Sample records for electrical grounding

  1. 46 CFR 105.30-5 - Grounding of electrical equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Grounding of electrical equipment. 105.30-5 Section 105... VESSELS COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Electrical Requirements § 105.30-5 Grounding of electrical equipment. (a) All electrical equipment shall be grounded to the vessel's common...

  2. 46 CFR 105.30-5 - Grounding of electrical equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Grounding of electrical equipment. 105.30-5 Section 105... VESSELS COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Electrical Requirements § 105.30-5 Grounding of electrical equipment. (a) All electrical equipment shall be grounded to the vessel's common...

  3. 46 CFR 105.30-5 - Grounding of electrical equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Grounding of electrical equipment. 105.30-5 Section 105... VESSELS COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Electrical Requirements § 105.30-5 Grounding of electrical equipment. (a) All electrical equipment shall be grounded to the vessel's common...

  4. 46 CFR 105.30-5 - Grounding of electrical equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Grounding of electrical equipment. 105.30-5 Section 105... VESSELS COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Electrical Requirements § 105.30-5 Grounding of electrical equipment. (a) All electrical equipment shall be grounded to the vessel's common...

  5. 46 CFR 105.30-5 - Grounding of electrical equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Grounding of electrical equipment. 105.30-5 Section 105... VESSELS COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Electrical Requirements § 105.30-5 Grounding of electrical equipment. (a) All electrical equipment shall be grounded to the vessel's common...

  6. Electrically floating, near vertical incidence, skywave antenna

    DOEpatents

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  7. The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, volume 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings of the 1991 International Aerospace and Ground Conference on Lightning and Static Electricity are reported. Some of the topics covered include: lightning, lightning suppression, aerospace vehicles, aircraft safety, flight safety, aviation meteorology, thunderstorms, atmospheric electricity, warning systems, weather forecasting, electromagnetic coupling, electrical measurement, electrostatics, aircraft hazards, flight hazards, meteorological parameters, cloud (meteorology), ground effect, electric currents, lightning equipment, electric fields, measuring instruments, electrical grounding, and aircraft instruments.

  8. Device, system and method for a sensing electrical circuit

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2009-01-01

    The invention relates to a driven ground electrical circuit. A driven ground is a current-measuring ground termination to an electrical circuit with the current measured as a vector with amplification. The driven ground module may include an electric potential source V.sub.S driving an electric current through an impedance (load Z) to a driven ground. Voltage from the source V.sub.S excites the minus terminal of an operational amplifier inside the driven ground which, in turn, may react by generating an equal and opposite voltage to drive the net potential to approximately zero (effectively ground). A driven ground may also be a means of passing information via the current passing through one grounded circuit to another electronic circuit as input. It may ground one circuit, amplify the information carried in its current and pass this information on as input to the next circuit.

  9. 46 CFR 169.676 - Grounded electrical systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Grounded electrical systems. 169.676 Section 169.676... Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.676 Grounded electrical systems. (a) Except as provided in paragraph (b...

  10. 46 CFR 169.676 - Grounded electrical systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Grounded electrical systems. 169.676 Section 169.676... Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.676 Grounded electrical systems. (a) Except as provided in paragraph (b...

  11. 46 CFR 169.676 - Grounded electrical systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Grounded electrical systems. 169.676 Section 169.676... Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.676 Grounded electrical systems. (a) Except as provided in paragraph (b...

  12. 46 CFR 169.676 - Grounded electrical systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Grounded electrical systems. 169.676 Section 169.676... Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.676 Grounded electrical systems. (a) Except as provided in paragraph (b...

  13. 46 CFR 169.676 - Grounded electrical systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Grounded electrical systems. 169.676 Section 169.676... Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.676 Grounded electrical systems. (a) Except as provided in paragraph (b...

  14. COMSOL based Simulation on the Effect of Electric Field changes due to Lightning on Ground

    NASA Astrophysics Data System (ADS)

    Premlet, B.; Joby, N. E.; Sabu, S.

    2017-12-01

    The phenomenon of lightning is accompanied by localised changes in atmospheric electric fields. In cloud-to-ground strike locations, changes in atmospheric electric fields can even be observed at the ground a few minutes prior to a strike. A lot of research has been done already on the electrostatic changes prior to lightning in the region above ground. Through this work, we investigate into the effects of lightning electric fields on/under ground with the aid of simulations done in COMSOL Multiphysics. Horizontal and vertical profiles of voltage gradient, electric field, polarisation etc. are investigated. Simulation experiments were conducted using a general model of lightning electric fields formed using data recorded by the Electric Field Mills(EFMs) from three diverse parts of the world- Kennedy Space Centre (KSC),Florida (Using GHRC datasets),Sonnblick Observatory, Austria and National Centre for Earth Science Studies Trivandrum (NCESS),India. COMSOL models of the global electric circuit were developed using Sandstone as the base model for ground. Similar works in literature have only dealt with lightning electric fields above the ground. This work is the first step towards a high-level simulation on the effects of atmospheric electric field on/below ground. The results of this simulation work can aid lightning forecasting and preparedness by opening new doors for voltage based prediction methods at ground. It is also a tool to understand phenomena such as fulgurites, corona effect etc. It also helps in the design of buried cables and improved grounding systems. This work can also be a first step towards understanding localised potential variations at the ground during lightning.

  15. 30 CFR 75.701 - Grounding metallic frames, casings, and other enclosures of electric equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding metallic frames, casings, and other... Grounding § 75.701 Grounding metallic frames, casings, and other enclosures of electric equipment. [Statutory Provisions] Metallic frames, casings, and other enclosures of electric equipment that can become...

  16. 46 CFR 111.05-13 - Grounding connection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-13 Grounding... power sources operating in parallel in the system. ...

  17. Minimizing radiation damage in nonlinear optical crystals

    DOEpatents

    Cooke, D.W.; Bennett, B.L.; Cockroft, N.J.

    1998-09-08

    Methods are disclosed for minimizing laser induced damage to nonlinear crystals, such as KTP crystals, involving various means for electrically grounding the crystals in order to diffuse electrical discharges within the crystals caused by the incident laser beam. In certain embodiments, electrically conductive material is deposited onto or into surfaces of the nonlinear crystals and the electrically conductive surfaces are connected to an electrical ground. To minimize electrical discharges on crystal surfaces that are not covered by the grounded electrically conductive material, a vacuum may be created around the nonlinear crystal. 5 figs.

  18. 46 CFR 111.05-17 - Generation and distribution system grounding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 111.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-17... must: (a) Be grounded at the generator switchboard, except the neutral of an emergency power generation...

  19. 46 CFR 111.05-17 - Generation and distribution system grounding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 111.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-17... must: (a) Be grounded at the generator switchboard, except the neutral of an emergency power generation...

  20. 46 CFR 111.05-17 - Generation and distribution system grounding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 111.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-17... must: (a) Be grounded at the generator switchboard, except the neutral of an emergency power generation...

  1. Electrode assembly for a fluidized bed apparatus

    DOEpatents

    Schora, Jr., Frank C.; Matthews, Charles W.; Knowlton, Ted M.

    1976-11-23

    An electrode assembly comprising a high voltage electrode having a generally cylindrical shape and being electrically connected to a high voltage source, where the cylinder walls may be open to flow of fluids and solids; an electrically grounded support electrode supporting said high voltage electrode by an electrically insulating support where both of the electrically grounded and electrically insulating support may be hollow; and an electrically grounded liner electrode arranged concentrically around both the high voltage and support electrodes. This assembly is specifically adapted for use in a fluidized bed chemical reactor as an improved heating means therefor.

  2. 30 CFR 57.12025 - Grounding circuit enclosures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Electricity Surface and Underground § 57.12025 Grounding circuit enclosures. All metal enclosing or encasing electrical circuits shall be grounded or provided with equivalent protection. This requirement does not apply... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding circuit enclosures. 57.12025 Section...

  3. Electrical and kinematic structure of an Oklahoma mesoscale convective system

    NASA Technical Reports Server (NTRS)

    Hunter, Steven M.; Schuur, Terry J.; Marshall, Thomas C.; Rust, W. D.

    1990-01-01

    The case study examines the dynamics and kinematics of a mesoscale convective system (MCS) by comparing its meteorological parameters with in situ electrical measurements. Conventional MCS characteristics are reported including a rear inflow jet, wake low, and a bipolar cloud-to-ground pattern, but some nonclassical conditions are also reported. Horizontally long cloud-to-ground electrical strikes are noted which demonstrate that cloud-to-ground electrical data alone cannot entirely characterize stratiform electrification in MCSs.

  4. System for detecting and limiting electrical ground faults within electrical devices

    DOEpatents

    Gaubatz, Donald C.

    1990-01-01

    An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.

  5. The variation of the ground electric field associated with the Mei-Nung earthquake on Feb. 6, 2016

    NASA Astrophysics Data System (ADS)

    Bing-Chih Chen, Alfred; Yeh, Er-Chun; Chuang, Chia-Wen

    2017-04-01

    Recent studies show that a strong coupling exists between lithosphere, atmosphere and extending up to the ionosphere. Natural phenomena on the ground surface such as oceans variation, volcanic and seismic activities such as earthquakes, and lightning possibly generate significant impacts at ionosphere immediately by electrodynamic processes. The electric field near the ground is one of the potential quantities to explore this coupling process, especially caused by earthquake. Unfortunately, thunderstorm, dust storm or human activities also affect the measured electric field at ground. To investigate the feasibility of a network to monitor the variation of the ground electric field driven by the lightning and earthquake, a filed mill has been deployed in the NCKU campus since Dec. 2015, and luckily experienced the earthquake with a moment magnitude of 6.4 struck 28 km on 6 Feb. 2016. The recorded ground electric field deceased steadily since 1.5 days before the earthquake, and returned to normal level gradually. Moreover, this special feature can not be identified in the other period of the field test. The detail analysis is reported in this presentation.

  6. On the Theory of Ground Anchors

    DTIC Science & Technology

    1975-01-01

    Reinart 46 American Electric Power Service anchor tests 47 Expandable land anchor 51 Anchorages in frozen ground 52 Foundation anchoring in thawed ground...Idealized configuration of Malone anchor 48 54. Standard grillage anchor and pyramid grillage anchor tested by the American Electric Power Service...Corporation 49 55. Configuration of bell anchors tested by the American Electric Power Service Corporation 50 56. Configuration of steel grillage - screw

  7. 4. LOOKING SOUTHEAST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. LOOKING SOUTHEAST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND FLOOR OF CHARGING AISLE. VIEW OF 50 TON CAPACITY CHARGING BUCKET. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  8. 5. LOOKING SOUTHWEST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. LOOKING SOUTHWEST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND FLOOR OF POURING AISLE. VIEW OF THE NATION'S FIRST VACUUM DEGASSING UNIT (1956). - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  9. Electrical grounding prong socket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leong, R.

    1989-09-12

    This paper describes a socket for a grounding prong used in a three prong electrical plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. 11 figs.

  10. 30 CFR 75.701-3 - Approved methods of grounding metallic frames, casings and other enclosures of electric equipment...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., casings and other enclosures of electric equipment receiving power from direct current power systems with... equipment receiving power from direct current power systems with one polarity grounded. For the purpose of... direct-current power system with one polarity grounded, the following methods of grounding will be...

  11. 30 CFR 75.701-3 - Approved methods of grounding metallic frames, casings and other enclosures of electric equipment...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., casings and other enclosures of electric equipment receiving power from direct current power systems with... equipment receiving power from direct current power systems with one polarity grounded. For the purpose of... direct-current power system with one polarity grounded, the following methods of grounding will be...

  12. 30 CFR 75.701-3 - Approved methods of grounding metallic frames, casings and other enclosures of electric equipment...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., casings and other enclosures of electric equipment receiving power from direct current power systems with... equipment receiving power from direct current power systems with one polarity grounded. For the purpose of... direct-current power system with one polarity grounded, the following methods of grounding will be...

  13. 30 CFR 75.701-3 - Approved methods of grounding metallic frames, casings and other enclosures of electric equipment...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., casings and other enclosures of electric equipment receiving power from direct current power systems with... equipment receiving power from direct current power systems with one polarity grounded. For the purpose of... direct-current power system with one polarity grounded, the following methods of grounding will be...

  14. 30 CFR 75.701-3 - Approved methods of grounding metallic frames, casings and other enclosures of electric equipment...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., casings and other enclosures of electric equipment receiving power from direct current power systems with... equipment receiving power from direct current power systems with one polarity grounded. For the purpose of... direct-current power system with one polarity grounded, the following methods of grounding will be...

  15. Ground/bonding for Large Space System Technology (LSST). [of metallic and nonmetallic structures

    NASA Technical Reports Server (NTRS)

    Dunbar, W. G.

    1980-01-01

    The influence of the environment and extravehicular activity remote assembly operations on the grounding and bonding of metallic and nonmetallic structures is discussed. Grounding and bonding philosophy is outlined for the electrical systems and electronic compartments which contain high voltage, high power electrical and electronic equipment. The influence of plasma and particulate on the system was analyzed and the effects of static buildup on the spacecraft electrical system discussed. Conceptual grounding bonding designs are assessed for capability to withstand high current arcs to ground from a high voltage conductor and electromagnetic interference. Also shown were the extravehicular activities required of the space station and or supply spacecraft crew members to join and inspect the ground system using manual on remote assembly construction.

  16. Ground/bonding for Large Space System Technology (LSST)

    NASA Astrophysics Data System (ADS)

    Dunbar, W. G.

    1980-04-01

    The influence of the environment and extravehicular activity remote assembly operations on the grounding and bonding of metallic and nonmetallic structures is discussed. Grounding and bonding philosophy is outlined for the electrical systems and electronic compartments which contain high voltage, high power electrical and electronic equipment. The influence of plasma and particulate on the system was analyzed and the effects of static buildup on the spacecraft electrical system discussed. Conceptual grounding bonding designs are assessed for capability to withstand high current arcs to ground from a high voltage conductor and electromagnetic interference. Also shown were the extravehicular activities required of the space station and or supply spacecraft crew members to join and inspect the ground system using manual on remote assembly construction.

  17. 46 CFR 111.05-21 - Ground detection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... be ground detection for each: (a) Electric propulsion system; (b) Ship's service power system; (c) Lighting system; and (d) Power or lighting distribution system that is isolated from the ship's service...

  18. 46 CFR 111.05-21 - Ground detection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... be ground detection for each: (a) Electric propulsion system; (b) Ship's service power system; (c) Lighting system; and (d) Power or lighting distribution system that is isolated from the ship's service...

  19. 46 CFR 111.05-21 - Ground detection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... be ground detection for each: (a) Electric propulsion system; (b) Ship's service power system; (c) Lighting system; and (d) Power or lighting distribution system that is isolated from the ship's service...

  20. NASA HERMeS Hall Thruster Electrical Configuration Characterization

    NASA Technical Reports Server (NTRS)

    Peterson, Peter; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard

    2016-01-01

    NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This presentation will cover the electrical configuration testing of the TDU-1 HERMeS Hall thruster in NASA Glenn Research Centers Vacuum Facility 5. The three electrical configurations examined are the thruster body tied to facility ground, thruster floating, and finally the thruster body electrically tied to cathode common. The TDU-1 HERMeS was configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.

  1. NASA HERMeS Hall Thruster Electrical Configuration Characterization

    NASA Technical Reports Server (NTRS)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard

    2015-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in-space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This paper describes the electrical configuration testing of the HERMeS TDU-1 Hall thruster in NASA Glenn Research Center's Vacuum Facility 5. The three electrical configurations examined were 1) thruster body tied to facility ground, 2) thruster floating, and 3) thruster body electrically tied to cathode common. The HERMeS TDU-1 Hall thruster was also configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.

  2. 46 CFR 111.05-25 - Ungrounded systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ungrounded systems. 111.05-25 Section 111.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-25 Ungrounded systems. Each...

  3. 46 CFR 111.05-25 - Ungrounded systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ungrounded systems. 111.05-25 Section 111.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-25 Ungrounded systems. Each...

  4. 46 CFR 111.05-25 - Ungrounded systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ungrounded systems. 111.05-25 Section 111.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-25 Ungrounded systems. Each...

  5. Enhanced Fair-Weather Electric Fields Soon After Sunrise

    NASA Technical Reports Server (NTRS)

    Marshall, T. C.; Rust, W. D.; Stolzenburg, M.; Roeder, W.; Krehbiel, P. R.

    1999-01-01

    The typical fair weather electric field at the ground is between -100 and -300 V/m. At the NASA Kennedy Space Center and US Air Force Cape Canaveral Air Station (KSC) the electric field at the ground sometimes reaches -400 to -1200 V/m within an hour or two after sunrise on days that otherwise seem to be fair weather. We refer to the enhanced negative electric fields as the "sunrise enhancement." To investigate the sunrise enhancement at KSC we measured the electric field (E) in the first few hundred meters above the ground before and during several sunrise enhancements. From these E soundings we can infer the presence of charge layers and determine their thickness and charge density.

  6. Mitigating Space Weather Impacts on the Power Grid in Real-Time: Applying 3-D EarthScope Magnetotelluric Data to Forecasting Reactive Power Loss in Power Transformers

    NASA Astrophysics Data System (ADS)

    Schultz, A.; Bonner, L. R., IV

    2017-12-01

    Current efforts to assess risk to the power grid from geomagnetic disturbances (GMDs) that result in geomagnetically induced currents (GICs) seek to identify potential "hotspots," based on statistical models of GMD storm scenarios and power distribution grounding models that assume that the electrical conductivity of the Earth's crust and mantle varies only with depth. The NSF-supported EarthScope Magnetotelluric (MT) Program operated by Oregon State University has mapped 3-D ground electrical conductivity structure across more than half of the continental US. MT data, the naturally occurring time variations in the Earth's vector electric and magnetic fields at ground level, are used to determine the MT impedance tensor for each site (the ratio of horizontal vector electric and magnetic fields at ground level expressed as a complex-valued frequency domain quantity). The impedance provides information on the 3-D electrical conductivity structure of the Earth's crust and mantle. We demonstrate that use of 3-D ground conductivity information significantly improves the fidelity of GIC predictions over existing 1-D approaches. We project real-time magnetic field data streams from US Geological Survey magnetic observatories into a set of linear filters that employ the impedance data and that generate estimates of ground level electric fields at the locations of MT stations. The resulting ground electric fields are projected to and integrated along the path of power transmission lines. This serves as inputs to power flow models that represent the power transmission grid, yielding a time-varying set of quasi-real-time estimates of reactive power loss at the power transformers that are critical infrastructure for power distribution. We demonstrate that peak reactive power loss and hence peak risk for transformer damage from GICs does not necessarily occur during peak GMD storm times, but rather depends on the time-evolution of the polarization of the GMD's inducing fields and the complex ground (3-D) electric field response, and the resulting alignment of the ground electric fields with the power transmission line paths. This is informing our efforts to provide a set of real-time tools for power grid operators to use in mitigating damage from space weather events.

  7. 46 CFR 111.79-3 - Grounding pole.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Grounding pole. 111.79-3 Section 111.79-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-3 Grounding pole. Each receptacle outlet that operates at 100 volts or more...

  8. 46 CFR 111.79-3 - Grounding pole.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Grounding pole. 111.79-3 Section 111.79-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-3 Grounding pole. Each receptacle outlet that operates at 100 volts or more...

  9. 46 CFR 111.79-3 - Grounding pole.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Grounding pole. 111.79-3 Section 111.79-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-3 Grounding pole. Each receptacle outlet that operates at 100 volts or more...

  10. 46 CFR 111.79-3 - Grounding pole.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Grounding pole. 111.79-3 Section 111.79-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-3 Grounding pole. Each receptacle outlet that operates at 100 volts or more...

  11. 46 CFR 111.79-3 - Grounding pole.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Grounding pole. 111.79-3 Section 111.79-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-3 Grounding pole. Each receptacle outlet that operates at 100 volts or more...

  12. Electrical grounding prong socket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leong, R.

    1990-01-01

    The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. 17 figs.

  13. Electrical grounding prong socket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leong, R.

    1990-12-31

    The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. 17 figs.

  14. Electrical grounding prong socket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leong, R.

    1991-06-18

    This patent describes a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket.

  15. Electrical grounding prong socket

    DOEpatents

    Leong, Robert

    1991-01-01

    The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket.

  16. Imaging of Ground Ice with Surface-Based Geophysics

    DTIC Science & Technology

    2015-10-01

    terrains. Electrical Resistivity Tomography (ERT), in particular, has been effective for imaging ground ice. ERT measures the ability of materials to...13 2.2.1 Electrical resistivity tomography (ERT...Engineer Research and Development Center ERT Electrical Resistivity Tomography GPS Global Positioning System LiDAR Light Detection and Ranging SIPRE

  17. Electrical receptacle

    DOEpatents

    Leong, R.

    1993-06-22

    The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.

  18. Electrical receptacle

    DOEpatents

    Leong, Robert

    1993-01-01

    The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.

  19. Forensic Assessment on Ground Instability Using Electrical Resistivity Imaging (ERI)

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Azhar, A. T. S.; Aziman, M.; Fauzan, S. M. S. A.; Ikhwan, J. M.; Aishah, M. A. N.

    2017-02-01

    Electrical resistivity imaging (ERI) was used to evaluate the ground settlement in local scale at housing areas. ERI and Borehole results were used to interpret the condition of the problematic subsurface profile due to its differential stiffness. Electrical resistivity of the subsurface profile was measured using ABEM SAS4000 equipment set. ERI results using electrical resistivity anomaly on subsurface materials resistivity shows the subsurface profile exhibited low (1 - 100 Ωm) and medium (> 100 Ωm) value (ERV) representing weak to firm materials. The occurrences of soft to medium cohesive material (SPT N value = 2 - 7) and stiff cohesive material (SPT N ≥ 8) in local scale has created inconsistency of the ground stability condition. Moreover, it was found that a layer of organic decayed wood (ERV = 43 ˜ 29 Ωm & SPT N = 15 ˜ 9) has been buried within the subsurface profile thus weaken the ground structure and finally promoting to the ground settlement. The heterogeneous of the subsurface material presented using integrated analysis of ERI and borehole data enabled ground settlement in this area to be evaluated. This is the major factor evaluating ground instability in the local scale. The result was applicable to assist in planning a strategy for sustainable ground improvement of local scale in fast, low cost, and large data coverage.

  20. Grounding Headphones for Protection Against ESD

    NASA Technical Reports Server (NTRS)

    Peters, John; Youngquist, Robert C.

    2004-01-01

    A simple alternative technique has been devised protecting delicate equipment against electrostatic discharge (ESD) in settings in which workers wear communication headsets. In the original setting in which the technique was devised, the workers who wear the headsets also wear anti-ESD grounding straps on their wrists. The alternative technique eliminates the need for the wrist grounding straps by providing for grounding through the headsets. In place of the electrically insulating foam pads on the headsets, one installs pads made of electrically conductive foam like that commonly used to protect electronic components. Grounding wires are attached to the conductive foam pads, then possibly to the shielding cable which may be grounded to the backshell on the connector. The efficacy of this technique in protecting against ESD has been verified in experiments. The electrical resistance of the pads is a few megohms - about the same as that of a human body between the fingers of opposite hands and, hence, low enough for grounding. The only drawback of the technique is that care must be taken to place the foam pads in contact with the user s skin: any hair that comes between the foam pads and the skin must be pushed aside because hair is electrically insulating and thus prevents adequate grounding.

  1. 46 CFR 111.05-3 - Design, construction, and installation; general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Design, construction, and installation; general. 111.05-3 Section 111.05-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-3 Design, construction, and...

  2. 46 CFR 111.05-3 - Design, construction, and installation; general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Design, construction, and installation; general. 111.05-3 Section 111.05-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-3 Design, construction, and...

  3. Measurement of surface charges on the dielectric film based on field mills under the HVDC corona wire

    NASA Astrophysics Data System (ADS)

    Donglai, WANG; Tiebing, LU; Yuan, WANG; Bo, CHEN; Xuebao, LI

    2018-05-01

    The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current (HVDC) power lines. HVDC lines may cross the greenhouses due to the restricted transmission corridors. Under the condition of ion flow field, the dielectric films on the greenhouses will be charged, and the electric fields in the greenhouses may exceed the limit value. Field mills are widely used to measure the ground-level direct current electric fields under the HVDC power lines. In this paper, the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields. The advantages of hiding the field mill probes in the ground are studied. The charge inversion algorithm is optimized in order to decrease the impact of measurement errors. Based on the experimental results, the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied. The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height. Compared with the total electric field strengths, the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.

  4. 6. INTERIOR VIEW, NORTHEAST CORNER OF GROUND LEVEL SHOWING ELECTRIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. INTERIOR VIEW, NORTHEAST CORNER OF GROUND LEVEL SHOWING ELECTRIC MOTOR THAT POWERED GEARS WHICH IN TURN DROVE SHAFT (Electric motor, Crocker-Wheeler Company, Ampere, New Jersey, No. 151203, 20 hp at 775 rmp, 230 volt, 23.5 amp) - Huntingdon Furnace, Grist Mill, 2 miles northwest of Colerain Mansion, Franklinville, Huntingdon County, PA

  5. USAF Radiofrequency Radiation Bioeffects Research Program - A Review

    DTIC Science & Technology

    1981-12-01

    Experimental Methods--SARa have been measured in scaled saline spheroidal phantoms irradiated by the near fields of short electric monopoles above ground planes...aperture analysis might be the case where some industrial machines have an equivalent electric dipole parallel to the operator, which causes maximum...short electric monopoles on a ground plane simulating electric dipoles. Some results of these measurements are shown in Fig. 16, with the measured

  6. High Voltage Discharge Profile on Soil Breakdown Using Impulse Discharge

    NASA Astrophysics Data System (ADS)

    Fajingbesi, F. E.; Midi, N. S.; Elsheikh, E. M. A.; Yusoff, S. H.

    2017-06-01

    Grounding terminals are mandatory in electrical appliance design as they provide safety route during overvoltage faults. The soil (earth) been the universal ground is assumed to be at zero electric potential. However, due to properties like moisture, pH and available nutrients; the electric potential may fluctuate between positive and negative values that could be harmful for internally connected circuits on the grounding terminal. Fluctuations in soil properties may also lead to current crowding effect similar to those seen at the emitters of semiconductor transistors. In this work, soil samples are subjected to high impulse voltage discharge and the breakdown characteristics was profiled. The results from profiling discharge characteristics of soil in this work will contribute to the optimization of grounding protection system design in terms of electrode placement. This would also contribute to avoiding grounding electrode current crowding, ground potential rise fault and electromagnetic coupling faults.

  7. Electrical Ground Support Equipment Fabrication, Specification for

    NASA Technical Reports Server (NTRS)

    Denson, Erik C.

    2014-01-01

    This document specifies parts, materials, and processes used in the fabrication, maintenance, repair, and procurement of electrical and electronic control and monitoring equipment associated with ground support equipment (GSE) at the Kennedy Space Center (KSC).

  8. Photovoltaic module mounting clip with integral grounding

    DOEpatents

    Lenox, Carl J.

    2010-08-24

    An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.

  9. 30 CFR 77.701-2 - Approved methods of grounding metallic frames, casings, and other enclosures of electric...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... from a direct-current power system with one polarity grounded will be approved: (1) A solid connection..., casings, and other enclosures of electric equipment receiving power from a direct-current power system. 77... enclosures of electric equipment receiving power from a direct-current power system. (a) The following...

  10. 30 CFR 77.701-2 - Approved methods of grounding metallic frames, casings, and other enclosures of electric...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... from a direct-current power system with one polarity grounded will be approved: (1) A solid connection..., casings, and other enclosures of electric equipment receiving power from a direct-current power system. 77... enclosures of electric equipment receiving power from a direct-current power system. (a) The following...

  11. Charge-Dissipative Electrical Cables

    NASA Technical Reports Server (NTRS)

    Kolasinski, John R.; Wollack, Edward J.

    2004-01-01

    Electrical cables that dissipate spurious static electric charges, in addition to performing their main functions of conducting signals, have been developed. These cables are intended for use in trapped-ion or ionizing-radiation environments, in which electric charges tend to accumulate within, and on the surfaces of, dielectric layers of cables. If the charging rate exceeds the dissipation rate, charges can accumulate in excessive amounts, giving rise to high-current discharges that can damage electronic circuitry and/or systems connected to it. The basic idea of design and operation of charge-dissipative electrical cables is to drain spurious charges to ground by use of lossy (slightly electrically conductive) dielectric layers, possibly in conjunction with drain wires and/or drain shields (see figure). In typical cases, the drain wires and/or drain shields could be electrically grounded via the connector assemblies at the ends of the cables, in any of the conventional techniques for grounding signal conductors and signal shields. In some cases, signal shields could double as drain shields.

  12. Overview of Avionics and Electrical Ground Support Equipment

    NASA Technical Reports Server (NTRS)

    Clarke, Sean C.

    2011-01-01

    Presents an overview of the Crew Module Avionics and the associated Electrical Ground Support Equipment for the Pad Abort 1 flight test of the Orion Program. A limited selection of the technical challenges and solutions are highlighted.

  13. Effect of near-earth thunderstorms electric field on the intensity of ground cosmic ray positrons/electrons in Tibet

    NASA Astrophysics Data System (ADS)

    Zhou, X. X.; Wang, X. J.; Huang, D. H.; Jia, H. Y.

    2016-11-01

    Monte Carlo simulations are performed to study the correlation between the ground cosmic ray intensity and near-earth thunderstorms electric field at YBJ (located at YangBaJing, Tibet, China, 4300 m a. s. l.). The variations of the secondary cosmic ray intensity are found to be highly dependent on the strength and polarity of the electric field. In negative fields and in positive fields greater than 600 V/cm, the total number of ground comic ray positrons and electrons increases with increasing electric field strength. And these values increase more obviously when involving a shower with lower primary energy or a higher zenith angle. While in positive fields ranging from 0 to 600 V/cm, the total number of ground comic ray positrons and electrons declines and the amplitude is up to 3.1% for vertical showers. A decrease of intensity occurs in inclined showers within the range of 0-500 V/cm, which is accompanied by smaller amplitudes. In this paper, the intensity changes are analyzed, especially concerning those decreasing phenomena in positive electric fields. Our simulation results could be helpful in understanding the decreases observed in some ground-based experiments (such as the Carpet air shower array and ARGO-YBJ), and also be useful in understanding the acceleration mechanisms of secondary charged particles caused by an atmospheric electric field.

  14. Electrochemical stabilization of clayey ground

    USGS Publications Warehouse

    Rzhanitzin, B.A.; Sokoloff, V.P.

    1947-01-01

    Recently developed new methods of stabilization of weak grounds (e.g. the silicate treatment) are based on injection of chemical solutions into the ground. Such methods are applicable accordingly only to the kinds of ground that have the coefficient of filtration higher than 2 meters per 24 hours and permit penetration of the chemical solutions under pressure. This limit, however, as it is shown by our experience in construction, excludes a numerous and an important class of grounds, stabilization of which is indispensable in many instances. For example, digging of trenches and pits in clayey, silty, or sandy ground shows that all these types act like typical "floaters" (sluds? -S) in the presence of the ground water pressure. There were several instances in the canalization of the city of Moskow where the laying of trenches below the ground water level has led to extreme difficulties with clayey and silty ground. Similar examples could be cited in mining, engineering hydrology, and railroad construction. For these reasons, the development of methods of stabilizing such difficult types of ground has become an urgent problem of our day. In 1936, the author began his investigations, at the ground Stabilization Laboratory of VODGEO Institute, with direct electrical current as the means of stabilization of grounds. Experiments had shown that a large number of clayey types, following passage of direct electrical current, undergoes a transformation of its physico-chemical properties. It was established that the (apparent -S) density of the ground is substantially increased in consequence of the application of direct electrical current. The ground loses also its capacity to swell and to soften in water. Later, after a more detailed study of the physico-chemical mechanism of the electrical stabilization, it became possible to develop the method so as to make it applicable to sandy and silty as well as to clayey ground. By this time (1941, S.), the method has already been tested in the field, was found satisfactory, and is being introduced into construction practice.

  15. The electric field change caused by a ground flash with multiple channels

    NASA Technical Reports Server (NTRS)

    Nakano, Minoru; Takagi, Nobuyuki; Arima, Izumi; Kawasaki, Zen-Ichiro; Takeuti, Tosio

    1991-01-01

    The electric field and the magnetic flux changes caused by a ground flash with multiple channels are measured near the electric power transmission lines during winter thunderstorms. Triggered lightning strokes and the following associated strokes to the transmission line towers produce characteristic waveforms of the field changes. A few examples of the waveforms and a brief discussion are given.

  16. 46 CFR 111.05-13 - Grounding connection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Grounding connection. 111.05-13 Section 111.05-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... power sources operating in parallel in the system. ...

  17. 46 CFR 111.05-13 - Grounding connection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Grounding connection. 111.05-13 Section 111.05-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... power sources operating in parallel in the system. ...

  18. 46 CFR 111.05-13 - Grounding connection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Grounding connection. 111.05-13 Section 111.05-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... power sources operating in parallel in the system. ...

  19. 46 CFR 111.05-13 - Grounding connection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Grounding connection. 111.05-13 Section 111.05-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... power sources operating in parallel in the system. ...

  20. Calculations of lightning return stroke electric and magnetic fields above ground

    NASA Technical Reports Server (NTRS)

    Master, M. J.; Uman, M. A.; Ling, Y. T.; Standler, R. B.

    1981-01-01

    Lin et al., (1980) presented a lightning return stroke model with which return stroke electric and magnetic fields measured at ground level could be reproduced. This model and a modified version of it, in which the initial current peak decays with height above ground, are used to compute waveforms for altitudes from 0-10 km and at ranges of 20 m to 10 km. Both the original and modified models gave accurate predictions of measured ground-based fields. The use of the calculated fields in calibrating airborne field measurements from simultaneous ground and airborne data is discussed.

  1. Electrical Grounding - a Field for Geophysicists and Electrical Engineers Partnership

    NASA Astrophysics Data System (ADS)

    Freire, P. F.; Pane, E.; Guaraldo, N.

    2012-12-01

    Technology for designing ground electrodes for high-voltage direct current transmission systems (HVDC) has being using in the last years, deep soil models based on a wide range of geophysical methods. These models shall include detailed representation of shallow soil, down to 100 meters, in order to allow the evaluation of the soil conditions where the ground electrodes will be buried. Also deep soil models are needed, to be used for the interference studies, which shall represent a soil volume of about 15 km deep and a surface area of about 15 to 30 km radius. Large facilities for power plants (hydroelectric and wind farms, for example) and industrial complexes (such as petrochemical plants) has become usual at the current stage of Brazil industrialization. Grounding mats for these facilities are made of a buried cooper mesh, interconnected to a wide variety of metallic masses, such as steel reinforced concrete foundations, ducts in general etc. These grounding systems may present dimensions with the order of hundreds of meters, and, at least in Brazil, are usually calculated by using electrical resistivity soil models, based on short spacing Wenner measurements (with maximum spacing of about 64 m.). The soil model shall be the best possible representation of the environment in which the grounding electrodes are immersed, for the purpose of calculation of resistance or for digital simulation. The model to be obtained is limited by the amount and quality of soil resistivity measurements are available, and the resources to be used in the calculations and simulations. Geophysics uses a wide range of technologies for exploring subsoil, ranging from surface measurements to wells logging - seismic, gravimetric, magnetic, electrical, electromagnetic and radiometric. The electrical and electromagnetic methods includes various measurement techniques (Wenner, Schlumberger, TDEM, Magneto-telluric etc.), which together allow the development of complex resistivity soil models, layered stratified or showing lateral variations, ranging down to several tens of kilometers deep, reaching the crust-mantle interface (typically with the order of 30-40 km). This work aims to analyze the constraints of the current soil models being used for grounding electrodes design, and suggests the need of a soil modeling methodology compatible with large grounding systems. Concerning the aspects related to soil modeling, electrical engineers need to get aware of geophysics resources, such as: - geophysical techniques for soil electrical resistivity prospection (down to about 15 kilometers deep); and - techniques for converting field measured data, from many different geophysical techniques, into adequate soil models for grounding grid simulation. It is also important to equalize the basic knowledge for the professionals that are working together for the specific purpose of soil modeling for electrical grounding studies. The authors have experienced the situation of electrical engineers working with geophysicists, but it was not clear for the latter the effective need of the electrical engineers, and for the engineers it was unknown the available geophysical resources, and also, what to do convert the large amount of soil resistivity data into a reliable soil model.

  2. 46 CFR 111.05-33 - Equipment safety grounding (bonding) conductors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Equipment safety grounding (bonding) conductors. 111.05... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-33 Equipment safety grounding (bonding) conductors. (a) Each equipment-grounding conductor must...

  3. 46 CFR 111.05-33 - Equipment safety grounding (bonding) conductors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Equipment safety grounding (bonding) conductors. 111.05... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-33 Equipment safety grounding (bonding) conductors. (a) Each equipment-grounding conductor must...

  4. 46 CFR 111.05-33 - Equipment safety grounding (bonding) conductors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Equipment safety grounding (bonding) conductors. 111.05... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-33 Equipment safety grounding (bonding) conductors. (a) Each equipment-grounding conductor must...

  5. Metal Patch Antenna

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil F. (Inventor); Zawadzki, Mark S. (Inventor); Hodges, Richard E. (Inventor)

    2012-01-01

    Disclosed herein is a patch antenna comprises a planar conductive patch attached to a ground plane by a support member, and a probe connector in electrical communication with the conductive patch arranged to conduct electromagnetic energy to or from the conductive patch, wherein the conductive patch is disposed essentially parallel to the ground plane and is separated from the ground plane by a spacing distance; wherein the support member comprises a plurality of sides disposed about a central axis oriented perpendicular to the conductive patch and the ground plane; wherein the conductive patch is solely supported above the ground plane by the support member; and wherein the support member provides electrical communication between the planer conductive patch and the ground plane.

  6. Decrease in Ground-Run Distance of Small Airplanes by Applying Electrically-Driven Wheels

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroshi; Nishizawa, Akira

    A new takeoff method for small airplanes was proposed. Ground-roll performance of an airplane driven by electrically-powered wheels was experimentally and computationally studied. The experiments verified that the ground-run distance was decreased by half with a combination of the powered driven wheels and propeller without increase of energy consumption during the ground-roll. The computational analysis showed the ground-run distance of the wheel-driven aircraft was independent of the motor power when the motor capability exceeded the friction between tires and ground. Furthermore, the distance was minimized when the angle of attack was set to the value so that the wing generated negative lift.

  7. Ground states of baryoleptonic Q-balls in supersymmetric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoemaker, Ian M.; Kusenko, Alexander

    2008-10-01

    In supersymmetric generalizations of the standard model, all stable Q-balls are associated with some flat directions. We show that, if the flat direction has both the baryon number and the lepton number, the scalar field inside the Q-ball can deviate slightly from the flat direction in the ground state. We identify the true ground states of such nontopological solitons, including the electrically neutral and electrically charged Q-balls.

  8. Touch and step potential analysis at 23.9kV to 4.16kV & 13.8kV to 4.16kV distribution substations with pad-mounted transformers, floating grounds, and other exposed ungrounded metal bodies using WinIGS

    NASA Astrophysics Data System (ADS)

    Guzman, David G.

    An electrical substation is composed of various subsystems that allow for the effective and safe operation of the power grid. One of the subsystems integrating a conventional substation is defined as the ground grid system. This system allows for the effective operation of the power grid and all the electrical equipment connected to it by providing a ground potential reference, commonly known as the system ground. In addition, the ground grid system provides safety to the workers and the public transiting inside or living nearby a substation by reducing the step and touch potential (or voltage) levels present during a system fault. In today's utility industry practices there is an increasing trend for using pad-mounted electrical equipment for substation applications in an effort to construct new or upgrade existing electrical facilities inside limited property spaces. This thesis work presents an analysis for the effects of touch and step voltages at existing distribution substations where 23.9kV to 4.16kV & 13.8kV to 4.16kV pad-mounted transformers and other pad-mounted switchgear was installed to replace the traditional station class equipment. Moreover, this study will expose modeling techniques employed to define and determine the effects of floating grounds and other exposed metal bodies inside or surrounding these substations using WinIGS; this is in an effort to determine any risks of electric shock associated with this type of installations. The results presented in this work are intended to verify the requirements for the ground grid analysis and design for 4.16kV distribution substations with pad-mounted equipment in order to prevent dangerous step and touch voltage levels appearing at these sites during system faults; and ultimately prevent exposing individuals to the risk of an electric shock.

