Grips for testing of electrical characteristics of a specimen under a mechanical load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briggs, Timothy; Loyola, Bryan
Various technologies to facilitate coupled electrical and mechanical measurement of conductive materials are disclosed herein. A gripping device simultaneously holds a specimen in place and causes contact to be made between the specimen and a plurality of electrodes connected to an electrical measuring device. An electrical characteristic of the specimen is then measured while a mechanical load is applied to the specimen, and a relationship between the mechanical load and changes in the electrical characteristic can be identified.
Hall devices improve electric motor efficiency
NASA Technical Reports Server (NTRS)
Haeussermann, W.
1979-01-01
Efficiency of electric motors and generators is reduced by radial magnetic forces created by symmetric fields within device. Forces are sensed and counteracted by Hall devices on excitation or control windings. Hall generators directly measure and provide compensating control of anu asymmetry, eliminating additional measurements needed for calibration feedback control loop.
Bottom-up realization and electrical characterization of a graphene-based device.
Maffucci, A; Micciulla, F; Cataldo, A; Miano, G; Bellucci, S
2016-03-04
We propose a bottom-up procedure to fabricate an easy-to-engineer graphene-based device, consisting of a microstrip-like circuit where few-layer graphene nanoplatelets are used to contact two copper electrodes. The graphene nanoplatelets are obtained by the microwave irradiation of intercalated graphite, i.e., an environmentally friendly, fast and low-cost procedure. The contact is created by a bottom-up process, driven by the application of a DC electrical field in the gap between the electrodes, yielding the formation of a graphene carpet. The electrical resistance of the device has been measured as a function of the gap length and device temperature. The possible use of this device as a gas sensor is demonstrated by measuring the sensitivity of its electrical resistance to the presence of gas. The measured results demonstrate a good degree of reproducibility in the fabrication process, and the competitive performance of devices, thus making the proposed technique potentially attractive for industrial applications.
Assembly for electrical conductivity measurements in the piston cylinder device
Watson, Heather Christine [Dublin, CA; Roberts, Jeffrey James [Livermore, CA
2012-06-05
An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.
Bateman, J; Proctor, M; Buchnev, O; Podoliak, N; D'Alessandro, G; Kaczmarek, M
2014-07-01
The voltage transfer function is a rapid and visually effective method to determine the electrical response of liquid crystal (LC) systems using optical measurements. This method relies on crosspolarized intensity measurements as a function of the frequency and amplitude of the voltage applied to the device. Coupled with a mathematical model of the device it can be used to determine the device time constants and electrical properties. We validate the method using photorefractive LC cells and determine the main time constants and the voltage dropped across the layers using a simple nonlinear filter model.
Remote tire pressure sensing technique
NASA Technical Reports Server (NTRS)
Robinson, Howard H. (Inventor); Mcginnis, Timothy A. (Inventor); Daugherty, Robert H. (Inventor)
1993-01-01
A remote tire pressure sensing technique is provided which uses vibration frequency to determine tire pressure. A vibration frequency measuring device is attached to the external surface of a tire which is then struck with an object, causing the tire to vibrate. The frequency measuring device measures the vibrations and converts the vibrations into corresponding electrical impulses. The electrical impulses are then fed into the frequency analyzing system which uses the electrical impulses to determine the relative peaks of the vibration frequencies as detected by the frequency measuring device. The measured vibration frequency peaks are then compared to predetermined data describing the location of vibration frequency peaks for a given pressure, thereby determining the air pressure of the tire.
Electric Field Sensor for Lightning Early Warning System
NASA Astrophysics Data System (ADS)
Premlet, B.; Mohammed, R.; Sabu, S.; Joby, N. E.
2017-12-01
Electric field mills are used popularly for atmospheric electric field measurements. Atmospheric Electric Field variation is the primary signature for Lightning Early Warning systems. There is a characteristic change in the atmospheric electric field before lightning during a thundercloud formation.A voltage controlled variable capacitance is being proposed as a method for non-contacting measurement of electric fields. A varactor based mini electric field measurement system is developed, to detect any change in the atmospheric electric field and to issue lightning early warning system. Since this is a low-cost device, this can be used for developing countries which are facing adversities. A network of these devices can help in forming a spatial map of electric field variations over a region, and this can be used for more improved atmospheric electricity studies in developing countries.
Four-terminal electrical testing device. [initiator bridgewire resistance
NASA Technical Reports Server (NTRS)
Robinson, Robert L. (Inventor); Graves, Thomas J. (Inventor); Hoffman, William C., III (Inventor)
1987-01-01
The invention relates to a four-terminal electrical connector device for testing and measuring unknown resistances of initiators used for starting pyrotechnic events aboard the space shuttle. The testing device minimizes contact resistance degradation effects and so improves the reliability of resistance measurements taken with the device. Separate and independent voltage sensing and current supply circuits each include a pair of socket contacts for mating engagement with the pins of the initiator. The unknown resistance that is measured by the device is the resistance of the bridgewire of the initiator which is required to be between 0.95 and 1.15 ohms.
Direct measurement of the electric-field distribution in a light-emitting electrochemical cell
NASA Astrophysics Data System (ADS)
Slinker, Jason D.; Defranco, John A.; Jaquith, Michael J.; Silveira, William R.; Zhong, Yu-Wu; Moran-Mirabal, Jose M.; Craighead, Harold G.; Abruña, Héctor D.; Marohn, John A.; Malliaras, George G.
2007-11-01
The interplay between ionic and electronic charge carriers in mixed conductors offers rich physics and unique device potential. In light-emitting electrochemical cells (LEECs), for example, the redistribution of ions assists the injection of electronic carriers and leads to efficient light emission. The mechanism of operation of LEECs has been controversial, as there is no consensus regarding the distribution of electric field in these devices. Here, we probe the operation of LEECs using electric force microscopy on planar devices. We show that obtaining the appropriate boundary conditions is essential for capturing the underlying device physics. A patterning scheme that avoids overlap between the mixed-conductor layer and the metal electrodes enabled the accurate in situ measurement of the electric-field distribution. The results show that accumulation and depletion of mobile ions near the electrodes create high interfacial electric fields that enhance the injection of electronic carriers.
Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices.
Pejović, Milić M; Denić, Dragan B; Pejović, Momčilo M; Nešić, Nikola T; Vasović, Nikola
2010-10-01
This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.
Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pejovic, Milic M.; Denic, Dragan B.; Pejovic, Momcilo M.
2010-10-15
This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven bymore » TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-23
... Mitigation measures Excessive laser power Electrical safety and electromagnetic compatibility (EMC... should validate electromagnetic compatibility (EMC), electrical safety, and battery characteristics; (4...
21 CFR 882.1540 - Galvanic skin response measurement device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Galvanic skin response measurement device. 882... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device... electrical resistance of the skin and the tissue path between two electrodes applied to the skin. (b...
21 CFR 882.1540 - Galvanic skin response measurement device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Galvanic skin response measurement device. 882... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device... electrical resistance of the skin and the tissue path between two electrodes applied to the skin. (b...
21 CFR 882.1540 - Galvanic skin response measurement device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Galvanic skin response measurement device. 882... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device... electrical resistance of the skin and the tissue path between two electrodes applied to the skin. (b...
21 CFR 882.1540 - Galvanic skin response measurement device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Galvanic skin response measurement device. 882... Galvanic skin response measurement device. (a) Identification. A galvanic skin response measurement device... electrical resistance of the skin and the tissue path between two electrodes applied to the skin. (b...
NASA Astrophysics Data System (ADS)
Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun
2017-04-01
In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.
Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun
2017-04-01
In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.
77 FR 47043 - Work Group on Measuring Systems for Electric Vehicle Fueling
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... Group (WG) to develop proposed requirements for commercial electricity-measuring devices (including those used in sub- metering electricity at residential and business locations and those used to measure and sell electricity dispensed as a vehicle fuel) and to ensure that the prescribed methodologies and...
Fabrication of 1-dimension nano-material-based device and its electrical characteristics
NASA Astrophysics Data System (ADS)
Yang, Xing; Zhou, Zhaoying; Zheng, Fuzhong; Zhang, Min
2008-12-01
In recent years, many kinds of 1-dimension nano-materials (Carbon nanotube, ZnO nanobelt and nanowire etc.) continue to emerge which exhibit distinct and unique electromechanical, piezoelectric, photoelectrical properties. In this paper, a 1-dimension nano-materials-based device was proposed. The bottom-up and top-down combined process were used for constructing CNT-array-based device and ZnO nanowire device. The electrical characteristics of the 1D nano-materials-based devices were also investigated. The measurement results of electrical characteristics demonstrate that it is ohm electrical contact behavior between the nano-material and micro-electrodes in the proposed device which also have the field effect. The proposed 1D nano-material-based device shows the application potential in the sensing fields.
Horn, Kevin M [Albuquerque, NM
2008-05-20
A broad-beam laser irradiation apparatus can measure the parametric or functional response of a semiconductor device to exposure to dose-rate equivalent infrared laser light. Comparisons of dose-rate response from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems can determine if aging has affected the device's overall functionality. The dependence of these changes on equivalent dose-rate pulse intensity and/or duration can be measured with the apparatus. The synchronized introduction of external electrical transients into the device under test can be used to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure while exposing the device to dose-rate equivalent infrared laser light.
Torres, Juan C; Vergaz, Ricardo; Barrios, David; Sánchez-Pena, José Manuel; Viñuales, Ana; Grande, Hans Jürgen; Cabañero, Germán
2014-05-02
A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed.
Dahl, David A.; Appelhans, Anthony D.; Olson, John E.
1997-01-01
A current measuring system comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device.
Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression
NASA Technical Reports Server (NTRS)
Laun, Matthew C. (Inventor)
2016-01-01
Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.
Sun, Rai Ko S.F.
1994-01-01
A device for measuring dose equivalents in neutron radiation fields. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning.
Torres, Juan C.; Vergaz, Ricardo; Barrios, David; Sánchez-Pena, José Manuel; Viñuales, Ana; Grande, Hans Jürgen; Cabañero, Germán
2014-01-01
A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed. PMID:28788632
Dahl, D.A.; Appelhans, A.D.; Olson, J.E.
1997-09-09
A current measuring system is disclosed comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device. 4 figs.
Spatially resolved imaging of opto-electrical property variations
Nikiforov, Maxim; Darling, Seth B; Suzer, Ozgun; Guest, Jeffrey; Roelofs, Andreas
2014-09-16
Systems and methods for opto electric properties are provided. A light source illuminates a sample. A reference detector senses light from the light source. A sample detector receives light from the sample. A positioning fixture allows for relative positioning of the sample or the light source with respect to each other. An electrical signal device measures the electrical properties of the sample. The reference detector, sample detector and electrical signal device provide information that may be processed to determine opto-electric properties of the same.
New diesel injection nozzle flow measuring device
NASA Astrophysics Data System (ADS)
Marčič, Milan
2000-04-01
A new measuring device has been developed for diesel injection nozzle testing, allowing measuring of the steady flow through injection nozzle and the injection rate. It can be best applied for measuring the low and high injection rates of the pintle and single hole nozzle. In steady flow measuring the fuel pressure at the inlet of the injection nozzle is 400 bar. The sensor of the measuring device measures the fuel charge, resulting from fuel rubbing in the fuel injection system, as well as from the temperature gradient in the sensor electrode. The electric charge is led to the charge amplifier, where it is converted into electric current and amplified. The amplifier can be used also to measure the mean injection rate value.
Diagnostic for two-mode variable valve activation device
Fedewa, Andrew M
2014-01-07
A method is provided for diagnosing a multi-mode valve train device which selectively provides high lift and low lift to a combustion valve of an internal combustion engine having a camshaft phaser actuated by an electric motor. The method includes applying a variable electric current to the electric motor to achieve a desired camshaft phaser operational mode and commanding the multi-mode valve train device to a desired valve train device operational mode selected from a high lift mode and a low lift mode. The method also includes monitoring the variable electric current and calculating a first characteristic of the parameter. The method also includes comparing the calculated first characteristic against a predetermined value of the first characteristic measured when the multi-mode valve train device is known to be in the desired valve train device operational mode.
Morales, Ricardo; Badesa, Francisco J; García-Aracil, Nicolas; Perez-Vidal, Carlos; Sabater, Jose María
2012-01-01
This paper presents a microdevice for monitoring, control and management of electric loads at home. The key idea is to compact the electronic design as much as possible in order to install it inside a Schuko socket. Moreover, the electronic Schuko socket (electronic microdevice + Schuko socket) has the feature of communicating with a central unit and with other microdevices over the existing powerlines. Using the existing power lines, the proposed device can be installed in new buildings or in old ones. The main use of this device is to monitor, control and manage electric loads to save energy and prevent accidents produced by different kind of devices (e.g., iron) used in domestic tasks. The developed smart device is based on a single phase multifunction energy meter manufactured by Analog Devices (ADE7753) to measure the consumption of electrical energy and then to transmit it using a serial interface. To provide current measurement information to the ADE7753, an ultra flat SMD open loop integrated circuit current transducer based on the Hall effect principle manufactured by Lem (FHS-40P/SP600) has been used. Moreover, each smart device has a PL-3120 smart transceiver manufactured by LonWorks to execute the user's program, to communicate with the ADE7753 via serial interface and to transmit information to the central unit via powerline communication. Experimental results show the exactitude of the measurements made using the developed smart device.
Rai, K.S.F.
1994-01-11
A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures.
Love, Frank
2006-04-18
An electrical circuit testing device is provided, comprising a case, a digital voltage level testing circuit with a display means, a switch to initiate measurement using the device, a non-shorting switching means for selecting pre-determined electrical wiring configurations to be tested in an outlet, a terminal block, a five-pole electrical plug mounted on the case surface and a set of adapters that can be used for various multiple-pronged electrical outlet configurations for voltages from 100 600 VAC from 50 100 Hz.
NASA Astrophysics Data System (ADS)
Kumar, M.; Yang, Sung-Hyun; Janardhan Reddy, K.; JagadeeshChandra, S. V.
2017-04-01
Hafnium oxide (HfO2) thin films were grown on cleaned P-type <1 0 0> Ge and Si substrates by using atomic layer deposition technique (ALD) with thickness of 8 nm. The composition analysis of as-deposited and annealed HfO2 films was characterized by XPS, further electrical measurements; we fabricated the metal-oxide-semiconductor (MOS) devices with Pt electrode. Post deposition annealing in O2 ambient at 500 °C for 30 min was carried out on both Ge and Si devices. Capacitance-voltage (C-V) and conductance-voltage (G-V) curves measured at 1 MHz. The Ge MOS devices showed improved interfacial and electrical properties, high dielectric constant (~19), smaller EOT value (0.7 nm), and smaller D it value as Si MOS devices. The C-V curves shown significantly high accumulation capacitance values from Ge devices, relatively when compare with the Si MOS devices before and after annealing. It could be due to the presence of very thin interfacial layer at HfO2/Ge stacks than HfO2/Si stacks conformed by the HRTEM images. Besides, from current-voltage (I-V) curves of the Ge devices exhibited similar leakage current as Si devices. Therefore, Ge might be a reliable substrate material for structural, electrical and high frequency applications.
NASA Astrophysics Data System (ADS)
Smieska, Louisa Marion
Organic semiconductors could have wide-ranging applications in lightweight, efficient electronic circuits. However, several fundamental questions regarding organic electronic device behavior have not yet been fully addressed, including the nature of chemical charge traps, and robust models for injection and transport. Many studies focus on engineering devices through bulk transport measurements, but it is not always possible to infer the microscopic behavior leading to the observed measurements. In this thesis, we present scanning-probe microscope studies of organic semiconductor devices in an effort to connect local properties with local device behavior. First, we study the chemistry of charge trapping in pentacene transistors. Working devices are doped with known pentacene impurities and the extent of charge trap formation is mapped across the transistor channel. Trap-clearing spectroscopy is employed to measure an excitation of the pentacene charge trap species, enabling identification of the degradationrelated chemical trap in pentacene. Second, we examine transport and trapping in peryelene diimide (PDI) transistors. Local mobilities are extracted from surface potential profiles across a transistor channel, and charge injection kinetics are found to be highly sensitive to electrode cleanliness. Trap-clearing spectra generally resemble PDI absorption spectra, but one derivative yields evidence indicating variation in trap-clearing mechanisms for different surface chemistries. Trap formation rates are measured and found to be independent of surface chemistry, contradicting a proposed silanol trapping mechanism. Finally, we develop a variation of scanning Kelvin probe microscopy that enables measurement of electric fields through a position modulation. This method avoids taking a numeric derivative of potential, which can introduce high-frequency noise into the electric field signal. Preliminary data is presented, and the theoretical basis for electric field noise in both methods is examined.
Oxygen Impurities Link Bistability and Magnetoresistance in Organic Spin Valves.
Bergenti, Ilaria; Borgatti, Francesco; Calbucci, Marco; Riminucci, Alberto; Cecchini, Raimondo; Graziosi, Patrizio; MacLaren, Donald A; Giglia, Angelo; Rueff, Jean Pascal; Céolin, Denis; Pasquali, Luca; Dediu, Valentin
2018-03-07
Vertical crossbar devices based on manganite and cobalt injecting electrodes and a metal-quinoline molecular transport layer are known to manifest both magnetoresistance (MR) and electrical bistability. The two effects are strongly interwoven, inspiring new device applications such as electrical control of the MR and magnetic modulation of bistability. To explain the device functionality, we identify the mechanism responsible for electrical switching by associating the electrical conductivity and the impedance behavior with the chemical states of buried layers obtained by in operando photoelectron spectroscopy. These measurements revealed that a significant fraction of oxygen ions migrate under voltage application, resulting in a modification of the electronic properties of the organic material and of the oxidation state of the interfacial layer with the ferromagnetic contacts. Variable oxygen doping of the organic molecules represents the key element for correlating bistability and MR, and our measurements provide the first experimental evidence in favor of the impurity-driven model describing the spin transport in organic semiconductors in similar devices.
Tunable electrical conductivity of individual graphene oxide sheets reduced at "low" temperatures.
Jung, Inhwa; Dikin, Dmitriy A; Piner, Richard D; Ruoff, Rodney S
2008-12-01
Step-by-step controllable thermal reduction of individual graphene oxide sheets, incorporated into multiterminal field effect devices, was carried out at low temperatures (125-240 degrees C) with simultaneous electrical measurements. Symmetric hysteresis-free ambipolar (electron- and hole-type) gate dependences were observed as soon as the first measurable resistance was reached. The conductivity of each of the fabricated devices depended on the level of reduction (was increased more than 10(6) times as reduction progressed), strength of the external electrical field, density of the transport current, and temperature.
Gryz, Krzysztof; Karpowicz, Jolanta
2014-01-01
Electromagnetic fields used in physiotherapeutic treatment affect not only patients, but also physiotherapists, patients not undergoing treatment and electronic medical equipment. The aim of the work was to study the parameters of the electromagnetic fields of physiotherapeutic devices with respect to requirements regarding the protection of electronic devices, including medical implants, against electromagnetic intererence, and the protection of the general public (patients not undergoing treatment and bystanders), as well as medical personnel, against the health hazards caused by electromagnetic exposure. The spatial distribution of electric and magnetic field strength was investigated near 3 capacitive short-wave and 3 long-wave diathermies and 3 ultrasound therapy units, as along with the capacitive electric currents caused by electromagnetic field interaction in the upper limbs of the physiotherapists operating these devices. The physiotherapists' exposure to electromagnetic fields depends on the spatial organisation of the workspace and their location during treatment. Electric fields able to interfere with the function of electronic medical implants and in whic anyone not undergoing treatment should not be present were measured up to 150-200 cm away from active applicators of short-wave diathermy, and up to 40-45 cm away from long-wave diathermy ones. Electric fields in which workers should not be present were measured up to 30-40 cm away from the applicators and cables of active short-wave diathermy devices. A capacitive electric current with a strength exceeding many times the international recommendations regarding workers protection was measured in the wrist while touching applicators and cables of active short-wave diathermy devices. The strongest environmental electromagnetic hazards occur near short-wave diathermy devices, and to a lesser degree near long-wave diathermy devices, but were not found near ultrasound therapy units.
Shiba, Kenji
2015-08-01
We proposed an electrically induced energy transmission method for implantable medical devices deep inside the body. This method makes it possible to transmit energy deep inside the body using only a couple of titanium electrodes attached to the surface of the implantable medical device. In this study, electromagnetic simulations in which the area and distance of the receiving electrodes were changed were conducted. Then, experimental measurements of the received voltage were conducted in which electric energy was transmitted from the surface of the human phantom to an implantable device inside it (transmitting distance: 12 cm). As a result of the electromagnetic simulation, the area and distance of the receiving electrodes were roughly proportional to the received voltage, respectively. As a result of the experimental measurement, a received voltage of 2460 mV could be obtained with a load resistance of 100 Ω. We confirmed that our energy transmission method could be a powerful method for transmitting energy to a deeply implanted medical device.
21 CFR 870.2850 - Extravascular blood pressure transducer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... used to measure blood pressure by changes in the mechanical or electrical properties of the device. The... electrical signal related to the electrical or mechanical changes produced in the transducer. (b...
NASA Astrophysics Data System (ADS)
Wang, Haiyuan; Huang, Rui; Yang, Maotao; Chen, Hao
2017-12-01
At present, the electric energy metering device is classified according to the amount of electric energy and the degree of importance of the measurement object. The measuring device is also selected according to the characteristics of the traditional metering object.With the continuous development of smart grid, the diversification of measurement objects increasingly appear, the traditional measurement object classification has been unable to meet the new measurement object of personalized, differentiated needs.Withal, this paper constructs the subdivision model based on the object feature-system evaluation, classifies according to the characteristics of the measurement object, and carries on the empirical analysis with some kind of measurement object as the research object.The results show that the model works well and can be used to subdivide the metrological objects into different customer groups, which can be reasonably configured and managed for the metering devices. The research of this paper has effectively improved the economy and rationality of the energy metering device management, and improved the working efficiency.
NASA Astrophysics Data System (ADS)
Zhang, Lian-Chang; Shi, Zhi-Wen; Yang, Rong; Huang, Jian
2014-09-01
Quasi-monolayer graphene is successfully grown by the plasma enhanced chemical vapor deposition heteroepitaxial method we reported previously. To measure its electrical properties, the prepared graphene is fabricated into Hall ball shaped devices by the routine micro-fabrication method. However, impurity molecules adsorbed onto the graphene surface will impose considerable doping effects on the one-atom-thick film material. Our experiment demonstrates that pretreatment of the device by heat radiation baking and electrical annealing can dramatically influence the doping state of the graphene and consequently modify the electrical properties. While graphene in the as-fabricated device is highly p-doped, as confirmed by the position of the Dirac point at far more than +60 V, baking treatment at temperatures around 180°C can significantly lower the doping level and reduce the conductivity. The following electrical annealing is much more efficient to desorb the extrinsic molecules, as confirmed by the in situ measurement, and as a result, further modify the doping state and electrical properties of the graphene, causing a considerable drop of the conductivity and a shifting of Dirac point from beyond +60 V to 0 V.
Ephemeral Electric Potential and Electric Field Sensor
NASA Technical Reports Server (NTRS)
Generazio, Edward R. (Inventor)
2017-01-01
Systems, methods, and devices of the various embodiments provide for the minimization of the effects of intrinsic and extrinsic leakage electrical currents enabling true measurements of electric potentials and electric fields. In an embodiment, an ephemeral electric potential and electric field sensor system may have at least one electric field sensor and a rotator coupled to the electric field sensor and be configured to rotate the electric field sensor at a quasi-static frequency. In an embodiment, ephemeral electric potential and electric field measurements may be taken by rotating at least one electric field sensor at a quasi-static frequency, receiving electrical potential measurements from the electric field sensor when the electric field sensor is rotating at the quasi-static frequency, and generating and outputting images based at least in part on the received electrical potential measurements.
Chen, Kai-Huang; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Liang, Shu-Ping; Young, Tai-Fa; Syu, Yong-En; Sze, Simon M
2016-12-01
Bipolar switching resistance behaviors of the Gd:SiO2 resistive random access memory (RRAM) devices on indium tin oxide electrode by the low-temperature supercritical CO2-treated technology were investigated. For physical and electrical measurement results obtained, the improvement on oxygen qualities, properties of indium tin oxide electrode, and operation current of the Gd:SiO2 RRAM devices were also observed. In addition, the initial metallic filament-forming model analyses and conduction transferred mechanism in switching resistance properties of the RRAM devices were verified and explained. Finally, the electrical reliability and retention properties of the Gd:SiO2 RRAM devices for low-resistance state (LRS)/high-resistance state (HRS) in different switching cycles were also measured for applications in nonvolatile random memory devices.
Non-Contact Stiffness Measurement of a Suspended Single Walled Carbon Nanotube Device
NASA Technical Reports Server (NTRS)
Zheng, Yun; Su, Chanmin; Getty, Stephanie
2010-01-01
A new nanoscale electric field sensor was developed for studying triboelectric charging in terrestrial and Martian dust devils. This sensor is capable to measure the large electric fields for large dust devils without saturation. However, to quantify the electric charges and the field strength it is critical to calibrate the mechanical stiffness of the sensor devices. We performed a technical feasibility study of the Nano E-field Sensor stiffness by a non-contact stiffness measurement method. The measurement is based on laser Doppler vibrometer measurement of the thermal noise due to energy flunctuations in the devices. The experiment method provides a novel approach to acquire data that is essential in analyzing the quantitative performance of the E-field Nano Sensor. To carry out the non-contact stiffness measurement, we fabricated a new Single-Walled Carbon Nanotube (SWCNT) E-field sensor with different SWCNTs suspension conditions. The power spectra of the thermal induced displacement in the nano E-field sensor were measured at the accuracy of picometer. The power spectra were then used to derive the mechanical stiffness of the sensors. Effect of suspension conditions on stiffness and sensor sensitivty was discussed. After combined deformation and resistivity measurement, we can compare with our laboratory testing and field testing results. This new non-contact measurement technology can also help to explore to other nano and MEMS devices in the future.
Multi-Directional Environmental Sensors
NASA Technical Reports Server (NTRS)
Manohara, Harish (Inventor); Del Castillo, Linda Y. (Inventor); Mojarradi, Mohammed M. (Inventor)
2016-01-01
Systems and methods in accordance with embodiments of the invention implement multi-directional environmental sensors. In one embodiment, a multi-directional environmental sensor includes: an inner conductive element that is substantially symmetrical about three orthogonal planes; an outer conductive element that is substantially symmetrical about three orthogonal planes; and a device that measures the electrical characteristics of the multi-directional environmental sensor, the device having a first terminal and a second terminal; where the inner conductive element is substantially enclosed within the outer conductive element; where the inner conductive element is electrically coupled to the first terminal of the device; and where the outer conductive element is electrically coupled to the second terminal of the device.
21 CFR 882.1870 - Evoked response electrical stimulator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...
21 CFR 882.1870 - Evoked response electrical stimulator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...
21 CFR 882.1870 - Evoked response electrical stimulator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...
21 CFR 882.1870 - Evoked response electrical stimulator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...
NASA Astrophysics Data System (ADS)
Iwamoto, Mitsumasa; Taguchi, Dai
2018-03-01
Thermally stimulated current (TSC) measurement is widely used in a variety of research fields, i.e., physics, electronics, electrical engineering, chemistry, ceramics, and biology. TSC is short-circuit current that flows owing to the displacement of charges in samples during heating. TSC measurement is very simple, but TSC curves give very important information on charge behaviors. In the 1970s, TSC measurement contributed greatly to the development of electrical insulation engineering, semiconductor device technology, and so forth. Accordingly, the TSC experimental technique and its analytical method advanced. Over the past decades, many new molecules and advanced functional materials have been discovered and developed. Along with this, TSC measurement has attracted much attention in industries and academic laboratories as a way of characterizing newly discovered materials and devices. In this review, we report the latest research trend in the TSC method for the development of materials and devices in Japan.
Plasma Properties of an Exploding Semiconductor Igniter
NASA Astrophysics Data System (ADS)
McGuirk, J. S.; Thomas, K. A.; Shaffer, E.; Malone, A. L.; Baginski, T.; Baginski, M. E.
1997-11-01
Requirements by the automotive industry for low-cost, pyrotechnic igniters for automotive airbags have led to the development of several semiconductor devices. The properties of the plasma produced by the vaporization of an exploding semiconductor are necessary in order to minimize the electrical energy requirements. This work considers two silicon-based semiconductor devices: the semiconductor bridge (SCB) and the semiconductor junction igniter both consisting of etched silicon with vapor deposited aluminum structures. Electrical current passing through the device heats a narrow junction region to the point of vaporization creating an aluminum and silicon low-temperature plasma. This work will investigate the electrical characteristics of both devices and infer the plasma properties. Furthermore optical spectral measurements will be taken of the exploding devices to estimate the temperature and density of the plasma.
