Sample records for electrical ground support

  1. Electrode assembly for a fluidized bed apparatus

    DOEpatents

    Schora, Jr., Frank C.; Matthews, Charles W.; Knowlton, Ted M.

    1976-11-23

    An electrode assembly comprising a high voltage electrode having a generally cylindrical shape and being electrically connected to a high voltage source, where the cylinder walls may be open to flow of fluids and solids; an electrically grounded support electrode supporting said high voltage electrode by an electrically insulating support where both of the electrically grounded and electrically insulating support may be hollow; and an electrically grounded liner electrode arranged concentrically around both the high voltage and support electrodes. This assembly is specifically adapted for use in a fluidized bed chemical reactor as an improved heating means therefor.

  2. Metal Patch Antenna

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil F. (Inventor); Zawadzki, Mark S. (Inventor); Hodges, Richard E. (Inventor)

    2012-01-01

    Disclosed herein is a patch antenna comprises a planar conductive patch attached to a ground plane by a support member, and a probe connector in electrical communication with the conductive patch arranged to conduct electromagnetic energy to or from the conductive patch, wherein the conductive patch is disposed essentially parallel to the ground plane and is separated from the ground plane by a spacing distance; wherein the support member comprises a plurality of sides disposed about a central axis oriented perpendicular to the conductive patch and the ground plane; wherein the conductive patch is solely supported above the ground plane by the support member; and wherein the support member provides electrical communication between the planer conductive patch and the ground plane.

  3. Electrical Ground Support Equipment Fabrication, Specification for

    NASA Technical Reports Server (NTRS)

    Denson, Erik C.

    2014-01-01

    This document specifies parts, materials, and processes used in the fabrication, maintenance, repair, and procurement of electrical and electronic control and monitoring equipment associated with ground support equipment (GSE) at the Kennedy Space Center (KSC).

  4. Overview of Avionics and Electrical Ground Support Equipment

    NASA Technical Reports Server (NTRS)

    Clarke, Sean C.

    2011-01-01

    Presents an overview of the Crew Module Avionics and the associated Electrical Ground Support Equipment for the Pad Abort 1 flight test of the Orion Program. A limited selection of the technical challenges and solutions are highlighted.

  5. System for detecting and limiting electrical ground faults within electrical devices

    DOEpatents

    Gaubatz, Donald C.

    1990-01-01

    An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.

  6. Installation and Assembly, Electrical Ground Support Equipment (GSE), Specification for

    NASA Technical Reports Server (NTRS)

    Denson, Erik C.

    2014-01-01

    This specification covers the general workmanship requirements and procedures for the complete installation and assembly of electrical ground support equipment (EGSE) such as terminal distributors, junction boxes, conduit and fittings, cable trays and accessories, interconnecting cables (including routing requirements), motor-control equipment, and necessary hardware as specified by the applicable contract and drawings.

  7. Alternative Fuels Data Center: Sea-Tac and Alaska Air Group Achieve

    Science.gov Websites

    pilot project, Alaska Air Group encountered a few hurdles during the switch to eGSE. One was Sky-High Results with Electric Ground Support Equipment Sea-Tac and Alaska Air Group Achieve Data Center: Sea-Tac and Alaska Air Group Achieve Sky-High Results with Electric Ground Support

  8. Kennedy Space Center: Constellation Program Electrical Ground Support Equipment Research and Development

    NASA Technical Reports Server (NTRS)

    McCoy, Keegan

    2010-01-01

    The Kennedy Space Center (KSC) is NASA's spaceport, launching rockets into space and leading important human spaceflight research. This spring semester, I worked at KSC on Constellation Program electrical ground support equipment through NASA's Undergraduate Student Research Program (USRP). This report includes a discussion of NASA, KSC, and my individual research project. An analysis of Penn State's preparation of me for an internship and my overall impressions of the Penn State and NASA internship experience conclude the report.

  9. Constellation Program Electrical Ground Support Equipment Research and Development

    NASA Technical Reports Server (NTRS)

    McCoy, Keegan S.

    2010-01-01

    At the Kennedy Space Center, I engaged in the research and development of electrical ground support equipment for NASA's Constellation Program. Timing characteristics playa crucial role in ground support communications. Latency and jitter are two problems that must be understood so that communications are timely and consistent within the Kennedy Ground Control System (KGCS). I conducted latency and jitter tests using Alien-Bradley programmable logic controllers (PLCs) so that these two intrinsic network properties can be reduced. Time stamping and clock synchronization also play significant roles in launch processing and operations. Using RSLogix 5000 project files and Wireshark network protocol analyzing software, I verified master/slave PLC Ethernet module clock synchronization, master/slave IEEE 1588 communications, and time stamping capabilities. All of the timing and synchronization test results are useful in assessing the current KGCS operational level and determining improvements for the future.

  10. Cost Benefit Analysis Modeling Tool for Electric vs. ICE Airport Ground Support Equipment – Development and Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Francfort; Kevin Morrow; Dimitri Hochard

    2007-02-01

    This report documents efforts to develop a computer tool for modeling the economic payback for comparative airport ground support equipment (GSE) that are propelled by either electric motors or gasoline and diesel engines. The types of GSE modeled are pushback tractors, baggage tractors, and belt loaders. The GSE modeling tool includes an emissions module that estimates the amount of tailpipe emissions saved by replacing internal combustion engine GSE with electric GSE. This report contains modeling assumptions, methodology, a user’s manual, and modeling results. The model was developed based on the operations of two airlines at four United States airports.

  11. Apparatus for mounting a diode in a microwave circuit

    DOEpatents

    Liu, Shing-gong

    1976-07-27

    Apparatus for mounting a diode in a microwave circuit for making electrical contact between the circuit and ground and for dissipation of heat between the diode and a heat sink. The diode, supported on a thermally and electrically conductive member, is resiliently pressed in electrical contact with the microwave circuit. A tapered collar on the member is elastically deformably wedged into a tapered aperture formed in a heat sink. The wedged collar tightens firmly around the member establishing good thermal and electrical conduction from the diode to the heat sink and ground. Disassembly is facilitated because of the elastically deformed collar.

  12. Qualification of Electrical Ground Support Equipment for New Space Programs

    NASA Technical Reports Server (NTRS)

    SotoToro, Felix A.; Vu, Bruce T.; Hamilton, Mark S.

    2011-01-01

    With the Space Shuttle program coming to an end, the National Aeronautics and Space Administration (NASA) is moving to a new space flight program that will allow expeditions beyond low earth orbit. The space vehicles required to comply with these missions will be carrying heavy payloads. This implies that the Earth departure stage capabilities must be of higher magnitudes, given the current propulsion technology. The engineering design of the new flight hardware comes with some structural, thermal, propulsion and other subsystems' challenges. Meanwhile, the necessary ground support equipment (GSE) used to test, validate, verify and process the flight hardware must withstand the new program specifications. This paper intends to provide the qualification considerations during implementation of new electrical GSE for space programs. A team of engineers was formed to embark on this task, and facilitate the logistics process and ensure that the electrical, mechanical and fluids subsystems conduct the proper level of testing. Ultimately, each subsystem must certify that each piece of ground support equipment used in the field is capable of withstanding the strenuous vibration, acoustics, environmental, thermal and Electromagnetic Interference (EMf) levels experienced during pre-launch, launch and post-launch activities. The benefits of capturing and sharing these findings will provide technical, cost savings and schedule impacts infon11ation to both the technical and management community. Keywords: Qualification; Testing; Ground Support Equipment; Electromagnetic Interference Testing; Vibration Testing; Acoustic Testing; Power Spectral Density.

  13. Ground Software Maintenance Facility (GSMF) system manual

    NASA Technical Reports Server (NTRS)

    Derrig, D.; Griffith, G.

    1986-01-01

    The Ground Software Maintenance Facility (GSMF) is designed to support development and maintenance of spacelab ground support software. THE GSMF consists of a Perkin Elmer 3250 (Host computer) and a MITRA 125s (ATE computer), with appropriate interface devices and software to simulate the Electrical Ground Support Equipment (EGSE). This document is presented in three sections: (1) GSMF Overview; (2) Software Structure; and (3) Fault Isolation Capability. The overview contains information on hardware and software organization along with their corresponding block diagrams. The Software Structure section describes the modes of software structure including source files, link information, and database files. The Fault Isolation section describes the capabilities of the Ground Computer Interface Device, Perkin Elmer host, and MITRA ATE.

  14. High-voltage Array Ground Test for Direct-drive Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Mankins, John C.; O'Neill, Mark J.

    2005-01-01

    Development is underway on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for direct drive electric propulsion. These SLA performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for "space tugs" to fuel-efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA s robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLA SEP technology, discuss ground tests already completed, and present plans for future ground tests and future flight tests of SLA SEP systems.

  15. Spacelab payload accommodation handbook. Appendix A: Avionics interface definition

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Spacelab side of the electrical interface between Spacelab subsystem equipment and experiments is presented. The electrical hardware which interfaces with the experiments is defined and the signal/load characteristics are stated. Major subsystems considered include: electrical power and distribution; command and data management subsystem; orbiter avionics via dedicated connectors of Spacelab; and electrical ground support equipment.

  16. Lightning Protection System for Space Shuttle

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The suitability and cost effectiveness of using a lightning mast for the shuttle service and access tower (SSAT) similar to the type used for the Apollo Soyuz Test Project (ASTP) mobile launcher (ML) was evaluated. Topics covered include: (1) ASTP launch damage to mast, mast supports, grounded overhead wires, and the instrumentation system; (2) modifications required to permit reusing the ASTP mast on the SSAT; (3) comparative costing factors per launch over a 10 year period in repetitive maintenance and refurbishment of the existing and modified masts, mast supports, grounded overhead wires, and ground instrumentation required to sustain mechanical and electrical integrity of the masts; (4) effects of blast testing samples of the ASTP ML type mast (corrosion and electrical flashover); (5) comparison of damages from ASTP launch and from blast testing.

  17. GLC_Exec v. 1.2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilgore, Roger Martin; Soloboda, Alexander Joseph

    Launching a rocket involves a controlled transition of the rocket subsystems from a quiescent state to the launch state (i.e., lift-off). In order to launch safely, with confidence that the rocket will successfully complete its mission, the state-of-health for all rocket subsystems and critical ground support equipment must be closely monitored throughout the launch process. This is accomplished by the ground support engineers using mission-specific ground support equipment. A subset of the GSE, the Remote Electrical Ground Interface System (REGIS), is located nearest the rocket to which it's connected via the Umbilical, a wiring harness providing power, sensor, and controlmore » lines. The REGIS also connects via Ethernet to the Ground Launch Computer (GLC).« less

  18. Mitigating Space Weather Impacts on the Power Grid in Real-Time: Applying 3-D EarthScope Magnetotelluric Data to Forecasting Reactive Power Loss in Power Transformers

    NASA Astrophysics Data System (ADS)

    Schultz, A.; Bonner, L. R., IV

    2017-12-01

    Current efforts to assess risk to the power grid from geomagnetic disturbances (GMDs) that result in geomagnetically induced currents (GICs) seek to identify potential "hotspots," based on statistical models of GMD storm scenarios and power distribution grounding models that assume that the electrical conductivity of the Earth's crust and mantle varies only with depth. The NSF-supported EarthScope Magnetotelluric (MT) Program operated by Oregon State University has mapped 3-D ground electrical conductivity structure across more than half of the continental US. MT data, the naturally occurring time variations in the Earth's vector electric and magnetic fields at ground level, are used to determine the MT impedance tensor for each site (the ratio of horizontal vector electric and magnetic fields at ground level expressed as a complex-valued frequency domain quantity). The impedance provides information on the 3-D electrical conductivity structure of the Earth's crust and mantle. We demonstrate that use of 3-D ground conductivity information significantly improves the fidelity of GIC predictions over existing 1-D approaches. We project real-time magnetic field data streams from US Geological Survey magnetic observatories into a set of linear filters that employ the impedance data and that generate estimates of ground level electric fields at the locations of MT stations. The resulting ground electric fields are projected to and integrated along the path of power transmission lines. This serves as inputs to power flow models that represent the power transmission grid, yielding a time-varying set of quasi-real-time estimates of reactive power loss at the power transformers that are critical infrastructure for power distribution. We demonstrate that peak reactive power loss and hence peak risk for transformer damage from GICs does not necessarily occur during peak GMD storm times, but rather depends on the time-evolution of the polarization of the GMD's inducing fields and the complex ground (3-D) electric field response, and the resulting alignment of the ground electric fields with the power transmission line paths. This is informing our efforts to provide a set of real-time tools for power grid operators to use in mitigating damage from space weather events.

  19. International Aerospace and Ground Conference on Lightning and Static Electricity (8th): Lightning Technology Roundup, held at Fort Worth, Texas on 21-23 June 1983.

    DTIC Science & Technology

    1983-06-01

    fighter aircraft. The entire test bed is from testing of a representative digital supported above the ground plane by non - control system(s)l e.g... control and Increased systems Integration a. Raw data must be collected and Introduce new requirements for protection, experimental setups and An accurate...presented, several possible solutions to the grounding prob! - are suggested. All rely on establishing initial ground contact through a controlled non -zero

  20. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Jeremy Diez; Jeffrey Wishart

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration inmore » an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.« less

  1. Effects of the addition of functional electrical stimulation to ground level gait training with body weight support after chronic stroke.

    PubMed

    Prado-Medeiros, Christiane L; Sousa, Catarina O; Souza, Andréa S; Soares, Márcio R; Barela, Ana M F; Salvini, Tania F

    2011-01-01

    The addition of functional electrical stimulation (FES) to treadmill gait training with partial body weight support (BWS) has been proposed as a strategy to facilitate gait training in people with hemiparesis. However, there is a lack of studies that evaluate the effectiveness of FES addition on ground level gait training with BWS, which is the most common locomotion surface. To investigate the additional effects of commum peroneal nerve FES combined with gait training and BWS on ground level, on spatial-temporal gait parameters, segmental angles, and motor function. Twelve people with chronic hemiparesis participated in the study. An A1-B-A2 design was applied. A1 and A2 corresponded to ground level gait training using BWS, and B corresponded to the same training with the addition of FES. The assessments were performed using the Modified Ashworth Scale (MAS), Functional Ambulation Category (FAC), Rivermead Motor Assessment (RMA), and filming. The kinematics analyzed variables were mean walking speed of locomotion; step length; stride length, speed and duration; initial and final double support duration; single-limb support duration; swing period; range of motion (ROM), maximum and minimum angles of foot, leg, thigh, and trunk segments. There were not changes between phases for the functional assessment of RMA, for the spatial-temporal gait variables and segmental angles, no changes were observed after the addition of FES. The use of FES on ground level gait training with BWS did not provide additional benefits for all assessed parameters.

  2. PROGRAM ASTEC (ADVANCED SOLAR TURBO ELECTRIC CONCEPT). PART IV. SOLAR COLLECTOR DEVELOPMENT SUPPORT TASKS. VOL. VII. ENGINEERING DEVELOPMENT GROUND TEST PLAN FOR THE ASTEC SOLAR ENERGY COLLECTOR.

    DTIC Science & Technology

    optical, and structural integrity of the full scale ASTEC solar collector before further development proceeds. This document specifies these initial...engineering ground tests recommended for testing petals and other critical components of the ASTEC collector. It defines the requirements and

  3. Aft Skirt Electrical Umbilical (ASEU) and Vehicle Support Post (

    NASA Image and Video Library

    2016-12-09

    A flatbed truck carries a vertical support post (VSP) for NASA's Space Launch System (SLS) rocket to the Mobile Launcher Yard at NASA's Kennedy Space Center in Florida. The two aft skirt electrical umbilicals (ASEUs) and the first of the vehicle support posts underwent a series of tests to confirm they are functioning properly and ready to support the SLS for launch. The ASEUs will connect to the SLS rocket at the bottom outer edge of each booster and provide electrical power and data connections to the rocket until it lifts off from the launch pad. The eight VSPs will support the load of the solid rocket boosters, with four posts for each of the boosters. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  4. Aft Skirt Electrical Umbilical (ASEU) and Vehicle Support Post (

    NASA Image and Video Library

    2016-12-09

    A construction worker is in view as a flatbed truck passes by carrying a vertical support post (VSP) for NASA's Space Launch System (SLS) rocket to the Mobile Launcher Yard at NASA's Kennedy Space Center in Florida. The two aft skirt electrical umbilicals (ASEUs) and the first of the vehicle support posts underwent a series of tests to confirm they are functioning properly and ready to support the SLS for launch. The ASEUs will connect to the SLS rocket at the bottom outer edge of each booster and provide electrical power and data connections to the rocket until it lifts off from the launch pad. The eight VSPs will support the load of the solid rocket boosters, with four posts for each of the boosters. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  5. Aft Skirt Electrical Umbilical (ASEU) and Vehicle Support Post (

    NASA Image and Video Library

    2016-12-09

    A flatbed truck carries a vertical support post (VSP) for NASA's Space Launch System (SLS) rocket to the Mobile Launcher Yard at NASA's Kennedy Space Center in Florida. In view is the mobile launcher. The two aft skirt electrical umbilicals (ASEUs) and the first of the vehicle support posts underwent a series of tests to confirm they are functioning properly and ready to support the SLS for launch. The ASEUs will connect to the SLS rocket at the bottom outer edge of each booster and provide electrical power and data connections to the rocket until it lifts off from the launch pad. The eight VSPs will support the load of the solid rocket boosters, with four posts for each of the boosters. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  6. Aft Skirt Electrical Umbilical (ASEU) and Vehicle Support Post (

    NASA Image and Video Library

    2016-12-09

    A view from underneath one of the vertical support posts for NASA's Space Launch System rocket. Two after skirt electrical umbilicals (ASEUs) and the first of the vertical support post were transported by flatbed truck from the Launch Equipment Test Facility to the Mobile Launcher Yard as NASA's Kennedy Space Center in Florida. The ASEUs and the VSP underwent a series of tests to confirm they are functioning properly and ready to support the SLS for launch. The ASEUs will connect to the SLS rocket at the bottom outer edge of each booster and provide electrical power and data connections to the rocket until it lifts off from the launch pad. The eight VSPs will support the load of the solid rocket boosters, with four posts for each of the boosters. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  7. MIT-CSR XIS Project

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report outlines the proposers' progress toward MIT's contribution to the X-Ray Imaging Spectrometer (XIS) experiment on the Japanese ASTRO-E mission. The report discusses electrical system design, mechanical system design, and ground support equipment.

  8. High-Speed Isolation Board for Flight Hardware Testing

    NASA Technical Reports Server (NTRS)

    Yamamoto, Clifford K.; Goodpasture, Richard L.

    2011-01-01

    There is a need to provide a portable and cost-effective galvanic isolation between ground support equipment and flight hardware such that any unforeseen voltage differential between ground and power supplies is eliminated. An interface board was designed for use between the ground support equipment and the flight hardware that electrically isolates all input and output signals and faithfully reproduces them on each side of the interface. It utilizes highly integrated multi-channel isolating devices to minimize size and reduce assembly time. This single-board solution provides appropriate connector hardware and breakout of required flight signals to individual connectors as needed for various ground support equipment. The board utilizes multi-channel integrated circuits that contain transformer coupling, thereby allowing input and output signals to be isolated from one another while still providing high-fidelity reproduction of the signal up to 90 MHz. The board also takes in a single-voltage power supply input from the ground support equipment and in turn provides a transformer-derived isolated voltage supply to power the portion of the circuitry that is electrically connected to the flight hardware. Prior designs used expensive opto-isolated couplers that were required for each signal to isolate and were time-consuming to assemble. In addition, these earlier designs were bulky and required a 2U rack-mount enclosure. The new design is smaller than a piece of 8.5 11-in. (.22 28-mm) paper and can be easily hand-carried where needed. The flight hardware in question is based on a lineage of existing software-defined radios (SDRs) that utilize a common interface connector with many similar input-output signals present. There are currently four to five variations of this SDR, and more upcoming versions are planned based on the more recent design.

  9. GSDO Program Hexavalent Chrome Alternatives: Final Pretreatments Test Report

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2013-01-01

    Hexavalent chrome free pretreatments should be considered for use on Ground Support Equipment (OSE) and Electrical Ground Support Equipment (EOSE). Both of the hexavalent chrome free pretreatments (Metalast TCP HF and SurTec 650C) evaluated by this project met, and in some instances exceeded, the requirements ofMIL-DTL-5541 "Chemical Conversion Coatings on Aluminum and Aluminum Alloys". For DC resistance measurements, both Metalast TCP HF and SurTec (!50C met initial requirements following assembly and in many cases continued to maintain passing readings for the duration of testing.

  10. WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.C. Khamamkar

    2000-06-23

    The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will bemore » designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations Monitoring and Control System for supervisory monitoring and control signals. The system interfaces with all facility support loads such as heating, ventilation, and air conditioning, office, fire protection, monitoring and control, safeguards and security, and communications subsystems.« less

  11. 46 CFR 105.30-5 - Grounding of electrical equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Grounding of electrical equipment. 105.30-5 Section 105... VESSELS COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Electrical Requirements § 105.30-5 Grounding of electrical equipment. (a) All electrical equipment shall be grounded to the vessel's common...

  12. 46 CFR 105.30-5 - Grounding of electrical equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Grounding of electrical equipment. 105.30-5 Section 105... VESSELS COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Electrical Requirements § 105.30-5 Grounding of electrical equipment. (a) All electrical equipment shall be grounded to the vessel's common...

  13. 46 CFR 105.30-5 - Grounding of electrical equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Grounding of electrical equipment. 105.30-5 Section 105... VESSELS COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Electrical Requirements § 105.30-5 Grounding of electrical equipment. (a) All electrical equipment shall be grounded to the vessel's common...

  14. 46 CFR 105.30-5 - Grounding of electrical equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Grounding of electrical equipment. 105.30-5 Section 105... VESSELS COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Electrical Requirements § 105.30-5 Grounding of electrical equipment. (a) All electrical equipment shall be grounded to the vessel's common...

  15. 46 CFR 105.30-5 - Grounding of electrical equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Grounding of electrical equipment. 105.30-5 Section 105... VESSELS COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Electrical Requirements § 105.30-5 Grounding of electrical equipment. (a) All electrical equipment shall be grounded to the vessel's common...

  16. Electrically floating, near vertical incidence, skywave antenna

    DOEpatents

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  17. The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, volume 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings of the 1991 International Aerospace and Ground Conference on Lightning and Static Electricity are reported. Some of the topics covered include: lightning, lightning suppression, aerospace vehicles, aircraft safety, flight safety, aviation meteorology, thunderstorms, atmospheric electricity, warning systems, weather forecasting, electromagnetic coupling, electrical measurement, electrostatics, aircraft hazards, flight hazards, meteorological parameters, cloud (meteorology), ground effect, electric currents, lightning equipment, electric fields, measuring instruments, electrical grounding, and aircraft instruments.

  18. Oceanic Storm Characteristics off the Kennedy Space Center Coast

    NASA Technical Reports Server (NTRS)

    Wilson, J. G.; Simpson, A. A.; Cummins, K. L.; Kiriazes, J. J.; Brown, R. G.; Mata, C. T.

    2014-01-01

    Natural cloud-to-ground lightning may behave differently depending on the characteristics of the attachment mediums, including the peak current (inferred from radiation fields) and the number of ground strike locations per flash. Existing literature has raised questions over the years on these characteristics of lightning over oceans, and the behaviors are not yet well understood. To investigate this we will obtain identical electric field observations over adjacent land and ocean regions during both clear air and thunderstorm periods. Oceanic observations will be obtained using a 3-meter NOAA buoy that has been instrumented with a Campbell Scientific electric field mill and New Mexico Techs slow antenna, to measure the electric fields aloft. We are currently obtaining measurements from this system on-shore at the Florida coast, to calibrate and better understand the behavior of the system in elevated-field environments. Sometime during winter 2013, this system will be moored 20NM off the coast of the Kennedy Space Center. Measurements from this system will be compared to the existing on-shore electric field mill suite of 31 sensors and a coastal slow antenna. Supporting observations will be provided by New Mexico Techs Lightning Mapping Array, the Eastern Range Cloud to Ground Lightning Surveillance System, and the National Lightning Detection Network. An existing network of high-speed cameras will be used to capture cloud-to-ground lightning strikes over the terrain regions to identify a valid data set for analysis. This on-going project will demonstrate the value of off-shore electric field measurements for safety-related decision making at KSC, and may improve our understanding of relative lightning risk to objects on the ground vs. ocean. This presentation will provide an overview of this new instrumentation, and a summary of our progress to date.

  19. Coupling Between CPW and Slotline Modes in Finite Ground CPW with Unequal Ground Plane Widths

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Papapolymerou, John; Williams, W. D. (Technical Monitor); Tentzeris, Emmanouil M.

    2002-01-01

    The coupling between the desired CPW mode and the unwanted, slotline, mode is presented for finite ground coplanar waveguides with unequal ground plane widths. Measurements, quasi-static conformal mapping, and Method of Moment analysis are performed to determine the dependence of the slotline mode excitation on the physical dimensions of the FGC line and on the frequency range of operation. Introduction: Finite ground coplanar waveguide (FGC) is often used in low cost Monolithic Microwave Integrated Circuits (MMICs) because of its many advantages over microstrip and conventional CoPlanar Waveguide (CPW). It is uniplanar, which facilitates easy connection of series and shunt elements without via holes, supports a low loss, quasi-TEM mode over a wide frequency band, and since the ground planes are electrically and physically narrow, typically less than lambda/5 wide where lambda is the guided wavelength, they reduce the circuit size and the influence of higher order modes. However, they still support the parasitic slotline mode that plagues all CPW transmission lines.

  20. Electric fields in micro-gravity can replace gravity

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.

    The influence of the world-wide atmospheric electric field on the growth of plants seems to have been neglected. The confirmation of the existence of electrotropism shows effects on some plants similar to gravity. I propose space ex eriments withp plants that grow in microgravity but are exposed to different electric field configurations with various field strengths and polarity. The electric field in terrestrial environment shows strong effects on some plants that can be regarded as due to phototropism. In microgravity we have full control of light and electric field, and thus we can practically eliminate the effects of gravity and we can study to what degree the electric field can replace the gravitational effects on plants. In this way we can create a new habitat for some plants and study its role in the rate of growth as well as in the sensing of free space for growth of plants in absence of gravity. By varying the strength and direction of illumination of plants we can also study the relative role of phototropism and electrotropism on different plants. This should enable us to select the most suitable plants for Advanced Life Support systems (ALS) for long-duration missions in microgravity environment. Some simple space experiments for verification of these assumptions are described that should answer the basic questions how should we design the ALS for the future high performance space stations and long duration manned space flights. The selection of the suitable plants for such ALS may go along two approaches: the self supporting electrotropic plants using the optimal electric field strength and its range of variation, non electrotropic plants that creep along the "ground" or other supporting plants or special structures. Ground based fitotron experiments have shown that several kV/m electric fields overwhelm the gravity better than clinostats can do. It happens in case of electrotropic plants but also after several days for non-electrotropic plants

  1. Creation of a strongly dipolar gas of ultracold ground-state 23 Na87 Rb molecules

    NASA Astrophysics Data System (ADS)

    Guo, Mingyang; Zhu, Bing; Lu, Bo; Ye, Xin; Wang, Fudong; Wang, Dajun; Vexiau, Romain; Bouloufa-Maafa, Nadia; Quéméner, Goulven; Dulieu, Olivier

    2016-05-01

    We report on successful creation of an ultracold sample of ground-state 23 Na87 Rb molecules with a large effective electric dipole moment. Through a carefully designed two-photon Raman process, we have successfully transferred the magneto-associated Feshbach molecules to the singlet ground state with high efficiency, obtaining up to 8000 23 Na87 Rb molecules with peak number density over 1011 cm-3 in their absolute ground-state level. With an external electric field, we have induced an effective dipole moment over 1 Debye, making 23 Na87 Rb the most dipolar ultracold particle ever achieved. Contrary to the expectation, we observed a rather fast population loss even for 23 Na87 Rb in the absolute ground state with the bi-molecular exchange reaction energetically forbidden. The origin for the short lifetime and possible ways of mitigating it are currently under investigation. Our achievements pave the way toward investigation of ultracold bosonic molecules with strong dipolar interactions. This work is supported by the Hong Kong RGC CUHK404712 and the ANR/RGC Joint Research Scheme ACUHK403/13.

  2. Development of a unified guidance system for geocentric transfer. [for solar electric propulsion spacecraft

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Regetz, J. D., Jr.

    1975-01-01

    A method is presented for open loop guidance of a solar electric propulsion spacecraft to geosynchronous orbit. The method consists of determining the thrust vector profiles on the ground with an optimization computer program, and performing updates based on the difference between the actual trajectory and that predicted with a precision simulation computer program. The motivation for performing the guidance analysis during the mission planning phase is discussed, and a spacecraft design option that employs attitude orientation constraints is presented. The improvements required in both the optimization program and simulation program are set forth, together with the efforts to integrate the programs into the ground support software for the guidance system.

  3. Development of a unified guidance system for geocentric transfer. [solar electric propulsion spacecraft

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Regetz, J. D., Jr.

    1975-01-01

    A method is presented for open loop guidance of a solar electric propulsion spacecraft to geosynchronsus orbit. The method consists of determining the thrust vector profiles on the ground with an optimization computer program, and performing updates based on the difference between the actual trajectory and that predicted with a precision simulation computer program. The motivation for performing the guidance analysis during the mission planning phase is discussed, and a spacecraft design option that employs attitude orientation constraints is presented. The improvements required in both the optimization program and simulation program are set forth, together with the efforts to integrate the programs into the ground support software for the guidance system.

  4. Bose-Einstein condensate of rigid rotor molecules

    NASA Astrophysics Data System (ADS)

    Jones, Evan; Smith, Joseph; Rittenhouse, Seth; Peden, Brandon; Wilson, Ryan

    2017-04-01

    We study the ground state phases of a quasi-two-dimensional Bose-Einstein condensate (BEC) of dipolar rigid rotor molecules subject to a DC electric field. In the high-field limit, this system acquires the properties of the fully polarized dipolar BEC, which exhibits a roton-maxon excitation spectrum, and has been thoroughly studied in the theoretical literature. In the weak-field limit, however, qualitatively new physics emerges due to the competition between the (weak) applied field and internal electric fields, which are produced by the molecules themselves. We characterize the ground states of this system, and study its unique dielectric properties. We gratefully acknowledge support from the National Science Foundation under Grant No. PHYS-1516421.

  5. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 5: Nuclear electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The nuclear electric propulsion (NEP) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study is presented. The evolution of the NEP concept is described along with the requirements, guidelines, and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.

  6. Corrections to atomic ground state energy due to interaction between atomic electric quadrupole and optical field

    NASA Astrophysics Data System (ADS)

    Hu, Jie; Chen, Yu; Bai, Yi-Xiu; He, Pei-Song; Sun, Qing; Ji, An-Chun

    2018-04-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 21503138, 11247324, 61405003, 11604225, 11404225, and 11474205) and the Fund from Beijing Education Committees, China (Grant No. KM201710028004).

  7. ASK Talks with Dennis Grounds

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dennis Grounds recently finished a one-year assignment at NASA Headquarters in the Office of Bioastronautics as the Acting Flight Program Manager He has returned to Johnson Space Center (JSC), where he is Director of the International Space Station Bioastronautics Research Program Office with the NASA Life Sciences Projects Division. Under his management, the Human Research Facility (HRF) was developed to support a broad range of scientific investigations pertaining to human adaptation to the spaceflight environment and issues of human space exploration. The HRF rack was developed to international standards in order to be compatible with payloads developed anywhere in the world, thereby streamlining the process of getting payloads on the Space Station. Grounds has worked with NASA for more than 15 years. Prior to joining ISS, he worked with General Electric as a manager of payloads and analysis in support of the NASA Life Science Projects Division at JSC. ASK spoke with Grounds in Washington, D.C., during his Headquarters assignment.

  8. Device, system and method for a sensing electrical circuit

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2009-01-01

    The invention relates to a driven ground electrical circuit. A driven ground is a current-measuring ground termination to an electrical circuit with the current measured as a vector with amplification. The driven ground module may include an electric potential source V.sub.S driving an electric current through an impedance (load Z) to a driven ground. Voltage from the source V.sub.S excites the minus terminal of an operational amplifier inside the driven ground which, in turn, may react by generating an equal and opposite voltage to drive the net potential to approximately zero (effectively ground). A driven ground may also be a means of passing information via the current passing through one grounded circuit to another electronic circuit as input. It may ground one circuit, amplify the information carried in its current and pass this information on as input to the next circuit.

  9. 46 CFR 169.676 - Grounded electrical systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Grounded electrical systems. 169.676 Section 169.676... Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.676 Grounded electrical systems. (a) Except as provided in paragraph (b...

  10. 46 CFR 169.676 - Grounded electrical systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Grounded electrical systems. 169.676 Section 169.676... Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.676 Grounded electrical systems. (a) Except as provided in paragraph (b...

  11. 46 CFR 169.676 - Grounded electrical systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Grounded electrical systems. 169.676 Section 169.676... Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.676 Grounded electrical systems. (a) Except as provided in paragraph (b...

  12. 46 CFR 169.676 - Grounded electrical systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Grounded electrical systems. 169.676 Section 169.676... Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.676 Grounded electrical systems. (a) Except as provided in paragraph (b...

  13. 46 CFR 169.676 - Grounded electrical systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Grounded electrical systems. 169.676 Section 169.676... Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.676 Grounded electrical systems. (a) Except as provided in paragraph (b...

  14. Spacelab Life Sciences-1 electrical diagnostic expert system

    NASA Technical Reports Server (NTRS)

    Kao, C. Y.; Morris, W. S.

    1989-01-01

    The Spacelab Life Sciences-1 (SLS-1) Electrical Diagnostic (SLED) expert system is a continuous, real time knowledge-based system to monitor and diagnose electrical system problems in the Spacelab. After fault isolation, the SLED system provides corrective procedures and advice to the ground-based console operator. The SLED system updates its knowledge about the status of Spacelab every 3 seconds. The system supports multiprocessing of malfunctions and allows multiple failures to be handled simultaneously. Information which is readily available via a mouse click includes: general information about the system and each component, the electrical schematics, the recovery procedures of each malfunction, and an explanation of the diagnosis.

  15. COMSOL based Simulation on the Effect of Electric Field changes due to Lightning on Ground

    NASA Astrophysics Data System (ADS)

    Premlet, B.; Joby, N. E.; Sabu, S.

    2017-12-01

    The phenomenon of lightning is accompanied by localised changes in atmospheric electric fields. In cloud-to-ground strike locations, changes in atmospheric electric fields can even be observed at the ground a few minutes prior to a strike. A lot of research has been done already on the electrostatic changes prior to lightning in the region above ground. Through this work, we investigate into the effects of lightning electric fields on/under ground with the aid of simulations done in COMSOL Multiphysics. Horizontal and vertical profiles of voltage gradient, electric field, polarisation etc. are investigated. Simulation experiments were conducted using a general model of lightning electric fields formed using data recorded by the Electric Field Mills(EFMs) from three diverse parts of the world- Kennedy Space Centre (KSC),Florida (Using GHRC datasets),Sonnblick Observatory, Austria and National Centre for Earth Science Studies Trivandrum (NCESS),India. COMSOL models of the global electric circuit were developed using Sandstone as the base model for ground. Similar works in literature have only dealt with lightning electric fields above the ground. This work is the first step towards a high-level simulation on the effects of atmospheric electric field on/below ground. The results of this simulation work can aid lightning forecasting and preparedness by opening new doors for voltage based prediction methods at ground. It is also a tool to understand phenomena such as fulgurites, corona effect etc. It also helps in the design of buried cables and improved grounding systems. This work can also be a first step towards understanding localised potential variations at the ground during lightning.

  16. Electric Ground Support Equipment at Airports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-12-12

    Airport ground support equipment (GSE) is used to service airplanes between flights. Services include refueling, towing airplanes or luggage/freight carts, loading luggage/freight, transporting passengers, loading potable water, removing sewage, loading food, de-icing airplanes, and fire-fighting. Deploying new GSE technologies is a promising opportunity in part because the purchasers are generally large, technologically sophisticated airlines, contractors, or airports with centralized procurement and maintenance departments. Airlines could particularly benefit from fuel diversification since they are highly exposed to petroleum price volatility. GSE can be particularly well-suited for electrification because it benefits from low-end torque and has frequent idle time and short requiredmore » ranges.« less

  17. KSC-07pd0851

    NASA Image and Video Library

    2007-04-10

    KENNEDY SPACE CENTER, FLA. -- Two trucks (one air-ride, one flat-bed) deliver the Dawn spacecraft, as well as additional electrical and ground support equipment and xenon ground support equipment, to Astrotech. Dawn will be moved from the truck and the shipping container removed. The spacecraft will then be moved into the high bay of the Payload Processing Facility. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/Jim Grossmann

  18. Ground-truthing electrical resistivity methods in support of submarine groundwater discharge studies: Examples from Hawaii, Washington, and California

    USGS Publications Warehouse

    Johnson, Cordell; Swarzenski, Peter W.; Richardson, Christina M.; Smith, Christopher G.; Kroeger, Kevin D.; Ganguli, Priya M.

    2015-01-01

    Rigorous ground-truthing at each field site showed that multi-channel electrcial resistivity techniques can reproduce the scales and dynamics of a seepage field when such data are correctly collected, and when the model inversions are tuned to field site characteristics. Such information can provide a unique perspective on the scales and dynamics of exchange processes within a coastal aquifer—information essential to scientists and resource managers alike.

  19. The electrical ground support equipment for the ExoMars 2016 DREAMS scientific instrument

    NASA Astrophysics Data System (ADS)

    Molfese, C.; Schipani, P.; Marty, L.; Esposito, F.; D'Orsi, S.; Mannetta, M.; Debei, S.; Bettanini, C.; Aboudan, A.; Colombatti, G.; Mugnuolo, R.; Marchetti, E.; Pirrotta, S.

    2014-08-01

    This paper describes the Electrical Ground Support Equipment (EGSE) of the Dust characterization, Risk assessment, and Environment Analyser on the Martian Surface (DREAMS) scientific instrument, an autonomous surface payload package to be accommodated on the Entry, Descendent and landing Module (EDM) of the ExoMars 2016 European Space Agency (ESA) mission. DREAMS will perform several kinds of measurements, such as the solar irradiance with different optical detectors in the UVA band (315-400nm), NIR band (700-1100nm) and in "total luminosity" (200 -1100 nm). It will also measure environmental parameters such as the intensity of the electric field, temperature, pressure, humidity, speed and direction of the wind. The EGSE is built to control the instrument and manage the data acquisition before the integration of DREAMS within the Entry, Descendent and landing Module (EDM) and then to retrieve data from the EDM Central Checkout System (CCS), after the integration. Finally it will support also the data management during mission operations. The EGSE is based on commercial off-the-shelf components and runs custom software. It provides power supply and simulates the spacecraft, allowing the exchange of commands and telemetry according to the protocol defined by the spacecraft prime contractor. This paper describes the architecture of the system, as well as its functionalities to test the DREAMS instrument during all development activities before the ExoMars 2016 launch.

  20. 30 CFR 75.701 - Grounding metallic frames, casings, and other enclosures of electric equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding metallic frames, casings, and other... Grounding § 75.701 Grounding metallic frames, casings, and other enclosures of electric equipment. [Statutory Provisions] Metallic frames, casings, and other enclosures of electric equipment that can become...

  1. 46 CFR 111.05-13 - Grounding connection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-13 Grounding... power sources operating in parallel in the system. ...