  9. TARDEC Ground Vehicle Robotics: Vehicle Dynamic Characterization and Research

    DTIC Science & Technology

    2015-09-01

    inferred roll angles that are found with the IMU . This is usually done with UNCLASSIFIED UNCLASSIFIED linear potentiometers, which have an electrical...wire electric, Electric traction control. Suspension Styles: Suspension is what keeps the vehicle off the ground and mechanically isolated from the...lot” maneuvers. Because of this, they roll with no slip angles. This means that the steering angles of the front wheels must be calibrated perfectly

  10. 46 CFR 111.05-21 - Ground detection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ground detection. 111.05-21 Section 111.05-21 Shipping... REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-21 Ground detection. There must be ground detection for each: (a) Electric propulsion system; (b) Ship's service power system; (c...

  11. 46 CFR 111.05-21 - Ground detection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ground detection. 111.05-21 Section 111.05-21 Shipping... REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-21 Ground detection. There must be ground detection for each: (a) Electric propulsion system; (b) Ship's service power system; (c...

  12. Simple circuit monitors "third wire" in ac lines

    NASA Technical Reports Server (NTRS)

    Kojima, T. T.; Stuck, D. E.

    1980-01-01

    Device detects interruption of ground connection in three-wire electrical equipment and shuts off ac power to prevent shock hazard. Silicon-controlled rectifiers detect floating ground, and deenergize optoelectric relays thereby breaking power connections. Circuit could be incorporated into hand tools, appliances, and other electrical equipment.

  13. 46 CFR 111.05-15 - Neutral grounding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Neutral grounding. 111.05-15 Section 111.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral...

  14. 46 CFR 111.05-15 - Neutral grounding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Neutral grounding. 111.05-15 Section 111.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral...

  15. 46 CFR 111.05-15 - Neutral grounding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Neutral grounding. 111.05-15 Section 111.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral...

  16. 46 CFR 111.05-15 - Neutral grounding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Neutral grounding. 111.05-15 Section 111.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral...

  17. 46 CFR 111.05-15 - Neutral grounding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Neutral grounding. 111.05-15 Section 111.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral...

  18. Oceanic Storm Characteristics Off the Kennedy Space Center Coast

    NASA Technical Reports Server (NTRS)

    Wilson, J.; Simpson, A. A.; Cummins, K. L.; Kiriazes, J. J.; Brown, R. G.; Mata, C. T.

    2014-01-01

    Natural cloud-to-ground lightning may behave differently depending on the characteristics of the attachment mediums, including the peak current (inferred from radiation fields) and the number of ground strike locations per flash. Existing literature has raised issues over the yea"rs on the behavior of lightning over ocean terrain and these phenomena are not yet well understood. To investigate lightning characteristics over differing terrain we will obtain identical observations over adjacent land and ocean regions during both clear air and thunderstorm periods comparing the electric field behavior over these various terrains. For this, a 3-meter NOAA buoy moored 20NM off the coast of the Kennedy Space Center was instrumented with an electric field mill and New Mexico Tech's slow antenna to measure the electric fields aloft and compared to the existing on-shore electric field mill suite of 31 sensors and a coastal slow antenna. New Mexico Tech's Lightning Mapping Array and the Eastern Range Cloud-to-Ground Lightning Surveillance System, along with the network of high-speed cameras being used to capture cloud-to-ground lightning strikes over the terrain regions to identify a valid data set and verify the electric fields. This is an on-going project with the potential for significant impact on the determination of lightning risk to objects on the ground. This presentation will provide results and instrumentation progress to date.

  19. 30 CFR 77.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Definitions. For the purpose of this part 77, the term: (a) Active workings means any place in a coal mine where miners are normally required to work or travel; (b) American Table of Distances means the current... detonators, and delay electric blasting caps. (p) Electrical grounding means to connect with the ground to...

  20. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  1. A comparison of ground-based and space flight data: Atomic oxygen reactions with boron nitride and silicon nitride

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.; Koontz, S. L.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) have been studied in low Earth orbit (LEO) flight experiments and in a ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed the materials coated over thin (approx 250 Angstrom) silver films whose electrical resistance was measured in situ to detect penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the in-flight and ground-based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the in-flight or ground-based experiments. The ground-based results show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground-based facility in terms of reproducing LEO flight results.

  2. Schumann Resonances on Mars - a Two-layer Ground Case

    NASA Astrophysics Data System (ADS)

    Kozakiewicz, J.; Kulak, A.; Mlynarczyk, J.

    2012-04-01

    Schumann resonances (SR) are global resonances of electromagnetic waves in the range of extremely low frequencies (ELF) propagating in a cavity formed by a planetary surface and a lower ionosphere. SR are induced by electrical discharges, which on Earth are associated mainly with lightning. They were predicted by Winfried Otto Schumann in 1952. SR are supposed to occur on Mars, although many properties of the Martian environment are still unknown. One of the most important problems in modeling SR on Mars is to estimate electrical properties of the Martian ground and their influence on ELF waves propagation. The Martian crust is composed mainly of basaltic materials. Water, which causes significant increase in electrical conductivity of rocks, does not exist in liquid state at the surface of Mars. Therefore the Martian ground is believed to be a low conductive one. However, it is possible that some liquid water may be present at various depths below the surface. In our previous study we have developed an analytical model, based on the characteristic electric and magnetic altitudes' formalism, that has allowed us to take into consideration the Martian ground. Using this new model, we found that basaltic ground of low conductivity greatly influenced the SR parameters. In this work, we carried out simulations in order to characterize an influence of vertical changes in ground properties on the parameters of the Martian ground-ionosphere waveguide. We have considered several cases of a two-layer ground, in which the lower layer was of higher conductivity than the upper one. The obtained results indicate how the SR parameters depend on electrical conductivity, permittivity, and depth of the layers. The results also point out the importance of studying SR on Mars and the need for further research in propagation of ELF waves in the Martian environment. SR can be used as a remote sensing tool for exploration of the Martian crust. Furthermore, they can be especially useful for groundwater detection.

  3. Electrical Methods: Resistivity Methods

    EPA Pesticide Factsheets

    Surface electrical resistivity surveying is based on the principle that the distribution of electrical potential in the ground around a current-carrying electrode depends on the electrical resistivities and distribution of the surrounding soils and rocks.

  4. 30 CFR 18.24 - Electrical clearances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Requirements § 18.24 Electrical clearances. Minimum clearances between uninsulated electrical conductor surfaces, or between uninsulated conductor surfaces and grounded metal surfaces, within the enclosure shall...

  5. 30 CFR 18.24 - Electrical clearances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Requirements § 18.24 Electrical clearances. Minimum clearances between uninsulated electrical conductor surfaces, or between uninsulated conductor surfaces and grounded metal surfaces, within the enclosure shall...

  6. High-voltage Array Ground Test for Direct-drive Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Mankins, John C.; O'Neill, Mark J.

    2005-01-01

    Development is underway on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for direct drive electric propulsion. These SLA performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for "space tugs" to fuel-efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA s robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLA SEP technology, discuss ground tests already completed, and present plans for future ground tests and future flight tests of SLA SEP systems.

  7. 33 CFR 183.415 - Grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY BOATS AND ASSOCIATED EQUIPMENT Electrical Systems Manufacturer Requirements § 183.415 Grounding. If a boat has more than one gasoline engine, grounded cranking motor circuits must be connected to...

  8. Apparatus for mounting a diode in a microwave circuit

    DOEpatents

    Liu, Shing-gong

    1976-07-27

    Apparatus for mounting a diode in a microwave circuit for making electrical contact between the circuit and ground and for dissipation of heat between the diode and a heat sink. The diode, supported on a thermally and electrically conductive member, is resiliently pressed in electrical contact with the microwave circuit. A tapered collar on the member is elastically deformably wedged into a tapered aperture formed in a heat sink. The wedged collar tightens firmly around the member establishing good thermal and electrical conduction from the diode to the heat sink and ground. Disassembly is facilitated because of the elastically deformed collar.

  9. 30 CFR 56.12026 - Grounding transformer and switchgear enclosures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Grounding transformer and switchgear enclosures... MINES Electricity § 56.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  10. 30 CFR 56.12026 - Grounding transformer and switchgear enclosures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding transformer and switchgear enclosures... MINES Electricity § 56.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  11. 30 CFR 56.12026 - Grounding transformer and switchgear enclosures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Grounding transformer and switchgear enclosures... MINES Electricity § 56.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  12. 30 CFR 56.12026 - Grounding transformer and switchgear enclosures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Grounding transformer and switchgear enclosures... MINES Electricity § 56.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  13. 30 CFR 56.12026 - Grounding transformer and switchgear enclosures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding transformer and switchgear enclosures... MINES Electricity § 56.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  14. Installation and Assembly, Electrical Ground Support Equipment (GSE), Specification for

    NASA Technical Reports Server (NTRS)

    Denson, Erik C.

    2014-01-01

    This specification covers the general workmanship requirements and procedures for the complete installation and assembly of electrical ground support equipment (EGSE) such as terminal distributors, junction boxes, conduit and fittings, cable trays and accessories, interconnecting cables (including routing requirements), motor-control equipment, and necessary hardware as specified by the applicable contract and drawings.

  15. Case Studies of Extreme Space Weather Effects on the New York State (NYS) Electric Power System

    NASA Astrophysics Data System (ADS)

    Chantale Damas, M.; Mohamed, Ahmed; Ngwira, Chigomyezo

    2017-04-01

    New York State (NYS) is home to one of the largest urban cities in the world, New York City (NYC). Understanding and mitigating the effects of extreme space weather events are important to reduce the vulnerabilities of the NYS present bulk power system, which includes NYC. Extreme space weather events perturb Earth's magnetic field and generate geo-electric fields that result in the flow of Geomagnetically Induced Currents (GICs) through transmission lines, followed by transformers and ground. GICs find paths to ground through transformer grounding wires causing half-cycle saturation to their magnetic cores. This causes transformers to overheat, inject harmonics to the grid and draw more reactive power than normal. Overheating, if sustained for a long duration, may lead to transformer failure or lifetime reduction. Presented work uses results from simulations performed by the Global SWMF-generated ground geomagnetic field perturbations. Results from computed values of simulated induced geo-electric fields at specific ground-based active INTERMAGNET magnetometer sites, combined with NYS electricity transmission network real data are used to examine the vulnerabilities of the NYS power grid. As an urban city with a large population, NYC is especially vulnerable and the results from this research can be used to model power systems for other urban cities.

  16. Finite Ground Coplanar (FGC) Waveguide: It's Characteristics and Advantages for Use in RF and Wireless Communication Circuits

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Katehi, Linda P. B.; Tentzeris, Emmanouil M.

    1998-01-01

    To solve many of the problems encountered when using conventional coplanar waveguide (CPW) with its semi-infinite ground planes, a new version of coplanar waveguide with electrically narrow ground planes has been developed. This new transmission line which we call Finite Ground Coplanar (FGC) waveguide has several advantages which make it a better transmission line for RF and wireless circuits. Since the ground planes are electrically narrow, spurious resonances created by the CPW ground planes and the metal carrier or package base are eliminated. In addition, lumped and distributed circuit elements may now be integrated into the ground strips in the same way as they traditionally have been integrated into the center conductor to realize novel circuit layouts that are smaller and have less parasitic reactance. Lastly, FGC is shown to have lower coupling between adjacent transmission lines than conventional CPW.

  17. Electrical Grounding Architecture for Unmanned Spacecraft

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This handbook is approved for use by NASA Headquarters and all NASA Centers and is intended to provide a common framework for consistent practices across NASA programs. This handbook was developed to describe electrical grounding design architecture options for unmanned spacecraft. This handbook is written for spacecraft system engineers, power engineers, and electromagnetic compatibility (EMC) engineers. Spacecraft grounding architecture is a system-level decision which must be established at the earliest point in spacecraft design. All other grounding design must be coordinated with and be consistent with the system-level architecture. This handbook assumes that there is no one single 'correct' design for spacecraft grounding architecture. There have been many successful satellite and spacecraft programs from NASA, using a variety of grounding architectures with different levels of complexity. However, some design principles learned over the years apply to all types of spacecraft development. This handbook summarizes those principles to help guide spacecraft grounding architecture design for NASA and others.

  18. 49 CFR 229.97 - Grounding fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded. ...

  19. 30 CFR 57.12026 - Grounding transformer and switchgear enclosures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Grounding transformer and switchgear enclosures... NONMETAL MINES Electricity Surface and Underground § 57.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  20. 30 CFR 57.12026 - Grounding transformer and switchgear enclosures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding transformer and switchgear enclosures... NONMETAL MINES Electricity Surface and Underground § 57.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  1. 30 CFR 57.12026 - Grounding transformer and switchgear enclosures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Grounding transformer and switchgear enclosures... NONMETAL MINES Electricity Surface and Underground § 57.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  2. 30 CFR 57.12026 - Grounding transformer and switchgear enclosures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding transformer and switchgear enclosures... NONMETAL MINES Electricity Surface and Underground § 57.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  3. 30 CFR 57.12026 - Grounding transformer and switchgear enclosures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Grounding transformer and switchgear enclosures... NONMETAL MINES Electricity Surface and Underground § 57.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded. ...

  4. 49 CFR 229.97 - Grounding fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded. ...

  5. 49 CFR 229.97 - Grounding fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded. ...

  6. Computational dosimetry for grounded and ungrounded human models due to contact current

    NASA Astrophysics Data System (ADS)

    Chan, Kwok Hung; Hattori, Junya; Laakso, Ilkka; Hirata, Akimasa; Taki, Masao

    2013-08-01

    This study presents the computational dosimetry of contact currents for grounded and ungrounded human models. The uncertainty of the quasi-static (QS) approximation of the in situ electric field induced in a grounded/ungrounded human body due to the contact current is first estimated. Different scenarios of cylindrical and anatomical human body models are considered, and the results are compared with the full-wave analysis. In the QS analysis, the induced field in the grounded cylindrical model is calculated by the QS finite-difference time-domain (QS-FDTD) method, and compared with the analytical solution. Because no analytical solution is available for the grounded/ungrounded anatomical human body model, the results of the QS-FDTD method are then compared with those of the conventional FDTD method. The upper frequency limit for the QS approximation in the contact current dosimetry is found to be 3 MHz, with a relative local error of less than 10%. The error increases above this frequency, which can be attributed to the neglect of the displacement current. The QS or conventional FDTD method is used for the dosimetry of induced electric field and/or specific absorption rate (SAR) for a contact current injected into the index finger of a human body model in the frequency range from 10 Hz to 100 MHz. The in situ electric fields or SAR are compared with the basic restrictions in the international guidelines/standards. The maximum electric field or the 99th percentile value of the electric fields appear not only in the fat and muscle tissues of the finger, but also around the wrist, forearm, and the upper arm. Some discrepancies are observed between the basic restrictions for the electric field and SAR and the reference levels for the contact current, especially in the extremities. These discrepancies are shown by an equation that relates the current density, tissue conductivity, and induced electric field in the finger with a cross-sectional area of 1 cm2.

  7. Sail GTS ground system analysis: Avionics system engineering

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.

    1977-01-01

    A comparison of two different concepts for the guidance, navigation and control test set signal ground system is presented. The first is a concept utilizing a ground plate to which crew station, avionics racks, electrical power distribution system, master electrical common connection assembly and marshall mated elements system grounds are connected by 4/0 welding cable. An alternate approach has an aluminum sheet interconnecting the signal ground reference points between the crew station and avionics racks. The comparison analysis quantifies the differences between the two concepts in terms of dc resistance, ac resistance and inductive reactance. These parameters are figures of merit for ground system conductors in that the system with the lowest impedance is the most effective in minimizing noise voltage. Although the welding cable system is probably adequate, the aluminum sheet system provides a higher probability of a successful system design.

  8. Nighttime observations of thunderstorm electrical activity from a high altitude airplane

    NASA Technical Reports Server (NTRS)

    Brook, M.; Vonnegut, B.; Orville, R. E.; Vaughan, O. H., Jr.

    1984-01-01

    Nocturnal thunderstorms were observed from above and features of cloud structure and lightning which are not generally visible from the ground are discussed. Most, lightning activity seems to be associated with clouds with strong convective cauliflower tops. In both of the storms lightning channels were visible in the clear air above the cloud. It is shown that substances produced by thunderstorm electrical discharges can be introduced directly into the stratosphere. The cause and nature of the discharges above the cloud are not clear. They may be produced by accumulations of space charge in the clear air above the cloud. The discharges may arise solely because of the intense electric fields produced by charges within the cloud. In the latter case the ions introduced by these discharges will increase the electrical conductivity of the air above the cloud and increase the conduction current that flows from the cloud to the electrosphere. More quantitative data at higher resolution may show significant spectral differences between cloud to ground and intracloud strokes. It is shown that electric field change data taken with an electric field change meter mounted in an airplane provide data on lightning discharges from above that are quite similar to those obtained from the ground in the past. The optical signals from dart leaders, from return strokes, and from continuing currents are recognizable, can be used to provide information on the fine structure of lightning, and can be used to distinguish between cloud to ground and intracloud flashes.

  9. Fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1996-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  10. Resistance and internal electric field in cloud-to-ground lightning channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cen, Jianyong; Yuan, Ping, E-mail: yuanp@nwnu.edu.cn; Xue, Simin

    2015-02-02

    Cloud-to-ground lightning with six return strokes has been recorded by slitless spectrograph and the system of fast antenna and slow antenna. The physical parameters of the discharge channel have been obtained based on the combination of spectra and synchronous radiated electric field. The resistance and internal electric field of the channel are studied as the focus in this paper. The results show that the resistances per unit length of the lightning channel are in the order of 10{sup −2}–10{sup −1 }Ω/m and the internal electric field strengths are in the order of 10{sup 3 }V/m.

  11. Electrical Safety for Non-Electricians

    MedlinePlus

    ... In 2010, 239 construction workers were killed by electricity.* More than 2/3 of those killed are ... must be grounded. Your employer must check all electric systems, including wiring and switches, to be sure ...

  12. Atmospheric electricity

    NASA Astrophysics Data System (ADS)

    Stepanenko, V. D.

    Papers are presented on a wide range of studies of atmospheric electricity, from the problem of the global atmospheric-electricity circuit to the effects of atmospheric electricity on ground-based facilities and biological objects. The main topics considered are general problems of atmospheric electricity, studies of atmospheric ions and aerosols, cloud electricity, studies of lightning-storm activity and atmospherics, and lightning protection.

  13. Alternative Fuels Data Center: Sea-Tac and Alaska Air Group Achieve

    Science.gov Websites

    pilot project, Alaska Air Group encountered a few hurdles during the switch to eGSE. One was Sky-High Results with Electric Ground Support Equipment Sea-Tac and Alaska Air Group Achieve Data Center: Sea-Tac and Alaska Air Group Achieve Sky-High Results with Electric Ground Support

  14. Discharge current distribution in stratified soil under impulse discharge

    NASA Astrophysics Data System (ADS)

    Eniola Fajingbesi, Fawwaz; Shahida Midi, Nur; Elsheikh, Elsheikh M. A.; Hajar Yusoff, Siti

    2017-06-01

    The mobility of charge particles traversing a material defines its electrical properties. Soil (earth) have long been the universal grounding before and after the inception of active ground systems for electrical appliance purpose due to it semi-conductive properties. The soil can thus be modelled as a single material exhibiting semi-complex inductive-reactive impedance. Under impulse discharge such as lightning strikes to soil this property of soil could result in electric potential level fluctuation ranging from ground potential rise/fall to electromagnetic pulse coupling that could ultimately fail connected electrical appliance. In this work we have experimentally model the soil and lightning discharge using point to plane electrode setup to observe the current distribution characteristics at different soil conductivity [mS/m] range. The result presented from this research indicate above 5% shift in conductivity before and after discharge which is significant for consideration when dealing with grounding designs. The current distribution in soil have also be successfully observed and analysed from experimental result using mean current magnitude in relation to electrode distance and location, current density variation with depth all showing strong correlation with theoretical assumptions of a semi-complex impedance material.

  15. A unified engineering model of the first stroke in downward negative lightning

    NASA Astrophysics Data System (ADS)

    Nag, Amitabh; Rakov, Vladimir A.

    2016-03-01

    Each stroke in a negative cloud-to-ground lightning flash is composed of downward leader and upward return stroke processes, which are usually modeled individually. The first stroke leader is stepped and starts with preliminary breakdown (PB) which is often viewed as a separate process. We present the first unified engineering model for computing the electric field produced by a sequence of PB, stepped leader, and return stroke processes, serving to transport negative charge to ground. We assume that a negatively charged channel extends downward in a stepped fashion during both the PB and leader stages. Each step involves a current wave that propagates upward along the newly formed channel section. Once the leader attaches to ground, an upward propagating return stroke neutralizes the charge deposited along the channel. Model-predicted electric fields are in reasonably good agreement with simultaneous measurements at both near (hundreds of meters, electrostatic field component is dominant) and far (tens of kilometers, radiation field component is dominant) distances from the lightning channel. Relations between the features of computed electric field waveforms and model input parameters are examined. It appears that peak currents associated with PB pulses are similar to return stroke peak currents, and the observed variation of electric radiation field peaks produced by leader steps at different heights above ground is influenced by the ground corona space charge.

  16. 29 CFR 1926.351 - Arc welding and cutting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equivalent insulation. (c) Ground returns and machine grounding. (1) A ground return cable shall have a safe... electrical contact exists at all joints. The generation of an arc, sparks, or heat at any point shall cause...

  17. 29 CFR 1926.351 - Arc welding and cutting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equivalent insulation. (c) Ground returns and machine grounding. (1) A ground return cable shall have a safe... electrical contact exists at all joints. The generation of an arc, sparks, or heat at any point shall cause...

  18. 29 CFR 1926.351 - Arc welding and cutting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equivalent insulation. (c) Ground returns and machine grounding. (1) A ground return cable shall have a safe... electrical contact exists at all joints. The generation of an arc, sparks, or heat at any point shall cause...

  19. 29 CFR 1926.351 - Arc welding and cutting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equivalent insulation. (c) Ground returns and machine grounding. (1) A ground return cable shall have a safe... electrical contact exists at all joints. The generation of an arc, sparks, or heat at any point shall cause...

  20. 29 CFR 1926.351 - Arc welding and cutting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equivalent insulation. (c) Ground returns and machine grounding. (1) A ground return cable shall have a safe... electrical contact exists at all joints. The generation of an arc, sparks, or heat at any point shall cause...

  1. 46 CFR 183.372 - Equipment and conductor grounding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Equipment and conductor grounding. 183.372 Section 183... conductor grounding. (a) All metallic enclosures and frames of electrical equipment must be permanently... equipment must be bonded together to a common ground by a normally non-current carrying conductor. Metallic...

  2. 46 CFR 183.372 - Equipment and conductor grounding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Equipment and conductor grounding. 183.372 Section 183... conductor grounding. (a) All metallic enclosures and frames of electrical equipment must be permanently... equipment must be bonded together to a common ground by a normally non-current carrying conductor. Metallic...

  3. 46 CFR 183.376 - Grounded distribution systems (neutral grounded).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.376... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral... 46 Shipping 7 2013-10-01 2013-10-01 false Grounded distribution systems (neutral grounded). 183...

  4. Ground-source heat pump case studies and utility programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lienau, P.J.; Boyd, T.L.; Rogers, R.L.

    1995-04-01

    Ground-source heat pump systems are one of the promising new energy technologies that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to consumers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school and commercial building applications. In order to verify the performance, information was collected for 253 case studies from mainly utilities throughout the United States. The casemore » studies were compiled into a database. The database was organized into general information, system information, ground system information, system performance, and additional information. Information was developed on the status of demand-side management of ground-source heat pump programs for about 60 electric utility and rural electric cooperatives on marketing, incentive programs, barriers to market penetration, number units installed in service area, and benefits.« less

  5. Method for fabricating fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, R.R.; Cowan, T.E.

    1994-12-27

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figures.

  6. Method for fabricating fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1994-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  7. Fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, R.R.; Cowan, T.E.

    1996-06-11

    Disclosed are fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figs.

  8. 30 CFR 77.802 - Protection of high-voltage circuits; neutral grounding resistors; disconnecting devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... grounded through a suitable resistor at the source transformers, and a grounding circuit, originating at... stationary electrical equipment, if he finds that such exception will not pose a hazard to the miners...

  9. The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, volume 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings of the conference are reported. The conference focussed on lightning protection, detection, and forecasting. The conference was divided into 26 sessions based on research in lightning, static electricity, modeling, and mapping. These sessions spanned the spectrum from basic science to engineering, concentrating on lightning prediction and detection and on safety for ground facilities, aircraft, and aerospace vehicles.

  10. 46 CFR 111.05-20 - Grounded distribution systems on OSVs designed to carry flammable or combustible liquids with...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Grounded distribution systems on OSVs designed to carry flammable or combustible liquids with closed-cup flashpoints not exceeding 60 °C (140 °F). 111.05-20 Section 111.05-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS...

  11. Production against static electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shteiner, A.L.; Minaev, G.S.; Shatkov, O.P.

    1978-01-01

    Coke industry shops process electrifiable, highly inflammable and explosive substances (benzene, toluene, xylenes, sulfur, coal dust, and coke-oven gas). The electrification of those materials creates a danger of buildup of static electricity charges in them and on the surface of objects interacting with them, followed by an electrical discharge which may cause explosion, fire, or disruption of the technological process. Some of the regulations for protection against static electricity do not reflect modern methods of static electricity control. The regulations are not always observed by workers in the plant services. The main means of protection used to remove static electricitymore » charges in grounding. In many cases it completely drains the charge from the surface of the electrifiable bodies. However, in the processing of compounds with a high specific volumetric electrical resistence grounding is insufficient, since it does not drain the charge from the interior of the substance. Gigh adsorption capacity) are generally met by brown coal low-temperature ompared with predictions using the hourly computer program. The concept of a lumped thermal network for predicting heat losses from in-ground heat storage tanks, developed earlier in the project, has beethe cased-hole log data from various companies and additional comparison factors were calculated for the cased-hole log data. These comparison factors allow for some quantification of these uncalibrated log data.« less

  12. Oceanic Storm Characteristics off the Kennedy Space Center Coast

    NASA Technical Reports Server (NTRS)

    Wilson, J. G.; Simpson, A. A.; Cummins, K. L.; Kiriazes, J. J.; Brown, R. G.; Mata, C. T.

    2014-01-01

    Natural cloud-to-ground lightning may behave differently depending on the characteristics of the attachment mediums, including the peak current (inferred from radiation fields) and the number of ground strike locations per flash. Existing literature has raised questions over the years on these characteristics of lightning over oceans, and the behaviors are not yet well understood. To investigate this we will obtain identical electric field observations over adjacent land and ocean regions during both clear air and thunderstorm periods. Oceanic observations will be obtained using a 3-meter NOAA buoy that has been instrumented with a Campbell Scientific electric field mill and New Mexico Techs slow antenna, to measure the electric fields aloft. We are currently obtaining measurements from this system on-shore at the Florida coast, to calibrate and better understand the behavior of the system in elevated-field environments. Sometime during winter 2013, this system will be moored 20NM off the coast of the Kennedy Space Center. Measurements from this system will be compared to the existing on-shore electric field mill suite of 31 sensors and a coastal slow antenna. Supporting observations will be provided by New Mexico Techs Lightning Mapping Array, the Eastern Range Cloud to Ground Lightning Surveillance System, and the National Lightning Detection Network. An existing network of high-speed cameras will be used to capture cloud-to-ground lightning strikes over the terrain regions to identify a valid data set for analysis. This on-going project will demonstrate the value of off-shore electric field measurements for safety-related decision making at KSC, and may improve our understanding of relative lightning risk to objects on the ground vs. ocean. This presentation will provide an overview of this new instrumentation, and a summary of our progress to date.

  13. Solar power satellite system definition study. Part 1 and part 2, volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Solar Power Satellite principle is illustrated and it shows that in a geostationary orbit 36,000 km above the earth's equator, each SPS is in sunlight 99% of the time and in continuous line of sight contact with its ground receiving station. Electrical power produced on the satellite by photovoltaic or heat engine conversion of sunlight is then converted to radio frequency energy at high efficiency, and formed into a focused beam precisely aimed at the SP ground stations. The ground station receiving antenna reconverts the energy into electricity for distribution.

  14. 30 CFR 77.701 - Grounding metallic frames, casings, and other enclosures of electric equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Grounding § 77.701 Grounding metallic frames, casings... equipment that can become “alive” through failure of insulation or by contact with energized parts shall be...

  15. 46 CFR 111.05-1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... requirements for the grounding of electric systems, circuits, and equipment. Note: Circuits are grounded to limit excessive voltage from lightning, transient surges, and unintentional contact with higher voltage lines, and to limit the voltage to ground during normal operation. Conductive materials enclosing...

  16. 46 CFR 111.05-1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... requirements for the grounding of electric systems, circuits, and equipment. Note: Circuits are grounded to limit excessive voltage from lightning, transient surges, and unintentional contact with higher voltage lines, and to limit the voltage to ground during normal operation. Conductive materials enclosing...

  17. 46 CFR 111.05-1 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... requirements for the grounding of electric systems, circuits, and equipment. Note: Circuits are grounded to limit excessive voltage from lightning, transient surges, and unintentional contact with higher voltage lines, and to limit the voltage to ground during normal operation. Conductive materials enclosing...

  18. 46 CFR 111.05-1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... requirements for the grounding of electric systems, circuits, and equipment. Note: Circuits are grounded to limit excessive voltage from lightning, transient surges, and unintentional contact with higher voltage lines, and to limit the voltage to ground during normal operation. Conductive materials enclosing...

  19. 46 CFR 111.05-1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... requirements for the grounding of electric systems, circuits, and equipment. Note: Circuits are grounded to limit excessive voltage from lightning, transient surges, and unintentional contact with higher voltage lines, and to limit the voltage to ground during normal operation. Conductive materials enclosing...

  20. 30 CFR 57.12081 - Bonding metal pipelines to ground return circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bonding metal pipelines to ground return... NONMETAL MINES Electricity Underground Only § 57.12081 Bonding metal pipelines to ground return circuits... a ground return circuit shall be bonded to the return circuit rail at the ends of the pipeline and...

  1. 30 CFR 57.12081 - Bonding metal pipelines to ground return circuits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Bonding metal pipelines to ground return... NONMETAL MINES Electricity Underground Only § 57.12081 Bonding metal pipelines to ground return circuits... a ground return circuit shall be bonded to the return circuit rail at the ends of the pipeline and...

  2. Safety of High Speed Guided Ground Transportation Systems : Review of Existing EMF Guidelines, Standards and Regulations

    DOT National Transportation Integrated Search

    1993-08-01

    To assess the state of knowledge about anticipated electric and magnetic field (EMF) exposures from electrical transportation systems, including electrically powered rail and magnetically levitated (maglev), research concerning biological effects of ...

  3. 30 CFR 75.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of an electrical protective device, based upon its required and intended application, to safely... Health Administration which describe and illustrate the complete assembly of electrical machinery or... phase. An unintentional connection between an electric circuit and the grounding system. Low voltage. Up...

  4. Photovoltaic module mounting clip with integral grounding

    DOEpatents

    Lenox, Carl J.

    2008-10-14

    An electrically conductive mounting/grounding clip, for use with a photovoltaic assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending generally perpendicular to the central portion. Each arm has an outer portion with each outer portion having an outer end. At least one frame surface-disrupting element is at each outer end. The central portion defines a plane with the frame surface-disrupting elements pointing towards the plane. In some examples each arm extends from the central portion at an acute angle to the plane.

  5. Electric field-decoupled electroosmotic pump for microfluidic devices.

    PubMed

    Liu, Shaorong; Pu, Qiaosheng; Lu, Joann J

    2003-09-26

    An electric field-free electroosmotic pump has been constructed and its pumping rate has been measured under various experimental conditions. The key component of the pump is an ion-exchange membrane grounding joint that serves two major functions: (i) to maintain fluid continuity between pump channels and microfluidic conduit and (ii) to ground the solution in the microfluidic channel at the joint through an external electrode, and hence to decouple the electric field applied to the pump channels from the rest of the microfluidic system. A theoretical model has been developed to calculate the pumping rates and its validity has been demonstrated.

  6. Imaging tropical peatlands in Indonesia using ground-penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization

    Treesearch

    X. Comas; N. Terry; M. Warren; R. Kolka; A. Kristiyono; N. Sudiana; D. Nurjaman; T. Darusman

    2015-01-01

    Current estimates of carbon (C) storage in peatland systems worldwide indicate that tropical peatlands comprise about 15% of the global peat carbon pool. Such estimates are uncertain due to data gaps regarding organic peat soil thickness, volume and C content. We combined a set of indirect geophysical methods (ground-penetrating radar, GPR, and electrical resistivity...

  7. Electric fields measured by ISEE-1 within and near the neutral sheet during quiet and active times

    NASA Technical Reports Server (NTRS)

    Cattell, C. A.; Mozer, F. S.

    1982-01-01

    An understanding of the physical processes occurring in the magnetotail and plasmasheet during different interplanetary magnetic field orientations and differing levels of ground magnetic activity is crucial for the development of a theory of energy transfer from the solar wind to the particles which produce auroral arcs. In the present investigation, the first observations of electric fields during neutral sheet crossings are presented, taking into account the statistical correlations of the interplanetary magnetic field direction and ground activity with the character of the electric field. The electric field data used in the study were obtained from a double probe experiment on the ISEE-1 satellite. The observations suggest that turbulent electric and magnetic fields are intimately related to plasma acceleration in the neutral sheet and to the processes which create auroral particles.

  8. 46 CFR 129.370 - Equipment grounding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Equipment grounding. 129.370 Section 129.370 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.370 Equipment grounding. (a) On a metallic vessel...

  9. 46 CFR 129.370 - Equipment grounding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Equipment grounding. 129.370 Section 129.370 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.370 Equipment grounding. (a) On a metallic vessel...

  10. 46 CFR 129.370 - Equipment grounding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Equipment grounding. 129.370 Section 129.370 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.370 Equipment grounding. (a) On a metallic vessel...

  11. Safety of High Speed Guided Ground Transportation Systems. Broadband Magnetic Fields : Their Possible Role in EMF Associated Bioeffects

    DOT National Transportation Integrated Search

    1993-08-01

    This report reviews electric and magnetic field (EMF) exposures from electrical transportation systems, including : electrically powered rail and magnetic levitation (maglev). Material also covered includes research concerning : biological effects of...

  12. Influence of strike object grounding on close lightning electric fields

    NASA Astrophysics Data System (ADS)

    Baba, Yoshihiro; Rakov, Vladimir A.

    2008-06-01

    Using the finite difference time domain (FDTD) method, we have calculated vertical electric field Ez, horizontal (radial) electric field Eh, and azimuthal magnetic field Hϕ produced on the ground surface by lightning strikes to 160-m- and a 553-m-high conical strike objects representing the Peissenberg tower (Germany) and the CN Tower (Canada), respectively. The fields were computed for a typical subsequent stroke at distances d' from the bottom of the object ranging from 5 to 100 m for the 160-m tower and from 10 to 300 m for the 553-m tower. Grounding of the 160-m object was assumed to be accomplished by its underground basement represented by a 10-m-radius and 8-m-long perfectly conducting cylinder with or without a reference ground plane located 2 m below. The reference ground plane simulates, to some extent, a higher-conducting ground layer that is expected to exist below the water table. The configuration without reference ground plane actually means that this plane is present, but is located at an infinitely large depth. Grounding of the 553-m object was modeled in a similar manner but in the absence of reference ground plane only. In all cases considered, waveforms of Eh and Hϕ are not much influenced by the presence of strike object, while waveforms of Ez are. Waveforms of Ez are essentially unipolar (as they are in the absence of strike object) when the ground conductivity σ is 10 mS/m (the equivalent transient grounding impedance is several ohms) or greater. Thus, for the CN Tower, for which σ ≥ 10 mS/m, the occurrence of Ez polarity change is highly unlikely. For the 160-m tower and for σ = 1 and 0.1 mS/m, waveforms of Ez become bipolar (exhibit polarity change) at d' ≤ 10 m and d' ≤ 50 m, respectively, regardless of the presence of the reference ground plane. The corresponding equivalent transient grounding impedances are about 30 and 50 Ω in the absence of the reference ground plane and smaller than 10 Ω in the presence of the reference ground plane. The source of opposite polarity Ez is the potential rise at the object base (at the air/ground interface) relative to the reference ground plane. For a given grounding electrode geometry, the strength of this source increases with decreasing σ, provided that the grounding impedance is linear. Potential rises at the strike object base for σ = 1 and 0.1 mS/m are some hundreds of kilovolts, which is sufficient to produce electrical breakdown from relatively sharp edges of the basement over a distance of several meters (or more) along the ground surface. The resultant ground surface arcs will serve to reduce the equivalent grounding impedance and, hence, potential rise. Therefore, the polarity change of Ez near the Peissenberg tower, for which σ is probably about 1 mS/m, should be a rare phenomenon, if it occurs at all. The equivalent transient grounding impedance of the cylindrical basement is similar to that of a hemispherical grounding electrode of the same radius. For the 160-m tower and for hemispherical grounding electrode, the transient grounding impedance is higher than its dc grounding resistance for σ = 10 and 1 mS/m, but lower for σ = 0.1 mS/m. For the 553-m tower, the transient grounding impedance of hemispherical electrode is equal to or larger than its dc resistance for all values of σ considered.

  13. Effect of atmospheric electricity on dry deposition of airborne particles from atmosphere

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Kimmel, V.; Israelsson, S.

    The electric mechanism of dry deposition is well known in the case of unattached radon daughter clusters that are unipolar charged and of high mobility. The problematic role of the electric forces in deposition of aerosol particles is theoretically examined by comparing the fluxes of particles carried by different deposition mechanisms in a model situation. The electric mechanism of deposition appears essential for particles of diameter 10-200 nm in conditions of low wind speed. The electric flux of fine particles can be dominant on the tips of leaves and needles even in a moderate atmospheric electric field of a few hundred V m -1 measured over the plane ground surface. The electric deposition is enhanced under thunderclouds and high voltage power lines. Strong wind suppresses the relative role of the electric deposition when compared with aerodynamic deposition. When compared with diffusion deposition the electric deposition appears less uniform: the precipitation particulate matter on the tips of leaves and especially on needles of top branches of conifer trees is much more intensive than on the ground surface and electrically shielded surfaces of plants. The knowledge of deposition geometry could improve our understanding of air pollution damage to plants.

  14. Transfer of electrical space charge from corona between ground and thundercloud: Measurements and modeling

    NASA Technical Reports Server (NTRS)

    Soula, Serge

    1994-01-01

    The evolution of the vertical electric field profile deduced from simultaneous field measurements at several levels below a thundercloud shows the development of a space charge layer at least up to 600 m. The average charge density in the whole layer from 0 m to 600 m can reach about 1 nC m(exp -3). The ions are generated at the ground by corona effect and the production rate is evaluated with a new method from the comparison of field evolutions at the ground and at altitude after a lightning flash. The modeling of the relevant processes shows tht ground corona accounts for the observed field evolutions and that the aerosol particles concentration has a very large effect on the evolution of corona ions. However, with a realistic value for this concentration a large amount of ground corona ions reach the level of 600 m.

  15. 46 CFR 183.370 - General grounding requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false General grounding requirements. 183.370 Section 183.370 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.370 General grounding...

  16. 46 CFR 183.370 - General grounding requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false General grounding requirements. 183.370 Section 183.370 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.370 General grounding...

  17. 30 CFR 75.814 - Electrical protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... protection must not be dependent upon control power and may consist of a current transformer and overcurrent... restarting of the equipment. (b) Current transformers used for the ground-fault protection specified in... series with ground-fault current transformers. (c) Each ground-fault current device specified in...

  18. 30 CFR 75.814 - Electrical protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... protection must not be dependent upon control power and may consist of a current transformer and overcurrent... restarting of the equipment. (b) Current transformers used for the ground-fault protection specified in... series with ground-fault current transformers. (c) Each ground-fault current device specified in...

  19. 30 CFR 75.814 - Electrical protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... protection must not be dependent upon control power and may consist of a current transformer and overcurrent... restarting of the equipment. (b) Current transformers used for the ground-fault protection specified in... series with ground-fault current transformers. (c) Each ground-fault current device specified in...

