma engine being operated in the Electric Power Conversion at the National Aeronautics and Space Administration (NASA) Lewis Research Center. During the 1960s Lewis researchers were exploring several different methods of creating electric propulsion systems, including the traveling magnetic wave plasma engine. The device operated similarly to alternating-current motors, except that a gas, not a solid, was used to conduct the electricity. A magnetic wave induced a current as it passed through the plasma. The current and magnetic field pushed the plasma in one direction. Palmer and colleague Robert Jones explored a variety of engine configurations in the Electric Propulsion Research Building. The engine is seen here mounted externally on the facility’s 5-foot diameter and 16-foot long vacuum tank. The four magnetic coils are seen on the left end of the engine. The researchers conducted two-minute test runs with varying configurations and used of both argon and xenon as the propellant. The Electric Propulsion Research Building was built in 1942 as the Engine Propeller Research Building, often called the Prop House. It contained four test cells to study large reciprocating engines with their propellers. After World War II, the facility was modified to study turbojet engines. By the 1960s, the facility was modified again for electric propulsion research and given its current name.

  15. 75 FR 71097 - Commission Information Collection Activities (FERC-919); Comment Request; Submitted for OMB Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... professions including consultant economists, lawyers, and electrical engineers. The costs of engaging these... economist, lawyer, and electrical engineer according to Salary.com data. (See http://salary.com ). Public... electrical engineer according to Salary.com data, for the hours required in 18 CFR 35.37(a) for market power...

  16. Electrical Engineers' Perceptions on Education--Electromagnetic Field Theory and Its Connection to Working Life

    ERIC Educational Resources Information Center

    Keltikangas, K.; Wallen, H.

    2010-01-01

    This paper investigates electrical engineers' perceptions on their education in Finland, with particular emphasis on the basic electromagnetic field theory courses and their applicability in working life, using two online surveys (n = 99 and n = 120). The answers show a reasonably good satisfaction with the electrical engineering studies in…

  17. Design, testing, and installation of a high-precision hexapod for the Hobby-Eberly Telescope dark energy experiment (HETDEX)

    NASA Astrophysics Data System (ADS)

    Zierer, Joseph J.; Beno, Joseph H.; Weeks, Damon A.; Soukup, Ian M.; Good, John M.; Booth, John A.; Hill, Gary J.; Rafal, Marc D.

    2012-09-01

    Engineers from The University of Texas at Austin Center for Electromechanics and McDonald Observatory have designed, built, and laboratory tested a high payload capacity, precision hexapod for use on the Hobby-Eberly telescope as part of the HETDEX Wide Field Upgrade (WFU). The hexapod supports the 4200 kg payload which includes the wide field corrector, support structure, and other optical/electronic components. This paper provides a recap of the hexapod actuator mechanical and electrical design including a discussion on the methods used to help determine the actuator travel to prevent the hexapod payload from hitting any adjacent, stationary hardware. The paper describes in detail the tooling and methods used to assemble the full hexapod, including many of the structures and components which are supported on the upper hexapod frame. Additionally, details are provided on the installation of the hexapod onto the new tracker bridge, including design decisions that were made to accommodate the lift capacity of the Hobby- Eberly Telescope dome crane. Laboratory testing results will be presented verifying that the performance goals for the hexapod, including positioning, actuator travel, and speeds have all been achieved. This paper may be of interest to mechanical and electrical engineers responsible for the design and operations of precision hardware on large, ground based telescopes. In summary, the hexapod development cycle from the initial hexapod actuator performance requirements and design, to the deployment and testing on the newly designed HET tracker system is all discussed, including lessons learned through the process.

  18. 76 FR 68634 - Airworthiness Directives; General Electric Company (GE) CF6 Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... Airworthiness Directives; General Electric Company (GE) CF6 Turbofan Engines AGENCY: Federal Aviation... ``(c) This AD applies to * * * and CF6-80A3 turbofan engines with left-hand links * * *.'' to ``(c) This AD applies to * * * and CF6-80A3 turbofan engines, including engines marked on the engine data...

  19. Trajectories of Electrical Engineering and Computer Engineering Students by Race and Gender

    ERIC Educational Resources Information Center

    Lord, S. M.; Layton, R. A.; Ohland, M. W.