Magnetic field characteristics of electric bed-heating devices.
Wilson, B W; Lee, G M; Yost, M G; Davis, K C; Heimbigner, T; Buschbom, R L
1996-01-01
Measurements of the flux density and spectra of magnetic fields (MFs) generated by several types of electric bed heaters (EBH) were made in order to characterize the MFs to which the fetus may be exposed in utero from the mother's use of these devices. Data on MPs were gathered from more than 1,300 in-home and laboratory spot measurements. In-home measurements taken at seven different positions 10 cm from the EBHs determined that the mean flux density at the estimated position of the fetus relative to the device was 0.45 microT (4.5 mG) for electric blankets and 0.20 microT (2.0 mG) for electrically heated water beds. A rate-of-change (RC) metric applied to the nighttime segment of 24 h EMDEX-C personal-dosimeter measurements, which were taken next to the bed of volunteers, yielded an approximate fourfold to sixfold higher value for electric blanket users compared to water-bed heater users. These same data records yielded an approximate twofold difference for the same measurements when evaluated by the time-weighted-average (TWA)MF exposure metric. Performance of exposure meters was checked against standard fields generated in the laboratory, and studies of sources of variance in the in-home measurement protocols were carried out. Spectral measurements showed that the EBH's measured produced no appreciable high-frequency MFs. Data gathered during this work will be used in interpreting results from a component of the California Pregnancy Outcome Study, which evaluates the use of EBHs as a possible risk factor in miscarriage.
Advanced Measurement Devices for the Microgravity Electromagnetic Levitation Facility EML
NASA Technical Reports Server (NTRS)
Brillo, Jurgen; Fritze, Holger; Lohofer, Georg; Schulz, Michal; Stenzel, Christian
2012-01-01
This paper reports on two advanced measurement devices for the microgravity electromagnetic levitation facility (EML), which is currently under construction for the use onboard the "International Space Station (ISS)": the "Sample Coupling Electronics (SCE)" and the "Oxygen Sensing and Control Unit (OSC)". The SCE measures by a contactless, inductive method the electrical resistivity and the diameter of a spherical levitated metallic droplet by evaluating the voltage and electrical current applied to the levitation coil. The necessity of the OSC comes from the insight that properties like surface tension or, eventually, viscosity cannot seriously be determined by the oscillating drop method in the EML facility without knowing the conditions of the surrounding atmosphere. In the following both measurement devices are explained and laboratory test results are presented.
NASA Technical Reports Server (NTRS)
Mueller, Carl H.; Theofylaktos, Noulie; Pinto, Nicholas J.; Robinson, Daryl C.; Miranda, Felix A.
2002-01-01
Nanofibers comprised of polyaniline/polyethylene oxide (PANI/PEO) are being developed for novel logic devices. We report the electrical conductivity of PANI/PEO nanofibers with diameters in the 100 to 200 nm range. We measured conductivity values of approx. 0.3 to 1.0 S/cm, which is higher than the values reported for thicker nanofibers, but less than the bulk value of PANI. The electrical measurements were performed by depositing the fibers on pre-electroded, oxidized silicon (Si) substrates. The excellent adherence of the nanofibers to the SiO2 as well as the gold (Au) electrodes may be useful in the design of future devices.
NASA Astrophysics Data System (ADS)
Yuzhakov, AD; Nosarev, AV; Aleinik, AN
2017-11-01
This article describes the development of the experimental setup for measuring the cell membrane electrical potential by Double -Sucrose-Gap Technique. The double-gap isolation method allows the simultaneous measurement of electrical activity and tension output from contracting segments of muscle fibers. This technique has been widely used as a convenient tool for recording of the membrane activities from myelinated or unmyelinated nerves and muscle preparations. This device can be an effective way to provide undergraduate biomedical engineering students with invaluable experiences in neurophysiology. The installation design and its main characteristics are described. The advantages of the described device are the simplicity of the experiment, relatively low cost, the possibility of long-term experiment.
Highly reproducible and reliable metal/graphene contact by ultraviolet-ozone treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899; Hacker, Christina A.
2014-03-21
Resist residue from the device fabrication process is a significant source of contamination at the metal/graphene contact interface. Ultraviolet Ozone (UVO) treatment is proven here, by X-ray photoelectron spectroscopy and Raman measurement, to be an effective way of cleaning the metal/graphene interface. Electrical measurements of devices that were fabricated by using UVO treatment of the metal/graphene contact region show that stable and reproducible low resistance metal/graphene contacts are obtained and the electrical properties of the graphene channel remain unaffected.
Horn, Kevin M [Albuquerque, NM
2006-03-28
A scanned, pulsed, focused laser irradiation apparatus can measure and image the photocurrent collection resulting from a dose-rate equivalent exposure to infrared laser light across an entire silicon die. Comparisons of dose-rate response images or time-delay images from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems allows precise identification of those specific age-affected circuit structures within a device that merit further quantitative analysis with targeted materials or electrical testing techniques. Another embodiment of the invention comprises a broad-beam, dose rate-equivalent exposure apparatus. The broad-beam laser irradiation apparatus can determine if aging has affected the device's overall functionality. This embodiment can be combined with the synchronized introduction of external electrical transients into a device under test to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure.
NASA Astrophysics Data System (ADS)
Sebald, Thomas; Rider, Gavin
2009-04-01
It has recently been reported [1] that production reticles are subject to progressive CD degradation during use and intense study is under way to try and identify the causes of it. One damage mechanism which has already been identified and quantified [2] is electric field induced migration of chrome (EFM). This can be caused by electric fields that are more than 100x weaker than those that cause ESD. Such low level electric fields can be experienced by a reticle during normal handling and processing steps, as well as coming from external sources during transportation and storage. The field strength of concern is lower than most electrostatic field meters are designed to measure and it can be difficult or impossible to measure such fields inside the cramped environment of equipment. To measure this risk a new sensor device ("E-Reticle") has been developed having the same materials of construction and form factor as a standard chrome-on-quartz reticle. It allows the electric field that a reticle would experience during normal use and handling to be measured and recorded. Results from testing of this device in a semiconductor production facility are reported, showing that certain processes like reticle washing are inherently hazardous. It also enables identification of problems with electrostatic protection measures inside equipment, such as unbalanced ionizers or poor load port grounding. The device is shown to be capable of recording electric fields in the reticle handling environment that are below the recommended maximum that is being proposed for the 2009 ITRS guidelines.
Cheng, Zengguang; Zhou, Qiaoyu; Wang, Chenxuan; Li, Qiang; Wang, Chen; Fang, Ying
2011-02-09
By combining atomic force microscopy and trans-port measurements, we systematically investigated effects of thermal annealing on surface morphologies and electrical properties of single-layer graphene devices fabricated by electron beam lithography on silicon oxide (SiO(2)) substrates. Thermal treatment above 300 °C in vacuum was required to effectively remove resist residues on graphene surfaces. However, annealing at high temperature was found to concomitantly bring graphene in close contact with SiO(2) substrates and induce increased coupling between them, which leads to heavy hole doping and severe degradation of mobilities in graphene devices. To address this problem, a wet-chemical approach employing chloroform was developed in our study, which was shown to enable both intrinsic surfaces and enhanced electrical properties of graphene devices. Upon the recovery of intrinsic surfaces of graphene, the adsorption and assisted fibrillation of amyloid β-peptide (Aβ1-42) on graphene were electrically measured in real time.
Electrical detection of single viruses
NASA Astrophysics Data System (ADS)
Patolsky, Fernando; Zheng, Gengfeng; Hayden, Oliver; Lakadamyali, Melike; Zhuang, Xiaowei; Lieber, Charles M.
2004-09-01
We report direct, real-time electrical detection of single virus particles with high selectivity by using nanowire field effect transistors. Measurements made with nanowire arrays modified with antibodies for influenza A showed discrete conductance changes characteristic of binding and unbinding in the presence of influenza A but not paramyxovirus or adenovirus. Simultaneous electrical and optical measurements using fluorescently labeled influenza A were used to demonstrate conclusively that the conductance changes correspond to binding/unbinding of single viruses at the surface of nanowire devices. pH-dependent studies further show that the detection mechanism is caused by a field effect, and that the nanowire devices can be used to determine rapidly isoelectric points and variations in receptor-virus binding kinetics for different conditions. Lastly, studies of nanowire devices modified with antibodies specific for either influenza or adenovirus show that multiple viruses can be selectively detected in parallel. The possibility of large-scale integration of these nanowire devices suggests potential for simultaneous detection of a large number of distinct viral threats at the single virus level.
40 CFR 60.153 - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) The owner or operator of any multiple hearth, fluidized bed, or electric sludge incinerator subject to...) Install, calibrate, maintain and operate temperature measuring devices at every hearth in multiple hearth... zones of electric incinerators. For multiple hearth furnaces, a minimum of one temperature measuring...
Wong, Felix Wu Shun; Lim, Chi Eung Danforn; Smith, Warren
2010-03-01
The aim of this article is to introduce an electrical bioimpedance device that uses an old and little-known impedance measuring technique to study the impedance of the meridian and nonmeridian tissue segments. Three (3) pilot experimental studies involving both a tissue phantom (a cucumber) and 3 human subjects were performed using this BIRD-I (Bioimpedance Research Device) device. This device consists of a Fluke RCL meter, a multiplexer box, a laptop computer, and a medical-grade isolation transformer. Segment and surface sheath (or local) impedances were estimated using formulae first published in the 1930s, in an approach that differs from that of the standard four-electrode technique used in most meridian studies to date. Our study found that, when using a quasilinear four-electrode arrangement, the reference electrodes should be positioned at least 10 cm from the test electrodes to ensure that the segment (or core) impedance estimation is not affected by the proximity of the reference electrodes. A tissue phantom was used to determine the repeatability of segment (core) impedance measurement by the device. An applied frequency of 100 kHz was found to produce the best repeatability among the various frequencies tested. In another preliminary study, with a segment of the triple energizer meridian on the lower arm selected as reference segment, core resistance-based profiles around the lower arm showed three of the other five meridians to exist as local resistance minima relative to neighboring nonmeridian segments. The profiles of the 2 subjects tested were very similar, suggesting that the results are unlikely to be spurious. In electrical bioimpedance studies, it is recommended that the measuring technique and device be clearly defined and standardized to provide optimal working conditions. In our study using the BIRD I device, we defined our standard experimental conditions as a test frequency of 100 kHz and the position of the reference electrodes of at least 10 cm from the test electrodes. Our device has demonstrated potential for use in quantifying the degree of electrical interconnection between any two surface-defined test meridian or nonmeridian segments. Issues arising from use of this device and the measurement Horton and van Ravenswaay technique were also presented.
NASA Astrophysics Data System (ADS)
Park, Hyung Ju; Chi, Young Shik; Choi, Insung S.; Yun, Wan Soo
2010-07-01
We report a simple method of enhancing electric conductance in nanogap devices without any additional treatments, such as silver-enhancing process. The low electric conductance after selective immobilization of biofunctionalized gold nanoparticles in the gap region was greatly enhanced by repeated I-V scans at relatively high voltage ranges of -5 to 5 V, which was attributed to the formation of a new conduction pathway across the gap. The higher conduction state of the nanogap device showed a very stable I-V curve, which was used as an excellent measure of the existence of prostate-specific antigen.
Constant frequency pulsed phase-locked loop measuring device
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Kushnick, Peter W. (Inventor); Cantrell, John H. (Inventor)
1993-01-01
A measuring apparatus is presented that uses a fixed frequency oscillator to measure small changes in the phase velocity ultrasonic sound when a sample is exposed to environmental changes such as changes in pressure, temperature, etc. The invention automatically balances electrical phase shifts against the acoustical phase shifts in order to obtain an accurate measurement of electrical phase shifts.
An open-source platform to study uniaxial stress effects on nanoscale devices
NASA Astrophysics Data System (ADS)
Signorello, G.; Schraff, M.; Zellekens, P.; Drechsler, U.; Bürge, M.; Steinauer, H. R.; Heller, R.; Tschudy, M.; Riel, H.
2017-05-01
We present an automatic measurement platform that enables the characterization of nanodevices by electrical transport and optical spectroscopy as a function of the uniaxial stress. We provide insights into and detailed descriptions of the mechanical device, the substrate design and fabrication, and the instrument control software, which is provided under open-source license. The capability of the platform is demonstrated by characterizing the piezo-resistance of an InAs nanowire device using a combination of electrical transport and Raman spectroscopy. The advantages of this measurement platform are highlighted by comparison with state-of-the-art piezo-resistance measurements in InAs nanowires. We envision that the systematic application of this methodology will provide new insights into the physics of nanoscale devices and novel materials for electronics, and thus contribute to the assessment of the potential of strain as a technology booster for nanoscale electronics.
1-dimension nano-material-based flexible device
NASA Astrophysics Data System (ADS)
Yang, Xing; Zhou, Zhaoying; Zheng, Fuzhong
2009-11-01
1D nano-material-based flexible devices has attracted considerable attention owing to the growing need of the high-sensitivity flexible sensor, portable consumer electronics etc.. In this paper, the 1D nano-materials-based flexible device on polyimide substrate was proposed. The bottom-up and top-down combined process were used for constructing the ZnO nanowire and the CNT-based flexible devices. Their electrical characteristics were also investigated. The measurement results demonstrate that the flexible device covered with a layer of Al2O3 has good ohm electrical contact behavior between the nano-material and micro-electrodes. The proposed 1D nano-material-based flexible device shows the application potential in the sensing fields.
Yao, Wenxuan; Zhang, Yingchen; Liu, Yong; ...
2017-04-10
Traditional synchrophasors rely on CTs and PTs physically connected to transmission lines or buses to acquire input signals for phasor measurement. However, it is challenging to install and maintain traditional phasor measurement units in some remote areas due to lack of facilities. Since transmission lines naturally generate alternating electrical and magnetic fields in the surrounding atmosphere, this paper presents two innovative designs for non-contact synchronized measurement devices (NCSMD), including an electric field sensor based non-contact SMD (E-NCSMD) and a magnetic field sensor based non-contact SMD (M-NCSMD). Compared with conventional synchrophasors, E-NCSMD and M-NCSMD are much more flexible to be deployedmore » and have much lower costs, making E-NCSMDs and M-NCSMD highly accessible and useful for a wide array of phasor measurement applications. Laboratory and field experiment results verified the effectiveness of the designs of both E-NCSMD and M-NCSMD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Wenxuan; Zhang, Yingchen; Liu, Yong
Traditional synchrophasors rely on CTs and PTs physically connected to transmission lines or buses to acquire input signals for phasor measurement. However, it is challenging to install and maintain traditional phasor measurement units in some remote areas due to lack of facilities. Since transmission lines naturally generate alternating electrical and magnetic fields in the surrounding atmosphere, this paper presents two innovative designs for non-contact synchronized measurement devices (NCSMD), including an electric field sensor based non-contact SMD (E-NCSMD) and a magnetic field sensor based non-contact SMD (M-NCSMD). Compared with conventional synchrophasors, E-NCSMD and M-NCSMD are much more flexible to be deployedmore » and have much lower costs, making E-NCSMDs and M-NCSMD highly accessible and useful for a wide array of phasor measurement applications. Laboratory and field experiment results verified the effectiveness of the designs of both E-NCSMD and M-NCSMD.« less
Electrical transport and low-frequency noise in chemical vapor deposited single-layer MoS2 devices.
Sharma, Deepak; Amani, Matin; Motayed, Abhishek; Shah, Pankaj B; Birdwell, A Glen; Najmaei, Sina; Ajayan, Pulickel M; Lou, Jun; Dubey, Madan; Li, Qiliang; Davydov, Albert V
2014-04-18
We have studied temperature-dependent (77-300 K) electrical characteristics and low-frequency noise (LFN) in chemical vapor deposited (CVD) single-layer molybdenum disulfide (MoS2) based back-gated field-effect transistors (FETs). Electrical characterization and LFN measurements were conducted on MoS2 FETs with Al2O3 top-surface passivation. We also studied the effect of top-surface passivation etching on the electrical characteristics of the device. Significant decrease in channel current and transconductance was observed in these devices after the Al2O3 passivation etching. For passivated devices, the two-terminal resistance variation with temperature showed a good fit to the activation energy model, whereas for the etched devices the trend indicated a hopping transport mechanism. A significant increase in the normalized drain current noise power spectral density (PSD) was observed after the etching of the top passivation layer. The observed channel current noise was explained using a standard unified model incorporating carrier number fluctuation and correlated surface mobility fluctuation mechanisms. Detailed analysis of the gate-referred noise voltage PSD indicated the presence of different trapping states in passivated devices when compared to the etched devices. Etched devices showed weak temperature dependence of the channel current noise, whereas passivated devices exhibited near-linear temperature dependence.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the total rate at which electrical charge is transported through the antenna-mast system in response to the applied test voltage, including both capacitive and resistive components. (f) Electrical... can be measured by the current monitoring device. (g) Feed cable means the electrical cable that...
Development of a biomechanical energy harvester.
Li, Qingguo; Naing, Veronica; Donelan, J Maxwell
2009-06-23
Biomechanical energy harvesting-generating electricity from people during daily activities-is a promising alternative to batteries for powering increasingly sophisticated portable devices. We recently developed a wearable knee-mounted energy harvesting device that generated electricity during human walking. In this methods-focused paper, we explain the physiological principles that guided our design process and present a detailed description of our device design with an emphasis on new analyses. Effectively harvesting energy from walking requires a small lightweight device that efficiently converts intermittent, bi-directional, low speed and high torque mechanical power to electricity, and selectively engages power generation to assist muscles in performing negative mechanical work. To achieve this, our device used a one-way clutch to transmit only knee extension motions, a spur gear transmission to amplify the angular speed, a brushless DC rotary magnetic generator to convert the mechanical power into electrical power, a control system to determine when to open and close the power generation circuit based on measurements of knee angle, and a customized orthopaedic knee brace to distribute the device reaction torque over a large leg surface area. The device selectively engaged power generation towards the end of swing extension, assisting knee flexor muscles by producing substantial flexion torque (6.4 Nm), and efficiently converted the input mechanical power into electricity (54.6%). Consequently, six subjects walking at 1.5 m/s generated 4.8 +/- 0.8 W of electrical power with only a 5.0 +/- 21 W increase in metabolic cost. Biomechanical energy harvesting is capable of generating substantial amounts of electrical power from walking with little additional user effort making future versions of this technology particularly promising for charging portable medical devices.
Development of a biomechanical energy harvester
Li, Qingguo; Naing, Veronica; Donelan, J Maxwell
2009-01-01
Background Biomechanical energy harvesting–generating electricity from people during daily activities–is a promising alternative to batteries for powering increasingly sophisticated portable devices. We recently developed a wearable knee-mounted energy harvesting device that generated electricity during human walking. In this methods-focused paper, we explain the physiological principles that guided our design process and present a detailed description of our device design with an emphasis on new analyses. Methods Effectively harvesting energy from walking requires a small lightweight device that efficiently converts intermittent, bi-directional, low speed and high torque mechanical power to electricity, and selectively engages power generation to assist muscles in performing negative mechanical work. To achieve this, our device used a one-way clutch to transmit only knee extension motions, a spur gear transmission to amplify the angular speed, a brushless DC rotary magnetic generator to convert the mechanical power into electrical power, a control system to determine when to open and close the power generation circuit based on measurements of knee angle, and a customized orthopaedic knee brace to distribute the device reaction torque over a large leg surface area. Results The device selectively engaged power generation towards the end of swing extension, assisting knee flexor muscles by producing substantial flexion torque (6.4 Nm), and efficiently converted the input mechanical power into electricity (54.6%). Consequently, six subjects walking at 1.5 m/s generated 4.8 ± 0.8 W of electrical power with only a 5.0 ± 21 W increase in metabolic cost. Conclusion Biomechanical energy harvesting is capable of generating substantial amounts of electrical power from walking with little additional user effort making future versions of this technology particularly promising for charging portable medical devices. PMID:19549313
Trajectories of charged particles in radial electric and uniform axial magnetic fields
NASA Technical Reports Server (NTRS)
Englert, G. W.
1979-01-01
Trajectories of charged particles were determined over a wide range of parameters characterizing motion in cylindrical low-pressure gas discharges and plasma heating devices which have steady radial electric fields perpendicular to uniform steady magnetic fields. Consideration was given to radial distributions characteristic of fields measured in a modified Penning discharge, in two NASA Lewis burnout-type plasma heating devices, and that estimated for the Ixion device. Numerical calculations of trajectories for such devices showed that differences between cyclotron frequency and qB/m and between azimuthal drift and a guiding center approximation are appreciable.
Prefire identification for pulse-power systems
Longmire, J.L.; Thuot, M.E.; Warren, D.S.
1982-08-23
Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.
Prefire identification for pulse power systems
Longmire, Jerry L.; Thuot, Michael E.; Warren, David S.
1985-01-01
Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.
NASA Astrophysics Data System (ADS)
Slim, J.; Gebel, R.; Heberling, D.; Hinder, F.; Hölscher, D.; Lehrach, A.; Lorentz, B.; Mey, S.; Nass, A.; Rathmann, F.; Reifferscheidt, L.; Soltner, H.; Straatmann, H.; Trinkel, F.; Wolters, J.
2016-08-01
The conventional Wien filter is a device with orthogonal static magnetic and electric fields, often used for velocity separation of charged particles. Here we describe the electromagnetic design calculations for a novel waveguide RF Wien filter that will be employed to solely manipulate the spins of protons or deuterons at frequencies of about 0.1-2 MHz at the COoler SYnchrotron COSY at Jülich. The device will be used in a future experiment that aims at measuring the proton and deuteron electric dipole moments, which are expected to be very small. Their determination, however, would have a huge impact on our understanding of the universe.
In situ calibration of a light source in a sensor device
Okandan, Murat; Serkland, Darwin k.; Merchant, Bion J.
2015-12-29
A sensor device is described herein, wherein the sensor device includes an optical measurement system, such as an interferometer. The sensor device further includes a low-power light source that is configured to emit an optical signal having a constant wavelength, wherein accuracy of a measurement output by the sensor device is dependent upon the optical signal having the constant wavelength. At least a portion of the optical signal is directed to a vapor cell, the vapor cell including an atomic species that absorbs light having the constant wavelength. A photodetector captures light that exits the vapor cell, and generates an electrical signal that is indicative of intensity of the light that exits the vapor cell. A control circuit controls operation of the light source based upon the electrical signal, such that the light source emits the optical signal with the constant wavelength.
Nanopore with Transverse Nanoelectrodes for Electrical Characterization and Sequencing of DNA
Gierhart, Brian C.; Howitt, David G.; Chen, Shiahn J.; Zhu, Zhineng; Kotecki, David E.; Smith, Rosemary L.; Collins, Scott D.
2009-01-01
A DNA sequencing device which integrates transverse conducting electrodes for the measurement of electrode currents during DNA translocation through a nanopore has been nanofabricated and characterized. A focused electron beam (FEB) milling technique, capable of creating features on the order of 1 nm in diameter, was used to create the nanopore. The device was characterized electrically using gold nanoparticles as an artificial analyte with both DC and AC measurement methods. Single nanoparticle/electrode interaction events were recorded. A low-noise, high-speed transimpedance current amplifier for the detection of nano to picoampere currents at microsecond time scales was designed, fabricated and tested for future integration with the nanopore device. PMID:19584949
Nanopore with Transverse Nanoelectrodes for Electrical Characterization and Sequencing of DNA.
Gierhart, Brian C; Howitt, David G; Chen, Shiahn J; Zhu, Zhineng; Kotecki, David E; Smith, Rosemary L; Collins, Scott D
2008-06-16
A DNA sequencing device which integrates transverse conducting electrodes for the measurement of electrode currents during DNA translocation through a nanopore has been nanofabricated and characterized. A focused electron beam (FEB) milling technique, capable of creating features on the order of 1 nm in diameter, was used to create the nanopore. The device was characterized electrically using gold nanoparticles as an artificial analyte with both DC and AC measurement methods. Single nanoparticle/electrode interaction events were recorded. A low-noise, high-speed transimpedance current amplifier for the detection of nano to picoampere currents at microsecond time scales was designed, fabricated and tested for future integration with the nanopore device.
Giant switchable photovoltaic effect in organometal trihalide perovskite devices
NASA Astrophysics Data System (ADS)
Xiao, Zhengguo; Yuan, Yongbo; Shao, Yuchuan; Wang, Qi; Dong, Qingfeng; Bi, Cheng; Sharma, Pankaj; Gruverman, Alexei; Huang, Jinsong
2015-02-01
Organolead trihalide perovskite (OTP) materials are emerging as naturally abundant materials for low-cost, solution-processed and highly efficient solar cells. Here, we show that, in OTP-based photovoltaic devices with vertical and lateral cell configurations, the photocurrent direction can be switched repeatedly by applying a small electric field of <1 V μm-1. The switchable photocurrent, generally observed in devices based on ferroelectric materials, reached 20.1 mA cm-2 under one sun illumination in OTP devices with a vertical architecture, which is four orders of magnitude larger than that measured in other ferroelectric photovoltaic devices. This field-switchable photovoltaic effect can be explained by the formation of reversible p-i-n structures induced by ion drift in the perovskite layer. The demonstration of switchable OTP photovoltaics and electric-field-manipulated doping paves the way for innovative solar cell designs and for the exploitation of OTP materials in electrically and optically readable memristors and circuits.
NASA Astrophysics Data System (ADS)
Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar
2017-08-01
This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler-Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges.
Livesay, Ronald Jason; Mason, Brandon William; Kuhn, Michael Joseph; Rowe, Nathan Carl
2017-04-04
Disclosed are several examples of a system and method for detecting if an article is being tampered with. Included is a covering made of a substrate that is coated with a layer of an electrically conductive material that forms an electrically conductive surface having an electrical resistance. The covering is configured to at least partially encapsulate the article such that the article cannot be tampered with, without modifying the electrical resistance of the electrically conductive surface of the covering. A sensing device is affixed to the electrically conductive surface of the covering and the sensing device monitors the condition of the covering by producing a signal that is indicative of the electrical resistance of the electrically conductive surface of the covering. A measured electrical resistance that differs from a nominal electrical resistance is indicative of a covering that is being tampered with and an alert is communicated to an observer.
Livesay, Ronald Jason; Mason, Brandon William; Kuhn, Michael Joseph; Rowe, Nathan Carl
2015-10-13
Disclosed are several examples of a system and method for detecting if an article is being tampered with. Included is a covering made of a substrate that is coated with a layer of an electrically conductive material that forms an electrically conductive surface having an electrical resistance. The covering is configured to at least partially encapsulate the article such that the article cannot be tampered with, without modifying the electrical resistance of the electrically conductive surface of the covering. A sensing device is affixed to the electrically conductive surface of the covering and the sensing device monitors the condition of the covering by producing a signal that is indicative of the electrical resistance of the electrically conductive surface of the covering. A measured electrical resistance that differs from a nominal electrical resistance is indicative of a covering that is being tampered with and an alert is communicated to an observer.
Capacitance-voltage measurement in memory devices using ferroelectric polymer
NASA Astrophysics Data System (ADS)
Nguyen, Chien A.; Lee, Pooi See
2006-01-01
Application of thin polymer film as storing mean for non-volatile memory devices is investigated. Capacitance-voltage (C-V) measurement of metal-ferroelectric-metal device using ferroelectric copolymer P(VDF-TrFE) as dielectric layer shows stable 'butter-fly' curve. The two peaks in C-V measurement corresponding to the largest capacitance are coincidental at the coercive voltages that give rise to zero polarization in the polarization hysteresis measurement. By comparing data of C-V and P-E measurement, a correlation between two types of hysteresis is established in which it reveals simultaneous electrical processes occurring inside the device. These processes are caused by the response of irreversible and reversible polarization to the applied electric field that can be used to present a memory window. The memory effect of ferroelectric copolymer is further demonstrated for fabricating polymeric non-volatile memory devices using metal-ferroelectric-insulator-semiconductor structure (MFIS). By applying different sweeping voltages at the gate, bidirectional flat-band voltage shift is observed in the ferroelectric capacitor. The asymmetrical shift after negative sweeping is resulted from charge accumulation at the surface of Si substrate caused by the dipole direction in the polymer layer. The effect is reversed for positive voltage sweeping.