  2. Ground-Based High Energy Power Beaming in Support of Spacecraft Power Requirements

    DTIC Science & Technology

    2006-06-01

    provide 900 W/m2. As more of the arriving energy is converted to space bus power and less goes into the production of heat , more solar cell output...similar control of peak power levels. Efficiency of power transfer may easily be about 50% as the solar cell experiences less heating effects as the...investigates the feasibility of projecting ground-based laser power to energize a spacecraft electrical bus via the solar panels. The energy is projected

  3. Low energy stage study. Volume 3: Conceptual design, interface analysis, flight and ground operations. [launching space shuttle payloads

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Low energy conceptual stage designs and adaptations to existing/planned shuttle upper stages were developed and their performance established. Selected propulsion modes and subsystems were used as a basis to develop airborne support equipment (ASE) design concepts. Orbiter installation and integration (both physical and electrical interfaces) were defined. Low energy stages were adapted to the orbiter and ASE interfaces. Selected low energy stages were then used to define and describe typical ground and flight operations.

  4. Microspacecraft and Earth observation: Electrical field (ELF) measurement project

    NASA Technical Reports Server (NTRS)

    Olsen, Tanya; Elkington, Scot; Parker, Scott; Smith, Grover; Shumway, Andrew; Christensen, Craig; Parsa, Mehrdad; Larsen, Layne; Martinez, Ranae; Powell, George

    1990-01-01

    The Utah State University space system design project for 1989 to 1990 focuses on the design of a global electrical field sensing system to be deployed in a constellation of microspacecraft. The design includes the selection of the sensor and the design of the spacecraft, the sensor support subsystems, the launch vehicle interface structure, on board data storage and communications subsystems, and associated ground receiving stations. Optimization of satellite orbits and spacecraft attitude are critical to the overall mapping of the electrical field and, thus, are also included in the project. The spacecraft design incorporates a deployable sensor array (5 m booms) into a spinning oblate platform. Data is taken every 0.1 seconds by the electrical field sensors and stored on-board. An omni-directional antenna communicates with a ground station twice per day to down link the stored data. Wrap-around solar cells cover the exterior of the spacecraft to generate power. Nine Pegasus launches may be used to deploy fifty such satellites to orbits with inclinations greater than 45 deg. Piggyback deployment from other launch vehicles such as the DELTA 2 is also examined.

  5. Aft Skirt Electrical Umbilical (ASEU) and Vehicle Support Post (

    NASA Image and Video Library

    2016-12-09

    Construction workers assist as a crane is used to lower a vertical support post for NASA's Space Launch System (SLS) onto a platform at the Mobile Launcher Yard at NASA's Kennedy Space Center in Florida. Two ASEUs and the first of the vertical support posts underwent a series of tests at the Launch Equipment Test Facility to confirm they are functioning properly and ready to support the SLS for launch. The ASEUs will connect to the SLS rocket at the bottom outer edge of each booster and provide electrical power and data connections to the rocket until it lifts off from the launch pad. The eight VSPs will support the load of the solid rocket boosters, with four posts for each of the boosters. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  6. High Resolution Imager (HRI) for the Roentgen Satellite (ROSAT) definition study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The design of the high resolution imager (HRI) on HEAO 2 was modified for use in the instrument complement of the Roentgen Satellite (ROSAT). Mechanical models of the front end assembly, central electronics assembly, and detector assembly were used to accurately represent the HRI envelope for both fit checks and focal plane configuration studies. The mechanical and electrical interfaces were defined and the requirements for electrical ground support equipment were established. A summary description of the ROSAT telescope and mission is included.

  7. Zero Rare-Earth Magnet Integrated Starter-Generator Development for Military Vehicle Applications

    DTIC Science & Technology

    2013-08-14

    platform. – Support of on-board hybrid electric features such as regenerative braking , torque assist and stop-start operation. 14 August 2013 4...13. SUPPLEMENTARY NOTES GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM (GVSETS), SET FOR AUG. 21-22, 2013 14. ABSTRACT Briefing Charts

  8. A preliminary design for a satellite power system

    NASA Technical Reports Server (NTRS)

    Enriquez, Clara V.; Kokaly, Ray; Nandi, Saumya; Timmons, Mike; Garrard, Mark; Mercado, Rommel; Rogers, Brian; Ugaz, Victor

    1991-01-01

    Outlined here is a preliminary design for a Solar Power Satellite (SPS) system. The SPS will provide a clean, reliable source of energy for mass consumption. The system will use satellites in geostationary orbits around the Earth to capture the sun's energy. The intercepted sunlight will be converted to laser beam energy which can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting to one ground station. The SPs technology uses multi-layer solar cell technology arranged on a 20 sq km planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Construction will take place in low Earth orbit and array sections, 20 in total, will be sailed on the solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing panels (SSAPs). The primary truss elements used to support the arrays are composed on composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  9. Minimizing radiation damage in nonlinear optical crystals

    DOEpatents

    Cooke, D.W.; Bennett, B.L.; Cockroft, N.J.

    1998-09-08

    Methods are disclosed for minimizing laser induced damage to nonlinear crystals, such as KTP crystals, involving various means for electrically grounding the crystals in order to diffuse electrical discharges within the crystals caused by the incident laser beam. In certain embodiments, electrically conductive material is deposited onto or into surfaces of the nonlinear crystals and the electrically conductive surfaces are connected to an electrical ground. To minimize electrical discharges on crystal surfaces that are not covered by the grounded electrically conductive material, a vacuum may be created around the nonlinear crystal. 5 figs.

  10. Response of ionospheric electric fields at mid-low latitudes during sudden commencements

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Kasaba, Y.; Shinbori, A.; Nishimura, Y.; Kikuchi, T.; Ebihara, Y.; Nagatsuma, T.

    2015-06-01

    Using in situ observations from the Republic of China Satellite-1 spacecraft, we investigated the time response and local time dependence of the ionospheric electric field at mid-low latitudes associated with geomagnetic sudden commencements (SCs) that occurred from 1999 to 2004. We found that the ionospheric electric field variation associated with SCs instantaneously responds to the preliminary impulse (PI) signature on the ground regardless of spacecraft local time. Our statistical analysis also supports the global instant transmission of electric field from the polar region. In contrast, the peak time detected in the ionospheric electric field is earlier than that of the equatorial geomagnetic field (~20 s before in the PI phase). Based on the ground-ionosphere waveguide model, this time lag can be attributed to the latitudinal difference of ionospheric conductivity. However, the local time distribution of the initial excursion of ionospheric electric field shows that dusk-to-dawn ionospheric electric fields develop during the PI phase. Moreover, the westward electric field in the ionosphere, which produces the preliminary reverse impulse of the geomagnetic field on the dayside feature, appears at 18-22 h LT where the ionospheric conductivity beyond the duskside terminator (18 h LT) is lower than on the dayside. The result of a magnetohydrodynamic simulation for an ideal SC shows that the electric potential distribution is asymmetric with respect to the noon-midnight meridian. This produces the local time distribution of ionospheric electric fields similar to the observed result, which can be explained by the divergence of the Hall current under nonuniform ionospheric conductivity.

  11. 46 CFR 111.05-17 - Generation and distribution system grounding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 111.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-17... must: (a) Be grounded at the generator switchboard, except the neutral of an emergency power generation...

  12. 46 CFR 111.05-17 - Generation and distribution system grounding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 111.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-17... must: (a) Be grounded at the generator switchboard, except the neutral of an emergency power generation...

  13. 46 CFR 111.05-17 - Generation and distribution system grounding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 111.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-17... must: (a) Be grounded at the generator switchboard, except the neutral of an emergency power generation...

  14. ATS-6 engineering performance report. Volume 3: Telecommunications and power

    NASA Technical Reports Server (NTRS)

    Wales, R. O. (Editor)

    1981-01-01

    Functional design requirements and in-orbit operations, performance, and anomalies are discussed for (1) the communications subsystem, (2) the electrical power system, and (3) the telemetry and command subsystem. The latter includes a review of ground support. Tracking and data relay experiments and the Apollo-Soyuz test program are reviewed.

  15. ASPEC: Solar power satellite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The solar power satellite (SPS) will provide a clean, reliable source of energy for large-scale consumption. The system will use satellites in geostationary orbits around the Earth to capture the Sun's energy. The intercepted sunlight will be converted to laser beam energy that can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting energy to a single ground station. The SPS design uses multilayer solar cell technology arranged on a 20 km squared planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Typically, a single SPS will supply 5 GW of power to the ground station. Due to the large mass of the SPS, about 41 million kg, construction in space is needed in order to keep the structural mass low. The orbit configuration for this design is to operate a single satellite in geosynchronous orbit (GEO). The GEO allows the system to be positioned above a single receiving station and remain in sunlight 99 percent of the time. Construction will take place in low Earth orbit (LEO); array sections, 20 in total, will be sailed on solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing array panels (SSAP's). The primary truss elements used to support the array are composed of composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  16. Solar energy estimated from geostationary satellites and its application on the energy management system

    NASA Astrophysics Data System (ADS)

    Nakajima, T. Y.; Takamatsu, T.; Funayama, T.; Yamamoto, Y.; Takenaka, H.; Nakajima, T.; Irie, H.; Higuchi, A.

    2017-12-01

    Recently, estimating and forecasting the solar radiation in terms of the electric power generation by photovoltaic (PV) systems is needed for the energy management system (EMS). The estimation technique depends on the latest atmospheric sciences. For instance, when one like to estimate solar radiation reached to ground surface, one will focus on the existence of clouds and their properties, because clouds exert an important influence to the radiative transfer. Visible-to-infared imaging radiometer aboard the geostationary satellites, Himawari, GOES, and Meteosat are useful for such objective, since they observe clouds for full disk of the Earth with high temporal frequency and moderately spatial resolution. Estimation of solar radiation at the ground surface from satellite imagery consists of two steps. The first step is retrieval of cloud optical and microphysical properties by use of the multispectral imaging data. Indeed, we retrieve cloud optical thickness, cloud particle sizes, and cloud top height from visible, near-infrared, and thermal infrared wavelength of the satellite imageries, respectively. The second step is the radiative transfer calculation. We will obtain solar radiation reached to the ground surface, using cloud properties retrieved from the first step, and radiative transfer calculations. We have built a system for near-real time estimation of solar radiation for global scale, named the AMATERASS system, under the support of JST (Japan Science and Technology Agency), CREST/EMS (Energy Management System). The AMATERASS dataset has been used for several researches. For example, Waseda University group applied the AMATERASS data in the electric power system, considering accidental blackout in the electric system for local scale. They made it clear that when AMATERASS data exists the chance of electric voltage deviancy is mitigated when the blackout is over. We have supported a solar car race in Australia, named World Solar Challenge (WSC) 2013, 2015, and 2017, by suppling the AMATERASS solar radiation and some meteorological data along the race track, dynamically following the location of the solar car. This experience is important because the era of electric vehicles equippe with PV panels will come soon.

  17. Coincident Above- and Below-ground Autonomous Monitoring to Quantify Co-variability in Permafrost, Soil and Vegetation Properties in Arctic Tundra: Supporting Data

    DOE Data Explorer

    Baptiste Dafflon; Rusen Oktem; John Peterson; Craig Ulrich; Anh Phuong Tran; Vladimir Romanovsky; Susan Hubbard

    2017-05-10

    The dataset contains measurements obtained through electrical resistivity tomography (ERT) to monitor soil properties, pole-mounted optical cameras to monitor vegetation dynamics, point probes to measure soil temperature, and periodic manual measurements of thaw layer thickness, snow thickness and soil dielectric permittivity.

  18. High-Voltage High-Energy Stretched Lens Array Square-Rigger (SLASR) for Direct-Drive Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; O'Neill, Mark J.; Mankins, John C.

    2006-01-01

    Development is underway on a unique high-voltage, high energy solar concentrator array called Stretched Lens Array Square-Rigger (SLASR) for direct drive electric propulsion. The SLASR performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for space tugs to fuel efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA's robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLASR technology, discuss SLASR developments and ground testing, and outline plans for future SLASR technology maturation.

  19. High-Voltage High-Energy Stretched Lens Array Square-Rigger (SLASR) for Direct-Drive Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; O'Neill, Mark; Mankins, John C.

    2006-01-01

    Development is underway on a unique high-voltage, high-energy solar concentrator array called Stretched Lens Array Square-Rigger (SLASR) for direct drive electric propulsion. The SLASR performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for space tugs to fuel-efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA s robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLASR technology, discuss SLASR developments and ground testing, and outline plans for future SLASR technology maturation.

  20. 30 CFR 57.12025 - Grounding circuit enclosures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Electricity Surface and Underground § 57.12025 Grounding circuit enclosures. All metal enclosing or encasing electrical circuits shall be grounded or provided with equivalent protection. This requirement does not apply... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding circuit enclosures. 57.12025 Section...

  1. Electrical and kinematic structure of an Oklahoma mesoscale convective system

    NASA Technical Reports Server (NTRS)

    Hunter, Steven M.; Schuur, Terry J.; Marshall, Thomas C.; Rust, W. D.

    1990-01-01

    The case study examines the dynamics and kinematics of a mesoscale convective system (MCS) by comparing its meteorological parameters with in situ electrical measurements. Conventional MCS characteristics are reported including a rear inflow jet, wake low, and a bipolar cloud-to-ground pattern, but some nonclassical conditions are also reported. Horizontally long cloud-to-ground electrical strikes are noted which demonstrate that cloud-to-ground electrical data alone cannot entirely characterize stratiform electrification in MCSs.

  2. First determination of ground state electromagnetic moments of Fe 53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, A. J.; Minamisono, K.; Rossi, D. M.

    Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less

  3. First determination of ground state electromagnetic moments of Fe 53

    DOE PAGES

    Miller, A. J.; Minamisono, K.; Rossi, D. M.; ...

    2017-11-16

    Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less

  4. Satellite Power Systems (SPS) concept definition study. Volume 5: Transportation and operations analysis. [heavy lift launch and orbit transfer vehicles for orbital assembly

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    The development of transportation systems to support the operations required for the orbital assembly of a 5-gigawatt satellite is discussed as well as the construction of a ground receiving antenna (rectenna). Topics covered include heavy lift launch vehicle configurations for Earth-to LEO transport; the use of chemical, nuclear, and electric orbit transfer vehicles for LEO to GEO operations; personnel transport systems; ground operations; end-to-end analysis of the construction, operation, and maintenance of the satellite and rectenna; propellant production and storage; and payload packaging.

  5. In situ measurements of contributions to the global electrical circuit by a thunderstorm in southeastern Brazil

    USGS Publications Warehouse

    Thomas, J.N.; Holzworth, R.H.; McCarthy, M.P.

    2009-01-01

    The global electrical circuit, which maintains a potential of about 280??kV between the earth and the ionosphere, is thought to be driven mainly by thunderstorms and lightning. However, very few in situ measurements of electrical current above thunderstorms have been successfully obtained. In this paper, we present dc to very low frequency electric fields and atmospheric conductivity measured in the stratosphere (30-35??km altitude) above an active thunderstorm in southeastern Brazil. From these measurements, we estimate the mean quasi-static conduction current during the storm period to be 2.5 ?? 1.25??A. Additionally, we examine the transient conduction currents following a large positive cloud-to-ground (+ CG) lightning flash and typical - CG flashes. We find that the majority of the total current is attributed to the quasi-static thundercloud charge, rather than lightning, which supports the classical Wilson model for the global electrical circuit.

  6. The variation of the ground electric field associated with the Mei-Nung earthquake on Feb. 6, 2016

    NASA Astrophysics Data System (ADS)

    Bing-Chih Chen, Alfred; Yeh, Er-Chun; Chuang, Chia-Wen

    2017-04-01

    Recent studies show that a strong coupling exists between lithosphere, atmosphere and extending up to the ionosphere. Natural phenomena on the ground surface such as oceans variation, volcanic and seismic activities such as earthquakes, and lightning possibly generate significant impacts at ionosphere immediately by electrodynamic processes. The electric field near the ground is one of the potential quantities to explore this coupling process, especially caused by earthquake. Unfortunately, thunderstorm, dust storm or human activities also affect the measured electric field at ground. To investigate the feasibility of a network to monitor the variation of the ground electric field driven by the lightning and earthquake, a filed mill has been deployed in the NCKU campus since Dec. 2015, and luckily experienced the earthquake with a moment magnitude of 6.4 struck 28 km on 6 Feb. 2016. The recorded ground electric field deceased steadily since 1.5 days before the earthquake, and returned to normal level gradually. Moreover, this special feature can not be identified in the other period of the field test. The detail analysis is reported in this presentation.

  7. On the Theory of Ground Anchors

    DTIC Science & Technology

    1975-01-01

    Reinart 46 American Electric Power Service anchor tests 47 Expandable land anchor 51 Anchorages in frozen ground 52 Foundation anchoring in thawed ground...Idealized configuration of Malone anchor 48 54. Standard grillage anchor and pyramid grillage anchor tested by the American Electric Power Service...Corporation 49 55. Configuration of bell anchors tested by the American Electric Power Service Corporation 50 56. Configuration of steel grillage - screw

  8. 4. LOOKING SOUTHEAST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. LOOKING SOUTHEAST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND FLOOR OF CHARGING AISLE. VIEW OF 50 TON CAPACITY CHARGING BUCKET. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  9. Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii

    USGS Publications Warehouse

    Sorey, M.L.; Colvard, E.M.

    1994-01-01

    In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.

  10. Power Extension Package (PEP) system definition extension, orbital service module systems analysis study. Volume 4: PEP functional specification

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The functional, performance, design, and test requirements for the Orbiter power extension package and its associated ground support equipment are defined. Both government and nongovernment standards and specifications are cited for the following subsystems: electrical power, structural/mechanical, avionics, and thermal control. Quality control assurance provisions and preparation for delivery are also discussed.

  11. Electrical, Electronic, and Electromechanical (EEE) Parts Management and Control Requirements for Space Flight Hardware and Critical Ground Support Equipment...aka... The NASA EEE Parts Standard, NASA-STD 8739.10

    NASA Technical Reports Server (NTRS)

    Majewicz, Peter; Sampson, Michael

    2016-01-01

    Describes development and content of a new NASA Standard for Electrical Electronic and Electromechanical (EEE) parts. This Standard reflects current practices, instead of changing them. Most NASA Centers utilize local documents, but there is minimal consistency across the Agency. A gap analysis clearly shows the differences that exist among the different centers and with respect to the NASA Parts Policy. Once approved, the new standard can be referenced in contracts and agreements with organizations outside of NASA.

  12. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 4: Solar electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents the solar electric propulsion (SEP) concept design developed as part of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the SEP concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.

  13. Electrical and mechanical tuning of a silicon vacancy defect in SiC for quantum information technology

    NASA Astrophysics Data System (ADS)

    Soykal, Oney O.; Reinecke, Thomas L.

    We develop coherent control via Stark effect over the optical transition energies of silicon monovacancy deep center in hexagonal silicon carbide. We show that this defect's unique asymmetry properties of its piezoelectric tensor and Kramer's degenerate high-spin ground/excited state configurations can be used to create new possibilities in quantum information technology ranging from photonic networks to quantum key distribution. We also give examples of its qubit implementations via precise electric field control. This work was supported in part by ONR and by the Office of Secretary of Defense, Quantum Science and Engineering Program.

  14. Electric power system test and verification program

    NASA Technical Reports Server (NTRS)

    Rylicki, Daniel S.; Robinson, Frank, Jr.

    1994-01-01

    Space Station Freedom's (SSF's) electric power system (EPS) hardware and software verification is performed at all levels of integration, from components to assembly and system level tests. Careful planning is essential to ensure the EPS is tested properly on the ground prior to launch. The results of the test performed on breadboard model hardware and analyses completed to date have been evaluated and used to plan for design qualification and flight acceptance test phases. These results and plans indicate the verification program for SSF's 75-kW EPS would have been successful and completed in time to support the scheduled first element launch.

  15. 5. LOOKING SOUTHWEST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. LOOKING SOUTHWEST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND FLOOR OF POURING AISLE. VIEW OF THE NATION'S FIRST VACUUM DEGASSING UNIT (1956). - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  16. Electrical grounding prong socket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leong, R.

    1989-09-12

    This paper describes a socket for a grounding prong used in a three prong electrical plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. 11 figs.

  17. 30 CFR 75.701-3 - Approved methods of grounding metallic frames, casings and other enclosures of electric equipment...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., casings and other enclosures of electric equipment receiving power from direct current power systems with... equipment receiving power from direct current power systems with one polarity grounded. For the purpose of... direct-current power system with one polarity grounded, the following methods of grounding will be...

  18. 30 CFR 75.701-3 - Approved methods of grounding metallic frames, casings and other enclosures of electric equipment...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., casings and other enclosures of electric equipment receiving power from direct current power systems with... equipment receiving power from direct current power systems with one polarity grounded. For the purpose of... direct-current power system with one polarity grounded, the following methods of grounding will be...

  19. 30 CFR 75.701-3 - Approved methods of grounding metallic frames, casings and other enclosures of electric equipment...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., casings and other enclosures of electric equipment receiving power from direct current power systems with... equipment receiving power from direct current power systems with one polarity grounded. For the purpose of... direct-current power system with one polarity grounded, the following methods of grounding will be...

  20. 30 CFR 75.701-3 - Approved methods of grounding metallic frames, casings and other enclosures of electric equipment...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., casings and other enclosures of electric equipment receiving power from direct current power systems with... equipment receiving power from direct current power systems with one polarity grounded. For the purpose of... direct-current power system with one polarity grounded, the following methods of grounding will be...

  1. 30 CFR 75.701-3 - Approved methods of grounding metallic frames, casings and other enclosures of electric equipment...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., casings and other enclosures of electric equipment receiving power from direct current power systems with... equipment receiving power from direct current power systems with one polarity grounded. For the purpose of... direct-current power system with one polarity grounded, the following methods of grounding will be...

  2. Ground/bonding for Large Space System Technology (LSST). [of metallic and nonmetallic structures

    NASA Technical Reports Server (NTRS)

    Dunbar, W. G.

    1980-01-01

    The influence of the environment and extravehicular activity remote assembly operations on the grounding and bonding of metallic and nonmetallic structures is discussed. Grounding and bonding philosophy is outlined for the electrical systems and electronic compartments which contain high voltage, high power electrical and electronic equipment. The influence of plasma and particulate on the system was analyzed and the effects of static buildup on the spacecraft electrical system discussed. Conceptual grounding bonding designs are assessed for capability to withstand high current arcs to ground from a high voltage conductor and electromagnetic interference. Also shown were the extravehicular activities required of the space station and or supply spacecraft crew members to join and inspect the ground system using manual on remote assembly construction.

  3. Ground/bonding for Large Space System Technology (LSST)

    NASA Astrophysics Data System (ADS)

    Dunbar, W. G.

    1980-04-01

    The influence of the environment and extravehicular activity remote assembly operations on the grounding and bonding of metallic and nonmetallic structures is discussed. Grounding and bonding philosophy is outlined for the electrical systems and electronic compartments which contain high voltage, high power electrical and electronic equipment. The influence of plasma and particulate on the system was analyzed and the effects of static buildup on the spacecraft electrical system discussed. Conceptual grounding bonding designs are assessed for capability to withstand high current arcs to ground from a high voltage conductor and electromagnetic interference. Also shown were the extravehicular activities required of the space station and or supply spacecraft crew members to join and inspect the ground system using manual on remote assembly construction.

  4. 46 CFR 111.05-21 - Ground detection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... be ground detection for each: (a) Electric propulsion system; (b) Ship's service power system; (c) Lighting system; and (d) Power or lighting distribution system that is isolated from the ship's service...

  5. 46 CFR 111.05-21 - Ground detection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... be ground detection for each: (a) Electric propulsion system; (b) Ship's service power system; (c) Lighting system; and (d) Power or lighting distribution system that is isolated from the ship's service...

  6. 46 CFR 111.05-21 - Ground detection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... be ground detection for each: (a) Electric propulsion system; (b) Ship's service power system; (c) Lighting system; and (d) Power or lighting distribution system that is isolated from the ship's service...

  7. NASA HERMeS Hall Thruster Electrical Configuration Characterization

    NASA Technical Reports Server (NTRS)

    Peterson, Peter; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard

    2016-01-01

    NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This presentation will cover the electrical configuration testing of the TDU-1 HERMeS Hall thruster in NASA Glenn Research Centers Vacuum Facility 5. The three electrical configurations examined are the thruster body tied to facility ground, thruster floating, and finally the thruster body electrically tied to cathode common. The TDU-1 HERMeS was configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.

  8. NASA HERMeS Hall Thruster Electrical Configuration Characterization

    NASA Technical Reports Server (NTRS)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard

    2015-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in-space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This paper describes the electrical configuration testing of the HERMeS TDU-1 Hall thruster in NASA Glenn Research Center's Vacuum Facility 5. The three electrical configurations examined were 1) thruster body tied to facility ground, 2) thruster floating, and 3) thruster body electrically tied to cathode common. The HERMeS TDU-1 Hall thruster was also configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.

  9. Radioisotope Power System Delivery, Ground Support and Nuclear Safety Implementation: Use of the Multi-Mission Radioisotope Thermoelectric Generator for the NASA's Mars Science Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    Radioisotope power systems have been used for over 50 years to enable missions in remote or hostile environments. They are a convenient means of supplying a few milliwatts up to a few hundred watts of useable, long-term electrical power. With regard to use of a radioisotope power system, the transportation, ground support and implementation of nuclear safety protocols in the field is a complex process that requires clear identification of needed technical and regulatory requirements. The appropriate care must be taken to provide high quality treatment of the item to be moved so it arrives in a condition to fulfillmore » its missions in space. Similarly it must be transported and managed in a manner compliant with requirements for shipment and handling of special nuclear material. This presentation describes transportation, ground support operations and implementation of nuclear safety and security protocols for a radioisotope power system using recent experience involving the Multi-Mission Radioisotope Thermoelectric Generator for National Aeronautics and Space Administration’s Mars Science Laboratory, which launched in November of 2011.« less

  10. 46 CFR 111.05-25 - Ungrounded systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ungrounded systems. 111.05-25 Section 111.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-25 Ungrounded systems. Each...

  11. 46 CFR 111.05-25 - Ungrounded systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ungrounded systems. 111.05-25 Section 111.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-25 Ungrounded systems. Each...

  12. 46 CFR 111.05-25 - Ungrounded systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ungrounded systems. 111.05-25 Section 111.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-25 Ungrounded systems. Each...

  13. Enhanced Fair-Weather Electric Fields Soon After Sunrise

    NASA Technical Reports Server (NTRS)

    Marshall, T. C.; Rust, W. D.; Stolzenburg, M.; Roeder, W.; Krehbiel, P. R.

    1999-01-01

    The typical fair weather electric field at the ground is between -100 and -300 V/m. At the NASA Kennedy Space Center and US Air Force Cape Canaveral Air Station (KSC) the electric field at the ground sometimes reaches -400 to -1200 V/m within an hour or two after sunrise on days that otherwise seem to be fair weather. We refer to the enhanced negative electric fields as the "sunrise enhancement." To investigate the sunrise enhancement at KSC we measured the electric field (E) in the first few hundred meters above the ground before and during several sunrise enhancements. From these E soundings we can infer the presence of charge layers and determine their thickness and charge density.

  14. Aeronautical engineering: A continuing bibliography with indexes (supplement 267)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 661 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1991. Subject coverage includes design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; theoretical and applied aspects of aerodynamics and general fluid dynamics; electrical engineering; aircraft control; remote sensing; computer sciences; nuclear physics; and social sciences.

  15. Sunlight supply and gas exchange systems in microalgal bioreactor

    NASA Technical Reports Server (NTRS)

    Mori, K.; Ohya, H.; Matsumoto, K.; Furune, H.

    1987-01-01

    The bioreactor with sunlight supply system and gas exchange systems presented has proved feasible in ground tests and shows much promise for space use as a closed ecological life support system device. The chief conclusions concerning the specification of total system needed for a life support system for a man in a space station are the following: (1) Sunlight supply system - compactness and low electrical consumption; (2) Bioreactor system - high density and growth rate of chlorella; and (3) Gas exchange system - enough for O2 production and CO2 assimilation.

  16. 46 CFR 111.79-3 - Grounding pole.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Grounding pole. 111.79-3 Section 111.79-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-3 Grounding pole. Each receptacle outlet that operates at 100 volts or more...

  17. 46 CFR 111.79-3 - Grounding pole.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Grounding pole. 111.79-3 Section 111.79-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-3 Grounding pole. Each receptacle outlet that operates at 100 volts or more...

  18. 46 CFR 111.79-3 - Grounding pole.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Grounding pole. 111.79-3 Section 111.79-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-3 Grounding pole. Each receptacle outlet that operates at 100 volts or more...

  19. 46 CFR 111.79-3 - Grounding pole.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Grounding pole. 111.79-3 Section 111.79-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-3 Grounding pole. Each receptacle outlet that operates at 100 volts or more...

  20. 46 CFR 111.79-3 - Grounding pole.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Grounding pole. 111.79-3 Section 111.79-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-3 Grounding pole. Each receptacle outlet that operates at 100 volts or more...

  1. Electrical grounding prong socket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leong, R.

    1990-01-01

    The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. 17 figs.

  2. Electrical grounding prong socket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leong, R.

    1990-12-31

    The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. 17 figs.

  3. Electrical grounding prong socket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leong, R.

    1991-06-18

    This patent describes a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket.

  4. Electrical grounding prong socket

    DOEpatents

    Leong, Robert

    1991-01-01

    The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket.

  5. Imaging of Ground Ice with Surface-Based Geophysics

    DTIC Science & Technology

    2015-10-01

    terrains. Electrical Resistivity Tomography (ERT), in particular, has been effective for imaging ground ice. ERT measures the ability of materials to...13 2.2.1 Electrical resistivity tomography (ERT...Engineer Research and Development Center ERT Electrical Resistivity Tomography GPS Global Positioning System LiDAR Light Detection and Ranging SIPRE

  6. Electrical receptacle

    DOEpatents

    Leong, R.

    1993-06-22

    The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.

  7. Electrical receptacle

    DOEpatents

    Leong, Robert

    1993-01-01

    The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.

  8. ISS Logistics Hardware Disposition and Metrics Validation

    NASA Technical Reports Server (NTRS)

    Rogers, Toneka R.

    2010-01-01

    I was assigned to the Logistics Division of the International Space Station (ISS)/Spacecraft Processing Directorate. The Division consists of eight NASA engineers and specialists that oversee the logistics portion of the Checkout, Assembly, and Payload Processing Services (CAPPS) contract. Boeing, their sub-contractors and the Boeing Prime contract out of Johnson Space Center, provide the Integrated Logistics Support for the ISS activities at Kennedy Space Center. Essentially they ensure that spares are available to support flight hardware processing and the associated ground support equipment (GSE). Boeing maintains a Depot for electrical, mechanical and structural modifications and/or repair capability as required. My assigned task was to learn project management techniques utilized by NASA and its' contractors to provide an efficient and effective logistics support infrastructure to the ISS program. Within the Space Station Processing Facility (SSPF) I was exposed to Logistics support components, such as, the NASA Spacecraft Services Depot (NSSD) capabilities, Mission Processing tools, techniques and Warehouse support issues, required for integrating Space Station elements at the Kennedy Space Center. I also supported the identification of near-term ISS Hardware and Ground Support Equipment (GSE) candidates for excessing/disposition prior to October 2010; and the validation of several Logistics Metrics used by the contractor to measure logistics support effectiveness.

  9. Aircraft measurements of electrified clouds at Kennedy Space Center, part 3

    NASA Technical Reports Server (NTRS)

    Jones, J. J.; Winn, W. P.; Hunyady, S. J.; Moore, C. B.; Bullock, J. W.; Fleischhacker, P.

    1990-01-01

    Flights made by the Special Purpose Test Vehicle for Atmospheric Research (SPTVAR) airplane during a second deployment to Florida during the summer of 1989 are discussed. The findings based on the data gathered are presented. The progress made during the second year of the project is discussed. The summer 1989 study was carried out with the support and guidance of Col. John Madura, Commander of Detachment 11, 2nd Weather Squadron, USAF, at Patrick Air Force Base (PAFB) and Cape Canaveral Air Force Station. The project goals were to develop and demonstrate techniques for measuring the electric field aloft and locating regions of charge during flight within and near clouds; to characterize the electric conditions that are presently identified as a threat to space launch vehicles; and to study the correlation between the electric field aloft and that at Kennedy Space Center's ground-based electric field mill array for a variety of electrified clouds.

  10. KSC-2010-4437

    NASA Image and Video Library

    2010-08-20

    CAPE CANAVERAL, Fla. -- The interior of NASA's new mobile launcher, or ML, support structure is outfitted with solid steel flooring, lights, air conditioning, electrical boxes and sprinkler piping at NASA's Kennedy Space Center in Florida. The 355-foot-tall structure will support NASA's future human spaceflight program. The base of the launcher is lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. The next step will be to add ground support equipment, such as umbilicals and access arms, for future rocket launches. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Kim Shiflett

  11. KSC-2010-4436

    NASA Image and Video Library

    2010-08-20

    CAPE CANAVERAL, Fla. -- The interior of NASA's new mobile launcher, or ML, support structure is outfitted with solid steel flooring, lights, air conditioning, electrical boxes and sprinkler piping at NASA's Kennedy Space Center in Florida. The 355-foot-tall structure will support NASA's future human spaceflight program. The base of the launcher is lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. The next step will be to add ground support equipment, such as umbilicals and access arms, for future rocket launches. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Kim Shiflett

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    When the last really big solar storm hit in 1921, Earth’s magnetic field funneled a wave of electrically charged particles toward the ground, where they induced a current along telegraph lines and railroad tracks, setting to telegraph offices and train stations—and the fledgling electric grid went dark. Almost a century later, today’s grid is bigger, more interconnected, and even more susceptible to a solar storm disaster. Los Alamos National Laboratory is developing a scientific analysis about how frequently a major geomagnetic storm might strike, which regions of the country are most vulnerable, and how bad it might be. This analysismore » is part of a plan to support electric utility companies and government regulators in taking the necessary steps to spare us all from the nightmare of days, weeks, or even months without power.« less

  13. Forensic Assessment on Ground Instability Using Electrical Resistivity Imaging (ERI)

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Azhar, A. T. S.; Aziman, M.; Fauzan, S. M. S. A.; Ikhwan, J. M.; Aishah, M. A. N.

    2017-02-01

    Electrical resistivity imaging (ERI) was used to evaluate the ground settlement in local scale at housing areas. ERI and Borehole results were used to interpret the condition of the problematic subsurface profile due to its differential stiffness. Electrical resistivity of the subsurface profile was measured using ABEM SAS4000 equipment set. ERI results using electrical resistivity anomaly on subsurface materials resistivity shows the subsurface profile exhibited low (1 - 100 Ωm) and medium (> 100 Ωm) value (ERV) representing weak to firm materials. The occurrences of soft to medium cohesive material (SPT N value = 2 - 7) and stiff cohesive material (SPT N ≥ 8) in local scale has created inconsistency of the ground stability condition. Moreover, it was found that a layer of organic decayed wood (ERV = 43 ˜ 29 Ωm & SPT N = 15 ˜ 9) has been buried within the subsurface profile thus weaken the ground structure and finally promoting to the ground settlement. The heterogeneous of the subsurface material presented using integrated analysis of ERI and borehole data enabled ground settlement in this area to be evaluated. This is the major factor evaluating ground instability in the local scale. The result was applicable to assist in planning a strategy for sustainable ground improvement of local scale in fast, low cost, and large data coverage.

  14. Grounding Headphones for Protection Against ESD

    NASA Technical Reports Server (NTRS)

    Peters, John; Youngquist, Robert C.

    2004-01-01

    A simple alternative technique has been devised protecting delicate equipment against electrostatic discharge (ESD) in settings in which workers wear communication headsets. In the original setting in which the technique was devised, the workers who wear the headsets also wear anti-ESD grounding straps on their wrists. The alternative technique eliminates the need for the wrist grounding straps by providing for grounding through the headsets. In place of the electrically insulating foam pads on the headsets, one installs pads made of electrically conductive foam like that commonly used to protect electronic components. Grounding wires are attached to the conductive foam pads, then possibly to the shielding cable which may be grounded to the backshell on the connector. The efficacy of this technique in protecting against ESD has been verified in experiments. The electrical resistance of the pads is a few megohms - about the same as that of a human body between the fingers of opposite hands and, hence, low enough for grounding. The only drawback of the technique is that care must be taken to place the foam pads in contact with the user s skin: any hair that comes between the foam pads and the skin must be pushed aside because hair is electrically insulating and thus prevents adequate grounding.

  15. 46 CFR 111.05-3 - Design, construction, and installation; general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Design, construction, and installation; general. 111.05-3 Section 111.05-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-3 Design, construction, and...

  16. 46 CFR 111.05-3 - Design, construction, and installation; general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Design, construction, and installation; general. 111.05-3 Section 111.05-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-3 Design, construction, and...

  17. A new, simple electrostatic-acoustic hybrid levitator

    NASA Technical Reports Server (NTRS)

    Lierke, E. G.; Loeb, H.; Gross, D.

    1990-01-01

    Battelle has developed a hybrid levitator by combining the known single-axis acoustic standing wave levitator with a coaxial DC electric field. The resulting Coulomb forces on the charged liquid or solid sample support its weight and, together with the acoustic force, center the sample. Liquid samples with volumes approximately less than 100 micro-liters are deployed from a syringe reservoir into the acoustic pressure node. The sample is charged using a miniature high voltage power supply (approximately less than 20 kV) connected to the syringe needle. As the electric field, generated by a second miniature power supply, is increased, the acoustic intensity is reduced. The combination of both fields allows stable levitation of samples larger than either single technique could position on the ground. Decreasing the acoustic intensity reduces acoustic convection and sample deformation. Neither the electrostatic nor the acoustic field requires sample position sensing or active control. The levitator, now used for static and dynamic fluid physics investigations on the ground, can be easily modified for space operations.

  18. First determination of ground state electromagnetic moments of 53Fe

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Minamisono, K.; Rossi, D. M.; Beerwerth, R.; Brown, B. A.; Fritzsche, S.; Garand, D.; Klose, A.; Liu, Y.; Maaß, B.; Mantica, P. F.; Müller, P.; Nörtershäuser, W.; Pearson, M. R.; Sumithrarachchi, C.

    2017-11-01

    The hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum of the 3 d64 s25D4↔3 d64 s 4 p 5F5 transition, measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ =-0.65 (1 ) μN and Q =+35 (15 ) e2fm2 , respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental values agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full f p shell model space, which support the soft nature of the 56Ni nucleus.

  19. Measurement of surface charges on the dielectric film based on field mills under the HVDC corona wire

    NASA Astrophysics Data System (ADS)

    Donglai, WANG; Tiebing, LU; Yuan, WANG; Bo, CHEN; Xuebao, LI

    2018-05-01

    The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current (HVDC) power lines. HVDC lines may cross the greenhouses due to the restricted transmission corridors. Under the condition of ion flow field, the dielectric films on the greenhouses will be charged, and the electric fields in the greenhouses may exceed the limit value. Field mills are widely used to measure the ground-level direct current electric fields under the HVDC power lines. In this paper, the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields. The advantages of hiding the field mill probes in the ground are studied. The charge inversion algorithm is optimized in order to decrease the impact of measurement errors. Based on the experimental results, the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied. The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height. Compared with the total electric field strengths, the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.

  20. 6. INTERIOR VIEW, NORTHEAST CORNER OF GROUND LEVEL SHOWING ELECTRIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. INTERIOR VIEW, NORTHEAST CORNER OF GROUND LEVEL SHOWING ELECTRIC MOTOR THAT POWERED GEARS WHICH IN TURN DROVE SHAFT (Electric motor, Crocker-Wheeler Company, Ampere, New Jersey, No. 151203, 20 hp at 775 rmp, 230 volt, 23.5 amp) - Huntingdon Furnace, Grist Mill, 2 miles northwest of Colerain Mansion, Franklinville, Huntingdon County, PA

  1. USAF Radiofrequency Radiation Bioeffects Research Program - A Review

    DTIC Science & Technology

    1981-12-01

    Experimental Methods--SARa have been measured in scaled saline spheroidal phantoms irradiated by the near fields of short electric monopoles above ground planes...aperture analysis might be the case where some industrial machines have an equivalent electric dipole parallel to the operator, which causes maximum...short electric monopoles on a ground plane simulating electric dipoles. Some results of these measurements are shown in Fig. 16, with the measured

  2. Alternate concepts study extension. Volume 2: Part 4: Avionics

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A recommended baseline system is presented along with alternate avionics systems, Mark 2 avionics, booster avionics, and a cost summary. Analyses and discussions are included on the Mark 1 orbiter avionics subsystems, electrical ground support equipment, and the computer programs. Results indicate a need to define all subsystems of the baseline system, an installation study to determine the impact on the crew station, and a study on access for maintenance.