    2011-01-01

    Electrical engineering (EE) is one of the largest engineering disciplines. Computer engineering (CpE) has a similar curriculum, but different demographics and student outcomes. Using a dataset from universities in the U.S. that includes over 70,000 students who majored in engineering, this paper describes the outcomes for students matriculating in…

  20. The NACA Apparatus for Studying the Formation and Combustion of Fuel Sprays and the Results from Preliminary Tests

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1933-01-01

    This report describes the apparatus as designed and constructed at the Langley Memorial Aeronautical Laboratory, for studying the formation and combustion of fuel sprays under conditions closely simulating those occurring in a high-speed compression-ignition engine. The apparatus consists of a single-cylinder modified test engine, a fuel-injection system so designed that a single charge of fuel can be injected into the combustion chamber of the engine, an electric driving motor, and a high-speed photographic apparatus. The cylinder head of the engine has a vertical-disk form of combustion chamber whose sides are glass windows. When the fuel is injected into the combustion chamber, motion pictures at the rate of 2,000 per second are taken of the spray formation by means of spark discharges. When combustion takes place the light of the combustion is recorded on the same photographic film as the spray photographs. The report includes the results of some tests to determine the effect of air temperature, air flow, and nozzle design on the spray formation.

  1. Software Engineering Laboratory Series: Proceedings of the Twentieth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  2. Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 15

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  3. Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 14

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  4. Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 13

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  5. 46 CFR 107.305 - Plans and information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... systems. Marine Engineering (z) Plans required for marine engineering equipment and systems by Subchapter F of this chapter. Electrical Engineering (aa) Plans required for electrical engineering equipment... materials that do not conform to ABS or ASTM specifications, complete specifications, including chemical and...

  6. 77 FR 3070 - Electric Engineering, Architectural Services, Design Policies and Construction Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... Engineering, Architectural Services, Design Policies and Construction Standards AGENCY: Rural Utilities..., engineering services and architectural services for transactions above the established threshold dollar levels... Code of Federal Regulations as follows: PART 1724--ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND...

  7. Towards Integrated Pulse Detonation Propulsion and MHD Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Thompson, Bryan R.; Lineberry, John T.

    1999-01-01

    The interest in pulse detonation engines (PDE) arises primarily from the advantages that accrue from the significant combustion pressure rise that is developed in the detonation process. Conventional rocket engines, for example, must obtain all of their compression from the turbopumps, while the PDE provides additional compression in the combustor. Thus PDE's are expected to achieve higher I(sub sp) than conventional rocket engines and to require smaller turbopumps. The increase in I(sub sp) and the decrease in turbopump capacity must be traded off against each other. Additional advantages include the ability to vary thrust level by adjusting the firing rate rather than throttling the flow through injector elements. The common conclusion derived from these aggregated performance attributes is that PDEs should result in engines which are smaller, lower in cost, and lighter in weight than conventional engines. Unfortunately, the analysis of PDEs is highly complex due to their unsteady operation and non-ideal processes. Although the feasibility of the basic PDE concept has been proven in several experimental and theoretical efforts, the implied performance improvements have yet to be convincingly demonstrated. Also, there are certain developmental issues affecting the practical application of pulse detonation propulsion systems which are yet to be fully resolved. Practical detonation combustion engines, for example, require a repetitive cycle of charge induction, mixing, initiation/propagation of the detonation wave, and expulsion/scavenging of the combustion product gases. Clearly, the performance and power density of such a device depends upon the maximum rate at which this cycle can be successfully implemented. In addition, the electrical energy required for direct detonation initiation can be significant, and a means for direct electrical power production is needed to achieve self-sustained engine operation. This work addresses the technological issues associated with PDEs for integrated aerospace propulsion and MHD power. An effort is made to estimate the energy requirements for direct detonation initiation of potential fuel/oxidizer mixtures and to determine the electrical power requirements. This requirement is evaluated in terms of the possibility for MHD power generation using the combustion detonation wave. Small scale laboratory experiments were conducted using stoichiometric mixtures of acetylene and oxygen with an atomized spray of cesium hydroxide dissolved in alcohol as an ionization seed in the active MHD region. Time resolved thrust and MHD power generation measurements were performed. These results show that PDEs yield higher I(sub sp) levels than a comparable rocket engine and that MHD power generation is viable candidate for achieving self-excited engine operation.

  8. Laboratory Directed Research and Development Annual Report for 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Pamela J.

    This report documents progress made on all LDRD-funded projects during fiscal year 2009. As a US Department of Energy (DOE) Office of Science (SC) national laboratory, Pacific Northwest National Laboratory (PNNL) has an enduring mission to bring molecular and environmental sciences and engineering strengths to bear on DOE missions and national needs. Their vision is to be recognized worldwide and valued nationally for leadership in accelerating the discovery and deployment of solutions to challenges in energy, national security, and the environment. To achieve this mission and vision, they provide distinctive, world-leading science and technology in: (1) the design and scalablemore » synthesis of materials and chemicals; (2) climate change science and emissions management; (3) efficient and secure electricity management from generation to end use; and (4) signature discovery and exploitation for threat detection and reduction. PNNL leadership also extends to operating EMSL: the Environmental Molecular Sciences Laboratory, a national scientific user facility dedicated to providing itnegrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences.« less