Semiconductor technology program: Progress briefs
NASA Technical Reports Server (NTRS)
Galloway, K. F.; Scace, R. I.; Walters, E. J.
1981-01-01
Measurement technology for semiconductor materials, process control, and devices, is discussed. Silicon and silicon based devices are emphasized. Highlighted activities include semiinsulating GaAs characterization, an automatic scanning spectroscopic ellipsometer, linewidth measurement and coherence, bandgap narrowing effects in silicon, the evaluation of electrical linewidth uniformity, and arsenicomplanted profiles in silicon.
The Development and Application of Simulative Insulation Resistance Tester
NASA Astrophysics Data System (ADS)
Jia, Yan; Chai, Ziqi; Wang, Bo; Ma, Hao
2018-02-01
The insulation state determines the performance and insulation life of electrical equipment, so it has to be judged in a timely and accurate manner. Insulation resistance test, as the simplest and most basic test of high voltage electric tests, can measure the insulation resistance and absorption ratio which are effective criterion of part or whole damp or dirty, breakdown, severe overheating aging and other insulation defects. It means that the electrical test personnel need to be familiar with the principle of insulation resistance test, and able to operate the insulation resistance tester correctly. At present, like the insulation resistance test, most of electrical tests are trained by physical devices with the real high voltage. Although this allows the students to truly experience the test process and notes on security, it also has certain limitations in terms of safety and test efficiency, especially for a large number of new staves needing induction training every year. This paper presents a new kind of electrical test training system based on the simulative device of dielectric loss measurement and simulative electrical testing devices. It can not only overcome the defects of current training methods, but also provide other advantages in economical efficiency and scalability. That makes it possible for the system to be allied in widespread.
Bagnall, Kevin R; Moore, Elizabeth A; Badescu, Stefan C; Zhang, Lenan; Wang, Evelyn N
2017-11-01
As semiconductor devices based on silicon reach their intrinsic material limits, compound semiconductors, such as gallium nitride (GaN), are gaining increasing interest for high performance, solid-state transistor applications. Unfortunately, higher voltage, current, and/or power levels in GaN high electron mobility transistors (HEMTs) often result in elevated device temperatures, degraded performance, and shorter lifetimes. Although micro-Raman spectroscopy has become one of the most popular techniques for measuring localized temperature rise in GaN HEMTs for reliability assessment, decoupling the effects of temperature, mechanical stress, and electric field on the optical phonon frequencies measured by micro-Raman spectroscopy is challenging. In this work, we demonstrate the simultaneous measurement of temperature rise, inverse piezoelectric stress, thermoelastic stress, and vertical electric field via micro-Raman spectroscopy from the shifts of the E 2 (high), A 1 longitudinal optical (LO), and E 2 (low) optical phonon frequencies in wurtzite GaN. We also validate experimentally that the pinched OFF state as the unpowered reference accurately measures the temperature rise by removing the effect of the vertical electric field on the Raman spectrum and that the vertical electric field is approximately the same whether the channel is open or closed. Our experimental results are in good quantitative agreement with a 3D electro-thermo-mechanical model of the HEMT we tested and indicate that the GaN buffer acts as a semi-insulating, p-type material due to the presence of deep acceptors in the lower half of the bandgap. This implementation of micro-Raman spectroscopy offers an exciting opportunity to simultaneously probe thermal, mechanical, and electrical phenomena in semiconductor devices under bias, providing unique insight into the complex physics that describes device behavior and reliability. Although GaN HEMTs have been specifically used in this study to demonstrate its viability, this technique is applicable to any solid-state material with a suitable Raman response and will likely enable new measurement capabilities in a wide variety of scientific and engineering applications.
NASA Astrophysics Data System (ADS)
Bagnall, Kevin R.; Moore, Elizabeth A.; Badescu, Stefan C.; Zhang, Lenan; Wang, Evelyn N.
2017-11-01
As semiconductor devices based on silicon reach their intrinsic material limits, compound semiconductors, such as gallium nitride (GaN), are gaining increasing interest for high performance, solid-state transistor applications. Unfortunately, higher voltage, current, and/or power levels in GaN high electron mobility transistors (HEMTs) often result in elevated device temperatures, degraded performance, and shorter lifetimes. Although micro-Raman spectroscopy has become one of the most popular techniques for measuring localized temperature rise in GaN HEMTs for reliability assessment, decoupling the effects of temperature, mechanical stress, and electric field on the optical phonon frequencies measured by micro-Raman spectroscopy is challenging. In this work, we demonstrate the simultaneous measurement of temperature rise, inverse piezoelectric stress, thermoelastic stress, and vertical electric field via micro-Raman spectroscopy from the shifts of the E2 (high), A1 longitudinal optical (LO), and E2 (low) optical phonon frequencies in wurtzite GaN. We also validate experimentally that the pinched OFF state as the unpowered reference accurately measures the temperature rise by removing the effect of the vertical electric field on the Raman spectrum and that the vertical electric field is approximately the same whether the channel is open or closed. Our experimental results are in good quantitative agreement with a 3D electro-thermo-mechanical model of the HEMT we tested and indicate that the GaN buffer acts as a semi-insulating, p-type material due to the presence of deep acceptors in the lower half of the bandgap. This implementation of micro-Raman spectroscopy offers an exciting opportunity to simultaneously probe thermal, mechanical, and electrical phenomena in semiconductor devices under bias, providing unique insight into the complex physics that describes device behavior and reliability. Although GaN HEMTs have been specifically used in this study to demonstrate its viability, this technique is applicable to any solid-state material with a suitable Raman response and will likely enable new measurement capabilities in a wide variety of scientific and engineering applications.
High-accuracy direct ZT and intrinsic properties measurement of thermoelectric couple devices.
Kraemer, D; Chen, G
2014-04-01
Advances in thermoelectric materials in recent years have led to significant improvements in thermoelectric device performance and thus, give rise to many new potential applications. In order to optimize a thermoelectric device for specific applications and to accurately predict its performance ideally the material's figure of merit ZT as well as the individual intrinsic properties (Seebeck coefficient, electrical resistivity, and thermal conductivity) should be known with high accuracy. For that matter, we developed two experimental methods in which the first directly obtains the ZT and the second directly measures the individual intrinsic leg properties of the same p/n-type thermoelectric couple device. This has the advantage that all material properties are measured in the same sample direction after the thermoelectric legs have been mounted in the final device. Therefore, possible effects from crystal anisotropy and from the device fabrication process are accounted for. The Seebeck coefficients, electrical resistivities, and thermal conductivities are measured with differential methods to minimize measurement uncertainties to below 3%. The thermoelectric couple ZT is directly measured with a differential Harman method which is in excellent agreement with the calculated ZT from the individual leg properties. The errors in both the directly measured and calculated thermoelectric couple ZT are below 5% which is significantly lower than typical uncertainties using commercial methods. Thus, the developed technique is ideal for characterizing assembled couple devices and individual thermoelectric materials and enables accurate device optimization and performance predictions. We demonstrate the methods by measuring a p/n-type thermoelectric couple device assembled from commercial bulk thermoelectric Bi2Te3 elements in the temperature range of 30 °C-150 °C and discuss the performance of the couple thermoelectric generator in terms of its efficiency and materials' self-compatibility.
Effects of electrical muscle stimulation on oxygen consumption.
Hayter, Tina L; Coombes, Jeff S; Knez, Wade L; Brancato, Tania L
2005-02-01
Electrical muscle stimulation (EMS) devices are being marketed as weight/ fat loss devices throughout the world. Commercially available stimulators have the ability to evoke muscle contractions that may affect caloric expenditure while the device is being used. The aim of this study was to test the effects of two different EMS devices (Abtronic and Feminique) on oxygen consumption at rest. Subjects arrived for testing after an overnight fast, had the devices fitted, and then positioned supine with expired air measured to determine oxygen consumption. After a 10-minute acclimation period, oxygen consumption was measured for 20 minutes with the device switched off (resting) then 20 minutes with the device switched on (stimulated). There were no significant differences (p > 0.05) in oxygen consumption between the resting and stimulated periods with either the Abtronic (mean +/- SD; resting, 3.40 +/- 0.44; stimulated, 3.45 +/- 0.53 ml of O(2).kg(-1).min(-1)) or the Feminique (resting, 3.73 +/- 0.45; stimulated, 3.75 +/- 0.46 ml of O(2).kg(-1).min(-1)). In summary, the EMS devices tested had no effect on oxygen consumption during muscle stimulation.
Vacuum Microelectronic Field Emission Array Devices for Microwave Amplification.
NASA Astrophysics Data System (ADS)
Mancusi, Joseph Edward
This dissertation presents the design, analysis, and measurement of vacuum microelectronic devices which use field emission to extract an electron current from arrays of silicon cones. The arrays of regularly-spaced silicon cones, the field emission cathodes or emitters, are fabricated with an integrated gate electrode which controls the electric field at the tip of the cone, and thus the electron current. An anode or collector electrode is placed above the array to collect the emission current. These arrays, which are fabricated in a standard silicon processing facility, are developed for use as high power microwave amplifiers. Field emission has been studied extensively since it was first characterized in 1928, however due to the large electric fields required practical field emission devices are difficult to make. With the development of the semiconductor industry came the development of fabrication equipment and techniques which allow for the manufacture of the precision micron-scale structures necessary for practical field emission devices. The active region of a field emission device is a vacuum, therefore the electron travel is ballistic. This analysis of field emission devices includes electric field and electron emission modeling, development of a device equivalent circuit, analysis of the parameters in the equivalent circuit, and device testing. Variations in device structure are taken into account using a statistical model based upon device measurements. Measurements of silicon field emitter arrays at DC and RF are presented and analyzed. In this dissertation, the equivalent circuit is developed from the analysis of the device structure. The circuit parameters are calculated from geometrical considerations and material properties, or are determined from device measurements. It is necessary to include the emitter resistance in the equivalent circuit model since relatively high resistivity silicon wafers are used. As is demonstrated, the circuit model accurately predicts the magnitude of the emission current at a number of typical bias current levels when the device is operating at frequencies within the range of 10 MHz to 1 GHz. At low frequencies and at high frequencies within this range, certain parameters are negligible, and simplifications may be made in the equivalent circuit model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuqui, Reynaldo
This report summarizes the activities conducted under the DOE-OE funded project DEOE0000674, where ABB Inc. (ABB), in collaboration with University of Illinois at Urbana-Champaign (UIUC), Bonneville Power Administration (BPA), and Ameren-Illinois (Ameren-IL) pursued the development of a system of collaborative defense of electrical substation’s intelligent electronic devices against cyber-attacks (CODEF). An electrical substation with CODEF features will be more capable of mitigating cyber-attacks especially those that seek to control switching devices. It leverages the security extensions of IEC 61850 to empower existing devices to collaborate in identifying and blocking malicious intents to trip circuit breakers, mis-coordinate devices settings, even thoughmore » the commands and the measurements comply with correct syntax. The CODEF functions utilize the physics of electromagnetic systems, electric power engineering principles, and computer science to bring more in depth cyber defense closer to the protected substation devices.« less
Direct nanoscale imaging of evolving electric field domains in quantum structures.
Dhar, Rudra Sankar; Razavipour, Seyed Ghasem; Dupont, Emmanuel; Xu, Chao; Laframboise, Sylvain; Wasilewski, Zbig; Hu, Qing; Ban, Dayan
2014-11-28
The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the electric field domain (EFD) hypothesis posits that the potential distribution might be simultaneously spatially nonuniform and temporally unstable. Unfortunately, there exists no prior means of probing the inner potential profile directly. Here we report the nanoscale measured electric potential distribution inside operating QCLs by using scanning voltage microscopy at a cryogenic temperature. We prove that, per the EFD hypothesis, the multi-quantum-well active region is indeed divided into multiple sections having distinctly different electric fields. The electric field across these serially-stacked quantum cascade modules does not continuously increase in proportion to gradual increases in the applied device bias, but rather hops between discrete values that are related to tunneling resonances. We also report the evolution of EFDs, finding that an incremental change in device bias leads to a hopping-style shift in the EFD boundary--the higher electric field domain expands at least one module each step at the expense of the lower field domain within the active region.
Direct Nanoscale Imaging of Evolving Electric Field Domains in Quantum Structures
Dhar, Rudra Sankar; Razavipour, Seyed Ghasem; Dupont, Emmanuel; Xu, Chao; Laframboise, Sylvain; Wasilewski, Zbig; Hu, Qing; Ban, Dayan
2014-01-01
The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the electric field domain (EFD) hypothesis posits that the potential distribution might be simultaneously spatially nonuniform and temporally unstable. Unfortunately, there exists no prior means of probing the inner potential profile directly. Here we report the nanoscale measured electric potential distribution inside operating QCLs by using scanning voltage microscopy at a cryogenic temperature. We prove that, per the EFD hypothesis, the multi-quantum-well active region is indeed divided into multiple sections having distinctly different electric fields. The electric field across these serially-stacked quantum cascade modules does not continuously increase in proportion to gradual increases in the applied device bias, but rather hops between discrete values that are related to tunneling resonances. We also report the evolution of EFDs, finding that an incremental change in device bias leads to a hopping-style shift in the EFD boundary – the higher electric field domain expands at least one module each step at the expense of the lower field domain within the active region. PMID:25431158
Direct Nanoscale Imaging of Evolving Electric Field Domains in Quantum Structures
NASA Astrophysics Data System (ADS)
Dhar, Rudra Sankar; Razavipour, Seyed Ghasem; Dupont, Emmanuel; Xu, Chao; Laframboise, Sylvain; Wasilewski, Zbig; Hu, Qing; Ban, Dayan
2014-11-01
The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the electric field domain (EFD) hypothesis posits that the potential distribution might be simultaneously spatially nonuniform and temporally unstable. Unfortunately, there exists no prior means of probing the inner potential profile directly. Here we report the nanoscale measured electric potential distribution inside operating QCLs by using scanning voltage microscopy at a cryogenic temperature. We prove that, per the EFD hypothesis, the multi-quantum-well active region is indeed divided into multiple sections having distinctly different electric fields. The electric field across these serially-stacked quantum cascade modules does not continuously increase in proportion to gradual increases in the applied device bias, but rather hops between discrete values that are related to tunneling resonances. We also report the evolution of EFDs, finding that an incremental change in device bias leads to a hopping-style shift in the EFD boundary - the higher electric field domain expands at least one module each step at the expense of the lower field domain within the active region.
NASA Astrophysics Data System (ADS)
Beausoleil-Morrison, Ian; Lombardi, Kathleen
The concurrent production of heat and electricity within residential buildings using solid-oxide fuel cell (SOFC) micro-cogeneration devices has the potential to reduce primary energy consumption, greenhouse gas emissions, and air pollutants. A realistic assessment of this emerging technology requires the accurate simulation of the thermal and electrical production of SOFC micro-cogeneration devices concurrent with the simulation of the building, its occupants, and coupled plant components. The calibration of such a model using empirical data gathered from experiments conducted with a 2.8 kW AC SOFC micro-cogeneration device is demonstrated. The experimental configuration, types of instrumentation employed, and the operating scenarios examined are treated. The propagation of measurement uncertainty into the derived quantities that are necessary for model calibration are demonstrated by focusing upon the SOFC micro-cogeneration system's gas-to-water heat exchanger. The calibration coefficients necessary to accurately simulate the thermal and electrical performance of this prototype device are presented and the types of analyses enabled to study the potential of the technology are demonstrated.
Test device for measuring permeability of a barrier material
Reese, Matthew; Dameron, Arrelaine; Kempe, Michael
2014-03-04
A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.
High rectifying behavior in Al/Si nanocrystal-embedded SiOxNy/p-Si heterojunctions
NASA Astrophysics Data System (ADS)
Jacques, E.; Pichon, L.; Debieu, O.; Gourbilleau, F.; Coulon, N.
2011-05-01
We examine the electrical properties of MIS devices made of Al/Si nanocrystal-SiOxNy/p-Si. The J-V characteristics of the devices present a high rectifying behavior. Temperature measurements show that the forward current is thermally activated following the thermal diffusion model of carriers. At low reverse bias, the current is governed by thermal emission amplified by the Poole-Frenkel effect of carriers from defects located at the silicon nanocrystals/SiOxNy interfaces, whereas tunnel conduction in silicon oxynitride matrix dominates at high reverse bias. The devices exhibit a rectification ratio >104 for the current measured at V = ± 1 V. Study reveals that thermal annealing in forming gas (H2/N2) improves the electrical properties of the devices due to the passivation of defects.
Optical properties of electrically connected plasmonic nanoantenna dimer arrays
NASA Astrophysics Data System (ADS)
Zimmerman, Darin T.; Borst, Benjamin D.; Carrick, Cassandra J.; Lent, Joseph M.; Wambold, Raymond A.; Weisel, Gary J.; Willis, Brian G.
2018-02-01
We fabricate electrically connected gold nanoantenna arrays of homodimers and heterodimers on silica substrates and present a systematic study of their optical properties. Electrically connected arrays of plasmonic nanoantennas make possible the realization of novel photonic devices, including optical sensors and rectifiers. Although the plasmonic response of unconnected arrays has been studied extensively, the present study shows that the inclusion of nanowire connections modifies the device response significantly. After presenting experimental measurements of optical extinction for unconnected dimer arrays, we compare these to measurements of dimers that are interconnected by gold nanowire "busbars." The connected devices show the familiar dipole response associated with the unconnected dimers but also show a second localized surface plasmon resonance (LSPR) that we refer to as the "coupled-busbar mode." Our experimental study also demonstrates that the placement of the nanowire along the antenna modifies the LSPR. Using finite-difference time-domain simulations, we confirm the experimental results and investigate the variation of dimer gap and spacing. Changing the dimer gap in connected devices has a significantly smaller effect on the dipole response than it does in unconnected devices. On the other hand, both LSPR modes respond strongly to changing the spacing between devices in the direction along the interconnecting wires. We also give results for the variation of E-field strength in the dimer gap, which will be important for any working sensor or rectenna device.
Laterally inhomogeneous barrier analysis of cu/n-gap/al schottky devices
NASA Astrophysics Data System (ADS)
Çınar Demir, K.; Coşkun, C.; Kurudirek, S. V.; Öz, S.; Aydoğan, Ş.; Biber, M.
2016-04-01
In this study, we examined the electrical parameters of Cu/n-GaP/Al Schottky structures at room temperature and examined the electrical characterization of these devices depending on and Capacitance-Voltage (C-V) and Current-Voltage (I-V) measurements. A statistical study on the experimental ideality factor (n) and BHs(barrier heights) values of the devices was stated. The n and BHs of all contacts have been determined from the electrical characteristics. Even though all of the diodes were conformably prepared, there was a diode-todiode variation: the effective BHs changed from 0.988-0.07 to 1.216-0.07 eV, and the n from 1.01-0.299 to 2.16-0.299. The yielded results show that the mean electrical parameters of Schottky devices are different from one diode to another, even if they are identically prepared. It can be axplained that the lower BHs usher with the higher n values owing to inhomogeneities.
Characterization of electrical appliances in transient state
NASA Astrophysics Data System (ADS)
Wójcik, Augustyn; Winiecki, Wiesław
2017-08-01
The article contains the study about electrical appliance characterization on the basis of power grid signals. To represent devices, parameters of current and voltage signals recorded during transient states are used. In this paper only transients occurring as a result of switching on devices are considered. The way of data acquisition performed in specialized measurement setup developed for electricity load monitoring is described. The paper presents the method of transients detection and the method of appliance parameters calculation. Using the set of acquired measurement data and appropriate software the set of parameters for several household appliances operating in different operating conditions was processed. Usefulness of appliances characterization in Non-Intrusive Appliance Load Monitoring System (NIALMS) with the use of proposed method is discussed focusing on obtained results.
Microfluidic multiplexing of solid-state nanopores
NASA Astrophysics Data System (ADS)
Jain, Tarun; Rasera, Benjamin C.; Guerrero, Ricardo Jose S.; Lim, Jong-Min; Karnik, Rohit
2017-12-01
Although solid-state nanopores enable electronic analysis of many clinically and biologically relevant molecular structures, there are few existing device architectures that enable high-throughput measurement of solid-state nanopores. Herein, we report a method for microfluidic integration of multiple solid-state nanopores at a high density of one nanopore per (35 µm2). By configuring microfluidic devices with microfluidic valves, the nanopores can be rinsed from a single fluid input while retaining compatibility for multichannel electrical measurements. The microfluidic valves serve the dual purpose of fluidic switching and electric switching, enabling serial multiplexing of the eight nanopores with a single pair of electrodes. Furthermore, the device architecture exhibits low noise and is compatible with electroporation-based in situ nanopore fabrication, providing a scalable platform for automated electronic measurement of a large number of integrated solid-state nanopores.
Spin injection and transport in semiconductor and metal nanostructures
NASA Astrophysics Data System (ADS)
Zhu, Lei
In this thesis we investigate spin injection and transport in semiconductor and metal nanostructures. To overcome the limitation imposed by the low efficiency of spin injection and extraction and strict requirements for retention of spin polarization within the semiconductor, novel device structures with additional logic functionality and optimized device performance have been developed. Weak localization/antilocalization measurements and analysis are used to assess the influence of surface treatments on elastic, inelastic and spin-orbit scatterings during the electron transport within the two-dimensional electron layer at the InAs surface. Furthermore, we have used spin-valve and scanned probe microscopy measurements to investigate the influence of sulfur-based surface treatments and electrically insulating barrier layers on spin injection into, and spin transport within, the two-dimensional electron layer at the surface of p-type InAs. We also demonstrate and analyze a three-terminal, all-electrical spintronic switching device, combining charge current cancellation by appropriate device biasing and ballistic electron transport. The device yields a robust, electrically amplified spin-dependent current signal despite modest efficiency in electrical injection of spin-polarized electrons. Detailed analyses provide insight into the advantages of ballistic, as opposed to diffusive, transport in device operation, as well as scalability to smaller dimensions, and allow us to eliminate the possibility of phenomena unrelated to spin transport contributing to the observed device functionality. The influence of the device geometry on magnetoresistance of nanoscale spin-valve structures is also demonstrated and discussed. Shortcomings of the simplified one-dimensional spin diffusion model for spin valve are elucidated, with comparison of the thickness and the spin diffusion length in the nonmagnetic channel as the criterion for validity of the 1D model. Our work contributes directly to the realization of spin valve and spin transistor devices based on III-V semiconductors, and offers new opportunities to engineer the behavior of spintronic devices at the nanoscale.
NASA Astrophysics Data System (ADS)
Gruber, G.; Cottom, J.; Meszaros, R.; Koch, M.; Pobegen, G.; Aichinger, T.; Peters, D.; Hadley, P.
2018-04-01
SiC based metal-oxide-semiconductor field-effect transistors (MOSFETs) have gained a significant importance in power electronics applications. However, electrically active defects at the SiC/SiO2 interface degrade the ideal behavior of the devices. The relevant microscopic defects can be identified by electron paramagnetic resonance (EPR) or electrically detected magnetic resonance (EDMR). This helps to decide which changes to the fabrication process will likely lead to further increases of device performance and reliability. EDMR measurements have shown very similar dominant hyperfine (HF) spectra in differently processed MOSFETs although some discrepancies were observed in the measured g-factors. Here, the HF spectra measured of different SiC MOSFETs are compared, and it is argued that the same dominant defect is present in all devices. A comparison of the data with simulated spectra of the C dangling bond (PbC) center and the silicon vacancy (VSi) demonstrates that the PbC center is a more suitable candidate to explain the observed HF spectra.
Guide to Flow Measurement for Electric Propulsion Systems
NASA Technical Reports Server (NTRS)
Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve
2013-01-01
In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."
NASA Astrophysics Data System (ADS)
Liang, Lin-Mei; Sun, Shi-Hai; Jiang, Mu-Sheng; Li, Chun-Yan
2014-10-01
In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].
Scanning Kelvin Probe Microscopy | Materials Science | NREL
the measurement is performed under thermoequilibrium state; and it is the electrical potential when and electrical signals. The electrostatic force is zero when the CPD is completely compensated by a dc the measurement capabilities of the technique when a device sample is in the dark. Right: This
Calorimetric system and method
Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.; Moorman, Jack O.
1998-09-15
Apparatus for measuring heat capacity of a sample where a series of measurements are taken in succession comprises a sample holder in which a sample to be measured is disposed, a temperature sensor and sample heater for providing a heat pulse thermally connected to the sample, and an adiabatic heat shield in which the sample holder is positioned and including an electrical heater. An electrical power supply device provides an electrical power output to the sample heater to generate a heat pulse. The electrical power from a power source to the heat shield heater is adjusted by a control device, if necessary, from one measurement to the next in response to a sample temperature-versus-time change determined before and after a previous heat pulse to provide a subsequent sample temperature-versus-time change that is substantially linear before and after the subsequent heat pulse. A temperature sensor is used and operable over a range of temperatures ranging from approximately 3K to 350K depending upon the refrigerant used. The sample optionally can be subjected to dc magnetic fields such as from 0 to 12 Tesla (0 to 120 kOe).
NASA Astrophysics Data System (ADS)
Kashiwagi, Takanari; Tanaka, Taiga; Watanabe, Chiharu; Kubo, Hiroyuki; Komori, Yuki; Yuasa, Takumi; Tanabe, Yuki; Ota, Ryusei; Kuwano, Genki; Nakamura, Kento; Tsujimoto, Manabu; Minami, Hidetoshi; Yamamoto, Takashi; Klemm, Richard A.; Kadowaki, Kazuo
2017-12-01
Joule heating is the central issue in order to develop high-power and high-performance terahertz (THz) emission from mesa devices employing the intrinsic Josephson junctions in a layered high transition-temperature Tc superconductor. Here, we describe a convenient local thermal measurement technique using charge-coupled-device-based thermoreflectance microscopy, with the highest spatial resolution to date. This technique clearly proves that the relative temperature changes of the mesa devices between different bias points on the current-voltage characteristics can be measured very sensitively. In addition, the heating characteristics on the surface of the mesa devices can be detected more directly without any special treatment of the mesa surface such as previous coatings with SiC micro-powders. The results shown here clearly indicate that the contact resistance strongly affects the formation of an inhomogeneous temperature distribution on the mesa structures. Since the temperature and sample dependencies of the Joule heating characteristics can be measured quickly, this simple thermal evaluation technique is a useful tool to check the quality of the electrical contacts, electrical wiring, and sample defects. Thus, this technique could help to reduce the heating problems and to improve the performance of superconducting THz emitter devices.
NASA Astrophysics Data System (ADS)
Takayanagi, Ryohei; Fujii, Takenori; Asamitsu, Atsushi
2015-05-01
We report a novel design of a thermoelectric device that can control the thermoelectric properties of p- and n-type materials simultaneously by electric double-layer gating. Here, p-type Cu2O and n-type ZnO were used as the positive and negative electrodes of the electric double-layer capacitor structure. When a gate voltage was applied between the two electrodes, holes and electrons accumulated on the surfaces of Cu2O and ZnO, respectively. The thermopower was measured by applying a thermal gradient along the accumulated layer on the electrodes. We demonstrate here that the accumulated layers worked as a p-n pair of the thermoelectric device.
Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu
2017-12-01
Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag 5 In 5 Sb 60 Te 30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.
NASA Astrophysics Data System (ADS)
Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu
2017-12-01
Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag5In5Sb60Te30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.
21 CFR 876.1620 - Urodynamics measurement system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... and pressure in the urinary bladder when it is filled through a catheter with carbon dioxide or water. The device controls the supply of carbon dioxide or water and may also record the electrical activity... electromyography. This generic type of device includes the cystometric gas (carbon dioxide) device, the cystometric...
Characterization and modeling of electrostatically actuated polysilicon micromechanical devices
NASA Astrophysics Data System (ADS)
Chan, Edward Keat Leem
Sensors, actuators, transducers, microsystems and MEMS (MicroElertroMechanical Systems) are some of the terms describing technologies that interface information processing systems with the physical world. Electrostatically actuated micromechanical devices are important building blocks in many of these technologies. Arrays of these devices are used in video projection displays, fluid pumping systems, optical communications systems, tunable lasers and microwave circuits. Well-calibrated simulation tools are essential for propelling ideas from the drawing board into production. This work characterizes a fabrication process---the widely-used polysilicon MUMPs process---to facilitate the design of electrostatically actuated micromechanical devices. The operating principles of a representative device---a capacitive microwave switch---are characterized using a wide range of electrical and optical measurements of test structures along with detailed electromechanical simulations. Consistency in the extraction of material properties from measurements of both pull-in voltage and buckling amplitude is demonstrated. Gold is identified as an area-dependent source of nonuniformity in polysilicon thicknesses and stress. Effects of stress gradients, substrate curvature, and film coverage are examined quantitatively. Using well-characterized beams as in-situ surface probes, capacitance-voltage and surface profile measurements reveal that compressible surface residue modifies the effective electrical gap when the movable electrode contacts an underlying silicon nitride layer. A compressible contact surface model used in simulations improves the fit to measurements. In addition, the electric field across the nitride causes charge to build up in the nitride, increasing the measured capacitance over time. The rate of charging corresponds to charge injection through direct tunneling. A novel actuator that can travel stably beyond one-third of the initial gap (a trademark limitation of conventional actuators) is demonstrated. A "folded capacitor" design, requiring only minimal modifications to the layout of conventional devices, reduces the parasitic capacitances and modes of deformation that limit performance. This device, useful for optical applications, can travel almost twice the conventional range before succumbing to a tilting instability.