  3. High Voltage Discharge Profile on Soil Breakdown Using Impulse Discharge

    NASA Astrophysics Data System (ADS)

    Fajingbesi, F. E.; Midi, N. S.; Elsheikh, E. M. A.; Yusoff, S. H.

    2017-06-01

    Grounding terminals are mandatory in electrical appliance design as they provide safety route during overvoltage faults. The soil (earth) been the universal ground is assumed to be at zero electric potential. However, due to properties like moisture, pH and available nutrients; the electric potential may fluctuate between positive and negative values that could be harmful for internally connected circuits on the grounding terminal. Fluctuations in soil properties may also lead to current crowding effect similar to those seen at the emitters of semiconductor transistors. In this work, soil samples are subjected to high impulse voltage discharge and the breakdown characteristics was profiled. The results from profiling discharge characteristics of soil in this work will contribute to the optimization of grounding protection system design in terms of electrode placement. This would also contribute to avoiding grounding electrode current crowding, ground potential rise fault and electromagnetic coupling faults.

  4. Photovoltaic module mounting clip with integral grounding

    DOEpatents

    Lenox, Carl J.

    2010-08-24

    An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.

  5. 30 CFR 77.701-2 - Approved methods of grounding metallic frames, casings, and other enclosures of electric...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... from a direct-current power system with one polarity grounded will be approved: (1) A solid connection..., casings, and other enclosures of electric equipment receiving power from a direct-current power system. 77... enclosures of electric equipment receiving power from a direct-current power system. (a) The following...

  6. 30 CFR 77.701-2 - Approved methods of grounding metallic frames, casings, and other enclosures of electric...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... from a direct-current power system with one polarity grounded will be approved: (1) A solid connection..., casings, and other enclosures of electric equipment receiving power from a direct-current power system. 77... enclosures of electric equipment receiving power from a direct-current power system. (a) The following...

  7. Charge-Dissipative Electrical Cables

    NASA Technical Reports Server (NTRS)

    Kolasinski, John R.; Wollack, Edward J.

    2004-01-01

    Electrical cables that dissipate spurious static electric charges, in addition to performing their main functions of conducting signals, have been developed. These cables are intended for use in trapped-ion or ionizing-radiation environments, in which electric charges tend to accumulate within, and on the surfaces of, dielectric layers of cables. If the charging rate exceeds the dissipation rate, charges can accumulate in excessive amounts, giving rise to high-current discharges that can damage electronic circuitry and/or systems connected to it. The basic idea of design and operation of charge-dissipative electrical cables is to drain spurious charges to ground by use of lossy (slightly electrically conductive) dielectric layers, possibly in conjunction with drain wires and/or drain shields (see figure). In typical cases, the drain wires and/or drain shields could be electrically grounded via the connector assemblies at the ends of the cables, in any of the conventional techniques for grounding signal conductors and signal shields. In some cases, signal shields could double as drain shields.

  8. Study on Spacelab software development and integration concepts

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A study was conducted to define the complexity and magnitude of the Spacelab software challenge. The study was based on current Spacelab program concepts, anticipated flight schedules, and ground operation plans. The study was primarily directed toward identifying and solving problems related to the experiment flight application and tests and checkout software executing in the Spacelab onboard command and data management subsystem (CDMS) computers and electrical ground support equipment (EGSE). The study provides a conceptual base from which it is possible to proceed into the development phase of the Software Test and Integration Laboratory (STIL) and establishes guidelines for the definition of standards which will ensure that the total Spacelab software is understood prior to entering development.

  9. Negative surface streamers propagating on TiO2 and γ-Al2O3-supported Ag catalysts: ICCD imaging and modeling study

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Ha; Teramoto, Yoshiyuki; Ogata, Atsushi; Kang, Woo Seok; Hur, Min; Song, Young-Hoon

    2018-06-01

    Surface streamers propagating on the surface of titanium dioxide (TiO2) and alumina (γ-Al2O3) were studied in negative polarity using intensified charge coupled device (ICCD) imaging and numerical simulation. Detailed time-resolved ICCD images of cathode-directed streamers (CDSs) emanating from a ground electrode are first presented in this report. Instead of primary streamers in positive polarity, only a glow-like discharge appeared in the early stage at the cathode under negative polarity. After this discharge disappeared, a counter-propagating CDS initiated from the ground electrode (anode). Numerical simulation indicated that strong electric fields at the pellet-anode and the formation of positive ion rich local spots were the main reason for the CDS formation near the ground electrode. The maximum velocity was 750 km s‑1 for Ag-supported γ-Al2O3 and 550 km s‑1 for Ag-supported TiO2, respectively. In contrast to the CDS in the gas-phase with a positive polarity, the CDS in a catalyst packed-bed under negative polarity showed more branching and a larger number of streamers in the presence of oxygen than in pure N2.

  10. Effect of near-earth thunderstorms electric field on the intensity of ground cosmic ray positrons/electrons in Tibet

    NASA Astrophysics Data System (ADS)

    Zhou, X. X.; Wang, X. J.; Huang, D. H.; Jia, H. Y.

    2016-11-01

    Monte Carlo simulations are performed to study the correlation between the ground cosmic ray intensity and near-earth thunderstorms electric field at YBJ (located at YangBaJing, Tibet, China, 4300 m a. s. l.). The variations of the secondary cosmic ray intensity are found to be highly dependent on the strength and polarity of the electric field. In negative fields and in positive fields greater than 600 V/cm, the total number of ground comic ray positrons and electrons increases with increasing electric field strength. And these values increase more obviously when involving a shower with lower primary energy or a higher zenith angle. While in positive fields ranging from 0 to 600 V/cm, the total number of ground comic ray positrons and electrons declines and the amplitude is up to 3.1% for vertical showers. A decrease of intensity occurs in inclined showers within the range of 0-500 V/cm, which is accompanied by smaller amplitudes. In this paper, the intensity changes are analyzed, especially concerning those decreasing phenomena in positive electric fields. Our simulation results could be helpful in understanding the decreases observed in some ground-based experiments (such as the Carpet air shower array and ARGO-YBJ), and also be useful in understanding the acceleration mechanisms of secondary charged particles caused by an atmospheric electric field.

  11. Electrochemical stabilization of clayey ground

    USGS Publications Warehouse

    Rzhanitzin, B.A.; Sokoloff, V.P.

    1947-01-01

    Recently developed new methods of stabilization of weak grounds (e.g. the silicate treatment) are based on injection of chemical solutions into the ground. Such methods are applicable accordingly only to the kinds of ground that have the coefficient of filtration higher than 2 meters per 24 hours and permit penetration of the chemical solutions under pressure. This limit, however, as it is shown by our experience in construction, excludes a numerous and an important class of grounds, stabilization of which is indispensable in many instances. For example, digging of trenches and pits in clayey, silty, or sandy ground shows that all these types act like typical "floaters" (sluds? -S) in the presence of the ground water pressure. There were several instances in the canalization of the city of Moskow where the laying of trenches below the ground water level has led to extreme difficulties with clayey and silty ground. Similar examples could be cited in mining, engineering hydrology, and railroad construction. For these reasons, the development of methods of stabilizing such difficult types of ground has become an urgent problem of our day. In 1936, the author began his investigations, at the ground Stabilization Laboratory of VODGEO Institute, with direct electrical current as the means of stabilization of grounds. Experiments had shown that a large number of clayey types, following passage of direct electrical current, undergoes a transformation of its physico-chemical properties. It was established that the (apparent -S) density of the ground is substantially increased in consequence of the application of direct electrical current. The ground loses also its capacity to swell and to soften in water. Later, after a more detailed study of the physico-chemical mechanism of the electrical stabilization, it became possible to develop the method so as to make it applicable to sandy and silty as well as to clayey ground. By this time (1941, S.), the method has already been tested in the field, was found satisfactory, and is being introduced into construction practice.

  12. The electric field change caused by a ground flash with multiple channels

    NASA Technical Reports Server (NTRS)

    Nakano, Minoru; Takagi, Nobuyuki; Arima, Izumi; Kawasaki, Zen-Ichiro; Takeuti, Tosio

    1991-01-01

    The electric field and the magnetic flux changes caused by a ground flash with multiple channels are measured near the electric power transmission lines during winter thunderstorms. Triggered lightning strokes and the following associated strokes to the transmission line towers produce characteristic waveforms of the field changes. A few examples of the waveforms and a brief discussion are given.

  13. Expert systems for MSFC power systems

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1988-01-01

    Future space vehicles and platforms including Space Station will possess complex power systems. These systems will require a high level of autonomous operation to allow the crew to concentrate on mission activities and to limit the number of ground support personnel to a reasonable number. The Electrical Power Branch at NASA-Marshall is developing advanced automation approaches which will enable the necessary levels of autonomy. These approaches include the utilization of knowledge based or expert systems.

  14. Federal Aviation Administration (FAA) Reauthorization: An Overview of Legislative Action in the 111th Congress

    DTIC Science & Technology

    2010-03-30

    heating and cooling , base load, back- up power, and power for on-road airport vehicles and ground support equipment, to identify opportunities to...clarified as an “ airport development” and made eligible under certain circumstances. Projects to provide air conditioning, heating or electric power...with the airport and generate economic benefits to both the airport operator and the affected local jurisdiction. Senate-passed H.R. 1586 Section

  15. 46 CFR 111.05-13 - Grounding connection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Grounding connection. 111.05-13 Section 111.05-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... power sources operating in parallel in the system. ...

  16. 46 CFR 111.05-13 - Grounding connection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Grounding connection. 111.05-13 Section 111.05-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... power sources operating in parallel in the system. ...

  17. 46 CFR 111.05-13 - Grounding connection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Grounding connection. 111.05-13 Section 111.05-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... power sources operating in parallel in the system. ...

  18. 46 CFR 111.05-13 - Grounding connection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Grounding connection. 111.05-13 Section 111.05-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... power sources operating in parallel in the system. ...

  19. Design/cost tradeoff studies. Appendix A. Supporting analyses and tradeoffs, book 2. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Attitude reference systems for use with the Earth Observatory Satellite (EOS) are described. The systems considered are fixed and gimbaled star trackers, star mappers, and digital sun sensors. Covariance analyses were performed to determine performance for the most promising candidate in low altitude and synchronous orbits. The performance of attitude estimators that employ gyroscopes which are periodically updated by a star sensor is established by a single axis covariance analysis. The other systems considered are: (1) the propulsion system design, (2) electric power and electrical integration, (3) thermal control, (4) ground data processing, and (5) the test plan and cost reduction aspects of observatory integration and test.

  20. Hitchhiker-G: A new carrier system for attached shuttle payloads

    NASA Technical Reports Server (NTRS)

    Goldsmith, T. C.

    1987-01-01

    A new carrier system has been developed for economical and quick response flight of small attached payloads on the space shuttle. Hitchhiker-G can accommodate up to 750 lb. of customer payloads in canisters or mounted to an exposed plate. The carrier connects to the orbiter's electrical systems and provides up to six customers with standard electrical services including power, real time telemetry, and commands. A transparent data and command system concept is employed to allow the customer to easily use his own ground support equipment and personnel to control his payload during integration and flight operations. The first Hitchhiker-G was successfully flown in January 1986 on STS 61C.

  1. Calculations of lightning return stroke electric and magnetic fields above ground

    NASA Technical Reports Server (NTRS)

    Master, M. J.; Uman, M. A.; Ling, Y. T.; Standler, R. B.

    1981-01-01

    Lin et al., (1980) presented a lightning return stroke model with which return stroke electric and magnetic fields measured at ground level could be reproduced. This model and a modified version of it, in which the initial current peak decays with height above ground, are used to compute waveforms for altitudes from 0-10 km and at ranges of 20 m to 10 km. Both the original and modified models gave accurate predictions of measured ground-based fields. The use of the calculated fields in calibrating airborne field measurements from simultaneous ground and airborne data is discussed.

  2. Ground-based measurements of the vertical E-field in mountainous regions and the "Austausch" effect

    NASA Astrophysics Data System (ADS)

    Yaniv, Roy; Yair, Yoav; Price, Colin; Mkrtchyan, Hripsime; Lynn, Barry; Reymers, Artur

    2017-06-01

    Past measurements of the atmospheric vertical electric field (Ez or potential gradient) at numerous land stations showed a strong response of the daily electric field to a morning local effect known as ;Austausch; - the transport of electrical charges due to increased turbulence. In mountainous regions, nocturnal charge accumulation, followed by an attachment process to aerosols near the surface in valleys, known as the electrode effect, is lifted as a charged aerosol layer by anabatic (upslope) winds during the morning hours due to solar heating. Ground-based measurements during fair weather days were conducted at three mountain stations in Israel and Armenia. We present results of the mean diurnal variation of Ez and make comparisons with the well-known Carnegie curve and with past measurements of Ez on mountains. We report a good agreement between the mean diurnal curves of Ez at various mountain stations and the time of local sunrise when the Ez is found to increase. We attribute this morning maximum to the Austausch (or exchange) layer effect. We support our findings with conduction and turbulent current measurements showing high values of ions and charged aerosols being transported by winds from morning to noon local time, and by model simulations showing the convergence of winds in the early morning hours toward the mountain peak.

  3. A photonic link for donor spin qubits in silicon

    NASA Astrophysics Data System (ADS)

    Simmons, Stephanie

    Atomically identical donor spin qubits in silicon offer excellent native quantum properties, which match or outperform many qubit rivals. To scale up such systems it would be advantageous to connect silicon donor spin qubits in a cavity-QED architecture. Many proposals in this direction introduce strong electric dipole interactions to the otherwise largely isolated spin qubit ground state in order to couple to superconducting cavities. Here I present an alternative approach, which uses the built-in strong electric dipole (optical) transitions of singly-ionized double donors in silicon. These donors, such as chalcogen donors S +, Se + and Te +, have the same ground-state spin Hamiltonians as shallow donors yet offer mid-gap binding energies and mid-IR optical access to excited orbital states. This photonic link is spin-selective which could be harnessed to measure and couple donor qubits using photonic cavity-QED. This approach should be robust to device environments with variable strains and electric fields, and will allow for CMOS- compatible, bulk-like, spatially separated donor qubit placement, optical parity measurements, and 4.2K operation. I will present preliminary data in support of this approach, including 4.2K optical initialization/readout in Earth's magnetic field, where long T1 and T2 times have been measured.

  4. Mishaps with Oxygen in NASA Operations

    NASA Technical Reports Server (NTRS)

    Ordin, Paul M.

    1971-01-01

    Data from a substantial number of oxygen mishaps obtained from NASA and contractor records are presented. Information from several Air Force records, concerning oxygen accidents involving aircraft operations, are also included. Descriptions of the mishaps and their causes, for both liquid and gaseous oxygen in ground test facilities and space vehicle systems, are given. A number of safety regulations aimed at reducing the accident probability is discussed. The problems related to material compatibility and materials testing are considered, and the limited information on factors affecting the ignition of materials in oxygen is presented. In addition, details are given of several of the accident/incidents listed in order to define the combination of conditions causing the mishap. In addition to propellant system mishaps, accident/incidents which occurred in space and ground system structures were included, as well as those in electrical systems, ground support facilities, ordnance, and related operations.

  5. Electrical Grounding - a Field for Geophysicists and Electrical Engineers Partnership

    NASA Astrophysics Data System (ADS)

    Freire, P. F.; Pane, E.; Guaraldo, N.

    2012-12-01

    Technology for designing ground electrodes for high-voltage direct current transmission systems (HVDC) has being using in the last years, deep soil models based on a wide range of geophysical methods. These models shall include detailed representation of shallow soil, down to 100 meters, in order to allow the evaluation of the soil conditions where the ground electrodes will be buried. Also deep soil models are needed, to be used for the interference studies, which shall represent a soil volume of about 15 km deep and a surface area of about 15 to 30 km radius. Large facilities for power plants (hydroelectric and wind farms, for example) and industrial complexes (such as petrochemical plants) has become usual at the current stage of Brazil industrialization. Grounding mats for these facilities are made of a buried cooper mesh, interconnected to a wide variety of metallic masses, such as steel reinforced concrete foundations, ducts in general etc. These grounding systems may present dimensions with the order of hundreds of meters, and, at least in Brazil, are usually calculated by using electrical resistivity soil models, based on short spacing Wenner measurements (with maximum spacing of about 64 m.). The soil model shall be the best possible representation of the environment in which the grounding electrodes are immersed, for the purpose of calculation of resistance or for digital simulation. The model to be obtained is limited by the amount and quality of soil resistivity measurements are available, and the resources to be used in the calculations and simulations. Geophysics uses a wide range of technologies for exploring subsoil, ranging from surface measurements to wells logging - seismic, gravimetric, magnetic, electrical, electromagnetic and radiometric. The electrical and electromagnetic methods includes various measurement techniques (Wenner, Schlumberger, TDEM, Magneto-telluric etc.), which together allow the development of complex resistivity soil models, layered stratified or showing lateral variations, ranging down to several tens of kilometers deep, reaching the crust-mantle interface (typically with the order of 30-40 km). This work aims to analyze the constraints of the current soil models being used for grounding electrodes design, and suggests the need of a soil modeling methodology compatible with large grounding systems. Concerning the aspects related to soil modeling, electrical engineers need to get aware of geophysics resources, such as: - geophysical techniques for soil electrical resistivity prospection (down to about 15 kilometers deep); and - techniques for converting field measured data, from many different geophysical techniques, into adequate soil models for grounding grid simulation. It is also important to equalize the basic knowledge for the professionals that are working together for the specific purpose of soil modeling for electrical grounding studies. The authors have experienced the situation of electrical engineers working with geophysicists, but it was not clear for the latter the effective need of the electrical engineers, and for the engineers it was unknown the available geophysical resources, and also, what to do convert the large amount of soil resistivity data into a reliable soil model.

  6. 46 CFR 111.05-33 - Equipment safety grounding (bonding) conductors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Equipment safety grounding (bonding) conductors. 111.05... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-33 Equipment safety grounding (bonding) conductors. (a) Each equipment-grounding conductor must...

  7. 46 CFR 111.05-33 - Equipment safety grounding (bonding) conductors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Equipment safety grounding (bonding) conductors. 111.05... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-33 Equipment safety grounding (bonding) conductors. (a) Each equipment-grounding conductor must...

  8. 46 CFR 111.05-33 - Equipment safety grounding (bonding) conductors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Equipment safety grounding (bonding) conductors. 111.05... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-33 Equipment safety grounding (bonding) conductors. (a) Each equipment-grounding conductor must...

  9. Decrease in Ground-Run Distance of Small Airplanes by Applying Electrically-Driven Wheels

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroshi; Nishizawa, Akira

    A new takeoff method for small airplanes was proposed. Ground-roll performance of an airplane driven by electrically-powered wheels was experimentally and computationally studied. The experiments verified that the ground-run distance was decreased by half with a combination of the powered driven wheels and propeller without increase of energy consumption during the ground-roll. The computational analysis showed the ground-run distance of the wheel-driven aircraft was independent of the motor power when the motor capability exceeded the friction between tires and ground. Furthermore, the distance was minimized when the angle of attack was set to the value so that the wing generated negative lift.

  10. Ground states of baryoleptonic Q-balls in supersymmetric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoemaker, Ian M.; Kusenko, Alexander

    2008-10-01

    In supersymmetric generalizations of the standard model, all stable Q-balls are associated with some flat directions. We show that, if the flat direction has both the baryon number and the lepton number, the scalar field inside the Q-ball can deviate slightly from the flat direction in the ground state. We identify the true ground states of such nontopological solitons, including the electrically neutral and electrically charged Q-balls.

  11. Electric-Field Control of Oxygen Vacancies and Magnetic Phase Transition in a Cobaltite/Manganite Bilayer

    NASA Astrophysics Data System (ADS)

    Cui, B.; Song, C.; Li, F.; Zhong, X. Y.; Wang, Z. C.; Werner, P.; Gu, Y. D.; Wu, H. Q.; Saleem, M. S.; Parkin, S. S. P.; Pan, F.

    2017-10-01

    Manipulation of oxygen vacancies (VO ) in single oxide layers by varying the electric field can result in significant modulation of the ground state. However, in many oxide multilayers with strong application potentials, e.g., ferroelectric tunnel junctions and solid-oxide fuel cells, understanding VO behavior in various layers under an applied electric field remains a challenge, owing to complex VO transport between different layers. By sweeping the external voltage, a reversible manipulation of VO and a corresponding fixed magnetic phase transition sequence in cobaltite/manganite (SrCoO3 -x/La0.45Sr0.55MnO3 -y ) heterostructures are reported. The magnetic phase transition sequence confirms that the priority of electric-field-induced VO formation or annihilation in the complex bilayer system is mainly determined by the VO formation energies and Gibbs free-energy differences, which is supported by theoretical analysis. We not only realize a reversible manipulation of the magnetic phase transition in an oxide bilayer but also provide insight into the electric-field control of VO engineering in heterostructures.

  12. High Resolution Modeling of the Thermospheric Response to Energy Inputs During the RENU-2 Rocket Flight

    NASA Astrophysics Data System (ADS)

    Walterscheid, R. L.; Brinkman, D. G.; Clemmons, J. H.; Hecht, J. H.; Lessard, M.; Fritz, B.; Hysell, D. L.; Clausen, L. B. N.; Moen, J.; Oksavik, K.; Yeoman, T. K.

    2017-12-01

    The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. The Rocket Experiment for Neutral Upwelling -2 (RENU-2) launched from Andoya, Norway at 0745UT on 13 December 2015 into the ionosphere-thermosphere beneath the magnetic cusp. It made measurements of the energy inputs (e.g., precipitating particles, electric fields) and the thermospheric response to these energy inputs (e.g., neutral density and temperature, neutral winds). Complementary ground based measurements were made. In this study, we use a high resolution two-dimensional time-dependent non hydrostatic nonlinear dynamical model driven by rocket and ground based measurements of the energy inputs to simulate the thermospheric response during the RENU-2 flight. Model simulations will be compared to the corresponding measurements of the thermosphere to see what they reveal about thermospheric structure and the nature of magnetosphere-ionosphere-thermosphere coupling in the cusp. Acknowledgements: This material is based upon work supported by the National Aeronautics and Space Administration under Grants: NNX16AH46G and NNX13AJ93G. This research was also supported by The Aerospace Corporation's Technical Investment program

  13. Touch and step potential analysis at 23.9kV to 4.16kV & 13.8kV to 4.16kV distribution substations with pad-mounted transformers, floating grounds, and other exposed ungrounded metal bodies using WinIGS

    NASA Astrophysics Data System (ADS)

    Guzman, David G.

    An electrical substation is composed of various subsystems that allow for the effective and safe operation of the power grid. One of the subsystems integrating a conventional substation is defined as the ground grid system. This system allows for the effective operation of the power grid and all the electrical equipment connected to it by providing a ground potential reference, commonly known as the system ground. In addition, the ground grid system provides safety to the workers and the public transiting inside or living nearby a substation by reducing the step and touch potential (or voltage) levels present during a system fault. In today's utility industry practices there is an increasing trend for using pad-mounted electrical equipment for substation applications in an effort to construct new or upgrade existing electrical facilities inside limited property spaces. This thesis work presents an analysis for the effects of touch and step voltages at existing distribution substations where 23.9kV to 4.16kV & 13.8kV to 4.16kV pad-mounted transformers and other pad-mounted switchgear was installed to replace the traditional station class equipment. Moreover, this study will expose modeling techniques employed to define and determine the effects of floating grounds and other exposed metal bodies inside or surrounding these substations using WinIGS; this is in an effort to determine any risks of electric shock associated with this type of installations. The results presented in this work are intended to verify the requirements for the ground grid analysis and design for 4.16kV distribution substations with pad-mounted equipment in order to prevent dangerous step and touch voltage levels appearing at these sites during system faults; and ultimately prevent exposing individuals to the risk of an electric shock.

  14. TARDEC Ground Vehicle Robotics: Vehicle Dynamic Characterization and Research

    DTIC Science & Technology

    2015-09-01

    inferred roll angles that are found with the IMU . This is usually done with UNCLASSIFIED UNCLASSIFIED linear potentiometers, which have an electrical...wire electric, Electric traction control. Suspension Styles: Suspension is what keeps the vehicle off the ground and mechanically isolated from the...lot” maneuvers. Because of this, they roll with no slip angles. This means that the steering angles of the front wheels must be calibrated perfectly

  15. 46 CFR 111.05-21 - Ground detection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ground detection. 111.05-21 Section 111.05-21 Shipping... REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-21 Ground detection. There must be ground detection for each: (a) Electric propulsion system; (b) Ship's service power system; (c...

  16. 46 CFR 111.05-21 - Ground detection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ground detection. 111.05-21 Section 111.05-21 Shipping... REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-21 Ground detection. There must be ground detection for each: (a) Electric propulsion system; (b) Ship's service power system; (c...

  17. Research on lettuce growth technology onboard Chinese Tiangong II Spacelab

    NASA Astrophysics Data System (ADS)

    Shen, Yunze; Guo, Shuangsheng; Zhao, Pisheng; Wang, Longji; Wang, Xiaoxia; Li, Jian; Bian, Qiang

    2018-03-01

    Lettuce was grown in a space vegetable cultivation facility onboard the Tiangong Ⅱ Spacelab during October 18 to November 15, 2016, in order to testify the key cultivating technology in CELSS under spaceflight microgravity condition. Potable water was used for irrigation of rooting substrate and the SRF (slowly released fertilizer) offered mineral nutrition for plant growth. Water content and electric conductivity in rooting substrate were measured based on FDR(frequency domain reflectometry) principle applied first in spaceflight. Lettuce germinated with comparative growth vigor as the ground control, showing that the plants appeared to be not stressed by the spaceflight environment. Under microgravity, lettuce grew taller and showed deeper green color than the ground control. In addition, the phototropism of the on-orbit plants was more remarkable. The nearly 30-d spaceflight test verified the seed fixation technology and water& nutrition management technology, which manifests the feasibility of FDR being used for measuring moisture content and electric conductivity in rooting zone under microgravity. Furthermore, the edibility of the space-grown vegetable was proved, providing theoretical support for astronaut to consume the space vegetable in future manned spaceflight.

  18. Appraisal of ground water for irrigation in the Little Falls area, Morrison County, Minnesota

    USGS Publications Warehouse

    Helgesen, John O.

    1973-01-01

    Possible future response to pumping was studied through electric analog analyses by stressing the modeled aquifer system in accordance with areal variations in expected well yields. The model interpretation indicates most of the sustained pumpage would be obtained from intercepted base flow and evapotranspiration. Simulated withdrawals totaling 18,000 acre-feet of water per year for 10 years resulted in little adverse effect on the aquifer system. Simulated larger withdrawals, assumed to represent denser well spacing, caused greater depletion of aquifer storage, streamflow, and lake volumes, excessively so in some areas. Results of model analyses provide a guide for ground-water development by identifying the capability of all parts of the aquifer system to support sustained pumping for irrigation.

  19. Photovoltaic array mounting apparatus, systems, and methods

    DOEpatents

    West, John Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2014-12-02

    An apparatus for mounting a photovoltaic (PV) module on a surface, including a support with an upper surface, a lower surface, tabs, one or more openings, and a clip comprising an arm and a notch, where the apparatus resists wind forces and seismic forces and creates a grounding electrical bond between the PV module, support, and clip. The invention further includes a method for installing PV modules on a surface that includes arranging supports in rows along an X axis and in columns along a Y axis on a surface such that in each row the distance between two neighboring supports does not exceed the length of the longest side of a PV module and in each column the distance between two neighboring supports does not exceed the length of the shortest side of a PV module.

  20. Simple circuit monitors "third wire" in ac lines

    NASA Technical Reports Server (NTRS)

    Kojima, T. T.; Stuck, D. E.

    1980-01-01

    Device detects interruption of ground connection in three-wire electrical equipment and shuts off ac power to prevent shock hazard. Silicon-controlled rectifiers detect floating ground, and deenergize optoelectric relays thereby breaking power connections. Circuit could be incorporated into hand tools, appliances, and other electrical equipment.

  1. 46 CFR 111.05-15 - Neutral grounding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Neutral grounding. 111.05-15 Section 111.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral...

  2. 46 CFR 111.05-15 - Neutral grounding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Neutral grounding. 111.05-15 Section 111.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral...

  3. 46 CFR 111.05-15 - Neutral grounding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Neutral grounding. 111.05-15 Section 111.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral...

  4. 46 CFR 111.05-15 - Neutral grounding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Neutral grounding. 111.05-15 Section 111.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral...

  5. 46 CFR 111.05-15 - Neutral grounding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Neutral grounding. 111.05-15 Section 111.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral...

  6. Oceanic Storm Characteristics Off the Kennedy Space Center Coast

    NASA Technical Reports Server (NTRS)

    Wilson, J.; Simpson, A. A.; Cummins, K. L.; Kiriazes, J. J.; Brown, R. G.; Mata, C. T.

    2014-01-01

    Natural cloud-to-ground lightning may behave differently depending on the characteristics of the attachment mediums, including the peak current (inferred from radiation fields) and the number of ground strike locations per flash. Existing literature has raised issues over the yea"rs on the behavior of lightning over ocean terrain and these phenomena are not yet well understood. To investigate lightning characteristics over differing terrain we will obtain identical observations over adjacent land and ocean regions during both clear air and thunderstorm periods comparing the electric field behavior over these various terrains. For this, a 3-meter NOAA buoy moored 20NM off the coast of the Kennedy Space Center was instrumented with an electric field mill and New Mexico Tech's slow antenna to measure the electric fields aloft and compared to the existing on-shore electric field mill suite of 31 sensors and a coastal slow antenna. New Mexico Tech's Lightning Mapping Array and the Eastern Range Cloud-to-Ground Lightning Surveillance System, along with the network of high-speed cameras being used to capture cloud-to-ground lightning strikes over the terrain regions to identify a valid data set and verify the electric fields. This is an on-going project with the potential for significant impact on the determination of lightning risk to objects on the ground. This presentation will provide results and instrumentation progress to date.

  7. Characterization of Site for Installing Open Loop Ground Source Heat Pump System

    NASA Astrophysics Data System (ADS)

    Yun, S. W.; Park, Y.; Lee, J. Y.; Yi, M. J.; Cha, J. H.

    2014-12-01

    This study was conducted to understand hydrogeological properties of site where open loop ground source heat pump system will be installed and operated. Groundwater level and water temperature were hourly measured at the well developed for usage of open loop ground source heat pump system from 11 October 2013 to 8 January 2014. Groundwater was sampled in January and August 2013 and its chemical and isotopic compositions were analyzed. The bedrock of study area is the Jurassic granodiorite that mainly consists of quartz (27.9 to 46.8%), plagioclase (26.0 to 45.5%), and alkali feldspar (9.5 to 18.7%). The groundwater level ranged from 68.30 to 68.94 m (above mean sea level). Recharge rate was estimated using modified watertable fluctuation method and the recharge ratios was 9.1%. The water temperature ranged from 14.8 to 15.0oC. The vertical Increase rates of water temperature were 1.91 to 1.94/100 m. The water temperature showed the significant seasonal variation above 50 m depth, but had constant value below 50 m depth. Therefore, heat energy of the groundwater can be used securely in open loop ground source heat pump system. Electrical conductivity ranged from 120 to 320 µS/cm in dry season and from 133 to 310 µS/cm in wet season. The electrical conductivity gradually decreased with depth. In particular, electrical conductivity in approximately 30 m depth decreased dramatically (287 to 249 µS/cm) in wet season. The groundwater was Ca-HCO3 type. The concentrations of dissolved components did not show the vertically significant variations from 0 to 250 m depth. The δ18O and δD ranged from -9.5 to -9.4‰ and from -69 to -68‰. This work is supported by the New and Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No.20123040110010).

  8. Hitchhiker capabilities

    NASA Technical Reports Server (NTRS)

    Goldsmith, Theodore C.

    1988-01-01

    A carrier system has been developed for economical and quick response flight of small attached payloads on the space shuttle. Hitchhiker can accommodate up to 750 lb of customer payloads in canisters or mounted to an exposed side-mount plate, or up to 1200 lb mounted on a cross-bay structure. The carrier connects to the orbiter's electrical systems and provides up to six customers with standard electrical services including power, real time telemetry and commands. A transparent data and command system concept is employed to allow the customer to easily use his own ground support equipment and personnel to control his payload during integration and flight operations. A general description of the Hitchhiker program and the Shuttle Payload of Opportunity Carrier (SPOC) is given and future enhancements are outlined.

  9. 30 CFR 77.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Definitions. For the purpose of this part 77, the term: (a) Active workings means any place in a coal mine where miners are normally required to work or travel; (b) American Table of Distances means the current... detonators, and delay electric blasting caps. (p) Electrical grounding means to connect with the ground to...

  10. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  11. A comparison of ground-based and space flight data: Atomic oxygen reactions with boron nitride and silicon nitride

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.; Koontz, S. L.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) have been studied in low Earth orbit (LEO) flight experiments and in a ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed the materials coated over thin (approx 250 Angstrom) silver films whose electrical resistance was measured in situ to detect penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the in-flight and ground-based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the in-flight or ground-based experiments. The ground-based results show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground-based facility in terms of reproducing LEO flight results.

  12. Schumann Resonances on Mars - a Two-layer Ground Case

    NASA Astrophysics Data System (ADS)

    Kozakiewicz, J.; Kulak, A.; Mlynarczyk, J.

    2012-04-01

    Schumann resonances (SR) are global resonances of electromagnetic waves in the range of extremely low frequencies (ELF) propagating in a cavity formed by a planetary surface and a lower ionosphere. SR are induced by electrical discharges, which on Earth are associated mainly with lightning. They were predicted by Winfried Otto Schumann in 1952. SR are supposed to occur on Mars, although many properties of the Martian environment are still unknown. One of the most important problems in modeling SR on Mars is to estimate electrical properties of the Martian ground and their influence on ELF waves propagation. The Martian crust is composed mainly of basaltic materials. Water, which causes significant increase in electrical conductivity of rocks, does not exist in liquid state at the surface of Mars. Therefore the Martian ground is believed to be a low conductive one. However, it is possible that some liquid water may be present at various depths below the surface. In our previous study we have developed an analytical model, based on the characteristic electric and magnetic altitudes' formalism, that has allowed us to take into consideration the Martian ground. Using this new model, we found that basaltic ground of low conductivity greatly influenced the SR parameters. In this work, we carried out simulations in order to characterize an influence of vertical changes in ground properties on the parameters of the Martian ground-ionosphere waveguide. We have considered several cases of a two-layer ground, in which the lower layer was of higher conductivity than the upper one. The obtained results indicate how the SR parameters depend on electrical conductivity, permittivity, and depth of the layers. The results also point out the importance of studying SR on Mars and the need for further research in propagation of ELF waves in the Martian environment. SR can be used as a remote sensing tool for exploration of the Martian crust. Furthermore, they can be especially useful for groundwater detection.

  13. Electrical Methods: Resistivity Methods

    EPA Pesticide Factsheets

    Surface electrical resistivity surveying is based on the principle that the distribution of electrical potential in the ground around a current-carrying electrode depends on the electrical resistivities and distribution of the surrounding soils and rocks.

  14. KSC-06pd1938

    NASA Image and Video Library

    2006-08-26

    KENNEDY SPACE CENTER, FLA. - The dark clouds of a heavy rainstorm moving into Kennedy Space Center in the late afternoon on Sat., August 26, 2006, seem to illuminate the Space Shuttle Atlantis as it sits on Launch Pad 39B. A lightning strike to the pad's lightning protection system on August 25, caused the mission management team to postpone the launch of mission STS-115 for 24 hours in order to review all electrical systems on the space shuttle and ground support equipment at the pad. Photo credit: NASA/Ken Thornsley.

  15. KSC-06pd1937

    NASA Image and Video Library

    2006-08-26

    KENNEDY SPACE CENTER, FLA. - The dark clouds of a heavy rainstorm moving into Kennedy Space Center in the late afternoon on Sat., August 26, 2006, seem to illuminate the Space Shuttle Atlantis as it sits on Launch Pad 39B. A lightning strike to the pad's lightning protection system on August 25, caused the mission management team to postpone the launch of mission STS-115 for 24 hours in order to review all electrical systems on the space shuttle and ground support equipment at the pad. Photo credit: NASA/Ken Thornsley.

  16. 30 CFR 18.24 - Electrical clearances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Requirements § 18.24 Electrical clearances. Minimum clearances between uninsulated electrical conductor surfaces, or between uninsulated conductor surfaces and grounded metal surfaces, within the enclosure shall...

  17. 30 CFR 18.24 - Electrical clearances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Requirements § 18.24 Electrical clearances. Minimum clearances between uninsulated electrical conductor surfaces, or between uninsulated conductor surfaces and grounded metal surfaces, within the enclosure shall...

  18. 33 CFR 183.415 - Grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY BOATS AND ASSOCIATED EQUIPMENT Electrical Systems Manufacturer Requirements § 183.415 Grounding. If a boat has more than one gasoline engine, grounded cranking motor circuits must be connected to...

  19. 30 CFR 56.12026 - Grounding transformer and switchgear enclosures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Grounding transformer and switchgear enclosures... MINES Electricity § 56.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  20. 30 CFR 56.12026 - Grounding transformer and switchgear enclosures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding transformer and switchgear enclosures... MINES Electricity § 56.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  1. 30 CFR 56.12026 - Grounding transformer and switchgear enclosures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Grounding transformer and switchgear enclosures... MINES Electricity § 56.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  2. 30 CFR 56.12026 - Grounding transformer and switchgear enclosures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Grounding transformer and switchgear enclosures... MINES Electricity § 56.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  3. 30 CFR 56.12026 - Grounding transformer and switchgear enclosures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding transformer and switchgear enclosures... MINES Electricity § 56.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  4. Case Studies of Extreme Space Weather Effects on the New York State (NYS) Electric Power System

    NASA Astrophysics Data System (ADS)

    Chantale Damas, M.; Mohamed, Ahmed; Ngwira, Chigomyezo

    2017-04-01

    New York State (NYS) is home to one of the largest urban cities in the world, New York City (NYC). Understanding and mitigating the effects of extreme space weather events are important to reduce the vulnerabilities of the NYS present bulk power system, which includes NYC. Extreme space weather events perturb Earth's magnetic field and generate geo-electric fields that result in the flow of Geomagnetically Induced Currents (GICs) through transmission lines, followed by transformers and ground. GICs find paths to ground through transformer grounding wires causing half-cycle saturation to their magnetic cores. This causes transformers to overheat, inject harmonics to the grid and draw more reactive power than normal. Overheating, if sustained for a long duration, may lead to transformer failure or lifetime reduction. Presented work uses results from simulations performed by the Global SWMF-generated ground geomagnetic field perturbations. Results from computed values of simulated induced geo-electric fields at specific ground-based active INTERMAGNET magnetometer sites, combined with NYS electricity transmission network real data are used to examine the vulnerabilities of the NYS power grid. As an urban city with a large population, NYC is especially vulnerable and the results from this research can be used to model power systems for other urban cities.

  5. SEASAT study documentation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The proposed spacecraft consists of a bus module, containing all subsystems required for support of the sensors, and a payload module containing all of the sensor equipment. The two modules are bolted together to form the spacecraft, and electrical interfaces are accomplished via mated connectors at the interface plane. This approach permits independent parallel assembly and test operations on each module up until mating for final spacecraft integration and test operations. Proposed program schedules recognize the need to refine sensor/spacecraft interfaces prior to proceeding with procurement, reflect the lead times estimated by suppliers for delivery of equipment, reflect a comprehensive test program, and provide flexibility for unanticipated problems. The spacecraft systems are described in detail along with aerospace ground equipment, ground handling equipment, the launch vehicle, imaging radar incorporation, and systems tests.