  20. 30 CFR 75.814 - Electrical protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... protection must not be dependent upon control power and may consist of a current transformer and overcurrent... restarting of the equipment. (b) Current transformers used for the ground-fault protection specified in... series with ground-fault current transformers. (c) Each ground-fault current device specified in...

  1. 30 CFR 75.814 - Electrical protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... protection must not be dependent upon control power and may consist of a current transformer and overcurrent... restarting of the equipment. (b) Current transformers used for the ground-fault protection specified in... series with ground-fault current transformers. (c) Each ground-fault current device specified in...

  2. Using EarthScope magnetotelluric data to improve the resilience of the US power grid: rapid predictions of geomagnetically induced currents

    NASA Astrophysics Data System (ADS)

    Schultz, A.; Bonner, L. R., IV

    2016-12-01

    Existing methods to predict Geomagnetically Induced Currents (GICs) in power grids, such as the North American Electric Reliability Corporation standard adopted by the power industry, require explicit knowledge of the electrical resistivity structure of the crust and mantle to solve for ground level electric fields along transmission lines. The current standard is to apply regional 1-D resistivity models to this problem, which facilitates rapid solution of the governing equations. The systematic mapping of continental resistivity structure from projects such as EarthScope reveals several orders of magnitude of lateral variations in resistivity on local, regional and continental scales, resulting in electric field intensifications relative to existing 1-D solutions that can impact GICs to first order. The computational burden on the ground resistivity/GIC problem of coupled 3-D solutions inhibits the prediction of GICs in a timeframe useful to protecting power grids. In this work we reduce the problem to applying a set of filters, recognizing that the magnetotelluric impedance tensors implicitly contain all known information about the resistivity structure beneath a given site, and thus provides the required relationship between electric and magnetic fields at each site. We project real-time magnetic field data from distant magnetic observatories through a robustly calculated multivariate transfer function to locations where magnetotelluric impedance tensors had previously been obtained. This provides a real-time prediction of the magnetic field at each of those points. We then project the predicted magnetic fields through the impedance tensors to obtain predictions of electric fields induced at ground level. Thus, electric field predictions can be generated in real-time for an entire array from real-time observatory data, then interpolated onto points representing a power transmission line contained within the array to produce a combined electric field prediction necessary for GIC prediction along that line. This method produces more accurate predictions of ground electric fields in conductively heterogeneous areas that are not limited by distance from the nearest observatory, while still retaining comparable computational speeds as existing methods.

  3. A study of severe storm electricity via storm intercept

    NASA Technical Reports Server (NTRS)

    Arnold, Roy T.; Horsburgh, Steven D.; Rust, W. David; Burgess, Don

    1985-01-01

    Storm electricity data, radar data, and visual observations were used both to present a case study for a supercell thunderstorm that occurred in the Texas Panhandle on 19 June 1980 and to search for insight into how lightning to ground might be related to storm dynamics in the updraft/downdraft couplet in supercell storms. It was observed that two-thirds of the lightning ground-strike points in the developing and maturing stages of a supercell thunderstorm occurred within the region surrounding the wall cloud (a cloud feature often characteristic of a supercell updraft) and on the southern flank of the precipitation. Electrical activity in the 19 June 1980 storm was atypical in that it was a right-mover. Lightning to ground reached a peak rate of 18/min and intracloud flashes were as frequent as 176/min in the final stages of the storm's life.

  4. Characterization of Vacuum Facility Background Gas Through Simulation and Considerations for Electric Propulsion Ground Testing

    NASA Technical Reports Server (NTRS)

    Yim, John T.; Burt, Jonathan M.

    2015-01-01

    The background gas in a vacuum facility for electric propulsion ground testing is examined in detail through a series of cold flow simulations using a direct simulation Monte Carlo (DSMC) code. The focus here is on the background gas itself, its structure and characteristics, rather than assessing its interaction and impact on thruster operation. The background gas, which is often incorrectly characterized as uniform, is found to have a notable velocity within a test facility. The gas velocity has an impact on the proper measurement of pressure and the calculation of ingestion flux to a thruster. There are also considerations for best practices for tests that involve the introduction of supplemental gas flows to artificially increase the background pressure. All of these effects need to be accounted for to properly characterize the operation of electric propulsion thrusters across different ground test vacuum facilities.

  5. Development and performance characterization of an electric ground vehicle with independently actuated in-wheel motors

    NASA Astrophysics Data System (ADS)

    Wang, Rongrong; Chen, Yan; Feng, Daiwei; Huang, Xiaoyu; Wang, Junmin

    This paper presents the development and experimental characterizations of a prototyping pure electric ground vehicle, which is equipped with four independently actuated in-wheel motors (FIAIWM) and is powered by a 72 V 200 Ah LiFeYPO 4 battery pack. Such an electric ground vehicle (EGV) employs four in-wheel (or hub) motors to independently drive/brake the four wheels and is one of the promising vehicle architectures primarily due to its actuation flexibility, energy efficiency, and performance potentials. Experimental data obtained from the EGV chassis dynamometer tests were employed to generate the in-wheel motor torque response and power efficiency maps in both driving and regenerative braking modes. A torque distribution method is proposed to show the potentials of optimizing the FIAIWM EGV operational energy efficiency by utilizing the actuation flexibility and the characterized in-wheel motor efficiency and torque response.

  6. Simulation study on transient electric shock characteristics of human body under high voltage ac transmission lines

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Zou, Yanhui; Lv, Jianhong; Yang, Jinchun; Tao, Li; Zhou, Jianfei

    2017-09-01

    Human body under high-voltage AC transmission lines will produce a certain induced voltage due to the electrostatic induction. When the human body contacts with some grounded objects, the charges transfer from the body to the ground and produce contact current which may cause transient electric shock. Using CDEGS and ATP/EMTP, the paper proposes a method for quantitatively calculating the transient electric shock characteristics. It calculates the human body voltage, discharge current and discharge energy under certain 500kV compact-type transmission lines and predicts the corresponding human feelings. The results show that the average root value of discharge current is less than 10mA when the human body is under the 500kV compact-type transmission lines and the human body is overall safe if the transmission lines satisfy the relevant design specifications. It concludes that the electric field strength above the ground should be limited to 4kV/m through the residential area for the purpose of reducing the electromagnetic impact.

  7. 30 CFR 75.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conduits enclosing power conductors. 75.700 Section 75.700 Mineral Resources MINE SAFETY AND HEALTH... Grounding § 75.700 Grounding metallic sheaths, armors, and conduits enclosing power conductors. [Statutory Provisions] All metallic sheaths, armors, and conduits enclosing power conductors shall be electrically...

  8. 30 CFR 75.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conduits enclosing power conductors. 75.700 Section 75.700 Mineral Resources MINE SAFETY AND HEALTH... Grounding § 75.700 Grounding metallic sheaths, armors, and conduits enclosing power conductors. [Statutory Provisions] All metallic sheaths, armors, and conduits enclosing power conductors shall be electrically...

  9. 30 CFR 75.824 - Electrical protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transformer and over-current relay in the neutral grounding resistor circuit. (vi) A single window-type current transformer that encircles all three-phase conductors must be used to activate the ground-fault... current transformer. (vii) A test circuit for the ground-fault device must be provided. The test circuit...

  10. 30 CFR 75.824 - Electrical protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... transformer and over-current relay in the neutral grounding resistor circuit. (vi) A single window-type current transformer that encircles all three-phase conductors must be used to activate the ground-fault... current transformer. (vii) A test circuit for the ground-fault device must be provided. The test circuit...

  11. 30 CFR 75.824 - Electrical protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... transformer and over-current relay in the neutral grounding resistor circuit. (vi) A single window-type current transformer that encircles all three-phase conductors must be used to activate the ground-fault... current transformer. (vii) A test circuit for the ground-fault device must be provided. The test circuit...

  12. 30 CFR 75.824 - Electrical protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... transformer and over-current relay in the neutral grounding resistor circuit. (vi) A single window-type current transformer that encircles all three-phase conductors must be used to activate the ground-fault... current transformer. (vii) A test circuit for the ground-fault device must be provided. The test circuit...

  13. 30 CFR 75.824 - Electrical protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... transformer and over-current relay in the neutral grounding resistor circuit. (vi) A single window-type current transformer that encircles all three-phase conductors must be used to activate the ground-fault... current transformer. (vii) A test circuit for the ground-fault device must be provided. The test circuit...

  14. Heisenberg spin-1/2 XXZ chain in the presence of electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Thakur, Pradeep; Durganandini, P.

    2018-02-01

    We study the interplay of electric and magnetic order in the one-dimensional Heisenberg spin-1/2 XXZ chain with large Ising anisotropy in the presence of the Dzyaloshinskii-Moriya (DM) interaction and with longitudinal and transverse magnetic fields, interpreting the DM interaction as a coupling between the local electric polarization and an external electric field. We obtain the ground state phase diagram using the density matrix renormalization group method and compute various ground state quantities like the magnetization, staggered magnetization, electric polarization and spin correlation functions, etc. In the presence of both longitudinal and transverse magnetic fields, there are three different phases corresponding to a gapped Néel phase with antiferromagnetic (AF) order, gapped saturated phase, and a critical incommensurate gapless phase. The external electric field modifies the phase boundaries but does not lead to any new phases. Both external magnetic fields and electric fields can be used to tune between the phases. We also show that the transverse magnetic field induces a vector chiral order in the Néel phase (even in the absence of an electric field) which can be interpreted as an electric polarization in a direction parallel to the AF order.

  15. Cost Benefit Analysis Modeling Tool for Electric vs. ICE Airport Ground Support Equipment – Development and Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Francfort; Kevin Morrow; Dimitri Hochard

    2007-02-01

    This report documents efforts to develop a computer tool for modeling the economic payback for comparative airport ground support equipment (GSE) that are propelled by either electric motors or gasoline and diesel engines. The types of GSE modeled are pushback tractors, baggage tractors, and belt loaders. The GSE modeling tool includes an emissions module that estimates the amount of tailpipe emissions saved by replacing internal combustion engine GSE with electric GSE. This report contains modeling assumptions, methodology, a user’s manual, and modeling results. The model was developed based on the operations of two airlines at four United States airports.

  16. Electrical measurements in the atmosphere and the Ionosphere over an active thunderstorm. II - Direct current electric fields and conductivity

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; Kelley, M. C.; Siefring, C. L.; Hale, L. C.; Mitchell, J. D.

    1985-01-01

    On August 9, 1981, a series of three rockets was launched over an air mass thunderstorm off the eastern seaboard of Virginia while simultaneous stratospheric and ground-based electric field measurements were made. The conductivity was substantially lower at most altitudes than the conductivity profiles used by theoretical models. Direct current electric fields over 80 mV/m were measured as far away as 96 km from the storm in the stratosphere at 23 km altitude. No dc electric fields above 75 km altitude could be identified with the thunderstorm, in agreement with theory. However, vertical current densities over 120 pA/sq m were seen well above the classical 'electrosphere' (at 50 or 60 km). Frequent dc shifts in the electric field following lightning transients were seen by both balloon and rocket payloads. These dc shifts are clearly identifiable with either cloud-to-ground (increases) or intercloud (decreases) lightning flashes.

  17. Spacelab payload accommodation handbook. Appendix A: Avionics interface definition

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Spacelab side of the electrical interface between Spacelab subsystem equipment and experiments is presented. The electrical hardware which interfaces with the experiments is defined and the signal/load characteristics are stated. Major subsystems considered include: electrical power and distribution; command and data management subsystem; orbiter avionics via dedicated connectors of Spacelab; and electrical ground support equipment.

  18. Structural Composite Supercapacitors: Electrical and Mechanical Impact of Separators and Processing Conditions

    DTIC Science & Technology

    2013-09-01

    Structural Composite Supercapacitors : Electrical and Mechanical Impact of Separators and Processing Conditions by Edwin B. Gienger, James F...Proving Ground, MD 21005-5066 ARL-TR-6624 September 2013 Structural Composite Supercapacitors : Electrical and Mechanical Impact of...2012 4. TITLE AND SUBTITLE Structural Composite Supercapacitors : Electrical and Mechanical Impact of Separators and Processing Conditions 5a

  19. 24 CFR 3280.809 - Grounding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... connected to the grounding bus in the distribution panelboard or disconnecting means. (2) In the electrical.... Neither the frame of the manufactured home nor the frame of any appliance shall be connected to the... the ground bus may be connected in the distribution panel. (2) Connection of ranges and clothes dryers...

  20. Lightning vulnerability of fiber-optic cables.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Leonard E.; Caldwell, Michele

    2008-06-01

    One reason to use optical fibers to transmit data is for isolation from unintended electrical energy. Using fiber optics in an application where the fiber cable/system penetrates the aperture of a grounded enclosure serves two purposes: first, it allows for control signals to be transmitted where they are required, and second, the insulating properties of the fiber system help to electrically isolate the fiber terminations on the inside of the grounded enclosure. A fundamental question is whether fiber optic cables can allow electrical energy to pass through a grounded enclosure, with a lightning strike representing an extreme but very importantmore » case. A DC test bed capable of producing voltages up to 200 kV was used to characterize electrical properties of a variety of fiber optic cable samples. Leakage current in the samples were measured with a micro-Ammeter. In addition to the leakage current measurements, samples were also tested to DC voltage breakdown. After the fiber optic cables samples were tested with DC methods, they were tested under representative lightning conditions at the Sandia Lightning Simulator (SLS). Simulated lightning currents of 30 kA and 200 kA were selected for this test series. This paper documents measurement methods and test results for DC high voltage and simulated lightning tests performed at the Sandia Lightning Simulator on fiber optic cables. The tests performed at the SLS evaluated whether electrical energy can be conducted inside or along the surface of a fiber optic cable into a grounded enclosure under representative lightning conditions.« less

  1. Analytical transition-matrix treatment of electric multipole polarizabilities of hydrogen-like atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharchenko, V.F., E-mail: vkharchenko@bitp.kiev.ua

    2015-04-15

    The direct transition-matrix approach to the description of the electric polarization of the quantum bound system of particles is used to determine the electric multipole polarizabilities of the hydrogen-like atoms. It is shown that in the case of the bound system formed by the Coulomb interaction the corresponding inhomogeneous integral equation determining an off-shell scattering function, which consistently describes virtual multiple scattering, can be solved exactly analytically for all electric multipole polarizabilities. Our method allows to reproduce the known Dalgarno–Lewis formula for electric multipole polarizabilities of the hydrogen atom in the ground state and can also be applied to determinemore » the polarizability of the atom in excited bound states. - Highlights: • A new description for electric polarization of hydrogen-like atoms. • Expression for multipole polarizabilities in terms of off-shell scattering functions. • Derivation of integral equation determining the off-shell scattering function. • Rigorous analytic solving the integral equations both for ground and excited states. • Study of contributions of virtual multiple scattering to electric polarizabilities.« less

  2. Influence of an external electric field on the potential-energy surface of alkali-metal-decorated C60

    NASA Astrophysics Data System (ADS)

    De, Deb Sankar; Saha, Santanu; Genovese, Luigi; Goedecker, Stefan

    2018-06-01

    We present a fully ab initio, unbiased structure search of the configurational space of decorated C60 fullerenes in the presence of an electric field. We observed that the potential-energy surface is significantly perturbed by an external electric field and that the energetic ordering of low-energy isomers differs with and without electric field. We identify the energetically lowest configuration for a varying number of decorating atoms (1 ≤n ≤12 ) for Li and (1 ≤n ≤6 ) for K on the C60 surface at different electric-field strengths. Using the correct geometric ground state in the electric field for the calculation of the dipole we obtain better agreement with the experimentally measured values than previous calculations based on the ground state in absence of an electric field. Since the lowest-energy structures are typically nearly degenerate in energy, a combination of different structures is expected to be found at room temperature. The experimentally measured dipole is therefore also expected to contain significant contributions from several low-energy structures.

  3. In-situ electric field in human body model in different postures for wireless power transfer system in an electrical vehicle.

    PubMed

    Shimamoto, Takuya; Laakso, Ilkka; Hirata, Akimasa

    2015-01-07

    The in-situ electric field of an adult male model in different postures is evaluated for exposure to the magnetic field leaked from a wireless power transfer system in an electrical vehicle. The transfer system is located below the centre of the vehicle body and the transferred power and frequency are 7 kW and 85 kHz, respectively. The in-situ electric field is evaluated for a human model (i) crouching near the vehicle, (ii) lying on the ground with or without his arm stretched, (iii) sitting in the driver's seat, and (iv) standing on a transmitting coil without a receiving coil. In each scenario, the maximum in-situ electric fields are lower than the allowable limit prescribed by international guidelines, although the local magnetic field strength in regions of the human body is higher than the allowable external magnetic field strength. The highest in-situ electric field is observed when the human body model is placed on the ground with his arm extended toward the coils, because of a higher magnetic field around the arm.

  4. Hy-wire and fast electric field change measurements near an isolated thunderstorm, appendix C

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; Levine, D. M.

    1983-01-01

    Electric field measurements near an isolated thunderstorm at 6.4 km distance are presented from both a tethered balloon experiment called Hy-wire and also from ground based fast and slow electric field change systems. Simultaneous measurements were made of the electric fields during several lightning flashes at the beginning of the storm which the data clearly indicate were cloud-to-ground flashes. In addition to providing a comparison between the Hy-wire technique for measuring electric fields and more traditional methods, these data are interesting because the lightning flashes occurred prior to changes in the dc electric field, although Hy-wire measured changes in the dc field of up to 750 V/m in the direction opposite to the fair weather field a short time later. Also, the dc electric field was observed to decay back to its preflash value after each flash. The data suggest that Hy-wire was at the field reversal distance from this storm and suggest the charge realignment was taking place in the cloud with a time constant on the order of 20 seconds.

  5. Excited-state dynamics of acetylene excited to individual rotational level of the V04K01 subband

    NASA Astrophysics Data System (ADS)

    Makarov, Vladimir I.; Kochubei, Sergei A.; Khmelinskii, Igor V.

    2006-01-01

    Dynamics of the IR emission induced by excitation of the acetylene molecule using the (32Ka0,1,2,ÃAu1←41la1,X˜Σg+1) transition was investigated. The observed IR emission was assigned to transitions between the ground-state vibrational levels. Acetylene fluorescence quenching induced by external electric and magnetic fields acting upon the system prepared using the (34Ka1,ÃAu1←00la0,X˜Σg+1) excitation was also studied. External electric field creates an additional radiationless pathway to the ground-state levels, coupling levels of the ÃAu1 excited state to the quasiresonant levels of the X˜Σg+1 ground state. The level density of the ground state in the vicinity of the excited state is very high, thus the electric-field-induced transition is irreversible, with the rate constant described by the Fermi rule. Magnetic field alters the decay profile without changing the fluorescence quantum yield in collisionless conditions. IR emission from the CCH transient was detected, and was also affected by the external electric and magnetic fields. Acetylene predissociation was demonstrated to proceed by the direct S1→S0 mechanism. The results were explained using the previously developed theoretical approach, yielding values of the relevant model parameters.

  6. Reliability Improvement of Ground Fault Protection System Using an S-Type Horn Attachment Gap in AC Feeding System

    NASA Astrophysics Data System (ADS)

    Ajiki, Kohji; Morimoto, Hiroaki; Shimokawa, Fumiyuki; Sakai, Shinya; Sasaki, Kazuomi; Sato, Ryogo

    Contact wires used in feeding system for electric railroad are insulated by insulators. However, insulation of an insulator sometimes breaks down by surface dirt of an insulator and contact with a bird. The insulator breakdown derives a ground fault in feeding system. Ground fault will cause a human electric shock and a destruction of low voltage electric equipment. In order to prevent the damage by ground fault, an S-type horn has been applicable as equipped on insulators of negative feeder and protective wire until present. However, a concrete pole breaks down at the time of the ground fault because a spark-over voltage of the S-type horn is higher than a breakdown voltage of a concrete pole. Farther, the S-type horn installed in the steel tube pole does not discharge a case, because the earth resistance of a steel tube pole is very small. We assumed that we could solve these troubles by changing the power frequency spark-over voltage of the S-type horn from 12kV to 3kV. Accordingly, we developed an attachment gap that should be used to change the power frequency spark-over voltage of the S-type horn from 12kV to 3kV. The attachment gap consists of a gas gap arrester and a zinc oxide element. By the dynamic current test and the artificial ground fault test, we confirmed that the attachment gap in the S-type horn could prevent a trouble at the time of the ground fault.

  7. Evaluation of the Atmospheric Boundary-Layer Electrical Variability

    NASA Astrophysics Data System (ADS)

    Anisimov, Sergey V.; Galichenko, Sergey V.; Aphinogenov, Konstantin V.; Prokhorchuk, Aleksandr A.

    2017-12-01

    Due to the chaotic motion of charged particles carried by turbulent eddies, electrical quantities in the atmospheric boundary layer (ABL) have short-term variability superimposed on long-term variability caused by sources from regional to global scales. In this study the influence of radon exhalation rate, aerosol distribution and turbulent transport efficiency on the variability of fair-weather atmospheric electricity is investigated via Lagrangian stochastic modelling. For the mid-latitude lower atmosphere undisturbed by precipitation, electrified clouds, or thunderstorms, the model is capable of reproducing the diurnal variation in atmospheric electrical parameters detected by ground-based measurements. Based on the analysis of field observations and numerical simulation it is found that the development of the convective boundary layer, accompanied by an increase in turbulent kinetic energy, forms the vertical distribution of radon and its decaying short-lived daughters to be approximately coincident with the barometric law for several eddy turnover times. In the daytime ABL the vertical distribution of atmospheric electrical conductivity tends to be uniform except within the surface layer, due to convective mixing of radon and its radioactive decay products. At the same time, a decrease in the conductivity near the ground is usually observed. This effect leads to an enhanced ground-level atmospheric electric field compared to that normally observed in the nocturnal stably-stratified boundary layer. The simulation showed that the variability of atmospheric electric field in the ABL associated with internal origins is significant in comparison to the variability related to changes in global parameters. It is suggested that vertical profiles of electrical quantities can serve as informative parameters on ABL turbulent dynamics and can even more broadly characterize the state of the environment.

  8. Kennedy Space Center: Constellation Program Electrical Ground Support Equipment Research and Development

    NASA Technical Reports Server (NTRS)

    McCoy, Keegan

    2010-01-01

    The Kennedy Space Center (KSC) is NASA's spaceport, launching rockets into space and leading important human spaceflight research. This spring semester, I worked at KSC on Constellation Program electrical ground support equipment through NASA's Undergraduate Student Research Program (USRP). This report includes a discussion of NASA, KSC, and my individual research project. An analysis of Penn State's preparation of me for an internship and my overall impressions of the Penn State and NASA internship experience conclude the report.

  9. Qualification test results for DOE solar photovoltaic flat panel procurement - PRDA 38

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1980-01-01

    Twelve types of prototypes modules for the DOE Photovoltaic Flat Panel Procurement (PRDA 38) were subjected to qualification tests at the Jet Propulsion Laboratory according to a new specification. Environmental exposures were carried out separately and included temperature cycling, humidity, wind simulation, and hail. The most serious problems discovered were reduced insulation resistance to ground and ground continuity of the metal frames, electrical degradation, erratic power readings, and delamination. The electrical and physical characteristics of the newly received modules are also given.

  10. Macrocognition in Teams and Analysis of Information Flow During the Haiti Disaster Relief

    DTIC Science & Technology

    2011-06-01

    supplies, clean water and electricity. TIE TIE TIE Local soccer field is now a safe landing ground for helicopters. TIE TIE TIE Five flights have...TIE TIE OR’s adequate medical supplies, clean water and electricity (generator) TIE TIE TIE Local soccer field is landing pad. TIE TIE TIE 5... soccer /helo pad, TIE TIE TIE Have own ambulances for transport. TIE TIE TIE 62 Contact: "NAME" (Ground Coordinator) Haiti cell "PHONE", "E

  11. Electric fields preceding cloud-to-ground lightning flashes

    NASA Astrophysics Data System (ADS)

    Beasley, W.; Uman, M. A.; Rustan, P. L., Jr.

    1982-06-01

    A detailed analysis is presented of the electric-field variations preceding the first return strokes of 80 cloud-to-ground lightning flashes in nine different storms observed at the NASA Kennedy Space Center during the summers of 1976 and 1977. It is suggested that the electric-field variations can best be characterized as having two sections: preliminary variations and stepped leader. The stepped-leader change begins during a transition period of a few milliseconds marked by characteristic bipolar pulses; the duration of stepped leaders lies most frequently in the 6-20 millisecond range. It is also suggested that there is only one type of stepped leader, not two types (alpha and beta) often referred to in the literature.

  12. Estimation of electric fields and current from ground-based magnetometer data

    NASA Technical Reports Server (NTRS)

    Kamide, Y.; Richmond, A. D.

    1984-01-01

    Recent advances in numerical algorithms for estimating ionospheric electric fields and currents from groundbased magnetometer data are reviewed and evaluated. Tests of the adequacy of one such algorithm in reproducing large-scale patterns of electrodynamic parameters in the high-latitude ionosphere have yielded generally positive results, at least for some simple cases. Some encouraging advances in producing realistic conductivity models, which are a critical input, are pointed out. When the algorithms are applied to extensive data sets, such as the ones from meridian chain magnetometer networks during the IMS, together with refined conductivity models, unique information on instantaneous electric field and current patterns can be obtained. Examples of electric potentials, ionospheric currents, field-aligned currents, and Joule heating distributions derived from ground magnetic data are presented. Possible directions for future improvements are also pointed out.

  13. Lightning studies using LDAR and LLP data

    NASA Technical Reports Server (NTRS)

    Forbes, Gregory S.

    1993-01-01

    This study intercompared lightning data from LDAR and LLP systems in order to learn more about the spatial relationships between thunderstorm electrical discharges aloft and lightning strikes to the surface. The ultimate goal of the study is to provide information that can be used to improve the process of real-time detection and warning of lightning by weather forecasters who issue lightning advisories. The Lightning Detection and Ranging (LDAR) System provides data on electrical discharges from thunderstorms that includes cloud-ground flashes as well as lightning aloft (within cloud, cloud-to-cloud, and sometimes emanating from cloud to clear air outside or above cloud). The Lightning Location and Protection (LLP) system detects primarily ground strikes from lightning. Thunderstorms typically produce LDAR signals aloft prior to the first ground strike, so that knowledge of preferred positions of ground strikes relative to the LDAR data pattern from a thunderstorm could allow advance estimates of enhanced ground strike threat. Studies described in the report examine the position of LLP-detected ground strikes relative to the LDAR data pattern from the thunderstorms. The report also describes other potential approaches to the use of LDAR data in the detection and forecasting of lightning ground strikes.

  14. Conduction of Electrical Current to and Through the Human Body: A Review

    PubMed Central

    Fish, Raymond M.; Geddes, Leslie A.

    2009-01-01

    Objective: The objective of this article is to explain ways in which electric current is conducted to and through the human body and how this influences the nature of injuries. Methods: This multidisciplinary topic is explained by first reviewing electrical and pathophysiological principles. There are discussions of how electric current is conducted through the body via air, water, earth, and man-made conductive materials. There are also discussions of skin resistance (impedance), internal body resistance, current path through the body, the let-go phenomenon, skin breakdown, electrical stimulation of skeletal muscles and nerves, cardiac dysrhythmias and arrest, and electric shock drowning. After the review of basic principles, a number of clinically relevant examples of accident mechanisms and their medical effects are discussed. Topics related to high-voltage burns include ground faults, ground potential gradient, step and touch potentials, arcs, and lightning. Results: The practicing physician will have a better understanding of electrical mechanisms of injury and their expected clinical effects. Conclusions: There are a variety of types of electrical contact, each with important characteristics. Understanding how electric current reaches and travels through the body can help the clinician understand how and why specific accidents occur and what medical and surgical problems may be expected. PMID:19907637

  15. Radioactive contamination processes during 14-21 March after the Fukushima accident: What does atmospheric electric field measurements tell us?

    NASA Astrophysics Data System (ADS)

    Takeda, M.; Yamauchi, M.; Makino, M.; Owada, T.; Miyagi, I.

    2012-04-01

    Ionizing radiation from the radioactive material is known to increase atmospheric electric conductivity, and hence to decrease vertical downward atmospheric DC electric field at ground level, or potential gradient (PG). In the past, the drop of PG has been observed after rain-induced radioactive fallout (wet contamination) after nuclear tests or after the Chernobyl disaster. After the nuclear accident Fukushima Dai-ichi nuclear power plant (FNPP) that started 11 March 2011, the PG also at Kakioka, 150 km southwest from the FNPP, also dropped a by one order of magnitude. Unlike the past examples, the PG drop was two-stepped on 14 March and 20 March. Both correspond to two largest southward release of radioactive material according to the data from the radiation dose rate measurement network. We compare the Kakioka's PG data with the radiation dose rate data at different places to examine the fallout processes of both on 14 March and on 20 March. The former turned out to be dry contamination by surface wind, leaving a substantial amount of fallout floating near the ground. The latter turned out to be wet contamination by rain after transport by relatively low-altitude wind, and the majority of the fallout settled to the ground at this time. It is recommended that all nuclear power plant to have a network of PG observation surrounding the plant. Takeda, et al. (2011): Initial effect of the Fukushima accident on atmospheric electricity, Geophys. Res. Lett., 38, L15811, doi:10.1029/2011GL048511. Yamauchi, et al. (2012): Settlement process of radioactive dust to the ground inferred from the atmospheric electric field measurement, Ann. Geophys., 30, 49-56, doi:10.5194/angeo-30-49-2012.

  16. 46 CFR 32.75-15 - Electric bonding and grounding for tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Wood Hull Tank Vessels Constructed Prior... cargo tanks in wood hull tank vessels shall be electrically bonded together with stranded copper cable...

  17. 46 CFR 32.75-15 - Electric bonding and grounding for tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Wood Hull Tank Vessels Constructed Prior... cargo tanks in wood hull tank vessels shall be electrically bonded together with stranded copper cable...

  18. 21 CFR 884.4160 - Unipolar endoscopic coagulator-cutter and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... temperatures by directing a high frequency electrical current through the tissue between an energized probe and... generator, probes and electrical cables, and a patient grounding plate. This generic type of device does not...

  19. 21 CFR 884.4160 - Unipolar endoscopic coagulator-cutter and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... temperatures by directing a high frequency electrical current through the tissue between an energized probe and... generator, probes and electrical cables, and a patient grounding plate. This generic type of device does not...

  20. 21 CFR 884.4160 - Unipolar endoscopic coagulator-cutter and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... temperatures by directing a high frequency electrical current through the tissue between an energized probe and... generator, probes and electrical cables, and a patient grounding plate. This generic type of device does not...

  1. 21 CFR 884.4160 - Unipolar endoscopic coagulator-cutter and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... temperatures by directing a high frequency electrical current through the tissue between an energized probe and... generator, probes and electrical cables, and a patient grounding plate. This generic type of device does not...

  2. 21 CFR 884.4160 - Unipolar endoscopic coagulator-cutter and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... temperatures by directing a high frequency electrical current through the tissue between an energized probe and... generator, probes and electrical cables, and a patient grounding plate. This generic type of device does not...

  3. Defining Electric Potential Difference by Moving a Multimeter's Ground Probe

    ERIC Educational Resources Information Center

    Stoeckel, Marta R.

    2018-01-01

    The abstract nature of electric potential difference (voltage) can make it a difficult concept to grasp, but understanding the relative nature of voltage is central to developing a conceptual understanding of electric circuits. In laboratory situations, I see these conceptual difficulties manifest when students have difficulty placing voltmeter…

  4. Emulation of Forward-looking Radar Technology for Threat Detection in Rough Terrain Environments: A Scattering and Imaging Study

    DTIC Science & Technology

    2012-12-01

    a) Ground with flat surface; (b) Ground with randomly rough surface, hrms =1.2 cm, lc=14.93 cm; (c) Ground with randomly rough surface, hrms =1.6 cm...horizontal-horizontal (hh)-polarized images for 20 m×10 m scene: (a) Ground with flat surface; (b) Ground with randomly rough surface, hrms =1.2 cm...lc=14.93 cm; (c) Ground with randomly rough surface, hrms =1.6 cm, lc=14.93 cm. Ground electrical properties: εr=6, σd=10 mS/m. Frequency span: 0.3

  5. Constellation Program Electrical Ground Support Equipment Research and Development

    NASA Technical Reports Server (NTRS)

    McCoy, Keegan S.

    2010-01-01

    At the Kennedy Space Center, I engaged in the research and development of electrical ground support equipment for NASA's Constellation Program. Timing characteristics playa crucial role in ground support communications. Latency and jitter are two problems that must be understood so that communications are timely and consistent within the Kennedy Ground Control System (KGCS). I conducted latency and jitter tests using Alien-Bradley programmable logic controllers (PLCs) so that these two intrinsic network properties can be reduced. Time stamping and clock synchronization also play significant roles in launch processing and operations. Using RSLogix 5000 project files and Wireshark network protocol analyzing software, I verified master/slave PLC Ethernet module clock synchronization, master/slave IEEE 1588 communications, and time stamping capabilities. All of the timing and synchronization test results are useful in assessing the current KGCS operational level and determining improvements for the future.

  6. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T.

    2008-10-21

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  7. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T [Albuquerque, NM

    2008-03-18

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  8. Hybrid Vehicles

    DTIC Science & Technology

    2008-12-08

    chassis) by a ground strap, wire, welded connection or other suitable low-resistance mechanical connection. Case ground connectors routed from other...environment of a hybrid electric vehicle. Alternative temperature measuring transducers, e.g., thermistors , should be considered when thermocouples are...A 3. Is the ground connection to the chassis or frame mechanically secured by one of the following methods? a. Secured to a spot- welded

  9. Application of urban neighborhoods in understanding of local level electricity consumption patterns

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, P. K.; Bhaduri, B. L.

    2017-12-01

    Aggregated national or regional level electricity consumption data fail to capture the spatial variation in consumption, a function of location, climate, topography, and local economics. Spatial monitoring of electricity usage patterns helps to understand derivers of location specific consumption behavior and develop models to cater to the consumer needs, plan efficiency measures, identify settled areas lacking access, and allows for future planning through assessing requirements. Developed countries have started to deploy sensor systems such as smart meters to gather information on local level consumption patterns, but such infrastructure is virtually nonexistent in developing nations, resulting in serious dearth of reliable data for planners and policy makers. Remote sensing of artificial nighttime lights from human settlements have proven useful to study electricity consumptions from global to regional scales, however, local level studies remain scarce. Using the differences in spatial characteristics among different urban neighborhoods such as industrial, commercial and residential, observable through very high resolution day time satellite images (<0.5 meter), formal urban neighborhoods have been generated through texture analysis. In this study, we explore the applicability of these urban neighborhoods in understanding local level electricity consumption patterns through exploring possible correlations between the spatial characteristics of these neighborhoods, associated general economic activities, and corresponding VIIRS day-night band (DNB) nighttime lights observations, which we use as a proxy for electricity consumption in the absence of ground level consumption data. The overall trends observed through this analysis provides useful explanations helping in understanding of broad electricity consumption patterns in urban areas lacking ground level observations. This study thus highlights possible application of remote sensing data driven methods in providing novel insights into local level socio-economic patterns that were hitherto undetected due to lack of ground data.

  10. Grounding electrode and method of reducing the electrical resistance of soils

    DOEpatents

    Koehmstedt, Paul L.

    1980-01-01

    A first solution of an electrolyte is injected underground into a volume of soil having negative surface charges on its particles. A cationic surfactant suspended in this solution neutralizes these surface charges of the soil particles within the volume. Following the first solution, a cationic asphalt emulsion suspended in a second solution is injected into the volume. The asphalt emulsion diffuses through the volume and electrostatically bonds with additional soil surrounding the volume such that an electrically conductive water repellant shell enclosing the volume is formed. This shell prevents the leaching of electrolyte from the volume into the additional soil. The second solution also contains a dissolved deliquescent salt which draws water into the volume prior to the formation of the shell. When electrically connected to an electrical installation such as a power line tower, the volume constitutes a grounding electrode for the tower.

  11. Atmospheric electricity. [lightning protection criteria in spacecraft design

    NASA Technical Reports Server (NTRS)

    Daniels, G. E.

    1973-01-01

    Atmospheric electricity must be considered in the design, transportation, and operation of aerospace vehicles. The effect of the atmosphere as an insulator and conductor of high voltage electricity, at various atmospheric pressures, must also be considered. The vehicle can be protected as follows: (1) By insuring that all metallic sections are connected by electrical bonding so that the current flow from a lightning stroke is conducted over the skin without any gaps where sparking would occur or current would be carried inside; (2) by protecting buildings and other structures on the ground with a system of lightning rods and wires over the outside to carry the lightning stroke into the ground; (3) by providing a zone of protection for launch complexes; (4) by providing protection devices in critical circuits; (5) by using systems which have no single failure mode; and (6) by appropriate shielding of units sensitive to electromagnetic radiation.

  12. Electric field at the ground in a large tornado

    NASA Astrophysics Data System (ADS)

    Winn, W. P.; Hunyady, S. J.; Aulich, G. D.

    2000-08-01

    A number of observers have reported lightning, diffuse luminosity, or other manifestations of electrical activity in tornadoes. To try to quantify these observations, eight instruments with sensors for electric field and other parameters were placed in front of a large tornado that passed by Allison, Texas, on June 8, 1995. The edge of the tornado vortex passed over two of the instruments and near other instruments. When the two instruments were in the low-pressure region near the edge of the vortex, they indicated electric field amplitudes less than about 3 kV/m, which is low compared with amplitudes of 10 kV/m or greater that are often present below thunderclouds. The thunderstorm produced frequent lightning, but there is no evidence from the measurements or from visual observations of lightning in the vortex. However, there was one interesting electrical effect associated with the tornado: the electric field at the two instruments in the vortex relaxed to zero quickly after lightning flashes, whereas the electric field at nearby instruments outside the vortex did not relax quickly after the same lightning flashes. The most likely cause of the rapid relaxation is shielding of the electric field at the ground by charge induced on soil, leaves, grass, and other debris lofted by the strong winds.

  13. Extreme-UV electrical discharge source

    DOEpatents

    Fornaciari, Neal R.; Nygren, Richard E.; Ulrickson, Michael A.

    2002-01-01

    An extreme ultraviolet and soft x-ray radiation electric capillary discharge source that includes a boron nitride housing defining a capillary bore that is positioned between two electrodes one of which is connected to a source of electric potential can generate a high EUV and soft x-ray radiation flux from the capillary bore outlet with minimal debris. The electrode that is positioned adjacent the capillary bore outlet is typically grounded. Pyrolytic boron nitride, highly oriented pyrolytic boron nitride, and cubic boron nitride are particularly suited. The boron nitride capillary bore can be configured as an insert that is encased in an exterior housing that is constructed of a thermally conductive material. Positioning the ground electrode sufficiently close to the capillary bore outlet also reduces bore erosion.

  14. International Aerospace and Ground Conference on Lightning and Static Electricity (15th) Held in Atlantic City, New Jersey on October 6 - 8, 1992. Addendum

    DTIC Science & Technology

    1992-11-01

    November 1992 1992 INTERNATIONAL AEROSPACE AND GROUND CONFERENCE 6. Perfrming Orgnis.aten Code ON LIGHTNING AND STATIC ELECTRICITY - ADDENDUM 111...October 6-8 1992 Program and the Federal Aviation Administration 14. Sponsoring Agency Code Technical Center ACD-230 15. Supplementary Metes The NICG...area]. The program runs well on an IBM PC or compatible 386 with a math co-processor 387 chip and a VGA monitor. For this study, streamers were added

  15. Lightning electric field measurements which correlate with strikes to the NASA F-106B aircraft, 22 July 1980

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1981-01-01

    Ground-based data collected on lightning monitoring equipment operated by Goddard Space Flight Center at Wallops Island, Virginia, during a storm being monitored by NASA's F-106B, are presented. The slow electric field change data and RF radiation data were collected at the times the lightning monitoring equipment on the aircraft was triggered. The timing of the ground-based events correlate well with events recorded on the aircraft and provide an indication of the type of flash with which the aircraft was involved.