Study of materials for space processing
NASA Technical Reports Server (NTRS)
Lal, R. B.
1975-01-01
Materials were selected for device applications and their commercial use. Experimental arrangements were also made for electrical characterization of single crystals using electrical resistivity and Hall effect measurements. The experimental set-up was tested with some standard samples.
Measuring Multiple Resistances Using Single-Point Excitation
NASA Technical Reports Server (NTRS)
Hall, Dan; Davies, Frank
2009-01-01
In a proposed method of determining the resistances of individual DC electrical devices connected in a series or parallel string, no attempt would be made to perform direct measurements on individual devices. Instead, (1) the devices would be instrumented by connecting reactive circuit components in parallel and/or in series with the devices, as appropriate; (2) a pulse or AC voltage excitation would be applied at a single point on the string; and (3) the transient or AC steady-state current response of the string would be measured at that point only. Each reactive component(s) associated with each device would be distinct in order to associate a unique time-dependent response with that device.
NASA Astrophysics Data System (ADS)
Ho, Hsiang-Hsi; Lin, Chun-Lung; Tsai, Wei-Che; Hong, Liang-Zheng; Lyu, Cheng-Han; Hsu, Hsun-Feng
2018-01-01
We demonstrate the fabrication and characterization of silicon nanowire-based devices in metal-nanowire-metal configuration using direct current dielectrophoresis. The current-voltage characteristics of the devices were found rectifying, and their direction of rectification could be determined by voltage sweep direction due to the asymmetric Joule heating effect that occurred in the electrical measurement process. The photosensing properties of the rectifying devices were investigated. It reveals that when the rectifying device was in reverse-biased mode, the excellent photoresponse was achieved due to the strong built-in electric field at the junction interface. It is expected that rectifying silicon nanowire-based devices through this novel and facile method can be potentially applied to other applications such as logic gates and sensors.
Ma, Jieshi; Xu, Canhua; Dai, Meng; You, Fusheng; Shi, Xuetao; Dong, Xiuzhen; Fu, Feng
2014-01-01
Stroke has a high mortality and disability rate and should be rapidly diagnosed to improve prognosis. Diagnosing stroke is not a problem for hospitals with CT, MRI, and other imaging devices but is difficult for community hospitals without these devices. Based on the mechanism that the electrical impedance of the two hemispheres of a normal human head is basically symmetrical and a stroke can alter this symmetry, a fast electrical impedance imaging method called symmetrical electrical impedance tomography (SEIT) is proposed. In this technique, electrical impedance tomography (EIT) data measured from the undamaged craniocerebral hemisphere (CCH) is regarded as reference data for the remaining EIT data measured from the other CCH for difference imaging to identify the differences in resistivity distribution between the two CCHs. The results of SEIT imaging based on simulation data from the 2D human head finite element model and that from the physical phantom of human head verified this method in detection of unilateral stroke.
Xu, Canhua; Dai, Meng; You, Fusheng; Shi, Xuetao
2014-01-01
Stroke has a high mortality and disability rate and should be rapidly diagnosed to improve prognosis. Diagnosing stroke is not a problem for hospitals with CT, MRI, and other imaging devices but is difficult for community hospitals without these devices. Based on the mechanism that the electrical impedance of the two hemispheres of a normal human head is basically symmetrical and a stroke can alter this symmetry, a fast electrical impedance imaging method called symmetrical electrical impedance tomography (SEIT) is proposed. In this technique, electrical impedance tomography (EIT) data measured from the undamaged craniocerebral hemisphere (CCH) is regarded as reference data for the remaining EIT data measured from the other CCH for difference imaging to identify the differences in resistivity distribution between the two CCHs. The results of SEIT imaging based on simulation data from the 2D human head finite element model and that from the physical phantom of human head verified this method in detection of unilateral stroke. PMID:25006594
Electrically Variable Resistive Memory Devices
NASA Technical Reports Server (NTRS)
Liu, Shangqing; Wu, Nai-Juan; Ignatiev, Alex; Charlson, E. J.
2010-01-01
Nonvolatile electronic memory devices that store data in the form of electrical- resistance values, and memory circuits based on such devices, have been invented. These devices and circuits exploit an electrically-variable-resistance phenomenon that occurs in thin films of certain oxides that exhibit the colossal magnetoresistive (CMR) effect. It is worth emphasizing that, as stated in the immediately preceding article, these devices function at room temperature and do not depend on externally applied magnetic fields. A device of this type is basically a thin film resistor: it consists of a thin film of a CMR material located between, and in contact with, two electrical conductors. The application of a short-duration, low-voltage current pulse via the terminals changes the electrical resistance of the film. The amount of the change in resistance depends on the size of the pulse. The direction of change (increase or decrease of resistance) depends on the polarity of the pulse. Hence, a datum can be written (or a prior datum overwritten) in the memory device by applying a pulse of size and polarity tailored to set the resistance at a value that represents a specific numerical value. To read the datum, one applies a smaller pulse - one that is large enough to enable accurate measurement of resistance, but small enough so as not to change the resistance. In writing, the resistance can be set to any value within the dynamic range of the CMR film. Typically, the value would be one of several discrete resistance values that represent logic levels or digits. Because the number of levels can exceed 2, a memory device of this type is not limited to binary data. Like other memory devices, devices of this type can be incorporated into a memory integrated circuit by laying them out on a substrate in rows and columns, along with row and column conductors for electrically addressing them individually or collectively.
Hot spot dynamics in carbon nanotube array devices.
Engel, Michael; Steiner, Mathias; Seo, Jung-Woo T; Hersam, Mark C; Avouris, Phaedon
2015-03-11
We report on the dynamics of spatial temperature distributions in aligned semiconducting carbon nanotube array devices with submicrometer channel lengths. By using high-resolution optical microscopy in combination with electrical transport measurements, we observe under steady state bias conditions the emergence of time-variable, local temperature maxima with dimensions below 300 nm, and temperatures above 400 K. On the basis of time domain cross-correlation analysis, we investigate how the intensity fluctuations of the thermal radiation patterns are correlated with the overall device current. The analysis reveals the interdependence of electrical current fluctuations and time-variable hot spot formation that limits the overall device performance and, ultimately, may cause device degradation. The findings have implications for the future development of carbon nanotube-based technologies.
Four-terminal connector for measuring resistance of a pyrotechnic initiator
NASA Technical Reports Server (NTRS)
Robinson, Robert L. (Inventor); Graves, Thomas J. (Inventor); Hoffman, III, William C. (Inventor)
1989-01-01
A four-terminal electrical connector device (40) for testing and measuring unknown resistances of initiators (11) used for starting pyrotechnic events aboard a Space Transportation System. The testing device minimizes contact resistance degradation effects and so improves the reliability of resistance measurement taken with the device. Separate and independent voltage sensing (19) and current supply (20) circuits each includes a pair of socket contacts (13-16) for mating engagement with the pins (17,18) of the initiator. The unknown resistance that is measured by the device is the resistance of the bridgewire (23) of the initiator which is required to be between 0.95 and 1.15 ohms.
Electronic spin transport in gate-tunable black phosphorus spin valves
NASA Astrophysics Data System (ADS)
Liu, Jiawei; Avsar, Ahmet; Tan, Jun You; Oezyilmaz, Barbaros
High charge mobility, the electric field effect and small spin-orbit coupling make semiconducting black phosphorus (BP) a promising material for spintronics device applications requiring long spin distance spin communication with all rectification and amplification actions. Towards this, we study the all electrical spin injection, transport and detection under non-local spin valve geometry in fully encapsulated ultra-thin BP devices. We observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 μm. These values are an order of magnitude higher than what have been measured in typical graphene spin valve devices. Moreover, the spin transport depends strongly on charge carrier concentration and can be manipulated in a spin transistor-like manner by controlling electric field. This behaviour persists even at room temperature. Finally, we will show that similar to its electrical and optical properties, spin transport property is also strongly anisotropic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enobio, Eli Christopher I.; Ohtani, Keita; Ohno, Yuzo
2013-12-02
We demonstrate the use of a Fourier Transform Infrared microscope system to detect and measure electroreflectance (ER) from mid-infrared quantum cascade laser (QCL) device. To characterize intersubband transition (ISBT) energies in a functioning QCL device, a microscope is used to focus the probe on the QCL cleaved mirror. The measured ER spectra exhibit resonance features associated to ISBTs under applied electric field in agreement with the numerical calculations and comparable to observed photocurrent, and emission peaks. The method demonstrates the potential as a characterization tool for QCL devices.
Communicating with residential electrical devices via a vehicle telematics unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Rebecca C.; Pebbles, Paul H.
A method of communicating with residential electrical devices using a vehicle telematics unit includes receiving information identifying a residential electrical device to control; displaying in a vehicle one or more controlled features of the identified residential electrical device; receiving from a vehicle occupant a selection of the displayed controlled features of the residential electrical device; sending an instruction from the vehicle telematics unit to the residential electrical device via a wireless carrier system in response to the received selection; and controlling the residential electrical device using the sent instruction.
Park, Jin-Sung; Kim, Kyoung-Ho; Hwang, Min-Soo; Zhang, Xing; Lee, Jung Min; Kim, Jungkil; Song, Kyung-Deok; No, You-Shin; Jeong, Kwang-Yong; Cahoon, James F; Kim, Sun-Kyung; Park, Hong-Gyu
2017-12-13
We report the enhancement of light absorption in Si nanowire photovoltaic devices with one-dimensional dielectric or metallic gratings that are fabricated by a damage-free, precisely aligning, polymer-assisted transfer method. Incorporation of a Si 3 N 4 grating with a Si nanowire effectively enhances the photocurrents for transverse-electric polarized light. The wavelength at which a maximum photocurrent is generated is readily tuned by adjusting the grating pitch. Moreover, the electrical properties of the nanowire devices are preserved before and after transferring the Si 3 N 4 gratings onto Si nanowires, ensuring that the quality of pristine nanowires is not degraded during the transfer. Furthermore, we demonstrate Si nanowire photovoltaic devices with Ag gratings using the same transfer method. Measurements on the fabricated devices reveal approximately 27.1% enhancement in light absorption compared to that of the same devices without the Ag gratings without any degradation of electrical properties. We believe that our polymer-assisted transfer method is not limited to the fabrication of grating-incorporated nanowire photovoltaic devices but can also be generically applied for the implementation of complex nanoscale structures toward the development of multifunctional optoelectronic devices.
Giant switchable photovoltaic effect in organometal trihalide perovskite devices
Xiao, Zhengguo; Yuan, Yongbo; Shao, Yuchuan; ...
2014-12-08
Organolead trihalide perovskite (OTP) materials are emerging as naturally abundant materials for low-cost, solution-processed and highly efficient solar cells. Here, we show that, in OTP-based photovoltaic devices with vertical and lateral cell configurations, the photocurrent direction can be switched repeatedly by applying a small electric field of <1 V μm –1. The switchable photocurrent, generally observed in devices based on ferroelectric materials, reached 20.1 mA cm –2 under one sun illumination in OTP devices with a vertical architecture, which is four orders of magnitude larger than that measured in other ferroelectric photovoltaic devices. This field-switchable photovoltaic effect can be explainedmore » by the formation of reversible p–i–n structures induced by ion drift in the perovskite layer. Furthermore, the demonstration of switchable OTP photovoltaics and electric-field-manipulated doping paves the way for innovative solar cell designs and for the exploitation of OTP materials in electrically and optically readable memristors and circuits.« less
An assessment of memristor intrinsic fluctuations: a measurement of single atomic motion
NASA Astrophysics Data System (ADS)
Borghetti, Julien; Yang, J. Joshua; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley
2010-03-01
Memristors provides electrically tunable resistance for upcoming non-volatile memory and future neuromorphic computing. One of the key benefits of such a device is its scalability, which can be demonstrated from an architectural perspective as well as from a fundamental physics limit. 4D addressing schemes utilizing cross bar structures that can be stacked several layers high above the chip embodies unlimited addressing space. On the other limit, the basic operating principles of memristive devices allow one to reach storage of information in a single atom. In this report of nanoscale (sub 50nm) devices, we detect single atom fluctuations, which would then represent the ultimate limit for noise sources thus delineating the boundary conditions for circuit design. We show that electrically induced individual atom migrations do not affect the overall device atomic configuration until a critical bias where a single local fluctuation triggers a general atomic reconfiguration. This instability illustrates the robustness of the device non-volatility upon small electrical stress.
Control for monitoring thickness of high temperature refractory
Caines, M.J.
1982-11-23
This invention teaches an improved monitoring device for detecting the changes in thickness of high-temperature refractory, the device consists of a probe having at least two electrically conductive generally parallel elements separated by a dielectric material. The probe is implanted or embedded directly in the refractory and is elongated to extend in line with the refractory thickness to be measured. Electrical inputs to the conductive elements provide that either or both the electrical conductance or capacitance can be found, so that charges over lapsed time periods can be compared in order to detect changes in the thickness of the refractory.
NASA Technical Reports Server (NTRS)
Anderson, Karl F. (Inventor)
1994-01-01
A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment.
Power spectrum analysis for defect screening in integrated circuit devices
Tangyunyong, Paiboon; Cole Jr., Edward I.; Stein, David J.
2011-12-01
A device sample is screened for defects using its power spectrum in response to a dynamic stimulus. The device sample receives a time-varying electrical signal. The power spectrum of the device sample is measured at one of the pins of the device sample. A defect in the device sample can be identified based on results of comparing the power spectrum with one or more power spectra of the device that have a known defect status.
Berger, Andrew J; Page, Michael R; Jacob, Jan; Young, Justin R; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P; Johnston-Halperin, Ezekiel; Pelekhov, Denis V; Hammel, P Chris
2014-12-01
Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Andrew J., E-mail: berger.156@osu.edu; Page, Michael R.; Young, Justin R.
Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform themore » various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.« less
Electromagnetic radiation screening of microcircuits for long life applications
NASA Technical Reports Server (NTRS)
Brammer, W. G.; Erickson, J. J.; Levy, M. E.
1974-01-01
The utility of X-rays as a stimulus for screening high reliability semiconductor microcircuits was studied. The theory of the interaction of X-rays with semiconductor materials and devices was considered. Experimental measurements of photovoltages, photocurrents, and effects on specified parameters were made on discrete devices and on microcircuits. The test specimens included discrete devices with certain types of identified flaws and symptoms of flaws, and microcircuits exhibiting deviant electrical behavior. With a necessarily limited sample of test specimens, no useful correlation could be found between the X-ray-induced electrical response and the known or suspected presence of flaws.
Design of Smart-Meter data acquisition device based on Cloud Platform
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-05-01
In recent years, the government has attached great importance to ‘Four-Meter Unified’ Project. Under the call of national policy, State Grid is participate in building ‘Four-Meter Unified’ Project actively by making use of electricity information acquisition system. In this paper, a new type Smart-Meter data acquisition device based on Cloud Platform is designed according to the newest series of standards Energy Measure and Management System for Electric, Water, Gas and Heat Meter, and this paper introduces the general scheme, main hardware design and main software design for the Smart-Meter data acquisition device.
Electrical Characterization of Hughes HCMP 1852D and RCA CDP1852D 8-bit, CMOS, I/O Ports
NASA Technical Reports Server (NTRS)
Stokes, R. L.
1979-01-01
Twenty-five Hughes HCMP 1852D and 25 RCA CDP1852D 8-bit, CMOS, I/O port microcircuits underwent electrical characterization tests. All electrical measurements were performed on a Tektronix S-3260 Test System. Before electrical testing, the devices were subjected to a 168-hour burn-in at 125 C with the inputs biased at 10V. Four of the Hughes parts became inoperable during testing. They exhibited functional failures and out-of-range parametric measurements after a few runs of the test program.
21 CFR 876.5320 - Nonimplanted electrical continence device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonimplanted electrical continence device. 876... Nonimplanted electrical continence device. (a) Identification. A nonimplanted electrical continence device is a device that consists of a pair of electrodes on a plug or a pessary that are connected by an electrical...
21 CFR 876.5320 - Nonimplanted electrical continence device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nonimplanted electrical continence device. 876... Nonimplanted electrical continence device. (a) Identification. A nonimplanted electrical continence device is a device that consists of a pair of electrodes on a plug or a pessary that are connected by an electrical...
21 CFR 876.5320 - Nonimplanted electrical continence device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nonimplanted electrical continence device. 876... Nonimplanted electrical continence device. (a) Identification. A nonimplanted electrical continence device is a device that consists of a pair of electrodes on a plug or a pessary that are connected by an electrical...
21 CFR 876.5320 - Nonimplanted electrical continence device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nonimplanted electrical continence device. 876... Nonimplanted electrical continence device. (a) Identification. A nonimplanted electrical continence device is a device that consists of a pair of electrodes on a plug or a pessary that are connected by an electrical...
Quantum efficiency as a device-physics interpretation tool for thin-film solar cells
NASA Astrophysics Data System (ADS)
Nagle, Timothy J.
2007-12-01
Thin-film solar cells made from CdTe and CIGS p-type absorbers are promising candidates for generating pollution-free electricity. The challenge faced by the thin-film photovoltaics (PV) community is to improve the electrical properties of devices, without straying from low-cost, industry-friendly techniques. This dissertation will focus on the use of quantum-efficiency (QE) measurements to deduce the device physics of thin-film devices, in the hope of improving electrical properties and efficiencies of PV materials. Photons which are absorbed, but not converted into electrical energy can modify the energy bands in the solar cell. Under illumination, photoconductivity in the CdS window layer can result in bands different from those in the dark. QE data presented here was taken under a variety of light-bias conditions. These results suggest that 0.10 sun of white-light bias incident on the CdS layer is usually sufficient to achieve accurate QE results. QE results are described by models based on carrier collection by drift and diffusion, and photon absorption. These models are sensitive to parameters such as carrier mobility and lifetime. Comparing calculated QE curves with experiments, it was determined that electron lifetimes in CdTe are less than 0.1 ns. Lifetime determinations also suggest that copper serves as a recombination center in CdTe. The spatial uniformity of QE results has been investigated with the LBIC apparatus, and several experiments are described which investigate cell uniformity. Electrical variations that occur in solar cells often occur in a nonuniform fashion, and can be detected with the LBIC apparatus. Studies discussed here include investigation of patterned deposition of Cu in back-contacts, the use of high-resistivity TCO layers to mitigate nonuniformity, optical effects, and local shunts. CdTe devices with transparent back contacts were also studied with LBIC, including those that received a strong bromine/dichrol/hydrazine (BDH) etch and those that received a weak bromine etch at the back contact. Back-side results showed improved uniformity in BDH-etched devices, attributed to better back contacts in these devices. In thin-absorber devices, the uniformity trend would likely extend to front-side measurements.
Characterizing Electric Field Exposed P3HT Thin Films Using Polarized-Light Spectroscopies
Bhattacharjee, Ujjal; Elshobaki, Moneim; Santra, Kalyan; ...
2016-06-23
P3HT (poly (3-hexylthiophene)) has been widely used as a donor in the active layer in organic photovoltaic devices. Although moderately high-power conversion efficiencies have been achieved with P3HT-based devices, structural details, such as the orientation of polymer units and the extent of H- and J-aggregation are not yet fully understood; and different measures have been taken to control the ordering in the material. One such measure, which we have exploited, is to apply an electric field from a Van de Graaff generator. We used fluorescence (to measure anisotropy instead of polarization, which is more commonly measured) and Raman spectroscopy tomore » characterize the order of P3HT molecules in thin films resulting from the field. We determine preferential orientations of the units in a thin film, consistent with observed hole mobility in thin-film-transistors, and observe that the apparent H-coupling strength changes when the films are exposed to oriented electrical fields during drying.« less
NASA Astrophysics Data System (ADS)
Jeong, Hyo-Soo; Keller, Kris; Culkin, Brad
2017-03-01
Non-vacuum process technology was used to produce Cs3Sb photocathodes on substrates, and in-situ panel devices were fabricated. The performance of the devices was characterized by measuring the anode current as functions of the devices' operation times. An excitation light source with a 475-nm wavelength was used for the photocathodes. The device has a simple diode structure, providing unique characteristics such as a large gap, vertical electron beam directionality, and resistance to surface contamination from ion bombardment and poisoning by outgassing species. Accordingly, Cs3Sb photocathodes function as flat emitters, and the emission properties of the photocathode emitters depend on the vacuum level of the devices. An improved current stability has been observed after conducting an electrical conditioning process to remove possible adsorbates on the Cs3Sb flat emitters.
NASA Astrophysics Data System (ADS)
Taslakov, M. A.; Avramov, I. D.
2010-04-01
This paper presents a practical non-destructive method for studying the film coating behavior of SAW devices by using a water soluble dielectric film (manitol) deposited on the SAW device surface by resistive evaporation. After measuring the electrical parameters of the film coated SAW device, the film can easily be removed from its surface by water rinsing without causing any damage to it. The SAW device can then be used over and over again in a large number of film depositions. The method was tested on a 1 GHz surface transverse wave (STW) resonator coated with manitol of varying thickness. After each coating and evaluation, the STW device was successfully recovered without significant performance degradation. Data is presented on the electrical changes of the STW device as a result of depositing manitol coatings of various thicknesses.
Messias, Iracimara de Anchieta; Okuno, Emico; Colacioppo, Sérgio
2011-10-01
Measure physical therapists' exposure to the electric and magnetic fields produced by 17 shortwave diathermy devices in physical therapy clinics in the city of Presidente Prudente, São Paulo State, Brazil. Compare the observed values with the exposure levels recommended by the International Commission on Non-ionizing Radiation Protection (ICNIRP). Observe the efficacy of Faraday cages as a means of protecting physical therapists from exposure to oscillating electric and magnetic fields. Electric and magnetic field measurements were taken at four points during actual physical therapy sessions: in proximity to the operator's pelvis and head, the devices' electrical cables, and the electrodes. The measuring equipment was a Wandel & Goltermann EMR-200. The values obtained in proximity to the electrodes and cables were 10 to 30 times higher than ICNIRP's recommended occupational reference levels. In the shortwave diathermy treatment rooms with Faraday cages, the fields were even higher than in treatment rooms not so equipped-principally the magnetic field, where the values were more than 100 times higher than the ICNIRP exposure limit. The electric and magnetic field intensities obtained in this study are generally above the exposure levels recommend in ICNIRP standards. It was also observed that the Faraday cage offers physical therapists no protection, and instead, increases their level of exposure.
Intra-instrument reliability of 4 goniometers.
Pringle, R Kevin
2003-01-01
Cervical spine ROM movements taken accurately with reliable measuring devices are important in outcome measures as well as in measuring disability. To compare the active cervical spine ROM in healthy young adult population using 4 different goniometers. Subjects were tested during active cervical spine ROM. The devices were a single hinge inclinometer, single bubble carpenter's inclinometer, dual bubble goniometers and Cybex EDI 320 electrical inclinometer. All subjects were tested for rotational limits along each of the orthogonal axes of movement. There are 3 trials for each movement direction, except rotation was not measured with the Cybex as per manual suggestions. The subjects were randomly assigned to the sequence of devices. Twenty-seven student volunteers (19 men and 8 women) were tested. Ages ranged from 21 to 41, mean age of 27.6 years of age. Active cervical spine ROM trials for each measurement was used to calculate mean and standard deviation. An overall analysis of variance (ANOVA) and Bonferroni adjusted T-test were determined in order to calculate reliability and significance. The cost of the instruments were not used in determining reliability or significance. The single hinge inclinometer was found to be a reliable measure but not likely valid. The Cybex EDI 320 was found to be the best measuring device; however, the 2 instruments whose cost were in-between the single hinge inclinometer and the electrical goniometer were just as reliable as the more expensive device. The AMA Guides of Impairment were used as the normative data to compare these devices. Since the devices could measure reliably, whether expensive or more cost effective for students they would likely make adequate devices for training students on the methods for measuring ROM. There is previous data to suggest that older populations have gender differences and age differences with ROM. This study could not measure that and would make a useful follow-up study.
High Bandwidth, Fine Resolution Deformable Mirror Design.
1980-03-01
Low Temperature Solders 68 B.6 Influence Function Parameters 68 APPENDIX C 19 Capacitance Measurement 69 ACCESSION for NTIS white Sectloo ODC Buff...Multilayer actuator: Dilatation versus applied electric field 10 Figure 3 - Multilayer actuator: Influence function 11 Figure 4 - Honeycomb device...bimorph 20 Figure 8 - Bimorph device: Influence function of a bimorph device which has a glass plate 0.20 cm thick 24 Figure 9 - Bimorph device
Approaches on calibration of bolometer and establishment of bolometer calibration device
NASA Astrophysics Data System (ADS)
Xia, Ming; Gao, Jianqiang; Ye, Jun'an; Xia, Junwen; Yin, Dejin; Li, Tiecheng; Zhang, Dong
2015-10-01
Bolometer is mainly used for measuring thermal radiation in the field of public places, labor hygiene, heating and ventilation and building energy conservation. The working principle of bolometer is under the exposure of thermal radiation, temperature of black absorbing layer of detector rise after absorption of thermal radiation, which makes the electromotive force produced by thermoelectric. The white light reflective layer of detector does not absorb thermal radiation, so the electromotive force produced by thermoelectric is almost zero. A comparison of electromotive force produced by thermoelectric of black absorbing layer and white reflective layer can eliminate the influence of electric potential produced by the basal background temperature change. After the electromotive force which produced by thermal radiation is processed by the signal processing unit, the indication displays through the indication display unit. The measurement unit of thermal radiation intensity is usually W/m2 or kW/m2. Its accurate and reliable value has important significance for high temperature operation, labor safety and hygiene grading management. Bolometer calibration device is mainly composed of absolute radiometer, the reference light source, electric measuring instrument. Absolute radiometer is a self-calibration type radiometer. Its working principle is using the electric power which can be accurately measured replaces radiation power to absolutely measure the radiation power. Absolute radiometer is the standard apparatus of laser low power standard device, the measurement traceability is guaranteed. Using the calibration method of comparison, the absolute radiometer and bolometer measure the reference light source in the same position alternately which can get correction factor of irradiance indication. This paper is mainly about the design and calibration method of the bolometer calibration device. The uncertainty of the calibration result is also evaluated.
Korpinen, Leena; Pääkkönen, Rauno
2018-02-26
The objective of the study was to investigate occupational exposure to electric fields during the task 'maintenance of an operating device of circuit breaker from a service platform' at 110-kV substations. The aim was also to compare the results to Directive 2013/35/EU. At 16 substations, 255 electric field measurements were performed. The highest mean value of the electric fields was 9.6 kV⋅m -1 . At 63% of substations the maximum values were over 10.0 kV⋅m -1 , and at 31% of the substations the 75th percentiles were over 10.0 kV⋅m -1 , which is the low action level (AL) according to Directive 2013/35/EU. All measured values were below the high AL (20.0 kV⋅m -1 ). In the future, it is important to take into account that the measurements were only taken at Finnish 110-kV substations; therefore, it is not possible to generalize these results to other countries and different types of substations.
Device and method for the measurement of gas permeability through membranes
Agarwal, Pradeep K.; Ackerman, John; Borgialli, Ron; Hamann, Jerry; Muknahalliptna, Suresh
2006-08-08
A device for the measuring membrane permeability in electrical/electrochemical/photo-electrochemical fields is provided. The device is a permeation cell and a tube mounted within the cell. An electrode is mounted at one end of the tube. A membrane is mounted within the cell wherein a corona is discharged from the electrode in a general direction toward the membrane thereby generating heated hydrogen atoms adjacent the membrane. A method for measuring the effects of temperature and pressure on membrane permeability and selectivity is also provided.