  6. Finite Ground Coplanar (FGC) Waveguide: It's Characteristics and Advantages for Use in RF and Wireless Communication Circuits

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Katehi, Linda P. B.; Tentzeris, Emmanouil M.

    1998-01-01

    To solve many of the problems encountered when using conventional coplanar waveguide (CPW) with its semi-infinite ground planes, a new version of coplanar waveguide with electrically narrow ground planes has been developed. This new transmission line which we call Finite Ground Coplanar (FGC) waveguide has several advantages which make it a better transmission line for RF and wireless circuits. Since the ground planes are electrically narrow, spurious resonances created by the CPW ground planes and the metal carrier or package base are eliminated. In addition, lumped and distributed circuit elements may now be integrated into the ground strips in the same way as they traditionally have been integrated into the center conductor to realize novel circuit layouts that are smaller and have less parasitic reactance. Lastly, FGC is shown to have lower coupling between adjacent transmission lines than conventional CPW.

  7. Electrical Grounding Architecture for Unmanned Spacecraft

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This handbook is approved for use by NASA Headquarters and all NASA Centers and is intended to provide a common framework for consistent practices across NASA programs. This handbook was developed to describe electrical grounding design architecture options for unmanned spacecraft. This handbook is written for spacecraft system engineers, power engineers, and electromagnetic compatibility (EMC) engineers. Spacecraft grounding architecture is a system-level decision which must be established at the earliest point in spacecraft design. All other grounding design must be coordinated with and be consistent with the system-level architecture. This handbook assumes that there is no one single 'correct' design for spacecraft grounding architecture. There have been many successful satellite and spacecraft programs from NASA, using a variety of grounding architectures with different levels of complexity. However, some design principles learned over the years apply to all types of spacecraft development. This handbook summarizes those principles to help guide spacecraft grounding architecture design for NASA and others.

  8. A Scalable, Out-of-Band Diagnostics Architecture for International Space Station Systems Support

    NASA Technical Reports Server (NTRS)

    Fletcher, Daryl P.; Alena, Rick; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The computational infrastructure of the International Space Station (ISS) is a dynamic system that supports multiple vehicle subsystems such as Caution and Warning, Electrical Power Systems and Command and Data Handling (C&DH), as well as scientific payloads of varying size and complexity. The dynamic nature of the ISS configuration coupled with the increased demand for payload support places a significant burden on the inherently resource constrained computational infrastructure of the ISS. Onboard system diagnostics applications are hosted on computers that are elements of the avionics network while ground-based diagnostic applications receive only a subset of available telemetry, down-linked via S-band communications. In this paper we propose a scalable, out-of-band diagnostics architecture for ISS systems support that uses a read-only connection for C&DH data acquisition, which provides a lower cost of deployment and maintenance (versus a higher criticality readwrite connection). The diagnostics processing burden is off-loaded from the avionics network to elements of the on-board LAN that have a lower overall cost of operation and increased computational capacity. A superset of diagnostic data, richer in content than the configured telemetry, is made available to Advanced Diagnostic System (ADS) clients running on wireless handheld devices, affording the crew greater mobility for troubleshooting and providing improved insight into vehicle state. The superset of diagnostic data is made available to the ground in near real-time via an out-of band downlink, providing a high level of fidelity between vehicle state and test, training and operational facilities on the ground.

  9. 49 CFR 229.97 - Grounding fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded. ...

  10. 30 CFR 57.12026 - Grounding transformer and switchgear enclosures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Grounding transformer and switchgear enclosures... NONMETAL MINES Electricity Surface and Underground § 57.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  11. 30 CFR 57.12026 - Grounding transformer and switchgear enclosures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding transformer and switchgear enclosures... NONMETAL MINES Electricity Surface and Underground § 57.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  12. 30 CFR 57.12026 - Grounding transformer and switchgear enclosures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Grounding transformer and switchgear enclosures... NONMETAL MINES Electricity Surface and Underground § 57.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  13. 30 CFR 57.12026 - Grounding transformer and switchgear enclosures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding transformer and switchgear enclosures... NONMETAL MINES Electricity Surface and Underground § 57.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  14. 30 CFR 57.12026 - Grounding transformer and switchgear enclosures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Grounding transformer and switchgear enclosures... NONMETAL MINES Electricity Surface and Underground § 57.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  15. 49 CFR 229.97 - Grounding fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded. ...

  16. 49 CFR 229.97 - Grounding fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded. ...

  17. Engineering study for pallet adapting the Apollo laser altimeter and photographic camera system for the Lidar Test Experiment on orbital flight tests 2 and 4

    NASA Technical Reports Server (NTRS)

    Kuebert, E. J.

    1977-01-01

    A Laser Altimeter and Mapping Camera System was included in the Apollo Lunar Orbital Experiment Missions. The backup system, never used in the Apollo Program, is available for use in the Lidar Test Experiments on the STS Orbital Flight Tests 2 and 4. Studies were performed to assess the problem associated with installation and operation of the Mapping Camera System in the STS. They were conducted on the photographic capabilities of the Mapping Camera System, its mechanical and electrical interface with the STS, documentation, operation and survivability in the expected environments, ground support equipment, test and field support.

  18. Computational dosimetry for grounded and ungrounded human models due to contact current

    NASA Astrophysics Data System (ADS)

    Chan, Kwok Hung; Hattori, Junya; Laakso, Ilkka; Hirata, Akimasa; Taki, Masao

    2013-08-01

    This study presents the computational dosimetry of contact currents for grounded and ungrounded human models. The uncertainty of the quasi-static (QS) approximation of the in situ electric field induced in a grounded/ungrounded human body due to the contact current is first estimated. Different scenarios of cylindrical and anatomical human body models are considered, and the results are compared with the full-wave analysis. In the QS analysis, the induced field in the grounded cylindrical model is calculated by the QS finite-difference time-domain (QS-FDTD) method, and compared with the analytical solution. Because no analytical solution is available for the grounded/ungrounded anatomical human body model, the results of the QS-FDTD method are then compared with those of the conventional FDTD method. The upper frequency limit for the QS approximation in the contact current dosimetry is found to be 3 MHz, with a relative local error of less than 10%. The error increases above this frequency, which can be attributed to the neglect of the displacement current. The QS or conventional FDTD method is used for the dosimetry of induced electric field and/or specific absorption rate (SAR) for a contact current injected into the index finger of a human body model in the frequency range from 10 Hz to 100 MHz. The in situ electric fields or SAR are compared with the basic restrictions in the international guidelines/standards. The maximum electric field or the 99th percentile value of the electric fields appear not only in the fat and muscle tissues of the finger, but also around the wrist, forearm, and the upper arm. Some discrepancies are observed between the basic restrictions for the electric field and SAR and the reference levels for the contact current, especially in the extremities. These discrepancies are shown by an equation that relates the current density, tissue conductivity, and induced electric field in the finger with a cross-sectional area of 1 cm2.

  19. Concept of Operations for a Prospective "Proving Ground" in the Lunar Vicinity

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Hill, James J.; Goodliff, Kandyce

    2016-01-01

    NASA is studying conceptual architectures for a "Proving Ground" near the Moon or in high lunar orbit to conduct human space exploration missions that bridge the gap between today's operations with the International Space Station (ISS) and future human exploration of Mars beginning in the 2030s. This paper describes the framework of a concept of operations ("Conops") for candidate activities in the Proving Ground. The Conops discusses broad goals that the Proving Ground might address, such as participation from commercial entities, support for human landings on the Moon, use of mature technologies, and growth of capability through a steady cadence of increasingly ambitious piloted missions. Additional Proving Ground objectives are outlined in a companion paper. Key elements in the Conops include the Orion spacecraft (with mission kits for docking and other specialized operations) and the Space Launch System (SLS) heavy-lift rocket. Potential additions include a new space suit, commercial launch vehicles and logistics carriers, Solar Electric Propulsion (SEP) stages to move elements between different orbits and eventually take them on excursions to deep space, a core module with multiple docking ports, a habitation block, and robotic and piloted lunar landers. The landers might include reusable ascent modules which could remain docked to in-space elements between lunar sorties. A module providing advanced regenerative life support functions could launch to the ISS, and later move to the Proving Ground. The architecture will include infrastructure for launch preparation, communication, mission control, and range safety. The Conops describes notional missions chosen to guide the design of the architecture and its elements. One such mission might be the delivery of a approximately 10-t Transit Habitat element, comanifested with Orion on a Block 1B SLS launcher, to the Proving Ground. In another mission, the architecture might participate in direct human exploration of an asteroidal boulder brought to high lunar orbit by the Asteroid Redirect Mission. The Proving Ground stack could serve as a staging point and tele-operation center for robotic and piloted Moon landings. With the addition of a SEP stage, the architecture could support months-long excursions within and beyond the Earth's sphere of influence, possibly culminating in a year-long mission to land humans on a near-Earth asteroid. In the last case, after returning to near-lunar space, two of the asteroid explorers could join two crewmembers freshly arrived from Earth for a Moon landing, helping to quantify the risk of landing deconditioned crews on Mars. In a conceptual mission particularly stressing to system design, Proving Ground elements could transit to Mars orbit. Other possible design-driving operations include relocation of the stack with no crew on board, the unpiloted journey of the advanced life support module from ISS to the lunar vicinity, excursions to other destinations in near-Earth space, and additional support for Mars exploration in conjunction with the Evolvable Mars Campaign. The Proving Ground Conops concludes with a discussion of aborts and contingency operations

  20. Sail GTS ground system analysis: Avionics system engineering

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.

    1977-01-01

    A comparison of two different concepts for the guidance, navigation and control test set signal ground system is presented. The first is a concept utilizing a ground plate to which crew station, avionics racks, electrical power distribution system, master electrical common connection assembly and marshall mated elements system grounds are connected by 4/0 welding cable. An alternate approach has an aluminum sheet interconnecting the signal ground reference points between the crew station and avionics racks. The comparison analysis quantifies the differences between the two concepts in terms of dc resistance, ac resistance and inductive reactance. These parameters are figures of merit for ground system conductors in that the system with the lowest impedance is the most effective in minimizing noise voltage. Although the welding cable system is probably adequate, the aluminum sheet system provides a higher probability of a successful system design.

  1. GLIDES – Efficient Energy Storage from ORNL

    ScienceCinema

    Momen, Ayyoub M.; Abu-Heiba, Ahmad; Odukomaiya, Wale; Akinina, Alla

    2018-06-25

    The research shown in this video features the GLIDES (Ground-Level Integrated Diverse Energy Storage) project, which has been under development at Oak Ridge National Laboratory (ORNL) since 2013. GLIDES can store energy via combined inputs of electricity and heat, and deliver dispatchable electricity. Supported by ORNL’s Laboratory Director’s Research and Development (LDRD) fund, this energy storage system is low-cost, and hybridizes compressed air and pumped-hydro approaches to allow for storage of intermittent renewable energy at high efficiency. A U.S. patent application for this novel energy storage concept has been submitted, and research findings suggest it has the potential to be a flexible, low-cost, scalable, high-efficiency option for energy storage, especially useful in residential and commercial buildings.

  2. GLIDES – Efficient Energy Storage from ORNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momen, Ayyoub M.; Abu-Heiba, Ahmad; Odukomaiya, Wale

    2016-03-01

    The research shown in this video features the GLIDES (Ground-Level Integrated Diverse Energy Storage) project, which has been under development at Oak Ridge National Laboratory (ORNL) since 2013. GLIDES can store energy via combined inputs of electricity and heat, and deliver dispatchable electricity. Supported by ORNL’s Laboratory Director’s Research and Development (LDRD) fund, this energy storage system is low-cost, and hybridizes compressed air and pumped-hydro approaches to allow for storage of intermittent renewable energy at high efficiency. A U.S. patent application for this novel energy storage concept has been submitted, and research findings suggest it has the potential to bemore » a flexible, low-cost, scalable, high-efficiency option for energy storage, especially useful in residential and commercial buildings.« less

  3. Nighttime observations of thunderstorm electrical activity from a high altitude airplane

    NASA Technical Reports Server (NTRS)

    Brook, M.; Vonnegut, B.; Orville, R. E.; Vaughan, O. H., Jr.

    1984-01-01

    Nocturnal thunderstorms were observed from above and features of cloud structure and lightning which are not generally visible from the ground are discussed. Most, lightning activity seems to be associated with clouds with strong convective cauliflower tops. In both of the storms lightning channels were visible in the clear air above the cloud. It is shown that substances produced by thunderstorm electrical discharges can be introduced directly into the stratosphere. The cause and nature of the discharges above the cloud are not clear. They may be produced by accumulations of space charge in the clear air above the cloud. The discharges may arise solely because of the intense electric fields produced by charges within the cloud. In the latter case the ions introduced by these discharges will increase the electrical conductivity of the air above the cloud and increase the conduction current that flows from the cloud to the electrosphere. More quantitative data at higher resolution may show significant spectral differences between cloud to ground and intracloud strokes. It is shown that electric field change data taken with an electric field change meter mounted in an airplane provide data on lightning discharges from above that are quite similar to those obtained from the ground in the past. The optical signals from dart leaders, from return strokes, and from continuing currents are recognizable, can be used to provide information on the fine structure of lightning, and can be used to distinguish between cloud to ground and intracloud flashes.

  4. Fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1996-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  5. Resistance and internal electric field in cloud-to-ground lightning channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cen, Jianyong; Yuan, Ping, E-mail: yuanp@nwnu.edu.cn; Xue, Simin

    2015-02-02

    Cloud-to-ground lightning with six return strokes has been recorded by slitless spectrograph and the system of fast antenna and slow antenna. The physical parameters of the discharge channel have been obtained based on the combination of spectra and synchronous radiated electric field. The resistance and internal electric field of the channel are studied as the focus in this paper. The results show that the resistances per unit length of the lightning channel are in the order of 10{sup −2}–10{sup −1 }Ω/m and the internal electric field strengths are in the order of 10{sup 3 }V/m.

  6. Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.; Mathews, Roger E.

    2014-01-01

    This standard establishes requirements and guidance for design and fabrication of ground systems (GS) that includes: ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F GSS) to provide uniform methods and processes for design and development of robust, safe, reliable, maintainable, supportable, and cost-effective GS in support of space flight and institutional programs and projects.

  7. Electrical Safety for Non-Electricians

    MedlinePlus

    ... In 2010, 239 construction workers were killed by electricity.* More than 2/3 of those killed are ... must be grounded. Your employer must check all electric systems, including wiring and switches, to be sure ...

  8. Structural Analysis of the Support System for a Large Compressor Driven by a Synchronous Electric Motor

    NASA Technical Reports Server (NTRS)

    Winter, J. R.

    1984-01-01

    For economic reasons, the steam drive for a large compressor was replaced by a large synchronous electric motor. Due to the resulting large increase in mass and because the unit was mounted on a steel frame approximately 18 feet above ground level, it was deemed necessary to determine if a steady state or transient vibration problem existed. There was a definite possibility that a resonant or near resonant condition could be encountered. The ensuing analysis, which led to some structural changes as the analysis proceeded, did not reveal any major steady state vibration problems. However, the analysis did indicate that the system would go through several natural frequencies of the support structure during start-up and shutdown. This led to the development of special start-up and shutdown procedures to minimize the possibility of exciting any of the major structural modes. A coast-down could result in significant support structure and/or equipment damage, especially under certain circumstances. In any event, dynamic field tests verified the major analytical results. The unit has now been operating for over three years without any major vibration problems.

  9. 30 CFR 57.3360 - Ground support use.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Ground support use. 57.3360 Section 57.3360... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Ground Control Scaling and Support-Underground Only § 57.3360 Ground support use. Ground support shall be used where ground...

  10. 30 CFR 57.3360 - Ground support use.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ground support use. 57.3360 Section 57.3360... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Ground Control Scaling and Support-Underground Only § 57.3360 Ground support use. Ground support shall be used where ground...

  11. Atmospheric electricity

    NASA Astrophysics Data System (ADS)

    Stepanenko, V. D.

    Papers are presented on a wide range of studies of atmospheric electricity, from the problem of the global atmospheric-electricity circuit to the effects of atmospheric electricity on ground-based facilities and biological objects. The main topics considered are general problems of atmospheric electricity, studies of atmospheric ions and aerosols, cloud electricity, studies of lightning-storm activity and atmospherics, and lightning protection.

  12. Discharge current distribution in stratified soil under impulse discharge

    NASA Astrophysics Data System (ADS)

    Eniola Fajingbesi, Fawwaz; Shahida Midi, Nur; Elsheikh, Elsheikh M. A.; Hajar Yusoff, Siti

    2017-06-01

    The mobility of charge particles traversing a material defines its electrical properties. Soil (earth) have long been the universal grounding before and after the inception of active ground systems for electrical appliance purpose due to it semi-conductive properties. The soil can thus be modelled as a single material exhibiting semi-complex inductive-reactive impedance. Under impulse discharge such as lightning strikes to soil this property of soil could result in electric potential level fluctuation ranging from ground potential rise/fall to electromagnetic pulse coupling that could ultimately fail connected electrical appliance. In this work we have experimentally model the soil and lightning discharge using point to plane electrode setup to observe the current distribution characteristics at different soil conductivity [mS/m] range. The result presented from this research indicate above 5% shift in conductivity before and after discharge which is significant for consideration when dealing with grounding designs. The current distribution in soil have also be successfully observed and analysed from experimental result using mean current magnitude in relation to electrode distance and location, current density variation with depth all showing strong correlation with theoretical assumptions of a semi-complex impedance material.

  13. EGSE (Electrical Ground Support Equipment) for ESA VEGA Launcher

    NASA Astrophysics Data System (ADS)

    Ferrante, M.; Ortenzi, A.; del Re, V.; Bordin, M.; Saccucci, Fr.

    2004-08-01

    Activities belonging to Assembly, Integration and Validation (AIV) phase of a launch vehicle are fundamental in development of a so much delicate system. The equipment used to support this long and crucial phase can be described as a set of Mechanical and Electrical Ground Support Equipment (EGSE). This paper describes the approach followed to develop such a system, and the benefits that this brings in terms of lower risk, more coordinated interfaces and improved functionality. The paper briefly outlines VEGA Electrical Ground Support Equipment major characteristics. In particular, this paper describes the EGSE design for a small launch vehicle such as VEGA. The objective of EGSE is to provide hardware and software for efficient electrical testing of either single stages and integrated launcher. The needs to develop a small launcher is a response to a Resolution in the Space Transportation Strategy adopted by the ESA Council in June 2000, aiming at: "completing, in the medium term, the range of launch services offered by the addition of European manufactured small and medium launcher, complementary to Ariane, consistent with diversified users' needs and relying on common elements, such as stages, subsystems, technologies, production facilities and operational infrastructure, thereby increasing the European launcher industry's competitiveness". Three different parts principally compose the Vega EGSE: TCS (Test Configuration System), TES (Test Execution System), PPS (Post Processing System). The TES is the part of the EGSE devoted to the tests execution; it has capabilities of immediate test data analysis, parameters monitoring and it is able to undertake pre-defined actions, in case of anomalous events happen, in order to put in safe conditions the Unity Under Test (UUT). The TES is composed of two main components: HLCS and LLCS. The HLCS is based on SCOS 2000 ESA product; it is mainly devoted to the interaction with operators. It allows loading Test Sequences and sending commands to the LLCS, thereafter retrieving and displaying the results. The LLCS is the EGSE part closest to the UUT and directly connected to it. It is in charge of monitoring and commanding the UUT, reacting in real-time to both nominal and anomalous events and to ensure safety conditions during the execution of test sessions, even in absence of connection with the HLCS. To perform the tests of VEGA launcher three test areas are foreseen: one for each VEGA launcher stage, except for the third and the second stages that are tested in the same test area. One of these areas is also used to perform the test of complete VEGA launcher. In order to perform all tests, the LLCS is composed of modular subsystems able to work either independently in different test areas or in jointure in the main test area The TCS is the part devoted to the configuration of the EGSE, during the configuration phase it is possible to configure all components of EGSE depending on the test session to be performed. The PPS is the part devoted to the test results post processing. The PPS allows retrieving, analysis and displaying of the data generated in the test execution phases.

  14. A unified engineering model of the first stroke in downward negative lightning

    NASA Astrophysics Data System (ADS)

    Nag, Amitabh; Rakov, Vladimir A.

    2016-03-01

    Each stroke in a negative cloud-to-ground lightning flash is composed of downward leader and upward return stroke processes, which are usually modeled individually. The first stroke leader is stepped and starts with preliminary breakdown (PB) which is often viewed as a separate process. We present the first unified engineering model for computing the electric field produced by a sequence of PB, stepped leader, and return stroke processes, serving to transport negative charge to ground. We assume that a negatively charged channel extends downward in a stepped fashion during both the PB and leader stages. Each step involves a current wave that propagates upward along the newly formed channel section. Once the leader attaches to ground, an upward propagating return stroke neutralizes the charge deposited along the channel. Model-predicted electric fields are in reasonably good agreement with simultaneous measurements at both near (hundreds of meters, electrostatic field component is dominant) and far (tens of kilometers, radiation field component is dominant) distances from the lightning channel. Relations between the features of computed electric field waveforms and model input parameters are examined. It appears that peak currents associated with PB pulses are similar to return stroke peak currents, and the observed variation of electric radiation field peaks produced by leader steps at different heights above ground is influenced by the ground corona space charge.

  15. Thermionic system evaluated test (TSET) facility description

    NASA Astrophysics Data System (ADS)

    Fairchild, Jerry F.; Koonmen, James P.; Thome, Frank V.

    1992-01-01

    A consortium of US agencies are involved in the Thermionic System Evaluation Test (TSET) which is being supported by the Strategic Defense Initiative Organization (SDIO). The project is a ground test of an unfueled Soviet TOPAZ-II in-core thermionic space reactor powered by electrical heat. It is part of the United States' national thermionic space nuclear power program. It will be tested in Albuquerque, New Mexico at the New Mexico Engineering Research Institute complex by the Phillips Laboratoty, Sandia National Laboratories, Los Alamos National Laboratory, and the University of New Mexico. One of TSET's many objectives is to demonstrate that the US can operate and test a complete space nuclear power system, in the electrical heater configuration, at a low cost. Great efforts have been made to help reduce facility costs during the first phase of this project. These costs include structural, mechanical, and electrical modifications to the existing facility as well as the installation of additional emergency systems to mitigate the effects of utility power losses and alkali metal fires.

  16. 29 CFR 1926.351 - Arc welding and cutting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equivalent insulation. (c) Ground returns and machine grounding. (1) A ground return cable shall have a safe... electrical contact exists at all joints. The generation of an arc, sparks, or heat at any point shall cause...

  17. 29 CFR 1926.351 - Arc welding and cutting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equivalent insulation. (c) Ground returns and machine grounding. (1) A ground return cable shall have a safe... electrical contact exists at all joints. The generation of an arc, sparks, or heat at any point shall cause...

  18. 29 CFR 1926.351 - Arc welding and cutting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equivalent insulation. (c) Ground returns and machine grounding. (1) A ground return cable shall have a safe... electrical contact exists at all joints. The generation of an arc, sparks, or heat at any point shall cause...

  19. 29 CFR 1926.351 - Arc welding and cutting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equivalent insulation. (c) Ground returns and machine grounding. (1) A ground return cable shall have a safe... electrical contact exists at all joints. The generation of an arc, sparks, or heat at any point shall cause...

  20. 29 CFR 1926.351 - Arc welding and cutting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equivalent insulation. (c) Ground returns and machine grounding. (1) A ground return cable shall have a safe... electrical contact exists at all joints. The generation of an arc, sparks, or heat at any point shall cause...

  1. Impact of a major hurricane on surgical services in a university hospital.

    PubMed

    Norcross, E D; Elliott, B M; Adams, D B; Crawford, F A

    1993-01-01

    Hurricane Hugo struck Charleston, South Carolina, on September 21, 1989. This report analyzes the impact this storm had upon surgical care at a university medical center. Although disaster planning began on September 17, hurricane damage by high winds and an 8.7-foot tidal surge led to loss of emergency power and water. Consequently, system failures occurred in air conditioning, vacuum suction, steam and ethylene oxide sterilization, plumbing, central paging, lighting, and refrigeration. The following surgical support services were affected. In the blood bank, lack of refrigeration meant no platelet packs for 2 days. In radiology, loss of electrical power damaged CT/MRI scanners and flooding ruined patient files, resulting in lost information. In the intensive care unit, loss of electricity meant no monitors and hand ventilation was used for 4 hours. In the operating room, lack of temperature and humidity control (steam, water, and suction supply) halted elective surgery until October 2. Ground and air transportation were limited by unsafe landing sites, impassable roads, and personnel exhaustion. Surgical planning for a major hurricane should include: 1) a fail-safe source of electrical power, 2) evacuation of as many critically ill patients as possible before the storm, 3) cancellation of all elective surgery, and 4) augmented ancillary service staffing with some, although limited, physician support.

  2. Organizational culture and knowledge management in the electric power generation industry

    NASA Astrophysics Data System (ADS)

    Mayfield, Robert D.

    Scarcity of knowledge and expertise is a challenge in the electric power generation industry. Today's most pervasive knowledge issues result from employee turnover and the constant movement of employees from project to project inside organizations. To address scarcity of knowledge and expertise, organizations must enable employees to capture, transfer, and use mission-critical explicit and tacit knowledge. The purpose of this qualitative grounded theory research was to examine the relationship between and among organizations within the electric power generation industry developing knowledge management processes designed to retain, share, and use the industry, institutional, and technical knowledge upon which the organizations depend. The research findings show that knowledge management is a business problem within the domain of information systems and management. The risks associated with losing mission critical-knowledge can be measured using metrics on employee retention, recruitment, productivity, training and benchmarking. Certain enablers must be in place in order to engage people, encourage cooperation, create a knowledge-sharing culture, and, ultimately change behavior. The research revealed the following change enablers that support knowledge management strategies: (a) training - blended learning, (b) communities of practice, (c) cross-functional teams, (d) rewards and recognition programs, (e) active senior management support, (f) communication and awareness, (g) succession planning, and (h) team organizational culture.

  3. Experimental Evidence for LENR in a Polarized Pd/D Lattice

    NASA Astrophysics Data System (ADS)

    Szpak, S.

    2005-03-01

    Experimental evidence in support of claims that excess enthalpy production in a polarized Pd/D lattice is of a nuclear origin is questioned on various grounds, eg marginal intensity and difficulty in reproducing. Here, evidence is presented that is 100% reproducible and of sufficient intensity to be well outside of experimental errors. In addition to the thermal behavior, the nuclear manifestations include: X-ray emission; tritium production; and, when an operating cell is placed in an external electric field, fusion to create heavier metals such as Ca, Al, Mg, and Zn.

  4. 46 CFR 183.372 - Equipment and conductor grounding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Equipment and conductor grounding. 183.372 Section 183... conductor grounding. (a) All metallic enclosures and frames of electrical equipment must be permanently... equipment must be bonded together to a common ground by a normally non-current carrying conductor. Metallic...

  5. 46 CFR 183.372 - Equipment and conductor grounding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Equipment and conductor grounding. 183.372 Section 183... conductor grounding. (a) All metallic enclosures and frames of electrical equipment must be permanently... equipment must be bonded together to a common ground by a normally non-current carrying conductor. Metallic...

  6. 46 CFR 183.376 - Grounded distribution systems (neutral grounded).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.376... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral... 46 Shipping 7 2013-10-01 2013-10-01 false Grounded distribution systems (neutral grounded). 183...

  7. Ground-source heat pump case studies and utility programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lienau, P.J.; Boyd, T.L.; Rogers, R.L.

    1995-04-01

    Ground-source heat pump systems are one of the promising new energy technologies that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to consumers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school and commercial building applications. In order to verify the performance, information was collected for 253 case studies from mainly utilities throughout the United States. The casemore » studies were compiled into a database. The database was organized into general information, system information, ground system information, system performance, and additional information. Information was developed on the status of demand-side management of ground-source heat pump programs for about 60 electric utility and rural electric cooperatives on marketing, incentive programs, barriers to market penetration, number units installed in service area, and benefits.« less

  8. Method for fabricating fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, R.R.; Cowan, T.E.

    1994-12-27

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figures.

  9. Method for fabricating fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1994-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  10. Fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, R.R.; Cowan, T.E.

    1996-06-11

    Disclosed are fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figs.

  11. Low-energy excitations of a Bose-Einstein condensate of rigid rotor molecules

    NASA Astrophysics Data System (ADS)

    Smith, Joseph; Jones, Evan; Rittenhouse, Seth; Wilson, Ryan; Peden, Brandon

    2017-04-01

    We investigate the properties of the ground state and low-lying excitations of an oblate Bose-Einstein condensate composed of rigid rotor molecules in the presence of an external polarizing electric field. We build in a quantum model of molecular polarizability by including the full manifold of rotational states. The interplay between spatial and microscopic degrees of freedom via feedback between the molecular polarizability and inter-molecular dipole-dipole interactions leads to a rich quasi-particle spectrum. Under large applied fields, we reproduce the well-understood density-wave rotonization that appears in a fully polarized dipolar BEC, but under smaller applied fields, we predict the emergence of a spin wave instability and possible new stable ground state phases. We gratefully acknowledge support from the National Science Foundation under Grant No. PHYS-1516421.

  12. KSC-2012-6177

    NASA Image and Video Library

    2012-11-05

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the mobile launcher is being prepared to support the space agency's Space Launch System heavy-lift rocket and Orion spacecraft. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann

  13. KSC-2012-6179

    NASA Image and Video Library

    2012-11-05

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida the mobile launcher is being prepared to support the space agency's Space Launch System heavy-lift rocket and Orion spacecraft. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann

  14. 30 CFR 77.802 - Protection of high-voltage circuits; neutral grounding resistors; disconnecting devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... grounded through a suitable resistor at the source transformers, and a grounding circuit, originating at... stationary electrical equipment, if he finds that such exception will not pose a hazard to the miners...

  15. The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, volume 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings of the conference are reported. The conference focussed on lightning protection, detection, and forecasting. The conference was divided into 26 sessions based on research in lightning, static electricity, modeling, and mapping. These sessions spanned the spectrum from basic science to engineering, concentrating on lightning prediction and detection and on safety for ground facilities, aircraft, and aerospace vehicles.

  16. 46 CFR 111.05-20 - Grounded distribution systems on OSVs designed to carry flammable or combustible liquids with...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Grounded distribution systems on OSVs designed to carry flammable or combustible liquids with closed-cup flashpoints not exceeding 60 °C (140 °F). 111.05-20 Section 111.05-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS...

  17. Concept of Operations for a Prospective "Proving Ground" in the Lunar Vicinity

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Hill, James J.

    2016-01-01

    NASA is studying a "Proving Ground" near the Moon to conduct human space exploration missions in preparation for future flights to Mars. This paper describes a concept of operations ("conops") for activities in the Proving Ground, focusing on the construction and use of a mobile Cislunar Transit Habitat capable of months-long excursions within and beyond the Earth-Moon system. Key elements in the conops include the Orion spacecraft (with mission kits for docking and other specialized operations) and the Space Launch System heavy-lift rocket. Potential additions include commercial launch vehicles and logistics carriers, solar electric propulsion stages to move elements between different orbits and eventually take them on excursions to deep space, a node module with multiple docking ports, habitation and life support blocks, and international robotic and piloted lunar landers. The landers might include reusable ascent modules which could remain docked to in-space elements between lunar sorties. The architecture will include infrastructure for launch preparation, communication, mission control, and range safety. The conops describes "case studies" of notional missions chosen to guide the design of the architecture and its elements. One such mission is the delivery of a 10-ton pressurized element, co-manifested with an Orion on a Block 1B Space Launch System rocket, to the Proving Ground. With a large solar electric propulsion stage, the architecture could enable a year-long mission to land humans on a near-Earth asteroid. In the last case, after returning to near-lunar space, two of the asteroid explorers could join two crewmembers freshly arrived from Earth for a Moon landing, helping to safely quantify the risk of landing deconditioned crews on Mars. The conops also discusses aborts and contingency operations. Early return to Earth may be difficult, especially during later Proving Ground missions. While adding risk, limited-abort conditions provide needed practice for Mars, from which early return is likely to be impossible.

  18. Space Vehicle Powerdown Philosophies Derived from the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Willsey, Mark; Bailey, Brad

    2011-01-01

    In spaceflight, electrical power is a vital but limited resource. Almost every spacecraft system, from avionics to life support systems, relies on electrical power. Since power can be limited by the generation system s performance, available consumables, solar array shading, or heat rejection capability, vehicle power management is a critical consideration in spacecraft design, mission planning, and real-time operations. The purpose of this paper is to capture the powerdown philosophies used during the Space Shuttle Program. This paper will discuss how electrical equipment is managed real-time to adjust the overall vehicle power level to ensure that systems and consumables will support changing mission objectives, as well as how electrical equipment is managed following system anomalies. We will focus on the power related impacts of anomalies in the generation systems, air and liquid cooling systems, and significant environmental events such as a fire, decrease in cabin pressure, or micrometeoroid debris strike. Additionally, considerations for executing powerdowns by crew action or by ground commands from Mission Control will be presented. General lessons learned from nearly 30 years of Space Shuttle powerdowns will be discussed, including an in depth case-study of STS-117. During this International Space Station (ISS) assembly mission, a failure of computers controlling the ISS guidance, navigation, and control system required that the Space Shuttle s maneuvering system be used to maintain attitude control. A powerdown was performed to save power generation consumables, thus extending the docked mission duration and allowing more time to resolve the issue.

  19. Evaluation of the influence of electric nets on the behaviour of oviposition site seeking Anopheles gambiae s.s

    PubMed Central

    2014-01-01

    Background Electric nets (e-nets) are used to analyse the flight behaviour of insects and have been used extensively to study the host-oriented flight of tsetse flies. Recently we adapted this tool to analyse the oviposition behaviour of gravid malaria vectors, Anopheles gambiae s.s., orienting towards aquatic habitats and traps by surrounding an artificial pond with e-nets and collecting electrocuted mosquitoes on sticky boards on the ground next to the nets. Here we study whether e-nets themselves affect the responses of gravid An. gambiae s.s.. Methods Dual-choice experiments were carried out in 80 m2 screened semi-field systems where 200 gravid An. gambiae s.s. were released each night for 12 nights per experiment. The numbers of mosquito landing on or approaching an oviposition site were studied by adding detergent to the water in an artificial pond or surrounding the pond with a square of e-nets. We also assessed whether the supporting framework of the nets or the sticky boards used to retain electrocuted mosquitoes influenced the catch. Results Two similar detergent treated ponds presented in choice tests caught an equal proportion of the mosquitoes released, whereas a pond surrounded by e-nets caught a higher proportion than an open pond (odds ratio (OR) 1.7, 95% confidence interval (CI) 1.1 - 2.7; p < 0.017). The separate evaluation of the impact of the square of electric nets and the yellow boards on the approach of gravid females towards a pond suggests that the tower-like construction of the square of electric nets did not restrict the approach of females but the yellow sticky boards on the ground attract gravid females to a source of water (OR 2.7 95% CI 1.7 – 4.3; p < 0.001). Conclusion The trapping efficiency of the electric nets is increased when large yellow sticky boards are placed on the ground next to the e-nets to collect electrocuted mosquitoes, possibly because of increased visual contrast to the aquatic habitat. It is therefore important when comparing two treatments that the same trapping device is used in both. The importance of contrast around artificial habitats might be exploited to improve collections of An. gambiae s.s. in gravid traps. PMID:24948354

  20. The need for the vegetarian crew for long-term LSS

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.

    The long-term space missions pose very stringent demands on the high degree of closure levels. One obvious requirements is to assure the human crew a steady state self-supporting and self-regenerating LSS environment. The strictly vegetarian crew is the primary requirement to minimize the cost and weight of the spacecraft. This ensures the minimal matter circulation problems, because we can also use for food as many as possible fuly edible plants with nex to none, non digestable plant tissues. One important task is to select a range of plants which should satisfy the nutritional needs of the crew for a long-term, in the range of several years. Preliminary fitotron experiments with lettuce, demonstrated that one can achieve this goal, with a plant which is wholy edible even with the roots. This has been achieved with the use of several teens times stronger electrical field, than the 130 V/m fair weather global atmospheric electrical field. More experiments are in progress for the extension of the list of such vegetarian food. The selection of suitable plants which meet these highly demanding selection criteria, has to be done and can be done in ground based experiments. Plants ensure one important requirements of a closed loop CO2 and O2 circulation with the vegetarian crew in the loop. Extensive research programs are needed for this purpose using large ground based instalations like the Biosphere 2. The success of the use of electrical fields as replacement of gravitational field in the fitotron which proved the dominating role over gravity, of several kV/m electical field intensities. It also proves the feasibility of improving the crop productivity in ground based greenhouses, provided that we do restore inside the missing in "normal" designs our global electrical field. The fair weather electrical field (not to mention the enhanced field) is the missing vital environmental factor which has been systematically "overlooked" in practically all greenhouses. It is the most likely factor whi ch was the main culprit of the failure of the manned long term Biosphere 2 experiment. Very strong evidence has been achieved in fitotron experiments, which have already been presented and published in the COSPAR2000 publication.

  1. Production against static electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shteiner, A.L.; Minaev, G.S.; Shatkov, O.P.

    1978-01-01

    Coke industry shops process electrifiable, highly inflammable and explosive substances (benzene, toluene, xylenes, sulfur, coal dust, and coke-oven gas). The electrification of those materials creates a danger of buildup of static electricity charges in them and on the surface of objects interacting with them, followed by an electrical discharge which may cause explosion, fire, or disruption of the technological process. Some of the regulations for protection against static electricity do not reflect modern methods of static electricity control. The regulations are not always observed by workers in the plant services. The main means of protection used to remove static electricitymore » charges in grounding. In many cases it completely drains the charge from the surface of the electrifiable bodies. However, in the processing of compounds with a high specific volumetric electrical resistence grounding is insufficient, since it does not drain the charge from the interior of the substance. Gigh adsorption capacity) are generally met by brown coal low-temperature ompared with predictions using the hourly computer program. The concept of a lumped thermal network for predicting heat losses from in-ground heat storage tanks, developed earlier in the project, has beethe cased-hole log data from various companies and additional comparison factors were calculated for the cased-hole log data. These comparison factors allow for some quantification of these uncalibrated log data.« less

  2. A Simulation Based Investigation of High Latency Space Systems Operations

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; Moore, Michael; Bielski, Paul; Crues, Edwin Z.

    2017-01-01

    This study was the first in a series of planned tests to use physics-based subsystem simulations to investigate the interactions between a spacecraft's crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation models the life support system of a deep space habitat. It contains models of an environmental control and life support system, an electrical power system, an active thermal control systems, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the subsystems; 2) a mission control center interface with data transport delays up to 15 minute each way; and 3) a real-time simulation test conductor interface used to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission. The NEEMO crew and ground support team performed a number of relevant deep space mission scenarios that included both nominal activities and activities with system malfunctions. While this initial test sequence was focused on test infrastructure and procedures development, the data collected in the study already indicate that long communication delays have notable impacts on the operation of deep space systems. For future human missions beyond cis-lunar, NASA will need to design systems and support tools to meet these challenges. These will be used to train the crew to handle critical malfunctions on their own, to predict malfunctions and assist with vehicle operations. Subsequent more detailed and involved studies will be conducted to continue advancing NASA's understanding of space systems operations across long communications delays.