  16. Progress in utilization of a mobile laboratory for making storm electricity measurements

    NASA Technical Reports Server (NTRS)

    Rust, W. David

    1988-01-01

    A mobile atmospheric science laboratory has been used to intercept and track storms on the Great Plains region of the U.S., with the intention of combining the data obtained with those from Doppler and conventional radars, NASA U-2 aircraft overflights, balloon soundings, and fixed-base storm electricity measurements. The mobile lab has proven to be valuable in the gathering of ground truth verifications for the two commercially operated lightning ground-strike locating systems. Data acquisition has recently been expanded by means of mobile ballooning before and during storms.

  17. Laser power conversion system analysis, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The orbit-to-ground laser power conversion system analysis investigated the feasibility and cost effectiveness of converting solar energy into laser energy in space, and transmitting the laser energy to earth for conversion to electrical energy. The analysis included space laser systems with electrical outputs on the ground ranging from 100 to 10,000 MW. The space laser power system was shown to be feasible and a viable alternate to the microwave solar power satellite. The narrow laser beam provides many options and alternatives not attainable with a microwave beam.

  18. Low Power Ground-Based Laser Illumination for Electric Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.; Oleson, Steven R.

    1994-01-01

    A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.

  19. Detailed Inventory of Electric Power Consuming Devices Utilized in Tactical Systems 1

    DTIC Science & Technology

    1992-03-01

    1 Jody Wojciechowski ODCSLOG I Madeline M. Decker DALO-TSE Aberden Proving Ground , MD 21005-5066 Room 1E588, Pentagon Washington, DC 20310-0561...Aberdeen Proving Ground , MD 21005 1400 Wilson Blvd. Arlington, VA 22209 1 Commander US Army Aberdeen Proving Ground I Director ATTN: STEAP-MT-U (GE...Information Center Aberdeen Proving Ground , MD 21005-5071 Cameron Station ATrN: DTIC-FDAC Director Alexandria, VA 22304-6145 US Ballistics Research

  20. Associating ground magnetometer observations with current or voltage generators

    NASA Astrophysics Data System (ADS)

    Hartinger, M. D.; Xu, Z.; Clauer, C. R.; Yu, Y.; Weimer, D. R.; Kim, H.; Pilipenko, V.; Welling, D. T.; Behlke, R.; Willer, A. N.

    2017-07-01

    A circuit analogy for magnetosphere-ionosphere current systems has two extremes for drivers of ionospheric currents: ionospheric electric fields/voltages constant while current/conductivity vary—the "voltage generator"—and current constant while electric field/conductivity vary—the "current generator." Statistical studies of ground magnetometer observations associated with dayside Transient High Latitude Current Systems (THLCS) driven by similar mechanisms find contradictory results using this paradigm: some studies associate THLCS with voltage generators, others with current generators. We argue that most of this contradiction arises from two assumptions used to interpret ground magnetometer observations: (1) measurements made at fixed position relative to the THLCS field-aligned current and (2) negligible auroral precipitation contributions to ionospheric conductivity. We use observations and simulations to illustrate how these two assumptions substantially alter expectations for magnetic perturbations associated with either a current or a voltage generator. Our results demonstrate that before interpreting ground magnetometer observations of THLCS in the context of current/voltage generators, the location of a ground magnetometer station relative to the THLCS field-aligned current and the location of any auroral zone conductivity enhancements need to be taken into account.

  1. Creation of a strongly dipolar gas of ultracold ground-state 23 Na87 Rb molecules

    NASA Astrophysics Data System (ADS)

    Guo, Mingyang; Zhu, Bing; Lu, Bo; Ye, Xin; Wang, Fudong; Wang, Dajun; Vexiau, Romain; Bouloufa-Maafa, Nadia; Quéméner, Goulven; Dulieu, Olivier

    2016-05-01

    We report on successful creation of an ultracold sample of ground-state 23 Na87 Rb molecules with a large effective electric dipole moment. Through a carefully designed two-photon Raman process, we have successfully transferred the magneto-associated Feshbach molecules to the singlet ground state with high efficiency, obtaining up to 8000 23 Na87 Rb molecules with peak number density over 1011 cm-3 in their absolute ground-state level. With an external electric field, we have induced an effective dipole moment over 1 Debye, making 23 Na87 Rb the most dipolar ultracold particle ever achieved. Contrary to the expectation, we observed a rather fast population loss even for 23 Na87 Rb in the absolute ground state with the bi-molecular exchange reaction energetically forbidden. The origin for the short lifetime and possible ways of mitigating it are currently under investigation. Our achievements pave the way toward investigation of ultracold bosonic molecules with strong dipolar interactions. This work is supported by the Hong Kong RGC CUHK404712 and the ANR/RGC Joint Research Scheme ACUHK403/13.

  2. Installation restoration research program: Assessment of geophysical methods for subsurface geologic mapping, cluster 13, Edgewood Area, Aberdeen Proving Ground, Maryland. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, D.K.; Sharp, M.K.; Sjostrom, K.J.

    1996-10-01

    Seismic refraction, electrical resistivity, and transient electromagnetic surveys were conducted at a portion of Cluster 13, Edgewood Area of Aberdeen Proving Ground, Maryland. Seismic refraction cross sections map the topsoil layer and the water table (saturated zone). The water table elevations from the seismic surveys correlate closely with water table elevations in nearby monitoring wells. Electrical resistivity cross sections reveal a very complicated distribution of sandy and clayey facies in the upper 10 - 15 m of the subsurface. A continuous surficial (topsoil) layer correlates with the surficial layer of the seismic section and nearby boring logs. The complexity andmore » details of the electrical resistivity cross section correlate well with boring and geophysical logs from nearby wells. The transient electromagnetic surveys map the Pleistocene-Cretaceous boundary, the saprolite, and the top of the Precambrian crystalline rocks. Conducting the transient electromagnetic surveys on a grid pattern allows the construction of a three-dimensional representation of subsurface geology (as represented by variations of electrical resistivity). Thickness and depth of the saprolitic layer and depth to top of the Precambrian rocks are consistent with generalized geologic cross sections for the Edgewood Area and depths projected from reported depths at the Aberdeen Proving Ground NW boundary using regional dips.« less

  3. Lightning Protection System for Space Shuttle

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The suitability and cost effectiveness of using a lightning mast for the shuttle service and access tower (SSAT) similar to the type used for the Apollo Soyuz Test Project (ASTP) mobile launcher (ML) was evaluated. Topics covered include: (1) ASTP launch damage to mast, mast supports, grounded overhead wires, and the instrumentation system; (2) modifications required to permit reusing the ASTP mast on the SSAT; (3) comparative costing factors per launch over a 10 year period in repetitive maintenance and refurbishment of the existing and modified masts, mast supports, grounded overhead wires, and ground instrumentation required to sustain mechanical and electrical integrity of the masts; (4) effects of blast testing samples of the ASTP ML type mast (corrosion and electrical flashover); (5) comparison of damages from ASTP launch and from blast testing.

  4. 30 CFR 57.6601 - Grounding.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Grounding. 57.6601 Section 57.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  5. 30 CFR 56.6601 - Grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding. 56.6601 Section 56.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  6. 30 CFR 56.6601 - Grounding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Grounding. 56.6601 Section 56.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  7. 30 CFR 57.6601 - Grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding. 57.6601 Section 57.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  8. 30 CFR 57.6601 - Grounding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Grounding. 57.6601 Section 57.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  9. 30 CFR 57.6601 - Grounding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Grounding. 57.6601 Section 57.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  10. 30 CFR 56.6601 - Grounding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Grounding. 56.6601 Section 56.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  11. 30 CFR 56.6601 - Grounding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding. 56.6601 Section 56.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  12. 30 CFR 56.6601 - Grounding.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Grounding. 56.6601 Section 56.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  13. 30 CFR 57.6601 - Grounding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding. 57.6601 Section 57.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  14. 30 CFR 77.701-2 - Approved methods of grounding metallic frames, casings, and other enclosures of electric...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... enclosures and the earth. (b) A method of grounding of metallic frames, casings, and other enclosures of... there is no difference in potential between such frames, casings, and other enclosures, and the earth. ...

  15. 49 CFR 229.83 - Insulation or grounding of metal parts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Insulation or grounding of metal parts. 229.83 Section 229.83 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical...

  16. 40 CFR 52.34 - Action on petitions submitted under section 126 relating to emissions of nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... group that addressed the problem of ground-level ozone and the long-range transport of air pollution... that had a nameplate capacity greater than 25 MWe and produced electricity for sale under a firm... capacity greater than 25 MWe and produced electricity for sale under a firm contract to the electric grid...

  17. 40 CFR 52.34 - Action on petitions submitted under section 126 relating to emissions of nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... group that addressed the problem of ground-level ozone and the long-range transport of air pollution... that had a nameplate capacity greater than 25 MWe and produced electricity for sale under a firm... capacity greater than 25 MWe and produced electricity for sale under a firm contract to the electric grid...

  18. Ball-joint grounding ring

    NASA Technical Reports Server (NTRS)

    Aperlo, P. J. A.; Buck, P. A.; Weldon, V. A.

    1981-01-01

    In ball and socket joint where electrical insulator such as polytetrafluoroethylene is used as line to minimize friction, good electrical contact across joint may be needed for lightning protection or to prevent static-charge build-up. Electrical contact is maintained by ring of spring-loaded fingers mounted in socket. It may be useful in industry for cranes, trailers, and other applications requiring ball and socket joint.

  19. Simulation of Electric Propulsion Thrusters (Preprint)

    DTIC Science & Technology

    2011-02-07

    activity concerns the plumes produced by electric thrusters. Detailed information on the plumes is required for safe integration of the thruster...ground-based laboratory facilities. Device modelling also plays an important role in plume simulations by providing accurate boundary conditions at...methods used to model the flow of gas and plasma through electric propulsion devices. Discussion of the numerical analysis of other aspects of

  20. Electrically Driven Liquid Film Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2016-01-01

    This presentation presents the science background and ground based results that form the basis of the Electrically Driven Liquid Film Boiling Experiment. This is an ISS experiment that is manifested for 2021. Objective: Characterize the effects of gravity on the interaction of electric and flow fields in the presence of phase change specifically pertaining to: a) The effects of microgravity on the electrically generated two-phase flow. b) The effects of microgravity on electrically driven liquid film boiling (includes extreme heat fluxes). Electro-wetting of the boiling section will repel the bubbles away from the heated surface in microgravity environment. Relevance/Impact: Provides phenomenological foundation for the development of electric field based two-phase thermal management systems leveraging EHD, permitting optimization of heat transfer surface area to volume ratios as well as achievement of high heat transfer coefficients thus resulting in system mass and volume savings. EHD replaces buoyancy or flow driven bubble removal from heated surface. Development Approach: Conduct preliminary experiments in low gravity and ground-based facilities to refine technique and obtain preliminary data for model development. ISS environment required to characterize electro-wetting effect on nucleate boiling and CHF in the absence of gravity. Will operate in the FIR - designed for autonomous operation.

  1. Regional 3-D Modeling of Ground Geoelectric Field for the Northeast United States due to Realistic Geomagnetic Disturbances

    NASA Astrophysics Data System (ADS)

    Ivannikova, E.; Kruglyakov, M.; Kuvshinov, A. V.; Rastaetter, L.; Pulkkinen, A. A.; Ngwira, C. M.

    2017-12-01

    During extreme space weather events electric currents in the Earth's magnetosphere and ionosphere experience large variations, which leads to dramatic intensification of the fluctuating magnetic field at the surface of the Earth. According to Faraday's law of induction, the fluctuating geomagnetic field in turn induces electric field that generates harmful currents (so-called "geomagnetically induced currents"; GICs) in grounded technological systems. Understanding (via modeling) of the spatio-temporal evolution of the geoelectric field during enhanced geomagnetic activity is a key consideration in estimating the hazard to technological systems from space weather. We present the results of ground geoelectric field modeling for the Northeast United States, which is performed with the use of our novel numerical tool based on integral equation approach. The tool exploits realistic regional three-dimensional (3-D) models of the Earth's electrical conductivity and realistic global models of the spatio-temporal evolution of the magnetospheric and ionospheric current systems responsible for geomagnetic disturbances. We also explore in detail the manifestation of the coastal effect (anomalous intensification of the geoelectric field near the coasts) in this region.

  2. Finite Ground Coplanar (FGC) Waveguide: Characteristics and Advantages Evaluated for Radiofrequency and Wireless Communication Circuits

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.

    1999-01-01

    Researchers in NASA Lewis Research Center s Electron Device Technology Branch are developing transmission lines for radiofrequency and wireless circuits that are more efficient, smaller, and make lower cost circuits possible. Traditionally, radiofrequency and wireless circuits have employed a microstrip or coplanar waveguide to interconnect the various electrical elements that comprise a circuit. Although a coplanar waveguide (CPW) is widely viewed as better than a microstrip for most applications, it too has problems. To solve these problems, NASA Lewis and the University of Michigan developed a new version of a coplanar waveguide with electrically narrow ground planes. Through extensive numerical modeling and experimental measurements, we have characterized the propagation constant of the FGC waveguide, the lumped and distributed circuit elements integrated in the FGC waveguide, and the coupling between parallel transmission lines. Although the attenuation per unit length is higher for the FGC waveguide because of higher conductor loss, the attenuation is comparable when the ground plane width is twice the center conductor width as shown in the following graph. An upper limit to the line width is derived from observations that when the total line width is greater than ld/2, spurious resonances due to the parallel plate waveguide mode are established. Thus, the ground plane width must be less than ld/4 where ld is the wavelength in the dielectric. Since the center conductor width S is typically less than l/10 to maintain good transverse electromagnetic mode characteristics, it follows that a ground plane width of B = 2S would also be electrically narrow. Thus, we can now treat the ground strips of the FGC waveguide the same way that the center conductor is treated.

  3. Monitoring and remediation of on-farm and off-farm ground current measured as step potential on a Wisconsin dairy farm: A case study.

    PubMed

    Stetzer, Dave; Leavitt, Adam M; Goeke, Charles L; Havas, Magda

    2016-01-01

    Ground current commonly referred to as "stray voltage" has been an issue on dairy farms since electricity was first brought to rural America. Equipment that generates high-frequency voltage transients on electrical wires combined with a multigrounded (electrical distribution) system and inadequate neutral returns all contribute to ground current. Despite decades of problems, we are no closer to resolving this issue, in part, due to three misconceptions that are addressed in this study. Misconception 1. The current standard of 1 V at cow contact is adequate to protect dairy cows; Misconception 2. Frequencies higher than 60 Hz do not need to be considered; and Misconception 3. All sources of ground current originate on the farm that has a ground current problem. This case study of a Wisconsin dairy farm documents, 1. how to establish permanent monitoring of ground current (step potential) on a dairy farm; 2. how to determine and remediate both on-farm and off-farm sources contributing to step potential; 3. which step-potential metrics relate to cow comfort and milk production; and 4. how these metrics relate to established standards. On-farm sources include lighting, variable speed frequency drives on motors, radio frequency identification system and off-farm sources are due to a poor primary neutral return on the utility side of the distribution system. A step-potential threshold of 1 V root mean square (RMS) at 60 Hz is inadequate to protect dairy cows as decreases of a few mV peak-peak at higher frequencies increases milk production, reduces milking time and improves cow comfort.

  4. Determination and representation of electric charge distributions associated with adverse weather conditions

    NASA Technical Reports Server (NTRS)

    Rompala, John T.

    1992-01-01

    Algorithms are presented for determining the size and location of electric charges which model storm systems and lightning strikes. The analysis utilizes readings from a grid of ground level field mills and geometric constraints on parameters to arrive at a representative set of charges. This set is used to generate three dimensional graphical depictions of the set as well as contour maps of the ground level electrical environment over the grid. The composite, analytic and graphic package is demonstrated and evaluated using controlled input data and archived data from a storm system. The results demonstrate the packages utility as: an operational tool in appraising adverse weather conditions; a research tool in studies of topics such as storm structure, storm dynamics, and lightning; and a tool in designing and evaluating grid systems.

  5. Excitons in coupled type-II double quantum wells under electric and magnetic fields: InAs/AlSb/GaSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyo, S. K., E-mail: sklyo@uci.edu; Pan, W.

    2015-11-21

    We calculate the wave functions and the energy levels of an exciton in double quantum wells under electric (F) and magnetic (B) fields along the growth axis. The result is employed to study the energy levels, the binding energy, and the boundary on the F–B plane of the phase between the indirect exciton ground state and the semiconductor ground state for several typical structures of the type-II quasi-two-dimensional quantum wells such as InAs/AlSb/GaSb. The inter-well inter-band radiative transition rates are calculated for exciton creation and recombination. We find that the rates are modulated over several orders of magnitude by themore » electric and magnetic fields.« less

  6. A functional electrical stimulation system for human walking inspired by reflexive control principles.

    PubMed

    Meng, Lin; Porr, Bernd; Macleod, Catherine A; Gollee, Henrik

    2017-04-01

    This study presents an innovative multichannel functional electrical stimulation gait-assist system which employs a well-established purely reflexive control algorithm, previously tested in a series of bipedal walking robots. In these robots, ground contact information was used to activate motors in the legs, generating a gait cycle similar to that of humans. Rather than developing a sophisticated closed-loop functional electrical stimulation control strategy for stepping, we have instead utilised our simple reflexive model where muscle activation is induced through transfer functions which translate sensory signals, predominantly ground contact information, into motor actions. The functionality of the functional electrical stimulation system was tested by analysis of the gait function of seven healthy volunteers during functional electrical stimulation-assisted treadmill walking compared to unassisted walking. The results demonstrated that the system was successful in synchronising muscle activation throughout the gait cycle and was able to promote functional hip and ankle movements. Overall, the study demonstrates the potential of human-inspired robotic systems in the design of assistive devices for bipedal walking.

  7. Geophysical investigation at an existing landfill, Badger Army Ammunition Plant, Baraboo, Wisconsin. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitten, C.B.; Sjostrom, K.J.

    1991-04-01

    Ground-water contaminants were found in ground-water monitoring wells at the existing landfill. More wells to define the horizontal and vertical extent of the contaminant plume are to be installed. Geophysical techniques (electro-magnetic induction, vertical electrical resistivity, and horizontal resistivity profiling) were used to map the extent of the contaminant plume. Using the geophysical, ground-water elevation, and geologic data, five anomalous areas south and east of the landfill were identified as locations for additional ground-water monitoring wells.

  8. International Aerospace and Ground Conference on Lightning and Static Electricity (8th): Lightning Technology Roundup, held at Fort Worth, Texas on 21-23 June 1983.

    DTIC Science & Technology

    1983-06-01

    fighter aircraft. The entire test bed is from testing of a representative digital supported above the ground plane by non - control system(s)l e.g... control and Increased systems Integration a. Raw data must be collected and Introduce new requirements for protection, experimental setups and An accurate...presented, several possible solutions to the grounding prob! - are suggested. All rely on establishing initial ground contact through a controlled non -zero

  9. REACH. Residential Electrical Wiring Units.

    ERIC Educational Resources Information Center

    Ansley, Jimmy; Ennis, Mike

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of residential electrical wiring. The instructional units focus on grounded outlets, service entrance, and blueprint reading. Each unit follows a typical format…

  10. 29 CFR 1910.303 - General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.303..., including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus... from grounds other than those required or permitted by this subpart. (4) Interrupting rating. Equipment...

  11. 29 CFR 1910.303 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.303..., including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus... from grounds other than those required or permitted by this subpart. (4) Interrupting rating. Equipment...

  12. 29 CFR 1910.303 - General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.303..., including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus... from grounds other than those required or permitted by this subpart. (4) Interrupting rating. Equipment...

  13. 29 CFR 1910.303 - General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.303..., including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus... from grounds other than those required or permitted by this subpart. (4) Interrupting rating. Equipment...

  14. 29 CFR 1910.303 - General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.303..., including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus... from grounds other than those required or permitted by this subpart. (4) Interrupting rating. Equipment...

  15. Electric Vehicle Ownership Factors, Preferred Safety Technologies and Commuting Behavior in the United States

    DOT National Transportation Integrated Search

    2017-02-01

    Electric vehicles (EVs) are expected to reduce climate-changing greenhouse gas emissions, potentially reduce the ground-level ozone experienced during summers over the Mid-Atlantic's I-95 Corridor, and possibly reduce dependence on fossil fuels. EVs ...

  16. Directional detector of gamma rays

    DOEpatents

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  17. 30 CFR 56.12025 - Grounding circuit enclosures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Grounding circuit enclosures. 56.12025 Section 56.12025 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  18. 30 CFR 56.12025 - Grounding circuit enclosures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Grounding circuit enclosures. 56.12025 Section 56.12025 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  19. 30 CFR 56.12025 - Grounding circuit enclosures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Grounding circuit enclosures. 56.12025 Section 56.12025 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  20. 30 CFR 56.12025 - Grounding circuit enclosures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding circuit enclosures. 56.12025 Section 56.12025 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  1. International Aerospace and Ground Conference on Lightning and Static Electricity. 1984 technical papers. Supplement

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The indirect effects of lightning on digital systems, ground system protection, and the corrosion properties of conductive materials are addressed. The responses of a UH-60A helicopter and tactical shelters to lightning and nuclear electromagnetic pulses are discussed.

  2. 30 CFR 56.12025 - Grounding circuit enclosures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding circuit enclosures. 56.12025 Section 56.12025 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  3. Invariant protection of high-voltage electric motors of technological complexes at industrial enterprises at partial single-phase ground faults

    NASA Astrophysics Data System (ADS)

    Abramovich, B. N.; Sychev, Yu A.; Pelenev, D. N.

    2018-03-01

    Development results of invariant protection of high-voltage motors at incomplete single-phase ground faults are observed in the article. It is established that current protections have low action selectivity because of an inadmissible decrease in entrance signals during the shirt circuit occurrence in the place of transient resistance. The structural functional scheme and an algorithm of protective actions where correction of automatic zero sequence currents signals of the protected accessions implemented according to the level of incompleteness of ground faults are developed. It is revealed that automatic correction of zero sequence currents allows one to provide the invariance of sensitivity factor for protection under the variation conditions of a transient resistance in the place of damage. Application of invariant protection allows one to minimize damages in 6-10 kV electrical installations of industrial enterprises for a cause of infringement of consumers’ power supply and their system breakdown due to timely localization of emergency of ground faults modes.

  4. Imaging Magnetospheric Perturbations of the Ionosphere/Plasmasphere System from the Ground and Space

    NASA Astrophysics Data System (ADS)

    Foster, J. C.

    2004-05-01

    The thermal plasmas of the inner magnetosphere and ionosphere move across the magnetic field under the influence of electric fields. Irrespective of their source, these electric fields extend along magnetic field lines coupling the motion of thermal plasmas in the various altitude regimes. Modern remote-sensing techniques based both on the ground and in space are providing a new view of the large and meso-scale characteristics and dynamics of the plasmas of the extended ionosphere and their importance in understanding processes and effects observed throughout the coupled spheres of Earth's upper atmosphere. During strong geomagnetic storms, disturbance electric fields uplift and redistribute the thermal plasma of the low-latitude ionosphere and inner magnetosphere, producing a pronounced poleward shift of the equatorial anomalies (EA) and enhancements of plasma concentration (total electric content, TEC) in the post-noon plasmasphere. Strong SAPS (subauroral polarization stream) electric fields erode the plasmasphere boundary layer in the region of the dusk-sector bulge, producing plasmaspheric drainage plumes which carry the high-altitude material towards the dayside magnetopause. The near-Earth footprint of these flux tubes constitutes the mid-latitude streams of storm-enhanced density (SED) which produce considerable space weather effects across the North American continent. We use ground-based GPS propagation data to produce two-dimensional maps and movies of the evolution of these TEC features as they progress from equatorial regions to the polar caps. DMSP satellite overflights provide in-situ density and plasma flow/electric field observations, while the array of incoherent scatter radars probe the altitude distribution and characteristics of these dynamic thermal plasma features. IMAGE EUV and FUV observations reveal the space-based view of spatial extent and temporal evolution of these phenomena.

  5. Neutron spectroscopic study of crystalline electric field excitations in stoichiometric and lightly stuffed Yb 2 Ti 2 O 7

    DOE PAGES

    Gaudet, J.; Maharaj, D. D.; Sala, G.; ...

    2015-10-27

    Time-of-flight neutron spectroscopy has been used to determine the crystalline electric field Hamiltonian, eigenvalues and eigenvectors appropriate to the J=7/2 Yb 3+ ion in the candidate quantum spin ice pyrochlore magnet Yb 2Ti 2O 7. The precise ground state of this exotic, geometrically frustrated magnet is known to be sensitive to weak disorder associated with the growth of single crystals from the melt. Such materials display weak “stuffing,” wherein a small proportion, approximately 2%, of the nonmagnetic Ti 4+ sites are occupied by excess Yb 3+. We have carried out neutron spectroscopic measurements on a stoichiometric powder sample of Ybmore » 2Ti 2O 7, as well as a crushed single crystal with weak stuffing and an approximate composition of Yb 2+xTi 2–xO 7+y with x = 0.046. All samples display three crystalline electric field transitions out of the ground state, and the ground state doublet itself is identified as primarily composed of m J = ±1/2, as expected. However, stuffing at low temperatures in Yb 2+xTi 2–xO 7+y induces a similar finite crystalline electric field lifetime as is induced in stoichiometric Yb 2Ti 2O 7 by elevated temperature. In conclusion, an extended strain field exists about each local “stuffed” site, which produces a distribution of random crystalline electric field environments in the lightly stuffed Yb 2+xTi 2–xO 7+y, in addition to producing a small fraction of Yb ions in defective environments with grossly different crystalline electric field eigenvalues and eigenvectors.« less

  6. 11th International Conference on Atmospheric Electricity

    NASA Technical Reports Server (NTRS)

    Christian, H. J. (Compiler)

    1999-01-01

    This document contains the proceedings from the 11th International Conference on Atmospheric Electricity (ICAE 99), held June 7-11, 1999. This conference was attended by scientists and researchers from around the world. The subjects covered included natural and artificially initiated lightning, lightning in the middle and upper atmosphere (sprites and jets), lightning protection and safety, lightning detection techniques (ground, airborne, and space-based), storm physics, electric fields near and within thunderstorms, storm electrification, atmospheric ions and chemistry, shumann resonances, satellite observations of lightning, global electrical processes, fair weather electricity, and instrumentation.

  7. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for grounding or insulator protection of the National Electrical Safety Code, part 2, entitled “Safety Rules for the Installation and Maintenance of Electric Supply and Communication Lines” (also... documents may be obtained from the National Institute of Science and Technology, 100 Bureau Drive, Stop 3460...

  8. 36 CFR 14.70 - Statutory authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electrical plants, poles, and lines for the generation and distribution of electrical power, and for telephone and telegraph purposes, and for pipe lines, canals, ditches, water plants, and other purposes to the extent of the ground occupied by such canals, ditches, water plants, or other works permitted...

  9. 36 CFR 14.70 - Statutory authority.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... electrical plants, poles, and lines for the generation and distribution of electrical power, and for telephone and telegraph purposes, and for pipe lines, canals, ditches, water plants, and other purposes to the extent of the ground occupied by such canals, ditches, water plants, or other works permitted...

  10. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for grounding or insulator protection of the National Electrical Safety Code, part 2, entitled “Safety Rules for the Installation and Maintenance of Electric Supply and Communication Lines” (also... documents may be obtained from the National Institute of Science and Technology, 100 Bureau Drive, Stop 3460...

  11. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for grounding or insulator protection of the National Electrical Safety Code, part 2, entitled “Safety Rules for the Installation and Maintenance of Electric Supply and Communication Lines” (also... documents may be obtained from the National Institute of Science and Technology, 100 Bureau Drive, Stop 3460...

  12. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for grounding or insulator protection of the National Electrical Safety Code, part 2, entitled “Safety Rules for the Installation and Maintenance of Electric Supply and Communication Lines” (also... documents may be obtained from the National Institute of Science and Technology, 100 Bureau Drive, Stop 3460...

  13. The electric dipole moments in the ground states of gold oxide, AuO, and gold sulfide, AuS.

    PubMed

    Zhang, Ruohan; Yu, Yuanqin; Steimle, Timothy C; Cheng, Lan

    2017-02-14

    The B 2 Σ - - X 2 Π 3/2 (0,0) bands of a cold molecular beam sample of gold monoxide, AuO, and gold monosulfide, AuS, have been recorded at high resolution both field free and in the presence of a static electric field. The observed electric field induced splittings and shifts were analyzed to produce permanent electric dipole moments, μ→ el , of 2.94±0.06 D and 2.22±0.05 D for the X 2 Π 3/2 (v = 0) states of AuO and AuS, respectively. A molecular orbital correlation diagram is used to rationalize the trend in ground state μ→ el values for AuX (X = F, Cl, O, and S) molecules. The experimentally determined μ→ el are compared to those computed at the coupled-cluster singles and doubles (CCSD) level augmented with a perturbative inclusion of triple excitations (CCSD(T)) level of theory.

  14. Introducing Magneto-Optical Functions into Soft Materials

    DTIC Science & Technology

    2017-05-03

    the electromagnet as illustrated in Figure 1(b). This experimental measurement allowed us to explore magneto- electric coupling in both ground and...short-range spin-spin interaction. As a general conclusion, the -d electron coupling promise the existence of photo-adjustable magneto- electric ...coupling, paving the way for the realization of magneto- electric -optical applications. Intermoleuar SOC SB Orb S B OrbHinter Hinter 1 2 (b

  15. 30 CFR 77.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conduits enclosing power conductors. 77.700 Section 77.700 Mineral Resources MINE SAFETY AND HEALTH..., and conduits enclosing power conductors. Metallic sheaths, armors, and conduits enclosing power conductors shall be electrically continuous throughout and shall be grounded by methods approved by an...

  16. 30 CFR 77.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conduits enclosing power conductors. 77.700 Section 77.700 Mineral Resources MINE SAFETY AND HEALTH..., and conduits enclosing power conductors. Metallic sheaths, armors, and conduits enclosing power conductors shall be electrically continuous throughout and shall be grounded by methods approved by an...

  17. 30 CFR 56.12028 - Testing grounding systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Testing grounding systems. 56.12028 Section 56.12028 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  18. 30 CFR 56.12027 - Grounding mobile equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Grounding mobile equipment. 56.12027 Section 56.12027 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  19. 30 CFR 56.12028 - Testing grounding systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Testing grounding systems. 56.12028 Section 56.12028 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  20. 30 CFR 56.12028 - Testing grounding systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Testing grounding systems. 56.12028 Section 56.12028 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  1. 30 CFR 56.12027 - Grounding mobile equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding mobile equipment. 56.12027 Section 56.12027 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  2. 30 CFR 56.12028 - Testing grounding systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Testing grounding systems. 56.12028 Section 56.12028 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  3. 30 CFR 56.12027 - Grounding mobile equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Grounding mobile equipment. 56.12027 Section 56.12027 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  4. 30 CFR 56.12027 - Grounding mobile equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Grounding mobile equipment. 56.12027 Section 56.12027 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  5. 30 CFR 56.12028 - Testing grounding systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Testing grounding systems. 56.12028 Section 56.12028 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  6. 30 CFR 56.12027 - Grounding mobile equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding mobile equipment. 56.12027 Section 56.12027 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  7. 46 CFR 183.372 - Equipment and conductor grounding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Equipment and conductor grounding. 183.372 Section 183.372 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.372 Equipment and...

  8. The Effect of a Corona Discharge on a Lightning Attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, N.L.; Bazelyan, E.M.; Raizer, Yu.P.

    2005-01-15

    The interaction between the lightning leader and the space charge accumulated near the top of a ground object in the atmospheric electric field is considered using analytical and numerical models developed earlier to describe spark discharges in long laboratory gaps. The specific features of a nonstationary corona discharge that develops in the electric field of a thundercloud and a downward lightning leader are analyzed. Conditions for the development of an upward lightning discharge from a ground object and for the propagation of an upward-connecting leader from the object toward a downward lightning leader (the process determining the point of strikemore » to the ground) are investigated. Possible mechanisms for the interaction of the corona space charge with an upward leader and prospects of using it to control downward lightning discharges are analyzed.« less

  9. Generation of ULF waves by electric or magnetic dipoles. [propagation from earth surface to ionosphere

    NASA Technical Reports Server (NTRS)

    Harker, K. J.

    1975-01-01

    The generation of ULF waves by ground-based magnetic and electric dipoles is studied with a simplified model consisting of three adjoining homogeneous regions representing the groud, the vacuum (free space) region, and the ionosphere. The system is assumed to be immersed in a homogeneous magnetic field with an arbitrary tilt angle. By the use of Fourier techniques and the method of stationary phase, analytic expressions are obtained for the field strength of the compressional Alfven waves in the ionosphere. Expressions are also obtained for the strength of the torsional Alfven wave in the ionosphere and the ULF magnetic field at ground level. Numerical results are obtained for the compressional Alfven-wave field strength in the ionosphere with a nonvertical geomagnetic field and for the ULF magnetic field at ground level for a vertical geomagnetic field.

  10. Qualification of Electrical Ground Support Equipment for New Space Programs

    NASA Technical Reports Server (NTRS)

    SotoToro, Felix A.; Vu, Bruce T.; Hamilton, Mark S.

    2011-01-01

    With the Space Shuttle program coming to an end, the National Aeronautics and Space Administration (NASA) is moving to a new space flight program that will allow expeditions beyond low earth orbit. The space vehicles required to comply with these missions will be carrying heavy payloads. This implies that the Earth departure stage capabilities must be of higher magnitudes, given the current propulsion technology. The engineering design of the new flight hardware comes with some structural, thermal, propulsion and other subsystems' challenges. Meanwhile, the necessary ground support equipment (GSE) used to test, validate, verify and process the flight hardware must withstand the new program specifications. This paper intends to provide the qualification considerations during implementation of new electrical GSE for space programs. A team of engineers was formed to embark on this task, and facilitate the logistics process and ensure that the electrical, mechanical and fluids subsystems conduct the proper level of testing. Ultimately, each subsystem must certify that each piece of ground support equipment used in the field is capable of withstanding the strenuous vibration, acoustics, environmental, thermal and Electromagnetic Interference (EMf) levels experienced during pre-launch, launch and post-launch activities. The benefits of capturing and sharing these findings will provide technical, cost savings and schedule impacts infon11ation to both the technical and management community. Keywords: Qualification; Testing; Ground Support Equipment; Electromagnetic Interference Testing; Vibration Testing; Acoustic Testing; Power Spectral Density.

  11. Using self-potential housing technique to model water seepage at the UNHAS housing Antang area

    NASA Astrophysics Data System (ADS)

    Syahruddin, Muhammad Hamzah

    2017-01-01

    The earth's surface has an electric potential that is known as self-potentiall (SP). One of the causes of the electrical potential at the earth's surface is water seepage into the ground. Electrical potential caused by water velocity seepage into the ground known as streaming potential. How to model water seepage into the ground at the housing Unhas Antang? This study was conducted to answer these questions. The self-potential measurements performed using a simple digital voltmeter Sanwa brand PC500 with a precision of 0.01 mV. While the coordinates of measurements points are self-potential using Global Positioning System. Mmeasurements results thus obtained are plotted using surfer image distribution self-potential housing Unhas Antang. The self-potential data housing Unhas Antang processed by Forward Modeling methods to get a model of water infiltration into the soil. Housing Unhas Antang self-potential has a value of 5 to 23 mV. Self-potential measurements carried out in the rainy season so it can be assumed that the measurement results caused by the velocity water seepage into the ground. The results of modeling the velocity water seepage from the surface to a depth of 3 meters was 2.4 cm/s to 0.2 cm /s. Modeling results showed that the velocity water seepage of the smaller with depth.

  12. Successful application of frequency-domain airborne electromagnetic system with a grounded electric source

    NASA Astrophysics Data System (ADS)

    Kang, L.; Lin, J.; Liu, C.; Zhou, H.; Ren, T.; Yao, Y.

    2017-12-01

    A new frequency-domain AEM system with a grounded electric source, which was called ground-airborne frequency-domain electromagnetic (GAFEM) system, was proposed to extend penetration depth without compromising the resolution and detection efficiency. In GAFEM system, an electric source was placed on the ground to enlarge the strength of response signals. UVA was chosen as aircraft to reduce interaction noise and improve its ability to adapt to complex terrain. Multi-source and multi-frequency emission method has been researched and applied to improve the efficiency of GAFEM system. 2n pseudorandom sequence was introduced as transmitting waveform, to ensure resolution and detection efficiency. Inversion-procedure based on full-space apparent resistivity formula was built to realize GAFEM method and extend the survey area to non-far field. Based on GAFEM system, two application was conducted in Changchun, China, to map the deep conductive structure. As shown in the results of this exploration, GAFEM system shows its effectiveness to conductive structure, obtaining a depth of about 1km with a source-receiver distance of over 6km. And it shows the same level of resolution with CSAMT method with an over 10 times of efficiency. This extended a range of important applications where the terrain is too complex to be accessed or large penetration depth is required in a large survey area.

  13. Comparison of fast electric field changes from subsequent return strokes of natural and triggered lightning

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Willett, J.

    1988-01-01

    Fast electric field changes from subsequent return strokes of natural and triggered lightning with propagation paths almost entirely over water are compared. Data were collected at the Kennedy Space Center, Florida. Comparisons have been made of the average shape, the rise time and the spectrum of the electric field changes. The electric field changes from the triggered flashes tend to rise to peak faster and decay faster than do their counterparts in natural cloud-to-ground flashes.

  14. Electric power processing, distribution, management and energy storage

    NASA Astrophysics Data System (ADS)

    Giudici, R. J.

    1980-07-01

    Power distribution subsystems are required for three elements of the SPS program: (1) orbiting satellite, (2) ground rectenna, and (3) Electric Orbiting Transfer Vehicle (EOTV). Power distribution subsystems receive electrical power from the energy conversion subsystem and provide the power busses rotary power transfer devices, switchgear, power processing, energy storage, and power management required to deliver control, high voltage plasma interactions, electric thruster interactions, and spacecraft charging of the SPS and the EOTV are also included as part of the power distribution subsystem design.

  15. Electric power processing, distribution, management and energy storage

    NASA Technical Reports Server (NTRS)

    Giudici, R. J.

    1980-01-01

    Power distribution subsystems are required for three elements of the SPS program: (1) orbiting satellite, (2) ground rectenna, and (3) Electric Orbiting Transfer Vehicle (EOTV). Power distribution subsystems receive electrical power from the energy conversion subsystem and provide the power busses rotary power transfer devices, switchgear, power processing, energy storage, and power management required to deliver control, high voltage plasma interactions, electric thruster interactions, and spacecraft charging of the SPS and the EOTV are also included as part of the power distribution subsystem design.

  16. Alexander von Humboldt and the concept of animal electricity.

    PubMed

    Kettenmann, H

    1997-06-01

    More than two hundred years ago, Alexander von Humboldt helped to establish Galvani's view that muscle and nerve tissue are electrically excitable. His 1797 publication was a landmark for establishing the concept of animal electricity. Almost half a century later, von Humboldt became the mentor of the young du Bois-Reymond. With the help of von Humboldt's promotion, du Bois-Reymond demonstrated convincingly that animal tissue has the intrinsic capacity to generate electrical activity, and thus laid the ground for modern electrophysiology.

  17. Response of ionospheric electric fields at mid-low latitudes during sudden commencements

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Kasaba, Y.; Shinbori, A.; Nishimura, Y.; Kikuchi, T.; Ebihara, Y.; Nagatsuma, T.

    2015-06-01

    Using in situ observations from the Republic of China Satellite-1 spacecraft, we investigated the time response and local time dependence of the ionospheric electric field at mid-low latitudes associated with geomagnetic sudden commencements (SCs) that occurred from 1999 to 2004. We found that the ionospheric electric field variation associated with SCs instantaneously responds to the preliminary impulse (PI) signature on the ground regardless of spacecraft local time. Our statistical analysis also supports the global instant transmission of electric field from the polar region. In contrast, the peak time detected in the ionospheric electric field is earlier than that of the equatorial geomagnetic field (~20 s before in the PI phase). Based on the ground-ionosphere waveguide model, this time lag can be attributed to the latitudinal difference of ionospheric conductivity. However, the local time distribution of the initial excursion of ionospheric electric field shows that dusk-to-dawn ionospheric electric fields develop during the PI phase. Moreover, the westward electric field in the ionosphere, which produces the preliminary reverse impulse of the geomagnetic field on the dayside feature, appears at 18-22 h LT where the ionospheric conductivity beyond the duskside terminator (18 h LT) is lower than on the dayside. The result of a magnetohydrodynamic simulation for an ideal SC shows that the electric potential distribution is asymmetric with respect to the noon-midnight meridian. This produces the local time distribution of ionospheric electric fields similar to the observed result, which can be explained by the divergence of the Hall current under nonuniform ionospheric conductivity.