Symposium N: Materials and Devices for Thermal-to-Electric Energy Conversion
2010-08-24
X - ray diffraction, transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Thermal conductivity measurements...SEM), X - ray diffraction (XRD) measurements as well as Raman spectroscopy. The results from these techniques indicate a clear modification...was examined by using scanning electron microscope (SEM; HITACHI S-4500 model) attached with an energy dispersive x - ray spectroscopy. The electrical
Calorimetric system and method
Gschneidner, K.A. Jr.; Pecharsky, V.K.; Moorman, J.O.
1998-09-15
Apparatus is described for measuring heat capacity of a sample where a series of measurements are taken in succession comprises a sample holder in which a sample to be measured is disposed, a temperature sensor and sample heater for providing a heat pulse thermally connected to the sample, and an adiabatic heat shield in which the sample holder is positioned and including an electrical heater. An electrical power supply device provides an electrical power output to the sample heater to generate a heat pulse. The electrical power from a power source to the heat shield heater is adjusted by a control device, if necessary, from one measurement to the next in response to a sample temperature-versus-time change determined before and after a previous heat pulse to provide a subsequent sample temperature-versus-time change that is substantially linear before and after the subsequent heat pulse. A temperature sensor is used and operable over a range of temperatures ranging from approximately 3K to 350K depending upon the refrigerant used. The sample optionally can be subjected to dc magnetic fields such as from 0 to 12 Tesla (0 to 120 kOe). 18 figs.
Atmospheric Electric Field Measurements at 100 Hz and High Frequency Electric Phenomena
NASA Astrophysics Data System (ADS)
Conceição, Ricardo; Gonçalves da Silva, Hugo; Matthews, James; Bennett, Alec; Chubb, John
2016-04-01
Spectral response of Atmospheric Electric Potential Gradient (PG), symmetric to the Atmospheric Electric Field, gives important information about phenomena affecting these measurements with characteristic time-scales that appear in the spectra as specific periodicities. This is the case of urban pollution that has a clear weekly dependence and reveals itself on PG measurements by a ~7 day periodicity (Silva et al., 2014). While long-term time-scales (low frequencies) have been exhaustively explored in literature, short-term time-scales (high frequencies), above 1 Hz, have comparatively received much less attention (Anisimov et al., 1999). This is mainly because of the technical difficulties related with the storage of such a huge amount of data (for 100 Hz sampling two days of data uses a ~1 Gb file) and the response degradation of the field-meters at such frequencies. Nevertheless, important Electric Phenomena occurs for frequencies above 1 Hz that are worth pursuing, e.g. the Schumann Resonances have a signature of worldwide thunderstorm activity at frequencies that go from ~8 up to ~40 Hz. To that end the present work shows preliminary results on PG measurements at 100 Hz that took place on two clear-sky days (17th and 18th June 2015) on the South of Portugal, Évora (38.50° N, 7.91° W). The field-mill used is a JCI 131F installed in the University of Évora campus (at 2 m height) with a few trees and two buildings in its surroundings (~50 m away). This device was developed by John Chubb (Chubb, 2014) and manufactured by Chilworth (UK). It was calibrated in December 2013 and recent work by the author (who is honored in this study for his overwhelming contribution to atmospheric electricity) reveals basically a flat spectral response of the device up to frequencies of 100 Hz (Chubb, 2015). This makes this device suitable for the study of High Frequency Electric Phenomena. Anisimov, S.V., et al. (1999). On the generation and evolution of aeroelectric structures in the surface layer. J. Geophys. Res., 104(D12), 14359-14367. Chubb, J. (2014). The measurement of atmospheric electric fields using pole mounted electrostatic fieldmeters. Journal of Electrostatics 72, 295-300. Chubb, J. (2015). Limitations on the performance of 'field mill' fieldmeters with alternating electric fields. Journal of Electrostatics 78, 1-3. Silva, H.G. et al. (2014). Atmospheric electric field measurements in urban environment and the pollutant aerosol weekly dependence. Environment Research Letters, 9, 114025.
Usage monitoring of electrical devices in a smart home.
Rahimi, Saba; Chan, Adrian D C; Goubran, Rafik A
2011-01-01
Profiling the usage of electrical devices within a smart home can be used as a method for determining an occupant's activities of daily living. A nonintrusive load monitoring system monitors the electrical consumption at a single electrical source (e.g., main electric utility service entry) and the operating schedules of individual devices are determined by disaggregating the composite electrical consumption waveforms. An electrical device's load signature plays a key role in nonintrusive load monitoring systems. A load signature is the unique electrical behaviour of an individual device when it is in operation. This paper proposes a feature-based model, using the real power and reactive power as features for describing the load signatures of individual devices. Experimental results for single device recognition for 7 devices show that the proposed approach can achieve 100% classification accuracy with discriminant analysis using Mahalanobis distances.
Detached rock evaluation device
Hanson, David R.
1986-01-01
A rock detachment evaluation device (10) having an energy transducer unit 1) for sensing vibrations imparted to a subject rock (172) for converting the sensed vibrations into electrical signals, a low band pass filter unit (12) for receiving the electrical signal and transmitting only a low frequency segment thereof, a high band pass filter unit (13) for receiving the electrical signals and for transmitting only a high frequency segment thereof, a comparison unit (14) for receiving the low frequency and high frequency signals and for determining the difference in power between the signals, and a display unit (16) for displaying indicia of the difference, which provides a quantitative measure of rock detachment.
Noncontact torque measurement using stroboscopic techniques
NASA Technical Reports Server (NTRS)
Leonard, W. H.
1972-01-01
Noncontact torquemeter measures torsional deflection of rotating shaft and results are viewed on vernier scale. Magnitude of torque must be calculated from measured deflection. Device has no electric connections with the rotating member and is easy to use.
21 CFR 876.5270 - Implanted electrical urinary continence device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted electrical urinary continence device... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in...
21 CFR 876.5270 - Implanted electrical urinary continence device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted electrical urinary continence device... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in...
21 CFR 876.5270 - Implanted electrical urinary continence device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted electrical urinary continence device... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in...
21 CFR 876.5270 - Implanted electrical urinary continence device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted electrical urinary continence device... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in...
21 CFR 876.5270 - Implanted electrical urinary continence device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted electrical urinary continence device...
NASA Astrophysics Data System (ADS)
Bhattacharjee, Snigdha; Sarkar, Pranab Kumar; Prajapat, Manoj; Roy, Asim
2017-07-01
Molybdenum disulfide (MoS2) is of great interest for its applicability in various optoelectronic devices. Here we report the resistive switching properties of polymethylmethacrylate embedding MoS2 nano-crystals. The devices are developed on an ITO-coated PET substrate with copper as the top electrode. Systematic evaluation of resistive switching parameters, on the basis of MoS2 content, suggests non-volatile memory characteristics. A decent ON/OFF ratio, high retention time and long endurance of 3 × 103, 105 s and 105 cycles are respectively recorded in a device with 1 weight percent (wt%) of MoS2. The bending cyclic measurements confirm the flexibility of the memory devices with good electrical reliability as well as mechanical stability. In addition, multilevel storage has been demonstrated by controlling the current compliance and span of voltage sweeping in the memory device.
Localized electrical fine tuning of passive microwave and radio frequency devices
Findikoglu, Alp T.
2001-04-10
A method and apparatus for the localized electrical fine tuning of passive multiple element microwave or RF devices in which a nonlinear dielectric material is deposited onto predetermined areas of a substrate containing the device. An appropriate electrically conductive material is deposited over predetermined areas of the nonlinear dielectric and the signal line of the device for providing electrical contact with the nonlinear dielectric. Individual, adjustable bias voltages are applied to the electrically conductive material allowing localized electrical fine tuning of the devices. The method of the present invention can be applied to manufactured devices, or can be incorporated into the design of the devices so that it is applied at the time the devices are manufactured. The invention can be configured to provide localized fine tuning for devices including but not limited to coplanar waveguides, slotline devices, stripline devices, and microstrip devices.
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan
2018-06-01
This work deal with experimental measurement and calculation cooling efficiency of the cooling device working with a heat pipe technology. The referred device in the article is cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description, working principle and construction of cooling device. The main factor affected the dissipation of high heat flux from electronic elements through the cooling device to the surrounding is condenser construction, its capacity and option of heat removal. Experimental part describe the measuring method cooling efficiency of the cooling device depending on ambient temperature in range -20 to 40°C and at heat load of electronic components 750 W. Measured results are compared with results calculation based on physical phenomena of boiling, condensation and natural convection heat transfer.
A Novel SPM Probe with MOS Transistor and Nano Tip for Surface Electric Properties
NASA Astrophysics Data System (ADS)
Lee, Sang H.; Lim, Geunbae; Moon, Wonkyu
2007-03-01
In this paper, the novel SPM (Scanning Probe Microscope) probe with the planar MOS (Metal-Oxide-Semiconductor) transistor and the FIB (Focused Ion Beam) nano tip is fabricated for the surface electric properties. Since the MOS transistor has high working frequency, the device can overcome the speed limitation of EFM (Electrostatic Force Microscope) system. The sensitivity is also high, and no bulky device such as lock-in-amplifier is required. Moreover, the nano tip with nanometer scale tip radius is fabricated with FIB system, and the resolution can be improved. Therefore, the probe can rapidly detect small localized electric properties with high sensitivity and high resolution. The MOS transistor is fabricated with the common semiconductor process, and the nano tip is grown by the FIB system. The planar structure of the MOS transistor makes the fabrication process easier, which is the advantage on the commercial production. Various electric signals are applied using the function generator, and the measured data represent the well-established electric properties of the device. It shows the promising aspect of the local surface electric property detection with high sensitivity and high resolution.
Gynecologic electrical impedance tomograph
NASA Astrophysics Data System (ADS)
Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.
2010-04-01
Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.
Choi, Wonchul; Park, Young-Sam; Hyun, Younghoon; Zyung, Taehyoung; Kim, Jaehyeon; Kim, Soojung; Jeon, Hyojin; Shin, Mincheol; Jang, Moongyu
2013-12-01
We fabricated a thermoelectric device with a silicide/silicon laminated hetero-structure by using RF sputtering and rapid thermal annealing. The device was observed to have Ohmic characteristics by I-V measurement. The temperature differences and Seebeck coefficients of the proposed silicide/silicon laminated and bulk structure were measured. The laminated thermoelectric device shows suppression of heat flow from the hot to cold side. This is supported by the theory that the atomic mass difference between silicide and silicon creates a scattering center for phonons. The major impact of our work is that phonon transmission is suppressed at the interface between silicide and silicon without degrading electrical conductivity. The estimated thermal conductivity of the 3-layer laminated device is 126.2 +/- 3.7 W/m. K. Thus, by using the 3-layer laminated structure, thermal conductivity is reduced by around 16% compared to bulk silicon. However, the Seebeck coefficient of the thermoelectric device is degraded compared to that of bulk silicon. It is understood that electrical conductivity is improved by using silicide as a scattering center.
Cancer-meter: measure and cure.
Kashyap, Sunil Kumar; Sharma, Birendra Kumar; Banerjee, Amitabh
2017-05-01
This paper presents a theory and system on "Cancer-Meter'. This idea came through the statement that "cancer is curable if it is measurable". The Cancer-Meter proves that it is possible. This paper proposes the cancer-meter in two ways, theoretical and electronically, as per the measurement and treatment. By the mathematics, first part is defined but the second part is based on computer programming, electrical and electronics. Thus, the cancer-meter is a programmed-electrical-electronic device which measures and cures the cancer both.
NASA Technical Reports Server (NTRS)
Mcree, Griffith J., Jr.; Roberts, A. Sidney, Jr.
1991-01-01
An experimental program aimed at identifying areas in low speed aerodynamic research where infrared imaging systems can make significant contributions is discussed. Implementing a new technique, a long electrically heated wire was placed across a laminar flow. By measuring the temperature distribution along the wire with the IR imaging camera, the flow behavior was identified.
NASA Astrophysics Data System (ADS)
Rodriguez-Manzo, Julio Alejandro; Balan, Adrian; Nayor, Carl; Parkin, Will; Puster, Matthew; Johnson, A. T. Charlie; Drndic, Marija
2015-03-01
We present a study of the effects of the defects produced by electron irradiation on the electrical and crystalline properties of graphene and MoS2 monolayers. We realized back or side gated electrical devices from monolayer MoS2 or graphene crystals (triangles respectively hexagons) suspended on a 50nm SiNx m. The devices are exposed to electron irradiation inside a 200kV transmission electron microscope (TEM) and we perform in situ conductance measurements. The number of defects and the quality of the crystalline lattice obtained by diffraction are correlated with the observed decrease in mobility and conductivity of the devices. We observe a different behavior between MoS2 and graphene, and try to associate this with different models for conduction with defects. Finally, we use the TEM electron beam to tailor the macroscopic layers into ribbons to be used as the sensing element in MoS2 nanoribbon - nanopore devices for DNA detection and sequencing.
Towards High-Throughput, Simultaneous Characterization of Thermal and Thermoelectric Properties
NASA Astrophysics Data System (ADS)
Miers, Collier Stephen
The extension of thermoelectric generators to more general markets requires that the devices be affordable and practical (low $/Watt) to implement. A key challenge in this pursuit is the quick and accurate characterization of thermoelectric materials, which will allow researchers to tune and modify the material properties quickly. The goal of this thesis is to design and fabricate a high-throughput characterization system for the simultaneous characterization of thermal, electrical, and thermoelectric properties for device scale material samples. The measurement methodology presented in this thesis combines a custom designed measurement system created specifically for high-throughput testing with a novel device structure that permits simultaneous characterization of the material properties. The measurement system is based upon the 3o method for thermal conductivity measurements, with the addition of electrodes and voltage probes to measure the electrical conductivity and Seebeck coefficient. A device designed and optimized to permit the rapid characterization of thermoelectric materials is also presented. This structure is optimized to ensure 1D heat transfer within the sample, thus permitting rapid data analysis and fitting using a MATLAB script. Verification of the thermal portion of the system is presented using fused silica and sapphire materials for benchmarking. The fused silica samples yielded a thermal conductivity of 1.21 W/(m K), while a thermal conductivity of 31.2 W/(m K) was measured for the sapphire samples. The device and measurement system designed and developed in this thesis provide insight and serve as a foundation for the development of high throughput, simultaneous measurement platforms.
Development of high power UV irradiance meter calibration device
NASA Astrophysics Data System (ADS)
Xia, Ming; Gao, Jianqiang; Yin, Dejin; Li, Tiecheng
2016-09-01
With the rapid development of China's economy, many industries have more requirements for UV light applications, such as machinery manufacturing, aircraft manufacturing using high power UV light for detection, IT industry using high power UV light for curing component assembly, building materials, ink, paint and other industries using high power UV light for material aging test etc. In these industries, there are many measuring instruments for high power UV irradiance which are need to traceability. But these instruments are mostly imported instruments, these imported UV radiation meter are large range, wide wavelength range and high accuracy. They have exceeded our existing calibration capability. Expand the measuring range and improve the measurement accuracy of UV irradiance calibration device is a pressing matter of the moment. The newly developed high power UV irradiance calibration device is mainly composed of high power UV light, UV filter, condenser, UV light guide, optical alignment system, standard cavity absolute radiometer. The calibration device is using optical alignment system to form uniform light radiation field. The standard is standard cavity absolute radiometer, which can through the electrical substitution method, by means of adjusting and measuring the applied DC electric power at the receiver on a heating wire, which is equivalent to the thermo-electromotive force generated by the light radiation power, to achieve absolute optical radiation measurement. This method is the commonly used effective method for accurate measurement of light irradiation. The measuring range of calibration device is (0.2 200) mW/cm2, and the uncertainty of measurement results can reached 2.5% (k=2).
Energy storage cell impedance measuring apparatus, methods and related systems
Morrison, John L.; Morrison, William H.; Christophersen, Jon P.
2017-12-26
Energy storage cell impedance testing devices, circuits, and related methods are disclosed. An energy storage cell impedance measuring device includes a sum of sinusoids (SOS) current excitation circuit including differential current sources configured to isolate a ground terminal of the differential current sources from a positive terminal and a negative terminal of an energy storage cell. A method includes applying an SOS signal comprising a sum of sinusoidal current signals to the energy storage cell with the SOS current excitation circuit, each of the sinusoidal current signals oscillating at a different one of a plurality of different frequencies. The method also includes measuring an electrical signal at a positive terminal and a negative terminal of the energy storage cell, and computing an impedance of the energy storage cell at each of the plurality of different frequencies using the measured electrical signal.
NASA Astrophysics Data System (ADS)
Rathore, Priyanka; Mohan Singh Negi, Chandra; Singh Verma, Ajay; Singh, Amarjeet; Chauhan, Gayatri; Regis Inigo, Anto; Gupta, Saral K.
2017-08-01
Devices comprised of solution-processed poly (3-hexylthiophene) (P3HT)/multiwall carbon nanotubes (MWCNTs), with various concentrations of MWCNTs, were fabricated and characterized. The morphology of the P3HT: MWCNT nanocomposite was characterized by using field emission scanning electron microscopy (FESEM). The optical characteristics of the nanocomposite were studied by UV/VIS/NIR spectroscopy and Raman spectroscopy. The electrical properties of the fabricated devices were characterized by measuring the current density-voltage (J-V) characteristics. While the J-V characteristics of a pristine P3HT device reveal thermal injection limited charge transport, the P3HT: MWCNT nanocomposite-based devices exhibit three distinct voltage-dependent conduction regimes. The fitting curve with measured data reveals Ohmic conduction for a low voltage range, a trap-charge limited conduction (TCLC) process at an intermediate voltage range followed by a trap free space-charge limited conduction (SCLC) process at much higher voltages. A fundamental understanding of this work can assist in creating new charge transport pathways which will provide new avenues for the development of highly efficient polymer-based optoelectronic devices.
Saucedo-Espinosa, Mario A.; Lapizco-Encinas, Blanca H.
2016-01-01
Current monitoring is a well-established technique for the characterization of electroosmotic (EO) flow in microfluidic devices. This method relies on monitoring the time response of the electric current when a test buffer solution is displaced by an auxiliary solution using EO flow. In this scheme, each solution has a different ionic concentration (and electric conductivity). The difference in the ionic concentration of the two solutions defines the dynamic time response of the electric current and, hence, the current signal to be measured: larger concentration differences result in larger measurable signals. A small concentration difference is needed, however, to avoid dispersion at the interface between the two solutions, which can result in undesired pressure-driven flow that conflicts with the EO flow. Additional challenges arise as the conductivity of the test solution decreases, leading to a reduced electric current signal that may be masked by noise during the measuring process, making for a difficult estimation of an accurate EO mobility. This contribution presents a new scheme for current monitoring that employs multiple channels arranged in parallel, producing an increase in the signal-to-noise ratio of the electric current to be measured and increasing the estimation accuracy. The use of this parallel approach is particularly useful in the estimation of the EO mobility in systems where low conductivity mediums are required, such as insulator based dielectrophoresis devices. PMID:27375813
Effects of interface electric field on the magnetoresistance in spin devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanamoto, T., E-mail: tetsufumi.tanamoto@toshiba.co.jp; Ishikawa, M.; Inokuchi, T.
2014-04-28
An extension of the standard spin diffusion theory is presented by using a quantum diffusion theory via a density-gradient (DG) term that is suitable for describing interface quantum tunneling phenomena. The magnetoresistance (MR) ratio is greatly modified by the DG term through an interface electric field. We have also carried out spin injection and detection measurements using four-terminal Si devices. The local measurement shows that the MR ratio changes depending on the current direction. We show that the change of the MR ratio depending on the current direction comes from the DG term regarding the asymmetry of the two interfacemore » electronic structures.« less
Nguyen, Mary -Anne; Srijanto, Bernadeta; Collier, C. Patrick; ...
2016-08-02
The droplet interface bilayer (DIB) is a modular technique for assembling planar lipid membranes between water droplets in oil. The DIB method thus provides a unique capability for developing digital, droplet-based membrane platforms for rapid membrane characterization, drug screening and ion channel recordings. This paper demonstrates a new, low-volume microfluidic system that automates droplet generation, sorting, and sequential trapping in designated locations to enable the rapid assembly of arrays of DIBs. The channel layout of the device is guided by an equivalent circuit model, which predicts that a serial arrangement of hydrodynamic DIB traps enables sequential droplet placement and minimizesmore » the hydrodynamic pressure developed across filled traps to prevent squeeze-through of trapped droplets. Furthermore, the incorporation of thin-film electrodes fabricated via evaporation metal deposition onto the glass substrate beneath the channels allows for the first time in situ, simultaneous electrical interrogation of multiple DIBs within a sealed device. Combining electrical measurements with imaging enables measurements of membrane capacitance and resistance and bilayer area, and our data show that DIBs formed in different trap locations within the device exhibit similar sizes and transport properties. Simultaneous, single channel recordings of ion channel gating in multiple membranes are obtained when alamethicin peptides are incorporated into the captured droplets, qualifying the thin-film electrodes as a means for measuring stimuli-responsive functions of membrane-bound biomolecules. Furthermore, this novel microfluidic-electrophysiology platform provides a reproducible, high throughput method for performing electrical measurements to study transmembrane proteins and biomembranes in low-volume, droplet-based membranes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Mary -Anne; Srijanto, Bernadeta; Collier, C. Patrick
The droplet interface bilayer (DIB) is a modular technique for assembling planar lipid membranes between water droplets in oil. The DIB method thus provides a unique capability for developing digital, droplet-based membrane platforms for rapid membrane characterization, drug screening and ion channel recordings. This paper demonstrates a new, low-volume microfluidic system that automates droplet generation, sorting, and sequential trapping in designated locations to enable the rapid assembly of arrays of DIBs. The channel layout of the device is guided by an equivalent circuit model, which predicts that a serial arrangement of hydrodynamic DIB traps enables sequential droplet placement and minimizesmore » the hydrodynamic pressure developed across filled traps to prevent squeeze-through of trapped droplets. Furthermore, the incorporation of thin-film electrodes fabricated via evaporation metal deposition onto the glass substrate beneath the channels allows for the first time in situ, simultaneous electrical interrogation of multiple DIBs within a sealed device. Combining electrical measurements with imaging enables measurements of membrane capacitance and resistance and bilayer area, and our data show that DIBs formed in different trap locations within the device exhibit similar sizes and transport properties. Simultaneous, single channel recordings of ion channel gating in multiple membranes are obtained when alamethicin peptides are incorporated into the captured droplets, qualifying the thin-film electrodes as a means for measuring stimuli-responsive functions of membrane-bound biomolecules. Furthermore, this novel microfluidic-electrophysiology platform provides a reproducible, high throughput method for performing electrical measurements to study transmembrane proteins and biomembranes in low-volume, droplet-based membranes.« less
Measuring Fracture Times Of Ceramics
NASA Technical Reports Server (NTRS)
Shlichta, Paul J.; Bister, Leo; Bickler, Donald G.
1989-01-01
Electrical measurements complement or replace fast cinematography. Electronic system measures microsecond time intervals between impacts of projectiles on ceramic tiles and fracture tiles. Used in research on ceramics and ceramic-based composite materials such as armor. Hardness and low density of ceramics enable them to disintegrate projectiles more efficiently than metals. Projectile approaches ceramic tile specimen. Penetrating foil squares of triggering device activate display and recording instruments. As ceramic and resistive film break oscilloscope plots increase in electrical resistance of film.
Luongo, Kevin; Holton, Angela; Kaushik, Ajeet; Spence, Paige; Ng, Beng; Deschenes, Robert; Sundaram, Shankar; Bhansali, Shekhar
2013-01-01
In this paper, we report the design, fabrication, and testing of a lab-on-a-chip based microfluidic device for application of trapping and measuring the dielectric properties of microtumors over time using electrical impedance spectroscopy (EIS). Microelectromechanical system (MEMS) techniques were used to embed opposing electrodes onto the top and bottom surfaces of a microfluidic channel fabricated using Pyrex substrate, chrome gold, SU-8, and polydimethylsiloxane. Differing concentrations of cell culture medium, differing sized polystyrene beads, and MCF-7 microtumor spheroids were used to validate the designs ability to detect background conductivity changes and dielectric particle diameter changes between electrodes. The observed changes in cell medium concentrations demonstrated a linear relation to extracted solution resistance (Rs), while polystyrene beads and multicell spheroids induced changes in magnitude consistent with diameter increase. This design permits optical correlation between electrical measurements and EIS spectra. PMID:24404028
Hosseini, Monireh; Monazzam, Mohammad Reza; Farhang Matin, Laleh; Khosroabadi, Hossein
2015-05-01
Electromagnetic fields in recent years have been discussed as one of the occupational hazards at workplaces. Hence, control and assessment of these physical factors is very important to protect and promote the health of employees. The present study was conducted to determine hazard zones based on assessment of extremely low-frequency magnetic fields at electric substations of a petrochemical complex in southern Iran, using the single-axis HI-3604 device. In measurement of electromagnetic fields by the single-axis HI-3604 device, the sensor screen should be oriented in a way to be perpendicular to the field lines. Therefore, in places where power lines are located in different directions, it is required to keep the device towards three axes of x, y, and z. For further precision, the measurements should be repeated along each of the three axes. In this research, magnetic field was measured, for the first time, in three axes of x, y, and z whose resultant value was considered as the value of magnetic field. Measurements were done based on IEEE std 644-1994. Further, the spatial changes of the magnetic field surrounding electric substations were stimulated using MATLAB software. The obtained results indicated that the maximum magnetic flux density was 49.90 μT recorded from boiler substation, while the minimum magnetic flux density of 0.02 μT was measured at the control room of the complex. As the stimulation results suggest, the spaces around incoming panels, transformers, and cables were recognized as hazardous zones of indoor electric substations. Considering the health effects of chronic exposure to magnetic fields, it would be possible to minimize exposure to these contaminants at workplaces by identification of risky zones and observation of protective considerations.
NASA Astrophysics Data System (ADS)
Dhurjaty, Sreeram; Qiu, Yuchen; Tan, Maxine; Liu, Hong; Zheng, Bin
2015-03-01
Glucose metabolism relates to biochemical processes in living organisms and plays an important role in diabetes and cancer-metastasis. Although many methods are available for measuring glucose metabolism-activities, from simple blood tests to positron emission tomography, currently there is no robust and affordable device that enables monitoring of glucose levels in real-time. In this study we tested feasibility of applying a unique resonance-frequency based electronic impedance spectroscopy (REIS) device that has been, recently developed to measure and monitor glucose metabolism levels using a phantom study. In this new testing model, a multi-frequency electrical signal sequence is applied and scanned through the subject. When the positive reactance of an inductor inside the device cancels out the negative reactance of the capacitance of the subject, the electrical impedance reaches a minimum value and this frequency is defined as the resonance frequency. The REIS system has a 24-bit analog-to-digital signal convertor and a frequency-resolution of 100Hz. In the experiment, two probes are placed inside a 100cc container initially filled with distilled water. As we gradually added liquid-glucose in increments of 1cc (250mg), we measured resonance frequencies and minimum electrical signal values (where A/D was normalized to a full scale of 1V). The results showed that resonance frequencies monotonously decreased from 243kHz to 178kHz, while the minimum voltages increased from 405mV to 793mV as the added amount of glucose increased from 0 to 5cc. The study demonstrated the feasibility of applying this new REIS technology to measure and/or monitor glucose levels in real-time in future.
NASA Technical Reports Server (NTRS)
Kim, Jong Dae (Inventor); Nagarajaiah, Satish (Inventor); Barrera, Enrique V. (Inventor); Dharap, Prasad (Inventor); Zhiling, Li (Inventor)
2010-01-01
The present invention is directed toward devices comprising carbon nanotubes that are capable of detecting displacement, impact, stress, and/or strain in materials, methods of making such devices, methods for sensing/detecting/monitoring displacement, impact, stress, and/or strain via carbon nanotubes, and various applications for such methods and devices. The devices and methods of the present invention all rely on mechanically-induced electronic perturbations within the carbon nanotubes to detect and quantify such stress/strain. Such detection and quantification can rely on techniques which include, but are not limited to, electrical conductivity/conductance and/or resistivity/resistance detection/measurements, thermal conductivity detection/measurements, electroluminescence detection/measurements, photoluminescence detection/measurements, and combinations thereof. All such techniques rely on an understanding of how such properties change in response to mechanical stress and/or strain.
King, Travis L.; Gatimu, Enid N.; Bohn, Paul W.