  3. A Simulation Based Investigation of High Latency Space Systems Operations

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael

    2017-01-01

    This study was the first in a series of planned tests to use physics-based subsystem simulations to investigate the interactions between a spacecraft's crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation models the life support system of a deep space habitat. It contains models of an environmental control and life support system, an electrical power system, an active thermal control system, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the subsystems; 2) a mission control center interface with data transport delays up to 15 minute each way; and 3) a real-time simulation test conductor interface used to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission. The NEEMO crew and ground support team performed a number of relevant deep space mission scenarios that included both nominal activities and activities with system malfunctions. While this initial test sequence was focused on test infrastructure and procedures development, the data collected in the study already indicate that long communication delays have notable impacts on the operation of deep space systems. For future human missions beyond cis-lunar, NASA will need to design systems and support tools to meet these challenges. These will be used to train the crew to handle critical malfunctions on their own, to predict malfunctions, and to assist with vehicle operations. Subsequent more detailed and involved studies will be conducted to continue advancing NASA's understanding of space systems operations across long communications delays.

  4. Solar power satellite system definition study. Part 1 and part 2, volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Solar Power Satellite principle is illustrated and it shows that in a geostationary orbit 36,000 km above the earth's equator, each SPS is in sunlight 99% of the time and in continuous line of sight contact with its ground receiving station. Electrical power produced on the satellite by photovoltaic or heat engine conversion of sunlight is then converted to radio frequency energy at high efficiency, and formed into a focused beam precisely aimed at the SP ground stations. The ground station receiving antenna reconverts the energy into electricity for distribution.

  5. 30 CFR 77.701 - Grounding metallic frames, casings, and other enclosures of electric equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Grounding § 77.701 Grounding metallic frames, casings... equipment that can become “alive” through failure of insulation or by contact with energized parts shall be...

  6. 46 CFR 111.05-1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... requirements for the grounding of electric systems, circuits, and equipment. Note: Circuits are grounded to limit excessive voltage from lightning, transient surges, and unintentional contact with higher voltage lines, and to limit the voltage to ground during normal operation. Conductive materials enclosing...

  7. 46 CFR 111.05-1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... requirements for the grounding of electric systems, circuits, and equipment. Note: Circuits are grounded to limit excessive voltage from lightning, transient surges, and unintentional contact with higher voltage lines, and to limit the voltage to ground during normal operation. Conductive materials enclosing...

  8. 46 CFR 111.05-1 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... requirements for the grounding of electric systems, circuits, and equipment. Note: Circuits are grounded to limit excessive voltage from lightning, transient surges, and unintentional contact with higher voltage lines, and to limit the voltage to ground during normal operation. Conductive materials enclosing...

  9. 46 CFR 111.05-1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... requirements for the grounding of electric systems, circuits, and equipment. Note: Circuits are grounded to limit excessive voltage from lightning, transient surges, and unintentional contact with higher voltage lines, and to limit the voltage to ground during normal operation. Conductive materials enclosing...

  10. 46 CFR 111.05-1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... requirements for the grounding of electric systems, circuits, and equipment. Note: Circuits are grounded to limit excessive voltage from lightning, transient surges, and unintentional contact with higher voltage lines, and to limit the voltage to ground during normal operation. Conductive materials enclosing...

  11. 30 CFR 57.12081 - Bonding metal pipelines to ground return circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bonding metal pipelines to ground return... NONMETAL MINES Electricity Underground Only § 57.12081 Bonding metal pipelines to ground return circuits... a ground return circuit shall be bonded to the return circuit rail at the ends of the pipeline and...

  12. 30 CFR 57.12081 - Bonding metal pipelines to ground return circuits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Bonding metal pipelines to ground return... NONMETAL MINES Electricity Underground Only § 57.12081 Bonding metal pipelines to ground return circuits... a ground return circuit shall be bonded to the return circuit rail at the ends of the pipeline and...

  13. Environmental Controls and Life Support System Design for a Space Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda C.; Rodriguez, Branelle; Vonau, Walt, Jr.; Borrego, Melissa

    2012-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Space Exploration Vehicle (SEV). The SEV will aid to expand the human exploration envelope for Geostationary Transfer Orbit (GEO), Near Earth Object (NEO), or planetary missions by using pressurized surface exploration vehicles. The SEV, formerly known as the Lunar Electric Rover (LER), will be an evolutionary design starting as a ground test prototype where technologies for various systems will be tested and evolve into a flight vehicle. This paper will discuss the current SEV ECLSS design, any work contributed toward the development of the ECLSS design, and the plan to advance the ECLSS design based on the SEV vehicle and system needs.

  14. Environmental Controls and Life Support System (ECLSS) Design for a Space Exploration Vehicle (SEV)

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda; Sankaran, Subra

    2010-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Space Exploration Vehicle (SEV). The SEV will aid to expand the human exploration envelope for Geostationary Transfer Orbit (GEO), Near Earth Object (NEO), or planetary missions by using pressurized surface exploration vehicles. The SEV, formerly known as the Lunar Electric Rover (LER), will be an evolutionary design starting as a ground test prototype where technologies for various systems will be tested and evolve into a flight vehicle. This paper will discuss the current SEV ECLSS design, any work contributed toward the development of the ECLSS design, and the plan to advance the ECLSS design based on the SEV vehicle and system needs.

  15. Safety of High Speed Guided Ground Transportation Systems : Review of Existing EMF Guidelines, Standards and Regulations

    DOT National Transportation Integrated Search

    1993-08-01

    To assess the state of knowledge about anticipated electric and magnetic field (EMF) exposures from electrical transportation systems, including electrically powered rail and magnetically levitated (maglev), research concerning biological effects of ...

  16. 30 CFR 75.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of an electrical protective device, based upon its required and intended application, to safely... Health Administration which describe and illustrate the complete assembly of electrical machinery or... phase. An unintentional connection between an electric circuit and the grounding system. Low voltage. Up...

  17. Photovoltaic module mounting clip with integral grounding

    DOEpatents

    Lenox, Carl J.

    2008-10-14

    An electrically conductive mounting/grounding clip, for use with a photovoltaic assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending generally perpendicular to the central portion. Each arm has an outer portion with each outer portion having an outer end. At least one frame surface-disrupting element is at each outer end. The central portion defines a plane with the frame surface-disrupting elements pointing towards the plane. In some examples each arm extends from the central portion at an acute angle to the plane.

  18. Electric field-decoupled electroosmotic pump for microfluidic devices.

    PubMed

    Liu, Shaorong; Pu, Qiaosheng; Lu, Joann J

    2003-09-26

    An electric field-free electroosmotic pump has been constructed and its pumping rate has been measured under various experimental conditions. The key component of the pump is an ion-exchange membrane grounding joint that serves two major functions: (i) to maintain fluid continuity between pump channels and microfluidic conduit and (ii) to ground the solution in the microfluidic channel at the joint through an external electrode, and hence to decouple the electric field applied to the pump channels from the rest of the microfluidic system. A theoretical model has been developed to calculate the pumping rates and its validity has been demonstrated.

  19. Integration of a satellite ground support system based on analysis of the satellite ground support domain

    NASA Technical Reports Server (NTRS)

    Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.

    1994-01-01

    This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.

  20. Integration of a satellite ground support system based on analysis of the satellite ground support domain

    NASA Astrophysics Data System (ADS)

    Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.

    1994-11-01

    This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.

  1. Imaging tropical peatlands in Indonesia using ground-penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization

    Treesearch

    X. Comas; N. Terry; M. Warren; R. Kolka; A. Kristiyono; N. Sudiana; D. Nurjaman; T. Darusman

    2015-01-01

    Current estimates of carbon (C) storage in peatland systems worldwide indicate that tropical peatlands comprise about 15% of the global peat carbon pool. Such estimates are uncertain due to data gaps regarding organic peat soil thickness, volume and C content. We combined a set of indirect geophysical methods (ground-penetrating radar, GPR, and electrical resistivity...

  2. Electric fields measured by ISEE-1 within and near the neutral sheet during quiet and active times

    NASA Technical Reports Server (NTRS)

    Cattell, C. A.; Mozer, F. S.

    1982-01-01

    An understanding of the physical processes occurring in the magnetotail and plasmasheet during different interplanetary magnetic field orientations and differing levels of ground magnetic activity is crucial for the development of a theory of energy transfer from the solar wind to the particles which produce auroral arcs. In the present investigation, the first observations of electric fields during neutral sheet crossings are presented, taking into account the statistical correlations of the interplanetary magnetic field direction and ground activity with the character of the electric field. The electric field data used in the study were obtained from a double probe experiment on the ISEE-1 satellite. The observations suggest that turbulent electric and magnetic fields are intimately related to plasma acceleration in the neutral sheet and to the processes which create auroral particles.

  3. 46 CFR 129.370 - Equipment grounding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Equipment grounding. 129.370 Section 129.370 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.370 Equipment grounding. (a) On a metallic vessel...

  4. 46 CFR 129.370 - Equipment grounding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Equipment grounding. 129.370 Section 129.370 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.370 Equipment grounding. (a) On a metallic vessel...

  5. 46 CFR 129.370 - Equipment grounding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Equipment grounding. 129.370 Section 129.370 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.370 Equipment grounding. (a) On a metallic vessel...

  6. Control of Rydberg atom blockade by dc electric field orientation in a quasi-one-dimensional sample

    NASA Astrophysics Data System (ADS)

    Goncalves, Luís Felipe; Marcassa, Luis Gustavo

    2017-04-01

    Rydberg atoms posse a strong atom-atom interaction, which limits its density in an atomic sample. Such effect is known as Rydberg atom blockade. Here, we present a novel way to control such effect by direct orienting the induced atomic dipole moment using a dc external electrical field. To demonstrate it, we excite the 50S1 / 2 Rb atomic state in a quasi-one-dimensional sample held in a quasi-electrostatic trap. A pure nS state holds only van der Waals interaction at long range, but in the presence of an external electric field the state mixing leads to strong dipole-dipole interactions. We have measured the Rydberg atom population as a function of ground state atoms density for several angles between the electric field and the main axis of the unidimensional sample. The results indicate that the limit on the final Rydberg density can be controlled by electric field orientation. Besides, we have characterized the sample by using direct spatial ion imaging, demonstrating that it does behave as an unidimensional sample. This work was supported by Sao Paulo Research Foundation (FAPESP) Grants No. 2011/22309-8 and No. 2013/02816- 8, the U.S. Army Research Office Grant No. W911NF-15-1-0638 and CNPq.

  7. Safety of High Speed Guided Ground Transportation Systems. Broadband Magnetic Fields : Their Possible Role in EMF Associated Bioeffects

    DOT National Transportation Integrated Search

    1993-08-01

    This report reviews electric and magnetic field (EMF) exposures from electrical transportation systems, including : electrically powered rail and magnetic levitation (maglev). Material also covered includes research concerning : biological effects of...

  8. Influence of strike object grounding on close lightning electric fields

    NASA Astrophysics Data System (ADS)

    Baba, Yoshihiro; Rakov, Vladimir A.

    2008-06-01

    Using the finite difference time domain (FDTD) method, we have calculated vertical electric field Ez, horizontal (radial) electric field Eh, and azimuthal magnetic field Hϕ produced on the ground surface by lightning strikes to 160-m- and a 553-m-high conical strike objects representing the Peissenberg tower (Germany) and the CN Tower (Canada), respectively. The fields were computed for a typical subsequent stroke at distances d' from the bottom of the object ranging from 5 to 100 m for the 160-m tower and from 10 to 300 m for the 553-m tower. Grounding of the 160-m object was assumed to be accomplished by its underground basement represented by a 10-m-radius and 8-m-long perfectly conducting cylinder with or without a reference ground plane located 2 m below. The reference ground plane simulates, to some extent, a higher-conducting ground layer that is expected to exist below the water table. The configuration without reference ground plane actually means that this plane is present, but is located at an infinitely large depth. Grounding of the 553-m object was modeled in a similar manner but in the absence of reference ground plane only. In all cases considered, waveforms of Eh and Hϕ are not much influenced by the presence of strike object, while waveforms of Ez are. Waveforms of Ez are essentially unipolar (as they are in the absence of strike object) when the ground conductivity σ is 10 mS/m (the equivalent transient grounding impedance is several ohms) or greater. Thus, for the CN Tower, for which σ ≥ 10 mS/m, the occurrence of Ez polarity change is highly unlikely. For the 160-m tower and for σ = 1 and 0.1 mS/m, waveforms of Ez become bipolar (exhibit polarity change) at d' ≤ 10 m and d' ≤ 50 m, respectively, regardless of the presence of the reference ground plane. The corresponding equivalent transient grounding impedances are about 30 and 50 Ω in the absence of the reference ground plane and smaller than 10 Ω in the presence of the reference ground plane. The source of opposite polarity Ez is the potential rise at the object base (at the air/ground interface) relative to the reference ground plane. For a given grounding electrode geometry, the strength of this source increases with decreasing σ, provided that the grounding impedance is linear. Potential rises at the strike object base for σ = 1 and 0.1 mS/m are some hundreds of kilovolts, which is sufficient to produce electrical breakdown from relatively sharp edges of the basement over a distance of several meters (or more) along the ground surface. The resultant ground surface arcs will serve to reduce the equivalent grounding impedance and, hence, potential rise. Therefore, the polarity change of Ez near the Peissenberg tower, for which σ is probably about 1 mS/m, should be a rare phenomenon, if it occurs at all. The equivalent transient grounding impedance of the cylindrical basement is similar to that of a hemispherical grounding electrode of the same radius. For the 160-m tower and for hemispherical grounding electrode, the transient grounding impedance is higher than its dc grounding resistance for σ = 10 and 1 mS/m, but lower for σ = 0.1 mS/m. For the 553-m tower, the transient grounding impedance of hemispherical electrode is equal to or larger than its dc resistance for all values of σ considered.

  9. Effect of atmospheric electricity on dry deposition of airborne particles from atmosphere

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Kimmel, V.; Israelsson, S.

    The electric mechanism of dry deposition is well known in the case of unattached radon daughter clusters that are unipolar charged and of high mobility. The problematic role of the electric forces in deposition of aerosol particles is theoretically examined by comparing the fluxes of particles carried by different deposition mechanisms in a model situation. The electric mechanism of deposition appears essential for particles of diameter 10-200 nm in conditions of low wind speed. The electric flux of fine particles can be dominant on the tips of leaves and needles even in a moderate atmospheric electric field of a few hundred V m -1 measured over the plane ground surface. The electric deposition is enhanced under thunderclouds and high voltage power lines. Strong wind suppresses the relative role of the electric deposition when compared with aerodynamic deposition. When compared with diffusion deposition the electric deposition appears less uniform: the precipitation particulate matter on the tips of leaves and especially on needles of top branches of conifer trees is much more intensive than on the ground surface and electrically shielded surfaces of plants. The knowledge of deposition geometry could improve our understanding of air pollution damage to plants.

  10. Electric Field and Lightning Observations in the Core of Category 5 Hurricane Emily

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Mach, Doug M.; Bateman, Monte G.; Bailey, Jeff C.

    2007-01-01

    Significant electric fields and lightning activity associated with Hurricane Emily were observed from a NASA high-altitude ER-2 aircraft on July 17, 2005 while this storm developed as a compact but intense category 5 hurricane in the Caribbean south of Cuba. The electrical measurements were acquired as part of the NASA sponsored Tropical Cloud Systems and Processes (TCSP) experiment. In addition to the electrical measurements, the aircraft's remote sensing instrument complement also included active radars, passive microwave, visible and infrared radiometers, and a temperature sounder providing details on the dynamical, microphysical, and environmental structure, characteristics and development of this intense storm. Cloud-to-ground lightning location data from Vaisala's long range lightning detection network were also acquired and displayed in real-time along with electric fields measured at the aircraft. These data and associated display also supported aircraft guidance and vectoring during the mission. During the observing period, flash rates in excess of 3 to 5 flashes per minute, as well as large electric field and field change values were observed as the storm appeared to undergo periods of intensification, especially in the northwest quadrant in the core eyewall regions. This is in contrast to most hurricanes that tend to be characterized by weak electrification and little or no lightning activity except in the outer rain bands. It should be noted that this storm also had significant lightning associated with its rain bands.

  11. Description of the SSF PMAD DC testbed control system data acquisition function

    NASA Technical Reports Server (NTRS)

    Baez, Anastacio N.; Mackin, Michael; Wright, Theodore

    1992-01-01

    The NASA LeRC in Cleveland, Ohio has completed the development and integration of a Power Management and Distribution (PMAD) DC Testbed. This testbed is a reduced scale representation of the end to end, sources to loads, Space Station Freedom Electrical Power System (SSF EPS). This unique facility is being used to demonstrate DC power generation and distribution, power management and control, and system operation techniques considered to be prime candidates for the Space Station Freedom. A key capability of the testbed is its ability to be configured to address system level issues in support of critical SSF program design milestones. Electrical power system control and operation issues like source control, source regulation, system fault protection, end-to-end system stability, health monitoring, resource allocation, and resource management are being evaluated in the testbed. The SSF EPS control functional allocation between on-board computers and ground based systems is evolving. Initially, ground based systems will perform the bulk of power system control and operation. The EPS control system is required to continuously monitor and determine the current state of the power system. The DC Testbed Control System consists of standard controllers arranged in a hierarchical and distributed architecture. These controllers provide all the monitoring and control functions for the DC Testbed Electrical Power System. Higher level controllers include the Power Management Controller, Load Management Controller, Operator Interface System, and a network of computer systems that perform some of the SSF Ground based Control Center Operation. The lower level controllers include Main Bus Switch Controllers and Photovoltaic Controllers. Power system status information is periodically provided to the higher level controllers to perform system control and operation. The data acquisition function of the control system is distributed among the various levels of the hierarchy. Data requirements are dictated by the control system algorithms being implemented at each level. A functional description of the various levels of the testbed control system architecture, the data acquisition function, and the status of its implementationis presented.

  12. Transfer of electrical space charge from corona between ground and thundercloud: Measurements and modeling

    NASA Technical Reports Server (NTRS)

    Soula, Serge

    1994-01-01

    The evolution of the vertical electric field profile deduced from simultaneous field measurements at several levels below a thundercloud shows the development of a space charge layer at least up to 600 m. The average charge density in the whole layer from 0 m to 600 m can reach about 1 nC m(exp -3). The ions are generated at the ground by corona effect and the production rate is evaluated with a new method from the comparison of field evolutions at the ground and at altitude after a lightning flash. The modeling of the relevant processes shows tht ground corona accounts for the observed field evolutions and that the aerosol particles concentration has a very large effect on the evolution of corona ions. However, with a realistic value for this concentration a large amount of ground corona ions reach the level of 600 m.

  13. 46 CFR 183.370 - General grounding requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false General grounding requirements. 183.370 Section 183.370 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.370 General grounding...

  14. 46 CFR 183.370 - General grounding requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false General grounding requirements. 183.370 Section 183.370 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.370 General grounding...

  15. 30 CFR 75.814 - Electrical protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... protection must not be dependent upon control power and may consist of a current transformer and overcurrent... restarting of the equipment. (b) Current transformers used for the ground-fault protection specified in... series with ground-fault current transformers. (c) Each ground-fault current device specified in...

  16. 30 CFR 75.814 - Electrical protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... protection must not be dependent upon control power and may consist of a current transformer and overcurrent... restarting of the equipment. (b) Current transformers used for the ground-fault protection specified in... series with ground-fault current transformers. (c) Each ground-fault current device specified in...

  17. 30 CFR 75.814 - Electrical protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... protection must not be dependent upon control power and may consist of a current transformer and overcurrent... restarting of the equipment. (b) Current transformers used for the ground-fault protection specified in... series with ground-fault current transformers. (c) Each ground-fault current device specified in...

  18. 30 CFR 75.814 - Electrical protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... protection must not be dependent upon control power and may consist of a current transformer and overcurrent... restarting of the equipment. (b) Current transformers used for the ground-fault protection specified in... series with ground-fault current transformers. (c) Each ground-fault current device specified in...

  19. 30 CFR 75.814 - Electrical protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... protection must not be dependent upon control power and may consist of a current transformer and overcurrent... restarting of the equipment. (b) Current transformers used for the ground-fault protection specified in... series with ground-fault current transformers. (c) Each ground-fault current device specified in...

  20. Dual-mode, high energy utilization system concept for mars missions

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.

    2000-01-01

    This paper describes a dual-mode, high energy utilization system concept based on the Pellet Bed Reactor (PeBR) to support future manned missions to Mars. The system uses proven Closed Brayton Cycle (CBC) engines to partially convert the reactor thermal power to electricity. The electric power generated is kept the same during the propulsion and the power modes, but the reactor thermal power in the former could be several times higher, while maintaining the reactor temperatures almost constant. During the propulsion mode, the electric power of the system, minus ~1-5 kWe for house keeping, is used to operate a Variable Specific Impulse Magnetoplasma Rocket (VASIMR). In addition, the reactor thermal power, plus more than 85% of the head load of the CBC engine radiators, are used to heat hydrogen. The hot hydrogen is mixed with the high temperature plasma in a VASIMR to provide both high thrust and Isp>35,000 N.s/kg, reducing the travel time to Mars to about 3 months. The electric power also supports surface exploration of Mars. The fuel temperature and the inlet temperatures of the He-Xe working fluid to the nuclear reactor core and the CBC turbine are maintained almost constant during both the propulsion and power modes to minimize thermal stresses. Also, the exit temperature of the He-Xe from the reactor core is kept at least 200 K below the maximum fuel design temperature. The present system has no single point failure and could be tested fully assembled in a ground facility using electric heaters in place of the nuclear reactor. Operation and design parameters of a 40-kWe prototype are presented and discussed to illustrate the operation and design principles of the proposed system. .

  1. Using EarthScope magnetotelluric data to improve the resilience of the US power grid: rapid predictions of geomagnetically induced currents

    NASA Astrophysics Data System (ADS)

    Schultz, A.; Bonner, L. R., IV

    2016-12-01

    Existing methods to predict Geomagnetically Induced Currents (GICs) in power grids, such as the North American Electric Reliability Corporation standard adopted by the power industry, require explicit knowledge of the electrical resistivity structure of the crust and mantle to solve for ground level electric fields along transmission lines. The current standard is to apply regional 1-D resistivity models to this problem, which facilitates rapid solution of the governing equations. The systematic mapping of continental resistivity structure from projects such as EarthScope reveals several orders of magnitude of lateral variations in resistivity on local, regional and continental scales, resulting in electric field intensifications relative to existing 1-D solutions that can impact GICs to first order. The computational burden on the ground resistivity/GIC problem of coupled 3-D solutions inhibits the prediction of GICs in a timeframe useful to protecting power grids. In this work we reduce the problem to applying a set of filters, recognizing that the magnetotelluric impedance tensors implicitly contain all known information about the resistivity structure beneath a given site, and thus provides the required relationship between electric and magnetic fields at each site. We project real-time magnetic field data from distant magnetic observatories through a robustly calculated multivariate transfer function to locations where magnetotelluric impedance tensors had previously been obtained. This provides a real-time prediction of the magnetic field at each of those points. We then project the predicted magnetic fields through the impedance tensors to obtain predictions of electric fields induced at ground level. Thus, electric field predictions can be generated in real-time for an entire array from real-time observatory data, then interpolated onto points representing a power transmission line contained within the array to produce a combined electric field prediction necessary for GIC prediction along that line. This method produces more accurate predictions of ground electric fields in conductively heterogeneous areas that are not limited by distance from the nearest observatory, while still retaining comparable computational speeds as existing methods.

  2. A study of severe storm electricity via storm intercept

    NASA Technical Reports Server (NTRS)

    Arnold, Roy T.; Horsburgh, Steven D.; Rust, W. David; Burgess, Don

    1985-01-01

    Storm electricity data, radar data, and visual observations were used both to present a case study for a supercell thunderstorm that occurred in the Texas Panhandle on 19 June 1980 and to search for insight into how lightning to ground might be related to storm dynamics in the updraft/downdraft couplet in supercell storms. It was observed that two-thirds of the lightning ground-strike points in the developing and maturing stages of a supercell thunderstorm occurred within the region surrounding the wall cloud (a cloud feature often characteristic of a supercell updraft) and on the southern flank of the precipitation. Electrical activity in the 19 June 1980 storm was atypical in that it was a right-mover. Lightning to ground reached a peak rate of 18/min and intracloud flashes were as frequent as 176/min in the final stages of the storm's life.

  3. Characterization of Vacuum Facility Background Gas Through Simulation and Considerations for Electric Propulsion Ground Testing

    NASA Technical Reports Server (NTRS)

    Yim, John T.; Burt, Jonathan M.

    2015-01-01

    The background gas in a vacuum facility for electric propulsion ground testing is examined in detail through a series of cold flow simulations using a direct simulation Monte Carlo (DSMC) code. The focus here is on the background gas itself, its structure and characteristics, rather than assessing its interaction and impact on thruster operation. The background gas, which is often incorrectly characterized as uniform, is found to have a notable velocity within a test facility. The gas velocity has an impact on the proper measurement of pressure and the calculation of ingestion flux to a thruster. There are also considerations for best practices for tests that involve the introduction of supplemental gas flows to artificially increase the background pressure. All of these effects need to be accounted for to properly characterize the operation of electric propulsion thrusters across different ground test vacuum facilities.

  4. Development and performance characterization of an electric ground vehicle with independently actuated in-wheel motors

    NASA Astrophysics Data System (ADS)

    Wang, Rongrong; Chen, Yan; Feng, Daiwei; Huang, Xiaoyu; Wang, Junmin

    This paper presents the development and experimental characterizations of a prototyping pure electric ground vehicle, which is equipped with four independently actuated in-wheel motors (FIAIWM) and is powered by a 72 V 200 Ah LiFeYPO 4 battery pack. Such an electric ground vehicle (EGV) employs four in-wheel (or hub) motors to independently drive/brake the four wheels and is one of the promising vehicle architectures primarily due to its actuation flexibility, energy efficiency, and performance potentials. Experimental data obtained from the EGV chassis dynamometer tests were employed to generate the in-wheel motor torque response and power efficiency maps in both driving and regenerative braking modes. A torque distribution method is proposed to show the potentials of optimizing the FIAIWM EGV operational energy efficiency by utilizing the actuation flexibility and the characterized in-wheel motor efficiency and torque response.

  5. 2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 1; Executive Summary

    NASA Technical Reports Server (NTRS)

    Alexander, Dennis

    1997-01-01

    The Solar Dynamic Ground Test Demonstration (SDGTD) successfully demonstrated a solar-powered closed Brayton cycle system in a relevant space thermal environment. In addition to meeting technical requirements the project was completed 4 months ahead of schedule and under budget. The following conclusions can be supported: 1. The component technology for solar dynamic closed Brayton cycle technology has clearly been demonstrated. 2. The thermal, optical, control, and electrical integration aspects of systems integration have also been successfully demonstrated. Physical integration aspects were not attempted as these tend to be driven primarily by mission-specific requirements. 3. System efficiency of greater than 15 percent (all losses fully accounted for) was demonstrated using equipment and designs which were not optimized. Some preexisting hardware was used to minimize cost and schedule. 4. Power generation of 2 kWe. 5. A NASA/industry team was developed that successfully worked together to accomplish project goals. The material presented in this report will show that the technology necessary to design and fabricate solar dynamic electrical power systems for space has been successfully developed and demonstrated. The data will further show that achieved results compare well with pretest predictions. The next step in the development of solar dynamic space power will be a flight test.

  6. Regularized solution of a nonlinear problem in electromagnetic sounding

    NASA Astrophysics Data System (ADS)

    Piero Deidda, Gian; Fenu, Caterina; Rodriguez, Giuseppe

    2014-12-01

    Non destructive investigation of soil properties is crucial when trying to identify inhomogeneities in the ground or the presence of conductive substances. This kind of survey can be addressed with the aid of electromagnetic induction measurements taken with a ground conductivity meter. In this paper, starting from electromagnetic data collected by this device, we reconstruct the electrical conductivity of the soil with respect to depth, with the aid of a regularized damped Gauss-Newton method. We propose an inversion method based on the low-rank approximation of the Jacobian of the function to be inverted, for which we develop exact analytical formulae. The algorithm chooses a relaxation parameter in order to ensure the positivity of the solution and implements various methods for the automatic estimation of the regularization parameter. This leads to a fast and reliable algorithm, which is tested on numerical experiments both on synthetic data sets and on field data. The results show that the algorithm produces reasonable solutions in the case of synthetic data sets, even in the presence of a noise level consistent with real applications, and yields results that are compatible with those obtained by electrical resistivity tomography in the case of field data. Research supported in part by Regione Sardegna grant CRP2_686.

  7. Simulation study on transient electric shock characteristics of human body under high voltage ac transmission lines

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Zou, Yanhui; Lv, Jianhong; Yang, Jinchun; Tao, Li; Zhou, Jianfei

    2017-09-01

    Human body under high-voltage AC transmission lines will produce a certain induced voltage due to the electrostatic induction. When the human body contacts with some grounded objects, the charges transfer from the body to the ground and produce contact current which may cause transient electric shock. Using CDEGS and ATP/EMTP, the paper proposes a method for quantitatively calculating the transient electric shock characteristics. It calculates the human body voltage, discharge current and discharge energy under certain 500kV compact-type transmission lines and predicts the corresponding human feelings. The results show that the average root value of discharge current is less than 10mA when the human body is under the 500kV compact-type transmission lines and the human body is overall safe if the transmission lines satisfy the relevant design specifications. It concludes that the electric field strength above the ground should be limited to 4kV/m through the residential area for the purpose of reducing the electromagnetic impact.

  8. High-Payoff Space Transportation Design Approach with a Technology Integration Strategy

    NASA Technical Reports Server (NTRS)

    McCleskey, C. M.; Rhodes, R. E.; Chen, T.; Robinson, J.

    2011-01-01

    A general architectural design sequence is described to create a highly efficient, operable, and supportable design that achieves an affordable, repeatable, and sustainable transportation function. The paper covers the following aspects of this approach in more detail: (1) vehicle architectural concept considerations (including important strategies for greater reusability); (2) vehicle element propulsion system packaging considerations; (3) vehicle element functional definition; (4) external ground servicing and access considerations; and, (5) simplified guidance, navigation, flight control and avionics communications considerations. Additionally, a technology integration strategy is forwarded that includes: (a) ground and flight test prior to production commitments; (b) parallel stage propellant storage, such as concentric-nested tanks; (c) high thrust, LOX-rich, LOX-cooled first stage earth-to-orbit main engine; (d) non-toxic, day-of-launch-loaded propellants for upper stages and in-space propulsion; (e) electric propulsion and aero stage control.

  9. KSC-2012-6175

    NASA Image and Video Library

    2012-11-05

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a space shuttle era mobile launcher platform, on the left, sits on pedestals outside the Vehicle Assembly Building. To the right is the mobile launcher that will support the space agency's Space Launch System heavy-lift rocket and Orion spacecraft. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann

  10. Intelligent mobility for robotic vehicles in the army after next

    NASA Astrophysics Data System (ADS)

    Gerhart, Grant R.; Goetz, Richard C.; Gorsich, David J.

    1999-07-01

    The TARDEC Intelligent Mobility program addresses several essential technologies necessary to support the army after next (AAN) concept. Ground forces in the AAN time frame will deploy robotic unmanned ground vehicles (UGVs) in high-risk missions to avoid exposing soldiers to both friendly and unfriendly fire. Prospective robotic systems will include RSTA/scout vehicles, combat engineering/mine clearing vehicles, indirect fire artillery and missile launch platforms. The AAN concept requires high on-road and off-road mobility, survivability, transportability/deployability and low logistics burden. TARDEC is developing a robotic vehicle systems integration laboratory (SIL) to evaluate technologies and their integration into future UGV systems. Example technologies include the following: in-hub electric drive, omni-directional wheel and steering configurations, off-road tires, adaptive tire inflation, articulated vehicles, active suspension, mine blast protection, detection avoidance and evasive maneuver. This paper will describe current developments in these areas relative to the TARDEC intelligent mobility program.

  11. 30 CFR 75.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conduits enclosing power conductors. 75.700 Section 75.700 Mineral Resources MINE SAFETY AND HEALTH... Grounding § 75.700 Grounding metallic sheaths, armors, and conduits enclosing power conductors. [Statutory Provisions] All metallic sheaths, armors, and conduits enclosing power conductors shall be electrically...

  12. 30 CFR 75.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conduits enclosing power conductors. 75.700 Section 75.700 Mineral Resources MINE SAFETY AND HEALTH... Grounding § 75.700 Grounding metallic sheaths, armors, and conduits enclosing power conductors. [Statutory Provisions] All metallic sheaths, armors, and conduits enclosing power conductors shall be electrically...

  13. 30 CFR 75.824 - Electrical protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transformer and over-current relay in the neutral grounding resistor circuit. (vi) A single window-type current transformer that encircles all three-phase conductors must be used to activate the ground-fault... current transformer. (vii) A test circuit for the ground-fault device must be provided. The test circuit...

  14. 30 CFR 75.824 - Electrical protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... transformer and over-current relay in the neutral grounding resistor circuit. (vi) A single window-type current transformer that encircles all three-phase conductors must be used to activate the ground-fault... current transformer. (vii) A test circuit for the ground-fault device must be provided. The test circuit...

  15. 30 CFR 75.824 - Electrical protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... transformer and over-current relay in the neutral grounding resistor circuit. (vi) A single window-type current transformer that encircles all three-phase conductors must be used to activate the ground-fault... current transformer. (vii) A test circuit for the ground-fault device must be provided. The test circuit...

  16. 30 CFR 75.824 - Electrical protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... transformer and over-current relay in the neutral grounding resistor circuit. (vi) A single window-type current transformer that encircles all three-phase conductors must be used to activate the ground-fault... current transformer. (vii) A test circuit for the ground-fault device must be provided. The test circuit...

  17. 30 CFR 75.824 - Electrical protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... transformer and over-current relay in the neutral grounding resistor circuit. (vi) A single window-type current transformer that encircles all three-phase conductors must be used to activate the ground-fault... current transformer. (vii) A test circuit for the ground-fault device must be provided. The test circuit...

  18. Heisenberg spin-1/2 XXZ chain in the presence of electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Thakur, Pradeep; Durganandini, P.

    2018-02-01

    We study the interplay of electric and magnetic order in the one-dimensional Heisenberg spin-1/2 XXZ chain with large Ising anisotropy in the presence of the Dzyaloshinskii-Moriya (DM) interaction and with longitudinal and transverse magnetic fields, interpreting the DM interaction as a coupling between the local electric polarization and an external electric field. We obtain the ground state phase diagram using the density matrix renormalization group method and compute various ground state quantities like the magnetization, staggered magnetization, electric polarization and spin correlation functions, etc. In the presence of both longitudinal and transverse magnetic fields, there are three different phases corresponding to a gapped Néel phase with antiferromagnetic (AF) order, gapped saturated phase, and a critical incommensurate gapless phase. The external electric field modifies the phase boundaries but does not lead to any new phases. Both external magnetic fields and electric fields can be used to tune between the phases. We also show that the transverse magnetic field induces a vector chiral order in the Néel phase (even in the absence of an electric field) which can be interpreted as an electric polarization in a direction parallel to the AF order.

  19. Aircraft empennage structural detail design

    NASA Technical Reports Server (NTRS)

    Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo

    1993-01-01

    This project involved the detailed design of the aft fuselage and empennage structure, vertical stabilizer, rudder, horizontal stabilizer, and elevator for the Triton primary flight trainer. The main design goals under consideration were to illustrate the integration of the control systems devices used in the tail surfaces and their necessary structural supports as well as the elevator trim, navigational lighting system, electrical systems, tail-located ground tie, and fuselage/cabin interface structure. Accommodations for maintenance, lubrication, adjustment, and repairability were devised. Weight, fabrication, and (sub)assembly goals were addressed. All designs were in accordance with the FAR Part 23 stipulations for a normal category aircraft.

  20. Titan 3E/Centaur D-1T Systems Summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A systems and operational summary of the Titan 3E/Centaur D-1T program is presented which describes vehicle assembly facilities, launch facilities, and management responsibilities, and also provides detailed information on the following separate systems: (1) mechanical systems, including structural components, insulation, propulsion units, reaction control, thrust vector control, hydraulic systems, and pneumatic equipment; (2) astrionics systems, such as instrumentation and telemetry, navigation and guidance, C-Band tracking system, and range safety command system; (3) digital computer unit software; (4) flight control systems; (5) electrical/electronic systems; and (6) ground support equipment, including checkout equipment.

  1. EMC tests on the RITA Ion Propulsion Assembly for the ARTEMIS satellite

    NASA Astrophysics Data System (ADS)

    Mueller, H.; Kukies, R.; Bassner, H.

    1992-07-01

    Objectives and results of EMC tests performed on the RITA Ion Propulsion Assembly to demonstrate its compatibility with the requirements of ARTEMIS are discussed. The tested configuration included the RIT 10 thruster, neutralizer, RF generator, power supply and control unit, and electrical ground support equipment. Test results show that the RIT 10 thruster fulfils the EMC requirements for radiated emission in the critical frequency ranges (L/S/KU bands). The emitted E- and H-fields are not expected to disturb the satellite electronics, and no special shielding or other measures to protect the antennas are needed.

  2. Closeup view of the Solid Rocket Booster (SRB) Forward Skirt ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Solid Rocket Booster (SRB) Forward Skirt sitting on ground support equipment in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center while being prepared for mating with the Frustum-Nose Cap Assembly and the Forward Rocket Motor Segment. The prominent feature in this view is the electrical, data, telemetry and safety systems terminal which connects to the Aft Skirt Assembly systems via the Systems Tunnel that runs the length of the Rocket Motor. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  3. Electrical measurements in the atmosphere and the Ionosphere over an active thunderstorm. II - Direct current electric fields and conductivity

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; Kelley, M. C.; Siefring, C. L.; Hale, L. C.; Mitchell, J. D.

    1985-01-01

    On August 9, 1981, a series of three rockets was launched over an air mass thunderstorm off the eastern seaboard of Virginia while simultaneous stratospheric and ground-based electric field measurements were made. The conductivity was substantially lower at most altitudes than the conductivity profiles used by theoretical models. Direct current electric fields over 80 mV/m were measured as far away as 96 km from the storm in the stratosphere at 23 km altitude. No dc electric fields above 75 km altitude could be identified with the thunderstorm, in agreement with theory. However, vertical current densities over 120 pA/sq m were seen well above the classical 'electrosphere' (at 50 or 60 km). Frequent dc shifts in the electric field following lightning transients were seen by both balloon and rocket payloads. These dc shifts are clearly identifiable with either cloud-to-ground (increases) or intercloud (decreases) lightning flashes.

  4. Structural Composite Supercapacitors: Electrical and Mechanical Impact of Separators and Processing Conditions

    DTIC Science & Technology

    2013-09-01

    Structural Composite Supercapacitors : Electrical and Mechanical Impact of Separators and Processing Conditions by Edwin B. Gienger, James F...Proving Ground, MD 21005-5066 ARL-TR-6624 September 2013 Structural Composite Supercapacitors : Electrical and Mechanical Impact of...2012 4. TITLE AND SUBTITLE Structural Composite Supercapacitors : Electrical and Mechanical Impact of Separators and Processing Conditions 5a

  5. A Computational Methodology to Support Reimbursement Requests Analysis Concerning Electrical Damages

    NASA Astrophysics Data System (ADS)

    Almeida Junior, Afonso Bernardino; Gondim, Isaque Nogueira; Rezende, Paulo Henrique Oliveira; Oliveira, José Carlos

    2015-12-01

    In light of the growing number of reimbursement requests processed from consumers for electrical damage to equipment, supposedly caused through the manifestation of anomalies on the power grid, there comes the need for reliable means for providing a decision on the issues highlighted herein. Through the recognition that in the current context, the procedures used are based on reviews, information and records of occurrences in the field, there has been significant inadequacy and fragility in the issuing of conclusive advice or opinions. In particular, the search for mechanisms grounded in classical principles and accepted in electrical engineering presents itself as an important challenge on which to base the decision making process in full awareness of its incumbent science and technology. Therefore, with the aim of meeting these assumptions, the study in question excels in its presentation of the principles that guided the software analysis, which intend above all else to correlate cause and effect. The elaborated strategy involves modelling stages as well as studies aimed at: distribution supply reproduction; characterization of the distribution network to the complainant consumer; representation of the diverse electro-electronic appliances and lastly, a proposal for correlating the disturbances impacting on equipment with their dielectric and thermal supportability requirements. For the purpose of illustrating the software process, an actual case study coupled with a loss and claim scenario is presented.