  9. Engine Research Building’s Central Control Room

    NASA Image and Video Library

    1948-07-21

    Operators in the Engine Research Building’s Central Control Room at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The massive 4.25-acre Engine Research Building contains dozens of test cells, test stands, and altitude chambers. A powerful collection of compressors and exhausters located in the central portion of the basement provided process air and exhaust for these test areas. This system is connected to similar process air systems in the laboratory’s other large test facilities. The Central Control Room coordinates this activity and communicates with the local utilities. This photograph was taken just after a major upgrade to the control room in 1948. The panels on the wall contain rudimentary floor plans of the different Engine Research Building sections with indicator lights and instrumentation for each test cell. The process air equipment included 12 exhausters, four compressors, a refrigeration system, cooling water, and an exhaust system. The operators in the control room kept in contact with engineers running the process air system and those conducting the tests in the test cells. The operators also coordinated with the local power companies to make sure enough electricity was available to operate the powerful compressors and exhausters.

  10. Engine-start Control Strategy of P2 Parallel Hybrid Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Xiangyang, Xu; Siqi, Zhao; Peng, Dong

    2017-12-01

    A smooth and fast engine-start process is important to parallel hybrid electric vehicles with an electric motor mounted in front of the transmission. However, there are some challenges during the engine-start control. Firstly, the electric motor must simultaneously provide a stable driving torque to ensure the drivability and a compensative torque to drag the engine before ignition. Secondly, engine-start time is a trade-off control objective because both fast start and smooth start have to be considered. To solve these problems, this paper first analyzed the resistance of the engine start process, and established a physic model in MATLAB/Simulink. Then a model-based coordinated control strategy among engine, motor and clutch was developed. Two basic control strategy during fast start and smooth start process were studied. Simulation results showed that the control objectives were realized by applying given control strategies, which can meet different requirement from the driver.

  11. Robotic laboratory for distance education

    NASA Astrophysics Data System (ADS)

    Luciano, Sarah C.; Kost, Alan R.

    2016-09-01

    This project involves the construction of a remote-controlled laboratory experiment that can be accessed by online students. The project addresses a need to provide a laboratory experience for students who are taking online courses to be able to provide an in-class experience. The chosen task for the remote user is an optical engineering experiment, specifically aligning a spatial filter. We instrument the physical laboratory set up in Tucson, AZ at the University of Arizona. The hardware in the spatial filter experiment is augmented by motors and cameras to allow the user to remotely control the hardware. The user interacts with a software on their computer, which communicates with a server via Internet connection to the host computer in the Optics Laboratory at the University of Arizona. Our final overall system is comprised of several subsystems. These are the optical experiment set-up, which is a spatial filter experiment; the mechanical subsystem, which interfaces the motors with the micrometers to move the optical hardware; the electrical subsystem, which allows for the electrical communications from the remote computer to the host computer to the hardware; and finally the software subsystem, which is the means by which messages are communicated throughout the system. The goal of the project is to convey as much of an in-lab experience as possible by allowing the user to directly manipulate hardware and receive visual feedback in real-time. Thus, the remote user is able to learn important concepts from this particular experiment and is able to connect theory to the physical world by actually seeing the outcome of a procedure. The latter is a learning experience that is often lost with distance learning and is one that this project hopes to provide.

  12. Software Engineering Laboratory Series: Proceedings of the Twenty-First Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  13. Software Engineering Laboratory Series: Proceedings of the Twenty-Second Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  14. VERIFI | Virtual Engine Research Institute and Fuels Initiative

    Science.gov Websites

    VERIFI Virtual Engine Research Institute and Fuels Initiative Argonne National Laboratory Skip to Virtual Engine Research Institute and Fuels Initiative (VERIFI) at Argonne National Laboratory is the Argonne National Laboratory in which to answer your complex engine questions, verify the uncertainties

  15. The Formation of Indicators on Engineering Laboratory Management

    ERIC Educational Resources Information Center

    Yasin, Ruhizan M.; Mohamad, Zunuwanas; Rahman, Mohd Nizam Ab.; Hashim, Mohamad Hisyam Mohd

    2012-01-01

    This research is a developmental study of Engineering Laboratory Management indicators. It is formed to assess the level of quality management of the polytechnic level laboratory. The purpose of indicators is to help provide input into the management process of an engineering laboratory. Effectiveness of teaching and learning at technical…

  16. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center (GRC) developed a non-nuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASC), a Dual Convertor Controller (DCC) EM (engineering model) 2 & 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University/Applied Physics Laboratory (JHU/APL) to actively control a pair of Advanced Stirling Convertors (ASC). The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS) which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASC's in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and supercapacitor. A load profile, created based on data from several missions, tested the RPS and RSIL ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 V or exceeded 36 V. Once operation was verified with the DASCS, the tests were repeated with actual operating ASC's. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  17. Subsurface Ice Detection via Low Frequency Surface Electromagnetic Method

    NASA Astrophysics Data System (ADS)

    Stillman, D. E.; Grimm, R. E.; Mcginnis, R. N.