2009-01-02
This paper presents a study of electrokinetic transport in single nanopores integrated into vertically-stacked three-dimensional hybrid microfluidic/nanofluidic structures. In these devices single nanopores, created by focused ion beam (FIB) milling in thin polymer films, provide fluidic connection between two vertically separated, perpendicular microfluidic channels. Experiments address both systems in which the nanoporous membrane is composed of the same (homojunction) or different (heterojunction) polymer as the microfluidic channels. These devices are then used to study the electrokinetic transport properties of synthetic (i.e., polystyrene sulfonate and polyallylamine) and biological (i.e.,DNA) polyelectrolytes across these nanopores. Single nanopore transport of polyelectrolytes across these nanoporesmore » using both electrical current measurements and confocal microscopy. Both optical and electrical measurements indicate that electroosmotic transport is predominant over electrophoresis in single nanopores with d > 180 nm, consistent with results obtained under similar conditions for nanocapillary array membranes.« less
Collection of low-grade waste heat for enhanced energy harvesting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dede, Ercan M., E-mail: eric.dede@tema.toyota.com; Schmalenberg, Paul; Wang, Chi-Ming
Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device withmore » optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.« less
NASA Technical Reports Server (NTRS)
Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.
1993-01-01
A reproducible fabrication process has been established for TlCaBaCuO thin films on LaAlO3 substrates by RF magnetron sputtering and post-deposition processing methods. Electrical transport properties of the thin films were measured on patterned four-probe test devices. Microwave properties of the films were obtained from unloaded Q measurements of all-superconducting ring resonators. This paper describes the processing, electrical and microwave properties of Tl2Ca1Ba2Cu2O(x) 2122-plane phase thin films.
Hardware Architecture for Measurements for 50-V Battery Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick Bald; Evan Juras; Jon P. Christophersen
Energy storage devices, especially batteries, have become critical for several industries including automotive, electric utilities, military and consumer electronics. With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. Because many of the systems these batteries integrated into are critical, there is an increased need for an accurate in-situ method of monitoring battery state-of-health. Over the past decade the Idaho National Laboratory (INL), Montana Tech ofmore » the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of a compact IMB system that will perform rapid accurate measurements of a battery impedance spectrum working with higher voltage batteries of up to 300 volts. This paper discusses the successful realization of a system that will work up to 50 volts.« less
Multiplexed charge-locking device for large arrays of quantum devices
NASA Astrophysics Data System (ADS)
Puddy, R. K.; Smith, L. W.; Al-Taie, H.; Chong, C. H.; Farrer, I.; Griffiths, J. P.; Ritchie, D. A.; Kelly, M. J.; Pepper, M.; Smith, C. G.
2015-10-01
We present a method of forming and controlling large arrays of gate-defined quantum devices. The method uses an on-chip, multiplexed charge-locking system and helps to overcome the restraints imposed by the number of wires available in cryostat measurement systems. The device architecture that we describe here utilises a multiplexer-type scheme to lock charge onto gate electrodes. The design allows access to and control of gates whose total number exceeds that of the available electrical contacts and enables the formation, modulation and measurement of large arrays of quantum devices. We fabricate such devices on n-type GaAs/AlGaAs substrates and investigate the stability of the charge locked on to the gates. Proof-of-concept is shown by measurement of the Coulomb blockade peaks of a single quantum dot formed by a floating gate in the device. The floating gate is seen to drift by approximately one Coulomb oscillation per hour.
21 CFR 868.5710 - Electrically powered oxygen tent.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrically powered oxygen tent. 868.5710 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5710 Electrically powered oxygen tent. (a) Identification. An electrically powered oxygen tent is a device that encloses a patient's...
21 CFR 868.5710 - Electrically powered oxygen tent.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrically powered oxygen tent. 868.5710 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5710 Electrically powered oxygen tent. (a) Identification. An electrically powered oxygen tent is a device that encloses a patient's...
21 CFR 868.5710 - Electrically powered oxygen tent.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrically powered oxygen tent. 868.5710 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5710 Electrically powered oxygen tent. (a) Identification. An electrically powered oxygen tent is a device that encloses a patient's...
21 CFR 868.5710 - Electrically powered oxygen tent.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrically powered oxygen tent. 868.5710 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5710 Electrically powered oxygen tent. (a) Identification. An electrically powered oxygen tent is a device that encloses a patient's...
21 CFR 868.5710 - Electrically powered oxygen tent.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrically powered oxygen tent. 868.5710 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5710 Electrically powered oxygen tent. (a) Identification. An electrically powered oxygen tent is a device that encloses a patient's...
DNA hybridization sensor based on pentacene thin film transistor.
Kim, Jung-Min; Jha, Sandeep Kumar; Chand, Rohit; Lee, Dong-Hoon; Kim, Yong-Sang
2011-01-15
A DNA hybridization sensor using pentacene thin film transistors (TFTs) is an excellent candidate for disposable sensor applications due to their low-cost fabrication process and fast detection. We fabricated pentacene TFTs on glass substrate for the sensing of DNA hybridization. The ss-DNA (polyA/polyT) or ds-DNA (polyA/polyT hybrid) were immobilized directly on the surface of the pentacene, producing a dramatic change in the electrical properties of the devices. The electrical characteristics of devices were studied as a function of DNA immobilization, single-stranded vs. double-stranded DNA, DNA length and concentration. The TFT device was further tested for detection of λ-phage genomic DNA using probe hybridization. Based on these results, we propose that a "label-free" detection technique for DNA hybridization is possible through direct measurement of electrical properties of DNA-immobilized pentacene TFTs. Copyright © 2010 Elsevier B.V. All rights reserved.
Exploring Carbon Nanotubes for Nanoscale Devices
NASA Technical Reports Server (NTRS)
Han, Jie; Dai; Anantram; Jaffe; Saini, Subhash (Technical Monitor)
1998-01-01
Carbon nanotubes (CNTs) are shown to promise great opportunities in nanoelectronic devices and nanoelectromechanical systems (NEMS) because of their inherent nanoscale sizes, intrinsic electric conductivities, and seamless hexagonal network architectures. I present our collaborative work with Stanford on exploring CNTs for nanodevices in this talk. The electrical property measurements suggest that metallic tubes are quantum wires. Furthermore, two and three terminal CNT junctions have been observed experimentally. We have proposed and studied CNT-based molecular switches and logic devices for future digital electronics. We also have studied CNTs based NEMS inclusing gears, cantilevers, and scanning probe microscopy tips. We investigate both chemistry and physics based aspects of the CNT NEMS. Our results suggest that CNT have ideal stiffness, vibrational frequencies, Q-factors, geometry-dependent electric conductivities, and the highest chemical and mechanical stabilities for the NEMS. The use of CNT SPM tips for nanolithography is presented for demonstration of the advantages of the CNT NEMS.
Anisotropic Laminar Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.
2006-01-01
The design, fabrication, and testing of a flexible, laminar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d33 piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d33 estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.
Anisotropic Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.
2004-01-01
The design, fabrication, and testing of a flexible, planar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d(sub 33) piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d(sub 33) estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.
Non- contacting capacitive diagnostic device
Ellison, Timothy
2005-07-12
A non-contacting capacitive diagnostic device includes a pulsed light source for producing an electric field in a semiconductor or photovoltaic device or material to be evaluated and a circuit responsive to the electric field. The circuit is not in physical contact with the device or material being evaluated and produces an electrical signal characteristic of the electric field produced in the device or material. The diagnostic device permits quality control and evaluation of semiconductor or photovoltaic device properties in continuous manufacturing processes.
21 CFR 870.2850 - Extravascular blood pressure transducer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Extravascular blood pressure transducer. 870.2850... blood pressure transducer. (a) Identification. An extravascular blood pressure transducer is a device used to measure blood pressure by changes in the mechanical or electrical properties of the device. The...
21 CFR 870.2850 - Extravascular blood pressure transducer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Extravascular blood pressure transducer. 870.2850... blood pressure transducer. (a) Identification. An extravascular blood pressure transducer is a device used to measure blood pressure by changes in the mechanical or electrical properties of the device. The...
21 CFR 870.2850 - Extravascular blood pressure transducer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Extravascular blood pressure transducer. 870.2850... blood pressure transducer. (a) Identification. An extravascular blood pressure transducer is a device used to measure blood pressure by changes in the mechanical or electrical properties of the device. The...
Miniaturized ultrafine particle sizer and monitor
NASA Technical Reports Server (NTRS)
Qi, Chaolong (Inventor); Chen, Da-Ren (Inventor)
2011-01-01
An apparatus for measuring particle size distribution includes a charging device and a precipitator. The charging device includes a corona that generates charged ions in response to a first applied voltage, and a charger body that generates a low energy electrical field in response to a second applied voltage in order to channel the charged ions out of the charging device. The corona tip and the charger body are arranged relative to each other to direct a flow of particles through the low energy electrical field in a direction parallel to a direction in which the charged ions are channeled out of the charging device. The precipitator receives the plurality of particles from the charging device, and includes a disk having a top surface and an opposite bottom surface, wherein a predetermined voltage is applied to the top surface and the bottom surface to precipitate the plurality of particles.
21 CFR 868.2775 - Electrical peripheral nerve stimulator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve...
21 CFR 868.2775 - Electrical peripheral nerve stimulator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve...
Skeleton-supported stochastic networks of organic memristive devices: Adaptations and learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erokhina, Svetlana; Sorokin, Vladimir; Erokhin, Victor, E-mail: victor.erokhin@fis.unipr.it
Stochastic networks of memristive devices were fabricated using a sponge as a skeleton material. Cyclic voltage-current characteristics, measured on the network, revealed properties, similar to the organic memristive device with deterministic architecture. Application of the external training resulted in the adaptation of the network electrical properties. The system revealed an improved stability with respect to the networks, composed from polymer fibers.
Indirect Blood Pressure Measuring Device
NASA Technical Reports Server (NTRS)
Hum, L.; Cole, C. E.
1973-01-01
Design and performance of a blood pressure recording device for pediatric use are reported. A strain gage transducer with a copper-beryllium strip as force sensing element is used to monitor skin movements and to convert them into electrical signals proportional to those displacements. Experimental tests with this device in recording of force developed above the left femoral artery of a dog accurately produced a blood pressure curve.
NASA Astrophysics Data System (ADS)
Iwamoto, Mitsumasa; Manaka, Takaaki; Taguchi, Dai
2015-09-01
The probing and modeling of carrier motions in materials as well as in electronic devices is a fundamental research subject in science and electronics. According to the Maxwell electromagnetic field theory, carriers are a source of electric field. Therefore, by probing the dielectric polarization caused by the electric field arising from moving carriers and dipoles, we can find a way to visualize the carrier motions in materials and in devices. The techniques used here are an electrical Maxwell-displacement current (MDC) measurement and a novel optical method based on the electric field induced optical second harmonic generation (EFISHG) measurement. The MDC measurement probes changes of induced charge on electrodes, while the EFISHG probes nonlinear polarization induced in organic active layers due to the coupling of electron clouds of molecules and electro-magnetic waves of an incident laser beam in the presence of a DC field caused by electrons and holes. Both measurements allow us to probe dynamical carrier motions in solids through the detection of dielectric polarization phenomena originated from dipolar motions and electron transport. In this topical review, on the basis of Maxwell’s electro-magnetism theory of 1873, which stems from Faraday’s idea, the concept for probing electron and hole transport in solids by using the EFISHG is discussed in comparison with the conventional time of flight (TOF) measurement. We then visualize carrier transit in organic devices, i.e. organic field effect transistors, organic light emitting diodes, organic solar cells, and others. We also show that visualizing an EFISHG microscopic image is a novel way for characterizing anisotropic carrier transport in organic thin films. We also discuss the concept of the detection of rotational dipolar motions in monolayers by means of the MDC measurement, which is capable of probing the change of dielectric spontaneous polarization formed by dipoles in organic monolayers. Finally we conclude that the ideas and experiments on EFISHG and MDC lead to a novel way of analyzing dynamical motions of electrons, holes, and dipoles in solids, and thus are available in organic electronic device application.
Evaluation of electrical test conditions in MIL-M-38510 slash sheets
NASA Astrophysics Data System (ADS)
Sandgren, K.
1980-08-01
Adequacy of MIL-M-38510 slash sheet requirements for electrical test conditions in an automated test environment were evaluated. Military temperature range commercial devices of 13 types from 6 manufacturers were purchased. Software for testing these devices and for varying the test conditions was written for the Tektronix S-3260 test system. The devices were tested to evaluate the effects of pin-condition settling time, measurement sequence of the same and different D-C parameters, temperature sequence, differently defined temperature ambients, variable measurement conditions, sequence of time measurements, pin-application sequence, and undesignated pin condition ambiguity. An alternative to current tri-state enable and disable time measurements is proposed; S-3260 'open' and 'ground' conditions are characterized; and suggestions for changes in MIL-M-38510 slash sheet specifications and MIL-STD-883 test methods are proposed, both to correct errors and ambiguities and to facilitate the gathering of repeatable data on automated test equipment. Data obtained showed no sensitivity to measurement or temperature sequence nor to temperature ambient, provided that test times were not excessive. V sub ICP tests and some low current measurements required allowance for a pin condition settling time because of the test system speed. Some pin condition application sequences yielded incorrect measurements. Undefined terminal conditions of output pins were found to affect I sub OS and propagation delay time measurements. Truth table test results varied with test frequency and V sub IL for low-power Schottky devices.
Embedded Coplanar Strips Traveling-Wave Photomixers
NASA Technical Reports Server (NTRS)
Wyss, R. A.; Lee, T.; Pearson, J. C.; Matsuura, S.; Blake, G. A.; Kadow, C.; Gossard, A. C.
2001-01-01
The electric field distribution in photomixers with electrodes deposited on the surface has already been calculated. It was shown that the strength of the electric field diminishes rapidly with depth. It was argued that the resulting reduction of the effective interaction volume of the device lowers the optical-to-heterodyne conversion. In this paper, we will present the results of our investigation on the influence of the electrode placement on the performance of photomixers. We have fabricated and measured traveling-wave photomixer devices which have both embedded and surface electrodes - the nominal spacing between the electrodes was 2 micrometers. Devices were made using either low-temperature-grown (LTG)-GaAs or ErAs:GaAs as the photoconductive material. The dark current, photocurrent, and radio frequency (RF) emission were measured at nominally 1 THz. The experimental data show a surprising difference in the behavior of ErAs:GaAs devices when the electrodes are embedded. A factor of two increase in RF radiation is observed for electric fields < 20 kV/cm. No such improvement was observed for the LTG-GaAs devices. We argue that the distinctive behavior of the two photoconductive materials is due to differences in the crystal structure - LTG-GaAs is isotropic, while ErAs:GaAs is uniaxial. We find that the carrier mobility in-plane (parallel) to the ErAs layers in the ErAs:GaAs superlattice is larger than orthogonal to these layers. The data indicate that carrier velocity overshoot is responsible for the excess radiation produced for the embedded electrode ErAs:GaAs devices.
... Handle Power Outages for Medical Devices that Require Electricity Center for De CDRH vices and Rad lth ... Handle Power Outages for Medical Devices that Require Electricity As a home medical device user, it is ...
The CDRH Helix: an in vivo evaluation.
Anhalt, D; Hynynen, K; DeYoung, D; Shimm, D; Kundrat, M; Cetas, T
1990-01-01
The Helix is an electromagnetic heating device used to induce regional/systemic hyperthermia for cancer therapy. It is a resonant device operating at about 82 MHz with an aperture size of 60 cm x 40 cm (elliptical) x 40 cm long. The Helix deposits power in tissues (or phantoms) by producing a predominantly axial electric field within its radiating aperture. Five pig experiments were performed to provide in vivo verification of specific absorption rate (SAR) measurements and electric field measurements which were obtained earlier in tissue-equivalent phantom and 0.9% saline, respectively. In addition to verifying the power deposition patterns found in phantoms, the pig experiments provided valuable insight into the capabilities and limitations of electromagnetic regional heating. For example, a kidney with limited blood flow, simulating a necrotic tumor, heated very well-although the highest temperature was not always measured there. Also, fat heating may be a problem, since excessive temperatures in the fat were observed in approximately 20% of the heatings. This paper compares the in vivo temperature measurements in pigs with SARs and electric field measurements obtained in phantoms, and also provides a brief overview of results of the Helix in clinical situations.
Precise SAR measurements in the near-field of RF antenna systems
NASA Astrophysics Data System (ADS)
Hakim, Bandar M.
Wireless devices must meet specific safety radiation limits, and in order to assess the health affects of such devices, standard procedures are used in which standard phantoms, tissue-equivalent liquids, and miniature electric field probes are used. The accuracy of such measurements depend on the precision in measuring the dielectric properties of the tissue-equivalent liquids and the associated calibrations of the electric-field probes. This thesis describes work on the theoretical modeling and experimental measurement of the complex permittivity of tissue-equivalent liquids, and associated calibration of miniature electric-field probes. The measurement method is based on measurements of the field attenuation factor and power reflection coefficient of a tissue-equivalent sample. A novel method, to the best of the authors knowledge, for determining the dielectric properties and probe calibration factors is described and validated. The measurement system is validated using saline at different concentrations, and measurements of complex permittivity and calibration factors have been made on tissue-equivalent liquids at 900MHz and 1800MHz. Uncertainty analysis have been conducted to study the measurement system sensitivity. Using the same waveguide to measure tissue-equivalent permittivity and calibrate e-field probes eliminates a source of uncertainty associated with using two different measurement systems. The measurement system is used to test GSM cell-phones at 900MHz and 1800MHz for Specific Absorption Rate (SAR) compliance using a Specific Anthropomorphic Mannequin phantom (SAM).
Germanium Resistance Thermometer For Subkelvin Temperatures
NASA Technical Reports Server (NTRS)
Castles, Stephen H.
1993-01-01
Improved germanium resistance thermometer measures temperatures as small as 0.01 K accurately. Design provides large area for electrical connections (to reduce electrical gradients and increase sensitivity to changes in temperatures) and large heat sink (to minimize resistance heating). Gold pads on top and bottom of germanium crystal distribute electrical current and flow of heat nearly uniformly across crystal. Less expensive than magnetic thermometers or superconducting quantum interference devices (SQUID's) otherwise used.
Code of Federal Regulations, 2011 CFR
2011-07-01
... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control devices...
Code of Federal Regulations, 2010 CFR
2010-07-01
... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control devices...
Code of Federal Regulations, 2013 CFR
2013-07-01
... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control devices...
Code of Federal Regulations, 2014 CFR
2014-07-01
... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control devices...
Code of Federal Regulations, 2012 CFR
2012-07-01
... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control devices...
NASA Astrophysics Data System (ADS)
Batır, G. Güven; Arık, Mustafa; Caldıran, Zakir; Turut, Abdulmecit; Aydogan, Sakir
2018-01-01
Reduced graphene oxide (rGO)-rhodamine 101 (Rh101) nanocomposites with different ratios of rGO have been synthesized in aqueous medium by ultrasonic homogenization. The fluorescence of Rh101 as measured using a laser dye with high fluorescence quantum yield was substantially quenched with increasing amount of rGO in the nanocomposite. Formation of rGO-Rh101 nanocomposites was confirmed by x-ray diffraction analysis, scanning electron microscopy, ultraviolet-visible (UV-Vis) spectroscopy, and fluorescence microscopy. Furthermore, rGO-Rh101 nanocomposite/ p-Si heterojunctions were synthesized, all of which showed good rectifying behavior. The electrical characteristics of these devices were analyzed using current-voltage ( I- V) measurements to determine the ideality factor and barrier height. The experimental results confirmed the presence of lateral inhomogeneity in the effective barrier height of the rGO-Rh101 nanocomposite/ p-Si heterojunctions. In addition to I- V measurements, one device was analyzed in more detail using frequency-dependent capacitance-voltage measurements. All electrical measurements were carried out at room temperature and in the dark.
Low Thermal Conductance Transition Edge Sensor (TES) for SPICA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khosropanah, P.; Dirks, B.; Kuur, J. van der
2009-12-16
We fabricated and characterized low thermal conductance transition edge sensors (TES) for SAFARI instrument on SPICA. The device is based on a superconducting Ti/Au bilayer deposited on suspended SiN membrane. The critical temperature of the device is 113 mK. The low thermal conductance is realized by using long and narrow SiN supporting legs. All measurements were performed having the device in a light-tight box, which to a great extent eliminates the loading of the background radiation. We measured the current-voltage (IV) characteristics of the device in different bath temperatures and determine the thermal conductance (G) to be equal to 320more » fW/K. This value corresponds to a noise equivalent power (NEP) of 3x10{sup -19} W/{radical}(Hz). The current noise and complex impedance is also measured at different bias points at 55 mK bath temperature. The measured electrical (dark) NEP is 1x10{sup -18} W/{radical}(Hz), which is about a factor of 3 higher than what we expect from the thermal conductance that comes out of the IV curves. Despite using a light-tight box, the photon noise might still be the source of this excess noise. We also measured the complex impedance of the same device at several bias points. Fitting a simple first order thermal-electrical model to the measured data, we find an effective time constant of about 2.7 ms and a thermal capacity of 13 fJ/K in the middle of the transition.« less
High dynamic range electric field sensor for electromagnetic pulse detection.
Lin, Che-Yun; Wang, Alan X; Lee, Beom Suk; Zhang, Xingyu; Chen, Ray T
2011-08-29
We design a high dynamic range electric field sensor based on domain inverted electro-optic (E-O) polymer Y-fed directional coupler for electromagnetic wave detection. This electrode-less, all optical, wideband electrical field sensor is fabricated using standard processing for E-O polymer photonic devices. Experimental results demonstrate effective detection of electric field from 16.7V/m to 750KV/m at a frequency of 1GHz, and spurious free measurement range of 70dB.
Electric scooter pilot project
NASA Astrophysics Data System (ADS)
Slanina, Zdenek; Dedek, Jan; Golembiovsky, Matej
2016-09-01
This article describes the issue of electric scooter development for educational and demonstration purposes on the Technical University of Ostrava. Electric scooter is equipped with a brushless motor with permanent magnets and engine controller, measuring and monitoring system for speed regulation, energy flow control and both online and off-line data analysis, visualization system for real-time diagnostics and battery management with balancing modules system. Implemented device brings a wide area for the following scientific research. This article also includes some initial test results and electric vehicles experiences.
Electrical test prediction using hybrid metrology and machine learning
NASA Astrophysics Data System (ADS)
Breton, Mary; Chao, Robin; Muthinti, Gangadhara Raja; de la Peña, Abraham A.; Simon, Jacques; Cepler, Aron J.; Sendelbach, Matthew; Gaudiello, John; Emans, Susan; Shifrin, Michael; Etzioni, Yoav; Urenski, Ronen; Lee, Wei Ti
2017-03-01
Electrical test measurement in the back-end of line (BEOL) is crucial for wafer and die sorting as well as comparing intended process splits. Any in-line, nondestructive technique in the process flow to accurately predict these measurements can significantly improve mean-time-to-detect (MTTD) of defects and improve cycle times for yield and process learning. Measuring after BEOL metallization is commonly done for process control and learning, particularly with scatterometry (also called OCD (Optical Critical Dimension)), which can solve for multiple profile parameters such as metal line height or sidewall angle and does so within patterned regions. This gives scatterometry an advantage over inline microscopy-based techniques, which provide top-down information, since such techniques can be insensitive to sidewall variations hidden under the metal fill of the trench. But when faced with correlation to electrical test measurements that are specific to the BEOL processing, both techniques face the additional challenge of sampling. Microscopy-based techniques are sampling-limited by their small probe size, while scatterometry is traditionally limited (for microprocessors) to scribe targets that mimic device ground rules but are not necessarily designed to be electrically testable. A solution to this sampling challenge lies in a fast reference-based machine learning capability that allows for OCD measurement directly of the electrically-testable structures, even when they are not OCD-compatible. By incorporating such direct OCD measurements, correlation to, and therefore prediction of, resistance of BEOL electrical test structures is significantly improved. Improvements in prediction capability for multiple types of in-die electrically-testable device structures is demonstrated. To further improve the quality of the prediction of the electrical resistance measurements, hybrid metrology using the OCD measurements as well as X-ray metrology (XRF) is used. Hybrid metrology is the practice of combining information from multiple sources in order to enable or improve the measurement of one or more critical parameters. Here, the XRF measurements are used to detect subtle changes in barrier layer composition and thickness that can have second-order effects on the electrical resistance of the test structures. By accounting for such effects with the aid of the X-ray-based measurements, further improvement in the OCD correlation to electrical test measurements is achieved. Using both types of solution incorporation of fast reference-based machine learning on nonOCD-compatible test structures, and hybrid metrology combining OCD with XRF technology improvement in BEOL cycle time learning could be accomplished through improved prediction capability.
Passive safety device and internal short tested method for energy storage cells and systems
Keyser, Matthew; Darcy, Eric; Long, Dirk; Pesaran, Ahmad
2015-09-22
A passive safety device for an energy storage cell for positioning between two electrically conductive layers of the energy storage cell. The safety device also comprising a separator and a non-conductive layer. A first electrically conductive material is provided on the non-conductive layer. A first opening is formed through the separator between the first electrically conductive material and one of the electrically conductive layers of the energy storage device. A second electrically conductive material is provided adjacent the first electrically conductive material on the non-conductive layer, wherein a space is formed on the non-conductive layer between the first and second electrically conductive materials. A second opening is formed through the non-conductive layer between the second electrically conductive material and another of the electrically conductive layers of the energy storage device. The first and second electrically conductive materials combine and exit at least partially through the first and second openings to connect the two electrically conductive layers of the energy storage device at a predetermined temperature.
NASA Astrophysics Data System (ADS)
Jum'h, I.; Abd El-Sadek, M. S.; Al-Taani, H.; Yahia, I. S.; Karczewski, G.
2017-02-01
Heterostructure p-(ZnMgTe/ZnTe:N)/CdTe/n-(CdTe:I)/GaAs was evaporated using molecular beam epitaxy and investigated for photovoltaic energy conversion application. The electrical properties of the studied heterostructure were measured and characterized in order to understand the relevant electrical transport mechanisms. Electrical properties derived from the current-voltage ( I- V) characteristics of solar cells provide essential information necessary for the analysis of performance losses and device efficiency. I- V characteristics are investigated in dark conditions and under different light intensities. All the electrical and power parameters of the heterostructure were measured, calculated and explained.
Piezoelectric actuation of helicopter rotor blades
NASA Astrophysics Data System (ADS)
Lieven, Nicholas A. J.
2001-07-01
The work presented in this paper is concerned with the application of embedded piezo-electric actuators in model helicopter rotor blades. The paper outlines techniques to define the optimal location of actuators to excite particular modes of vibration whilst the blade is rotating. Using composite blades the distribution of strain energy is defined using a Finite Element model with imposed rotor-dynamic and aerodynamics loads. The loads are specified through strip theory to determine the position of maximum bending moment and thus the optimal location of the embedded actuators. The effectiveness of the technique is demonstrated on a 1/4 scale fixed cyclic pitch rotor head. Measurement of the blade displacement is achieved by using strain gauges. In addition a redundant piezo-electric actuator is used to measure the blades' response characteristics. The addition of piezo-electric devices in this application has been shown to exhibit adverse aeroelastic effects, such as counter mass balancing and increased drag. Methods to minimise these effects are suggested. The outcome of the paper is a method for defining the location and orientation of piezo-electric devices in rotor-dynamic applications.
Apparatus and method for detecting tampering in flexible structures
Maxey, Lonnie C [Knoxville, TN; Haynes, Howard D [Knoxville, TN
2011-02-01
A system for monitoring or detecting tampering in a flexible structure includes taking electrical measurements on a sensing cable coupled to the structure, performing spectral analysis on the measured data, and comparing the spectral characteristics of the event to those of known benign and/or known suspicious events. A threshold or trigger value may used to identify an event of interest and initiate data collection. Alternatively, the system may be triggered at preset intervals, triggered manually, or triggered by a signal from another sensing device such as a motion detector. The system may be used to monitor electrical cables and conduits, hoses and flexible ducts, fences and other perimeter control devices, structural cables, flexible fabrics, and other flexible structures.