  18. ASPEC: Solar power satellite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The solar power satellite (SPS) will provide a clean, reliable source of energy for large-scale consumption. The system will use satellites in geostationary orbits around the Earth to capture the Sun's energy. The intercepted sunlight will be converted to laser beam energy that can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting energy to a single ground station. The SPS design uses multilayer solar cell technology arranged on a 20 km squared planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Typically, a single SPS will supply 5 GW of power to the ground station. Due to the large mass of the SPS, about 41 million kg, construction in space is needed in order to keep the structural mass low. The orbit configuration for this design is to operate a single satellite in geosynchronous orbit (GEO). The GEO allows the system to be positioned above a single receiving station and remain in sunlight 99 percent of the time. Construction will take place in low Earth orbit (LEO); array sections, 20 in total, will be sailed on solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing array panels (SSAP's). The primary truss elements used to support the array are composed of composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  19. Electromechanical transducer for acoustic telemetry system

    DOEpatents

    Drumheller, D.S.

    1993-06-22

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  20. Electromechanical transducer for acoustic telemetry system

    DOEpatents

    Drumheller, Douglas S.

    1993-01-01

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  1. Vertical electric field induced suppression of fine structure splitting of excited state excitons in a single GaAs/AlGaAs island quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghali, Mohsen; Laboratory of Nanophotonics, Physics Department, Faculty of Science, Kafrelsheikh University, 33516 Kafrelsheikh; Ohno, Yuzo

    2015-09-21

    We report experimentally on fine structure splitting (FSS) of various excitonic transitions in single GaAs island quantum dots, formed by a monolayer thickness fluctuation in the narrow GaAs/AlGaAs quantum well, and embedded in an n-i-Schottky diode device. By applying a forward vertical electric field (F) between the top metallic contact and the sample substrate, we observed an in-plane polarization rotation of both the ground and the excited state excitons with increasing the electric field. The polarization rotations were accompanied with a strong decrease in the FSS of the ground as well as the excited state excitons with the field, untilmore » the FSS vanished as F approached 30 kV/cm.« less

  2. An Integration of Geophysical Methods to Explore Buried Structures on the Bench and in the Field

    NASA Astrophysics Data System (ADS)

    Booterbaugh, A. P.; Lachhab, A.

    2011-12-01

    In the following study, an integration of geophysical methods and devices were implemented on the bench and in the field to accurately identify buried structures. Electrical resistivity and ground penetrating radar methods, including both a fabricated electrical resistivity apparatus and an electrical resistivity device were all used in this study. The primary goal of the study was to test the accuracy and reliability of the apparatus which costs a fraction of the price of a commercially sold resistivity instrument. The apparatus consists of four electrodes, two multimeters, a 12-volt battery, a DC to AC inverter and wires. Using this apparatus, an electrical current, is injected into earth material through the outer electrodes and the potential voltage is measured across the inner electrodes using a multimeter. The recorded potential and the intensity of the current can then be used to calculate the apparent resistivity of a given material. In this study the Wenner array, which consists of four equally spaced electrodes, was used due to its higher accuracy and greater resolution when investigating lateral variations of resistivity in shallow depths. In addition, the apparatus was used with an electrical resistivity device and a ground penetrating radar unit to explore the buried building foundation of Gustavus Adolphus Hall located on Susquehanna University Campus, Selinsgrove, PA. The apparatus successfully produced consistent results on the bench level revealing the location of small bricks buried under a soil material. In the summer of 2010, seventeen electrical resistivity transects were conducted on the Gustavus Adolphus site where and revealed remnants of the foundation. In the summer of 2011, a ground penetrating radar survey and an electrical resistivity tomography survey were conducted to further explore the site. Together these methods identified the location of the foundation and proved that the apparatus was a reliable tool for regular use on the bench and in the field.

  3. A preliminary design for a satellite power system

    NASA Technical Reports Server (NTRS)

    Enriquez, Clara V.; Kokaly, Ray; Nandi, Saumya; Timmons, Mike; Garrard, Mark; Mercado, Rommel; Rogers, Brian; Ugaz, Victor

    1991-01-01

    Outlined here is a preliminary design for a Solar Power Satellite (SPS) system. The SPS will provide a clean, reliable source of energy for mass consumption. The system will use satellites in geostationary orbits around the Earth to capture the sun's energy. The intercepted sunlight will be converted to laser beam energy which can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting to one ground station. The SPs technology uses multi-layer solar cell technology arranged on a 20 sq km planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Construction will take place in low Earth orbit and array sections, 20 in total, will be sailed on the solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing panels (SSAPs). The primary truss elements used to support the arrays are composed on composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  4. The detection of the electric field vertical distribution underneath thundercloud: Principle and applications

    NASA Technical Reports Server (NTRS)

    Soula, Serge; Chauzy, Serge

    1991-01-01

    During the Florida 89 experiment at Kennedy Space Center, a new system was used in order to obtain the vertical distribution of the electric field underneath thunderstorms. It consists of a standard shutter field mill at ground level and five other field sensors suspended from a cable fastened to a tethered balloon located at an altitude of about 1000 meters. It also includes a reception station for telemetered information transmitted by sensors, a processing system in order to store data, and real time display on a screen to show the simultaneous field variations at each level along with the instantaneous electric field profile. The first results obtained show the great importance of the electric field vertical distribution. The field detected at a height of 600m reaches 65 kV/m while that at the surface does not exceed 5 kV/m. The field intensity in altitude is a better criterion for determining the right moment to launch a rocket devoted to flash triggering. Using Gauss's law, the simultaneous field variations at several levels are used in order to evaluate charge densities. Average values close to 1nC.m(-3) are calculated in layers up to 600 m. The calculation of different average charge densities leads to the characterization of the layer between cloud and ground just before the leader propagation in the case of cloud to ground flash.

  5. 7 CFR 1710.409 - Loan provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE GENERAL AND PRE-LOAN POLICIES AND PROCEDURES COMMON TO ELECTRIC LOANS AND GUARANTEES Energy... technology on an aggregate basis that has a useful life greater than 15 years. Ground source loop investments... will be determined by the Assistant Administrator of the Electric Program and based an applicant's...

  6. Performance Specification for the Battery Monitoring System of the Program Executive Office Ground Combat Systems (PEO GCS)

    DTIC Science & Technology

    2009-10-26

    14 3.3.4 Dielectric Withstanding Voltage and Insulation Resistance. ............................. 14...Grounding. .................................................................................................. 32 4.6.2.3 Dielectric Withstanding Voltage ...shall accommodate a non-painted 0.38” 8-32 screw. 3.3.4 Dielectric Withstanding Voltage and Insulation Resistance. Electrical connections

  7. 30 CFR 57.12053 - Circuits powered from trolley wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Circuits powered from trolley wires. 57.12053... Electricity Surface and Underground § 57.12053 Circuits powered from trolley wires. Ground wires for lighting circuits powered from trolley wires shall be connected securely to the ground return circuit. Surface Only ...

  8. 30 CFR 57.12053 - Circuits powered from trolley wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Circuits powered from trolley wires. 57.12053... Electricity Surface and Underground § 57.12053 Circuits powered from trolley wires. Ground wires for lighting circuits powered from trolley wires shall be connected securely to the ground return circuit. Surface Only ...

  9. Reliable Wiring Harness

    NASA Technical Reports Server (NTRS)

    Gaspar, Kenneth C.

    1987-01-01

    New harness for electrical wiring includes plugs that do not loosen from vibration. Ground braids prevented from detaching from connectors and constrained so braids do not open into swollen "birdcage" sections. Spring of stainless steel encircles ground braid. Self-locking connector contains ratchet not only preventing connector from opening, but tightens when vibrated.

  10. Severe storm electricity

    NASA Technical Reports Server (NTRS)

    Rust, W. D.; Macgorman, D. R.; Taylor, W.; Arnold, R. T.

    1984-01-01

    Severe storms and lightning were measured with a NASA U2 and ground based facilities, both fixed base and mobile. Aspects of this program are reported. The following results are presented: (1) ground truth measurements of lightning for comparison with those obtained by the U2. These measurements include flash type identification, electric field changes, optical waveforms, and ground strike location; (2) simultaneous extremely low frequency (ELF) waveforms for cloud to ground (CG) flashes; (3) the CG strike location system (LLP) using a combination of mobile laboratory and television video data are assessed; (4) continued development of analog-to-digital conversion techniques for processing lightning data from the U2, mobile laboratory, and NSSL sensors; (5) completion of an all azimuth TV system for CG ground truth; (6) a preliminary analysis of both IC and CG lightning in a mesocyclone; and (7) the finding of a bimodal peak in altitude lightning activity in some storms in the Great Plains and on the east coast. In the forms on the Great Plains, there was a distinct class of flash what forms the upper mode of the distribution. These flashes are smaller horizontal extent, but occur more frequently than flashes in the lower mode of the distribution.

  11. Automated Ground Umbilical Systems (AGUS) Project

    NASA Technical Reports Server (NTRS)

    Gosselin, Armand M.

    2007-01-01

    All space vehicles require ground umbilical systems for servicing. Servicing requirements can include, but are not limited to, electrical power and control, propellant loading and venting, pneumatic system supply, hazard gas detection and purging as well as systems checkout capabilities. Of the various types of umbilicals, all require several common subsystems. These typically include an alignment system, mating and locking system, fluid connectors, electrical connectors and control !checkout systems. These systems have been designed to various levels of detail based on the needs for manual and/or automation requirements. The Automated Ground Umbilical Systems (AGUS) project is a multi-phase initiative to develop design performance requirements and concepts for launch system umbilicals. The automation aspect minimizes operational time and labor in ground umbilical processing while maintaining reliability. This current phase of the project reviews the design, development, testing and operations of ground umbilicals built for the Saturn, Shuttle, X-33 and Atlas V programs. Based on the design and operations lessons learned from these systems, umbilicals can be optimized for specific applications. The product of this study is a document containing details of existing systems and requirements for future automated umbilical systems with emphasis on design-for-operations (DFO).

  12. Electrically Small Microstrip Quarter-Wave Monopole Antennas

    NASA Technical Reports Server (NTRS)

    Young, W. Robert

    2004-01-01

    Microstrip-patch-style antennas that generate monopole radiation patterns similar to those of quarter-wave whip antennas can be designed to have dimensions smaller than those needed heretofore for this purpose, by taking advantage of a feed configuration different from the conventional one. The large sizes necessitated by the conventional feed configuration have, until now, made such antennas impractical for frequencies below about 800 MHz: for example, at 200 MHz, the conventional feed configuration necessitates a patch diameter of about 8 ft (.2.4 m) . too large, for example, for mounting on the roof of an automobile or on a small or medium-size aircraft. By making it possible to reduce diameters to between a tenth and a third of that necessitated by the conventional feed configuration, the modified configuration makes it possible to install such antennas in places where they could not previously be installed and thereby helps to realize the potential advantages (concealment and/or reduction of aerodynamic drag) of microstrip versus whip antennas. In both the conventional approach and the innovative approach, a microstrip-patch (or microstrip-patch-style) antenna for generating a monopole radiation pattern includes an electrically conductive patch or plate separated from an electrically conductive ground plane by a layer of electrically insulating material. In the conventional approach, the electrically insulating layer is typically a printed-circuit board about 1/16 in. (.1.6 mm) thick. Ordinarily, a coaxial cable from a transmitter, receiver, or transceiver is attached at the center on the ground-plane side, the shield of the cable being electrically connected to the ground plane. In the conventional approach, the coaxial cable is mated with a connector mounted on the ground plane. The center pin of this connector connects to the center of the coaxial cable and passes through a hole in the ground plane and a small hole in the insulating layer and then connects with the patch above one-third of the radial distance from the center. The modified feed configuration of the innovative approach is an inductive-short-circuit configuration that provides impedance matching and that has been used for many years on other antennas but not on microstrip-style monopole antennas. In this configuration, the pin is connected to both the conductive patch and the ground plane. As before, the shield of the coaxial cable is connected to the ground plane, but now the central conductor is connected to a point on the pin between the ground plane and the conductive plate (see figure). The location of the connection point on the pin is chosen so that together, the inductive short circuit and the conductive plate or patch act as components of a lumped-element resonant circuit that radiates efficiently at the resonance frequency and, at the resonance frequency, has an impedance that matches that of the coaxial cable. It should be noted that the innovative design entails two significant disadvantages. One disadvantage is that the frequency bandwidth for efficient operation is only about 1/20 to 1/15 that of a whip antenna designed for the same nominal frequency. The other disadvantage is that the estimated gain is between 3-1/2 and 4-1/2 dB below that of the whip antenna. However, if an affected radio-communication system used only a few adjacent frequency channels and the design of the components of the system other than the antenna provided adequate power or gain margin, then these disadvantages could be overcome.

  13. Electrical-analog analysis of ground-water depletion in central Arizona

    USGS Publications Warehouse

    Anderson, T.W.

    1968-01-01

    The Salt River Valley and the lower Santa Cruz River basin are the two largest agricultural areas in Arizona. The extensive use of ground water for irrigation has resulted in the need for a thorough appraisal of the present and future ground-water resources. The ground-water reservoir provides 80 percent (3.2 million acre-feet) of the total annual water supply. The amount of water pumped greatly exceeds the rate at which the ground-water supply is being replenished and has resulted in water-level declines of as much as 20 feet per year in some places. The depletion problem is of economic importance because ground water will become more expensive as pumping lifts increase and well yields decrease. The use of electrical-analog modeling techniques has made it possible to predict future ground-water levels under conditions of continued withdrawal in excess of the rate of replenishment. The electrical system is a representation of the hydrologic system: resistors and capacitors represent transmissibility and storage coefficients. The analogy between the two systems is accepted when the data obtained from the model closely match the field data in this instance, measured water-level change since 1923. The prediction of future water-table conditions is accomplished by a simple extension of the pumping trends to determine the resultant effect on the regional water levels. The results of this study indicate the probable depths to water in central Arizona in 1974 and 1984 if the aquifer characteristics are accurately modeled and if withdrawal of ground water continues at the same rate and under the tame areal distribution as existed between 1958 and 1964. The greatest depths to water in 1984 will be more than 700 feet near Stanfield and more than 650 feet in Deer Valley and northeast of Gilbert. South of Eloy and northwest of Litchfield Park, a static water level of more than 550 feet is predicted. The total water-level decline in the 20-year period 1964-84 at the deepest points of the major cones of depression will range from 150 to 300 feet, and the average decline in the entire central Arizona area will be about 100 feet.

  14. Characterization of Finite Ground Coplanar Waveguide with Narrow Ground Planes

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Tentzeris, Emmanouil M.; Katehi, Linda P. B.

    1997-01-01

    Coplanar waveguide with finite width ground planes is characterized through measurements, conformal mapping, and the Finite Difference Time Domain (FDTD) technique for the purpose of determining the optimum ground plane width. The attenuation and effective permittivity of the lines are related to its geometry. It is found that the characteristics of the Finite Ground Coplanar line (FGC) are not dependent on the ground plane width if it is greater than twice the center conductor width, but less than lambda(sub d)/8. In addition, electromagnetic field plots are presented which show for the first time that electric fields in the plane of the substrate terminate on the outer edge of the ground plane, and that the magnitude of these fields is related to the ground plane width.

  15. NPS-SCAT: Electrical Power System

    DTIC Science & Technology

    2009-09-01

    ground station . An initial low power receive mode will allow the ground station to contact SCAT 16 M.P. Schroer, NPS-SCAT; A... station . As shown in Table 6, the power loads of the subsystems using the Watt hour method discussed in section B above, it can be seen that 0.966...telemetry data back to the NPS ground station , the only subsystem open to manipulation with respect to power saving is the beacon secondary transmissions

  16. Flammability control for electrical cables and connectors

    NASA Technical Reports Server (NTRS)

    Wick, W. O.; Buckey, D. L.

    1973-01-01

    Technique of covering fire-hazardous sections of electrical wiring with fireproof materials prevents fires from spreading in oxygen-enriched atmospheres and eliminates use of heavy metal enclosures. Materials used to cover potting on connectors and ground terminals are made from Teflon-coated Beta cloth and Fluorel, a nonflammable fully-saturated polymer.

  17. DC source assemblies

    DOEpatents

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  18. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-117 - Ross Complex)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratton, Elaine

    2003-01-16

    Vegetation Management for the non-electric portions of the Bonneville Power Administration’s Ross Complex. BPA proposes to manage and maintain grounds and landscaping in the non-electrical portions of the Ross Facility. Vegetation management at the Facility shall include: 1) bare ground management of graveled storage areas, perimeter roads and parking areas; 2) mechanical and/or spot herbicide control of some broad leafs and noxious weeds; 3) mowing, fertilizing, and broadleaf control of landscaped lawn areas; 4) weed control in ornamental shrub areas; and 4) areas requiring only mechanical control to manage unwanted grasses, and shrubs.

  19. Space weather effects on ground based technology

    NASA Astrophysics Data System (ADS)

    Clark, T.

    Space weather can affect a variety of forms of ground-based technology, usually as a result of either the direct effects of the varying geomagnetic field, or as a result of the induced electric field that accompanies such variations. Technologies affected directly by geomagnetic variations include magnetic measurements made d ringu geophysical surveys, and navigation relying on the geomagnetic field as a direction reference, a method that is particularly common in the surveying of well-bores in the oil industry. The most obvious technology affected by induced electric fields during magnetic storms is electric power transmission, where the example of the blackout in Quebec during the March 1989 magnetic storm is widely known. Additionally, space weather effects must be taken into account in the design of active cathodic protection systems on pipelines to protect them against corrosion. Long-distance telecommunication cables may also have to be designed to cope with space weather related effects. This paper reviews the effects of space weather in these different areas of ground-based technology, and provides examples of how mitigation against hazards may be achieved. (The paper does not include the effects of space weather on radio communication or satellite navigation systems).

  20. Ground-State Hyperfine Structure of Heavy Hydrogen-Like Ions

    NASA Astrophysics Data System (ADS)

    Kühl, T.; Borneis, S.; Dax, A.; Engel, T.; Faber, S.; Gerlach, M.; Holbrow, C.; Huber, G.; Marx, D.; Merz, P.; Quint, W.; Schmitt, F.; Seelig, P.; Tomaselli, M.; Winter, H.; Wuertz, M.; Beckert, K.; Franzke, B.; Nolden, F.; Reich, H.; Steck, M.

    Contributions of quantum electrodynamics (QED) to the combined electric and magnetic interaction between the electron and the nucleus can be studied by optical spectroscopy in high-Z hydrogen-like heavy ions. The transition studied is the ground-state hyperfine structure transition, well known from the 21 cm line in atomic hydrogen. The hyperfine splitting of the is ground state of hydrogen-like systems constitutes the simplest and most basic magnetic interaction in atomic physics. The Z3-increase leads to a transition energy in the UV-region of the optical spectrum for the case of Bi82+. At the same time, the QED correction rises to nearly 1 fraction of higher order contributions. This situation is particularly useful for a comparison with non-perturbative QED calculations. The combination of exceptionally intense electric and magnetic fields electric and magnetic fields is unique. This transition has become accessible to precision laser spectroscopy at the high-energy heavy-ion storage ring at GSI-Darmstadt in the hydrogen-like 209Bi82+ and 207Pb81+. In the meantime, 165Ho66+ and 185,187Re74+ were also studied with reduced resolution by conventional optical spectroscopy at the SuperEBIT ion trap at Lawrence Livermore National Laboratory.

  1. Charge control experiments on a CH-53E helicopter in a dusty environment

    NASA Technical Reports Server (NTRS)

    Moore, C. B.; Jones, J. J.; Hunyady, S. J.

    1991-01-01

    Charge control tests were carried out on a ground based, Marine Corps helicopter to determine if control of the electric fields acting on the engine exhaust gases could be used to reduce the electrification of the helicopter when it operated in a dusty atmosphere. The test aircraft was flown to a dusty, unpaved area and was then isolated electrically from the earth. When the helicopter engines were operated at ground idle with the rotor locked, the isolated aircraft charged positively, as had been observed previously. However, when the rotor brake was released and the turning rotor created a downdraft that raised dust clouds, the aircraft always became charged more positively, to potentials ranging form +30 to +45 kV. The dust clouds raised by the rotor downwash invariably carried negative space charges with concentrations of up to -100 nC/cu m and caused surface electric fields with strengths of up to 10 kV/m immediately down wind of the aircraft. The natural charging of the helicopter operating in these dust clouds was successfully opposed by control of the electric fields acting on the hot, electrically conductive exhaust gases. The control was achieved by placing electrostatic shield around the exhausts.

  2. Electrical-field-induced magnetic Skyrmion ground state in a two-dimensional chromium tri-iodide ferromagnetic monolayer

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Shi, Mengchao; Mo, Pinghui; Lu, Jiwu

    2018-05-01

    Using fully first-principles non-collinear self-consistent field density functional theory (DFT) calculations with relativistic spin-orbital coupling effects, we show that, by applying an out-of-plane electrical field on a free-standing two-dimensional chromium tri-iodide (CrI3) ferromagnetic monolayer, the Néel-type magnetic Skyrmion spin configurations become more energetically-favorable than the ferromagnetic spin configurations. It is revealed that the topologically-protected Skyrmion ground state is caused by the breaking of inversion symmetry, which induces the non-trivial Dzyaloshinskii-Moriya interaction (DMI) and the energetically-favorable spin-canting configuration. Combining the ferromagnetic and the magnetic Skyrmion ground states, it is shown that 4-level data can be stored in a single monolayer-based spintronic device, which is of practical interests to realize the next-generation energy-efficient quaternary logic devices and multilevel memory devices.

  3. Subsurface imaging of an abandoned solid waste landfill site in Norman, Oklahoma

    USGS Publications Warehouse

    Zume, J.T.; Tarhule, A.; Christenson, S.

    2006-01-01

    Leachate plume emanating from an old unlined municipal landfill site near the city of Norman, Oklahoma, is discharging into the underlying alluvial aquifer. Subsurface imaging techniques, electrical resistivity tomography and electrical conductivity (EC) logging, were used on the site to detect and map the position of the leachate plume. Anomalous EC zones, delineated with the two methods, correlated with the occurrence of the plume detected by water chemistry analyses from multilevel monitoring wells. Specific conductance, a potential indicator of leachate contamination, ranged from 1861 to 7710 ??S/cm in contaminated zones and from 465 to 2180 ??S/cm in uncontaminated ground water. Results are in agreement with those from earlier studies that the leachate plume emerges from the landfill along preferential pathways. Additionally, there are indications that the leading edge of the plume has migrated, at least, 200 m away from the landfill in the direction of ground water flow. ?? 2006 National Ground Water Association.

  4. Convergence acceleration of computer methods for grounding analysis in stratified soils

    NASA Astrophysics Data System (ADS)

    Colominas, I.; París, J.; Navarrina, F.; Casteleiro, M.

    2010-06-01

    The design of safe grounding systems in electrical installations is essential to assure the protection of the equipment, the power supply continuity and the security of the persons. In order to achieve these goals, it is necessary to compute the equivalent electrical resistance of the system and the potential distribution on the earth surface when a fault condition occurs. In the last years the authors have developed a numerical formulation based on the BEM for the analysis of grounding systems embedded in uniform and layered soils. As it is known, in practical cases the underlying series have a poor rate of convergence and the use of multilayer soils requires an out of range computational cost. In this paper we present an efficient technique based on the Aitken δ2-process in order to improve the rate of convergence of the involved series expansions.

  5. VHF Electrical Properties of Frozen Ground Near Point Barrow, Alaska,

    DTIC Science & Technology

    1981-06-01

    depth. When temperature is depressed even further, the freez - 3. RFI does not require the ground to be disturbed ing of any remaining adsorbed water will...sky wave Seattle, Washington, at 18.6 kHz. Both instruments propagating from a distant or local transmitter to use a small ferrite -loaded coil to

  6. Electromagnetic wrap

    DOEpatents

    Tremblay, Paul L [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID

    2010-09-28

    A device and method for altering the line reactance of a transmission line having a transmission line, a first floating conductor and a grounding (shielding) conductor. The first floating conductor is positioned between and electrically insulated from the transmission line and the grounding conductor. A source and a load are connected at opposite ends of the transmission line.

  7. 30 CFR 75.831 - Electrical work; troubleshooting and testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... disconnecting device: (i) Remove the plug from the power receptacle and connect it to the grounding receptacle... coupler is used as a disconnecting device: (i) Remove the plug from the power receptacle and connect it to...) or (2): (1) If a trailing cable disconnecting switch is provided: (i) Open and ground the power...

  8. 30 CFR 75.802 - Protection of high-voltage circuits extending underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... serve as a grounding conductor for the frames of all high-voltage equipment supplied power from that... stationary electric equipment if: (1) Such circuits are either steel armored or installed in grounded, rigid steel conduit throughout their entire length; or, (2) The voltage of such circuits is nominally 2,400...

  9. 30 CFR 75.802 - Protection of high-voltage circuits extending underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... serve as a grounding conductor for the frames of all high-voltage equipment supplied power from that... stationary electric equipment if: (1) Such circuits are either steel armored or installed in grounded, rigid steel conduit throughout their entire length; or, (2) The voltage of such circuits is nominally 2,400...

  10. Earthing (Grounding) the Human Body Reduces Blood Viscosity—a Major Factor in Cardiovascular Disease

    PubMed Central

    Chevalier, Gaétan; Sinatra, Stephen T.; Delany, Richard M.

    2013-01-01

    Abstract Objectives Emerging research is revealing that direct physical contact of the human body with the surface of the earth (grounding or earthing) has intriguing effects on human physiology and health, including beneficial effects on various cardiovascular risk factors. This study examined effects of 2 hours of grounding on the electrical charge (zeta potential) on red blood cells (RBCs) and the effects on the extent of RBC clumping. Design/interventions Subjects were grounded with conductive patches on the soles of their feet and palms of their hands. Wires connected the patches to a stainless-steel rod inserted in the earth outdoors. Small fingertip pinprick blood samples were placed on microscope slides and an electric field was applied to them. Electrophoretic mobility of the RBCs was determined by measuring terminal velocities of the cells in video recordings taken through a microscope. RBC aggregation was measured by counting the numbers of clustered cells in each sample. Settings/location Each subject sat in a comfortable reclining chair in a soundproof experiment room with the lights dimmed or off. Subjects Ten (10) healthy adult subjects were recruited by word-of-mouth. Results Earthing or grounding increased zeta potentials in all samples by an average of 2.70 and significantly reduced RBC aggregation. Conclusions Grounding increases the surface charge on RBCs and thereby reduces blood viscosity and clumping. Grounding appears to be one of the simplest and yet most profound interventions for helping reduce cardiovascular risk and cardiovascular events. PMID:22757749

  11. Earthing (grounding) the human body reduces blood viscosity-a major factor in cardiovascular disease.

    PubMed

    Chevalier, Gaétan; Sinatra, Stephen T; Oschman, James L; Delany, Richard M

    2013-02-01

    Emerging research is revealing that direct physical contact of the human body with the surface of the earth (grounding or earthing) has intriguing effects on human physiology and health, including beneficial effects on various cardiovascular risk factors. This study examined effects of 2 hours of grounding on the electrical charge (zeta potential) on red blood cells (RBCs) and the effects on the extent of RBC clumping. SUBJECTS were grounded with conductive patches on the soles of their feet and palms of their hands. Wires connected the patches to a stainless-steel rod inserted in the earth outdoors. Small fingertip pinprick blood samples were placed on microscope slides and an electric field was applied to them. Electrophoretic mobility of the RBCs was determined by measuring terminal velocities of the cells in video recordings taken through a microscope. RBC aggregation was measured by counting the numbers of clustered cells in each sample. Each subject sat in a comfortable reclining chair in a soundproof experiment room with the lights dimmed or off. Ten (10) healthy adult subjects were recruited by word-of-mouth. Earthing or grounding increased zeta potentials in all samples by an average of 2.70 and significantly reduced RBC aggregation. Grounding increases the surface charge on RBCs and thereby reduces blood viscosity and clumping. Grounding appears to be one of the simplest and yet most profound interventions for helping reduce cardiovascular risk and cardiovascular events.

  12. Characteristics of lightning leader propagation and ground attachment

    NASA Astrophysics Data System (ADS)

    Jiang, Rubin; Qie, Xiushu; Wang, Zhichao; Zhang, Hongbo; Lu, Gaopeng; Sun, Zhuling; Liu, Mingyuan; Li, Xun

    2015-12-01

    The grounding process and the associated leader behavior were analyzed by using high-speed video record and time-correlated electric field change for 37 natural negative cloud-to-ground flashes. Weak luminous grounded channel was recognized below the downward leader tip in the frame preceding the return stroke, which is inferred as upward connecting leader considering the physical process of lightning attachment, though not directly confirmed by sequential frames. For stepped leader-first return strokes, the upward connecting leaders tend to be induced by those downward leader branches with brighter luminosity and lower channel tip above ground, and they may accomplish the attachment with great possibility. The upward connecting leaders for 2 out of 61 leader-subsequent stroke sequences were captured in the frame prior to the return stroke, exhibiting relatively long channel lengths of 340 m and 105 m, respectively. The inducing downward subsequent leaders were of the chaotic type characterized by irregular electric field pulse train with duration of 0.2-0.3 ms. The transient drop of the high potential difference between stepped leader system and ground when the attachment occurred would macroscopically terminate the propagation of those ungrounded branches while would not effectively prevent the development of the existing space stem systems in the low-conductivity streamer zone apart from the leader tip. When the ungrounded branches are of poor connection with the main stroke channel, their further propagation toward ground would be feasible. These two factors may contribute to the occurrence of multiple grounding within the same leader-return stroke sequence.

  13. Magnetic structure driven ferroelectricity and large magnetoelectric coupling in antiferromagnet Co4Nb2O9

    NASA Astrophysics Data System (ADS)

    Srivastava, P.; Chaudhary, S.; Maurya, V.; Saha, J.; Kaushik, S. D.; Siruguri, V.; Patnaik, S.

    2018-05-01

    Synthesis and extensive structural, pyroelectric, magnetic, dielectric and magneto-electric characterizations are reported for polycrystalline Co4Nb2O9 towards unraveling the multiferroic ground state. Magnetic measurements confirm that Co4Nb2O9 becomes an anti-ferromagnet at around 28 K. Associated with the magnetic phase transition, a sharp peak in pyroelectric current indicates the appearance of strong magneto-electric coupling below Neel temperature (TN) along with large coupling constant upto 17.8 μC/m2T. Using temperature oscillation technique, we establish Co4Nb2O9 to be a genuine multiferroic with spontaneous electric polarization in the anti-ferromagnetic state in the absence of magnetic field poling. This is in agreement with our low temperature neutron diffraction studies that show the magnetic structure of Co4Nb2O9 to be that of a non-collinear anti-ferromagnet with ferroelectric ground state.

  14. Numerical Simulation of Galvanic Corrosion Caused by Shaft Grounding Systems in Steel Ship Hulls

    DTIC Science & Technology

    2005-01-01

    ship hull on paint holidays because of the substantial difference of the electric potentials between the steel ship hull and the nickel-aluminum...steel ship hull on paint holidays because of the substantial difference of the electric potentials between the steel ship hull and the nickel...substantial difference of the electric potentials between the steel ship hull and the nickel-aluminum bronze propellers. There are concerns on the

  15. A Unified Model of Cloud-to-Ground Lightning Stroke

    NASA Astrophysics Data System (ADS)

    Nag, A.; Rakov, V. A.

    2014-12-01

    The first stroke in a cloud-to-ground lightning discharge is thought to follow (or be initiated by) the preliminary breakdown process which often produces a train of relatively large microsecond-scale electric field pulses. This process is poorly understood and rarely modeled. Each lightning stroke is composed of a downward leader process and an upward return-stroke process, which are usually modeled separately. We present a unified engineering model for computing the electric field produced by a sequence of preliminary breakdown, stepped leader, and return stroke processes, serving to transport negative charge to ground. We assume that a negatively-charged channel extends downward in a stepped fashion through the relatively-high-field region between the main negative and lower positive charge centers and then through the relatively-low-field region below the lower positive charge center. A relatively-high-field region is also assumed to exist near ground. The preliminary breakdown pulse train is assumed to be generated when the negatively-charged channel interacts with the lower positive charge region. At each step, an equivalent current source is activated at the lower extremity of the channel, resulting in a step current wave that propagates upward along the channel. The leader deposits net negative charge onto the channel. Once the stepped leader attaches to ground (upward connecting leader is presently neglected), an upward-propagating return stroke is initiated, which neutralizes the charge deposited by the leader along the channel. We examine the effect of various model parameters, such as step length and current propagation speed, on model-predicted electric fields. We also compare the computed fields with pertinent measurements available in the literature.

  16. Battery Electric Vehicles can reduce greenhouse has emissions and make renewable energy cheaper in India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopal, Anand R; Witt, Maggie; Sheppard, Colin

    India's National Mission on Electric Mobility (NMEM) sets a countrywide goal of deploying 6 to 7 million hybrid and electric vehicles (EVs) by 2020. There are widespread concerns, both within and outside the government, that the Indian grid is not equipped to accommodate additional power demand from battery electric vehicles (BEVs). Such concerns are justified on the grounds of India's notorious power sector problems pertaining to grid instability and chronic blackouts. Studies have claimed that deploying BEVs in India will only

  17. Fast Surface Reconstruction and Segmentation with Ground-Based and Airborne LIDAR Range Data

    DTIC Science & Technology

    2009-01-14

    to perform a union find on the ground mesh vertices to calculate the sizes of ground mesh segments, 462 seconds to read the airborne data in to a...NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of...California at Berkeley,Department of Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING ORGANIZATION REPORT NUMBER 9

  18. Tropic Test of Bradley Fighting Vehicle Systems.

    DTIC Science & Technology

    1985-05-23

    CM-R AMSTE-SG-H AMSTE-PT-MT AMSTE-RM Aberden Proving Ground , MD 21005-5055 Commander U.S. Army Armament Research and Development Command ATTN: AMSMC...Requirements Appendix E -Vision Devices Appendix F - Grounding Circuit Resistance Appendix G - Human Factors Appendix H - Distribution List -" -"" 3...miles of operation o Time-on-Target Baseline Tests o Selected electrical and grounding circuit resistances o Armament Firing (25mm, 7.62mm and TOW) o Fire

  19. Statistical analysis of lightning electric field measured under Malaysian condition

    NASA Astrophysics Data System (ADS)

    Salimi, Behnam; Mehranzamir, Kamyar; Abdul-Malek, Zulkurnain

    2014-02-01

    Lightning is an electrical discharge during thunderstorms that can be either within clouds (Inter-Cloud), or between clouds and ground (Cloud-Ground). The Lightning characteristics and their statistical information are the foundation for the design of lightning protection system as well as for the calculation of lightning radiated fields. Nowadays, there are various techniques to detect lightning signals and to determine various parameters produced by a lightning flash. Each technique provides its own claimed performances. In this paper, the characteristics of captured broadband electric fields generated by cloud-to-ground lightning discharges in South of Malaysia are analyzed. A total of 130 cloud-to-ground lightning flashes from 3 separate thunderstorm events (each event lasts for about 4-5 hours) were examined. Statistical analyses of the following signal parameters were presented: preliminary breakdown pulse train time duration, time interval between preliminary breakdowns and return stroke, multiplicity of stroke, and percentages of single stroke only. The BIL model is also introduced to characterize the lightning signature patterns. Observations on the statistical analyses show that about 79% of lightning signals fit well with the BIL model. The maximum and minimum of preliminary breakdown time duration of the observed lightning signals are 84 ms and 560 us, respectively. The findings of the statistical results show that 7.6% of the flashes were single stroke flashes, and the maximum number of strokes recorded was 14 multiple strokes per flash. A preliminary breakdown signature in more than 95% of the flashes can be identified.

  20. Surface geophysical methods for characterising frozen ground in transitional permafrost landscapes

    USGS Publications Warehouse

    Briggs, Martin A.; Campbell, Seth; Nolan, Jay; Walvoord, Michelle Ann; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Lane, John W.

    2017-01-01

    The distribution of shallow frozen ground is paramount to research in cold regions, and is subject to temporal and spatial changes influenced by climate, landscape disturbance and ecosystem succession. Remote sensing from airborne and satellite platforms is increasing our understanding of landscape-scale permafrost distribution, but typically lacks the resolution to characterise finer-scale processes and phenomena, which are better captured by integrated surface geophysical methods. Here, we demonstrate the use of electrical resistivity imaging (ERI), electromagnetic induction (EMI), ground penetrating radar (GPR) and infrared imaging over multiple summer field seasons around the highly dynamic Twelvemile Lake, Yukon Flats, central Alaska, USA. Twelvemile Lake has generally receded in the past 30 yr, allowing permafrost aggradation in the receded margins, resulting in a mosaic of transient frozen ground adjacent to thick, older permafrost outside the original lakebed. ERI and EMI best evaluated the thickness of shallow, thin permafrost aggradation, which was not clear from frost probing or GPR surveys. GPR most precisely estimated the depth of the active layer, which forward electrical resistivity modelling indicated to be a difficult target for electrical methods, but could be more tractable in time-lapse mode. Infrared imaging of freshly dug soil pit walls captured active-layer thermal gradients at unprecedented resolution, which may be useful in calibrating emerging numerical models. GPR and EMI were able to cover landscape scales (several kilometres) efficiently, and new analysis software showcased here yields calibrated EMI data that reveal the complicated distribution of shallow permafrost in a transitional landscape.

  1. Appliance Services. Basic Course. Career Education.

    ERIC Educational Resources Information Center

    Killough, Joseph

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 25 terminal objectives for a basic appliance repair course. The materials were developed for a 36-week course (2 hours daily) designed to enable the student to be well-grounded in the fundamentals of electricity as well as applied electricity.…

  2. Static electricity: A literature review

    NASA Astrophysics Data System (ADS)

    Crow, Rita M.

    1991-11-01

    The major concern with static electricity is its discharging in a flammable atmosphere which can explode and cause a fire. Textile materials can have their electrical resistivity decreased by the addition of antistatic finishes, imbedding conductive particles into the fibres or by adding metal fibers to the yarns. The test methods used in the studies of static electricity include measuring the static properties of materials, of clothed persons, and of the ignition energy of flammable gases. Surveys have shown that there is sparse evidence for fires definitively being caused by static electricity. However, the 'worst-case' philosophy has been adopted and a static electricity safety code is described, including correct grounding procedures and the wearing of anti-static clothing and footwear.

  3. Near surface gamma-ray and electric field enhancements during disturbed weather: combined signatures from convective clouds, lightning and rain

    NASA Astrophysics Data System (ADS)

    Reuveni, Yuval; Yair, Yoav; Price, Colin; Steinitz, Gideon

    2017-04-01

    We present correlations found between ground-level gamma-ray enhancements with precipitation and strong electric fields typical of thunderstorms. The data was obtained at the Cosmic Ray Observatory located on the western slopes of Mt. Hermon in northern Israel (altitude 2020 m ASL). During several thunderstorms in October and November 2015, we recorded extended periods of gamma ray enhancements, which lasted tens of minutes and coincided with peaks both in precipitation and the vertical electric field (Ez). We distinguish between two types of events based on the behavior of these parameters: (a) slow increase (up to 300 minutes) of atmospheric gamma ray radiation due to radon progeny washout along with minutes of Ez enhancement, which were not associated with the occurrences of near-by CG lightning discharges, and (b) rapid 30 minutes-long bursts of gamma rays, coinciding with much shorter Ez enhancements that were associated with the occurrences of near-by CG lightning discharges, and were superimposed on the radiation from radon daughters at ground level washed out by precipitation. We conclude that the superposition of accelerated high energy electrons by thunderstorm electric fields with the radon progeny washout explains the relatively fast gamma-ray increase observed at ground level, where the minutes-scale vertical electric field enhancement are presumably caused due to near-by convective clouds. Our results show that the mean half-life depletion times of the residual nuclei that were produced during events without lightning occurrences were between 25-65 minutes, compared to 55-100 minutes when lightning were present, indicating that different types of nuclei were involved.