  6. Evolution of integrated panel structural design and interfaces for PV power plants

    NASA Technical Reports Server (NTRS)

    Arnett, J. C.; Anderson, A. J.; Robertson, R. E.

    1983-01-01

    The evolution of integrated photovoltaic (PV) panel design at ARCO Solar is discussed. Historically, framed PV modules of about 1 x 4-ft size were individually mounted in the field on fixed support structures and interconnected electrically with cables to build higher-power arrays. When ARCO Solar saw the opportunity in 1982 to marry its PV modules with state-of-the-art heliostat trackers developed by ARCO Power Systems, it became obvious that mounting individual modules was impractical. For this project, the framed modules were factory-assembled into panels and interconnected with cables before being mounted on the trackers. Since then, ARCO Solar made considerable progress and gained substantial experience in the design and fabrication of large PV panels. Constraints and criteria considered in these design activities included static and dynamic loads; assembly and transportation equipment and logistics, structural and electrical interfaces, and safety and grounding concerns.

  7. Severe storm electricity

    NASA Technical Reports Server (NTRS)

    Arnold, R. T.; Rust, W. D.

    1984-01-01

    Successful ground truth support of U-2 overflights was been accomplished. Data have been reduced for 4 June 1984 and some of the results have been integrated into some of MSFC's efforts. Staccato lightning (multiply branched, single stroke flash with no continuing current) is prevalent within the rainfree region around the main storm updraft and this is believed to be important, i.e., staccato flashes might be an important indicator of severe storm electrification. Results from data analysis from two stations appear to indicate that charge center heights can be estimated from a combination of intercept data with data from the fixed laboratory at NSSL. An excellent data base has been provided for determining the sight errors and efficiency of NSSL's LLP system. Cloud structures, observable in a low radar reflectivity region and on a scale smaller than is currently resolved by radar, which appear to be related to electrical activity are studied.

  8. POBAL-S, the analysis and design of a high altitude airship. Final report, October 1972--March 1975. [For station keeping at an altitude of 21 km for 7 days; 500 W fuel cell power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beemer, J.D.; Parsons, R.R.; Rueter, L.L.

    1975-02-01

    An engineering analysis and development effort has been executed to design a superpressure airship, POBAL-S, capable of station keeping at an altitude of 21 kilometers for a duration of 7 days while supporting a payload weighing 890 Newtons and requiring 500 watts of electrical power. A detailed parametric trade-off between various power sources and other design choices was performed. The computer program used to accomplish this analysis is described and many results are presented. The system concept which resulted was a fuel cell powered, propeller driven airship controlled by an on-board autopilot with basic commands telemetered from a ground controlmore » station. Design of the balloon, power train, gimbaled propeller assembly, and electronic/electrical systems is presented. Flight operations for launch and recovery are discussed.« less

  9. Electrical Transport on the Shastry-Sutherland Lattice in Ising-type Rare Earth Tetraborides

    NASA Astrophysics Data System (ADS)

    Ye, Linda; Suzuki, Takehito; Checkelsky, Joseph. G.

    In the presence of a magnetic field, frustrated spin systems may exhibit plateaus at fractional values of their saturation magnetization. Study of the magnetic ordering and excitations at such plateaus are key to understanding the nature of the underlying ground states in these systems. Here we study the magnetization plateaus in metallic rare earth tetraborides RB4 with Ising-type anisotropy (R = Er, Tm) in which R resides on a Shastry-Sutherland lattice. We focus on electrical transport and find that the response reflects scattering of charge carriers with the static and dynamic plateau structure. Modeling of these results is consistent with the expected strong uniaxial anisotropy and provides a framework for the study of plateau states in metallic frustrated systems. We thank NSF Grant No. DMR-1231319, Tsinghua Education Foundation, Moore foundation Grant No. GBMF3848 for support.

  10. Charge-transfer crystallites as molecular electrical dopants

    PubMed Central

    Méndez, Henry; Heimel, Georg; Winkler, Stefanie; Frisch, Johannes; Opitz, Andreas; Sauer, Katrein; Wegner, Berthold; Oehzelt, Martin; Röthel, Christian; Duhm, Steffen; Többens, Daniel; Koch, Norbert; Salzmann, Ingo

    2015-01-01

    Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself. Despite a comparable relative increase in conductivity, we observe only partial charge transfer for the latter. In contrast to the parent polymer, pronounced intermolecular frontier-orbital hybridization of oligomer and dopant in 1:1 mixed-stack co-crystallites leads to the emergence of empty electronic states within the energy gap of the surrounding quaterthiophene matrix. It is their Fermi–Dirac occupation that yields mobile charge carriers and, therefore, the co-crystallites—rather than individual acceptor molecules—should be regarded as the dopants in such systems. PMID:26440403

  11. 24 CFR 3280.809 - Grounding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... connected to the grounding bus in the distribution panelboard or disconnecting means. (2) In the electrical.... Neither the frame of the manufactured home nor the frame of any appliance shall be connected to the... the ground bus may be connected in the distribution panel. (2) Connection of ranges and clothes dryers...

  12. Lightning vulnerability of fiber-optic cables.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Leonard E.; Caldwell, Michele

    2008-06-01

    One reason to use optical fibers to transmit data is for isolation from unintended electrical energy. Using fiber optics in an application where the fiber cable/system penetrates the aperture of a grounded enclosure serves two purposes: first, it allows for control signals to be transmitted where they are required, and second, the insulating properties of the fiber system help to electrically isolate the fiber terminations on the inside of the grounded enclosure. A fundamental question is whether fiber optic cables can allow electrical energy to pass through a grounded enclosure, with a lightning strike representing an extreme but very importantmore » case. A DC test bed capable of producing voltages up to 200 kV was used to characterize electrical properties of a variety of fiber optic cable samples. Leakage current in the samples were measured with a micro-Ammeter. In addition to the leakage current measurements, samples were also tested to DC voltage breakdown. After the fiber optic cables samples were tested with DC methods, they were tested under representative lightning conditions at the Sandia Lightning Simulator (SLS). Simulated lightning currents of 30 kA and 200 kA were selected for this test series. This paper documents measurement methods and test results for DC high voltage and simulated lightning tests performed at the Sandia Lightning Simulator on fiber optic cables. The tests performed at the SLS evaluated whether electrical energy can be conducted inside or along the surface of a fiber optic cable into a grounded enclosure under representative lightning conditions.« less

  13. Analytical transition-matrix treatment of electric multipole polarizabilities of hydrogen-like atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharchenko, V.F., E-mail: vkharchenko@bitp.kiev.ua

    2015-04-15

    The direct transition-matrix approach to the description of the electric polarization of the quantum bound system of particles is used to determine the electric multipole polarizabilities of the hydrogen-like atoms. It is shown that in the case of the bound system formed by the Coulomb interaction the corresponding inhomogeneous integral equation determining an off-shell scattering function, which consistently describes virtual multiple scattering, can be solved exactly analytically for all electric multipole polarizabilities. Our method allows to reproduce the known Dalgarno–Lewis formula for electric multipole polarizabilities of the hydrogen atom in the ground state and can also be applied to determinemore » the polarizability of the atom in excited bound states. - Highlights: • A new description for electric polarization of hydrogen-like atoms. • Expression for multipole polarizabilities in terms of off-shell scattering functions. • Derivation of integral equation determining the off-shell scattering function. • Rigorous analytic solving the integral equations both for ground and excited states. • Study of contributions of virtual multiple scattering to electric polarizabilities.« less

  14. Influence of an external electric field on the potential-energy surface of alkali-metal-decorated C60

    NASA Astrophysics Data System (ADS)

    De, Deb Sankar; Saha, Santanu; Genovese, Luigi; Goedecker, Stefan

    2018-06-01

    We present a fully ab initio, unbiased structure search of the configurational space of decorated C60 fullerenes in the presence of an electric field. We observed that the potential-energy surface is significantly perturbed by an external electric field and that the energetic ordering of low-energy isomers differs with and without electric field. We identify the energetically lowest configuration for a varying number of decorating atoms (1 ≤n ≤12 ) for Li and (1 ≤n ≤6 ) for K on the C60 surface at different electric-field strengths. Using the correct geometric ground state in the electric field for the calculation of the dipole we obtain better agreement with the experimentally measured values than previous calculations based on the ground state in absence of an electric field. Since the lowest-energy structures are typically nearly degenerate in energy, a combination of different structures is expected to be found at room temperature. The experimentally measured dipole is therefore also expected to contain significant contributions from several low-energy structures.

  15. In-situ electric field in human body model in different postures for wireless power transfer system in an electrical vehicle.

    PubMed

    Shimamoto, Takuya; Laakso, Ilkka; Hirata, Akimasa

    2015-01-07

    The in-situ electric field of an adult male model in different postures is evaluated for exposure to the magnetic field leaked from a wireless power transfer system in an electrical vehicle. The transfer system is located below the centre of the vehicle body and the transferred power and frequency are 7 kW and 85 kHz, respectively. The in-situ electric field is evaluated for a human model (i) crouching near the vehicle, (ii) lying on the ground with or without his arm stretched, (iii) sitting in the driver's seat, and (iv) standing on a transmitting coil without a receiving coil. In each scenario, the maximum in-situ electric fields are lower than the allowable limit prescribed by international guidelines, although the local magnetic field strength in regions of the human body is higher than the allowable external magnetic field strength. The highest in-situ electric field is observed when the human body model is placed on the ground with his arm extended toward the coils, because of a higher magnetic field around the arm.

  16. Hy-wire and fast electric field change measurements near an isolated thunderstorm, appendix C

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; Levine, D. M.

    1983-01-01

    Electric field measurements near an isolated thunderstorm at 6.4 km distance are presented from both a tethered balloon experiment called Hy-wire and also from ground based fast and slow electric field change systems. Simultaneous measurements were made of the electric fields during several lightning flashes at the beginning of the storm which the data clearly indicate were cloud-to-ground flashes. In addition to providing a comparison between the Hy-wire technique for measuring electric fields and more traditional methods, these data are interesting because the lightning flashes occurred prior to changes in the dc electric field, although Hy-wire measured changes in the dc field of up to 750 V/m in the direction opposite to the fair weather field a short time later. Also, the dc electric field was observed to decay back to its preflash value after each flash. The data suggest that Hy-wire was at the field reversal distance from this storm and suggest the charge realignment was taking place in the cloud with a time constant on the order of 20 seconds.

  17. Excited-state dynamics of acetylene excited to individual rotational level of the V04K01 subband

    NASA Astrophysics Data System (ADS)

    Makarov, Vladimir I.; Kochubei, Sergei A.; Khmelinskii, Igor V.

    2006-01-01

    Dynamics of the IR emission induced by excitation of the acetylene molecule using the (32Ka0,1,2,ÃAu1←41la1,X˜Σg+1) transition was investigated. The observed IR emission was assigned to transitions between the ground-state vibrational levels. Acetylene fluorescence quenching induced by external electric and magnetic fields acting upon the system prepared using the (34Ka1,ÃAu1←00la0,X˜Σg+1) excitation was also studied. External electric field creates an additional radiationless pathway to the ground-state levels, coupling levels of the ÃAu1 excited state to the quasiresonant levels of the X˜Σg+1 ground state. The level density of the ground state in the vicinity of the excited state is very high, thus the electric-field-induced transition is irreversible, with the rate constant described by the Fermi rule. Magnetic field alters the decay profile without changing the fluorescence quantum yield in collisionless conditions. IR emission from the CCH transient was detected, and was also affected by the external electric and magnetic fields. Acetylene predissociation was demonstrated to proceed by the direct S1→S0 mechanism. The results were explained using the previously developed theoretical approach, yielding values of the relevant model parameters.

  18. The convection electrojet and the substorm electrojet

    NASA Astrophysics Data System (ADS)

    Kamide, Y.; Nakamura, R.

    1996-06-01

    Enhancements in the auroral electrojets associated with magnetospheric substorms result from those in either the electric field or the ionospheric conductivities, or both. Their relative importance varies significantly, even during a single substorm, depending on the location as well as on the substorm phases. It is predicted that different parts of the electrojets tend to respond in different ways to substorm activity. The unprecedented, unique opportunity for CLUSTER spacecraft observations of electric/magnetic fields and precipitating particles, combined with radar measurements of ionospheric quantities and with ground magnetometers, will provide us with crucial information regarding the physical nature of the separation between the electric field-dominant'' and conductivity-dominant'' auroral electrojets. This study also discusses the implications of these two auroral-electrojet components in terms of solar wind-magnetosphere-ionosphere interactions. Acknowledgements. This study is supported in part by the Ministry of Education, Science, Sports, and Culture in Japan, under a Grant-in-Aid for Scientific Research (Category B). Topical Editor D. Alcaydé thanks M. Lockwood and N. J. Fox for their help in evaluating this paper.--> Correspondence to: Y. Kamide-->

  19. Design, analysis, and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A.; Minning, C.

    1981-01-01

    Thermal, optical, structural, and electrical isolation analyses are decribed. Major factors in the design of terrestrial photovoltaic modules are discussed. Mechanical defects in the different layers of an encapsulation system, it was found, would strongly influence the minimum pottant thickness required for electrical isolation. Structural, optical, and electrical properties, a literature survey indicated, are hevily influenced by the presence of moisture. These items, identified as technology voids, are discussed. Analyses were based upon a 1.2 meter square module using 10.2 cm (4-inch) square cells placed 1.3 mm apart as shown in Figure 2-2. Sizing of the structural support member of a module was determined for a uniform, normal pressure load of 50 psf, corresponding to the pressure difference generated between the front and back surface of a module by a 100 mph wind. Thermal and optical calculations were performed for a wind velocity of 1 meter/sec parallel to the ground and for module tilt (relative to the local horizontal) of 37 deg. Placement of a module in a typical array field is illustrated.

  20. Is 'virtual histology' the next step after the 'virtual autopsy'? Magnetic resonance microscopy in forensic medicine.

    PubMed

    Thali, M J; Dirnhofer, R; Becker, R; Oliver, W; Potter, K

    2004-10-01

    The study aimed to validate magnetic resonance microscopy (MRM) studies of forensic tissue specimens (skin samples with electric injury patterns) against the results from routine histology. Computed tomography and magnetic resonance imaging are fast becoming important tools in clinical and forensic pathology. This study is the first forensic application of MRM to the analysis of electric injury patterns in human skin. Three-dimensional high-resolution MRM images of fixed skin specimens provided a complete 3D view of the damaged tissues at the site of an electric injury as well as in neighboring tissues, consistent with histologic findings. The image intensity of the dermal layer in T2-weighted MRM images was reduced in the central zone due to carbonization or coagulation necrosis and increased in the intermediate zone because of dermal edema. A subjacent blood vessel with an intravascular occlusion supports the hypothesis that current traveled through the vascular system before arcing to ground. High-resolution imaging offers a noninvasive alternative to conventional histology in forensic wound analysis and can be used to perform 3D virtual histology.

  1. Design, analysis, and test verification of advanced encapsulation systems

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Minning, C.

    1981-11-01

    Thermal, optical, structural, and electrical isolation analyses are decribed. Major factors in the design of terrestrial photovoltaic modules are discussed. Mechanical defects in the different layers of an encapsulation system, it was found, would strongly influence the minimum pottant thickness required for electrical isolation. Structural, optical, and electrical properties, a literature survey indicated, are hevily influenced by the presence of moisture. These items, identified as technology voids, are discussed. Analyses were based upon a 1.2 meter square module using 10.2 cm (4-inch) square cells placed 1.3 mm apart as shown in Figure 2-2. Sizing of the structural support member of a module was determined for a uniform, normal pressure load of 50 psf, corresponding to the pressure difference generated between the front and back surface of a module by a 100 mph wind. Thermal and optical calculations were performed for a wind velocity of 1 meter/sec parallel to the ground and for module tilt (relative to the local horizontal) of 37 deg. Placement of a module in a typical array field is illustrated.

  2. Reliability Improvement of Ground Fault Protection System Using an S-Type Horn Attachment Gap in AC Feeding System

    NASA Astrophysics Data System (ADS)

    Ajiki, Kohji; Morimoto, Hiroaki; Shimokawa, Fumiyuki; Sakai, Shinya; Sasaki, Kazuomi; Sato, Ryogo

    Contact wires used in feeding system for electric railroad are insulated by insulators. However, insulation of an insulator sometimes breaks down by surface dirt of an insulator and contact with a bird. The insulator breakdown derives a ground fault in feeding system. Ground fault will cause a human electric shock and a destruction of low voltage electric equipment. In order to prevent the damage by ground fault, an S-type horn has been applicable as equipped on insulators of negative feeder and protective wire until present. However, a concrete pole breaks down at the time of the ground fault because a spark-over voltage of the S-type horn is higher than a breakdown voltage of a concrete pole. Farther, the S-type horn installed in the steel tube pole does not discharge a case, because the earth resistance of a steel tube pole is very small. We assumed that we could solve these troubles by changing the power frequency spark-over voltage of the S-type horn from 12kV to 3kV. Accordingly, we developed an attachment gap that should be used to change the power frequency spark-over voltage of the S-type horn from 12kV to 3kV. The attachment gap consists of a gas gap arrester and a zinc oxide element. By the dynamic current test and the artificial ground fault test, we confirmed that the attachment gap in the S-type horn could prevent a trouble at the time of the ground fault.

  3. Intraspinal Microstimulation Produces Over-ground Walking in Anesthetized Cats

    PubMed Central

    Holinski, B.J.; Mazurek, K.A.; Everaert, D.G.; Toossi, A.; Lucas-Osma, A.M.; Troyk, P.; Etienne-Cummings, R.; Stein, R.B.; Mushahwar, V.K.

    2016-01-01

    Objective Spinal cord injury causes a drastic loss of motor, sensory and autonomic function. The goal of this project was to investigate the use of intraspinal microstimulation (ISMS) for producing long distances of walking over ground. ISMS is an electrical stimulation method developed for restoring motor function by activating spinal networks below the level of an injury. It produces movements of the legs by stimulating the ventral horn of the lumbar enlargement using fine penetrating electrodes (≤ 50µm diameter). Approach In each of five adult cats (4.2–5.5kg), ISMS was applied through 16 electrodes implanted with tips targeting lamina IX in the ventral horn bilaterally. A desktop system implemented a physiologically-based control strategy that delivered different stimulation patterns through groups of electrodes to evoke walking movements with appropriate limb kinematics and forces corresponding to swing and stance. Each cat walked over an instrumented 2.9m walkway and limb kinematics and forces were recorded. Main Results Both propulsive and supportive forces were required for over-ground walking. Cumulative walking distances ranging from 609m to 835m (longest tested) were achieved in three animals. In these three cats, the mean peak supportive force was 3.5±0.6N corresponding to full-weight-support of the hind legs, while the angular range of the hip, knee, and ankle joints were 23.1±2.0°, 29.1±0.2°, and 60.3±5.2°, respectively. To further demonstrate the viability of ISMS for future clinical use, a prototype implantable module was successfully implemented in a subset of trials and produced comparable walking performance. Significance By activating inherent locomotor networks within the lumbosacral spinal cord, ISMS was capable of producing bilaterally coordinated and functional over-ground walking with current amplitudes <100 µA. These exciting results suggest that ISMS may be an effective intervention for restoring functional walking after spinal cord injury. PMID:27619069

  4. Evaluation of the Atmospheric Boundary-Layer Electrical Variability

    NASA Astrophysics Data System (ADS)

    Anisimov, Sergey V.; Galichenko, Sergey V.; Aphinogenov, Konstantin V.; Prokhorchuk, Aleksandr A.

    2017-12-01

    Due to the chaotic motion of charged particles carried by turbulent eddies, electrical quantities in the atmospheric boundary layer (ABL) have short-term variability superimposed on long-term variability caused by sources from regional to global scales. In this study the influence of radon exhalation rate, aerosol distribution and turbulent transport efficiency on the variability of fair-weather atmospheric electricity is investigated via Lagrangian stochastic modelling. For the mid-latitude lower atmosphere undisturbed by precipitation, electrified clouds, or thunderstorms, the model is capable of reproducing the diurnal variation in atmospheric electrical parameters detected by ground-based measurements. Based on the analysis of field observations and numerical simulation it is found that the development of the convective boundary layer, accompanied by an increase in turbulent kinetic energy, forms the vertical distribution of radon and its decaying short-lived daughters to be approximately coincident with the barometric law for several eddy turnover times. In the daytime ABL the vertical distribution of atmospheric electrical conductivity tends to be uniform except within the surface layer, due to convective mixing of radon and its radioactive decay products. At the same time, a decrease in the conductivity near the ground is usually observed. This effect leads to an enhanced ground-level atmospheric electric field compared to that normally observed in the nocturnal stably-stratified boundary layer. The simulation showed that the variability of atmospheric electric field in the ABL associated with internal origins is significant in comparison to the variability related to changes in global parameters. It is suggested that vertical profiles of electrical quantities can serve as informative parameters on ABL turbulent dynamics and can even more broadly characterize the state of the environment.

  5. Photoassociation of cold (RbCs)2 tetramers in the ground electronic state

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Côté, Robin

    2017-04-01

    We theoretically investigate prospects for photoassociative formation of cold (RbCs)2 tetramers from a pair of ultracold RbCs molecules. The long-range region of the potential energy surface (PES) of the lowest electronic state of (RbCs)2 can be affected by orienting both RbCs molecules by an external electric field. In fact, we find a long-range barrier that supports long-range shelf states for relative angles between the dimers' internuclear axes smaller than about 20°. We show that these shelf states can be populated by spontaneous decay from the first excited electronic state which can be efficiently populated by photoassociation from the scattering continuum at ultracold temperatures. The vibrationally excited ground-state tetramer molecules formed this way have sufficiently long lifetimes to allow experimental detection. Moreover, for the relative angles between the dimers close to 20°, the proposed approach may result in production of deeply bound tetramers. Partially supported by the NASA Postdoctoral Program at the NASA Ames Research Center, administered by USRA and the MURI US Army Research Office Grant No. W911NF-14-1-0378 (MG), and by the PIF program of the National Science Foundation Grant No. PHY-141556.

  6. Qualification test results for DOE solar photovoltaic flat panel procurement - PRDA 38

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1980-01-01

    Twelve types of prototypes modules for the DOE Photovoltaic Flat Panel Procurement (PRDA 38) were subjected to qualification tests at the Jet Propulsion Laboratory according to a new specification. Environmental exposures were carried out separately and included temperature cycling, humidity, wind simulation, and hail. The most serious problems discovered were reduced insulation resistance to ground and ground continuity of the metal frames, electrical degradation, erratic power readings, and delamination. The electrical and physical characteristics of the newly received modules are also given.

  7. Macrocognition in Teams and Analysis of Information Flow During the Haiti Disaster Relief

    DTIC Science & Technology

    2011-06-01

    supplies, clean water and electricity. TIE TIE TIE Local soccer field is now a safe landing ground for helicopters. TIE TIE TIE Five flights have...TIE TIE OR’s adequate medical supplies, clean water and electricity (generator) TIE TIE TIE Local soccer field is landing pad. TIE TIE TIE 5... soccer /helo pad, TIE TIE TIE Have own ambulances for transport. TIE TIE TIE 62 Contact: "NAME" (Ground Coordinator) Haiti cell "PHONE", "E

  8. Electric fields preceding cloud-to-ground lightning flashes

    NASA Astrophysics Data System (ADS)

    Beasley, W.; Uman, M. A.; Rustan, P. L., Jr.

    1982-06-01

    A detailed analysis is presented of the electric-field variations preceding the first return strokes of 80 cloud-to-ground lightning flashes in nine different storms observed at the NASA Kennedy Space Center during the summers of 1976 and 1977. It is suggested that the electric-field variations can best be characterized as having two sections: preliminary variations and stepped leader. The stepped-leader change begins during a transition period of a few milliseconds marked by characteristic bipolar pulses; the duration of stepped leaders lies most frequently in the 6-20 millisecond range. It is also suggested that there is only one type of stepped leader, not two types (alpha and beta) often referred to in the literature.

  9. Estimation of electric fields and current from ground-based magnetometer data

    NASA Technical Reports Server (NTRS)

    Kamide, Y.; Richmond, A. D.

    1984-01-01

    Recent advances in numerical algorithms for estimating ionospheric electric fields and currents from groundbased magnetometer data are reviewed and evaluated. Tests of the adequacy of one such algorithm in reproducing large-scale patterns of electrodynamic parameters in the high-latitude ionosphere have yielded generally positive results, at least for some simple cases. Some encouraging advances in producing realistic conductivity models, which are a critical input, are pointed out. When the algorithms are applied to extensive data sets, such as the ones from meridian chain magnetometer networks during the IMS, together with refined conductivity models, unique information on instantaneous electric field and current patterns can be obtained. Examples of electric potentials, ionospheric currents, field-aligned currents, and Joule heating distributions derived from ground magnetic data are presented. Possible directions for future improvements are also pointed out.

  10. Lightning studies using LDAR and LLP data

    NASA Technical Reports Server (NTRS)

    Forbes, Gregory S.

    1993-01-01

    This study intercompared lightning data from LDAR and LLP systems in order to learn more about the spatial relationships between thunderstorm electrical discharges aloft and lightning strikes to the surface. The ultimate goal of the study is to provide information that can be used to improve the process of real-time detection and warning of lightning by weather forecasters who issue lightning advisories. The Lightning Detection and Ranging (LDAR) System provides data on electrical discharges from thunderstorms that includes cloud-ground flashes as well as lightning aloft (within cloud, cloud-to-cloud, and sometimes emanating from cloud to clear air outside or above cloud). The Lightning Location and Protection (LLP) system detects primarily ground strikes from lightning. Thunderstorms typically produce LDAR signals aloft prior to the first ground strike, so that knowledge of preferred positions of ground strikes relative to the LDAR data pattern from a thunderstorm could allow advance estimates of enhanced ground strike threat. Studies described in the report examine the position of LLP-detected ground strikes relative to the LDAR data pattern from the thunderstorms. The report also describes other potential approaches to the use of LDAR data in the detection and forecasting of lightning ground strikes.

  11. Long-term effects on symptoms by reducing electric fields from visual display units.

    PubMed

    Oftedal, G; Nyvang, A; Moen, B E

    1999-10-01

    The purpose of the study was to see whether the results of an earlier study [ie, that skin symptoms were reduced by reducing electric fields from visual display units (VDU)] could be reproduced or not. In addition, an attempt was made to determine whether eye symptoms and symptoms from the nervous system could be reduced by reducing VDU electric fields. The study was designed as a controlled double-blind intervention. The electric fields were reduced by using electric-conducting screen filters. Forty-two persons completed the study while working at their ordinary job, first 1 week with no filter, then 3 months with an inactive filter and then 3 months with an active filter (or in reverse order). The inactive filters were identical to the active ones, except that their ground cables were replaced by empty plastic insulation. The inactive filters did not reduce the fields from the VDU. The fields were significantly lower with active filters than with inactive filters. Most of the symptoms were statistically significantly less pronounced in the periods with the filters when compared with the period with no filter. This finding can be explained by visual effects and psychological effects. No statistically significant difference in symptom severeness was observed between the period with an inactive filter and the one with an active filter. The study does not support the hypothesis that skin, eye, or nervous system symptoms can be reduced by reducing VDU electric fields.

  12. Conduction of Electrical Current to and Through the Human Body: A Review

    PubMed Central

    Fish, Raymond M.; Geddes, Leslie A.

    2009-01-01

    Objective: The objective of this article is to explain ways in which electric current is conducted to and through the human body and how this influences the nature of injuries. Methods: This multidisciplinary topic is explained by first reviewing electrical and pathophysiological principles. There are discussions of how electric current is conducted through the body via air, water, earth, and man-made conductive materials. There are also discussions of skin resistance (impedance), internal body resistance, current path through the body, the let-go phenomenon, skin breakdown, electrical stimulation of skeletal muscles and nerves, cardiac dysrhythmias and arrest, and electric shock drowning. After the review of basic principles, a number of clinically relevant examples of accident mechanisms and their medical effects are discussed. Topics related to high-voltage burns include ground faults, ground potential gradient, step and touch potentials, arcs, and lightning. Results: The practicing physician will have a better understanding of electrical mechanisms of injury and their expected clinical effects. Conclusions: There are a variety of types of electrical contact, each with important characteristics. Understanding how electric current reaches and travels through the body can help the clinician understand how and why specific accidents occur and what medical and surgical problems may be expected. PMID:19907637

  13. Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.

    2014-01-01

    KSC-DE-512-SM establishes overall requirements and best design practices to be used at the John F. Kennedy Space Center (KSC) for the development of ground systems (GS) in support of operations at launch, landing, and retrieval sites. These requirements apply to the design and development of hardware and software for ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F-GSS) used to support the KSC mission for transportation, receiving, handling, assembly, test, checkout, servicing, and launch of space vehicles and payloads and selected flight hardware items for retrieval. This standards manual supplements NASA-STD-5005 by including KSC-site-specific and local environment requirements. These requirements and practices are optional for equipment used at manufacturing, development, and test sites.

  14. Radioactive contamination processes during 14-21 March after the Fukushima accident: What does atmospheric electric field measurements tell us?

    NASA Astrophysics Data System (ADS)

    Takeda, M.; Yamauchi, M.; Makino, M.; Owada, T.; Miyagi, I.

    2012-04-01

    Ionizing radiation from the radioactive material is known to increase atmospheric electric conductivity, and hence to decrease vertical downward atmospheric DC electric field at ground level, or potential gradient (PG). In the past, the drop of PG has been observed after rain-induced radioactive fallout (wet contamination) after nuclear tests or after the Chernobyl disaster. After the nuclear accident Fukushima Dai-ichi nuclear power plant (FNPP) that started 11 March 2011, the PG also at Kakioka, 150 km southwest from the FNPP, also dropped a by one order of magnitude. Unlike the past examples, the PG drop was two-stepped on 14 March and 20 March. Both correspond to two largest southward release of radioactive material according to the data from the radiation dose rate measurement network. We compare the Kakioka's PG data with the radiation dose rate data at different places to examine the fallout processes of both on 14 March and on 20 March. The former turned out to be dry contamination by surface wind, leaving a substantial amount of fallout floating near the ground. The latter turned out to be wet contamination by rain after transport by relatively low-altitude wind, and the majority of the fallout settled to the ground at this time. It is recommended that all nuclear power plant to have a network of PG observation surrounding the plant. Takeda, et al. (2011): Initial effect of the Fukushima accident on atmospheric electricity, Geophys. Res. Lett., 38, L15811, doi:10.1029/2011GL048511. Yamauchi, et al. (2012): Settlement process of radioactive dust to the ground inferred from the atmospheric electric field measurement, Ann. Geophys., 30, 49-56, doi:10.5194/angeo-30-49-2012.

  15. 46 CFR 32.75-15 - Electric bonding and grounding for tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Wood Hull Tank Vessels Constructed Prior... cargo tanks in wood hull tank vessels shall be electrically bonded together with stranded copper cable...

  16. 46 CFR 32.75-15 - Electric bonding and grounding for tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Wood Hull Tank Vessels Constructed Prior... cargo tanks in wood hull tank vessels shall be electrically bonded together with stranded copper cable...

  17. 21 CFR 884.4160 - Unipolar endoscopic coagulator-cutter and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... temperatures by directing a high frequency electrical current through the tissue between an energized probe and... generator, probes and electrical cables, and a patient grounding plate. This generic type of device does not...

  18. 21 CFR 884.4160 - Unipolar endoscopic coagulator-cutter and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... temperatures by directing a high frequency electrical current through the tissue between an energized probe and... generator, probes and electrical cables, and a patient grounding plate. This generic type of device does not...

  19. 21 CFR 884.4160 - Unipolar endoscopic coagulator-cutter and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... temperatures by directing a high frequency electrical current through the tissue between an energized probe and... generator, probes and electrical cables, and a patient grounding plate. This generic type of device does not...

  20. 21 CFR 884.4160 - Unipolar endoscopic coagulator-cutter and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... temperatures by directing a high frequency electrical current through the tissue between an energized probe and... generator, probes and electrical cables, and a patient grounding plate. This generic type of device does not...

  1. 21 CFR 884.4160 - Unipolar endoscopic coagulator-cutter and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... temperatures by directing a high frequency electrical current through the tissue between an energized probe and... generator, probes and electrical cables, and a patient grounding plate. This generic type of device does not...

  2. Defining Electric Potential Difference by Moving a Multimeter's Ground Probe

    ERIC Educational Resources Information Center

    Stoeckel, Marta R.

    2018-01-01

    The abstract nature of electric potential difference (voltage) can make it a difficult concept to grasp, but understanding the relative nature of voltage is central to developing a conceptual understanding of electric circuits. In laboratory situations, I see these conceptual difficulties manifest when students have difficulty placing voltmeter…

  3. Emulation of Forward-looking Radar Technology for Threat Detection in Rough Terrain Environments: A Scattering and Imaging Study

    DTIC Science & Technology

    2012-12-01

    a) Ground with flat surface; (b) Ground with randomly rough surface, hrms =1.2 cm, lc=14.93 cm; (c) Ground with randomly rough surface, hrms =1.6 cm...horizontal-horizontal (hh)-polarized images for 20 m×10 m scene: (a) Ground with flat surface; (b) Ground with randomly rough surface, hrms =1.2 cm...lc=14.93 cm; (c) Ground with randomly rough surface, hrms =1.6 cm, lc=14.93 cm. Ground electrical properties: εr=6, σd=10 mS/m. Frequency span: 0.3

  4. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T.

    2008-10-21

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  5. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T [Albuquerque, NM

    2008-03-18

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  6. Hybrid Vehicles

    DTIC Science & Technology

    2008-12-08

    chassis) by a ground strap, wire, welded connection or other suitable low-resistance mechanical connection. Case ground connectors routed from other...environment of a hybrid electric vehicle. Alternative temperature measuring transducers, e.g., thermistors , should be considered when thermocouples are...A 3. Is the ground connection to the chassis or frame mechanically secured by one of the following methods? a. Secured to a spot- welded

  7. Breakdown in Atmospheric Pressure Plasma Jets: Nearby Grounds and Voltage Rise Time

    NASA Astrophysics Data System (ADS)

    Lietz, Amanda; Kushner, Mark J.

    2015-09-01

    Atmospheric pressure plasma jets (APPJs) are being investigated to stimulate therapeutic responses in biological systems. These responses are not always consistent. One source of variability may be the design of the APPJs - the number and placement of electrodes, pulse power format - which affects the production of reactive species. In this study, the consequences of design parameters of an APPJ were computationally investigated using nonPDPSIM, a 2 d model. The configuration is a cylindrical tube with one or two ring exterior electrodes, with or without a center pin electrode. The APPJ operates in He/O2 flowing into humid air. We found that the placement of the electrical ground on and around the system is important to the breakdown characteristics of the APPJ, and the electron density and temperature of the resulting plasma. With a single powered ring electrode, the placement of the nearest ground may vary depending on the setup, and this significantly affects the discharge. With two-ring electrodes, the nearest ground plane is well defined, however more distant ground planes can also influence the discharge. With an ionization wave (IW) that propagates out of the tube and into the plume in tens of ns, the rise time of the voltage waveform can be on the same timescale, and so variations in the voltage rise time could produce different IW properties. The effect of ground placement and voltage waveform on IW formation (ns timescales) and production of reactive neutrals (ms timescales) will be discussed. Work supported by DOE (DE-SC0001319) and NSF (CHE-1124724). Done...processed 598 records...15:12:56

  8. Automation study for space station subsystems and mission ground support

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An automation concept for the autonomous operation of space station subsystems, i.e., electric power, thermal control, and communications and tracking are discussed. To assure that functions essential for autonomous operations are not neglected, an operations function (systems monitoring and control) is included in the discussion. It is recommended that automated speech recognition and synthesis be considered a basic mode of man/machine interaction for space station command and control, and that the data management system (DMS) and other systems on the space station be designed to accommodate fully automated fault detection, isolation, and recovery within the system monitoring function of the DMS.

  9. KSC-97PC1139

    NASA Image and Video Library

    1997-07-26

    The first of two Pressurized Mating Adapters, or PMAs, for the International Space Station arrive in KSC’s Space Station Processing Facility in July. A PMA is a cone-shaped connector that will be attached to Node 1, the space station’s structural building block, during ground processing. The adapter will house space station computers and various electrical support equipment and eventually will serve as the passageway for astronauts between the node and the U.S-financed, Russian-built Functional Cargo Block. Node 1 with two adapters attached will be the first element of the station to be launched aboard the Space Shuttle Endeavour on STS-88 in July 1998

  10. KSC-97PC1140

    NASA Image and Video Library

    1997-07-26

    The first of two Pressurized Mating Adapters, or PMAs, for the International Space Station arrive in KSC’s Space Station Processing Facility in July. A PMA is a cone-shaped connector that will be attached to Node 1, the space station’s structural building block, during ground processing. The adapter will house space station computers and various electrical support equipment and eventually will serve as the passageway for astronauts between the node and the U.S-financed, Russian-built Functional Cargo Block. Node 1 with two adapters attached will be the first element of the station to be launched aboard the Space Shuttle Endeavour on STS-88 in July 1998

  11. New biorthogonality relations for inhomogeneous biisotropic planar waveguides

    NASA Astrophysics Data System (ADS)

    Topa, Antonio L.; Paiva, Carlos R.; Barbosa, Afonso M.

    1994-04-01

    Using a linear operator formalism this paper presents new biorthogonality relations for the hybrid modes supported by planar waveguides inhomogeneously filled with general biisotropic media. In the special case of lossless biisotropic media, the linear operator is self-adjoint, the original and adjoint waveguides are identical, and new orthogonality relations can be derived. As an example of application, the radiation modes of a grounded nonreciprocal and lossless biisotropic slab waveguide are analyzed in terms of a pair of incident transverse electric (ITE) and incident transverse magnetic (ITM) continuous modes, which have the advantage of being mutually orthogonal and of having a clear physical interpretation.

  12. Application of urban neighborhoods in understanding of local level electricity consumption patterns

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, P. K.; Bhaduri, B. L.

    2017-12-01

    Aggregated national or regional level electricity consumption data fail to capture the spatial variation in consumption, a function of location, climate, topography, and local economics. Spatial monitoring of electricity usage patterns helps to understand derivers of location specific consumption behavior and develop models to cater to the consumer needs, plan efficiency measures, identify settled areas lacking access, and allows for future planning through assessing requirements. Developed countries have started to deploy sensor systems such as smart meters to gather information on local level consumption patterns, but such infrastructure is virtually nonexistent in developing nations, resulting in serious dearth of reliable data for planners and policy makers. Remote sensing of artificial nighttime lights from human settlements have proven useful to study electricity consumptions from global to regional scales, however, local level studies remain scarce. Using the differences in spatial characteristics among different urban neighborhoods such as industrial, commercial and residential, observable through very high resolution day time satellite images (<0.5 meter), formal urban neighborhoods have been generated through texture analysis. In this study, we explore the applicability of these urban neighborhoods in understanding local level electricity consumption patterns through exploring possible correlations between the spatial characteristics of these neighborhoods, associated general economic activities, and corresponding VIIRS day-night band (DNB) nighttime lights observations, which we use as a proxy for electricity consumption in the absence of ground level consumption data. The overall trends observed through this analysis provides useful explanations helping in understanding of broad electricity consumption patterns in urban areas lacking ground level observations. This study thus highlights possible application of remote sensing data driven methods in providing novel insights into local level socio-economic patterns that were hitherto undetected due to lack of ground data.