    2014-12-01

    The geophysical detection of ice in the Cryosphere is typically conducted by measuring the absence of water. These interpretations can become non-unique in dry soils or in clay- and silt-rich soils that contain significant quantities of unfrozen water. Extensive laboratory measurements of electrical properties were made on permafrost samples as a function of frequency, temperature, and water content. These laboratory measurements show that the amount of ice can be uniquely obtained by measuring a frequency dependence of the electrical properties over a large frequency range (20 kHz - 10 Hz). In addition, the electrical properties of permafrost are temperature dependent, which can allow for an estimate of subsurface temperature. In order to test this approach in the field, we performed field surveys at four locations in Alaska. We used three low frequency electromagnetic methods: Spectral Induced Polarization (SIP: 20 kHz - 10 Hz), Capacively Coupled Resistivity (CCR: OhmMapper - 16.5 kHz), and DC Resistivity (Syscal ~ 8 Hz). At the Cold Regions Research and Engineering Laboratory permafrost tunnel near Fox, AK, we used SIP to measure the average ice concentration of 80 v% and determined the temperature to be -3±1°C by matching survey results to lab data. SIP data acquisition is very slow; therefore, at three sites near Tok, AK, we used CCR to perform reconnaissance of the area. Then SIP and DC resistivity were performed at anomalous areas. The three survey types give very similar absolute resistivity values. We found that while SIP gives the most quantitative results, the frequency dependence from the CCR and DC resistivity surveys is all that are needed to determine ice content in permafrost.

  18. Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform.

    PubMed

    Madison, Andrew C; Royal, Matthew W; Vigneault, Frederic; Chen, Liji; Griffin, Peter B; Horowitz, Mark; Church, George M; Fair, Richard B

    2017-09-15

    Electrowetting-on-dielectric (EWD) digital microfluidic laboratory-on-a-chip platforms demonstrate excellent performance in automating labor-intensive protocols. When coupled with an on-chip electroporation capability, these systems hold promise for streamlining cumbersome processes such as multiplex automated genome engineering (MAGE). We integrated a single Ti:Au electroporation electrode into an otherwise standard parallel-plate EWD geometry to enable high-efficiency transformation of Escherichia coli with reporter plasmid DNA in a 200 nL droplet. Test devices exhibited robust operation with more than 10 transformation experiments performed per device without cross-contamination or failure. Despite intrinsic electric-field nonuniformity present in the EP/EWD device, the peak on-chip transformation efficiency was measured to be 8.6 ± 1.0 × 10 8 cfu·μg -1 for an average applied electric field strength of 2.25 ± 0.50 kV·mm -1 . Cell survival and transformation fractions at this electroporation pulse strength were found to be 1.5 ± 0.3 and 2.3 ± 0.1%, respectively. Our work expands the EWD toolkit to include on-chip microbial electroporation and opens the possibility of scaling advanced genome engineering methods, like MAGE, into the submicroliter regime.

  19. An Experiment to Prove the Effect of Low-Level Magnetic Fields Resulting from Ionospheric Changes on Humans

    NASA Astrophysics Data System (ADS)

    Hanzelka, M.; Dan, J.; Šlepecky, M.; Holcner, V.; Dohnal, P.; Kadlec, R.

    2017-02-01

    The investigation presented in the paper was performed in the laboratories of the Department of Theoretical and Experimental Electrical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, between April 22 and June 26, 2014. We examined a homogeneous sample of male and female participants comprising a total of 49 persons aged 19 to 26. The time required for the measurement of psychophysiological parameters corresponded to 19 minutes, encompassing five stages: Basic (5 mins.), Color (2 mins.), Rest (5 mins.), Math (2 mins.), and Rest (5 mins.). All the measuring cycles were carried out using a BioGraph Infiniti device (Thought Technology, Ltd.). Generally, the impact of the environment upon living organisms constitutes a crucial problem examined by today's science. In this context, the present article describes the results of an investigation focused on ionosphere parameter variation and its role in the basic function of the nervous system. The discussed research concentrates on the measurement and detection of changes in the region of very low electromagnetic field frequencies; the authors introduce and verify related theoretical and experimental procedures to define the effects that influence brain activity and the cardiovascular system.