  4. Microspacecraft and Earth observation: Electrical field (ELF) measurement project

    NASA Technical Reports Server (NTRS)

    Olsen, Tanya; Elkington, Scot; Parker, Scott; Smith, Grover; Shumway, Andrew; Christensen, Craig; Parsa, Mehrdad; Larsen, Layne; Martinez, Ranae; Powell, George

    1990-01-01

    The Utah State University space system design project for 1989 to 1990 focuses on the design of a global electrical field sensing system to be deployed in a constellation of microspacecraft. The design includes the selection of the sensor and the design of the spacecraft, the sensor support subsystems, the launch vehicle interface structure, on board data storage and communications subsystems, and associated ground receiving stations. Optimization of satellite orbits and spacecraft attitude are critical to the overall mapping of the electrical field and, thus, are also included in the project. The spacecraft design incorporates a deployable sensor array (5 m booms) into a spinning oblate platform. Data is taken every 0.1 seconds by the electrical field sensors and stored on-board. An omni-directional antenna communicates with a ground station twice per day to down link the stored data. Wrap-around solar cells cover the exterior of the spacecraft to generate power. Nine Pegasus launches may be used to deploy fifty such satellites to orbits with inclinations greater than 45 deg. Piggyback deployment from other launch vehicles such as the DELTA 2 is also examined.

  5. Measurements in atmospheric electricity designed to improve launch safety during the Apollo series

    NASA Technical Reports Server (NTRS)

    Nanevicz, J. E.; Pierce, E. T.; Whitson, A. L.

    1972-01-01

    Ground test measurements were made during the launches of Apollo 13 and 14 in an effort to better define the electrical characteristics of a large launch vehicle. Of particular concern was the effective electrical length of the vehicle and plume since this parameter markedly affects the likelihood of a lightning stroke being triggered by a launch during disturbed weather conditions. Since no instrumentation could be carried aboard the launch vehicle, the experiments were confined to LF radio noise and electrostatic-field measurements on the ground in the vicinity of the launch pad. The philosophy of the experiment and the instrumentation and layout are described. From the results of the experiment it is concluded that the rocket and exhaust do not produce large-scale shorting of the earth's field out to distances of thousands of feet from the launch pad. There is evidence, however, that the plume does add substantially to the electrical length of the rocket. On this basis, it was recommended that there be no relaxation of launch rules for launches during disturbed weather.

  6. Modeling and simulation of dielectrophoretic collective dynamics in a suspension of polarizable particles under the action of a gradient AC electric field.

    PubMed

    Tada, Shigeru; Shen, Yan; Qiu, Zhiyong

    2017-06-01

    When a suspension of polarizable particles is subjected to a gradient AC electric field, the particles exhibit collective motion due to an interaction between the dipole induced in the particles and the spatial gradient of the electric field; this is known as dielectrophoresis. In the present study, the collective dynamics of suspended particles in a parallel-plate electric chamber was investigated by simulating numerically the trajectories of individual particles under the action of combined dielectrophoretic and dipole-dipole interparticle forces. The particles were transported by the dielectrophoretic forces toward the grounded electrodes. Before long, when the particles approached the site of the minimum field strength, attractive/repulsive interparticle forces became dominant and acted among the particles attempting to form a column-like cluster, having the particles distribution in concentric circles in its cross-section, in line with the centerline of the grounded electrodes. Our results also well reproduced the transient particle aggregation that was observed experimentally. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Jeremy Diez; Jeffrey Wishart

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration inmore » an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.« less

  8. Electric dipole moments of the fluorescent probes Prodan and Laurdan: experimental and theoretical evaluations.

    PubMed

    Vequi-Suplicy, Cíntia C; Coutinho, Kaline; Lamy, M Teresa

    2014-03-01

    Several experimental and theoretical approaches can be used for a comprehensive understanding of solvent effects on the electronic structure of solutes. In this review, we revisit the influence of solvents on the electronic structure of the fluorescent probes Prodan and Laurdan, focusing on their electric dipole moments. These biologically used probes were synthesized to be sensitive to the environment polarity. However, their solvent-dependent electronic structures are still a matter of discussion in the literature. The absorption and emission spectra of Prodan and Laurdan in different solvents indicate that the two probes have very similar electronic structures in both the ground and excited states. Theoretical calculations confirm that their electronic ground states are very much alike. In this review, we discuss the electric dipole moments of the ground and excited states calculated using the widely applied Lippert-Mataga equation, using both spherical and spheroid prolate cavities for the solute. The dimensions of the cavity were found to be crucial for the calculated dipole moments. These values are compared to those obtained by quantum mechanics calculations, considering Prodan in vacuum, in a polarizable continuum solvent, and using a hybrid quantum mechanics-molecular mechanics methodology. Based on the theoretical approaches it is evident that the Prodan dipole moment can change even in the absence of solute-solvent-specific interactions, which is not taken into consideration with the experimental Lippert-Mataga method. Moreover, in water, for electric dipole moment calculations, it is fundamental to consider hydrogen-bonded molecules.

  9. GPS Multipath Fade Measurements to Determine L-Band Ground Reflectivity Properties

    NASA Technical Reports Server (NTRS)

    Kavak, Adnan; Xu, Guanghan; Vogel, W. J.

    1996-01-01

    In personal satellite communications, especially when the line-of-sight is clear, ground specular reflected signals along with direct signals are received by low gain, almost omni-directional subscriber antennas. A six-channel, C/A code processing, global positioning system (GPS) receiver with an almost omni-directional patch antenna was used to take measurements over three types of ground to characterize 1.575 GHz specular ground reflections and ground dielectric properties. Fade measurements were taken over grass, asphalt, and lake water surfaces by placing the antenna in a vertical position at a fixed height from the ground. Electrical characteristics (conductivity and dielectric constant) of these surfaces (grass, asphalt, lake water) were obtained by matching computer simulations to the experimental results.

  10. GPS Multipath Fade Measurements to Determine L-Band Ground Reflectivity Properties

    NASA Technical Reports Server (NTRS)

    Kavak, Adnan; Xu, Guang-Han; Vogel, Wolfhard J.

    1996-01-01

    In personal satellite communications, especially when the line-of-sight is clear, ground specular reflected signals along with direct signals are received by low gain, almost omni-directional subscriber antennas. A six-channel, C/A code processing, GPS receiver with an almost omni-directional patch antenna was used to take measurements over three types of ground to characterize 1.575 GHz specular ground reflections and ground dielectric properties. Fade measurements were taken over grass, asphalt, and lake water surfaces by placing the antenna in a vertical position at a fixed height from the ground. Electrical characteristics (conductivity and dielectric constant) of these surfaces (grass, asphalt, lake water) were obtained by matching computer simulations to the experimental results.

  11. Low-Loss, High-Isolation Microwave Microelectromechanical Systems (MEMS) Switches Being Developed

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.

    2002-01-01

    Switches, electrical components that either permit or prevent the flow of electricity, are the most important and widely used electrical devices in integrated circuits. In microwave systems, switches are required for switching between the transmitter and receiver; in communication systems, they are needed for phase shifters in phased-array antennas, for radar and communication systems, and for the new class of digital or software definable radios. Ideally, switches would be lossless devices that did not depend on the electrical signal's frequency or power, and they would not consume electrical power to change from OFF to ON or to maintain one of these two states. Reality is quite different, especially at microwave frequencies. Typical switches in microwave integrated circuits are pin diodes or gallium arsenide (GaAs) field-effect transistors that are nonlinear, with characteristics that depend on the power of the signal. In addition, they are frequency-dependent, lossy, and require electrical power to maintain a certain state. A new type of component has been developed that overcomes most of these technical difficulties. Microelectromechanical (MEMS) switches rely on mechanical movement as a response to an applied electrical force to either transmit or reflect electrical signal power. The NASA Glenn Research Center has been actively developing MEMS for microwave applications for over the last 5 years. Complete fabrication procedures have been developed so that the moving parts of the switch can be released with near 100-percent yield. Moreover, the switches fabricated at Glenn have demonstrated state-of-the-art performance. A typical MEMS switch is shown. The switch extends over the signal and ground lines of a finite ground coplanar waveguide, a commonly used microwave transmission line. In the state shown, the switch is in the UP state and all the microwave power traveling along the transmission line proceeds unimpeded. When a potential difference is applied between the cantilever and the transmission line, the cantilever is pulled downward until it connects the signal line to the ground planes, creating a short circuit. In this state, all the microwave power is reflected. The graph shows the measured performance of the switch, which has less than 0.1 dB of insertion loss and greater than 30dB of isolation. These switches consume negligible electrical power and are extremely linear. Additional research is required to address reliability and to increase the switching speed.

  12. Measuring the permittivity of the surface of the Churyumov-Gerasimenko nucleus: the PP-SESAME experiment on board the Philae/ROSETTA lander

    NASA Astrophysics Data System (ADS)

    Lethuillier, A.; Le Gall, A. A.; Hamelin, M.; Ciarletti, V.; Caujolle-Bert, S.; Schmidt, W.; Grard, R.

    2014-12-01

    Within Philae, the lander of the Rosetta spacecraft, the Permittivity Probe (PP) experiment as part of the Surface Electric Sounding and Acoustic Monitoring Experiment (SESAME) package was designed to measure the low frequency (Hz-kHz) electrical properties of the close subsurface of the nucleus.At frequencies below 10 kHz, the electrical signature of the matter is especially sensitive to the presence of water ice and its temperature. PP-SESAME will thus allow to determine the water ice content in the near-surface and to monitor its diurnal and orbital variations thus providing essential insight on the activity and evolution of the cometary nucleus.The PP-SESAME instrument is derived from the quadrupole array technique. A sinusoidal electrical current is sent into the ground through a first dipole, and the induced electrical voltage is measured with a second dipole. The complex permittivity of the material is inferred from the mutual impedance derived from the measurements. In practice, the influence of both the electronic circuit of the instrument and the conducting elements in its close environment must be accounted for in order to best estimate the dielectric constant and electric conductivity of the ground. To do this we have developed a method called the "capacity-influence matrix method".A replica of the instrument was recently built in LATMOS (France) and was tested in the frame of a field campaign in the giant ice cave system of Dachstein, Austria. In the caves, the ground is covered with a thick layer of ice, which temperature is rather constant throughout the year. This measurement campaign allowed us to test the "capacity influence matrix method" in a natural icy environment.The first measurements of the PP-SESAME/Philae experiment should be available in mid-November. In this paper we will present the "capacity-influence matrix method", the measurements and results from the Austrian field campaign and the preliminary analysis of the PP-SESAME/Philae data.

  13. Analysis of the charge exchange between the human body and ground: evaluation of "earthing" from an electrical perspective.

    PubMed

    Chamberlin, Kent; Smith, Wayne; Chirgwin, Christopher; Appasani, Seshank; Rioux, Paul

    2014-12-01

    The purpose of this study was to investigate "earthing" from an electrical perspective through measurement and analysis of the naturally occurring electron flow between the human body or a control and ground as this relates to the magnitude of the charge exchange, the relationship between the charge exchange and body functions (respiration and heart rate), and the detection of other information that might be contained in the charge exchange. Sensitive, low-noise instrumentation was designed and fabricated to measure low-level current flow at low frequencies. This instrumentation was used to record current flow between human subjects or a control and ground, and these measurements were performed approximately 40 times under varied circumstances. The results of these measurements were analyzed to determine if information was contained in the current exchange. The currents flowing between the human body and ground were small (nanoamperes), and they correlated with subject motion. There did not appear to be any information contained in this exchange except for information about subject motion. This study showed that currents flow between the environment (earth) and a grounded human body; however, these currents are small (nanoamperes) and do not appear to contain information other than information about subject motion.

  14. Analysis of the Charge Exchange Between the Human Body and Ground: Evaluation of “Earthing” From an Electrical Perspective

    PubMed Central

    Chamberlin, Kent; Smith, Wayne; Chirgwin, Christopher; Appasani, Seshank; Rioux, Paul

    2014-01-01

    Objective The purpose of this study was to investigate “earthing” from an electrical perspective through measurement and analysis of the naturally occurring electron flow between the human body or a control and ground as this relates to the magnitude of the charge exchange, the relationship between the charge exchange and body functions (respiration and heart rate), and the detection of other information that might be contained in the charge exchange. Methods Sensitive, low-noise instrumentation was designed and fabricated to measure low-level current flow at low frequencies. This instrumentation was used to record current flow between human subjects or a control and ground, and these measurements were performed approximately 40 times under varied circumstances. The results of these measurements were analyzed to determine if information was contained in the current exchange. Results The currents flowing between the human body and ground were small (nanoamperes), and they correlated with subject motion. There did not appear to be any information contained in this exchange except for information about subject motion. Conclusions This study showed that currents flow between the environment (earth) and a grounded human body; however, these currents are small (nanoamperes) and do not appear to contain information other than information about subject motion. PMID:25435837

  15. A Brief 30-Year Review: Research Highlights from Lightning Mapping Systems 1970-2000

    NASA Astrophysics Data System (ADS)

    MacGorman, D. R.

    2016-12-01

    Modern lightning mapping began in the 1970s, the decade in which VHF mapping systems, acoustic mapping systems, and ground strike locating systems were introduced. Adding GPS synchronization of VHF systems in the late 1990s enabled real-time VHF mapping systems to be deployed more extensively. Data these systems provided by 2000 revolutionized our understanding of how storms produce lightning. Among key results: Electrostatics, not electrodynamics, governs where lightning is initiated and where it propagates, contrary to early expectations. Lightning is initiated in a region of large electric field magnitude, typically between a positive charge region and a negative charge region. The geometry of a storm's charge regions governs the spatial extent of each end of the flash. The flash initially propagates bidirectionally toward the two charge regions that initiated it, and once it reaches the charge regions and maximizes the ambient potential difference spanned by the flash structure, it extends through each charge region's ambient electric potential well until the total electric field magnitude at the ends of the flash drops below the threshold for continued propagation. The typical charge distribution producing a cloud-to-ground flash is a region of charge of the polarity being lowered to ground, above a lesser amount of charge of the opposite polarity; the lower region has too little charge to capture the downward propagating channel. Contrary to previous understanding, naturally occurring cloud-to-ground lightning often lowers positive charge to ground, instead of the usual negative charge, in several situations, including winter storms, stratiform precipitation regions, some severe storms, and storms on the High Plains of the United States. The reason cloud-to-ground activity in some storms is dominated by flashes that lower positive charge to ground is that the polarity of the main charge regions in those storms is inverted from the usual polarity, with the main mid-level charge being positive and the main upper-level charge being negative. This strongly implies that the dominant non-inductive electrification mechanism is inverted in those storms, probably because the liquid water content in the mixed phase region is larger than in most storms.

  16. Development of a unified guidance system for geocentric transfer. [for solar electric propulsion spacecraft

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Regetz, J. D., Jr.

    1975-01-01

    A method is presented for open loop guidance of a solar electric propulsion spacecraft to geosynchronous orbit. The method consists of determining the thrust vector profiles on the ground with an optimization computer program, and performing updates based on the difference between the actual trajectory and that predicted with a precision simulation computer program. The motivation for performing the guidance analysis during the mission planning phase is discussed, and a spacecraft design option that employs attitude orientation constraints is presented. The improvements required in both the optimization program and simulation program are set forth, together with the efforts to integrate the programs into the ground support software for the guidance system.

  17. Development of a unified guidance system for geocentric transfer. [solar electric propulsion spacecraft

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Regetz, J. D., Jr.

    1975-01-01

    A method is presented for open loop guidance of a solar electric propulsion spacecraft to geosynchronsus orbit. The method consists of determining the thrust vector profiles on the ground with an optimization computer program, and performing updates based on the difference between the actual trajectory and that predicted with a precision simulation computer program. The motivation for performing the guidance analysis during the mission planning phase is discussed, and a spacecraft design option that employs attitude orientation constraints is presented. The improvements required in both the optimization program and simulation program are set forth, together with the efforts to integrate the programs into the ground support software for the guidance system.

  18. Goaf water detection using the grounded electrical source airborne transient electromagnetic system

    NASA Astrophysics Data System (ADS)

    Li, D.; Ji, Y.; Guan, S.; Wu, Y.; Wang, A.

    2017-12-01

    To detect the geoelectric characteristic of goaf water, the grounded electrical source airborne transient electromagnetic (GREATEM) system (developed by Jilin University, China) is applied to the goaf water detection since its advantages of considerable prospecting depth, lateral resolution and detection efficiency. For the test of GREATEM system in goaf water detection, an experimental survey was conducted at Qinshui coal mine (Shanxi province, China). After data acquisition, noise reduction and inversion, the resistivity profiles of survey area is presented. The results highly agree the investigation information provided by Shanxi Coal Geology Geophysical Surveying Exploration Institute (China), conforming that the GREATEM system is an effective technique for resistivity detection of goaf water.

  19. Bose-Einstein condensate of rigid rotor molecules

    NASA Astrophysics Data System (ADS)

    Jones, Evan; Smith, Joseph; Rittenhouse, Seth; Peden, Brandon; Wilson, Ryan

    2017-04-01

    We study the ground state phases of a quasi-two-dimensional Bose-Einstein condensate (BEC) of dipolar rigid rotor molecules subject to a DC electric field. In the high-field limit, this system acquires the properties of the fully polarized dipolar BEC, which exhibits a roton-maxon excitation spectrum, and has been thoroughly studied in the theoretical literature. In the weak-field limit, however, qualitatively new physics emerges due to the competition between the (weak) applied field and internal electric fields, which are produced by the molecules themselves. We characterize the ground states of this system, and study its unique dielectric properties. We gratefully acknowledge support from the National Science Foundation under Grant No. PHYS-1516421.

  20. Ground-Coupled Heating-Cooling Systems in Urban Areas: How Sustainable Are They?

    ERIC Educational Resources Information Center

    Younger, Paul L.

    2008-01-01

    Ground-coupled heating-cooling systems (GCHCSs) exchange heat between the built environment and the subsurface using pipework buried in trenches or boreholes. If heat pumps in GCHCSs are powered by "green electricity," they offer genuine carbon-free heating-cooling; for this reason, there has been a surge in the technology in recent…

  1. PROGRAM ASTEC (ADVANCED SOLAR TURBO ELECTRIC CONCEPT). PART IV. SOLAR COLLECTOR DEVELOPMENT SUPPORT TASKS. VOL. VII. ENGINEERING DEVELOPMENT GROUND TEST PLAN FOR THE ASTEC SOLAR ENERGY COLLECTOR.

    DTIC Science & Technology

    optical, and structural integrity of the full scale ASTEC solar collector before further development proceeds. This document specifies these initial...engineering ground tests recommended for testing petals and other critical components of the ASTEC collector. It defines the requirements and

  2. A Hybrid Approach for Characterizing Linear and Nonlinear Electromagnetic Scattering: Theory and Applications

    DTIC Science & Technology

    2012-11-01

    axis at a 2-m height above the ground and the observation point is at a 1.7-m height along a radial line at ϕ = 30°. Ground properties: εr’ = 4...fields of a horizontal electric dipole as a function of range. The dipole is buried in the ground at a 10-cm depth and the observation point is at...would necessitate the evaluation of a triple integral. To expedite the matrix filling process, different common schemes are available in efficiently

  3. Toward Triplet Ground State NaLi Molecules

    NASA Astrophysics Data System (ADS)

    Ebadi, Sepehr; Jamison, Alan; Rvachov, Timur; Jing, Li; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    The NaLi molecule is expected to have a long lifetime in the triplet ground-state due to its fermionic nature, large rotational constant, and weak spin-orbit coupling. The triplet state has both electric and magnetic dipole moments, affording unique opportunities in quantum simulation and ultracold chemistry. We have mapped the excited state NaLi triplet potential by means of photoassociation spectroscopy. We report on this and our further progress toward the creation of the triplet ground-state molecules using STIRAP. NSF, ARO-MURI, Samsung, NSERC.

  4. Design of power cable grounding wire anti-theft monitoring system

    NASA Astrophysics Data System (ADS)

    An, Xisheng; Lu, Peng; Wei, Niansheng; Hong, Gang

    2018-01-01

    In order to prevent the serious consequences of the power grid failure caused by the power cable grounding wire theft, this paper presents a GPRS based power cable grounding wire anti-theft monitoring device system, which includes a camera module, a sensor module, a micro processing system module, and a data monitoring center module, a mobile terminal module. Our design utilize two kinds of methods for detecting and reporting comprehensive image, it can effectively solve the problem of power and cable grounding wire box theft problem, timely follow-up grounded cable theft events, prevent the occurrence of electric field of high voltage transmission line fault, improve the reliability of the safe operation of power grid.

  5. Stream simulation in an analog model of the ground-water system on Long Island, New York

    USGS Publications Warehouse

    Harbaugh, Arlen W.; Getzen, Rufus T.

    1977-01-01

    The stream circuits of an electric analog model of the ground-water system of Long Island were modified to more accurately represent the relationahip between streamflow and ground-water levels. Assumptions for use of the revised circuits are (1) that streams are strictly gaining, and (2) that ground-water seepage into the streams is proportional to the difference between streambed elevation and the average water-table elevation near the stream. No seepage into streams occurs when ground-water levels drop below the streambed elevation. Regional simulation of the 1962-68 drought on Long Island was significantly improved by use of the revised stream circuits.

  6. Ground Software Maintenance Facility (GSMF) system manual

    NASA Technical Reports Server (NTRS)

    Derrig, D.; Griffith, G.

    1986-01-01

    The Ground Software Maintenance Facility (GSMF) is designed to support development and maintenance of spacelab ground support software. THE GSMF consists of a Perkin Elmer 3250 (Host computer) and a MITRA 125s (ATE computer), with appropriate interface devices and software to simulate the Electrical Ground Support Equipment (EGSE). This document is presented in three sections: (1) GSMF Overview; (2) Software Structure; and (3) Fault Isolation Capability. The overview contains information on hardware and software organization along with their corresponding block diagrams. The Software Structure section describes the modes of software structure including source files, link information, and database files. The Fault Isolation section describes the capabilities of the Ground Computer Interface Device, Perkin Elmer host, and MITRA ATE.

  7. Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance

    USDA-ARS?s Scientific Manuscript database

    Soil salinity is recognized worldwide as a major threat to agriculture, particularly in arid and semi-arid regions. Farmers and decision makers need updated and accurate maps of salinity in agronomically and environmentally relevant ranges (i.e., <20 dS m/1, when salinity is measured as electrical...

  8. Safety of High Speed Guided Ground Transportation Systems - An Overview of Biological Effects and Mechanisms Relevant to EMF Exposures from Mass Transit and Electric Rail Systems

    DOT National Transportation Integrated Search

    1993-08-01

    The U.S. has implemented a national initiative to develop maglev (magnetic levitation) and other high-speed rail (HSR) : systems. There are concerns for potential adverse health effects of the Extremely Lou Frequency (3-3,000 Hz) electric : and magne...

  9. Examining diel patterns of soil and xylem moisture using electrical resistivity imaging

    NASA Astrophysics Data System (ADS)

    Mares, Rachel; Barnard, Holly R.; Mao, Deqiang; Revil, André; Singha, Kamini

    2016-05-01

    The feedbacks among forest transpiration, soil moisture, and subsurface flowpaths are poorly understood. We investigate how soil moisture is affected by daily transpiration using time-lapse electrical resistivity imaging (ERI) on a highly instrumented ponderosa pine and the surrounding soil throughout the growing season. By comparing sap flow measurements to the ERI data, we find that periods of high sap flow within the diel cycle are aligned with decreases in ground electrical conductivity and soil moisture due to drying of the soil during moisture uptake. As sap flow decreases during the night, the ground conductivity increases as the soil moisture is replenished. The mean and variance of the ground conductivity decreases into the summer dry season, indicating drier soil and smaller diel fluctuations in soil moisture as the summer progresses. Sap flow did not significantly decrease through the summer suggesting use of a water source deeper than 60 cm to maintain transpiration during times of shallow soil moisture depletion. ERI captured spatiotemporal variability of soil moisture on daily and seasonal timescales. ERI data on the tree showed a diel cycle of conductivity, interpreted as changes in water content due to transpiration, but changes in sap flow throughout the season could not be interpreted from ERI inversions alone due to daily temperature changes.

  10. Exotic Structure of Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2003-12-01

    Ground state properties of C isotopes, deformation and elecromagnetic moments, as well as electric dipole transition strength are investigated. We first study the ground state properties of C isotopes using a deformed Hartree-Fock (HF) + BCS model with Skyrme interactions. Isotope dependence of the deformation properties is investigated. Shallow deformation minima are found in several neutron-rich C isotopes. It is also shown that the deformation minima appear in both the oblate and the prolate sides in 17C and 19C having almost the same binding energies. Next, we carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the clear configuration dependence of the quadrupole and magnetic moments in the odd C isotopes, which will be useful to find out the deformation and spin-parities of the ground states of these nuclei. Electric dipole states of C isotopes are studied focusing on the interplay between low energy Pigmy strength and giant dipole resonances. Low peak energies, two-peak structure and large widths of the giant resonances show deformation effects. Calculated transition strength below dipole giant resonance in heavier C isotopes than 15C is found to exhaust 12 ~ 15% of the Thomas-Reiche-Kuhn sum rule value and 50 ~ 80% of the cluster sum rule value.

  11. Comparison of fast electric field changes from subsequent return strokes of natural and triggered lightning

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Willett, J. C.; Bailey, J. C.

    1989-01-01

    Fast electric field changes from subsequent return strokes of natural and triggered lightning with propagation paths almost entirely over water are compared. Data were collected at the Kennedy Space Center, Florida, during the summer of 1987. Comparisons have been made of the average shape, the risetime, and the spectrum of the electric field changes. To a first approximation, the waveforms are very similar; however, the electric field changes from the triggered flashes tend to rise to peak faster and decay faster than do their counterparts in natural cloud-to-ground flashes.

  12. An oppositely charged insect exclusion screen with gap-free multiple electric fields

    NASA Astrophysics Data System (ADS)

    Matsuda, Yoshinori; Kakutani, Koji; Nonomura, Teruo; Kimbara, Junji; Kusakari, Shin-ichi; Osamura, Kazumi; Toyoda, Hideyoshi

    2012-12-01

    An electric field screen was constructed to examine insect attraction mechanisms in multiple electric fields generated inside the screen. The screen consisted of two parallel insulated conductor wires (ICWs) charged with equal but opposite voltages and two separate grounded nets connected to each other and placed on each side of the ICW layer. Insects released inside the fields were charged either positively or negatively as a result of electricity flow from or to the insect, respectively. The force generated between the charged insects and opposite ICW charges was sufficient to capture all insects.

  13. HVDC Ground Electrodes - a Source of Geophysical Data

    NASA Astrophysics Data System (ADS)

    Freire, P. F.; Pereira, S. Y.

    2015-12-01

    The HVDC electrode is a component of a High Voltage Direct Current energy transmission system, and is designed to inject into the ground continuous currents up to 3500 A. The typical HVDC ground electrode is a ring of vertical conductors, 1 km wide, buried a few tens of meters.The design of a HVDC electrode is based on extensive geological, geotechnical and geophysical surveys. Geophysical data are usually electrical (VES) and electromagnetic (TEM/MT) acquisitions, for the modeling of the shallow, near-surface and deep layers of the crust. This survey aims, first, the electrode site selection, and then, at the selected site, this data is combined into a single apparent resistivity curve, which is inverted, allowing for the determination of the layered geoelectric crust model. The injection of electrical continuous current in the electrode is then simulated, with the geoelectric crust model, for the determination of the soil surface potential profile (which is usually asymmetric for different directions, due to non-1D geoelectric models).For the commissioning of a HVDC electrode, field measurements are done, such as electrode grounding resistance, soil surface potentials and metal-to-soil potentials at specific structures (buried pipelines, for instance).The geophysical data acquired during the design phase is a set of data completely independent from the electrical data acquired during the electrode commissioning phase, and both are correlated by the geoelectric model. It happens, therefore, that the geoelectric model can be calibrated based on the electrical data, with the correction of static shifts and other adjustments.This paper suggests that the commissioning of HVDC systems should be associated to a research & development program, with a university or foundation. The idea is to enjoy the opportunity of a more complete field survey, with the acquisition of a wide set of data for a better geological characterization of the area where the electrode was built.

  14. Electric breakdown during the pulsed current spreading in the sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru; Vetchinin, S. P.; Panov, V. A.

    2016-03-15

    Processes of spreading of the pulsed current from spherical electrodes and an electric breakdown in the quartz sand are studied experimentally. When the current density on the electrode exceeds the critical value, a nonlinear reduction occurs in the grounding resistance as a result of sparking in the soil. The critical electric field strengths for ionization and breakdown are determined. The ionization-overheating instability is shown to develop on the electrode, which leads to the current contraction and formation of plasma channels.

  15. The Fight for the High Ground: The U.S. Army and Interrogation during Operation Iraqi Freedom I, May 2003-April 2004

    DTIC Science & Technology

    2009-06-12

    Regimental Detainee Holding Area in al-Qaim: CW3 Welshofer stuffed Mowhoush into a sleeping bag head first, wrapped the bag tightly with electrical ...greater risk of similar abuse from their captors. 24 This section went on to list examples of illegal physical torture, to include " electric shock...of Iraqis turned against coalition forces as law and order, electricity , garbage disposal, and other essential services failed to quickly materialize

  16. Shipboard Sewage Treatment System for Great Lakes Vessels

    DTIC Science & Technology

    1979-09-01

    practical and economical method available today for large-scale 03 production is by the electrical, or corona , discharge principle. 7 In this method...2-L2 corona generator.* It required a standard, grounded 120-V, 10-A, 60-Hz electrical source for power. Compressed air at 75 psig (517 kPag) for the...from 50 to 100 psig (340 to 690 kPag). Electrical power supplied to the corona cell was adjusted manually with a variable resistor. In general, for a

  17. Electric and kinematic structure of the Oklahoma mesoscale convective system of 7 June 1989

    NASA Technical Reports Server (NTRS)

    Hunter, Steven M.; Schur, Terry J.; Marshall, Thomas C.; Rust, W. D.

    1992-01-01

    Balloon soundings of electric field in Oklahoma mesoscale convective systems (MCS) were obtained by the National Severe Storms Laboratory in the spring of 1989. This study focuses on a sounding made in the rearward edge of an MCS stratiform rain area on 7 June 1989. Data from Doppler radars, a lightning ground-strike location system, satellite, and other sources is used to relate the mesoscale attributes of the MCS to the observed electric-field profile.

  18. UAV Inspection of Electrical Transmission Infrastructure with Path Conformance Autonomy and Lidar-Based Geofences NASA Report on UTM Reference Mission Flights at Southern Company Flights November 2016

    NASA Technical Reports Server (NTRS)

    Moore, Andrew J.; Schubert, Matthew; Rymer, Nicholas; Balachandran, Swee; Consiglio, Maria; Munoz, Cesar; Smith, Joshua; Lewis, Dexter; Schneider, Paul

    2017-01-01

    Flights at low altitudes in close proximity to electrical transmission infrastructure present serious navigational challenges: GPS and radio communication quality is variable and yet tight position control is needed to measure defects while avoiding collisions with ground structures. To advance unmanned aerial vehicle (UAV) navigation technology while accomplishing a task with economic and societal benefit, a high voltage electrical infrastructure inspection reference mission was designed. An integrated air-ground platform was developed for this mission and tested in two days of experimental flights to determine whether navigational augmentation was needed to successfully conduct a controlled inspection experiment. The airborne component of the platform was a multirotor UAV built from commercial off-the-shelf hardware and software, and the ground component was a commercial laptop running open source software. A compact ultraviolet sensor mounted on the UAV can locate 'hot spots' (potential failure points in the electric grid), so long as the UAV flight path adequately samples the airspace near the power grid structures. To improve navigation, the platform was supplemented with two navigation technologies: lidar-to-polyhedron preflight processing for obstacle demarcation and inspection distance planning, and trajectory management software to enforce inspection standoff distance. Both navigation technologies were essential to obtaining useful results from the hot spot sensor in this obstacle-rich, low-altitude airspace. Because the electrical grid extends into crowded airspaces, the UAV position was tracked with NASA unmanned aerial system traffic management (UTM) technology. The following results were obtained: (1) Inspection of high-voltage electrical transmission infrastructure to locate 'hot spots' of ultraviolet emission requires navigation methods that are not broadly available and are not needed at higher altitude flights above ground structures. (2) The sensing capability of a novel airborne UV detector was verified with a standard ground-based instrument. Flights with this sensor showed that UAV measurement operations and recording methods are viable. With improved sensor range, UAVs equipped with compact UV sensors could serve as the detection elements in a self-diagnosing power grid. (3) Simplification of rich lidar maps to polyhedral obstacle maps reduces data volume by orders of magnitude, so that computation with the resultant maps in real time is possible. This enables real-time obstacle avoidance autonomy. Stable navigation may be feasible in the GPS-deprived environment near transmission lines by a UAV that senses ground structures and compares them to these simplified maps. (4) A new, formally verified path conformance software system that runs onboard a UAV was demonstrated in flight for the first time. It successfully maneuvered the aircraft after a sudden lateral perturbation that models a gust of wind, and processed lidar-derived polyhedral obstacle maps in real time. (5) Tracking of the UAV in the national airspace using the NASA UTM technology was a key safety component of this reference mission, since the flights were conducted beneath the landing approach to a heavily used runway. Comparison to autopilot tracking showed that UTM tracking accurately records the UAV position throughout the flight path.

  19. TARDEC Overview: Ground Vehicle Power and Mobility

    DTIC Science & Technology

    2011-02-04

    Fuel & Water Distribution • Force Sustainment • Construction Equipment • Bridging • Assured Mobility Systems Robotics • TALON • PackBot • MARCbot...Equipment • Mechanical Countermine Equipment • Tactical Bridging Intelligent Ground Systems • Autonomous Robotics Systems • Safe Operations...Test Cell • Hybrid Electric Reconfigurable Moveable Integration Testbed (HERMIT) • Electro-chemical Analysis and Research Lab (EARL) • Battery Lab • Air

  20. Destructive Physical Analysis of Flight- and Ground-Tested Sodium-Sulfur Cells

    NASA Technical Reports Server (NTRS)

    Wasz, Margot L.; Carter, Boyd J.; Donet, Charles M.; Baldwin, Richard S.

    1999-01-01

    Destructive physical analysis (DPA) was used to study the effects of microgravity on the sulfur electrode in sodium-sulfur cells. The cells examined in this work were provided by the Air Force Research Laboratory (AFRL) from their program on sodium-sulfur technology. The Naval Research Laboratory (NRL) provided electrical characterization of the flight-tested and ground-tested cells.

  1. Microplasma generator and methods therefor

    DOEpatents

    Hopwood, Jeffrey A

    2015-04-14

    A low-temperature, atmospheric-pressure microplasma generator comprises at least one strip of metal on a dielectric substrate. A first end of the strip is connected to a ground plane and the second end of the strip is adjacent to a grounded electrode, with a gap being defined between the second end of the strip and the grounded electrode. High frequency power is supplied to the strip. The frequency is selected so that the length of the strip is an odd integer multiple of 1/4 of the wavelength traveling on the strip. A microplasma forms in the gap between the second end of the strip and the grounded electrode due to electric fields in that region. A microplasma generator array comprises a plurality of strongly-coupled resonant strips in close proximity to one another. At least one of the strips has an input for high-frequency electrical power. The remaining strips resonate due to coupling from the at least one powered strip. The array can provide a continuous line or ring of plasma. The microplasma generator can be used to alter the surface of a substrate, such as by adding material (deposition), removal of material (etching), or modifying surface chemistry.

  2. Ferrotoroidic ground state in a heterometallic {CrIIIDyIII6} complex displaying slow magnetic relaxation.

    PubMed

    Vignesh, Kuduva R; Soncini, Alessandro; Langley, Stuart K; Wernsdorfer, Wolfgang; Murray, Keith S; Rajaraman, Gopalan

    2017-10-18

    Toroidal quantum states are most promising for building quantum computing and information storage devices, as they are insensitive to homogeneous magnetic fields, but interact with charge and spin currents, allowing this moment to be manipulated purely by electrical means. Coupling molecular toroids into larger toroidal moments via ferrotoroidic interactions can be pivotal not only to enhance ground state toroidicity, but also to develop materials displaying ferrotoroidic ordered phases, which sustain linear magneto-electric coupling and multiferroic behavior. However, engineering ferrotoroidic coupling is known to be a challenging task. Here we have isolated a {Cr III Dy III 6 } complex that exhibits the much sought-after ferrotoroidic ground state with an enhanced toroidal moment, solely arising from intramolecular dipolar interactions. Moreover, a theoretical analysis of the observed sub-Kelvin zero-field hysteretic spin dynamics of {Cr III Dy III 6 } reveals the pivotal role played by ferrotoroidic states in slowing down the magnetic relaxation, in spite of large calculated single-ion quantum tunneling rates.

  3. International Aerospace and Ground Conference on Lightning and Static Electricity, 10th, and Congres International Aeronautique, 17th, Paris, France, June 10-13, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    1985-12-01

    The conference presents papers on statistical data and standards, coupling and indirect effects, meteorology and thunderstorm studies, lightning simulators, fuel ignition hazards, the phenomenology and characterization of lightning, susceptibility and protection of avionics, ground systems protection, lightning locators, aircraft systems protection, structures and materials, electrostatics, and spacecraft protection against static electricity. Particular attention is given to a comparison of published HEMP and natural lightning on the surface of an aircraft, electromagnetic interaction of external impulse fields with aircraft, of thunderstorm currents and lightning charges at the NASA Kennedy Space Center, the design of a fast risetime lightning generator, lightning simulation tests in FAA CV-580 lightning research aircraft, and the energy requirements of an aircraft triggered discharge. Papers are also presented on aircraft lightning attachment at low altitudes, a new form of transient suppressor, a proving ground for lightning research, and a spacecraft materials test in a continuous, broad energy-spectrum electron beam.

  4. Extensive air showers, lightning, and thunderstorm ground enhancements

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.; Hovsepyan, G.; Kozliner, L.

    2016-09-01

    For lightning research, we monitor particle fluxes from thunderclouds, the so-called thunderstorm ground enhancements (TGEs) initiated by runaway electrons, and extensive air showers (EASs) originating from high-energy protons or fully stripped nuclei that enter the Earth's atmosphere. We also monitor the near-surface electric field and atmospheric discharges using a network of electric field mills. The Aragats "electron accelerator" produced several TGEs and lightning events in the spring of 2015. Using 1-s time series, we investigated the relationship between lightning and particle fluxes. Lightning flashes often terminated the particle flux; in particular, during some TGEs, lightning events would terminate the particle flux thrice after successive recovery. It was postulated that a lightning terminates a particle flux mostly in the beginning of a TGE or in its decay phase; however, we observed two events (19 October 2013 and 20 April 2015) when the huge particle flux was terminated just at the peak of its development. We discuss the possibility of a huge EAS facilitating lightning leader to find its path to the ground.

  5. Analysis of the error of the developed method of determination the active conductivity reducing the insulation level between one phase of the network and ground, and insulation parameters in a non-symmetric network with isolated neutral with voltage above 1000 V

    NASA Astrophysics Data System (ADS)

    Utegulov, B. B.

    2018-02-01

    In the work the study of the developed method was carried out for reliability by analyzing the error in indirect determination of the insulation parameters in an asymmetric network with an isolated neutral voltage above 1000 V. The conducted studies of the random relative mean square errors show that the accuracy of indirect measurements in the developed method can be effectively regulated not only by selecting a capacitive additional conductivity, which are connected between phases of the electrical network and the ground, but also by the selection of measuring instruments according to the accuracy class. When choosing meters with accuracy class of 0.5 with the correct selection of capacitive additional conductivity that are connected between the phases of the electrical network and the ground, the errors in measuring the insulation parameters will not exceed 10%.

  6. Lightning and related phenomena in thunderstorms and squall lines

    NASA Technical Reports Server (NTRS)

    Rust, W. D.; Taylor, W. L.; Macgorman, D. R.; Brandes, E.; Mazur, V.; Arnold, R.; Marshall, T.; Christian, H.; Goodman, S. J.