NASA Astrophysics Data System (ADS)
Kim, Hyo-Seok
The generation of electrical energy by piezoelectric polymer when mechanically stressed has motivated the investigation of poly(vinylidenefluoride-trifluoro ethylene) (PVDF-TrFE) devices as implantable physiological power supplies. The fragility, specific weight, and rigidity of traditional piezoelectric ceramics used have limited their applicability, although the concept of using piezoelectric elements as mechanically actuated electric power generators for implanted organs has been exploited to some extent. In contrast, piezoelectric polymers are flexible, light, resistant to mechanical fatigue, and efficient as voltage generators. Thus, they can be considered as a source for generating, through mechanical deformation, the electric power needed to fuel implanted artificial organs or to trigger assisting devices such as cardiac pacemakers. This study demonstrates the feasibility of power generation devices that create current from mechanical deformation. One type of power generating device is PVDF-TrFE copolymer and, when built on the pacemaker's lead, can use the motion of the heart as its power source. The other type of device is a Pt-Nafion-PEDOT (PNP) composite device which is fabricated using Perfluorosulfonate ionomeric polymer (Nafion) and conductive polymer, Poly(3,4-ethylenedioxythiophene), by electrochemical synthesis. The device will enable passive location-specific stimulation, thus mimicking the contraction signal of the normal heart. It can generate its own power and may therefore make the battery-lifetime longer. In other applications of these materials is an ultrasound transducer and receiver. Ultrasound transducer/receivers using PNP composite and PVDF as a reference transducer/receiver were studied in order to detect and locate the depth of material (alloy metal, polymer gel) by a pulse-echo method. In a time of flight (TOF) measurement, a transmitter emits short packets of ultrasound waves toward the surface of object in tissue, where they are reflected and then detected by a receiver. The time interval or frequency change between emission and detection is measured as an indicator for the distance. The purpose of this project is to conduct fundamental study into the material properties with an emphasis on polarization-related phenomena. This project specifically focuses on the power generating properties of the hybrid PNP composite device and its application. This device is a new system being applied for the first time because of its potential for generating power. The specific aspects of the devices being studied in the project encompass both macroscopic and microscopic properties of hybrid PNP composite. The microscopic properties include electrical property as measured by impedance spectroscopy and dielectric response characteristics to examine the power generating mechanism of induced polarization for PNP composite device. The produced current and power efficiency by mechanical deformation operation are compared.
21 CFR 882.4360 - Electric cranial drill motor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electric cranial drill motor. 882.4360 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4360 Electric cranial drill motor. (a) Identification. An electric cranial drill motor is an electrically operated power source used...
21 CFR 882.4360 - Electric cranial drill motor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electric cranial drill motor. 882.4360 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4360 Electric cranial drill motor. (a) Identification. An electric cranial drill motor is an electrically operated power source used...
21 CFR 882.4360 - Electric cranial drill motor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electric cranial drill motor. 882.4360 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4360 Electric cranial drill motor. (a) Identification. An electric cranial drill motor is an electrically operated power source used...
21 CFR 882.4360 - Electric cranial drill motor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electric cranial drill motor. 882.4360 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4360 Electric cranial drill motor. (a) Identification. An electric cranial drill motor is an electrically operated power source used...
21 CFR 882.4360 - Electric cranial drill motor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electric cranial drill motor. 882.4360 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4360 Electric cranial drill motor. (a) Identification. An electric cranial drill motor is an electrically operated power source used...
Daily, Neil J.; Du, Zhong-Wei
2017-01-01
Abstract Electrophysiology of excitable cells, including muscle cells and neurons, has been measured by making direct contact with a single cell using a micropipette electrode. To increase the assay throughput, optical devices such as microscopes and microplate readers have been used to analyze electrophysiology of multiple cells. We have established a high-throughput (HTP) analysis of action potentials (APs) in highly enriched motor neurons and cardiomyocytes (CMs) that are differentiated from human induced pluripotent stem cells (iPSCs). A multichannel electric field stimulation (EFS) device enabled the ability to electrically stimulate cells and measure dynamic changes in APs of excitable cells ultra-rapidly (>100 data points per second) by imaging entire 96-well plates. We found that the activities of both neurons and CMs and their response to EFS and chemicals are readily discerned by our fluorescence imaging-based HTP phenotyping assay. The latest generation of calcium (Ca2+) indicator dyes, FLIPR Calcium 6 and Cal-520, with the HTP device enables physiological analysis of human iPSC-derived samples highlighting its potential application for understanding disease mechanisms and discovering new therapeutic treatments. PMID:28525289
Rahman, Tanzilur; Ichiki, Takanori
2017-10-13
The fabrication of miniaturized electrical biosensing devices can enable the rapid on-chip detection of biomarkers such as miRNA molecules, which is highly important in early-stage cancer detection. The challenge in realizing such devices remains in the miniaturization of the reference electrodes, which is an integral part of electrical detection. Here, we report on a novel thin film Ag/AgCl reference electrode (RE) that has been fabricated on top of a Au-sputtered glass surface, which was coated with a self-assembled monolayer (SAM) of 6-mercepto-1-hexanol (MCH). The electrode showed very little measurement deviation (-1.5 mv) from a commercial Ag/AgCl reference electrode and exhibited a potential drift of only ± 0.2 mV/h. In addition, the integration of this SAM-modified microfabricated thin film RE enabled the rapid detection (<30 min) of miRNA (let-7a). The electrode can be integrated seamlessly into a microfluidic device, allowing the highly stable and fast measurement of surface potential and is expected to be very useful for the development of miniature electrical biosensors.
NASA Astrophysics Data System (ADS)
Wang, Yucheng; Zhang, Yuming; Liu, Yintao; Pang, Tiqiang; Hu, Ziyang; Zhu, Yuejin; Luan, Suzhen; Jia, Renxu
2017-11-01
Two types of perovskite (with and without doping of PCBM) based metal-oxide-semiconductor (MOS) gate-controlled devices were fabricated and characterized. The study of the interfacial characteristics and charge transfer mechanisms by doping of PCBM were analyzed by material and electrical measurements. Doping of PCBM does not affect the size and crystallinity of perovskite films, but has an impact on carrier extraction in perovskite MOS devices. The electrical hysteresis observed in capacitance-voltage and current-voltage measurements can be alleviated by doping of PCBM. Experimental results demonstrate that extremely low trap densities are found for the perovskite device without doping, while the doped sample leads to higher density of interface state. Three mechanisms including Ohm’s law, trap-filled-limit (TFL) emission, and child’s law were used to analyze possible charge transfer mechanisms. Ohm’s law mechanism is well suitable for charge transfer of both the perovskite MOS devices under light condition at large voltage, while TFL emission well addresses the behavior of charge transfer under dark at small voltage. This change of charge transfer mechanism is attributed to the impact of the ion drift within perovskites.
Wang, Yucheng; Zhang, Yuming; Pang, Tiqiang; Xu, Jie; Hu, Ziyang; Zhu, Yuejin; Tang, Xiaoyan; Luan, Suzhen; Jia, Renxu
2017-05-24
Organic-inorganic metal halide perovskites are promising semiconductors for optoelectronic applications. Despite the achievements in device performance, the electrical properties of perovskites have stagnated. Ion migration is speculated to be the main contributing factor for the many unusual electrical phenomena in perovskite-based devices. Here, to understand the intrinsic electrical behavior of perovskites, we constructed metal-oxide-semiconductor (MOS) capacitors based on perovskite films and performed capacitance-voltage (C-V) and current-voltage (I-V) measurements of the capacitors. The results provide direct evidence for the mixed ionic-electronic transport behavior within perovskite films. In the dark, there is electrical hysteresis in both the C-V and I-V curves because the mobile negative ions take part in charge transport despite frequency modulation. However, under illumination, the large amount of photoexcited free carriers screens the influence of the mobile ions with a low concentration, which is responsible for the normal C-V properties. Validation of ion migration for the gate-control ability of MOS capacitors is also helpful for the investigation of perovskite MOS transistors and other gate-control photovoltaic devices.
Tour, James M.; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao
2015-09-08
In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.
All-optical lithography process for contacting nanometer precision donor devices
NASA Astrophysics Data System (ADS)
Ward, D. R.; Marshall, M. T.; Campbell, D. M.; Lu, T. M.; Koepke, J. C.; Scrymgeour, D. A.; Bussmann, E.; Misra, S.
2017-11-01
We describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.
All-optical lithography process for contacting nanometer precision donor devices
Ward, Daniel Robert; Marshall, Michael Thomas; Campbell, DeAnna Marie; ...
2017-11-06
In this article, we describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.
All-optical lithography process for contacting nanometer precision donor devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Daniel Robert; Marshall, Michael Thomas; Campbell, DeAnna Marie
In this article, we describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.
77 FR 16435 - Transmission Relay Loadability Reliability Standard
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-21
... are designed to read electrical measurements, such as current, voltage, and frequency, and can be set... an element of the system under its protection, it sends a signal to an interrupting device(s) (such... their relays according to one of thirteen specific settings (sub-parts R1.1 through R1.13) designed to...
Finch, H.A.
1985-06-21
A device for analyzing commutating characteristics of a motor or generator includes a holder for supporting a plurality of probes adjacent a brush of the motor or generator. Measurements of electrical current characteristics of the probes provides information useful in analyzing operation of the machine. Methods for employing a device in accordance with the invention are also disclosed.
NASA Technical Reports Server (NTRS)
1978-01-01
The electrician pictured is installing a General Electric Ground Fault Interrupter (GFI), a device which provides protection against electrical shock in the home or in industrial facilities. Shocks due to defective wiring in home appliances or other electrical equipment can cause severe burns, even death. As a result, the National Electrical Code now requires GFIs in all new homes constructed. This particular type of GFI employs a sensing element which derives from technology acquired in space projects by SCI Systems, Inc., Huntsville, Alabama, producer of sensors for GE and other manufacturers of GFI equipment. The sensor is based on the company's experience in developing miniaturized circuitry for space telemetry and other spacecraft electrical systems; this experience enabled SCI to package interruptor circuitry in the extremely limited space available and to produce sensory devices at practicable cost. The tiny sensor measures the strength of the electrical current and detects current differentials that indicate a fault in the functioning of an electrical system. The sensing element then triggers a signal to a disconnect mechanism in the GFI, which cuts off the current in the faulty circuit.
Electrical signal analysis to assess the physical condition of a human or animal
Cox, Daryl F.; Hochanadel, Charles D.; Haynes, Howard D.
2010-06-15
The invention is a human and animal performance data acquisition, analysis, and diagnostic system for fitness and therapy devices having an interface box removably disposed on incoming power wiring to a fitness and therapy device, at least one current transducer removably disposed on said interface box for sensing current signals to said fitness and therapy device, and a means for analyzing, displaying, and reporting said current signals to determine human and animal performance on said device using measurable parameters.
A Microwave Thruster for Spacecraft Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiravalle, Vincent P
This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is shown how these devices have been used to accomplish two recent space missions. The microwave thruster is then described and it is explained how the thrust and specific impulse of the thruster can be measured. Calculations of the gas temperature and plasma properties in the microwave thruster aremore » discussed. In addition a potential mission for the microwave thruster involving the orbit raising of a space station is explored.« less
Electrical Characterization of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide
NASA Astrophysics Data System (ADS)
Peterson, George Glenn
Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon substrates through the use of plasma enhanced chemical vapor deposition (PECVD). Many forms of structural and electrical measurements and analysis have been performed on the p-n heterojunction devices as a function of both He+ ion and neutron irradiation including: transmission electron microscopy (TEM), selected area electron diffraction (SAED), current versus voltage I(V), capacitance versus voltage C(V), conductance versus frequency G(f), and charge carrier lifetime (tau). In stark contrast to nearly all other electronic devices, the electrical performance of these p-n heterojunction diodes improved with irradiation. This is most likely the result of bond defect passivation and resolution of degraded icosahedral based carborane structures (icosahedral molecules missing a B, C, or H atom(s)).
NASA Astrophysics Data System (ADS)
Deb, K.; Bhowmik, K. L.; Bera, A.; Chattopadhyay, K. K.; Saha, B.
2016-05-01
Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.
21 CFR 868.2775 - Electrical peripheral nerve stimulator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...
21 CFR 868.2775 - Electrical peripheral nerve stimulator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...
21 CFR 868.2775 - Electrical peripheral nerve stimulator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...
The path to exploring physics in advanced devices with a heavy ion beam probe
NASA Astrophysics Data System (ADS)
Demers, D. R.; Fimognari, P. J.
2012-10-01
The scientific progression of alternative or advanced devices must be met with comparable diagnostic technologies. Heavy ion beam probe innovations from ongoing diagnostic development are meeting this challenge. The diagnostic is uniquely capable of measuring the radial electric field, critically important in stellarators, simultaneously with fluctuations of electron density and electric potential. HIBP measurements can also improve the understanding of edge physics in tokamaks and spherical tori. It can target issues associated with the pedestal region, including the mechanisms underlying the L-H transition, the onset and evolution of ELMs, and the evolution of the electron current density. Beam attenuation (and resulting low signal to noise levels), a challenge to operation on devices with large plasma cross-sections and high ne and Te, can be mitigated with greater beam energies and currents. Other application challenges, such as measurements of plasma fluctuations and profile variations with elevated temporal and spatial resolutions, can be achieved with innovative detectors. The scientific studies motivating the implementation of an HIBP on HSX, ASDEX-U, and W7-X will be presented along with preliminary scoping studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
William H. Morrison; Jon P. Christophersen; Patrick Bald
With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Batterymore » Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.« less
Embedded silver PDMS electrodes for single cell electrical impedance spectroscopy
NASA Astrophysics Data System (ADS)
Wei, Yuan; Xu, Zhensong; Cachia, Mark A.; Nguyen, John; Zheng, Yi; Wang, Chen; Sun, Yu
2016-09-01
This paper presents a microfluidic device with wide channels and embedded AgPDMS electrodes for measuring the electrical properties of single cells. The work demonstrates the feasibility of using a large channel design and embedded electrodes for impedance spectroscopy to circumvent issues such as channel clogging and limited device re-usability. AgPDMS electrodes were formed on channel sidewalls for impedance detection and cell electrical properties measurement. Equivalent circuit models were used to interpret multi-frequency impedance data to quantify each cell’s cytoplasm conductivity and specific membrane capacitance. T24 cells were tested to validate the microfluidic system and modeling results. Comparisons were then made by measuring two leukemia cell lines (AML-2 and HL-60) which were found to have different cytoplasm conductivity values (0.29 ± 0.15 S m-1 versus 0.47 ± 0.20 S m-1) and specific membrane capacitance values (41 ± 25 mF m-2 versus 55 ± 26 mF m-2) when the cells were flown through the wide channel and measured by the AgPDMS electrodes.
NASA Technical Reports Server (NTRS)
Stokes, R. L.
1979-01-01
Electrical characterization tests were performed on two different manufactured types of integrated circuits. The devices were subjected to functional and AC and DC parametric tests at ambient temperatures of -55 C, -20 C, 25 C, 85 C, and 125 C. The data were analyzed and tabulated to show the effect of operating conditions on performance and to indicate parameter deviations among devices in each group. Accuracy was given precedence over test time efficiency where practical, and tests were designed to measure worst case performance.
A high-performance electric field detector for space missions
NASA Astrophysics Data System (ADS)
Badoni, D.; Ammendola, R.; Bertello, I.; Cipollone, P.; Conti, L.; De Santis, C.; Diego, P.; Masciantonio, G.; Picozza, P.; Sparvoli, R.; Ubertini, P.; Vannaroni, G.
2018-04-01
We present the prototype of an Electric Field Detector (EFD) for space applications, that has been developed in the framework of the Chinese-Italian collaboration on the CSES (China Seismo-Electromagnetic Satellite) forthcoming missions. In particular CSES-1 will be placed in orbit in the early 2018. The detector consists of spherical probes designed to be installed at the tips of four booms deployed from a 3-axes stabilized satellite. The instrument has been conceived for space-borne measurements of electromagnetic phenomena such as ionospheric waves, lithosphere-atmosphere-ionosphere-magnetosphere coupling and anthropogenic electromagnetic emissions. The detector allows to measure electric fields in a wide band of frequencies extending from quasi-DC up to about 4 MHz , with a sensitivity of the order of 1 μV / m in the ULF band. With these bandwidth and sensitivity, the described electric field detector represents a very performing and updated device for electric field measurements in space.
Measuring Soil Moisture using the Signal Strength of Buried Bluetooth Devices.
NASA Astrophysics Data System (ADS)
Hut, R.; Campbell, C. S.
2015-12-01
A low power bluetooth Low Energy (BLE) device is burried 20cm into the soil and a smartphone is placed on top of the soil to test if bluetooth signal strength can be related to soil moisture. The smartphone continuesly records and stores bluetooth signal strength of the device. The soil is artifcially wetted and drained. Results show a relation between BLE signal strength and soil moisture that could be used to measure soil moisture using these off-the-shelf consumer electronics. This opens the possibily to develop sensors that can be buried into the soil, possibly below the plow-line. These sensors can measure local parameters such as electric conductivity, ph, pressure, etc. Readings would be uploaded to a device on the surface using BLE. The signal strength of this BLE would be an (additional) measurement of soil moisture.
Energy management system for a rotary machine and method therefor
Bowman, Michael John; Sinha, Gautam; Sheldon, Karl Edward
2004-11-09
In energy management system is provided for a power generating device having a working fluid intake in which the energy management system comprises an electrical dissipation device coupled to the power generating device and a dissipation device cooling system configured to direct a portion of a working fluid to the electrical dissipation device so as to provide thermal control to the electrical dissipation device.
Electrical detection of nuclear spins in organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Malissa, H.; Kavand, M.; Waters, D. P.; Lupton, J. M.; Vardeny, Z. V.; Saam, B.; Boehme, C.
2014-03-01
We present pulsed combined electrically detected electron paramagnetic and nuclear magnetic resonance experiments on MEH-PPV OLEDs. Spin dynamics in these structures are governed by hyperfine interactions between charge carriers and the surrounding hydrogen nuclei, which are abundant in these materials. Hyperfine coupling has been observed by monitoring the device current during coherent spin excitation. Electron spin echoes (ESEs) are detected by applying one additional readout pulse at the time of echo formation. This allows for the application of high-resolution spectroscopy based on ESE detection, such as electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance (ENDOR) available for electrical detection schemes. We conduct electrically detected ESEEM and ENDOR experiments and show how hyperfine interactions in MEH-PPV with and without deuterated polymer side groups can be observed by device current measurements. We acknowledge support by the Department of Energy, Office of Basic Energy Sciences under Award #DE-SC0000909.
An all-electric single-molecule motor.
Seldenthuis, Johannes S; Prins, Ferry; Thijssen, Joseph M; van der Zant, Herre S J
2010-11-23
Many types of molecular motors have been proposed and synthesized in recent years, displaying different kinds of motion, and fueled by different driving forces such as light, heat, or chemical reactions. We propose a new type of molecular motor based on electric field actuation and electric current detection of the rotational motion of a molecular dipole embedded in a three-terminal single-molecule device. The key aspect of this all-electronic design is the conjugated backbone of the molecule, which simultaneously provides the potential landscape of the rotor orientation and a real-time measure of that orientation through the modulation of the conductivity. Using quantum chemistry calculations, we show that this approach provides full control over the speed and continuity of motion, thereby combining electrical and mechanical control at the molecular level over a wide range of temperatures. Moreover, chemistry can be used to change all key parameters of the device, enabling a variety of new experiments on molecular motors.
Spin-current probe for phase transition in an insulator
Qiu, Zhiyong; Li, Jia; Hou, Dazhi; ...
2016-08-30
Spin fluctuation and transition have always been one of the central topics of magnetism and condensed matter science. Experimentally, the spin fluctuation is found transcribed onto scattering intensity in the neutron-scattering process, which is represented by dynamical magnetic susceptibility and maximized at phase transitions. Importantly, a neutron carries spin without electric charge, and therefore it can bring spin into a sample without being disturbed by electric energy. However, large facilities such as a nuclear reactor are necessary. Here we present that spin pumping, frequently used in nanoscale spintronic devices, provides a desktop microprobe for spin transition; spin current is amore » flux of spin without an electric charge and its transport reflects spin excitation. Additionally, we demonstrate detection of antiferromagnetic transition in ultra-thin CoO films via frequency-dependent spin-current transmission measurements, which provides a versatile probe for phase transition in an electric manner in minute devices.« less
Creating and optimizing interfaces for electric-field and photon-induced charge transfer.
Park, Byoungnam; Whitham, Kevin; Cho, Jiung; Reichmanis, Elsa
2012-11-27
We create and optimize a structurally well-defined electron donor-acceptor planar heterojunction interface in which electric-field and/or photon-induced charge transfer occurs. Electric-field-induced charge transfer in the dark and exciton dissociation at a pentacene/PCBM interface were probed by in situ thickness-dependent threshold voltage shift measurements in field-effect transistor devices during the formation of the interface. Electric-field-induced charge transfer at the interface in the dark is correlated with development of the pentacene accumulation layer close to PCBM, that is, including interface area, and dielectric relaxation time in PCBM. Further, we demonstrate an in situ test structure that allows probing of both exciton diffusion length and charge transport properties, crucial for optimizing optoelectronic devices. Competition between the optical absorption length and the exciton diffusion length in pentacene governs exciton dissociation at the interface. Charge transfer mechanisms in the dark and under illumination are detailed.
NASA Astrophysics Data System (ADS)
Modafe, Alireza
This dissertation summarizes the research activities that led to the development of the first microball-bearing-supported linear electrostatic micromotor with benzocyclobutene (BCB) low-k polymer insulating layers. The primary application of this device is long-range, high-speed linear micropositioning. The future generations of this device include rotary electrostatic micromotors and microgenerators. The development of the first generation of microball-bearing-supported micromachines, including device theory, design, and modeling, material characterization, process development, device fabrication, and device test and characterization is presented. The first generation of these devices is based on a 6-phase, bottom-drive, linear, variable-capacitance micromotor (B-LVCM). The design of the electrical and mechanical components of the micromotor, lumped-circuit modeling of the device and electromechanical characteristics, including variable capacitance, force, power, and speed are presented. Electrical characterization of BCB polymers, characterization of BCB chemical mechanical planarization (CMP), development of embedded BCB in silicon (EBiS) process, and integration of device components using microfabrication techniques are also presented. The micromotor consists of a silicon stator, a silicon slider, and four stainless-steel microballs. The aligning force profile of the micromotor was extracted from simulated and measured capacitances of all phases. An average total aligning force of 0.27 mN with a maximum of 0.41 mN, assuming a 100 V peak-to-peak square-wave voltage, was measured. The operation of the micromotor was verified by applying square-wave voltages and characterizing the slider motion. An average slider speed of 7.32 mm/s when excited by a 40 Hz, 120 V square-wave voltage was reached without losing the synchronization. This research has a pivotal impact in the field of power microelectromechanical systems (MEMS). It establishes the foundation for the development of more reliable, efficient electrostatic micromachines with variety of applications such as micropropulsion, high-speed micropumping, microfluid delivery, and microsystem power generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frye, Clint D.
The wide bandgap (3.35 eV) semiconductor icosahedral boron phosphide (B 12P 2) has been reported to self-heal from radiation damage from β particles (electrons) with energies up to 400 keV by demonstrating no lattice damage using transmission electron microscopy. This property could be exploited to create radioisotope batteries–semiconductor devices that directly convert the decay energy from a radioisotope to electricity. Such devices potentially have enormous power densities and decades-long lifetimes. To date, the radiation hardness of B 12P 2 has not been characterized by electrical measurements nor have B 12P 2 radioisotope batteries been realized. Therefore, this study was undertakenmore » to evaluate the radiation hardness of B 12P 2 after improving its epitaxial growth, developing ohmic electrical contacts, and reducing the residual impurities. Subsequently, the effects of radiation from a radioisotope on the electrical transport properties of B 12P 2 were tested.« less
Real-time dual-loop electric current measurement for label-free nanofluidic preconcentration chip.
Chung, Pei-Shan; Fan, Yu-Jui; Sheen, Horn-Jiunn; Tian, Wei-Cheng
2015-01-07
An electrokinetic trapping (EKT)-based nanofluidic preconcentration device with the capability of label-free monitoring trapped biomolecules through real-time dual-loop electric current measurement was demonstrated. Universal current-voltage (I-V) curves of EKT-based preconcentration devices, consisting of two microchannels connected by ion-selective channels, are presented for functional validation and optimal operation; universal onset current curves indicating the appearance of the EKT mechanism serve as a confirmation of the concentrating action. The EKT mechanism and the dissimilarity in the current curves related to the volume flow rate (Q), diffusion coefficient (D), and diffusion layer (DL) thickness were explained by a control volume model with a five-stage preconcentration process. Different behaviors of the trapped molecular plug were categorized based on four modes associated with different degrees of electroosmotic instability (EOI). A label-free approach to preconcentrating (bio)molecules and monitoring the multibehavior molecular plug was demonstrated through real-time electric current monitoring, rather than through the use of microscope images.
Alnima, Teba; Goedhart, Emilie J B M; Seelen, Randy; van der Grinten, Chris P M; de Leeuw, Peter W; Kroon, Abraham A
2015-06-01
Carotid baroreflex activation therapy produces a sustained fall in blood pressure in patients with resistant hypertension. Because the activation electrodes are implanted at the level of the carotid sinus, it is conceivable that the nearby located carotid body chemoreceptors are stimulated as well. Physiological stimulation of the carotid chemoreceptors not only stimulates respiration but also increases sympathetic activity, which may counteract the effects of baroreflex activation. The aim of this exploratory study is to investigate whether there is concomitant carotid chemoreflex activation during baroreflex activation therapy. Fifteen participants with the Rheos system were included in this single-center study. At arrival at the clinic, the device was switched off for 2 hours while patients were at rest. Subsequently, the device was switched on at 6 electric settings of high and low frequencies and amplitudes. Respiration and blood pressure measurements were performed during all device activation settings. Multilevel statistical models were adjusted for age, sex, body mass index, antihypertensive therapeutic index, sleep apnea, coronary artery disease, systolic blood pressure, and heart rate. There was no change in end-tidal carbon dioxide, partial pressure of carbon dioxide, breath duration, and breathing frequency during any of the electric settings with the device. Nevertheless, mean arterial pressure showed a highly significant decrease during electric activation (P<0.001). Carotid baroreflex activation therapy using the Rheos system did not stimulate respiration at several electric device activation energies, which suggests that there is no appreciable coactivation of carotid body chemoreceptors during device therapy. © 2015 American Heart Association, Inc.
Thin spray film thickness measuring technique
NASA Technical Reports Server (NTRS)
Jones, G.; Kurtz, G. W.
1971-01-01
Thin spray film application depths, in the 0.0002 cm to 0.002 cm range, are measured by portable, commercially available, light density measuring device used in conjunction with glass plate or photographic film. Method is automated by using mechanical/electrical control for shutting off film applicator at desired densitometer reading.
Polarized electroluminescence from edge-emission organic light emitting devices
NASA Astrophysics Data System (ADS)
Ran, G. Z.; Jiang, D. F.
2011-01-01
We report the experimental observation and measurement of the polarized electroluminescence from an edge-emission Si based- organic light emitting device (OLED) with a Sm/Au or Sm/Ag cathode. Light collected from the OLED edge comes from the scattering of the surface plasmon polaritons (SPPs) at the device boundary. This experiment shows that such Si-OLED can be an electrically excited SPP source on a silicon chip for optical interconnect based on SPPs.
Postfabrication annealing effects on insulator-metal transitions in VO2 thin-film devices.
Rathi, Servin; Lee, In-yeal; Park, Jin-Hyung; Kim, Bong-Jun; Kim, Hyun-Tak; Kim, Gil-Ho
2014-11-26
In order to investigate the metal-insulator transition characteristics of VO2 devices annealed in reducing atmosphere after device fabrication at various temperature, electrical, chemical, and thermal characteristics are measured and analyzed. It is found that the sheet resistance and the insulator-metal transition point, induced by both voltage and thermal, decrease when the devices are annealed from 200 to 500 °C. The V 2p3/2 peak variation in X-ray photoelectron spectroscopy (XPS) characterization verifies the reduction of thin-films. A decrease of the transition temperature from voltage hysteresis measurements further endorse the reducing effects of the annealing on VO2 thin-film.
Richardson, John G.; Morrison, John L.; Hawkes, Grant L.
2006-07-04
An induction heating apparatus includes a measurement device for indicating an electrical resistance of a material to be heated. A controller is configured for energizing an inductor in response to the indicated resistance. An inductor may be energized with an alternating current, a characteristic of which may be selected in response to an indicated electrical resistance. Alternatively, a temperature of the material may be indicated via measuring the electrical resistance thereof and a characteristic of an alternating current for energizing the inductor may be selected in response to the temperature. Energizing the inductor may minimize the difference between a desired and indicated resistance or the difference between a desired and indicated temperature. A method of determining a temperature of at least one region of at least one material to be induction heated includes correlating a measured electrical resistance thereof to an average temperature thereof.
Active spacecraft potential control system selection for the Jupiter orbiter with probe mission
NASA Technical Reports Server (NTRS)
Beattie, J. R.; Goldstein, R.