  20. Transient Approximation of SAFE-100 Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Reid, Robert S.

    2005-01-01

    Engineers at Los Alamos National Laboratory (LANL) have designed several heat pipe cooled reactor concepts, ranging in power from 15 kWt to 800 kWt, for both surface power systems and nuclear electric propulsion systems. The Safe, Affordable Fission Engine (SAFE) is now being developed in a collaborative effort between LANL and NASA Marshall Space Flight Center (NASA/MSFC). NASA is responsible for fabrication and testing of non-nuclear, electrically heated modules in the Early Flight Fission Test Facility (EFF-TF) at MSFC. In-core heat pipes must be properly thawed as the reactor power starts. Computational models have been developed to assess the expected operation of a specific heat pipe design during start-up, steady state operation, and shutdown. While computationally intensive codes provide complete, detailed analyses of heat pipe thaw, a relatively simple. concise routine can also be applied to approximate the response of a heat pipe to changes in the evaporator heat transfer rate during start-up and power transients (e.g., modification of reactor power level) with reasonably accurate results. This paper describes a simplified model of heat pipe start-up that extends previous work and compares the results to experimental measurements for a SAFE-100 type heat pipe design.

  1. On the dominant noise components of tactical aircraft: Laboratory to full scale

    NASA Astrophysics Data System (ADS)

    Tam, Christopher K. W.; Aubert, Allan C.; Spyropoulos, John T.; Powers, Russell W.

    2018-05-01

    This paper investigates the dominant noise components of a full-scale high performance tactical aircraft. The present study uses acoustic measurements of the exhaust jet from a single General Electric F414-400 turbofan engine installed in a Boeing F/A-18E Super Hornet aircraft operating from flight idle to maximum afterburner. The full-scale measurements are to the ANSI S12.75-2012 standard employing about 200 microphones. By comparing measured noise spectra with those from hot supersonic jets observed in the laboratory, the dominant noise components specific to the F/A-18E aircraft at different operating power levels are identified. At intermediate power, it is found that the dominant noise components of an F/A-18E aircraft are essentially the same as those of high temperature supersonic laboratory jets. However, at military and afterburner powers, there are new dominant noise components. Their characteristics are then documented and analyzed. This is followed by an investigation of their origin and noise generation mechanisms.

  2. Flow Induced Vibration Program at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    1984-01-01

    The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  3. Report on the Progress of Weld Development of Irradiated Materials at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhili; Miller, Roger G.; Chen, Jian

    This report summarizes recent welding activities on irradiated alloys in the advanced welding facility at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory and the development of post-weld characterization capabilities and procedures that will be critical for assessing the ability of the advanced welding processes housed within the facility to make successful repairs on irradiated alloys. This facility and its capabilities were developed jointly by the U.S. Department of Energy, Office of Nuclear Energy, Light Water Reactor Sustainability Program and the Electric Power Research Institute, Long Term Operations Program (and the Welding and Repair Technology Center), with additionalmore » support from Oak Ridge National Laboratory. The significant, on-going effort to weld irradiated alloys with high Helium concentrations and comprehensively analyze the results will eventually yield validated repair techniques and guidelines for use by the nuclear industry in extending the operational lifetimes of nuclear power plants.« less

  4. Software engineering laboratory series: Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon

    1992-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) the Software Engineering Laboratory; (2) the Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.

  5. The record of electrical and communication engineering conversazione Tohoku University Volume 63, No. 3

    NASA Astrophysics Data System (ADS)

    1995-05-01

    English abstracts contained are from papers authored by the research staff of the Research Institute of Electrical Communication and the departments of Electrical Engineering, Electrical Communications, Electronic Engineering, and Information Engineering, Tohoku University, which originally appeared in scientific journals in 1994. The abstracts are organized under the following disciplines: electromagnetic theory; physics; fundamental theory of information; communication theory and systems; signal and image processing; systems control; computers; artificial intelligence; recording; acoustics and speech; ultrasonic electronics; antenna, propagation, and transmission; optoelectronics and optical communications; quantum electronics; superconducting materials and applications; magnetic materials and magnetics; semiconductors; electronic materials and parts; electronic devices and integrated circuits; electronic circuits; medical electronics and bionics; measurements and applied electronics; electric power; and miscellaneous.

  6. Hybrid: Overview

    Science.gov Websites

    electric motor provides additional power when needed, such as for accelerating and passing. This allows a at an intersection. Electric Motor: The electric motor assists the gasoline engine when additional braking into electricity and stores it in the battery. It also starts the gasoline engine instantly when

  7. 7 CFR 1788.11 - Minimum insurance requirements for contractors, engineers, and architects.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REQUIREMENTS FOR ELECTRIC AND TELECOMMUNICATIONS BORROWERS Insurance for Contractors, Engineers, and Architects, Electric Borrowers § 1788.11 Minimum insurance requirements for contractors, engineers, and architects. (a..., engineers, and architects. 1788.11 Section 1788.11 Agriculture Regulations of the Department of Agriculture...

  8. 7 CFR 1788.11 - Minimum insurance requirements for contractors, engineers, and architects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REQUIREMENTS FOR ELECTRIC AND TELECOMMUNICATIONS BORROWERS Insurance for Contractors, Engineers, and Architects, Electric Borrowers § 1788.11 Minimum insurance requirements for contractors, engineers, and architects. (a..., engineers, and architects. 1788.11 Section 1788.11 Agriculture Regulations of the Department of Agriculture...