    1984-01-01

    During the past few years, cooperative research on storm electricity has yielded the following results of both basic and applied interest: (1) the intracloud to cloud-to-ground flashing ratio can be as great as 40:1; (2) as storm cells in a squall line dissipate, longer flashes become predominant; (3) there are two centers of lightning activity maxima that are vertically separated, the lower maximum at about 5 km and the upper at about 12 km. In addition, (4) storms produce lightning in their upper regions at a high rate; (5) lightning appears to be related in time to convective motions; (6) positive cloud-to-ground flashes occur in the severe stage of storms and in the later, well-developed stage of squall line storms; (7) mesoscale convective complexes have been observed to have cloud-to-ground flashing rates of more than 48/min; and (8) the electric field in anvils well away from the main storm core (more than 60 km) can be very high, more than 94 kV/m.

  7. An Estimation Of The Geoelectric Features Of Planetary Shallow Subsurfaces With TAPIR Antennae

    NASA Astrophysics Data System (ADS)

    Le Gall, A.; Reineix, A.; Ciarletti, V.; Jean-Jacques, B.; Ney, R.; Dolon, F.; Corbel, C.

    2005-12-01

    Exploring the interior of Mars and searching for water reservoirs, either in the form of ice or of liquid water, was one of the main scientific objectives of the NETLANDER project. In that frame, the CETP (Centre d'Etude des Environnements Terrestre et Planetaires) has developed an imaging ground penetrating radar (GPR), called TAPIR (Terrestrial And Planetary Investigation by Radar). Operating from a fixed position and at low frequencies (from 2 to 4MHz), this instrument allows to retrieve not only the distance but also the inclination of deep subsurface reflectors by measuring the two horizontal electrical components and the three magnetic components of the reflected waves. In 2004, ground tests have been successfully carried out on the Antarctic Continent; the bedrock, lying under a thick layer of ice (until 1200m), was detected and part of its relief was revealed. Yet, knowing the electric parameters of the close subsurface is required to correctly process the measured electric and magnetic components of the echoes and deduce their propagation vector. In addition, these electric parameters can bring a very interesting piece of information on the nature of the material in the shallow underground. We have therefore looked for a possible method (appropriate for a planetary mission) to evaluate them using a special mode of operation of the radar. This method relies on the fact that the electrical characteristics of the transmitting electric antennas (current along the antenna, driving-point impedance.) depend on the nature of the ground on which the radar is lying. If this dependency is significant enough, geological parameters of the subsurface can be deduced from the analysis of specific measurements. We have thus performed a detailed experimental and theoretical study of the TAPIR resistively loaded electrical dipoles to get a precise understanding of the radar transmission and assess the role of the electric parameters of the underground. In this poster, we will analytically prove the sensitivity of TAPIR antennae to subsurface nature. Besides, a numerical code, based on the FDTD method, has been built to simulate with accuracy radar operation and its coupling with the environment. Results from simulations will be then compared to in-situ measurements collected in three different sites. Eventually, we will see that the inferred geoelectrical values characterize only a thin layer of the subsurface.

  8. Orbital transfer of large space structures with nuclear electric rockets

    NASA Technical Reports Server (NTRS)

    Silva, T. H.; Byers, D. C.

    1980-01-01

    This paper discusses the potential application of electric propulsion for orbit transfer of a large spacecraft structure from low earth orbit to geosynchronous altitude in a deployed configuration. The electric power was provided by the spacecraft nuclear reactor space power system on a shared basis during transfer operations. Factors considered with respect to system effectiveness included nuclear power source sizing, electric propulsion thruster concept, spacecraft deployment constraints, and orbital operations and safety. It is shown that the favorable total impulse capability inherent in electric propulsion provides a potential economic advantage over chemical propulsion orbit transfer vehicles by reducing the number of Space Shuttle flights in ground-to-orbit transportation requirements.

  9. Ground correlation investigation of thruster spacecraft interactions to be measured on the IAPS flight test

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1984-01-01

    Preliminary ground correlation testing has been conducted with an 8 cm mercury ion thruster and diagnostic instrumentation replicating to a large extent the IAPS flight test hardware, configuration, and electrical grounding/isolation. Thruster efflux deposition retained at 25 C was measured and characterized. Thruster ion efflux was characterized with retarding potential analyzers. Thruster-generated plasma currents, the spacecraft common (SCC) potential, and ambient plasma properties were evaluated with a spacecraft potential probe (SPP). All the measured thruster/spacecraft interactions or their IAPS measurements depend critically on the SCC potential, which can be controlled by a neutralizer ground switch and by the SPP operation.

  10. Omnidirectional antenna having constant phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sena, Matthew

    Various technologies presented herein relate to constructing and/or operating an antenna having an omnidirectional electrical field of constant phase. The antenna comprises an upper plate made up of multiple conductive rings, a lower ground-plane plate, a plurality of grounding posts, a conical feed, and a radio frequency (RF) feed connector. The upper plate has a multi-ring configuration comprising a large outer ring and several smaller rings of equal size located within the outer ring. The large outer ring and the four smaller rings have the same cross-section. The grounding posts ground the upper plate to the lower plate while maintainingmore » a required spacing/parallelism therebetween.« less

  11. Registration of X-rays at 2500 m altitude in association with lightning flashes and thunderstorms

    NASA Astrophysics Data System (ADS)

    Montanyà, Joan; Fabró, Ferran; van der Velde, Oscar; Romero, David; Solà, Gloria; Hermoso, Juan Ramon; Soula, Serge; Williams, Earle R.; Pineda, Nicolau

    2014-02-01

    Electric fields and high-energy radiation of natural lightning measured at close range from a mountaintop tower are discussed. In none of the 12 negative cloud-to-ground upward flashes were X-rays observed. Also no energetic radiation was found in one negative upward leader at close range (20 m). In the first of two consecutive negative cloud-to-ground flashes, X-rays were detected during the last 1.75 ms of the leader. During the time of energetic radiation in the flash an intense burst of intracloud VHF sources was located by the interferometers. The X-ray production is attributed to the high electric field runaway electron mechanism during leader stepping. Even though the second flash struck closer than the previous one, no X-rays were detected. The absence of energetic radiation is attributed to being outside of the beam of X-ray photons from the leader tip or to the stepping process not allowing sufficiently intense electric fields ahead of the leader tip. High-speed video of downward negative leaders at the time when X-rays are commonly detected on the ground revealed the increase of speed and luminosity of the leader. Both phenomena allow higher electric fields at the leader front favoring energetic radiation. Background radiation was also measured during thunderstorms. The count rate of a particular day is presented and discussed. The increases in the radiation count rate are more coincident with radar reflectivity levels above 30 dBZ than with the total lightning activity close to the site. The increases of dose are attributed to radon daughter-ion precipitation.

  12. Modeling Stepped Leaders Using a Time Dependent Multi-dipole Model and High-speed Video Data

    NASA Astrophysics Data System (ADS)

    Karunarathne, S.; Marshall, T.; Stolzenburg, M.; Warner, T. A.; Orville, R. E.

    2012-12-01

    In summer of 2011, we collected lightning data with 10 stations of electric field change meters (bandwidth of 0.16 Hz - 2.6 MHz) on and around NASA/Kennedy Space Center (KSC) covering nearly 70 km × 100 km area. We also had a high-speed video (HSV) camera recording 50,000 images per second collocated with one of the electric field change meters. In this presentation we describe our use of these data to model the electric field change caused by stepped leaders. Stepped leaders of a cloud to ground lightning flash typically create the initial path for the first return stroke (RS). Most of the time, stepped leaders have multiple complex branches, and one of these branches will create the ground connection for the RS to start. HSV data acquired with a short focal length lens at ranges of 5-25 km from the flash are useful for obtaining the 2-D location of these multiple branches developing at the same time. Using HSV data along with data from the KSC Lightning Detection and Ranging (LDAR2) system and the Cloud to Ground Lightning Surveillance System (CGLSS), the 3D path of a leader may be estimated. Once the path of a stepped leader is obtained, the time dependent multi-dipole model [ Lu, Winn,and Sonnenfeld, JGR 2011] can be used to match the electric field change at various sensor locations. Based on this model, we will present the time-dependent charge distribution along a leader channel and the total charge transfer during the stepped leader phase.

  13. GMD Coupling to Power Systems and Disturbance Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera, Michael Kelly; Bent, Russell Whitford

    Presentation includes slides on Geomagnetic Disturbance: Ground Fields; Geomagnetic Disturbance: Coupling to Bulk Electric System; Geomagnetic Disturbance: Transformers; GMD Assessment Workflow (TPL-007-1); FERC order 830; Goals; SuperMag (1 min data) Nov. 20-21, 2003 Storm (DST = -422); Spherical Harmonics; Spherical Harmonics Nov. 20-21, 2003 Storm (DST = -422); DST vs HN0,0; Fluctuations vs. DST; Fluctuations; Conclusions and Next Steps; GMD Assessment Workflow (TPL-007-1); EMP E3 Coupling to Texas 2000 Bus Model; E3 Coupling Comparison (total GIC) Varying Ground Zero; E3 Coupling Comparison (total MVAR) Varying Ground Zero; E3 Coupling Comparison (GIC) at Peak Ground Zero; E3 Coupling Comparison (GIC) atmore » Peak Ground Zero; and Conclusion.« less

  14. GLC_Exec v. 1.2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilgore, Roger Martin; Soloboda, Alexander Joseph

    Launching a rocket involves a controlled transition of the rocket subsystems from a quiescent state to the launch state (i.e., lift-off). In order to launch safely, with confidence that the rocket will successfully complete its mission, the state-of-health for all rocket subsystems and critical ground support equipment must be closely monitored throughout the launch process. This is accomplished by the ground support engineers using mission-specific ground support equipment. A subset of the GSE, the Remote Electrical Ground Interface System (REGIS), is located nearest the rocket to which it's connected via the Umbilical, a wiring harness providing power, sensor, and controlmore » lines. The REGIS also connects via Ethernet to the Ground Launch Computer (GLC).« less

  15. Electric Propulsion Space Experiment (ESEX): Spacecraft design issues for high-power electric propulsion

    NASA Astrophysics Data System (ADS)

    Kriebel, Mary M.; Sanks, Terry M.

    1992-02-01

    Electric propulsion provides high specific impulses, and low thrust when compared to chemical propulsion systems. Therefore, electric propulsion offers improvements over chemical systems such as increased station-keeping time, prolonged on-orbit maneuverability, low acceleration of large structures, and increased launch vehicle flexibility. The anticipated near-term operational electric propulsion system for an electric orbit transfer vehicle is an arcjet propulsion system. Towards this end, the USAF's Phillips Laboratory (PL) has awarded a prime contract to TRW Space & Technology Group to design, build, and space qualify a 30-kWe class arcjet as well as develop and demonstrate, on the ground, a flight-qualified arcjet propulsion flight unit. The name of this effort is the 30 kWe Class Arcjet Advanced Technology Transition Demonstration (Arcjet ATTD) program. Once the flight unit has completed its ground qualification test, it will be given to the Space Test and Transportation Program Office of the Air Force's Space Systems Division (ST/T) for launch vehicle integration and space test. The flight unit's space test is known as the Electric Propulsion Space Experiment (ESEX). ESEX's mission scenario is 10 firings of 15 minutes each. The objectives of the ESEX flight are to measure arcjet plume deposition, electromagnetic interference, thermal radiation, and acceleration in space. Plume deposition, electromagnetic interference, and thermal radiation are operational issues that are primarily being answered for operational use. This paper describes the Arcjet ATTD flight unit design and identifies specifically how the diagnostic data will be collected as part of the ESEX program.

  16. Investigation of Axial Electric Field Measurements with Grounded-Wire TEM Surveys

    NASA Astrophysics Data System (ADS)

    Zhou, Nan-nan; Xue, Guo-qiang; Li, Hai; Hou, Dong-yang

    2018-01-01

    The grounded-wire transient electromagnetic (TEM) surveying is often performed along the equatorial direction with its observation lines paralleling to the transmitting wire with a certain transmitter-receiver distance. However, such method takes into account only the equatorial component of the electromagnetic field, and a little effort has been made on incorporating the other major component along the transmitting wire, here denoted as axial field. To obtain a comprehensive understanding of its fundamental characteristics and guide the designing of the corresponding observation system for reliable anomaly detection, this study for the first time investigates the axial electric field from three crucial aspects, including its decay curve, plane distribution, and anomaly sensitivity, through both synthetic modeling and real application to one major coal field in China. The results demonstrate a higher sensitivity to both high- and low-resistivity anomalies by the electric field in axial direction and confirm its great potentials for robust anomaly detection in the subsurface.

  17. Shielded capacitive electrode

    DOEpatents

    Kireeff Covo, Michel

    2013-07-09

    A device is described, which is sensitive to electric fields, but is insensitive to stray electrons/ions and unlike a bare, exposed conductor, it measures capacitively coupled current while rejecting currents due to charged particle collected or emitted. A charged particle beam establishes an electric field inside the beam pipe. A grounded metallic box with an aperture is placed in a drift region near the beam tube radius. The produced electric field that crosses the aperture generates a fringe field that terminates in the back surface of the front of the box and induces an image charge. An electrode is placed inside the grounded box and near the aperture, where the fringe fields terminate, in order to couple with the beam. The electrode is negatively biased to suppress collection of electrons and is protected behind the front of the box, so the beam halo cannot directly hit the electrode and produce electrons. The measured signal shows the net potential (positive ion beam plus negative electrons) variation with time, as it shall be observed from the beam pipe wall.

  18. Approximations useful for the prediction of electrostatic discharges for simple electrode geometries

    NASA Technical Reports Server (NTRS)

    Edmonds, L.

    1986-01-01

    The report provides approximations for estimating the capacitance and the ratio of electric field strength to potential for a certain class of electrode geometries. The geometry consists of an electrode near a grounded plane, with the electrode being a surface of revolution about the perpendicular to the plane. Some examples which show the accuracy of the capacitance estimate and the accuracy of the estimate of electric field over potential can be found in the appendix. When it is possible to estimate the potential of the electrode, knowing the ratio of electric field to potential will help to determine if an electrostatic discharge is likely to occur. Knowing the capacitance will help to determine the strength of the discharge (the energy released by it) if it does occur. A brief discussion of discharge mechanisms is given. The medium between the electrode and the grounded plane may be a neutral gas, a vacuum, or an unchanged homogeneous isotropic dielectric.

  19. Analysis on the correlation between temperature and discharge characteristic of cloud-to-ground lightning discharge plasma with multiple return strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu Haiyan; Chang Zhengshi; Yuan Ping

    2011-01-15

    The spectra of cloud-to-ground lightning with multiple return strokes have been obtained by using a slitless spectrograph on the Chinese Tibet plateau. Combining the spectra with synchronous electrical information, the correlation among spectral properties, channel temperatures and discharge characteristics, and thermal effects of current is discussed for the first time. The results show that the channel plasma temperature varies significantly from stroke to stroke within a given flash, and the total intensity of spectra is directly proportional to the amplitude of electric field change. Moreover, the positive correlation has been confirmed between the channel plasma temperature and the thermal effectmore » which shows the effect of the electric current accumulation. It is inferred that the total intensity of the spectra should be directly proportional to the intensity of discharge current, and channel temperature is correlated positively with the energy transmission in one return stroke.« less

  20. Analysis on the spectra and synchronous radiated electric field observation of cloud-to-ground lightning discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cen Jianyong; Yuan Ping; Qu Haiyan

    2011-11-15

    According to the spectra of cloud-to-ground (CG) lightning discharge plasma captured by a slit-less spectrograph and the information of synchronous radiated electric field, the temperatures, the total intensity of spectra, the peak value of current and its action integral of discharge plasma channel have been calculated. Furthermore, the correlativity of these parameters has been analyzed for the first time. The results indicate that the total intensity of spectra has a positive correlation to the discharge current in different strokes of one CG lightning, and the temperature of discharge plasma is direct proportion to the action integral in the first returnmore » strokes of different lightning.« less

  1. Recirculating electric air filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  2. Survey of Biodegradation of Electronic Components and Associated Testing Using Decontamination Solution

    DTIC Science & Technology

    1991-08-01

    Development and Engineering Center, ATTN: SMCCR- SPS -T, Aberdeen Proving Ground, MD 21010-5423. However, the Defense Technical Information Center and the...and conducting electrical tests to determine materiel degradation. Organisms of Penicillium s were among the most aggressive biota and, in some cases...tested electronic components for fungal degradation using Aspergillus, Penicillium , Alternaria, Streptomyces, and Rhodotorula. Electrical parameter

  3. Balloon flight and atmospheric electricity

    NASA Technical Reports Server (NTRS)

    Herrera, Emilio

    1924-01-01

    The air is known to be charged with electricity (chiefly positive) with reference to the earth, so that its potential increases with the altitude and the difference in potential between two points in the same vertical line, divided by the distance between them, gives a value called the "potential gradient," which may vary greatly with the altitude, the nature of the ground and the atmospheric conditions.

  4. Procedures and criteria for increasing the earthquake resistance level of electrical substations and special installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, R.W.; Deacon, R.J.

    1973-09-30

    This report defines a procedure and provides basic information needed to determine the modifications required to make electrical substations and special installations of the Bonneville Power Administration (BPA) more resistant to strong earthquake ground motion. It also provides a procedure for developing an effective plan for establishing the sequence, or priority, of providing the required modifications.

  5. Field-aligned electric currents and their measurement by the incoherent backscatter technique

    NASA Technical Reports Server (NTRS)

    Bauer, P.; Cole, K. D.; Lejeume, G.

    1975-01-01

    Field aligned electric currents flow in the magnetosphere in many situations of fundamental geophysical interest. It is shown here that the incoherent backscatter technique can be used to measure these currents when the plasma line can be observed. The technique provides a ground based means of measuring these currents which complements the rocket and satellite ones.

  6. Recirculating electric air filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  7. Simulation of Electric Propulsion Thrusters

    DTIC Science & Technology

    2011-01-01

    and operational lifetime. The second area of modelling activity concerns the plumes produced by electric thrusters. Detailed information on the plumes ...to reproduce the in-orbit space environment using ground-based laboratory facilities. Device modelling also plays an important role in plume ...of the numerical analysis of other aspects of thruster design, such as thermal and structural processes, is omitted here. There are two fundamental

  8. Occupational exposure to electric and magnetic fields during work tasks at 110 kV substations in the Tampere region.

    PubMed

    Korpinen, Leena H; Pääkkönen, Rauno J

    2010-04-01

    The occupational exposure to electric and magnetic fields during various work tasks at seven 110 kV substations in Finland's Tampere region was studied. The aim was to investigate if the action values (10 kV/m for the E-field and 500 microT for the B-field) of the EU Directive 2004/40/EC were exceeded. Electric and magnetic fields were measured during the following work tasks: (1) walking or operating devices on the ground; (2) working from a service platform; (3) working around the power transformer on the ground or using a ladder; and (4) changing a bulb from a man hoist. In work task 2 "working from a service platform" the measured electric field (maximum value 16.6 kV/m) exceeded 10 kV/m in three cases. In the future it is important to study if the limit value (10 mA/m(2)) of Directive 2004/40/EC is exceeded at 110 kV substations. The occupational 500 microT action value of the magnetic flux density field (B-field) was not exceeded in any working situation.

  9. Gigantic jets between a thundercloud and the ionosphere.

    PubMed

    Su, H T; Hsu, R R; Chen, A B; Wang, Y C; Hsiao, W S; Lai, W C; Lee, L C; Sato, M; Fukunishi, H

    2003-06-26

    Transient luminous events in the atmosphere, such as lighting-induced sprites and upwardly discharging blue jets, were discovered recently in the region between thunderclouds and the ionosphere. In the conventional picture, the main components of Earth's global electric circuit include thunderstorms, the conducting ionosphere, the downward fair-weather currents and the conducting Earth. Thunderstorms serve as one of the generators that drive current upward from cloud tops to the ionosphere, where the electric potential is hundreds of kilovolts higher than Earth's surface. It has not been clear, however, whether all the important components of the global circuit have even been identified. Here we report observations of five gigantic jets that establish a direct link between a thundercloud (altitude approximately 16 km) and the ionosphere at 90 km elevation. Extremely-low-frequency radio waves in four events were detected, while no cloud-to-ground lightning was observed to trigger these events. Our result indicates that the extremely-low-frequency waves were generated by negative cloud-to-ionosphere discharges, which would reduce the electrical potential between ionosphere and ground. Therefore, the conventional picture of the global electric circuit needs to be modified to include the contributions of gigantic jets and possibly sprites.

  10. Application of AWE Along with a Combined FEM/MoM Technique to Compute RCS of a Cavity-Backed Aperture in an Infinite Ground Plane Over a Frequency Range

    NASA Technical Reports Server (NTRS)

    Reddy, C.J.; Deshpande, M.D.

    1997-01-01

    A hybrid Finite Element Method (FEM)/Method of Moments (MoM) technique in conjunction with the Asymptotic Waveform Evaluation (AWE) technique is applied to obtain radar cross section (RCS) of a cavity-backed aperture in an infinite ground plane over a frequency range. The hybrid FEM/MoM technique when applied to the cavity-backed aperture results in an integro-differential equation with electric field as the unknown variable, the electric field obtained from the solution of the integro-differential equation is expanded in Taylor series. The coefficients of the Taylor series are obtained using the frequency derivatives of the integro-differential equation formed by the hybrid FEM/MoM technique. The series is then matched via the Pade approximation to a rational polynomial, which can be used to extrapolate the electric field over a frequency range. The RCS of the cavity-backed aperture is calculated using the electric field at different frequencies. Numerical results for a rectangular cavity, a circular cavity, and a material filled cavity are presented over a frequency range. Good agreement between AWE and the exact solution over the frequency range is obtained.

  11. An instrument for measuring the complex permittivity of the Martian top soil

    NASA Technical Reports Server (NTRS)

    Grard, R.

    1988-01-01

    This permittivity measuring instrument measures the resistivity rho and the relative dielectric constant epsilon sub r of the Martian top soil along the path of a rover. This aim is achieved by measuring the real and imaginary parts of the complex permittivity epsilon = epsilon sub r - j epsilon sub i where epsilon sub i = omega epsilon sub o rho/1; epsilon sub 1 is the permittivity of vacuum and omega is a variable angular working frequency. The experimental technique consists in evaluating the mutual, or transfer, impedance of a quadrupolar probe, i.e., in quantifying the influence of the Martian ground on the electrical coupling of two Hertz dipoles. The horizontal and vertical spatial resolutions are of the order of the length and separation of the dipoles, typically 1 to 2 metres. The four-electrode method for measuring the ground resistivity on earth was first applied by Wenner and Schlumberger, but the proposed investigation bears closer resemblance to a similar instrument developed for ground surveying at shallow depth, in connection with archaelogical and pedological research. A quadrupolar probe will provide essential information about the electric properties of the Martian ground and will contribute usefully to the identification of the soil structure and composition in association with other experimental equipment (camera, infra-red detector, gamma and X-ray spectrometers, chemical analyzers, ground temperature probes).

  12. A quasi-static model of global atmospheric electricity. II - Electrical coupling between the upper and lower atmosphere

    NASA Technical Reports Server (NTRS)

    Roble, R. G.; Hays, P. B.

    1979-01-01

    The paper presents a model of global atmospheric electricity used to examine the effect of upper atmospheric generators on the global electrical circuit. The model represents thunderstorms as dipole current generators randomly distributed in areas of known thunderstorm frequency; the electrical conductivity in the model increases with altitude, and electrical effects are coupled with a passive magnetosphere along geomagnetic field lines. The large horizontal-scale potential differences at ionospheric heights map downward into the lower atmosphere where the perturbations in the ground electric field are superimposed on the diurnal variation. Finally, changes in the upper atmospheric conductivity due to solar flares, polar cap absorptions, and Forbush decreases are shown to alter the downward mapping of the high-latitude potential pattern and the global distribution of fields and currents.

  13. Ground Target Modeling and Validation Conference (10th) Held in Houghton, Michigan, on 17-19 August 1999

    DTIC Science & Technology

    1999-08-01

    electrically small or only have a greater size in one dimension will not have a significant impact on the total RCS. At 1000 MHz, the components on the model ...7^/43- L"^y 16 % 6 ^Ly Cc>v y to-*^ r*r+r g,^\\oS^ Proceedings ? Tenth Annual Ground Target Modeling and Validation Conference August 1999...of the Tenth Annual Ground Target Modeling and Validation Conference (Unclassified) \\2. PERSONAL AUTHOR(S) William R Reynolds and Tracy T. Maki 13a

  14. A fiber Bragg grating acceleration sensor for ground surveillance

    NASA Astrophysics Data System (ADS)

    Jiang, Shaodong; Zhang, Faxiang; Lv, Jingsheng; Ni, Jiasheng; Wang, Chang

    2017-10-01

    Ground surveillance system is a kind of intelligent monitoring equipment for detecting and tracking the ground target. This paper presents a fiber Bragg grating (FBG) acceleration sensor for ground surveillance, which has the characteristics of no power supply, anti-electromagnetic interference, easy large-scale networking, and small size. Which make it able to achieve the advantage of the ground surveillance system while avoiding the shortcoming of the electric sensing. The sensor has a double cantilever beam structure with a sensitivity of 1000 pm/g. Field experiment has been carried out on a flood beach to examine the sensor performance. The result shows that the detection distance on the walking of personnel reaches 70m, and the detection distance on the ordinary motor vehicle reaches 200m. The performance of the FBG sensor can satisfy the actual needs of the ground surveillance system.

  15. Electrical bushing for a superconductor element

    DOEpatents

    Mirebeau, Pierre; Lallouet, Nicolas; Delplace, Sebastien; Lapierre, Regis

    2010-05-04

    The invention relates to an electrical bushing serving to make a connection at ambient temperature to a superconductor element situated in an enclosure at cryogenic temperature. The electrical bushing passes successively through an enclosure at intermediate temperature between ambient temperature and cryogenic temperature, and an enclosure at ambient temperature, and it comprises a central electrical conductor surrounded by an electrically insulating sheath. According to the invention, an electrically conductive screen connected to ground potential surrounds the insulating sheath over a section that extends from the end of the bushing that is in contact with the enclosure at cryogenic temperature at least as far as the junction between the enclosure at intermediate temperature and the enclosure at ambient temperature. The invention is more particularly applicable to making a connection to a superconductor cable.

  16. Power module assembly

    DOEpatents

    Campbell, Jeremy B [Torrance, CA; Newson, Steve [Redondo Beach, CA

    2011-11-15

    A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

  17. Using Geophysics to Define Hydrostratigraphic Units in the Edwards and Trinity Aquifers, Texas

    NASA Astrophysics Data System (ADS)

    Smith, B. D.; Blome, C. D.; Clark, A. K.; Kress, W.; Smith, D. V.

    2007-05-01

    Airborne and ground geophysical surveys conducted in Uvalde, Medina, and northern Bexar counties, Texas, can be used to define and characterize hydrostratigraphic units of the Edwards and Trinity aquifers. Airborne magnetic surveys have defined numerous Cretaceous intrusive stocks and laccoliths, mainly in Uvalde County, that influence local hydrology and perhaps regional ground-water flow paths. Depositional environments in the aquifers can be classified as shallow water platforms (San Marcos Platform, Edwards Group), shoal and reef facies (Devils River Trend, Devils River Formation), and deeper water basins (Maverick Basin, West Nueces, McKnight, and Salmon Peak Formations). Detailed airborne and ground electromagnetic surveys have been conducted over the Edwards aquifer catchment zone (exposed Trinity aquifer rocks), recharge zone (exposed Edwards aquifer rocks), and artesian zone (confined Edwards) in the Seco Creek area (northeast Uvalde and Medina Counties; Devils River Trend). These geophysical survey data have been used to divide the Edwards exposed within the Balcones fault zone into upper and lower hydrostratigraphic units. Although both units are high electrical resistivity, the upper unit has slightly lower resistivity than the lower unit. The Georgetown Formation, at the top of the Edwards Group has a moderate resistivity. The formations that comprise the upper confining units to the Edwards aquifer rocks have varying resistivities. The Eagleford and Del Rio Groups (mainly clays) have very low resistivities and are excellent electrical marker beds in the Seco Creek area. The Buda Limestone is characterized by high resistivities. Moderate resistivities characterize the Austin Group rocks (mainly chalk). The older Trinity aquifer, underlying the Edwards aquifer rocks, is characterized by less limestone (electrically resistive or low conductivity units) and greater quantities of mudstones (electrically conductive or low resistivity units). In the western area (Devils River Trend and Maverick Basin) of the Trinity aquifer system there are well-defined collapse units and features that are marked by moderate resistivities bracketed by resistive limestone and conductive mudstone of the Glen Rose Limestone. In the central part of the aquifer (San Marcos Platform) the Trinity's lithologies are divided into upper and lower units with further subdivisions into hydrostratigraphic units. These hydrostratigraphic units are well mapped by an airborne electromagnetic survey in Bexar County. Electrical properties of the Edwards aquifer also vary across the fresh-saline water interface where ground and borehole electrical surveys have been conducted. The saline- saturated Edwards is predictably more conductive than the fresh-water saturated rocks. Similar fresh-saline water interfaces exist within the upper confining units of the Edwards aquifer (Carrizo-Wilcox aquifer) and the Trinity aquifer rocks.

  18. 2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 3; Fabrication and Test Report

    NASA Technical Reports Server (NTRS)

    Alexander, Dennis

    1997-01-01

    The Solar Dynamic Ground Test Demonstration (SDGTD) project has successfully designed and fabricated a complete solar-powered closed Brayton electrical power generation system and tested it in a relevant thermal vacuum facility at NASA Lewis Research Center (LeRC). In addition to completing technical objectives, the project was completed 3-l/2 months early, and under budget.

  19. Demand reduction analysis for Aberdeen Proving Grounds, Aberdeen, Maryland. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-06-01

    The objectives of the project are to research, identify, evaluate, and define energy saving projects that meet the Army`s criteria and lead to energy savings at the Aberdeen Proving Grounds, Aberdeen campus, with respect to electrical demand reduction. Details of the authorization and objectives of this report, which delineates our contractual arrangement with the government, may be found in Section 8.11.

  20. Investigation of GICs Associated with Large dB/dt Variations in Space

    NASA Astrophysics Data System (ADS)

    Dimitrakoudis, S.; Mann, I. R.; Murphy, K. R.; Rae, J.; Denton, M.; Milling, D. K.

    2016-12-01

    Geomagnetically induced currents (GICs) can be driven in terrestrial electrical power grids as a result of the induced electric fields arising from magnetic field changes driven in the coupled magnetosphere-ionosphere-ground system. Substorms are often hypothesised to be associated with the largest GIC effects on the ground, especially at higher latitudes. However, recent studies have suggested that other dayside phenomena such as sudden impulses and even ULF wave trains might also drive significant GICs. Using data from the CARISMA ground-based magnetometer network we examine the GIC response driven from a variety of magnetospheric processes. In particular we focus on events where large dB/dt is observed in-situ on GOES East and West satellites. Auroras, resulting from magnetospheric substorms, give us a dynamical view of sudden destabilizations in the nightside magnetosphere, of large spatial and temporal extent, that can drive large and potentially damaging geomagnetically induced currents (GICs) in terrestrial power grids. Since ground dB/dt can be used as a GIC proxy, we have surveyed GOES data since 2011 for the largest dB/dT events, and found some to be of the order of hundreds of nT in the span of a few seconds. These are observed in both the nightside and dayside, and, as such, we seek to establish connections to drivers affecting both sides of the terminator; tail activations and substorms on the nightside, large amplitude ULF waves, solar wind sudden impulses, and rapid changes in MIC current systems on the dayside. The short duration of these events, coupled with the use of conjugate satellite measurements and ground magnetometer arrays when possible, allows us to investigate their localization and the latitudinal extent of their effects and to further examine the potential role of non-substorm phenomena in generating GICs which may have adverse impacts in electrical power grids.

  1. Spacelab Life Sciences-1 electrical diagnostic expert system

    NASA Technical Reports Server (NTRS)

    Kao, C. Y.; Morris, W. S.

    1989-01-01

    The Spacelab Life Sciences-1 (SLS-1) Electrical Diagnostic (SLED) expert system is a continuous, real time knowledge-based system to monitor and diagnose electrical system problems in the Spacelab. After fault isolation, the SLED system provides corrective procedures and advice to the ground-based console operator. The SLED system updates its knowledge about the status of Spacelab every 3 seconds. The system supports multiprocessing of malfunctions and allows multiple failures to be handled simultaneously. Information which is readily available via a mouse click includes: general information about the system and each component, the electrical schematics, the recovery procedures of each malfunction, and an explanation of the diagnosis.

  2. ELECTRICAL TECHNIQUES FOR ENGINEERING APPLICATIONS.

    USGS Publications Warehouse

    Bisdorf, Robert J.

    1985-01-01

    Surface electrical geophysical methods have been used in such engineering applications as locating and delineating shallow gravel deposits, depth to bedrock, faults, clay zones, and other geological phenomena. Other engineering applications include determining water quality, tracing ground water contaminant plumes and locating dam seepages. Various methods and electrode arrays are employed to solve particular geological problems. The sensitivity of a particular method or electrode array depends upon the physics on which the method is based, the array geometry, the electrical contrast between the target and host materials, and the depth to the target. Each of the available electrical methods has its own particular advantages and applications which the paper discusses.

  3. Systems definition space based power conversion systems: Executive summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Potential space-located systems for the generation of electrical power for use on earth were investigated. These systems were of three basic types: (1) systems producing electrical power from solar energy; (2) systems producing electrical power from nuclear reactors; (3) systems for augmenting ground-based solar power plants by orbital sunlight reflectors. Configurations implementing these concepts were developed through an optimization process intended to yield the lowest cost for each. A complete program was developed for each concept, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed in order to provide the electric power cost appropriate to each concept.

  4. Workshop on Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Bents, David; Marvin, Dean

    1993-01-01

    A summary of the discussion at the workshop on solar electric propulsion (SEP) is presented. The purpose of ELITE SEP flight experiment is to demonstrate operation of solar array powered electric thrusters for raising spacecraft from parking orbit to higher altitudes, leading to definition of an operational SEP orbit transfer vehicles (OTV) for Air Force missions. Many of the problems or potential problems that may be associated with SEP are not well understood nor clearly identified, and system level phenomena such as interaction of thruster plume with the solar arrays cannot be simulated in a ground test. Therefore, an end-to-end system flight test is required to demonstrate solar electric propulsion.

  5. Workshop on Solar Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Bents, David; Marvin, Dean

    1993-05-01

    A summary of the discussion at the workshop on solar electric propulsion (SEP) is presented. The purpose of ELITE SEP flight experiment is to demonstrate operation of solar array powered electric thrusters for raising spacecraft from parking orbit to higher altitudes, leading to definition of an operational SEP orbit transfer vehicles (OTV) for Air Force missions. Many of the problems or potential problems that may be associated with SEP are not well understood nor clearly identified, and system level phenomena such as interaction of thruster plume with the solar arrays cannot be simulated in a ground test. Therefore, an end-to-end system flight test is required to demonstrate solar electric propulsion.

  6. The electrical properties of zero-gravity processed immiscibles

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Otto, G. H.

    1974-01-01

    When dispersed or mixed immiscibles are solidified on earth, a large amount of separation of the constituents takes place due to differences in densities. However, when the immiscibles are dispersed and solidified in zero-gravity, density separation does not occur, and unique composite solids can be formed with many new and promising electrical properties. By measuring the electrical resistivity and superconducting critical temperature, Tc, of zero-g processed Ga-Bi samples, it has been found that the electrical properties of such materials are entirely different from the basic constituents and the ground control samples. Our results indicate that space processed immiscible materials may form an entirely new class of electronic materials.

  7. An estimation of the electrical characteristics of planetary shallow subsurfaces with TAPIR antennas

    NASA Astrophysics Data System (ADS)

    Le Gall, A.; Reineix, A.; Ciarletti, V.; Berthelier, J. J.; Ney, R.; Dolon, F.; Corbel, C.

    2006-06-01

    In the frame of the NETLANDER program, we have developed the Terrestrial And Planetary Investigation by Radar (TAPIR) imaging ground-penetrating radar to explore the Martian subsurface at kilometric depths and search for potential water reservoirs. This instrument which is to operate from a fixed lander is based on a new concept which allows one to image the various underground reflectors by determining the direction of propagation of the reflected waves. The electrical parameters of the shallow subsurface (permittivity and conductivity) need to be known to correctly determine the propagation vector. In addition, these electrical parameters can bring valuable information on the nature of the materials close to the surface. The electric antennas of the radar are 35 m long resistively loaded monopoles that are laid on the ground. Their impedance, measured during a dedicated mode of operation of the radar, depends on the electrical parameters of soil and is used to infer the permittivity and conductivity of the upper layer of the subsurface. This paper presents an experimental and theoretical study of the antenna impedance and shows that the frequency profile of the antenna complex impedance can be used to retrieve the geoelectrical characteristics of the soil. Comparisons between a numerical modeling and in situ measurements have been successfully carried over various soils, showing a very good agreement.

  8. Integration of electrical resistivity imaging and ground penetrating radar to investigate solution features in the Biscayne Aquifer

    NASA Astrophysics Data System (ADS)

    Yeboah-Forson, Albert; Comas, Xavier; Whitman, Dean

    2014-07-01

    The limestone composing the Biscayne Aquifer in southeast Florida is characterized by cavities and solution features that are difficult to detect and quantify accurately because of their heterogeneous spatial distribution. Such heterogeneities have been shown by previous studies to exert a strong influence in the direction of groundwater flow. In this study we use an integrated array of geophysical methods to detect the lateral extent and distribution of solution features as indicative of anisotropy in the Biscayne Aquifer. Geophysical methods included azimuthal resistivity measurements, electrical resistivity imaging (ERI) and ground penetrating radar (GPR) and were constrained with direct borehole information from nearby wells. The geophysical measurements suggest the presence of a zone of low electrical resistivity (from ERI) and low electromagnetic wave velocity (from GPR) below the water table at depths of 4-9 m that corresponds to the depth of solution conduits seen in digital borehole images. Azimuthal electrical measurements at the site reported coefficients of electrical anisotropy as high as 1.36 suggesting the presence of an area of high porosity (most likely comprising different types of porosity) oriented in the E-W direction. This study shows how integrated geophysical methods can help detect the presence of areas of enhanced porosity which may influence the direction of groundwater flow in a complex anisotropic and heterogeneous karst system like the Biscayne Aquifer.

  9. Time-Lapse Electrical Resistivity Investigations for Imaging the Grouting Injection in Shallow Subsurface Cavities

    PubMed Central

    Farooq, Muhammad; Kim, Jung Ho; Song, Young Soo; Amjad Sabir, Mohammad; Umar, Muhammad; Tariq, Mohammad; Muhammad, Said

    2014-01-01

    The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM) was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway. PMID:24578621

  10. A comparison between initial continuous currents of different types of upward lightning

    NASA Astrophysics Data System (ADS)

    Wang, D.; Sawada, N.; Takagi, N.

    2009-12-01

    We have observed the lightning to a wind turbine and its lightning-protection tower for four consecutive winter seasons from 2005 to 2009. Our observation items include (1) thunderstorm electrical fields and lightning-caused electric field changes at multi sites around the wind turbine, (2) electrical currents at the bottom of the wind turbine and its lightning protection tower, (3) normal video and high speed image of lightning optical channels. Totally, we have obtained the data for 42 lightning that hit either on wind turbine or its lightning protection tower or both. Among these 42 lightning, 38 are upward lightning and 2 are downward lightning. We found the upward lightning can be sub-classified into two types. Type 1 upward lightning are self-triggered from a high structure, while type 2 lightning are triggered by a discharge occurred in other places which could be either a cloud discharge or a cloud-to-ground discharge (other-triggered). In this study, we have compared the two types of upward lightning in terms of initial continuous current rise time, peak current and charge transferred to the ground. We found that the initial current of self-triggered lightning tends to rise significantly faster and to a bigger peak value than the other-triggered lightning, although both types of lightning transferred similar amount of charge to the ground.

  11. Time-lapse electrical resistivity investigations for imaging the grouting injection in shallow subsurface cavities.

    PubMed

    Farooq, Muhammad; Park, Samgyu; Kim, Jung Ho; Song, Young Soo; Amjad Sabir, Mohammad; Umar, Muhammad; Tariq, Mohammad; Muhammad, Said

    2014-01-01

    The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM) was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway.

  12. Limiting electric fields of HVDC overhead power lines.

    PubMed

    Leitgeb, N

    2014-05-01

    As a consequence of the increased use of renewable energy and the now long distances between energy generation and consumption, in Europe, electric power transfer by high-voltage (HV) direct current (DC) overhead power lines gains increasing importance. Thousands of kilometers of them are going to be built within the next years. However, existing guidelines and regulations do not yet contain recommendations to limit static electric fields, which are one of the most important criteria for HVDC overhead power lines in terms of tower design, span width and ground clearance. Based on theoretical and experimental data, in this article, static electric fields associated with adverse health effects are analysed and various criteria are derived for limiting static electric field strengths.