  13. An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data

    NASA Astrophysics Data System (ADS)

    Auken, Esben; Christiansen, Anders Vest; Kirkegaard, Casper; Fiandaca, Gianluca; Schamper, Cyril; Behroozmand, Ahmad Ali; Binley, Andrew; Nielsen, Emil; Effersø, Flemming; Christensen, Niels Bøie; Sørensen, Kurt; Foged, Nikolaj; Vignoli, Giulio

    2015-07-01

    We present an overview of a mature, robust and general algorithm providing a single framework for the inversion of most electromagnetic and electrical data types and instrument geometries. The implementation mainly uses a 1D earth formulation for electromagnetics and magnetic resonance sounding (MRS) responses, while the geoelectric responses are both 1D and 2D and the sheet's response models a 3D conductive sheet in a conductive host with an overburden of varying thickness and resistivity. In all cases, the focus is placed on delivering full system forward modelling across all supported types of data. Our implementation is modular, meaning that the bulk of the algorithm is independent of data type, making it easy to add support for new types. Having implemented forward response routines and file I/O for a given data type provides access to a robust and general inversion engine. This engine includes support for mixed data types, arbitrary model parameter constraints, integration of prior information and calculation of both model parameter sensitivity analysis and depth of investigation. We present a review of our implementation and methodology and show four different examples illustrating the versatility of the algorithm. The first example is a laterally constrained joint inversion (LCI) of surface time domain induced polarisation (TDIP) data and borehole TDIP data. The second example shows a spatially constrained inversion (SCI) of airborne transient electromagnetic (AEM) data. The third example is an inversion and sensitivity analysis of MRS data, where the electrical structure is constrained with AEM data. The fourth example is an inversion of AEM data, where the model is described by a 3D sheet in a layered conductive host.

  14. Seasonal thermal energy storage

    NASA Astrophysics Data System (ADS)

    Minor, J. E.

    1980-03-01

    The Seasonal Thermal Energy Storage (STES) Program demonstrates the economic storage and retrieval of thermal energy on a seasonal basis, using heat or cold available from waste or other sources during a surplus period to reduce peak period demand, reduce electric utilities peaking problems, and contribute to the establishment of favorable economics for district heating and cooling systems for commercialization of the technology. The STES Program utilizes ground water systems (aquifers) for thermal energy storage. The STES Program is divided into an Aquifer Thermal Energy Storage (ATES) Demonstration Task for demonstrating the commercialization potential of aquifer thermal energy storage technology using an integrated system approach to multiple demonstration projects and a parallel Technical Support Task designed to provide support to the overall STES Program, and to reduce technological and institutional barriers to the development of energy storage systems prior to significant investment in demonstration or commercial facilities.

  15. Grounding electrode and method of reducing the electrical resistance of soils

    DOEpatents

    Koehmstedt, Paul L.

    1980-01-01

    A first solution of an electrolyte is injected underground into a volume of soil having negative surface charges on its particles. A cationic surfactant suspended in this solution neutralizes these surface charges of the soil particles within the volume. Following the first solution, a cationic asphalt emulsion suspended in a second solution is injected into the volume. The asphalt emulsion diffuses through the volume and electrostatically bonds with additional soil surrounding the volume such that an electrically conductive water repellant shell enclosing the volume is formed. This shell prevents the leaching of electrolyte from the volume into the additional soil. The second solution also contains a dissolved deliquescent salt which draws water into the volume prior to the formation of the shell. When electrically connected to an electrical installation such as a power line tower, the volume constitutes a grounding electrode for the tower.

  16. Atmospheric electricity. [lightning protection criteria in spacecraft design

    NASA Technical Reports Server (NTRS)

    Daniels, G. E.

    1973-01-01

    Atmospheric electricity must be considered in the design, transportation, and operation of aerospace vehicles. The effect of the atmosphere as an insulator and conductor of high voltage electricity, at various atmospheric pressures, must also be considered. The vehicle can be protected as follows: (1) By insuring that all metallic sections are connected by electrical bonding so that the current flow from a lightning stroke is conducted over the skin without any gaps where sparking would occur or current would be carried inside; (2) by protecting buildings and other structures on the ground with a system of lightning rods and wires over the outside to carry the lightning stroke into the ground; (3) by providing a zone of protection for launch complexes; (4) by providing protection devices in critical circuits; (5) by using systems which have no single failure mode; and (6) by appropriate shielding of units sensitive to electromagnetic radiation.

  17. Spray Formation from a Charged Liquid Jet of a Dielectric Fluid

    NASA Astrophysics Data System (ADS)

    Doak, William; de Bellis, Victor; Chiarot, Paul; Microfluidics; Multiphase Flow Laboratory Team

    2017-11-01

    Atomization of a dielectric micro-jet is achieved via an electrohydrodynamic charge injection process. The atomizer is comprised of a grounded nozzle housing (ground electrode) and an internal probe (high voltage electrode) that is concentric with the emitting orifice. The internal probe is held at electric potentials ranging from 1-10 kV. A pressurized reservoir drives a dielectric fluid at a desired flow rate through the 100-micrometer diameter orifice. The fluid fills the cavity between the electrodes as it passes through the atomizer, impeding the transport of electrons. This process injects charge into the flowing fluid. Upon exiting the orifice, the emitted jet is highly charged and it deforms via a bending instability that is qualitatively similar to the behavior observed in the electrospinning of fibers. We observed bulging regions, or nodes, of highly charged fluid forming along the bent, rotating jet. These nodes separate into highly charged droplets that emit satellite droplets. The remaining ligaments break up due to capillarity in a process that produces additional satellites. All of the droplets possess a normal (inertial) and radial (electrically-driven) momentum component. The radial component is responsible for the formation of a conical spray envelope. Our research focuses on the jet, its break up, and the droplet dynamics of this system. This research supported by the American Chemical Society.

  18. Electric field at the ground in a large tornado

    NASA Astrophysics Data System (ADS)

    Winn, W. P.; Hunyady, S. J.; Aulich, G. D.

    2000-08-01

    A number of observers have reported lightning, diffuse luminosity, or other manifestations of electrical activity in tornadoes. To try to quantify these observations, eight instruments with sensors for electric field and other parameters were placed in front of a large tornado that passed by Allison, Texas, on June 8, 1995. The edge of the tornado vortex passed over two of the instruments and near other instruments. When the two instruments were in the low-pressure region near the edge of the vortex, they indicated electric field amplitudes less than about 3 kV/m, which is low compared with amplitudes of 10 kV/m or greater that are often present below thunderclouds. The thunderstorm produced frequent lightning, but there is no evidence from the measurements or from visual observations of lightning in the vortex. However, there was one interesting electrical effect associated with the tornado: the electric field at the two instruments in the vortex relaxed to zero quickly after lightning flashes, whereas the electric field at nearby instruments outside the vortex did not relax quickly after the same lightning flashes. The most likely cause of the rapid relaxation is shielding of the electric field at the ground by charge induced on soil, leaves, grass, and other debris lofted by the strong winds.

  19. Extreme-UV electrical discharge source

    DOEpatents

    Fornaciari, Neal R.; Nygren, Richard E.; Ulrickson, Michael A.

    2002-01-01

    An extreme ultraviolet and soft x-ray radiation electric capillary discharge source that includes a boron nitride housing defining a capillary bore that is positioned between two electrodes one of which is connected to a source of electric potential can generate a high EUV and soft x-ray radiation flux from the capillary bore outlet with minimal debris. The electrode that is positioned adjacent the capillary bore outlet is typically grounded. Pyrolytic boron nitride, highly oriented pyrolytic boron nitride, and cubic boron nitride are particularly suited. The boron nitride capillary bore can be configured as an insert that is encased in an exterior housing that is constructed of a thermally conductive material. Positioning the ground electrode sufficiently close to the capillary bore outlet also reduces bore erosion.

  20. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  1. International Aerospace and Ground Conference on Lightning and Static Electricity (15th) Held in Atlantic City, New Jersey on October 6 - 8, 1992. Addendum

    DTIC Science & Technology

    1992-11-01

    November 1992 1992 INTERNATIONAL AEROSPACE AND GROUND CONFERENCE 6. Perfrming Orgnis.aten Code ON LIGHTNING AND STATIC ELECTRICITY - ADDENDUM 111...October 6-8 1992 Program and the Federal Aviation Administration 14. Sponsoring Agency Code Technical Center ACD-230 15. Supplementary Metes The NICG...area]. The program runs well on an IBM PC or compatible 386 with a math co-processor 387 chip and a VGA monitor. For this study, streamers were added

  2. Lightning electric field measurements which correlate with strikes to the NASA F-106B aircraft, 22 July 1980

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1981-01-01

    Ground-based data collected on lightning monitoring equipment operated by Goddard Space Flight Center at Wallops Island, Virginia, during a storm being monitored by NASA's F-106B, are presented. The slow electric field change data and RF radiation data were collected at the times the lightning monitoring equipment on the aircraft was triggered. The timing of the ground-based events correlate well with events recorded on the aircraft and provide an indication of the type of flash with which the aircraft was involved.

  3. Progress in utilization of a mobile laboratory for making storm electricity measurements

    NASA Technical Reports Server (NTRS)

    Rust, W. David

    1988-01-01

    A mobile atmospheric science laboratory has been used to intercept and track storms on the Great Plains region of the U.S., with the intention of combining the data obtained with those from Doppler and conventional radars, NASA U-2 aircraft overflights, balloon soundings, and fixed-base storm electricity measurements. The mobile lab has proven to be valuable in the gathering of ground truth verifications for the two commercially operated lightning ground-strike locating systems. Data acquisition has recently been expanded by means of mobile ballooning before and during storms.

  4. Laser power conversion system analysis, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The orbit-to-ground laser power conversion system analysis investigated the feasibility and cost effectiveness of converting solar energy into laser energy in space, and transmitting the laser energy to earth for conversion to electrical energy. The analysis included space laser systems with electrical outputs on the ground ranging from 100 to 10,000 MW. The space laser power system was shown to be feasible and a viable alternate to the microwave solar power satellite. The narrow laser beam provides many options and alternatives not attainable with a microwave beam.

  5. Low Power Ground-Based Laser Illumination for Electric Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.; Oleson, Steven R.

    1994-01-01

    A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.

  6. Observation of Feshbach resonances between ultracold Na and Rb atoms

    NASA Astrophysics Data System (ADS)

    Wang, Fudong; Xiong, Dezhi; Li, Xiaoke; Wang, Dajun

    2013-03-01

    Absolute ground-state 23Na87Rb molecule has a large electric dipole moment of 3.3 Debye and its two body exchange chemical reaction is energetically forbidden at ultracold temperatures. It is thus a nice candidate for studying quantum gases with dipolar interactions. We have built an experiment setup to investigate ultracold collisions between Na and Rb atoms as a first step toward the production of ground state molecular samples. Ultracold mixtures are first obtained by evaporative cooling of Rb and sympathetic cooling of Na. They are then transferred to a crossed dipole trap and prepared in different spin combinations for Feshbach resonance study. Several resonances below 1000 G are observed with both atoms prepared in either | F = 1,mF = 1 > or | F = 1,mF = - 1 > hyperfine states. Most of them are within 30 G of predicted values§ based on potentials obtained by high quality molecular spectroscopy studies. This work is supported by RGC Hong Kong. § E. Tiemann, private communications

  7. Freeze core sampling to validate time-lapse resistivity monitoring of the hyporheic zone.

    PubMed

    Toran, Laura; Hughes, Brian; Nyquist, Jonathan; Ryan, Robert

    2013-01-01

    A freeze core sampler was used to characterize hyporheic zone storage during a stream tracer test. The pore water from the frozen core showed tracer lingered in the hyporheic zone after the tracer had returned to background concentration in collocated well samples. These results confirmed evidence of lingering subsurface tracer seen in time-lapse electrical resistivity tomographs. The pore water exhibited brine exclusion (ion concentrations in ice lower than source water) in a sediment matrix, despite the fast freezing time. Although freeze core sampling provided qualitative evidence of lingering tracer, it proved difficult to quantify tracer concentration because the amount of brine exclusion during freezing could not be accurately determined. Nonetheless, the additional evidence for lingering tracer supports using time-lapse resistivity to detect regions of low fluid mobility within the hyporheic zone that can act as chemically reactive zones of importance in stream health. © 2012, The Author(s). GroundWater © 2012, National Ground Water Association.

  8. Reduced-Gravity Measurements of the Effect of Oxygen on Properties of Zirconium

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Lee, J.; Wunderlich, R.; Fecht, H.-J.; Schneider, S.; SanSoucie, M.; Rogers, J.; Hyers, R.

    2016-01-01

    The influence of oxygen on the thermophysical properties of zirconium is being investigated using MSL-EML (Material Science Laboratory - Electromagnetic Levitator) on ISS (International Space Station) in collaboration with NASA, ESA (European Space Agency), and DLR (German Aerospace Center). Zirconium samples with different oxygen concentrations will be put into multiple melt cycles, during which the density, viscosity, surface tension, heat capacity, and electric conductivity will be measured at various undercooled temperatures. The facility check-up of MSL-EML and the first set of melting experiments have been successfully performed in 2015. The first zirconium sample will be tested near the end of 2015. As part of ground support activities, the thermophysical properties of zirconium and ZrO were measured using a ground-based electrostatic levitator located at the NASA Marshall Space Flight Center. The influence of oxygen on the measured surface tension was evaluated. The results of this research will serve as reference data for those measured in ISS.

  9. Detailed Inventory of Electric Power Consuming Devices Utilized in Tactical Systems 1

    DTIC Science & Technology

    1992-03-01

    1 Jody Wojciechowski ODCSLOG I Madeline M. Decker DALO-TSE Aberden Proving Ground , MD 21005-5066 Room 1E588, Pentagon Washington, DC 20310-0561...Aberdeen Proving Ground , MD 21005 1400 Wilson Blvd. Arlington, VA 22209 1 Commander US Army Aberdeen Proving Ground I Director ATTN: STEAP-MT-U (GE...Information Center Aberdeen Proving Ground , MD 21005-5071 Cameron Station ATrN: DTIC-FDAC Director Alexandria, VA 22304-6145 US Ballistics Research

  10. Associating ground magnetometer observations with current or voltage generators

    NASA Astrophysics Data System (ADS)

    Hartinger, M. D.; Xu, Z.; Clauer, C. R.; Yu, Y.; Weimer, D. R.; Kim, H.; Pilipenko, V.; Welling, D. T.; Behlke, R.; Willer, A. N.

    2017-07-01

    A circuit analogy for magnetosphere-ionosphere current systems has two extremes for drivers of ionospheric currents: ionospheric electric fields/voltages constant while current/conductivity vary—the "voltage generator"—and current constant while electric field/conductivity vary—the "current generator." Statistical studies of ground magnetometer observations associated with dayside Transient High Latitude Current Systems (THLCS) driven by similar mechanisms find contradictory results using this paradigm: some studies associate THLCS with voltage generators, others with current generators. We argue that most of this contradiction arises from two assumptions used to interpret ground magnetometer observations: (1) measurements made at fixed position relative to the THLCS field-aligned current and (2) negligible auroral precipitation contributions to ionospheric conductivity. We use observations and simulations to illustrate how these two assumptions substantially alter expectations for magnetic perturbations associated with either a current or a voltage generator. Our results demonstrate that before interpreting ground magnetometer observations of THLCS in the context of current/voltage generators, the location of a ground magnetometer station relative to the THLCS field-aligned current and the location of any auroral zone conductivity enhancements need to be taken into account.

  11. Installation restoration research program: Assessment of geophysical methods for subsurface geologic mapping, cluster 13, Edgewood Area, Aberdeen Proving Ground, Maryland. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, D.K.; Sharp, M.K.; Sjostrom, K.J.

    1996-10-01

    Seismic refraction, electrical resistivity, and transient electromagnetic surveys were conducted at a portion of Cluster 13, Edgewood Area of Aberdeen Proving Ground, Maryland. Seismic refraction cross sections map the topsoil layer and the water table (saturated zone). The water table elevations from the seismic surveys correlate closely with water table elevations in nearby monitoring wells. Electrical resistivity cross sections reveal a very complicated distribution of sandy and clayey facies in the upper 10 - 15 m of the subsurface. A continuous surficial (topsoil) layer correlates with the surficial layer of the seismic section and nearby boring logs. The complexity andmore » details of the electrical resistivity cross section correlate well with boring and geophysical logs from nearby wells. The transient electromagnetic surveys map the Pleistocene-Cretaceous boundary, the saprolite, and the top of the Precambrian crystalline rocks. Conducting the transient electromagnetic surveys on a grid pattern allows the construction of a three-dimensional representation of subsurface geology (as represented by variations of electrical resistivity). Thickness and depth of the saprolitic layer and depth to top of the Precambrian rocks are consistent with generalized geologic cross sections for the Edgewood Area and depths projected from reported depths at the Aberdeen Proving Ground NW boundary using regional dips.« less

  12. Geophysical Signitures From Hydrocarbon Contaminated Aquifers

    NASA Astrophysics Data System (ADS)

    Abbas, M.; Jardani, A.

    2015-12-01

    The task of delineating the contamination plumes as well as studying their impact on the soil and groundwater biogeochemical properties is needed to support the remediation efforts and plans. Geophysical methods including electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), and self-potential (SP) have been previously used to characterize contaminant plumes and investigate their impact on soil and groundwater properties (Atekwana et al., 2002, 2004; Benson et al., 1997; Campbell et al., 1996; Cassidy et al., 2001; Revil et al., 2003; Werkema et al., 2000). Our objective was to: estimate the hydrocarbon contamination extent in a contaminated site in northern France, and to adverse the effects of the oil spill on the groundwater properties. We aim to find a good combination of non-intrusive and low cost methods which we can use to follow the bio-remediation process, which is planned to proceed next year. We used four geophysical methods including electrical resistivity tomography, IP, GPR, and SP. The geophysical data was compared to geochemical ones obtained from 30 boreholes installed in the site during the geophysical surveys. Our results have shown: low electrical resistivity values; high chargeability values; negative SP anomalies; and attenuated GPR reflections coincident with groundwater contamination. Laboratory and field geochemical measurements have demonstrated increased groundwater electrical conductivity and increased microbial activity associated with hydrocarbon contamination of groundwater. Our study results support the conductive model suggested by studies such as Sauck (2000) and Atekwana et al., (2004), who suggest that biological alterations of hydrocarbon contamination can substantially modify the chemical and physical properties of the subsurface, producing a dramatic shift in the geo-electrical signature from resistive to conductive. The next stage of the research will include time lapse borehole and 3D geophysical measurements coupled to biological and chemical surface phase experiments in order to monitor the bioremediation processes.

  13. Groundwater Governance in a Water-Starved Country: Public Policy, Farmers' Perceptions, and Drivers of Tubewell Adoption in Balochistan, Pakistan.

    PubMed

    Khair, Syed Mohammad; Mushtaq, Shahbaz; Reardon-Smith, Kathryn

    2015-01-01

    Pakistan faces the challenge of developing sustainable groundwater policies with the main focus on groundwater management rather than groundwater development and with appropriate governance arrangement to ensure benefits continue into the future. This article investigates groundwater policy, farmers' perceptions, and drivers of tubewell (groundwater bore) adoption and proposes possible pathways for improved groundwater management for Balochistan, Pakistan. Historical groundwater policies were mainly aimed at increasing agricultural production and reducing poverty, without consideration of adverse impact on groundwater availability. These groundwater policies and governance arrangements have resulted in a massive decline in groundwater tables. Tubewell owners' rankings of the drivers of groundwater decline suggest that rapid and widespread installation of tubewells, together with uncontrolled extraction due to lack of property rights, electricity subsidy policies, and ineffective governance, are key causes of groundwater decline in Balochistan. An empirical "tubewell adoption" model confirmed that the electricity subsidy significantly influenced tubewell adoption decisions. The article proposes a more rational electricity subsidy policy for sustaining groundwater levels in the short-run. However, in the long run a more comprehensive sustainable groundwater management policy, with strong institutional support and involvement of all stakeholders, is needed. © 2014, National Ground Water Association.

  14. Conjugate Magnetic Observations in the Polar Environments by PRIMO and AUTUMNX

    NASA Astrophysics Data System (ADS)

    Chi, P. J.; Russell, C. T.; Strangeway, R. J.; Raymond, C. A.; Connors, M. G.; Wilson, T. J.; Boteler, D. H.; Rowe, K.; Schofield, I.

    2014-12-01

    While magnetically conjugate observations by ground-based magnetometers are available at both high and low magnetic latitudes, few have been established at auroral latitudes to monitor the hemispheric asymmetry of auroral electric currents and its impact to geospace dynamics. Due to the limitations of global land areas, the only regions where conjugate ground-based magnetic observations can cover the full range of auroral latitudes are between Quebec, Canada and West Antarctica. Funded by the Canadian Space Agency, the AUTUMNX project is currently emplacing 10 ground-based magnetometers in Quebec, Canada, and will provide the magnetic field observations in the Northern Hemisphere. The proposed U.S. Polar Region Interhemispheric Magnetic Observatories (PRIMO) project plans to establish six new ground-based magnetometers in West Antarctica at L-values between 3.9 and 10.1. The instrument is based on the new low-power fluxgate magnetometer system recently developed at UCLA for operation in the polar environments. The PRIMO magnetometers will operate on the power and communications platform well proven by the POLENET project, and the six PRIMO systems will co-locate with existing ANET stations in the region for synergy in logistic support. Focusing on the American longitudinal sector and leveraging infrastructure through international collaborations, PRIMO and AUTUMNX can monitor the intensity and location of auroral electrojets in both hemispheres simultaneously, enabling the first systematic interhemispheric magnetic observations at auroral latitudes.

  15. 30 CFR 57.6601 - Grounding.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Grounding. 57.6601 Section 57.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  16. 30 CFR 56.6601 - Grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding. 56.6601 Section 56.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  17. 30 CFR 56.6601 - Grounding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Grounding. 56.6601 Section 56.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  18. 30 CFR 57.6601 - Grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding. 57.6601 Section 57.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  19. 30 CFR 57.6601 - Grounding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Grounding. 57.6601 Section 57.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  20. 30 CFR 57.6601 - Grounding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Grounding. 57.6601 Section 57.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  1. 30 CFR 56.6601 - Grounding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Grounding. 56.6601 Section 56.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  2. 30 CFR 56.6601 - Grounding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding. 56.6601 Section 56.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  3. 30 CFR 56.6601 - Grounding.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Grounding. 56.6601 Section 56.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  4. 30 CFR 57.6601 - Grounding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding. 57.6601 Section 57.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  5. 30 CFR 77.701-2 - Approved methods of grounding metallic frames, casings, and other enclosures of electric...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... enclosures and the earth. (b) A method of grounding of metallic frames, casings, and other enclosures of... there is no difference in potential between such frames, casings, and other enclosures, and the earth. ...

  6. 49 CFR 229.83 - Insulation or grounding of metal parts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Insulation or grounding of metal parts. 229.83 Section 229.83 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical...

  7. 40 CFR 52.34 - Action on petitions submitted under section 126 relating to emissions of nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... group that addressed the problem of ground-level ozone and the long-range transport of air pollution... that had a nameplate capacity greater than 25 MWe and produced electricity for sale under a firm... capacity greater than 25 MWe and produced electricity for sale under a firm contract to the electric grid...

  8. 40 CFR 52.34 - Action on petitions submitted under section 126 relating to emissions of nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... group that addressed the problem of ground-level ozone and the long-range transport of air pollution... that had a nameplate capacity greater than 25 MWe and produced electricity for sale under a firm... capacity greater than 25 MWe and produced electricity for sale under a firm contract to the electric grid...

  9. Ball-joint grounding ring

    NASA Technical Reports Server (NTRS)

    Aperlo, P. J. A.; Buck, P. A.; Weldon, V. A.

    1981-01-01

    In ball and socket joint where electrical insulator such as polytetrafluoroethylene is used as line to minimize friction, good electrical contact across joint may be needed for lightning protection or to prevent static-charge build-up. Electrical contact is maintained by ring of spring-loaded fingers mounted in socket. It may be useful in industry for cranes, trailers, and other applications requiring ball and socket joint.

  10. Simulation of Electric Propulsion Thrusters (Preprint)

    DTIC Science & Technology

    2011-02-07

    activity concerns the plumes produced by electric thrusters. Detailed information on the plumes is required for safe integration of the thruster...ground-based laboratory facilities. Device modelling also plays an important role in plume simulations by providing accurate boundary conditions at...methods used to model the flow of gas and plasma through electric propulsion devices. Discussion of the numerical analysis of other aspects of

  11. Electrically Driven Liquid Film Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2016-01-01

    This presentation presents the science background and ground based results that form the basis of the Electrically Driven Liquid Film Boiling Experiment. This is an ISS experiment that is manifested for 2021. Objective: Characterize the effects of gravity on the interaction of electric and flow fields in the presence of phase change specifically pertaining to: a) The effects of microgravity on the electrically generated two-phase flow. b) The effects of microgravity on electrically driven liquid film boiling (includes extreme heat fluxes). Electro-wetting of the boiling section will repel the bubbles away from the heated surface in microgravity environment. Relevance/Impact: Provides phenomenological foundation for the development of electric field based two-phase thermal management systems leveraging EHD, permitting optimization of heat transfer surface area to volume ratios as well as achievement of high heat transfer coefficients thus resulting in system mass and volume savings. EHD replaces buoyancy or flow driven bubble removal from heated surface. Development Approach: Conduct preliminary experiments in low gravity and ground-based facilities to refine technique and obtain preliminary data for model development. ISS environment required to characterize electro-wetting effect on nucleate boiling and CHF in the absence of gravity. Will operate in the FIR - designed for autonomous operation.

  12. Regional 3-D Modeling of Ground Geoelectric Field for the Northeast United States due to Realistic Geomagnetic Disturbances

    NASA Astrophysics Data System (ADS)

    Ivannikova, E.; Kruglyakov, M.; Kuvshinov, A. V.; Rastaetter, L.; Pulkkinen, A. A.; Ngwira, C. M.

    2017-12-01

    During extreme space weather events electric currents in the Earth's magnetosphere and ionosphere experience large variations, which leads to dramatic intensification of the fluctuating magnetic field at the surface of the Earth. According to Faraday's law of induction, the fluctuating geomagnetic field in turn induces electric field that generates harmful currents (so-called "geomagnetically induced currents"; GICs) in grounded technological systems. Understanding (via modeling) of the spatio-temporal evolution of the geoelectric field during enhanced geomagnetic activity is a key consideration in estimating the hazard to technological systems from space weather. We present the results of ground geoelectric field modeling for the Northeast United States, which is performed with the use of our novel numerical tool based on integral equation approach. The tool exploits realistic regional three-dimensional (3-D) models of the Earth's electrical conductivity and realistic global models of the spatio-temporal evolution of the magnetospheric and ionospheric current systems responsible for geomagnetic disturbances. We also explore in detail the manifestation of the coastal effect (anomalous intensification of the geoelectric field near the coasts) in this region.

  13. Finite Ground Coplanar (FGC) Waveguide: Characteristics and Advantages Evaluated for Radiofrequency and Wireless Communication Circuits

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.

    1999-01-01

    Researchers in NASA Lewis Research Center s Electron Device Technology Branch are developing transmission lines for radiofrequency and wireless circuits that are more efficient, smaller, and make lower cost circuits possible. Traditionally, radiofrequency and wireless circuits have employed a microstrip or coplanar waveguide to interconnect the various electrical elements that comprise a circuit. Although a coplanar waveguide (CPW) is widely viewed as better than a microstrip for most applications, it too has problems. To solve these problems, NASA Lewis and the University of Michigan developed a new version of a coplanar waveguide with electrically narrow ground planes. Through extensive numerical modeling and experimental measurements, we have characterized the propagation constant of the FGC waveguide, the lumped and distributed circuit elements integrated in the FGC waveguide, and the coupling between parallel transmission lines. Although the attenuation per unit length is higher for the FGC waveguide because of higher conductor loss, the attenuation is comparable when the ground plane width is twice the center conductor width as shown in the following graph. An upper limit to the line width is derived from observations that when the total line width is greater than ld/2, spurious resonances due to the parallel plate waveguide mode are established. Thus, the ground plane width must be less than ld/4 where ld is the wavelength in the dielectric. Since the center conductor width S is typically less than l/10 to maintain good transverse electromagnetic mode characteristics, it follows that a ground plane width of B = 2S would also be electrically narrow. Thus, we can now treat the ground strips of the FGC waveguide the same way that the center conductor is treated.

  14. Monitoring and remediation of on-farm and off-farm ground current measured as step potential on a Wisconsin dairy farm: A case study.

    PubMed

    Stetzer, Dave; Leavitt, Adam M; Goeke, Charles L; Havas, Magda

    2016-01-01

    Ground current commonly referred to as "stray voltage" has been an issue on dairy farms since electricity was first brought to rural America. Equipment that generates high-frequency voltage transients on electrical wires combined with a multigrounded (electrical distribution) system and inadequate neutral returns all contribute to ground current. Despite decades of problems, we are no closer to resolving this issue, in part, due to three misconceptions that are addressed in this study. Misconception 1. The current standard of 1 V at cow contact is adequate to protect dairy cows; Misconception 2. Frequencies higher than 60 Hz do not need to be considered; and Misconception 3. All sources of ground current originate on the farm that has a ground current problem. This case study of a Wisconsin dairy farm documents, 1. how to establish permanent monitoring of ground current (step potential) on a dairy farm; 2. how to determine and remediate both on-farm and off-farm sources contributing to step potential; 3. which step-potential metrics relate to cow comfort and milk production; and 4. how these metrics relate to established standards. On-farm sources include lighting, variable speed frequency drives on motors, radio frequency identification system and off-farm sources are due to a poor primary neutral return on the utility side of the distribution system. A step-potential threshold of 1 V root mean square (RMS) at 60 Hz is inadequate to protect dairy cows as decreases of a few mV peak-peak at higher frequencies increases milk production, reduces milking time and improves cow comfort.

  15. Measurement of Noise Produced by a Plasma Contactor Operating in Ground Based Facilities

    NASA Technical Reports Server (NTRS)

    Snyder, Steve

    1996-01-01

    Methods to measure electric field fluctuations accurately in a plasma with an active monopole antenna are described. It is shown that the conductive surfaces of the antenna must be adequately isolated from the ambient plasma and that the monopole must be sufficiently short to avoid antenna amplifier saturation. Experimental results illustrate that the noise produced by plasma contactor operation and sensed by the antenna is due to plasma phenomena and is not induced by laboratory power supplies. A good correlation is shown between the current fluctuations in the contactor electrical circuit and the noise detected by the antenna. A large body of experimental data support the conclusion that the majority of noise sensed by the antenna at frequencies less than 1 MHz is due to current fluctuations (electrostatic waves) in the plasma adjacent to the antenna and not to electromagnetic wave radiation. Caution is suggested when comparing antenna noise measurements to conventional specifications for radiated emissions.

  16. Techno-economic assessment of biofuel development by anaerobic digestion of European marine cold-water seaweeds.

    PubMed

    Dave, Ashok; Huang, Ye; Rezvani, Sina; McIlveen-Wright, David; Novaes, Marcio; Hewitt, Neil

    2013-05-01

    The techno-economic characteristics of macro-algae utilisation from European temperate zones was evaluated in a selected Anaerobic Digester (AD) using the chemical process modelling software ECLIPSE. The assessment covered the mass and energy balance of the entire process followed by the economic feasibility study, which included the total cost estimation, net present value calculation, and sensitivity analysis. The selected plant size corresponded to a community based AD of 1.6 MWth with a macro-algae feed rate of 8.64 tonnes per day (dry basis). The produced biogas was utilised in a combined heat and power plant generating 237 kWenet electricity and 367 kWth heat. The breakeven electricity-selling price in this study was estimated at around €120/MWh. On the ground of different national and regional policies, this study did not account for any government incentives. However, different support mechanisms such as Feed-in-Tariffs or Renewable Obligation Certificates can significantly improve the project viability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Core drilling provides information about Santa Fe Group aquifer system beneath Albuquerque's West Mesa

    USGS Publications Warehouse

    Allen, B.D.; Connell, S.D.; Hawley, J.W.; Stone, B.D.

    1998-01-01

    Core samples from the upper ???1500 ft of the Santa Fe Group in the Albuquerque West Mesa area provide a first-hand look at the sediments and at subsurface stratigraphic relationships in this important part of the basin-fill aquifer system. Two major hydrostratigraphic subunits consisting of a lower coarse-grained, sandy interval and an overlying fine-grained, interbedded silty sand and clay interval lie beneath the water table at the 98th St core hole. Borehole electrical conductivity measurements reproduce major textural changes observed in the recovered cores and support subsurface correlations of hydrostratigraphic units in the Santa Fe Group aquifer system based on geophysical logs. Comparison of electrical logs from the core hole and from nearby city wells reveals laterally consistent lithostratigraphic patterns over much of the metropolitan area west of the Rio Grande that may be used to delineate structural and related stratigraphic features that have a direct bearing on the availability of ground water.

  18. Predictive modeling of battery degradation and greenhouse gas emissions from U.S. state-level electric vehicle operation.

    PubMed

    Yang, Fan; Xie, Yuanyuan; Deng, Yelin; Yuan, Chris

    2018-06-21

    Electric vehicles (EVs) are widely promoted as clean alternatives to conventional vehicles for reducing greenhouse gas (GHG) emissions from ground transportation. However, the battery undergoes a sophisticated degradation process during EV operations and its effects on EV energy consumption and GHG emissions are unknown. Here we show on a typical 24 kWh lithium-manganese-oxide-graphite battery pack that the degradation of EV battery can be mathematically modeled to predict battery life and to study its effects on energy consumption and GHG emissions from EV operations. We found that under US state-level average driving conditions, the battery life is ranging between 5.2 years in Florida and 13.3 years in Alaska under 30% battery degradation limit. The battery degradation will cause a 11.5-16.2% increase in energy consumption and GHG emissions per km driven at 30% capacity loss. This study provides a robust analytical approach and results for supporting policy making in prioritizing EV deployment in the U.S.

  19. Determination and representation of electric charge distributions associated with adverse weather conditions

    NASA Technical Reports Server (NTRS)

    Rompala, John T.

    1992-01-01

    Algorithms are presented for determining the size and location of electric charges which model storm systems and lightning strikes. The analysis utilizes readings from a grid of ground level field mills and geometric constraints on parameters to arrive at a representative set of charges. This set is used to generate three dimensional graphical depictions of the set as well as contour maps of the ground level electrical environment over the grid. The composite, analytic and graphic package is demonstrated and evaluated using controlled input data and archived data from a storm system. The results demonstrate the packages utility as: an operational tool in appraising adverse weather conditions; a research tool in studies of topics such as storm structure, storm dynamics, and lightning; and a tool in designing and evaluating grid systems.

  20. Excitons in coupled type-II double quantum wells under electric and magnetic fields: InAs/AlSb/GaSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyo, S. K., E-mail: sklyo@uci.edu; Pan, W.

    2015-11-21

    We calculate the wave functions and the energy levels of an exciton in double quantum wells under electric (F) and magnetic (B) fields along the growth axis. The result is employed to study the energy levels, the binding energy, and the boundary on the F–B plane of the phase between the indirect exciton ground state and the semiconductor ground state for several typical structures of the type-II quasi-two-dimensional quantum wells such as InAs/AlSb/GaSb. The inter-well inter-band radiative transition rates are calculated for exciton creation and recombination. We find that the rates are modulated over several orders of magnitude by themore » electric and magnetic fields.« less

  1. A functional electrical stimulation system for human walking inspired by reflexive control principles.

    PubMed

    Meng, Lin; Porr, Bernd; Macleod, Catherine A; Gollee, Henrik

    2017-04-01

    This study presents an innovative multichannel functional electrical stimulation gait-assist system which employs a well-established purely reflexive control algorithm, previously tested in a series of bipedal walking robots. In these robots, ground contact information was used to activate motors in the legs, generating a gait cycle similar to that of humans. Rather than developing a sophisticated closed-loop functional electrical stimulation control strategy for stepping, we have instead utilised our simple reflexive model where muscle activation is induced through transfer functions which translate sensory signals, predominantly ground contact information, into motor actions. The functionality of the functional electrical stimulation system was tested by analysis of the gait function of seven healthy volunteers during functional electrical stimulation-assisted treadmill walking compared to unassisted walking. The results demonstrated that the system was successful in synchronising muscle activation throughout the gait cycle and was able to promote functional hip and ankle movements. Overall, the study demonstrates the potential of human-inspired robotic systems in the design of assistive devices for bipedal walking.

  2. Geophysical investigation at an existing landfill, Badger Army Ammunition Plant, Baraboo, Wisconsin. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitten, C.B.; Sjostrom, K.J.

    1991-04-01

    Ground-water contaminants were found in ground-water monitoring wells at the existing landfill. More wells to define the horizontal and vertical extent of the contaminant plume are to be installed. Geophysical techniques (electro-magnetic induction, vertical electrical resistivity, and horizontal resistivity profiling) were used to map the extent of the contaminant plume. Using the geophysical, ground-water elevation, and geologic data, five anomalous areas south and east of the landfill were identified as locations for additional ground-water monitoring wells.

  3. REACH. Residential Electrical Wiring Units.

    ERIC Educational Resources Information Center

    Ansley, Jimmy; Ennis, Mike

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of residential electrical wiring. The instructional units focus on grounded outlets, service entrance, and blueprint reading. Each unit follows a typical format…

  4. 29 CFR 1910.303 - General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.303..., including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus... from grounds other than those required or permitted by this subpart. (4) Interrupting rating. Equipment...

  5. 29 CFR 1910.303 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.303..., including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus... from grounds other than those required or permitted by this subpart. (4) Interrupting rating. Equipment...

  6. 29 CFR 1910.303 - General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.303..., including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus... from grounds other than those required or permitted by this subpart. (4) Interrupting rating. Equipment...

  7. 29 CFR 1910.303 - General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.303..., including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus... from grounds other than those required or permitted by this subpart. (4) Interrupting rating. Equipment...

  8. 29 CFR 1910.303 - General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.303..., including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus... from grounds other than those required or permitted by this subpart. (4) Interrupting rating. Equipment...

  9. Electric Vehicle Ownership Factors, Preferred Safety Technologies and Commuting Behavior in the United States

    DOT National Transportation Integrated Search

    2017-02-01

    Electric vehicles (EVs) are expected to reduce climate-changing greenhouse gas emissions, potentially reduce the ground-level ozone experienced during summers over the Mid-Atlantic's I-95 Corridor, and possibly reduce dependence on fossil fuels. EVs ...

  10. Directional detector of gamma rays

    DOEpatents

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  11. 30 CFR 56.12025 - Grounding circuit enclosures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Grounding circuit enclosures. 56.12025 Section 56.12025 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  12. 30 CFR 56.12025 - Grounding circuit enclosures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Grounding circuit enclosures. 56.12025 Section 56.12025 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  13. 30 CFR 56.12025 - Grounding circuit enclosures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Grounding circuit enclosures. 56.12025 Section 56.12025 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  14. 30 CFR 56.12025 - Grounding circuit enclosures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding circuit enclosures. 56.12025 Section 56.12025 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  15. International Aerospace and Ground Conference on Lightning and Static Electricity. 1984 technical papers. Supplement

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The indirect effects of lightning on digital systems, ground system protection, and the corrosion properties of conductive materials are addressed. The responses of a UH-60A helicopter and tactical shelters to lightning and nuclear electromagnetic pulses are discussed.

  16. 30 CFR 56.12025 - Grounding circuit enclosures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding circuit enclosures. 56.12025 Section 56.12025 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  17. Invariant protection of high-voltage electric motors of technological complexes at industrial enterprises at partial single-phase ground faults

    NASA Astrophysics Data System (ADS)

    Abramovich, B. N.; Sychev, Yu A.; Pelenev, D. N.

    2018-03-01

    Development results of invariant protection of high-voltage motors at incomplete single-phase ground faults are observed in the article. It is established that current protections have low action selectivity because of an inadmissible decrease in entrance signals during the shirt circuit occurrence in the place of transient resistance. The structural functional scheme and an algorithm of protective actions where correction of automatic zero sequence currents signals of the protected accessions implemented according to the level of incompleteness of ground faults are developed. It is revealed that automatic correction of zero sequence currents allows one to provide the invariance of sensitivity factor for protection under the variation conditions of a transient resistance in the place of damage. Application of invariant protection allows one to minimize damages in 6-10 kV electrical installations of industrial enterprises for a cause of infringement of consumers’ power supply and their system breakdown due to timely localization of emergency of ground faults modes.