  9. 7 CFR 1788.11 - Minimum insurance requirements for contractors, engineers, and architects.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REQUIREMENTS FOR ELECTRIC AND TELECOMMUNICATIONS BORROWERS Insurance for Contractors, Engineers, and Architects, Electric Borrowers § 1788.11 Minimum insurance requirements for contractors, engineers, and architects. (a..., engineers, and architects. 1788.11 Section 1788.11 Agriculture Regulations of the Department of Agriculture...

  10. 7 CFR 1788.11 - Minimum insurance requirements for contractors, engineers, and architects.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REQUIREMENTS FOR ELECTRIC AND TELECOMMUNICATIONS BORROWERS Insurance for Contractors, Engineers, and Architects, Electric Borrowers § 1788.11 Minimum insurance requirements for contractors, engineers, and architects. (a..., engineers, and architects. 1788.11 Section 1788.11 Agriculture Regulations of the Department of Agriculture...

  11. 7 CFR 1788.11 - Minimum insurance requirements for contractors, engineers, and architects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REQUIREMENTS FOR ELECTRIC AND TELECOMMUNICATIONS BORROWERS Insurance for Contractors, Engineers, and Architects, Electric Borrowers § 1788.11 Minimum insurance requirements for contractors, engineers, and architects. (a..., engineers, and architects. 1788.11 Section 1788.11 Agriculture Regulations of the Department of Agriculture...

  12. 46 CFR 129.560 - Engine-order telegraphs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Engine-order telegraphs. 129.560 Section 129.560 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Miscellaneous Electrical Systems § 129.560 Engine-order telegraphs. No OSV need carry an engine...

  13. 46 CFR 129.560 - Engine-order telegraphs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Engine-order telegraphs. 129.560 Section 129.560 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Miscellaneous Electrical Systems § 129.560 Engine-order telegraphs. No OSV need carry an engine...

  14. 46 CFR 129.560 - Engine-order telegraphs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Engine-order telegraphs. 129.560 Section 129.560 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Miscellaneous Electrical Systems § 129.560 Engine-order telegraphs. No OSV need carry an engine...

  15. 46 CFR 129.560 - Engine-order telegraphs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Engine-order telegraphs. 129.560 Section 129.560 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Miscellaneous Electrical Systems § 129.560 Engine-order telegraphs. No OSV need carry an engine...

  16. Lessons Learned from the Puerto Rico Battery Energy Storage System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

    1999-09-01

    The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility ismore » at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.« less

  17. World Record Magnetic Field 100T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Ross; Mielke, Chuck; Rickel, Dwight

    2012-03-22

    Scientists at the Los Alamos National Laboratory campus of the National High Magnetic Field Laboratory have successfully produced the world's first 100 Tesla non-destructive magnetic field. The achievement was decades in the making, involving a diverse team of scientists and engineers. The 100 Tesla mark was reached at approximately 3:30 p.m. on March 22, 2012. A note about the sound you'll hear when the magnet is energized: The sound that the 100 T multi-shot magnet makes is due to the electrical current modulation from the 3 phase power converters (known as 12 pulse converters) and the harmonics associated with themore » chopping of the sinusoidal input power. The magnet vibrates at the electrical current frequencies multiplied by 12 (i.e. ~ 55 Hz x 12 = 660 Hz) hence making an audible sound. The generator is not run at full speed (1650 RPM instead of 1800 RPM) so the frequency is slightly lower than US Line frequency (i.e. 55 Hz instead of 60 Hz). A spectrograph of the sound from the magnet pulse shows the multiple harmonics as reddish horizontal bands as a function of time.« less

  18. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomicmore » facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor`s Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced.« less

  19. Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, M. P.; Walkowicz, K.; Duran, A.

    2012-10-01

    In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CANmore » bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.« less

  20. Contributions a l'etude et a l'application industrielle de la machine asynchrone

    NASA Astrophysics Data System (ADS)