  13. Plasmapause Variations During the 17 March 2013 Identified by Ground-based and Space-based GPS Signals

    NASA Astrophysics Data System (ADS)

    Bishop, R. L.; Coster, A. J.; Turner, D. L.; Nikoukar, R.; Lemon, C.; Bust, G. S.; Roeder, J. L.

    2016-12-01

    Earth's plasmasphere is a region of cold (T ≤ 1 eV), dense (n 101 to 104 cm-3) plasma located in the inner magnetosphere and coincident with a portion of the ionosphere that co-rotates with the planet in the geomagnetic field. Plasmaspheric plasma originates in the ionosphere and fills the magnetic flux tubes on which the corotation electric field dominates over the convection electric field. The corotation electric field results from Earth's spinning magnetic field while the convection electric field results from the solar wind driving of global plasma convection within the magnetosphere. The outer boundary of the plasmasphere is the plasmapause, and it corresponds to the transition region between corotation-driven vs. convection-driven plasmas. During quiet periods of low solar wind speed and weak interplanetary magnetic field (IMF), ionospheric outflow from lower altitudes can fill the plasmasphere over the course of several days with the plasmapause expanding to higher L-shells. However, when the convection electric field is enhanced during active solar wind periods, such as magnetic storms, the plasmasphere can be rapidly eroded to L 2.5 or less leading to many interesting magnetospheric and ionospheric features such as plasmapause erosion, plasmaspheric plumes and ionospheric plasma outflows. In this presentation, we focus on the dynamics of the plasmapause as observed by ground-based and space-borne GPS receivers. We will focus on the period 15 March to 19 March 2013, which includes the on-set and recovery periods of a strong geomagnetic storm. We will examine the location and erosion time scales of the plasmapause during the active portion of the storm. An extensive global network of ground-based scientific receivers ( 4000) will be utilized in the study. Space-based observations will be obtained from data from the CORISS GPS radio occultation (RO) sensor on the C/NOFS satellite as well as the COSMIC GPS RO sensors.

  14. The direct-current response of electrically conducting fractures excited by a grounded current source

    DOE PAGES

    Weiss, Chester J.; Aldridge, David F.; Knox, Hunter A.; ...

    2016-05-01

    Hydraulic fracture stimulation of low permeability reservoir rocks is an established and cross–cutting technology for enhancing hydrocarbon production in sedimentary formations and increasing heat exchange in crystalline geothermal systems. Whereas the primary measure of success is the ability to keep the newly generated fractures sufficiently open, long–term reservoir management requires a knowledge of the spatial extent, morphology, and distribution of the fractures — knowledge primarily informed by microseismic and ground deformation monitoring. To minimize the uncertainty associated with interpreting such data, we investigate through numerical simulation the usefulness of direct-current (DC) resistivity data for characterizing subsurface fractures with elevated electricalmore » conductivity by considering a geophysical experiment consisting of a grounded current source deployed in a steel cased borehole. In doing so, the casing efficiently energizes the fractures with steady current. Finite element simulations of this experiment for a horizontal well intersecting a small set of vertical fractures indicate that the fractures manifest electrically in (at least) two ways: (1) a local perturbation in electric potential proximal to the fracture set, with limited farfield expression and (2) an overall reduction in the electric potential along the borehole casing due to enhanced current flow through the fractures into the surrounding formation. The change in casing potential results in a measurable effect that can be observed far from fractures themselves. Under these conditions, our results suggest that farfield, timelapse measurements of DC potentials can be interpreted by simple, linear inversion for a Coulomb charge distribution along the borehole path, including a local charge perturbation due to the fractures. As a result, this approach offers an inexpensive method for detecting and monitoring the time-evolution of electrically conducting fractures while ultimately providing an estimate of their effective conductivity — the latter providing an important measure independent of seismic methods on fracture shape, size, and hydraulic connectivity.« less

  15. The direct-current response of electrically conducting fractures excited by a grounded current source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Chester J.; Aldridge, David F.; Knox, Hunter A.

    Hydraulic fracture stimulation of low permeability reservoir rocks is an established and cross–cutting technology for enhancing hydrocarbon production in sedimentary formations and increasing heat exchange in crystalline geothermal systems. Whereas the primary measure of success is the ability to keep the newly generated fractures sufficiently open, long–term reservoir management requires a knowledge of the spatial extent, morphology, and distribution of the fractures — knowledge primarily informed by microseismic and ground deformation monitoring. To minimize the uncertainty associated with interpreting such data, we investigate through numerical simulation the usefulness of direct-current (DC) resistivity data for characterizing subsurface fractures with elevated electricalmore » conductivity by considering a geophysical experiment consisting of a grounded current source deployed in a steel cased borehole. In doing so, the casing efficiently energizes the fractures with steady current. Finite element simulations of this experiment for a horizontal well intersecting a small set of vertical fractures indicate that the fractures manifest electrically in (at least) two ways: (1) a local perturbation in electric potential proximal to the fracture set, with limited farfield expression and (2) an overall reduction in the electric potential along the borehole casing due to enhanced current flow through the fractures into the surrounding formation. The change in casing potential results in a measurable effect that can be observed far from fractures themselves. Under these conditions, our results suggest that farfield, timelapse measurements of DC potentials can be interpreted by simple, linear inversion for a Coulomb charge distribution along the borehole path, including a local charge perturbation due to the fractures. As a result, this approach offers an inexpensive method for detecting and monitoring the time-evolution of electrically conducting fractures while ultimately providing an estimate of their effective conductivity — the latter providing an important measure independent of seismic methods on fracture shape, size, and hydraulic connectivity.« less

  16. Variational calculations of subbands in a quantum well with uniform electric field - Gram-Schmidt orthogonalization approach

    NASA Technical Reports Server (NTRS)

    Ahn, Doyeol; Chuang, S. L.

    1986-01-01

    Variational calculations of subband eigenstates in an infinite quantum well with an applied electric field using Gram-Schmidt orthogonalized trial wave functions are presented. The results agree very well with the exact numerical solutions even up to 1200 kV/cm. It is also shown that, for increasing electric fields, the energy of the ground state decreases, while that of higher subband states increases slightly up to 1000 kV/cm and then decreases for a well size of 100 A.

  17. Electric-field-ratio profiling at the Silsilah tin-bearing greisen deposit, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Kamilli, R.J.; Zablocki, C.J.

    1993-01-01

    Buried, possibly mineralized granite cupolas at the Silsilah tin deposit in Saudi Arabia have been successfully located using a closely spaced electric-field-ratio profiling technique. In this study electrical fields at 27 and 270 Hz across grounded electrodes spaced 50m apart were measured along six traverses. The technique allowed the authors to identify and distinguish among unroofed granite cupolas, cupolas with their aplite-pegmatite apical contact zones intact, strong and weak greisens, dikes, faults, and pervasively argillized rocks. -from Authors

  18. Disk filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  19. Update on Alternatives for Cadmium Coatings on Military Electrical Connectors

    DTIC Science & Technology

    2010-03-01

    Update on Alternatives for Cadmium Coatings on Military Electrical Connectors The metal finishing industry hasbeen impacted by numerous reg- ulatory...government agen- cies to reduce the quantity of toxic and hazardous chemicals and materi- als acquired, used, or disposed. Cadmium and hexavalent...of cadmium and hexavalent chromium in ground vehicles and related systems. The National Defense Center for Energy and Environment (NDCEE), operated

  20. Ionosphere-magnetosphere coupling and convection

    NASA Technical Reports Server (NTRS)

    Wolf, R. A.; Spiro, R. W.

    1984-01-01

    The following international Magnetospheric Study quantitative models of observed ionosphere-magnetosphere events are reviewed: (1) a theoretical model of convection; (2) algorithms for deducing ionospheric current and electric-field patterns from sets of ground magnetograms and ionospheric conductivity information; and (3) empirical models of ionospheric conductances and polar cap potential drop. Research into magnetic-field-aligned electric fields is reviewed, particularly magnetic-mirror effects and double layers.

  1. UHF Antenna Design for AFIT Random Noise Radar

    DTIC Science & Technology

    2012-03-01

    relatives of monopole , dipole, and slot antennas. One particularly interesting style amongst these is the Vivaldi antenna. There are two primary... monopole versions using Earth’s surface as a ground plane [26]. Antenna design and construction caught up with these early innovations over the next...Frequency independent antennas  Electric antennas (e.g. dipoles and monopoles )  Magnetic antennas (e.g. loops)  Electrically small antennas

  2. The High Energy Lightning Simulator (HELS) Test Facility for Testing Explosive Items

    DTIC Science & Technology

    1996-08-01

    Center, Redstone Arsenal, AL Thomas E. Roy and David W. Bagwell AMTEC Corporation, Huntsville, AL ABSTRACT Details of the High Energy Lightning...simulated lightning testing of inerted missiles and inerted explosive items containing electrically initiated explosive trains is to determine the...penetrate the safety cages, which are electrically conductive and grounded, without loss of current. This transmission system consists of six large

  3. Disk filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  4. Characterization of the Coupling Between Adjacent Finite Ground Coplanar (FGC) Waveguides

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Katehi, Linda P. B.; Tentzeris, Emmanouil M.

    1997-01-01

    Coupling between adjacent Finite Ground Coplanar (FGC) waveguides as a function of the line geometry is presented for the first time. A two Dimension-Finite Difference Time Domain (2D-FDTD) analysis and measurements are used to show that the coupling decreases as the line to line separation and the grOUnd plane width increases. Furthermore, it is shown that for a given spacing between the center lines of two FGC lines, the coupling is lower if the ground plane width is smaller Lastly, electric field plots generated from the 2D-FDTD technique are presented which demonstrate a strong slotline mode is established in the coupled FGC line.

  5. New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites

    NASA Astrophysics Data System (ADS)

    Rycroft, Michael J.; Odzimek, Anna; Arnold, Neil F.; Füllekrug, Martin; Kułak, Andrzej; Neubert, Torsten

    2007-12-01

    Several processes acting below, in and above thunderstorms and in electrified shower clouds drive upward currents which close through the global atmospheric electric circuit. These are all simulated in a novel way using the software package PSpice. A moderate negative cloud-to-ground lightning discharge from the base of a thunderstorm increases the ionospheric potential above the thundercloud by 0.0013%. Assuming the ionosphere to be an equipotential surface, this discharge increases the current flowing in the global circuit and the fair-weather electric field also by 0.0013%. A moderate positive cloud-to-ground lightning discharge from the bottom of a thunderstorm decreases the ionospheric potential by 0.014%. Such a discharge may trigger a sprite, causing the ionospheric potential to decrease by ˜1V. The time scales for the recovery of the ionospheric potential are shown to be ˜250s, which is of the same order as the CR time constant for the global circuit. Knowing the global average rate of lightning discharges, it is found that negative cloud-to-ground discharges increase the ionospheric potential by only ˜4%, and that positive cloud-to-ground discharges reduce it by ˜3%. Thus, overall, lightning contributes only ˜1%—an almost insignificant proportion—to maintaining the high potential of the ionosphere. It is concluded that the net upward current to the ionosphere due to lightning is only ˜20A. Further, it is concluded that conduction and convection currents associated with “batteries” within thunderclouds and electrified shower clouds contribute essentially equally (˜500A each) to maintaining the ionospheric potential.

  6. Estimated use of water in the Apalachicola-Chattahoochee-Flint River basin during 1990, with state summaries from 1970 to 1990

    USGS Publications Warehouse

    Marella, R.L.; Fanning, J.L.; Mooty, W.S.

    1993-01-01

    The Apalachicola-Chattahoochee-Flint River basin covers approximately 19,800 square miles in parts of Alabama, Florida, and Georgia. Most of the basin lies within Georgia as does most of the population. Most of the water withdrawn in the basin in 1990 was withdrawn in Georgia (82 percent). Withdrawals in Florida and Alabama each accounted for 9 percent of the total withdrawal in the basin. Water with- drawn in the basin for 1990 totaled 2,098 million gallons per day, of which approximately 17 percent (351 million gallons per day) was consumed. Of the total water used, nearly 86 percent was withdrawn from surface-water sources, and the remaining 14 percent was withdrawn from ground-water sources. Nearly 63 percent of the surface water used in the basin during 1990 was for thermoelectric power generation; other surface water uses included public supply (24 percent), self-supplied commercial- industrial use (12 percent), and agricultural use (4 percent). Nearly 58 percent of the ground water used in the basin for 1990 was used for agricultural irrigation; other ground-water uses included public supply (21 percent), self-supplied domestic use (11 percent), self-supplied commercial-industrial use (9 percent), and thermoelectric power generation (less than 1 percent). The Chattahoochee River supplied most of the surface water used in the basin (64 percent) and the Floridan aquifer system supplied most of the ground water used (44 percent) in 1990. During 1990, 39,815 Mgal/d of water was used to produce 35,843 gigawatthours of electricity. Of that total, 1.076 Mgal/d was used to produced 33,460 gigawwatthours of electricity at 8 fossil fuel facilities and 38,740 Mgal/d was used to produce 2,384 gigawatthours of electricity at 14 hydroelectric facilities.

  7. Global Dayside Ionospheric Uplift and Enhancement Associated with Interplanetary Electric Fields

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce; Mannucci, Anthony; Iijima, Byron; Abdu, Mangalathayil Ali; Sobral, Jose Humberto A.; Gonzalez, Walter; Guarnieri, Fernando; Tsuda, Toshitaka; Saito, Akinori; Yumoto, Kiyohumi; hide

    2004-01-01

    The interplanetary shock/electric field event of 5-6 November 2001 is analyzed using ACE interplanetary data. The consequential ionospheric effects are studied using GPS receiver data from the CHAMP and SAC-C satellites and altimeter data from the TOPEX/ Poseidon satellite. Data from 100 ground-based GPS receivers as well as Brazilian Digisonde and Pacific sector magnetometer data are also used. The dawn-to-dusk interplanetary electric field was initially 33 mV/m just after the forward shock (IMF BZ = -48 nT) and later reached a peak value of 54 mV/m 1 hour and 40 min later (BZ = -78 nT). The electric field was 45 mV/m (BZ = -65 nT) 2 hours after the shock. This electric field generated a magnetic storm of intensity DST = -275 nT. The dayside satellite GPS receiver data plus ground-based GPS data indicate that the entire equatorial and midlatitude (up to +/-50(deg) magnetic latitude (MLAT)) dayside ionosphere was uplifted, significantly increasing the electron content (and densities) at altitudes greater than 430 km (CHAMP orbital altitude). This uplift peaked 2 1/2 hours after the shock passage. The effect of the uplift on the ionospheric total electron content (TEC) lasted for 4 to 5 hours. Our hypothesis is that the interplanetary electric field ''promptly penetrated'' to the ionosphere, and the dayside plasma was convected (by E x B) to higher altitudes. Plasma upward transport/convergence led to a 55-60% increase in equatorial ionospheric TEC to values above 430 km (at 1930 LT). This transport/convergence plus photoionization of atmospheric neutrals at lower altitudes caused a 21% TEC increase in equatorial ionospheric TEC at 1400 LT (from ground-based measurements). During the intense electric field interval, there was a sharp plasma ''shoulder'' detected at midlatitudes by the GPS receiver and altimeter satellites. This shoulder moves equatorward from -54(deg) to -37(deg) MLAT during the development of the main phase of the magnetic storm. We presume this to be an ionospheric signature of the plasmapause and its motion. The total TEC increase of this shoulder is 80%. Part of this increase may be due to a "superfountain effect." The dayside ionospheric TEC above 430 km decreased to values 45% lower than quiet day values 7 to 9 hours after the beginning of the electric field event. The total equatorial ionospheric TEC decrease was 16%. This decrease occurred both at midlatitudes and at the equator. We presume that thermospheric winds and neutral composition changes produced by the storm-time Joule heating, disturbance dynamo electric fields, and electric fields at auroral and subauroral latitudes are responsible for these decreases.

  8. An Internal Coaxial Cable Electrical Connector For Use In Downhole Tools

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael

    2005-11-29

    A coaxial cable electrical connector more specifically an internal coaxial cable connector placed within a coaxial cable and its constituent components. A coaxial cable connector is in electrical communcation with an inductive transformer and a coaxial cable. The connector is in electrical communication with the outer housing of the inductive transfonner. A generally coaxial center conductor, a portion of which could be the coil in the inductive transformer, passes through the connector, is electrically insulated from the connector, and is in electrical communication with the conductive care of the coaxial cable. A plurality of bulbous pliant tabs on the coaxial cable connector mechanically engage the inside diameter of the coaxial cable thus grounding the transformer to the coaxial cable. The coaxial cable and inductive transformer are disposed within downhole tools to transmit electrical signals between downhole tools within a drill string.

  9. SAMPLING DEVICE FOR pH MEASUREMENT IN PROCESS STREAMS

    DOEpatents

    Michelson, C.E.; Carson, W.N. Jr.

    1958-11-01

    A pH cell is presented for monitoring the hydrogen ion concentration of a fluid in a process stream. The cell is made of glass with a side entry arm just above a reservoir in which the ends of a glass electrode and a reference electrode are situated. The glass electrode contains the usual internal solution which is connected to a lead. The reference electrode is formed of saturated calomel having a salt bridge in its bottom portion fabricated of a porous glass to insure low electrolyte flow. A flush tube leads into the cell through which buffer and flush solutions are introduced. A ground wire twists about both electrode ends to insure constant electrical grounding of the sample. The electrode leads are electrically connected to a pH meter of aay standard type.

  10. Compact ion chamber based neutron detector

    DOEpatents

    Derzon, Mark S.; Galambos, Paul C.; Renzi, Ronald F.

    2015-10-27

    A directional neutron detector has an ion chamber formed in a dielectric material; a signal electrode and a ground electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; readout circuitry which is electrically coupled to the signal and ground electrodes; and a signal processor electrically coupled to the readout circuitry. The ion chamber has a pair of substantially planar electrode surfaces. The chamber pressure of the neutron absorbing material is selected such that the reaction particle ion trail length for neutrons absorbed by the neutron absorbing material is equal to or less than the distance between the electrode surfaces. The signal processor is adapted to determine a path angle for each absorbed neutron based on the rise time of the corresponding pulse in a time-varying detector signal.

  11. Thermoelectric properties of nano-meso-micro β-MnO₂ powders as a function of electrical resistance

    DOE PAGES

    Hedden, Morgan; Francis, Nick; Haraldsen, Jason T.; ...

    2015-07-15

    Particle sizes of manganese oxide (β-MnO₂) powders were modified by using a mortar and pestle ground method for period of times that varied between 15–60 min. Particle size versus ground time clearly shows the existence of a size-induced regime transition (i.e., regime I and II). Thermoelectric properties of β-MnO₂ powders as a function of electrical resistance in the range of R P = 10 - 80Ω were measured. Based on the data presented, we propose a model for the β-MnO₂ system in which nanometer-scale MnO₂ crystallites bond together through weak van der Waals forces to form larger conglomerates that spanmore » in size from nanometer to micrometer scale.« less

  12. Do we need a geoelectric index?

    NASA Technical Reports Server (NTRS)

    Holzworth, R.; Volland, H.

    1986-01-01

    The need for a geoelectric index (GI) measuring the global level of atmospheric electrical activity for a given time is assessed, and methods for defining a GI are compared. Current problems in atmospheric and space electrodynamics (the global circuit, solar-terrestrial coupling, lightning effects on the ionosphere/magnetosphere, and mesospheric generators), atmospheric chemistry (the stratospheric ozone cycle and atmospheric gravity waves), and meteorology (fog forecasting) are reviewed to illustrate the usefullness of a GI. Derivations of a GI from in situ electrical measurements and from ground or satellite remote sensing of source properties are described, and a system based on ground measurement of the intensity of the Schumann resonance lines (as proposed by Polk, 1982) is found to be the most practical, requiring as few as three (automatically operated) stations for global coverage.

  13. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-101) Spokane Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosales, Michael A.

    2002-09-13

    Vegetation Management for Substations and Non-Electric Facilities. BPA proposes to manage vegetation inside and around electrical substations and associated facilities. Vegetation management within the substation shall include the bare ground management of all graveled areas. These areas shall primarily be maintained with the use of herbicides. The management of vegetation outside the substation and associated facilities shall include: 1) bare ground management of perimeter roads and parking areas; 2) mechanical and/or spot herbicidal control of some broadleaves and noxious weeds; 3) mowing, fertilizing, and broadleaf control of landscaped lawn areas; 4) weed control in ornamental shrub areas; and 5) areasmore » requiring only mechanical control to manage unwanted/danger trees, grasses, and shrubs.« less

  14. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-64)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, Ken

    2002-04-26

    Vegetation Management for Substations and Non-Electric Facilities in the Walla Walla Region. BPA proposes to manage vegetation inside and around electrical substations and associated facilities. Vegetation management within the substation shall include the bare ground management of all graveled areas. These areas shall primarily be maintained with the use of herbicides. The management of vegetation outside the substation and associated facilities shall include: 1) bare ground management of perimeter roads and parking areas; 2) mechanical and/or spot herbicidal control of some broadleaves and noxious weeds; 3) mowing, fertilizing, and broadleaf control of landscaped lawn areas; 4) weed control in ornamentalmore » shrub areas; and 4) areas requiring only mechanical control to manage unwanted/danger trees, grasses, and shrubs.« less

  15. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geis, J.; Arnold, J.H.

    1994-09-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States` Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV`s whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Sincemore » the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, the authors have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible they modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.« less

  16. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    NASA Technical Reports Server (NTRS)

    Geis, Jack; Arnold, Jack H.

    1994-01-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States' Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV's whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, we have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible we modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  17. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    NASA Astrophysics Data System (ADS)

    Geis, Jack; Arnold, Jack H.

    1994-09-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States' Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV's whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, we have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible we modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  18. Self-Potential Monitoring of Landslides on Field and Laboratory Scale

    NASA Astrophysics Data System (ADS)

    Heinze, T.; Limbrock, J. K.; Weigand, M.; Wagner, F. M.; Kemna, A.

    2017-12-01

    Among several other geophysical methods used to observe water movement in the ground, the electrical self-potential method has been applied to a broad range of monitoring studies, especially focusing on volcanism and dam leakage but also during hydraulic fracturing. Electrical self-potential signals may be caused by various mechanisms. Though, the most relevant source of the self-potential field in the given context of landslides is the streaming potential, caused by a flowing electrolyte through porous media with electrically charged internal surfaces. So far, existing models focus on monitoring water flow in non-deformable porous media. However, as the self-potential is sensitive to hydraulic parameters of the soil, any change in these parameters will cause an alteration of the electric signal. Mass movement will significantly influence the hydraulic parameters of the solid as well as the pressure field, assuming that fluid movement is faster than pressure diffusion. We present self-potential measurements from over a year of continuous monitoring at an old landslide site. Using a three-dimensional electric-resistivity underground model, the self-potential signal is analyzed with respect to precipitation and the resulting flow in the ground. Additional data from electrical measurements and conventional sensors are included to assess saturation. The field observations are supplemented by laboratory experiments in which we study the behavior of the self-potential during failure of a piled land slope. For the undrained scenarios, we observe a clear correlation between the mass movements and signals in the electric potential, which clearly differ from the underlying potential variations due to increased saturation and fluid flow. In the drained experiments, we do not observe any measurable change in the electric potential. We therefore assume that change in fluid properties and release of the load causes disturbances in flow and streaming potential. Our results indicate that electrical self-potential measurements are very well suitable for surveillance of landslide prone hills, as water flow can be observed and soil movement can be detected.

  19. Measuring the vertical electrical field above an oceanic convection system using a meteorological sounding balloon

    NASA Astrophysics Data System (ADS)

    Chen, A. B.; Chiu, C.; Lai, S.; Chen, C.; Kuo, C.; Su, H.; Hsu, R.

    2012-12-01

    The vertical electric field above thundercloud plays an important role in the generation and modeling of transient luminous events. For example, Pasko [1995] proposed that the high quasi-static E-field following the positive cloud-to-ground lightning could accelerate and input energy to ambient electrons; as they collide and excite nitrogen and oxygen molecules in upper atmosphere, sprites may be induced. A series of balloon experiments led by Holzworth have investigated the temporal and spatial fluctuations of the electric field and conductivity in the upper atmosphere at different sites [Holzworth 2005, and references in]. But the strength and variation of the vertical electric field above thundercloud, especially oceanic ones, are not well documented so far. A lightweight, low-cost measurement system including an electric field meter and the associated aviation electronics are developed to carry out the in-situ measurement of the vertical electric field and the inter-cloud charge distribution. Our measuring system was first deployed using a meteorological sounding balloon from Taitung, Taiwan in May 2012. The measured electric field below 3km height shows an exponential decay and it is consistent with the expected potential gradient variation between ionosphere and the Earth surface. But the background strength of the measured E-field grows up exponentially and a violent fluctuations is also observed when the balloon flew over a developing oceanic convection cell. The preliminary results from this flight will be reported and discussed. This low-cost electric field meter is developed within one year. In the coming months, more flights will be performed with the aim to measure the rapid variation of the electric field above thundercloud as well as the E-field that may induce transient luminous events. Our ground campaigns show that the occurrence rates of blue and gigantic jet are relatively high in the vicinity of Taiwan. Our experiment can be used to diagnose the dynamics of the E-field associated with blue and gigantic jets.

  20. WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.C. Khamamkar

    2000-06-23

    The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will bemore » designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations Monitoring and Control System for supervisory monitoring and control signals. The system interfaces with all facility support loads such as heating, ventilation, and air conditioning, office, fire protection, monitoring and control, safeguards and security, and communications subsystems.« less

  1. Atmosphere-Ionosphere Electrodynamic Coupling

    NASA Astrophysics Data System (ADS)

    Sorokin, V. M.; Chmyrev, V. M.

    Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally observed effects as excitation of plasma density inhomogeneities, field-aligned currents, and ULF/ELF emissions and the modification of electron and ion altitude profiles in the upper ionosphere. The electrodynamic model of the ionosphere modification under the influence of some natural and man-made processes in the atmosphere is also discussed. The model is based on the satellite and ground measurements of electromagnetic field and plasma perturbations and on the data on atmospheric radioactivity and soil gas injection into the atmosphere.

  2. Agile Information Exchange in Autonomous Air Systems

    DTIC Science & Technology

    2013-06-01

    proportional to the information the pilot has on the target. Figure 5: Modified Procerus Unicorn UAV D. Equipment The UAV used in this experiment is...a modified Procerus Unicorn (Figure 5). Unicorns are electrically powered, Styrofoam flying wings with a 72” wingspan. Stock Unicorns are...controlled by a Kestrel autopilot, which communicates to a ground-station over a 900MHz radio link. Through the ground-station, the Unicorn operator can

  3. Electrocution

    USGS Publications Warehouse

    Thomas, N.J.

    1999-01-01

    Power lines and power poles present a potential electrocution hazard to wild birds. Many birds, especially raptors, select power poles for perching, and, sometimes, for nesting (Figs. 50.1–3). If a bird’s appendages bridge the gap between two energized parts or between an energized and a grounded metal part, electricity flows through the “bridge” that is filling the gap and the bird is electrocuted. Most commonly, birds are electrocuted where conducting wires (conductors) are placed closer together than the wingspan of birds that frequent the poles (Fig. 50.2). Feathers are poor electrical conductors, but if contact is made between points on the skin, talons, or beak, or if the feathers are wet, conduction can occur. Common anatomical sites of contact include conduction between the wrists of each wing or between the skin of one wing and a foot or leg. The resulting shock causes severe, usually fatal, cardiovascular injury. Because conductors on distribution lines are placed closer together than high voltage transmission lines, birds are more frequently electrocuted on distribution lines despite their lower voltage. In addition to one to three conductors, power poles may also carry ground wires, transformers, or grounded metal crossarm braces. Complicated wiring configurations that put multiple energized and grounded metal parts near attractive perching or nesting sites are the most hazardous configurations (Fig. 50.3).

  4. High-frequency electric field measurement using a toroidal antenna

    DOEpatents

    Lee, Ki Ha

    2002-01-01

    A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.

  5. Electrostatic Explorations.

    ERIC Educational Resources Information Center

    Gallai, Ditta; Stewart, Gay

    1998-01-01

    Presents a set of hands-on electrostatics experiments in the form of an activity guide and worksheet through which students discover the different types of electric charge, Coulomb's Law, induced charge separation, and grounding. (DDR)

  6. An explanation for parallel electric field pulses observed over thunderstorms

    NASA Astrophysics Data System (ADS)

    Kelley, M. C.; Barnum, B. H.

    2009-10-01

    Every electric field instrument flown on sounding rockets over a thunderstorm has detected pulses of electric fields parallel to the Earth's magnetic field associated with every strike. This paper describes the ionospheric signatures found during a flight from Wallops Island, Virginia, on 2 September 1995. The electric field results in a drifting Maxwellian corresponding to energies up to 1 eV. The distribution function relaxes because of elastic and inelastic collisions, resulting in electron heating up to 4000-5000 K and potentially observable red line emissions and enhanced ISR electron temperatures. The field strength scales with the current in cloud-to-ground strikes and falls off as r -1 with distance. Pulses of both polarities are found, although most electric fields are downward, parallel to the magnetic field. The pulse may be the reaction of ambient plasma to a current pulse carried at the whistler packet's highest group velocity. The charge source required to produce the electric field is very likely electrons of a few keV traveling at the packet velocity. We conjecture that the current source is the divergence of the current flowing at mesospheric heights, the phenomenon called an elve. The whistler packet's effective radiated power is as high as 25 mW at ionospheric heights, comparable to some ionospheric heater transmissions. Comparing the Poynting flux at the base of the ionosphere with flux an equal distance away along the ground, some 30 db are lost in the mesosphere. Another 10 db are lost in the transition from free space to the whistler mode.

  7. Power quality considerations for nuclear spectroscopy applications: Grounding

    NASA Astrophysics Data System (ADS)

    García-Hernández, J. M.; Ramírez-Jiménez, F. J.; Mondragón-Contreras, L.; López-Callejas, R.; Torres-Bribiesca, M. A.; Peña-Eguiluz, R.

    2013-11-01

    Traditionally the electrical installations are designed for supplying power and to assure the personnel safety. In nuclear analysis laboratories, additional issues about grounding also must be considered for proper operation of high resolution nuclear spectroscopy systems. This paper shows the traditional ways of grounding nuclear spectroscopy systems and through different scenarios, it shows the effects on the more sensitive parameter of these systems: the energy resolution, it also proposes the constant monitoring of a power quality parameter as a way to preserve or to improve the resolution of the systems, avoiding the influence of excessive extrinsic noise.

  8. Theoretical Electric Dipole Moments and Dissociation Energies for the Ground States of GaH-BrH

    NASA Technical Reports Server (NTRS)

    Pettersson, Lars G. M.; Langhoff, Stephen R.

    1986-01-01

    Reliable experimental diople moments are available for the ground states of SeH and BrH whereas no values have been reported for GaH and AsH a recently reported experimental dipole moment for GeH of 1.24 + or -0.01 D has been seriously questioned, and a much lower value of, 0.1 + or - 0.05 D, suggested. In this work, we report accurate theoretical dipole moments, dipole derivatives, dissociation energies, and spectroscopic constants (tau(sub e), omega(sub e)) for the ground states of GaH through BrH.

  9. Long-Lived Ultracold Molecules with Electric and Magnetic Dipole Moments.

    PubMed

    Rvachov, Timur M; Son, Hyungmok; Sommer, Ariel T; Ebadi, Sepehr; Park, Juliana J; Zwierlein, Martin W; Ketterle, Wolfgang; Jamison, Alan O

    2017-10-06

    We create fermionic dipolar ^{23}Na^{6}Li molecules in their triplet ground state from an ultracold mixture of ^{23}Na and ^{6}Li. Using magnetoassociation across a narrow Feshbach resonance followed by a two-photon stimulated Raman adiabatic passage to the triplet ground state, we produce 3×10^{4} ground state molecules in a spin-polarized state. We observe a lifetime of 4.6 s in an isolated molecular sample, approaching the p-wave universal rate limit. Electron spin resonance spectroscopy of the triplet state was used to determine the hyperfine structure of this previously unobserved molecular state.

  10. Long-Lived Ultracold Molecules with Electric and Magnetic Dipole Moments

    NASA Astrophysics Data System (ADS)

    Rvachov, Timur M.; Son, Hyungmok; Sommer, Ariel T.; Ebadi, Sepehr; Park, Juliana J.; Zwierlein, Martin W.; Ketterle, Wolfgang; Jamison, Alan O.

    2017-10-01

    We create fermionic dipolar 23Na 6Li molecules in their triplet ground state from an ultracold mixture of 23Na and 6Li. Using magnetoassociation across a narrow Feshbach resonance followed by a two-photon stimulated Raman adiabatic passage to the triplet ground state, we produce 3 ×1 04 ground state molecules in a spin-polarized state. We observe a lifetime of 4.6 s in an isolated molecular sample, approaching the p -wave universal rate limit. Electron spin resonance spectroscopy of the triplet state was used to determine the hyperfine structure of this previously unobserved molecular state.

  11. Methods and applications of electrical simulation in ground-water studies in the lower Arkansas and Verdigris River Valleys, Arkansas and Oklahoma

    USGS Publications Warehouse

    Bedinger, M.S.; Reed, J.E.; Wells, C.J.; Swafford, B.F.

    1970-01-01

    The Arkansas River Multiple-Purpose Plan will provide year-round navigation on the Arkansas River from near its mouth to Muskogee, Okla., and on the Verdigris River from Muskogee to Catoosa, Okla. The altered regimen in the Arkansas and Verdigris Rivers will affect ground-water conditions in the adjacent alluvial aquifers. In 1957 the U.S. Geological Survey and U.S. Army Corps of Engineers entered into a cooperative agreement for a comprehensive ground-water study of the lower Arkansas and Verdigris River valleys. At the request of the Corps of Engineers, the Geological Survey agreed to provide (1) basic ground-water data before, during, and after construction of the Multiple-Purpose Plan and (2) interpretation and projections of postconstruction ground-water conditions. The data collected were used by the Corps of Engineers in preliminary foundation and excavation estimates and by the Geological Survey as the basis for defining the hydrologic properties of, and the ground-water conditions in, the aquifer. The projections of postconstruction ground-water conditions were used by the Corps of Engineers in the planning, design, construction, and operation of the Multiple-Purpose Plan. Analysis and projections of ground-water conditions were made by use of electrical analog models. These models use the analogy between the flow of electricity in a resistance-capacitance circuit and the flow of a liquid in a porous and permeable medium. Verification provides a test of the validity of the analog to perform as the aquifer would, within the range of historic forces. The verification process consists of simulating the action of historic forces which have acted upon the aquifer and of duplicating the aquifer response with the analog. The areal distribution of accretion can be treated as an unknown and can be determined by analog simulation of the piezometric surface in an aquifer. Comparison of accretion with depth to piezometric surface below land surface shows that accretion decreases with decreasing depth to water level. The decrease in accretion is attributed mostly to the increase in evapotranspiration from the aquifer, and where water levels are very near the land surface, to the rejection of recharge. The maximum accretion and the decrease in accretion with the decrease in depth to water are dependent upon the climate and the thickness and lithology of the fine-grained material overlying the aquifer. Dams on the Arkansas and Verdigris Rivers will impose a direct change in water levels in the aquifers adjacent to the rivers. This change will be attenuated by the resultant change in accretion to the aquifer. The analogs of aquifers in the valleys were used to determine the change in ground-water level from preconstruction to postconstruction conditions.

  12. Ground and CHAMP observations of field-aligned current circuits generated by lower atmospheric disturbances and expectations to the SWARM to clarify their three dimensional structure

    NASA Astrophysics Data System (ADS)

    Iyemori, Toshihiko; Nakanishi, Kunihito; Aoyama, Tadashi; Lühr, Hermann

    2014-05-01

    Acoustic gravity waves propagated to the ionosphere cause dynamo currents in the ionosphere. They divert along geomagnetic field lines of force to another hemisphere accompanying electric field and then flow in the ionosphere of another hemisphere by the electric field forming closed current circuits. The oscillating current circuits with the period of acoustic waves generate magnetic variations on the ground, and they are observed as long period geomagnetic pulsations. This effect has been detected during big earthquakes, strong typhoons, tornados etc. On a low-altitude satellite orbit, the spatial distribution (i.e., structure) of the current circuits along the satellite orbit should be detected as temporal magnetic oscillations, and the effect is confirmed by a CHAMP data analysis. On the spatial structure, in particular, in the longitudinal direction, it has been difficult to examine by a single satellite or from ground magnetic observations. The SWARM satellites will provide an unique opportunity to clarify the three dimensional structure of the field-aligned current circuits.

  13. Electromagnetic cloak to restore the antenna radiation patterns affected by nearby scatter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teperik, Tatiana V., E-mail: tatiana.teperik@u-psud.fr; Donostia International Physics Center, Aptdo. 1072, 20080 San Sebastian; Lustrac, André de

    We have theoretically verified the feasibility of the concept of mantle cloak for very high frequency (VHF) antenna communications. While the applicability of the concept has been demonstrated for an infinitely long cylindrical obstacle and infinitely long electric source [Y.R. Padooru, A.B. Yakovlev, and P.-Y. Chen and Andrea Alù, J. Appl. Phys., 112, 104902, (2012)], the use of this cloak in realistic conditions is not straightforward. In this paper as an electric source we consider a typical VHF monopole antenna mounted on ground plane together with a metallic cylindrical obstacle. The both ground plane and obstacle affect the antenna radiationmore » scattering. Nevertheless, we could show that the mantle cloak can bee successfully applied to restore the radiation patterns of antenna even when the source, the cylindrical metallic obstacle, and the ground plane have finite length. We have studied the antenna adaptation in the presence of the cloaked obstacle and found that the complete radiation system is still functional in the bandwidth that is reduced only by 11%.« less

  14. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, M.Y.

    1996-08-13

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall. 14 figs.

  15. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, M.Y.

    1995-10-17

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall. 14 figs.

  16. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, Michel Y.

    1995-01-01

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.

  17. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, Michel Y.

    1996-01-01

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.

  18. Current measuring system

    DOEpatents

    Dahl, David A.; Appelhans, Anthony D.; Olson, John E.

    1997-01-01

    A current measuring system comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device.

  19. The Spin-Plane Double Probe Electric Field Instrument for MMS

    NASA Astrophysics Data System (ADS)

    Lindqvist, P.-A.; Olsson, G.; Torbert, R. B.; King, B.; Granoff, M.; Rau, D.; Needell, G.; Turco, S.; Dors, I.; Beckman, P.; Macri, J.; Frost, C.; Salwen, J.; Eriksson, A.; Åhlén, L.; Khotyaintsev, Y. V.; Porter, J.; Lappalainen, K.; Ergun, R. E.; Wermeer, W.; Tucker, S.

    2016-03-01

    The Spin-plane double probe instrument (SDP) is part of the FIELDS instrument suite of the Magnetospheric Multiscale mission (MMS). Together with the Axial double probe instrument (ADP) and the Electron Drift Instrument (EDI), SDP will measure the 3-D electric field with an accuracy of 0.5 mV/m over the frequency range from DC to 100 kHz. SDP consists of 4 biased spherical probes extended on 60 m long wire booms 90∘ apart in the spin plane, giving a 120 m baseline for each of the two spin-plane electric field components. The mechanical and electrical design of SDP is described, together with results from ground tests and calibration of the instrument.

  20. Regional United States electric field and GIC hazard impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Gannon, J. L.; Balch, C. C.; Trichtchenko, L.

    2013-12-01

    Geomagnetically Induced Currents (GICs) are primarily driven by impulsive geomagnetic disturbances created by the interaction between the Earth's magnetosphere and sharp velocity, density, and magnetic field enhancements in the solar wind. However, the magnitude of the induced electric field response at the ground level, and therefore the resulting hazard to the bulk power system, is determined not only by magnetic drivers, but also by the underlying geology. Convolution techniques are used to calculate surface electric fields beginning from the spectral characteristics of magnetic field drivers and the frequency response of the local geology. Using these techniques, we describe historical scenarios for regions across the United States, and the potential impact of large events on electric power infrastructure.

Top