  18. Imaging Magnetospheric Perturbations of the Ionosphere/Plasmasphere System from the Ground and Space

    NASA Astrophysics Data System (ADS)

    Foster, J. C.

    2004-05-01

    The thermal plasmas of the inner magnetosphere and ionosphere move across the magnetic field under the influence of electric fields. Irrespective of their source, these electric fields extend along magnetic field lines coupling the motion of thermal plasmas in the various altitude regimes. Modern remote-sensing techniques based both on the ground and in space are providing a new view of the large and meso-scale characteristics and dynamics of the plasmas of the extended ionosphere and their importance in understanding processes and effects observed throughout the coupled spheres of Earth's upper atmosphere. During strong geomagnetic storms, disturbance electric fields uplift and redistribute the thermal plasma of the low-latitude ionosphere and inner magnetosphere, producing a pronounced poleward shift of the equatorial anomalies (EA) and enhancements of plasma concentration (total electric content, TEC) in the post-noon plasmasphere. Strong SAPS (subauroral polarization stream) electric fields erode the plasmasphere boundary layer in the region of the dusk-sector bulge, producing plasmaspheric drainage plumes which carry the high-altitude material towards the dayside magnetopause. The near-Earth footprint of these flux tubes constitutes the mid-latitude streams of storm-enhanced density (SED) which produce considerable space weather effects across the North American continent. We use ground-based GPS propagation data to produce two-dimensional maps and movies of the evolution of these TEC features as they progress from equatorial regions to the polar caps. DMSP satellite overflights provide in-situ density and plasma flow/electric field observations, while the array of incoherent scatter radars probe the altitude distribution and characteristics of these dynamic thermal plasma features. IMAGE EUV and FUV observations reveal the space-based view of spatial extent and temporal evolution of these phenomena.

  19. Neutron spectroscopic study of crystalline electric field excitations in stoichiometric and lightly stuffed Yb 2 Ti 2 O 7

    DOE PAGES

    Gaudet, J.; Maharaj, D. D.; Sala, G.; ...

    2015-10-27

    Time-of-flight neutron spectroscopy has been used to determine the crystalline electric field Hamiltonian, eigenvalues and eigenvectors appropriate to the J=7/2 Yb 3+ ion in the candidate quantum spin ice pyrochlore magnet Yb 2Ti 2O 7. The precise ground state of this exotic, geometrically frustrated magnet is known to be sensitive to weak disorder associated with the growth of single crystals from the melt. Such materials display weak “stuffing,” wherein a small proportion, approximately 2%, of the nonmagnetic Ti 4+ sites are occupied by excess Yb 3+. We have carried out neutron spectroscopic measurements on a stoichiometric powder sample of Ybmore » 2Ti 2O 7, as well as a crushed single crystal with weak stuffing and an approximate composition of Yb 2+xTi 2–xO 7+y with x = 0.046. All samples display three crystalline electric field transitions out of the ground state, and the ground state doublet itself is identified as primarily composed of m J = ±1/2, as expected. However, stuffing at low temperatures in Yb 2+xTi 2–xO 7+y induces a similar finite crystalline electric field lifetime as is induced in stoichiometric Yb 2Ti 2O 7 by elevated temperature. In conclusion, an extended strain field exists about each local “stuffed” site, which produces a distribution of random crystalline electric field environments in the lightly stuffed Yb 2+xTi 2–xO 7+y, in addition to producing a small fraction of Yb ions in defective environments with grossly different crystalline electric field eigenvalues and eigenvectors.« less

  20. 11th International Conference on Atmospheric Electricity

    NASA Technical Reports Server (NTRS)

    Christian, H. J. (Compiler)

    1999-01-01

    This document contains the proceedings from the 11th International Conference on Atmospheric Electricity (ICAE 99), held June 7-11, 1999. This conference was attended by scientists and researchers from around the world. The subjects covered included natural and artificially initiated lightning, lightning in the middle and upper atmosphere (sprites and jets), lightning protection and safety, lightning detection techniques (ground, airborne, and space-based), storm physics, electric fields near and within thunderstorms, storm electrification, atmospheric ions and chemistry, shumann resonances, satellite observations of lightning, global electrical processes, fair weather electricity, and instrumentation.

  1. Characterization of Orbital Debris Via Hyper-Velocity Ground-Based Tests

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather

    2015-01-01

    To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models. DebriSat is intended to be representative of modern LEO satellites.Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. A key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992 .Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.

  2. Extended duration Orbiter life support definition

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Thompson, C. D.

    1978-01-01

    Extending the baseline seven-day Orbiter mission to 30 days or longer and operating with a solar power module as the primary source for electrical power requires changes to the existing environmental control and life support (ECLS) system. The existing ECLS system imposes penalties on longer missions which limit the Orbiter capabilities and changes are required to enhance overall mission objectives. Some of these penalties are: large quantities of expendables, the need to dump or store large quantities of waste material, the need to schedule fuel cell operation, and a high landing weight penalty. This paper presents the study ground rules and examines the limitations of the present ECLS system against Extended Duration Orbiter mission requirements. Alternate methods of accomplishing ECLS functions for the Extended Duration Orbiter are discussed. The overall impact of integrating these options into the Orbiter are evaluated and significant Orbiter weight and volume savings with the recommended approaches are described.

  3. Preparing for Mars: The Evolvable Mars Campaign 'Proving Ground' Approach

    NASA Technical Reports Server (NTRS)

    Bobskill, Marianne R.; Lupisella, Mark L.; Mueller, Rob P.; Sibille, Laurent; Vangen, Scott; Williams-Byrd, Julie

    2015-01-01

    As the National Aeronautics and Space Administration (NASA) prepares to extend human presence beyond Low Earth Orbit, we are in the early stages of planning missions within the framework of an Evolvable Mars Campaign. Initial missions would be conducted in near-Earth cis-lunar space and would eventually culminate in extended duration crewed missions on the surface of Mars. To enable such exploration missions, critical technologies and capabilities must be identified, developed, and tested. NASA has followed a principled approach to identify critical capabilities and a "Proving Ground" approach is emerging to address testing needs. The Proving Ground is a period subsequent to current International Space Station activities wherein exploration-enabling capabilities and technologies are developed and the foundation is laid for sustained human presence in space. The Proving Ground domain essentially includes missions beyond Low Earth Orbit that will provide increasing mission capability while reducing technical risks. Proving Ground missions also provide valuable experience with deep space operations and support the transition from "Earth-dependence" to "Earth-independence" required for sustainable space exploration. A Technology Development Assessment Team identified a suite of critical technologies needed to support the cadence of exploration missions. Discussions among mission planners, vehicle developers, subject-matter-experts, and technologists were used to identify a minimum but sufficient set of required technologies and capabilities. Within System Maturation Teams, known challenges were identified and expressed as specific performance gaps in critical capabilities, which were then refined and activities required to close these critical gaps were identified. Analysis was performed to identify test and demonstration opportunities for critical technical capabilities across the Proving Ground spectrum of missions. This suite of critical capabilities is expected to provide the foundation required to enable a variety of possible destinations and missions consistent with the Evolvable Mars Campaign.. The International Space Station will be used to the greatest extent possible for exploration capability and technology development. Beyond this, NASA is evaluating a number of options for Proving Ground missions. An "Asteroid Redirect Mission" will demonstrate needed capabilities (e.g., Solar Electric Propulsion) and transportation systems for the crew (i.e., Space Launch System and Orion) and for cargo (i.e., Asteroid Redirect Vehicle). The Mars 2020 mission and follow-on robotic precursor missions will gather Mars surface environment information and will mature technologies. NASA is considering emplacing a small pressurized module in cis-lunar space to support crewed operations of increasing duration and to serve as a platform for critical exploration capabilities testing (e.g., radiation mitigation; extended duration deep space habitation). In addition, "opportunistic mission operations" could demonstrate capabilities not on the Mars critical path that may, nonetheless, enhance exploration operations (e.g., teleoperations, crew assisted Mars sample return). The Proving Ground may also include "pathfinder" missions to test and demonstrate specific capabilities at Mars (e.g., entry, descent, and landing). This paper describes the (1) process used to conduct an architecture-driven technology development assessment, (2) exploration mission critical and supporting capabilities, and (3) approach for addressing test and demonstration opportunities encompassing the spectrum of flight elements and destinations consistent with the Evolvable Mars Campaign.

  4. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for grounding or insulator protection of the National Electrical Safety Code, part 2, entitled “Safety Rules for the Installation and Maintenance of Electric Supply and Communication Lines” (also... documents may be obtained from the National Institute of Science and Technology, 100 Bureau Drive, Stop 3460...

  5. 36 CFR 14.70 - Statutory authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electrical plants, poles, and lines for the generation and distribution of electrical power, and for telephone and telegraph purposes, and for pipe lines, canals, ditches, water plants, and other purposes to the extent of the ground occupied by such canals, ditches, water plants, or other works permitted...

  6. 36 CFR 14.70 - Statutory authority.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... electrical plants, poles, and lines for the generation and distribution of electrical power, and for telephone and telegraph purposes, and for pipe lines, canals, ditches, water plants, and other purposes to the extent of the ground occupied by such canals, ditches, water plants, or other works permitted...

  7. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for grounding or insulator protection of the National Electrical Safety Code, part 2, entitled “Safety Rules for the Installation and Maintenance of Electric Supply and Communication Lines” (also... documents may be obtained from the National Institute of Science and Technology, 100 Bureau Drive, Stop 3460...

  8. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for grounding or insulator protection of the National Electrical Safety Code, part 2, entitled “Safety Rules for the Installation and Maintenance of Electric Supply and Communication Lines” (also... documents may be obtained from the National Institute of Science and Technology, 100 Bureau Drive, Stop 3460...

  9. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for grounding or insulator protection of the National Electrical Safety Code, part 2, entitled “Safety Rules for the Installation and Maintenance of Electric Supply and Communication Lines” (also... documents may be obtained from the National Institute of Science and Technology, 100 Bureau Drive, Stop 3460...

  10. The effect of ground borne vibrations from high speed train on overhead line equipment (OHLE) structure considering soil-structure interaction.

    PubMed

    Ngamkhanong, Chayut; Kaewunruen, Sakdirat

    2018-06-15

    At present, railway infrastructure experiences harsh environments and aggressive loading conditions from increased traffic and load demands. Ground borne vibration has become one of these environmental challenges. Overhead line equipment (OHLE) provides electric power to the train and is, for one or two tracks, normally supported by cantilever masts. A cantilever mast, which is made of H-section steel, is slender and has a poor dynamic behaviour by nature. It can be seen from the literature that ground borne vibrations cause annoyance to people in surrounding areas especially in buildings. Nonetheless, mast structures, which are located nearest and alongside the railway track, have not been fully studied in terms of their dynamic behaviour. This paper presents the effects of ground borne vibrations generated by high speed trains on cantilever masts and contact wire located alongside railway tracks. Ground borne vibration velocities at various train speeds, from 100 km/h to 300 km/h, are considered based on the consideration of semi-empirical models for predicting low frequency vibration on ground. A three-dimensional mast structure with varying soil stiffness is made using a finite element model. The displacement measured is located at the end of cantilever mast which is the position of contact wire. The construction tolerance of contact stagger is used as an allowable movement of contact wire in transverse direction. The results show that the effect of vibration velocity from train on the transverse direction of mast structure is greater than that on the longitudinal direction. Moreover, the results obtained indicate that the ground bourn vibrations caused by high speed train are not strong enough to cause damage to the contact wire. The outcome of this study will help engineers improve the design standard of cantilever mast considering the effect of ground borne vibration as preliminary parameter for construction tolerances. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. The electric dipole moments in the ground states of gold oxide, AuO, and gold sulfide, AuS.

    PubMed

    Zhang, Ruohan; Yu, Yuanqin; Steimle, Timothy C; Cheng, Lan

    2017-02-14

    The B 2 Σ - - X 2 Π 3/2 (0,0) bands of a cold molecular beam sample of gold monoxide, AuO, and gold monosulfide, AuS, have been recorded at high resolution both field free and in the presence of a static electric field. The observed electric field induced splittings and shifts were analyzed to produce permanent electric dipole moments, μ→ el , of 2.94±0.06 D and 2.22±0.05 D for the X 2 Π 3/2 (v = 0) states of AuO and AuS, respectively. A molecular orbital correlation diagram is used to rationalize the trend in ground state μ→ el values for AuX (X = F, Cl, O, and S) molecules. The experimentally determined μ→ el are compared to those computed at the coupled-cluster singles and doubles (CCSD) level augmented with a perturbative inclusion of triple excitations (CCSD(T)) level of theory.

  12. Introducing Magneto-Optical Functions into Soft Materials

    DTIC Science & Technology

    2017-05-03

    the electromagnet as illustrated in Figure 1(b). This experimental measurement allowed us to explore magneto- electric coupling in both ground and...short-range spin-spin interaction. As a general conclusion, the -d electron coupling promise the existence of photo-adjustable magneto- electric ...coupling, paving the way for the realization of magneto- electric -optical applications. Intermoleuar SOC SB Orb S B OrbHinter Hinter 1 2 (b

  13. 30 CFR 77.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conduits enclosing power conductors. 77.700 Section 77.700 Mineral Resources MINE SAFETY AND HEALTH..., and conduits enclosing power conductors. Metallic sheaths, armors, and conduits enclosing power conductors shall be electrically continuous throughout and shall be grounded by methods approved by an...

  14. 30 CFR 77.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conduits enclosing power conductors. 77.700 Section 77.700 Mineral Resources MINE SAFETY AND HEALTH..., and conduits enclosing power conductors. Metallic sheaths, armors, and conduits enclosing power conductors shall be electrically continuous throughout and shall be grounded by methods approved by an...

  15. 30 CFR 56.12028 - Testing grounding systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Testing grounding systems. 56.12028 Section 56.12028 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  16. 30 CFR 56.12027 - Grounding mobile equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Grounding mobile equipment. 56.12027 Section 56.12027 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  17. 30 CFR 56.12028 - Testing grounding systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Testing grounding systems. 56.12028 Section 56.12028 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  18. 30 CFR 56.12028 - Testing grounding systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Testing grounding systems. 56.12028 Section 56.12028 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  19. 30 CFR 56.12027 - Grounding mobile equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding mobile equipment. 56.12027 Section 56.12027 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  20. 30 CFR 56.12028 - Testing grounding systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Testing grounding systems. 56.12028 Section 56.12028 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  1. 30 CFR 56.12027 - Grounding mobile equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Grounding mobile equipment. 56.12027 Section 56.12027 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  2. 30 CFR 56.12027 - Grounding mobile equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Grounding mobile equipment. 56.12027 Section 56.12027 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  3. 30 CFR 56.12028 - Testing grounding systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Testing grounding systems. 56.12028 Section 56.12028 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  4. 30 CFR 56.12027 - Grounding mobile equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding mobile equipment. 56.12027 Section 56.12027 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  5. 46 CFR 183.372 - Equipment and conductor grounding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Equipment and conductor grounding. 183.372 Section 183.372 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.372 Equipment and...

  6. The Effect of a Corona Discharge on a Lightning Attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, N.L.; Bazelyan, E.M.; Raizer, Yu.P.

    2005-01-15

    The interaction between the lightning leader and the space charge accumulated near the top of a ground object in the atmospheric electric field is considered using analytical and numerical models developed earlier to describe spark discharges in long laboratory gaps. The specific features of a nonstationary corona discharge that develops in the electric field of a thundercloud and a downward lightning leader are analyzed. Conditions for the development of an upward lightning discharge from a ground object and for the propagation of an upward-connecting leader from the object toward a downward lightning leader (the process determining the point of strikemore » to the ground) are investigated. Possible mechanisms for the interaction of the corona space charge with an upward leader and prospects of using it to control downward lightning discharges are analyzed.« less

  7. Generation of ULF waves by electric or magnetic dipoles. [propagation from earth surface to ionosphere

    NASA Technical Reports Server (NTRS)

    Harker, K. J.

    1975-01-01

    The generation of ULF waves by ground-based magnetic and electric dipoles is studied with a simplified model consisting of three adjoining homogeneous regions representing the groud, the vacuum (free space) region, and the ionosphere. The system is assumed to be immersed in a homogeneous magnetic field with an arbitrary tilt angle. By the use of Fourier techniques and the method of stationary phase, analytic expressions are obtained for the field strength of the compressional Alfven waves in the ionosphere. Expressions are also obtained for the strength of the torsional Alfven wave in the ionosphere and the ULF magnetic field at ground level. Numerical results are obtained for the compressional Alfven-wave field strength in the ionosphere with a nonvertical geomagnetic field and for the ULF magnetic field at ground level for a vertical geomagnetic field.

  8. Using self-potential housing technique to model water seepage at the UNHAS housing Antang area

    NASA Astrophysics Data System (ADS)

    Syahruddin, Muhammad Hamzah

    2017-01-01

    The earth's surface has an electric potential that is known as self-potentiall (SP). One of the causes of the electrical potential at the earth's surface is water seepage into the ground. Electrical potential caused by water velocity seepage into the ground known as streaming potential. How to model water seepage into the ground at the housing Unhas Antang? This study was conducted to answer these questions. The self-potential measurements performed using a simple digital voltmeter Sanwa brand PC500 with a precision of 0.01 mV. While the coordinates of measurements points are self-potential using Global Positioning System. Mmeasurements results thus obtained are plotted using surfer image distribution self-potential housing Unhas Antang. The self-potential data housing Unhas Antang processed by Forward Modeling methods to get a model of water infiltration into the soil. Housing Unhas Antang self-potential has a value of 5 to 23 mV. Self-potential measurements carried out in the rainy season so it can be assumed that the measurement results caused by the velocity water seepage into the ground. The results of modeling the velocity water seepage from the surface to a depth of 3 meters was 2.4 cm/s to 0.2 cm /s. Modeling results showed that the velocity water seepage of the smaller with depth.

  9. Successful application of frequency-domain airborne electromagnetic system with a grounded electric source

    NASA Astrophysics Data System (ADS)

    Kang, L.; Lin, J.; Liu, C.; Zhou, H.; Ren, T.; Yao, Y.

    2017-12-01

    A new frequency-domain AEM system with a grounded electric source, which was called ground-airborne frequency-domain electromagnetic (GAFEM) system, was proposed to extend penetration depth without compromising the resolution and detection efficiency. In GAFEM system, an electric source was placed on the ground to enlarge the strength of response signals. UVA was chosen as aircraft to reduce interaction noise and improve its ability to adapt to complex terrain. Multi-source and multi-frequency emission method has been researched and applied to improve the efficiency of GAFEM system. 2n pseudorandom sequence was introduced as transmitting waveform, to ensure resolution and detection efficiency. Inversion-procedure based on full-space apparent resistivity formula was built to realize GAFEM method and extend the survey area to non-far field. Based on GAFEM system, two application was conducted in Changchun, China, to map the deep conductive structure. As shown in the results of this exploration, GAFEM system shows its effectiveness to conductive structure, obtaining a depth of about 1km with a source-receiver distance of over 6km. And it shows the same level of resolution with CSAMT method with an over 10 times of efficiency. This extended a range of important applications where the terrain is too complex to be accessed or large penetration depth is required in a large survey area.

  10. Comparison of fast electric field changes from subsequent return strokes of natural and triggered lightning

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Willett, J.

    1988-01-01

    Fast electric field changes from subsequent return strokes of natural and triggered lightning with propagation paths almost entirely over water are compared. Data were collected at the Kennedy Space Center, Florida. Comparisons have been made of the average shape, the rise time and the spectrum of the electric field changes. The electric field changes from the triggered flashes tend to rise to peak faster and decay faster than do their counterparts in natural cloud-to-ground flashes.

  11. Electric power processing, distribution, management and energy storage

    NASA Astrophysics Data System (ADS)

    Giudici, R. J.

    1980-07-01

    Power distribution subsystems are required for three elements of the SPS program: (1) orbiting satellite, (2) ground rectenna, and (3) Electric Orbiting Transfer Vehicle (EOTV). Power distribution subsystems receive electrical power from the energy conversion subsystem and provide the power busses rotary power transfer devices, switchgear, power processing, energy storage, and power management required to deliver control, high voltage plasma interactions, electric thruster interactions, and spacecraft charging of the SPS and the EOTV are also included as part of the power distribution subsystem design.

  12. Electric power processing, distribution, management and energy storage

    NASA Technical Reports Server (NTRS)

    Giudici, R. J.

    1980-01-01

    Power distribution subsystems are required for three elements of the SPS program: (1) orbiting satellite, (2) ground rectenna, and (3) Electric Orbiting Transfer Vehicle (EOTV). Power distribution subsystems receive electrical power from the energy conversion subsystem and provide the power busses rotary power transfer devices, switchgear, power processing, energy storage, and power management required to deliver control, high voltage plasma interactions, electric thruster interactions, and spacecraft charging of the SPS and the EOTV are also included as part of the power distribution subsystem design.

  13. Alexander von Humboldt and the concept of animal electricity.

    PubMed

    Kettenmann, H

    1997-06-01

    More than two hundred years ago, Alexander von Humboldt helped to establish Galvani's view that muscle and nerve tissue are electrically excitable. His 1797 publication was a landmark for establishing the concept of animal electricity. Almost half a century later, von Humboldt became the mentor of the young du Bois-Reymond. With the help of von Humboldt's promotion, du Bois-Reymond demonstrated convincingly that animal tissue has the intrinsic capacity to generate electrical activity, and thus laid the ground for modern electrophysiology.

  14. Electromechanical transducer for acoustic telemetry system

    DOEpatents

    Drumheller, D.S.

    1993-06-22

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  15. Electromechanical transducer for acoustic telemetry system

    DOEpatents

    Drumheller, Douglas S.

    1993-01-01

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  16. Vertical electric field induced suppression of fine structure splitting of excited state excitons in a single GaAs/AlGaAs island quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghali, Mohsen; Laboratory of Nanophotonics, Physics Department, Faculty of Science, Kafrelsheikh University, 33516 Kafrelsheikh; Ohno, Yuzo

    2015-09-21

    We report experimentally on fine structure splitting (FSS) of various excitonic transitions in single GaAs island quantum dots, formed by a monolayer thickness fluctuation in the narrow GaAs/AlGaAs quantum well, and embedded in an n-i-Schottky diode device. By applying a forward vertical electric field (F) between the top metallic contact and the sample substrate, we observed an in-plane polarization rotation of both the ground and the excited state excitons with increasing the electric field. The polarization rotations were accompanied with a strong decrease in the FSS of the ground as well as the excited state excitons with the field, untilmore » the FSS vanished as F approached 30 kV/cm.« less

  17. An Integration of Geophysical Methods to Explore Buried Structures on the Bench and in the Field

    NASA Astrophysics Data System (ADS)

    Booterbaugh, A. P.; Lachhab, A.

    2011-12-01

    In the following study, an integration of geophysical methods and devices were implemented on the bench and in the field to accurately identify buried structures. Electrical resistivity and ground penetrating radar methods, including both a fabricated electrical resistivity apparatus and an electrical resistivity device were all used in this study. The primary goal of the study was to test the accuracy and reliability of the apparatus which costs a fraction of the price of a commercially sold resistivity instrument. The apparatus consists of four electrodes, two multimeters, a 12-volt battery, a DC to AC inverter and wires. Using this apparatus, an electrical current, is injected into earth material through the outer electrodes and the potential voltage is measured across the inner electrodes using a multimeter. The recorded potential and the intensity of the current can then be used to calculate the apparent resistivity of a given material. In this study the Wenner array, which consists of four equally spaced electrodes, was used due to its higher accuracy and greater resolution when investigating lateral variations of resistivity in shallow depths. In addition, the apparatus was used with an electrical resistivity device and a ground penetrating radar unit to explore the buried building foundation of Gustavus Adolphus Hall located on Susquehanna University Campus, Selinsgrove, PA. The apparatus successfully produced consistent results on the bench level revealing the location of small bricks buried under a soil material. In the summer of 2010, seventeen electrical resistivity transects were conducted on the Gustavus Adolphus site where and revealed remnants of the foundation. In the summer of 2011, a ground penetrating radar survey and an electrical resistivity tomography survey were conducted to further explore the site. Together these methods identified the location of the foundation and proved that the apparatus was a reliable tool for regular use on the bench and in the field.

  18. The detection of the electric field vertical distribution underneath thundercloud: Principle and applications

    NASA Technical Reports Server (NTRS)

    Soula, Serge; Chauzy, Serge

    1991-01-01

    During the Florida 89 experiment at Kennedy Space Center, a new system was used in order to obtain the vertical distribution of the electric field underneath thunderstorms. It consists of a standard shutter field mill at ground level and five other field sensors suspended from a cable fastened to a tethered balloon located at an altitude of about 1000 meters. It also includes a reception station for telemetered information transmitted by sensors, a processing system in order to store data, and real time display on a screen to show the simultaneous field variations at each level along with the instantaneous electric field profile. The first results obtained show the great importance of the electric field vertical distribution. The field detected at a height of 600m reaches 65 kV/m while that at the surface does not exceed 5 kV/m. The field intensity in altitude is a better criterion for determining the right moment to launch a rocket devoted to flash triggering. Using Gauss's law, the simultaneous field variations at several levels are used in order to evaluate charge densities. Average values close to 1nC.m(-3) are calculated in layers up to 600 m. The calculation of different average charge densities leads to the characterization of the layer between cloud and ground just before the leader propagation in the case of cloud to ground flash.

  19. SP-100 GES/NAT radiation shielding systems design and development testing

    NASA Astrophysics Data System (ADS)

    Disney, Richard K.; Kulikowski, Henry D.; McGinnis, Cynthia A.; Reese, James C.; Thomas, Kevin; Wiltshire, Frank

    1991-01-01

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.

  20. 7 CFR 1710.409 - Loan provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE GENERAL AND PRE-LOAN POLICIES AND PROCEDURES COMMON TO ELECTRIC LOANS AND GUARANTEES Energy... technology on an aggregate basis that has a useful life greater than 15 years. Ground source loop investments... will be determined by the Assistant Administrator of the Electric Program and based an applicant's...

  1. 30 CFR 585.104 - Do I need a BOEM lease or other authorization to produce or support the production of electricity...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to produce or support the production of electricity or other energy product from a renewable energy... support the production of electricity or other energy product from a renewable energy resource on the OCS... maintain any facility to produce, transport, or support generation of electricity or other energy product...

  2. 30 CFR 585.104 - Do I need a BOEM lease or other authorization to produce or support the production of electricity...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to produce or support the production of electricity or other energy product from a renewable energy... support the production of electricity or other energy product from a renewable energy resource on the OCS... maintain any facility to produce, transport, or support generation of electricity or other energy product...

  3. 30 CFR 585.104 - Do I need a BOEM lease or other authorization to produce or support the production of electricity...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to produce or support the production of electricity or other energy product from a renewable energy... support the production of electricity or other energy product from a renewable energy resource on the OCS... maintain any facility to produce, transport, or support generation of electricity or other energy product...

  4. 30 CFR 285.104 - Do I need an MMS lease or other authorization to produce or support the production of electricity...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to produce or support the production of electricity or other energy product from a renewable energy... authorization to produce or support the production of electricity or other energy product from a renewable... construct, operate, or maintain any facility to produce, transport, or support generation of electricity or...

  5. Performance Specification for the Battery Monitoring System of the Program Executive Office Ground Combat Systems (PEO GCS)

    DTIC Science & Technology

    2009-10-26

    14 3.3.4 Dielectric Withstanding Voltage and Insulation Resistance. ............................. 14...Grounding. .................................................................................................. 32 4.6.2.3 Dielectric Withstanding Voltage ...shall accommodate a non-painted 0.38” 8-32 screw. 3.3.4 Dielectric Withstanding Voltage and Insulation Resistance. Electrical connections

  6. 30 CFR 57.12053 - Circuits powered from trolley wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Circuits powered from trolley wires. 57.12053... Electricity Surface and Underground § 57.12053 Circuits powered from trolley wires. Ground wires for lighting circuits powered from trolley wires shall be connected securely to the ground return circuit. Surface Only ...

  7. 30 CFR 57.12053 - Circuits powered from trolley wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Circuits powered from trolley wires. 57.12053... Electricity Surface and Underground § 57.12053 Circuits powered from trolley wires. Ground wires for lighting circuits powered from trolley wires shall be connected securely to the ground return circuit. Surface Only ...

  8. Reliable Wiring Harness

    NASA Technical Reports Server (NTRS)

    Gaspar, Kenneth C.

    1987-01-01

    New harness for electrical wiring includes plugs that do not loosen from vibration. Ground braids prevented from detaching from connectors and constrained so braids do not open into swollen "birdcage" sections. Spring of stainless steel encircles ground braid. Self-locking connector contains ratchet not only preventing connector from opening, but tightens when vibrated.

  9. Severe storm electricity

    NASA Technical Reports Server (NTRS)

    Rust, W. D.; Macgorman, D. R.; Taylor, W.; Arnold, R. T.

    1984-01-01

    Severe storms and lightning were measured with a NASA U2 and ground based facilities, both fixed base and mobile. Aspects of this program are reported. The following results are presented: (1) ground truth measurements of lightning for comparison with those obtained by the U2. These measurements include flash type identification, electric field changes, optical waveforms, and ground strike location; (2) simultaneous extremely low frequency (ELF) waveforms for cloud to ground (CG) flashes; (3) the CG strike location system (LLP) using a combination of mobile laboratory and television video data are assessed; (4) continued development of analog-to-digital conversion techniques for processing lightning data from the U2, mobile laboratory, and NSSL sensors; (5) completion of an all azimuth TV system for CG ground truth; (6) a preliminary analysis of both IC and CG lightning in a mesocyclone; and (7) the finding of a bimodal peak in altitude lightning activity in some storms in the Great Plains and on the east coast. In the forms on the Great Plains, there was a distinct class of flash what forms the upper mode of the distribution. These flashes are smaller horizontal extent, but occur more frequently than flashes in the lower mode of the distribution.

  10. Automated Ground Umbilical Systems (AGUS) Project

    NASA Technical Reports Server (NTRS)

    Gosselin, Armand M.

    2007-01-01

    All space vehicles require ground umbilical systems for servicing. Servicing requirements can include, but are not limited to, electrical power and control, propellant loading and venting, pneumatic system supply, hazard gas detection and purging as well as systems checkout capabilities. Of the various types of umbilicals, all require several common subsystems. These typically include an alignment system, mating and locking system, fluid connectors, electrical connectors and control !checkout systems. These systems have been designed to various levels of detail based on the needs for manual and/or automation requirements. The Automated Ground Umbilical Systems (AGUS) project is a multi-phase initiative to develop design performance requirements and concepts for launch system umbilicals. The automation aspect minimizes operational time and labor in ground umbilical processing while maintaining reliability. This current phase of the project reviews the design, development, testing and operations of ground umbilicals built for the Saturn, Shuttle, X-33 and Atlas V programs. Based on the design and operations lessons learned from these systems, umbilicals can be optimized for specific applications. The product of this study is a document containing details of existing systems and requirements for future automated umbilical systems with emphasis on design-for-operations (DFO).

  11. Electrically Small Microstrip Quarter-Wave Monopole Antennas

    NASA Technical Reports Server (NTRS)

    Young, W. Robert

    2004-01-01

    Microstrip-patch-style antennas that generate monopole radiation patterns similar to those of quarter-wave whip antennas can be designed to have dimensions smaller than those needed heretofore for this purpose, by taking advantage of a feed configuration different from the conventional one. The large sizes necessitated by the conventional feed configuration have, until now, made such antennas impractical for frequencies below about 800 MHz: for example, at 200 MHz, the conventional feed configuration necessitates a patch diameter of about 8 ft (.2.4 m) . too large, for example, for mounting on the roof of an automobile or on a small or medium-size aircraft. By making it possible to reduce diameters to between a tenth and a third of that necessitated by the conventional feed configuration, the modified configuration makes it possible to install such antennas in places where they could not previously be installed and thereby helps to realize the potential advantages (concealment and/or reduction of aerodynamic drag) of microstrip versus whip antennas. In both the conventional approach and the innovative approach, a microstrip-patch (or microstrip-patch-style) antenna for generating a monopole radiation pattern includes an electrically conductive patch or plate separated from an electrically conductive ground plane by a layer of electrically insulating material. In the conventional approach, the electrically insulating layer is typically a printed-circuit board about 1/16 in. (.1.6 mm) thick. Ordinarily, a coaxial cable from a transmitter, receiver, or transceiver is attached at the center on the ground-plane side, the shield of the cable being electrically connected to the ground plane. In the conventional approach, the coaxial cable is mated with a connector mounted on the ground plane. The center pin of this connector connects to the center of the coaxial cable and passes through a hole in the ground plane and a small hole in the insulating layer and then connects with the patch above one-third of the radial distance from the center. The modified feed configuration of the innovative approach is an inductive-short-circuit configuration that provides impedance matching and that has been used for many years on other antennas but not on microstrip-style monopole antennas. In this configuration, the pin is connected to both the conductive patch and the ground plane. As before, the shield of the coaxial cable is connected to the ground plane, but now the central conductor is connected to a point on the pin between the ground plane and the conductive plate (see figure). The location of the connection point on the pin is chosen so that together, the inductive short circuit and the conductive plate or patch act as components of a lumped-element resonant circuit that radiates efficiently at the resonance frequency and, at the resonance frequency, has an impedance that matches that of the coaxial cable. It should be noted that the innovative design entails two significant disadvantages. One disadvantage is that the frequency bandwidth for efficient operation is only about 1/20 to 1/15 that of a whip antenna designed for the same nominal frequency. The other disadvantage is that the estimated gain is between 3-1/2 and 4-1/2 dB below that of the whip antenna. However, if an affected radio-communication system used only a few adjacent frequency channels and the design of the components of the system other than the antenna provided adequate power or gain margin, then these disadvantages could be overcome.

  12. Electrical-analog analysis of ground-water depletion in central Arizona

    USGS Publications Warehouse

    Anderson, T.W.

    1968-01-01

    The Salt River Valley and the lower Santa Cruz River basin are the two largest agricultural areas in Arizona. The extensive use of ground water for irrigation has resulted in the need for a thorough appraisal of the present and future ground-water resources. The ground-water reservoir provides 80 percent (3.2 million acre-feet) of the total annual water supply. The amount of water pumped greatly exceeds the rate at which the ground-water supply is being replenished and has resulted in water-level declines of as much as 20 feet per year in some places. The depletion problem is of economic importance because ground water will become more expensive as pumping lifts increase and well yields decrease. The use of electrical-analog modeling techniques has made it possible to predict future ground-water levels under conditions of continued withdrawal in excess of the rate of replenishment. The electrical system is a representation of the hydrologic system: resistors and capacitors represent transmissibility and storage coefficients. The analogy between the two systems is accepted when the data obtained from the model closely match the field data in this instance, measured water-level change since 1923. The prediction of future water-table conditions is accomplished by a simple extension of the pumping trends to determine the resultant effect on the regional water levels. The results of this study indicate the probable depths to water in central Arizona in 1974 and 1984 if the aquifer characteristics are accurately modeled and if withdrawal of ground water continues at the same rate and under the tame areal distribution as existed between 1958 and 1964. The greatest depths to water in 1984 will be more than 700 feet near Stanfield and more than 650 feet in Deer Valley and northeast of Gilbert. South of Eloy and northwest of Litchfield Park, a static water level of more than 550 feet is predicted. The total water-level decline in the 20-year period 1964-84 at the deepest points of the major cones of depression will range from 150 to 300 feet, and the average decline in the entire central Arizona area will be about 100 feet.

  13. 14 CFR 198.17 - Ground support and other coverage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Ground support and other coverage. 198.17 Section 198.17 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) WAR RISK INSURANCE AVIATION INSURANCE § 198.17 Ground support and other coverage. An aircraft...

  14. 14 CFR 198.17 - Ground support and other coverage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Ground support and other coverage. 198.17 Section 198.17 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) WAR RISK INSURANCE AVIATION INSURANCE § 198.17 Ground support and other coverage. An aircraft...

  15. Characterization of Finite Ground Coplanar Waveguide with Narrow Ground Planes

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Tentzeris, Emmanouil M.; Katehi, Linda P. B.

    1997-01-01

    Coplanar waveguide with finite width ground planes is characterized through measurements, conformal mapping, and the Finite Difference Time Domain (FDTD) technique for the purpose of determining the optimum ground plane width. The attenuation and effective permittivity of the lines are related to its geometry. It is found that the characteristics of the Finite Ground Coplanar line (FGC) are not dependent on the ground plane width if it is greater than twice the center conductor width, but less than lambda(sub d)/8. In addition, electromagnetic field plots are presented which show for the first time that electric fields in the plane of the substrate terminate on the outer edge of the ground plane, and that the magnitude of these fields is related to the ground plane width.

  16. NASA-funded sounding rocket to catch aurora in the act

    NASA Image and Video Library

    2014-01-22

    The NASA-funded Ground-to-Rocket Electron-Electrodynamics Correlative Experiment, or GREECE, wants to understand aurora. Specifically, it will study classic auroral curls that swirl through the sky like cream in a cup of coffee. The GREECE instruments travel on a sounding rocket that launches for a ten-minute ride right through the heart of the aurora reaching its zenith over the native village of Venetie, Alaska. To study the curl structures, GREECE consists of two parts: ground-based imagers located in Venetie to track the aurora from the ground and the rocket to take measurements from the middle of the aurora itself. At their simplest, auroras are caused when particles from the sun funnel over to Earth's night side, generate electric currents, and trigger a shower of particles that strike oxygen and nitrogen some 60 to 200 miles up in Earth's atmosphere, releasing a flash of light. But the details are always more complicated, of course. Researchers wish to understand the aurora, and movement of plasma in general, at much smaller scales including such things as how different structures are formed there. This is a piece of information, which in turn, helps paint a picture of the sun-Earth connection and how energy and particles from the sun interact with Earth's own magnetic system, the magnetosphere. GREECE is a collaborative effort between SWRI, which developed particle instruments and the ground-based imaging, and the University of California, Berkeley, measuring the electric and magnetic fields. The launch is supported by a sounding rocket team from NASA’s Wallops Flight Facility, Wallops Island, Va. The Poker Flat Research Range is operated by the University of Alaska, Fairbanks. Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. NPS-SCAT: Electrical Power System

    DTIC Science & Technology

    2009-09-01

    ground station . An initial low power receive mode will allow the ground station to contact SCAT 16 M.P. Schroer, NPS-SCAT; A... station . As shown in Table 6, the power loads of the subsystems using the Watt hour method discussed in section B above, it can be seen that 0.966...telemetry data back to the NPS ground station , the only subsystem open to manipulation with respect to power saving is the beacon secondary transmissions

  18. Flammability control for electrical cables and connectors

    NASA Technical Reports Server (NTRS)

    Wick, W. O.; Buckey, D. L.

    1973-01-01

    Technique of covering fire-hazardous sections of electrical wiring with fireproof materials prevents fires from spreading in oxygen-enriched atmospheres and eliminates use of heavy metal enclosures. Materials used to cover potting on connectors and ground terminals are made from Teflon-coated Beta cloth and Fluorel, a nonflammable fully-saturated polymer.

  19. DC source assemblies

    DOEpatents

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  20. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-117 - Ross Complex)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratton, Elaine

    2003-01-16

    Vegetation Management for the non-electric portions of the Bonneville Power Administration’s Ross Complex. BPA proposes to manage and maintain grounds and landscaping in the non-electrical portions of the Ross Facility. Vegetation management at the Facility shall include: 1) bare ground management of graveled storage areas, perimeter roads and parking areas; 2) mechanical and/or spot herbicide control of some broad leafs and noxious weeds; 3) mowing, fertilizing, and broadleaf control of landscaped lawn areas; 4) weed control in ornamental shrub areas; and 4) areas requiring only mechanical control to manage unwanted grasses, and shrubs.

Top