    Ouhrouche, Mohand-Ameziane

    The work presented in this thesis, done in the Electrical Drives Laboratory of Electrical and Computer Engineering Department, deals with the industrial applications of a three-phase induction machine (electrical drives and electricity generation). This thesis, characterized by its multidisciplinary content, has two major parts. The first one deals with the on-line and off-line parametric identification of the induction machine model necessary to achieve accurate vector control strategy. The second part, which is a resume of a research work sponsored by Hydro-Quebec, deals with the application of an induction machine in Asynchronous Non Utility Generators units (ANUG). As it is shown in the following, major scientific contributions are made in both two parts. In the first part of our research work, we propose a new speed sensorless vector control strategy for an induction machine, which is adaptive to the rotor resistance variations. The proposed control strategy is based on the Extended Kalman Filter approach and a decoupling controller which takes into account the rotor resistance variations. The consideration of coupled electrical and mechanical modes leads to a fifth order nonlinear model of the induction machine. The load torque is taken as a function of the rotor angular speed. The Extended Kalman Filter, based on the process's nonlinear (bilinear) model, estimate simultaneously the rotor resistance, angular speed and the flux vector from the startup to the steady state equilibrium point. The machine-converter-control system is implemented in MATLAB/SIMULINK environment and the obtained results confirm the robustness of the proposed scheme. As in the electrical drives erea, the induction machine is now widely used by small to medium power Non Utility Generator units (NUG) to produce electricity. In Quebec, these NUGs units are integrated into the Hydro-Quebec 25 kV distribution system via transformer which exhibit nonlinear characteristics. We have shown by using the ElectroMagnetic Program (EMTP) that, in some islanding scenarios, i.e. that the NUG unit is disconnected from the power grid, in addition to frequency variations, appearence of high an abnormal overvoltages, ferroresonance should occur. As a consequence, normal protective devices could fail to securely operate, which could cause serious damages to the equipment and the maintenance staff. This result, established for the first time , can be useful to improve the reliability of the NUGs units and is considered important by the power engineering community. This has led to a publication in the John Wiley & Sons Encyclopedia of Electrical and Electronics Engineering which will be available in February 1999 ( http://www.engr.wisc.edu/ ece/ece).

  1. Fault Identification Based on Nlpca in Complex Electrical Engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Yagang; Wang, Zengping; Zhang, Jinfang

    2012-07-01

    The fault is inevitable in any complex systems engineering. Electric power system is essentially a typically nonlinear system. It is also one of the most complex artificial systems in this world. In our researches, based on the real-time measurements of phasor measurement unit, under the influence of white Gaussian noise (suppose the standard deviation is 0.01, and the mean error is 0), we used mainly nonlinear principal component analysis theory (NLPCA) to resolve fault identification problem in complex electrical engineering. The simulation results show that the fault in complex electrical engineering is usually corresponding to the variable with the maximum absolute value coefficient in the first principal component. These researches will have significant theoretical value and engineering practical significance.

  2. 14 CFR 25.1165 - Engine ignition systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... automatically available as an alternate source of electrical energy to allow continued engine operation if any... that draw electrical energy from the same source. (c) The design of the engine ignition system must...

  3. 14 CFR 25.1165 - Engine ignition systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... automatically available as an alternate source of electrical energy to allow continued engine operation if any... that draw electrical energy from the same source. (c) The design of the engine ignition system must...

  4. Draftsmen at Work during Construction of the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1942-09-21

    The National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory was designed by a group of engineers at the Langley Memorial Aeronautical Laboratory in late 1940 and 1941. Under the guidance of Ernest Whitney, the men worked on drawings and calculations in a room above Langley’s Structural Research Laboratory. The main Aircraft Engine Research Laboratory design group originally consisted of approximately 30 engineers and draftsmen, but there were smaller groups working separately on specific facilities. The new engine lab would have six principal buildings: the Engine Research Building, hangar, Fuels and Lubricants Building, Administration Building, Propeller Test Stand, and Altitude Wind Tunnel. In December 1941 most of those working on the project transferred to Cleveland from Langley. Harrison Underwood and Charles Egan led 18 architectural, 26 machine equipment, 3 structural and 10 mechanical draftsmen. Initially these staff members were housed in temporary offices in the hangar. As sections of the four-acre Engine Research Building were completed in the summer of 1942, the design team began relocating there. The Engine Research Building contained a variety of test cells and laboratories to address virtually every aspect of piston engine research. It also contained a two-story office wing, seen in this photograph that would later house many of the powerplant research engineers.

  5. Large Scale Wind and Solar Integration in Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, Bernhard; Schreirer, Uwe; Berster, Frank

    2010-02-28

    This report provides key information concerning the German experience with integrating of 25 gigawatts of wind and 7 gigawatts of solar power capacity and mitigating its impacts on the electric power system. The report has been prepared based on information provided by the Amprion GmbH and 50Hertz Transmission GmbH managers and engineers to the Bonneville Power Administration (BPA) and Pacific Northwest National Laboratory representatives during their visit to Germany in October 2009. The trip and this report have been sponsored by the BPA Technology Innovation office. Learning from the German experience could help the Bonneville Power Administration engineers to comparemore » and evaluate potential new solutions for managing higher penetrations of wind energy resources in their control area. A broader dissemination of this experience will benefit wind and solar resource integration efforts in the United States.« less

  6. Annotated bibliography of Software Engineering Laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon D.

    1991-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. All materials have been grouped into eight general subject areas for easy reference: The Software Engineering Laboratory; The Software Engineering Laboratory: Software Development Documents; Software Tools; Software Models; Software Measurement; Technology Evaluations; Ada Technology; and Data Collection. Subject and author indexes further classify these documents by specific topic and individual author.

  7. 46 CFR 112.50-5 - Electric starting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electric starting. 112.50-5 Section 112.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-5 Electric starting...

  8. 46 CFR 112.50-5 - Electric starting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electric starting. 112.50-5 Section 112.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-5 Electric starting...

  9. 46 CFR 112.50-5 - Electric starting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electric starting. 112.50-5 Section 112.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-5 Electric starting...

  10. Stationary diesel engines for use with generators to supply electric power

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The procurement of stationary diesel engines for on-site generation of electric power deals with technical criteria and policy relating to federal agency, not electrical components of diesel-generator sets or for the design of electric-power generating plants or their air-pollution or noise control equipment.

  11. 46 CFR 112.50-5 - Electric starting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electric starting. 112.50-5 Section 112.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-5 Electric starting...

  12. 46 CFR 112.50-5 - Electric starting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electric starting. 112.50-5 Section 112.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-5 Electric starting...

  13. 46 CFR 169.693 - Engine order telegraph systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Engine order telegraph systems. 169.693 Section 169.693... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.693 Engine order telegraph systems. An engine order telegraph system is not required. ...

  14. 14 CFR 23.1165 - Engine ignition systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Controls and Accessories § 23.1165 Engine ignition systems. (a) Each battery ignition system must be... ignition. (e) Each turbine engine ignition system must be independent of any electrical circuit that is not... commuter category airplanes, each turbine engine ignition system must be an essential electrical load. [Doc...

  15. 46 CFR 169.693 - Engine order telegraph systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Engine order telegraph systems. 169.693 Section 169.693... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.693 Engine order telegraph systems. An engine order telegraph system is not required. ...

  16. 46 CFR 169.693 - Engine order telegraph systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Engine order telegraph systems. 169.693 Section 169.693... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.693 Engine order telegraph systems. An engine order telegraph system is not required. ...

  17. 46 CFR 169.693 - Engine order telegraph systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Engine order telegraph systems. 169.693 Section 169.693... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.693 Engine order telegraph systems. An engine order telegraph system is not required. ...

  18. 46 CFR 169.693 - Engine order telegraph systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Engine order telegraph systems. 169.693 Section 169.693... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.693 Engine order telegraph systems. An engine order telegraph system is not required. ...

  19. A Novel Electro Conductive Graphene/Silicon-Dioxide Thermo-Electric Generator

    NASA Astrophysics Data System (ADS)

    Rahman, Ataur; Abdi, Yusuf

    2017-03-01

    Thermoelectric generators are all solid-state devices that convert heat energy into electrical energy. The total energy (fuel) supplied to the engine, approximately 30 to 40% is converted into useful mechanical work; whereas the remaining is expelled to the environment as heat through exhaust gases and cooling systems, resulting in serious green house gas (GHG) emission. By converting waste energy into electrical energy is the aim of this manuscript. The technologies reported on waste heat recovery from exhaust gas of internal combustion engines (ICE) are thermo electric generators (TEG) with finned type, Rankine cycle (RC) and Turbocharger. This paper has presented an electro-conductive graphene oxide/silicon-dioxide (GO-SiO2) composite sandwiched by phosphorus (P) and boron (B) doped silicon (Si) TEG to generate electricity from the IC engine exhaust heat. Air-cooling and liquid cooling techniques adopted conventional TEG module has been tested individually for the electricity generation from IC engine exhausts heat at engine speed of 1000-3000rpm. For the engine speed of 7000 rpm, the maximum voltage was recorded as 1.12V and 4.00V for the air-cooling and liquid cooling respectively. The GO-SiO2 simulated result shows that it’s electrical energy generation is about 80% more than conventional TEG for the exhaust temperature of 500°C. The GO-SiO2 composite TEG develops 524W to 1600W at engine speed 1000 to 5000 rpm, which could contribute to reduce the 10-12% of engine total fuel consumption and improve emission level by 20%.

  20. Space electric power design study. [laser energy conversion

    NASA Technical Reports Server (NTRS)

    Martini, W. R.

    1976-01-01

    The conversion of laser energy to electrical energy is discussed. Heat engines in which the laser heats the gas inside the engine through a window as well as heat engines in which the gas is heated by a thermal energy storage reservoir which has been heated by laser radiation are both evaluated, as well as the necessary energy storage, transmission and conversion components needed for a full system. Preliminary system concepts are presented and a recommended development program is outlined. It appears possible that a free displacer Stirling engine operating directly a linear electric generator can convert 65% of the incident laser energy into electricity.

Top