1977-01-01
It is shown that the high flux of energetic plasma electrons and the reduced photoemission rate in the Jovian environment can result in the spacecraft developing a large negative potential. The effects of the electric fields produced by this charging phenomenon are discussed in terms of spacecraft integrity as well as charged particle and fields measurements. The primary area of concern is shown to be the interaction of the electric fields with the measuring devices on the spacecraft. The need for controlling the potential of the spacecraft is identified, and a system capable of active control of the spacecraft potential in the Jupiter environment is proposed. The desirability of using this system to vary the spacecraft potential relative to the ambient plasma potential is also discussed. Various charged particle release devices are identified as potential candidates for use with the spacecraft potential control system. These devices are evaluated and compared on the basis of system mass, power consumption, and system complexity and reliability.
NASA Astrophysics Data System (ADS)
Alvarez, J.; Boutchich, M.; Kleider, J. P.; Teraji, T.; Koide, Y.
2014-09-01
The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy and confocal micro-Raman/photoluminescence imaging analysis. Local areas characterized by a strong decrease of the local resistance (5-6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced as electrical hot-spots, reveal a slightly constrained diamond lattice and three dominant Raman bands in the low-wavenumber region (590, 914 and 1040 cm-1). These latter bands are usually assigned to the vibrational modes involving boron impurities and its possible complexes that can electrically act as traps for charge carriers. Local current-voltage measurements performed at the hot-spots point out a trap-filled-limited current as the main conduction mechanism favouring the leakage current in the Schottky devices.
Sublimation measurements and analysis of high temperature thermoelectric materials and devices
NASA Technical Reports Server (NTRS)
Shields, V.; Noon, L.
1983-01-01
High temperature thermoelectric device sublimation effects are compared for rare earth sulfides, selenides, and state-of-the-art Si-Ge alloys. Although rare earth calcogenides can potentially exhibit superior sublimation characteristics, the state-of-the-art Si-Ge alloy with silicon nitride sublimation-inhibitive coating has been tested to 1000 C. Attention is given to the ceramic electrolyte cells, forming within electrical and thermal insulation, which affect leakage conductance measurements in Si-Ge thermoelectric generators.
Lewis, George K; Lewis, George K; Olbricht, William
2008-01-01
This paper explains the circuitry and signal processing to perform electrical impedance spectroscopy on piezoelectric materials and ultrasound transducers. Here, we measure and compare the impedance spectra of 2−5 MHz piezoelectrics, but the methodology applies for 700 kHz–20 MHz ultrasonic devices as well. Using a 12 ns wide 5 volt pulsing circuit as an impulse, we determine the electrical impedance curves experimentally using Ohm's law and fast Fourier transform (FFT), and compare results with mathematical models. The method allows for rapid impedance measurement for a range of frequencies using a narrow input pulse, digital oscilloscope and FFT techniques. The technique compares well to current methodologies such as network and impedance analyzers while providing additional versatility in the electrical impedance measurement. The technique is theoretically simple, easy to implement and completed with ordinary laboratory instrumentation for minimal cost. PMID:19081773
Resistive switching characteristics and mechanisms in silicon oxide memory devices
NASA Astrophysics Data System (ADS)
Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Wu, Xiaohan; Chen, Yen-Ting; Wang, Yanzhen; Xue, Fei; Lee, Jack C.
2016-05-01
Intrinsic unipolar SiOx-based resistance random access memories (ReRAM) characterization, switching mechanisms, and applications have been investigated. Device structures, material compositions, and electrical characteristics are identified that enable ReRAM cells with high ON/OFF ratio, low static power consumption, low switching power, and high readout-margin using complementary metal-oxide semiconductor transistor (CMOS)-compatible SiOx-based materials. These ideas are combined with the use of horizontal and vertical device structure designs, composition optimization, electrical control, and external factors to help understand resistive switching (RS) mechanisms. Measured temperature effects, pulse response, and carrier transport behaviors lead to compact models of RS mechanisms and energy band diagrams in order to aid the development of computer-aided design for ultralarge-v scale integration. This chapter presents a comprehensive investigation of SiOx-based RS characteristics and mechanisms for the post-CMOS device era.
Self-assembled fibre optoelectronics with discrete translational symmetry
Rein, Michael; Levy, Etgar; Gumennik, Alexander; Abouraddy, Ayman F.; Joannopoulos, John; Fink, Yoel
2016-01-01
Fibres with electronic and photonic properties are essential building blocks for functional fabrics with system level attributes. The scalability of thermal fibre drawing approach offers access to large device quantities, while constraining the devices to be translational symmetric. Lifting this symmetry to create discrete devices in fibres will increase their utility. Here, we draw, from a macroscopic preform, fibres that have three parallel internal non-contacting continuous domains; a semiconducting glass between two conductors. We then heat the fibre and generate a capillary fluid instability, resulting in the selective transformation of the cylindrical semiconducting domain into discrete spheres while keeping the conductive domains unchanged. The cylindrical-to-spherical expansion bridges the continuous conducting domains to create ∼104 self-assembled, electrically contacted and entirely packaged discrete spherical devices per metre of fibre. The photodetection and Mie resonance dependent response are measured by illuminating the fibre while connecting its ends to an electrical readout. PMID:27698454
Self-assembled fibre optoelectronics with discrete translational symmetry.
Rein, Michael; Levy, Etgar; Gumennik, Alexander; Abouraddy, Ayman F; Joannopoulos, John; Fink, Yoel
2016-10-04
Fibres with electronic and photonic properties are essential building blocks for functional fabrics with system level attributes. The scalability of thermal fibre drawing approach offers access to large device quantities, while constraining the devices to be translational symmetric. Lifting this symmetry to create discrete devices in fibres will increase their utility. Here, we draw, from a macroscopic preform, fibres that have three parallel internal non-contacting continuous domains; a semiconducting glass between two conductors. We then heat the fibre and generate a capillary fluid instability, resulting in the selective transformation of the cylindrical semiconducting domain into discrete spheres while keeping the conductive domains unchanged. The cylindrical-to-spherical expansion bridges the continuous conducting domains to create ∼10 4 self-assembled, electrically contacted and entirely packaged discrete spherical devices per metre of fibre. The photodetection and Mie resonance dependent response are measured by illuminating the fibre while connecting its ends to an electrical readout.
Study on light and thermal energy of illumination device for plant factory design
NASA Astrophysics Data System (ADS)
Yoshida, A.; Moriuchi, K.; Ueda, Y.; Kinoshita, S.
2018-01-01
To investigate the effect of illumination devices on the yield of crops cultivated in a plant factory, it is necessary to measure the actual cultivation environmental factors related to the plant growth and understand the distribution ratio of light and thermal energy to the electrical energy injected into the illumination device. Based on cultivation results, we found that light intensity greatly affected the growth of plant weight. Regarding the selection of illumination device, its spectral components also affected the morphological change. Lighting experiments using a high frequency (Hf) fluorescent lamp and a light emitting diode (LED) bulb were performed. A certain difference was found in the distribution ratio of light energy to electrical energy between Hf and LED. It was showed that by placing the safety equipment or internal circuits outside the cultivated site, the air conditioning load could be reduced.
Mechanical-magnetic-electric coupled behaviors for stress-driven Terfenol-D energy harvester
NASA Astrophysics Data System (ADS)
Cao, Shuying; Zheng, Jiaju; Wang, Bowen; Pan, Ruzheng; Zhao, Ran; Weng, Ling; Sun, Ying; Liu, Chengcheng
2017-05-01
The stress-driven Terfernol-D energy harvester exhibits the nonlinear mechanical-magnetic-electric coupled (MMEC) behaviors and the eddy current effects. To analyze and design the device, it is necessary to establish an accurate model of the device. Based on the effective magnetic field expression, the constitutive equations with eddy currents and variable coefficients, and the dynamic equations, a nonlinear dynamic MMEC model for the device is founded. Comparisons between the measured and calculated results show that the model can describe the nonlinear coupled curves of magnetization versus stress and strain versus stress under different bias fields, and can provide the reasonable data trends of piezomagnetic coefficients, Young's modulus and relative permeability for Terfenol-D. Moreover, the calculated power results show that the model can determine the optimal bias conditions, optimal resistance, suitable proof mass, suitable slices for the maximum energy extraction of the device under broad stress amplitude and broad frequency.
Reliability Testing of NASA Piezocomposite Actuators
NASA Technical Reports Server (NTRS)
Wilkie, W.; High, J.; Bockman, J.
2002-01-01
NASA Langley Research Center has developed a low-cost piezocomposite actuator which has application for controlling vibrations in large inflatable smart space structures, space telescopes, and high performance aircraft. Tests show the NASA piezocomposite device is capable of producing large, directional, in-plane strains on the order of 2000 parts-per-million peak-to-peak, with no reduction in free-strain performance to 100 million electrical cycles. This paper describes methods, measurements, and preliminary results from our reliability evaluation of the device under externally applied mechanical loads and at various operational temperatures. Tests performed to date show no net reductions in actuation amplitude while the device was moderately loaded through 10 million electrical cycles. Tests were performed at both room temperature and at the maximum operational temperature of the epoxy resin system used in manufacture of the device. Initial indications are that actuator reliability is excellent, with no actuator failures or large net reduction in actuator performance.
Finch, Hilvan A.
1987-01-01
A device for analyzing commutating characteristics of a motor or generator includes a holder for supporting a plurality of probes adjacent a brush of the motor or generator. Measurements of electrical current characteristics in each of the probes provides information useful in analyzing operation of the machine. Methods for employing a device in accordance with the invention are also disclosed.
Fabrication and characterization of lead-free BaTiO3 thin film for storage device applications
NASA Astrophysics Data System (ADS)
Sharma, Hakikat; Negi, N. S.
2018-05-01
The lead-free BaTiO3 (BT) thin film solution has been prepared by sol-gel method. The prepared solution spin coated on Pt/TiO2/SiO2/ Si substrate. The fabricated thin film was analyzed by XRD and Raman spectrometer for structural conformation. Uniformity of thin film was examined by Atomic force microscope (AFM). Thickness of the film was measured by cross sectional FESEM. Activation energies for both positive and negative biasing have been calculated from temperature dependent leakage current density as a function of electric field. For ferroelectric memory devices such as FRAM the hysteresis loop plays important role. Electric filed dependent polarization of BT thin film measured at different switching voltages. With increasing voltage maximum polarization increases.
Transport measurements on monolayer and few-layer WSe2
NASA Astrophysics Data System (ADS)
Palomaki, Tauno; Zhao, Wenjin; Finney, Joe; Fei, Zaiyao; Nguyen, Paul; McKay, Frank; Cobden, David
The behavior of the electrical contacts often dominates transport measurements in mono and few-layer transition metal dichalcogenide (TMD) devices. Creating good contacts for some TMDs is particularly challenging since the fabrication procedure should prevent the TMD from oxidizing or chemically interacting with the contacts. In this talk, we discuss our progress on creating mono and few-layer WSe2 devices with both good electrical contacts and minimal effects from the substrate, polymer contamination, oxidation and other chemistry. For example, we have developed a technique for encapsulating metallic contacts and WSe2 flakes together in hexagonal boron nitride with multiple gates to separate and control the contributions from the channel and the Schottky barriers at the contacts. Research supported in part by Samsung GRO grant US 040814
Nanoscale Engineering of Multiferroic Hybrid Composites for Micro- and Nano-scale Devices
2012-09-14
saturation field of the nickel ferrite layer [7]. The ME coupling dE coefficient is conventionally defined as am =— (5), where E and H denote the electric...of Co- ferrite in granular composites measured at different electric fields Voltage(V) 0 To realize the first objective a series of NBT-CFO...sample with intermediate (30%) content of Co- ferrite [publications 3,5]. The effect of the electric field on ferromagnetic resonance curves is
Cartmell, T.R.; Gifford, J.F.
1959-08-01
An ionization chamber used for measuring the radioactivity of dust present in atmospheric air is described. More particularly. the patent describes a device comprising two concentric open ended, electrically connected cylinders between which is disposed a wire electrcde. A heating source is disposed inside of the cylinder to circulate air through the space between the two cylinders by convective flow. A high voltage electric field between the wire electrcde of the electrically connected cylinder will cause ionization of the air as it passes therethrough.
Meroni, Davide; Maglioli, Camilla Carpano; Bovio, Dario; Greco, Francesco G; Aliverti, Andrea
2017-07-01
Electrical Impedance Tomography (EIT) is an image reconstruction technique applied in medicine for the electrical imaging of living tissues. In literature there is the evidence that a large resistivity variation related to the differences of the human tissues exists. As a result of this interest for the electrical characterization of the biological samples, recently the attention is also focused on the identification and characterization of the human tissue, by studying the homogeneity of its structure. An 8 electrodes needle-probe device has been developed with the intent of identifying the structural inhomogeneities under the surface layers. Ex-vivo impeditivity measurements, by placing the needle-probe in 5 different patterns of fat and lean porcine tissue, were performed, and impeditivity maps were obtained by EIDORS open source software for image reconstruction in electrical impedance. The values composing the maps have been analyzed, pointing out a good tissue discrimination, and the conformity with the real images. We conclude that this device is able to perform impeditivity maps matching to reality for position and orientation. In all the five patterns presented is possible to identify and replicate correctly the heterogeneous tissue under test. This new procedure can be helpful to the medical staff to completely characterize the biological sample, in different unclear situations.
Developing Control System of Electrical Devices with Operational Expense Prediction
NASA Astrophysics Data System (ADS)
Sendari, Siti; Wahyu Herwanto, Heru; Rahmawati, Yuni; Mukti Putranto, Dendi; Fitri, Shofiana
2017-04-01
The purpose of this research is to develop a system that can monitor and record home electrical device’s electricity usage. This system has an ability to control electrical devices in distance and predict the operational expense. The system was developed using micro-controllers and WiFi modules connected to PC server. The communication between modules is arranged by server via WiFi. Beside of reading home electrical devices electricity usage, the unique point of the proposed-system is the ability of micro-controllers to send electricity data to server for recording the usage of electrical devices. The testing of this research was done by Black-box method to test the functionality of system. Testing system run well with 0% error.
Flex-gear electrical power transmission
NASA Technical Reports Server (NTRS)
Vranish, John; Peritt, Jonathan
1993-01-01
This study was conducted to develop an alternative way of transferring electricity across a continuously rotating joint, with little wear and the potential for low electrical noise. The problems with wires, slip rings, electromagnetic couplings, and recently invented roll-rings are discussed. Flex-gears, an improvement of roll-rings, are described. An entire class of flexgear devices is developed. Finally, the preferred flex-gear device is optimized for maximum electrical contact and analyzed for average mechanical power loss and maximum stress. For a device diameter of six inches, the preferred device is predicted to have a total electrical contact area of 0.066 square inches. In the preferred device, a small amount of internal sliding produces a 0.003 inch-pound torque that resists the motion of the device.
Tour, James M; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao
2013-11-26
In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the the gap region between the first electical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.
All-optical switching of magnetoresistive devices using telecom-band femtosecond laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Li; Chen, Jun-Yang; Wang, Jian-Ping, E-mail: jpwang@umn.edu, E-mail: moli@umn.edu
Ultrafast all-optical switching of the magnetization of various magnetic systems is an intriguing phenomenon that can have tremendous impact on information storage and processing. Here, we demonstrate all-optical switching of GdFeCo alloy films using a telecom-band femtosecond fiber laser. We further fabricate Hall cross devices and electrically readout all-optical switching by measuring anomalous Hall voltage changes. The use of a telecom laser and the demonstrated all-optical switching of magnetoresistive devices represent the first step toward integration of opto-magnetic devices with mainstream photonic devices to enable novel optical and spintronic functionalities.
NASA Astrophysics Data System (ADS)
Kuroda, Roger Tokuichi
1992-01-01
The development of advanced epitaxical growth techniques such as molecular beam epitaxy has led to growth of high quality III-V layers with monolayer control in thickness. This permits design of new and novel heterointerface based electronic, optical and opto-electronic devices which exploit the new and tailorable electronic states in quantum wells. One such property is the Quantum Confined Stark Effect (QCSE) which, in uncoupled multiple quantum wells (MQW), has been used for the self-electro-optic effect device(SEED). Guided by a phenomenological model of the complex dielectric function for the Coupled Double Quantum Well (CDQW), we show results for the QCSE in CDQW show underlying physics differs from the uncoupled MQW in that symmetry forbidden transitions under flat band conditions become allowed under non-flat band conditions. The transfer of oscillator strength from symmetry allowed to the symmetry forbidden transitions offers potential for application as spatial light modulator (SLM). We show the CDQW lowest exciton peak Stark shifts twice as fast as the SQW with equivalent well width, which offers the SLM device a lower operating voltage than SQW. In addition we show the CDQW absorption band edge can blue shift with increasing electric field, which offers other potential for SLM. From transmission measurements, we verify these predictions and compare them with the phenomenological model. The optical device figure of merit Deltaalpha/alpha of the CDQW is comparable with the "best" SQW, but at lower electric field. From photocurrent measurements, we find that the calculated and measured Stark shifts agree. In addition, we extract a Deltaalpha/ alpha from photocurrent which agree with transmission measurements. From electroreflectance measurements, we calculated the aluminum concentration, and the built in electric field from the Franz-Keldysh oscillations due to the Al_{0.3}Ga _{0.7}As barrier regions in the CDQW. (Copies available exclusively from Micrographics Department, Doheny Library, USC, Los Angeles, CA 90089 -0182.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deb, K.; Bera, A.; Saha, B., E-mail: biswajit.physics@gmail.com
2016-05-23
Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline filmmore » is well suited for their applications in electronic devices.« less
Protective carrier for microcircuit devices
Robinson, Lyle A.
1976-10-26
An improved protective carrier for microcircuit devices having beam leads wherein a compressible member is disposed on the carrier base beneath and overlapping the periphery of an aperture in a flexible circuit element, the element being adapted to receive and make electrical contact with microcircuit device beam leads, the compressible member disposed or arranged to achieve flexing of the circuit element against the microcircuit device beam leads to conform to variations in thicknesses of the device beam leads or circuit element electrical paths and thereby insure electrical connection between the beam leads and the electrical paths.
Red Light Emitting Schottky Diodes on p-TYPE GaN/AlN/Si(111) Substrate
NASA Astrophysics Data System (ADS)
Chuah, L. S.; Hassan, Z.; Abu Hassan, H.
High quality GaN layers doped with Mg were grown on Si(111) substrates using high temperature AlN as buffer layer by radio-frequency molecular beam epitaxy. From the Hall measurements, fairly uniform high hole concentration as high as (4-5) × 1020 cm-3 throughout the GaN was achieved. The fabrication of the device is very simple. Nickel ohmic contacts and Schottky contacts using indium were fabricated on Mg-doped p-GaN films. The light emission has been obtained from these thin film electroluminescent devices. Thin film electroluminescent devices were operated under direct current bias. Schottky and ohmic contacts used as cathode and anode were employed in these investigations. Alternatively, two Schottky contacts could be probed as cathode and anode. Thin film electroluminescent devices were able to emit light. However, electrical and optical differences could be observed from the two different probing methods. The red light color could be observed when the potential between the electrodes was increased gradually under forward bias of 8 V at room temperature. Electrical properties of these thin film electroluminescent devices were characterized by current-voltage (I-V) system, the heights of barriers determined from the I-V measurements were found to be related to the electroluminescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liguori, R.; Aprano, S.; Rubino, A.
In this study we analyzed one of the environmental factors that could affect organic materials. Pentacene thin film samples were fabricated and the degradation of their electrical characteristics was measured when the devices were exposed to ultraviolet light irradiation. The results have been reported in terms of a trap density model, which provides a description of the dynamics of light induced electrically active defects in an organic semiconductor.
21 CFR 888.1240 - AC-powered dynamometer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... neuromuscular function or degree of neuromuscular blockage by measuring, with a force transducer (a device that translates force into electrical impulses), the grip-strength of a patient's hand. (b) Classification. Class...
21 CFR 888.1240 - AC-powered dynamometer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... neuromuscular function or degree of neuromuscular blockage by measuring, with a force transducer (a device that translates force into electrical impulses), the grip-strength of a patient's hand. (b) Classification. Class...
Potentialities of silicon nanowire forests for thermoelectric generation
NASA Astrophysics Data System (ADS)
Dimaggio, Elisabetta; Pennelli, Giovanni
2018-04-01
Silicon is a material with very good thermoelectric properties, with regard to Seebeck coefficient and electrical conductivity. Low thermal conductivities, and hence high thermal to electrical conversion efficiencies, can be achieved in nanostructures, which are smaller than the phonon mean free path but large enough to preserve the electrical conductivity. We demonstrate that it is possible to fabricate a leg of a thermoelectric generator based on large collections of long nanowires, placed perpendicularly to the two faces of a silicon wafer. The process exploits the metal assisted etching technique which is simple, low cost, and can be easily applied to large surfaces. Copper can be deposited by electrodeposition on both faces, so that contacts can be provided, on top of the nanowires. Thermal conductivity of silicon nanowire forests with more than 107 nanowires mm-2 have been measured; the result is comparable with that achieved by several groups on devices based on few nanowires. On the basis of the measured parameters, numerical calculations of the efficiency of silicon-based thermoelectric generators are reported, and the potentialities of these devices for thermal to electrical energy conversion are shown. Criteria to improve the conversion efficiency are suggested and described.
Cox, Daryl F.; Hochanadel, Charles D.; Haynes, Howard D.
2010-05-18
The invention is a human and animal performance data acquisition, analysis, and diagnostic system for fitness and therapy devices having an interface box removably disposed on incoming power wiring to a fitness and therapy device, at least one current transducer removably disposed on said interface box for sensing current signals to said fitness and therapy device, and a means for analyzing, displaying, and reporting said current signals to determine human and animal performance on said device using measurable parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemec, Patrik, E-mail: patrik.nemec@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk
This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heatmore » of electronic components in range from 250 to 740 W.« less
Determination of P3HT Trap Site Energies by Thermally Stimulated Current
NASA Astrophysics Data System (ADS)
Souza, J. F. P.; Serbena, J. P. M.; Kowalski, E. L.; Akcelrud, L. C.
2018-02-01
The thermal, electrical and morphological characterization of poly(3-hexylthiophene-2,5diyl) (P3HT) is presented and discussed. Thermal analyses revealed high glass transition, melting and degradation temperatures, indicating high stability of the polymer to annealings in the range 25-200°C. Electrical measurements were performed in spin-coated devices constructed using indium tin oxide (ITO) and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) in the sandwich structure ITO/PEDOT:PSS/P3HT/Al. The devices were thermally treated at 25°C, 100°C, 150°C, and 200°C prior to the measurements. Characteristic curves of current density versus voltage showed that the injection of charge carriers is governed by tunneling at high electric fields. Hole mobility was estimated by impedance spectroscopy, showing a maximum value of 8.6 × 10-5 cm2/Vs for annealed films at 150°C. A thermally stimulated current technique was used to analyze the trap density in the P3HT and its respective energies for all devices, presenting the lowest trap density for annealed films at 150°C. Morphological features observed by atomic force microscopy showed that the 150°C thermally treated film presents the best interface condition of the four investigated annealing temperatures.
Monitoring method and apparatus using high-frequency carrier
Haynes, Howard D.
1996-01-01
A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.
NASA Astrophysics Data System (ADS)
Turkulets, Yury; Shalish, Ilan
2018-01-01
Modern bandgap engineered electronic devices are typically made of multi-semiconductor multi-layer heterostructures that pose a major challenge to silicon-era characterization methods. As a result, contemporary bandgap engineering relies mostly on simulated band structures that are hardly ever verified experimentally. Here, we present a method that experimentally evaluates bandgap, band offsets, and electric fields, in complex multi-semiconductor layered structures, and it does so simultaneously in all the layers. The method uses a modest optical photocurrent spectroscopy setup at ambient conditions. The results are analyzed using a simple model for electro-absorption. As an example, we apply the method to a typical GaN high electron mobility transistor structure. Measurements under various external electric fields allow us to experimentally construct band diagrams, not only at equilibrium but also under any other working conditions of the device. The electric fields are then used to obtain the charge carrier density and mobility in the quantum well as a function of the gate voltage over the entire range of operating conditions of the device. The principles exemplified here may serve as guidelines for the development of methods for simultaneous characterization of all the layers in complex, multi-semiconductor structures.
Electric turbocompound control system
Algrain, Marcelo C [Dunlap, IL
2007-02-13
Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.
Vibration sensing method and apparatus
Barna, B.A.
1989-04-25
A method and apparatus for nondestructive evaluation of a structure are disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration. 4 figs.
Vibration sensing method and apparatus
Barna, B.A.
1987-07-07
A method and apparatus for nondestructive evaluation of a structure is disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration. 4 figs.
Direct measurement of chiral structure and transport in single- and multi-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Cui, Taoran; Lin, Letian; Qin, Lu-Chang; Washburn, Sean
2016-11-01
Electrical devices based on suspended multi-wall carbon nanotubes were constructed and studied. The chiral structure of each shell in a particular nanotube was determined using nanobeam electron diffraction in a transmission electron microscope. The transport properties of the carbon nanotube were also measured. The nanotube device length was short enough that the transport was nearly ballistic, and multiple subbands contributed to the conductance. Thermal excitation of carriers significantly affected nanotube resistance at room temperature.
Vibration sensing method and apparatus
Barna, Basil A.
1989-04-25
A method and apparatus for nondestructive evaluation of a structure is disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration.
Kondo, Akihiro; Nishizawa, Yuji; Ito, Masaaki; Saito, Norio; Fujii, Satoshi; Akamoto, Shintaro; Fujiwara, Masao; Okano, Keiichi; Suzuki, Yasuyuki
2016-08-01
The aim of the study was to assess the relationship between tissue tension and thermal diffusion to peripheral tissues using an electric scalpel, ultrasonically activated device, or a bipolar sealing system. The mesentery of pigs was excised with each energy device (ED) at three tissue tensions (0, 300, 600 g). The excision time and thermal diffusion area were monitored with thermography, measured for each ED, and then histologically examined. Correlations between tissue tension and thermal diffusion area were examined. The excision time was inversely correlated with tissue tension for all ED (electric scalpel, r = 0.718; ultrasonically activated device, r = 0.949; bipolar sealing system, r = 0.843), and tissue tension was inversely correlated with the thermal diffusion area with the electric scalpel (r = 0.718) and bipolar sealing system (r = 0.869). Histopathologically, limited deep thermal denaturation occurred at a tension of 600 g with all ED. We conclude that thermal damage can be avoided with adequate tissue tension when any ED is used. © 2016 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.
Printing method for organic light emitting device lighting
NASA Astrophysics Data System (ADS)
Ki, Hyun Chul; Kim, Seon Hoon; Kim, Doo-Gun; Kim, Tae-Un; Kim, Snag-Gi; Hong, Kyung-Jin; So, Soon-Yeol
2013-03-01
Organic Light Emitting Device (OLED) has a characteristic to change the electric energy into the light when the electric field is applied to the organic material. OLED is currently employed as a light source for the lighting tools because research has extensively progressed in the improvement of luminance, efficiency, and life time. OLED is widely used in the plate display device because of a simple manufacture process and high emitting efficiency. But most of OLED lighting projects were used the vacuum evaporator (thermal evaporator) with low molecular. Although printing method has lower efficiency and life time of OLED than vacuum evaporator method, projects of printing OLED actively are progressed because was possible to combine with flexible substrate and printing technology. Printing technology is ink-jet, screen printing and slot coating. This printing method allows for low cost and mass production techniques and large substrates. In this research, we have proposed inkjet printing for organic light-emitting devices has the dominant method of thick film deposition because of its low cost and simple processing. In this research, the fabrication of the passive matrix OLED is achieved by inkjet printing, using a polymer phosphorescent ink. We are measured optical and electrical characteristics of OLED.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aydogan, Pinar; Suzer, Sefik, E-mail: suzer@fen.bilkent.edu.tr; Arslan, Engin
2015-09-21
We report on an X-ray photoelectron spectroscopy (XPS) study of two graphene based devices that were analyzed by imposing a significant current under +3 V bias. The devices were fabricated as graphene layers(s) on hexagonal SiC substrates, either on the C- or Si-terminated faces. Position dependent potential distributions (IR-drop), as measured by variations in the binding energy of a C1s peak are observed to be sporadic for the C-face graphene sample, but very smooth for the Si-face one, although the latter is less conductive. We attribute these sporadic variations in the C-face device to the incomplete electrical decoupling between the graphenemore » layer(s) with the underlying buffer and/or substrate layers. Variations in the Si2p and O1s peaks of the underlayer(s) shed further light into the electrical interaction between graphene and other layers. Since the potential variations are amplified only under applied bias (voltage-contrast), our methodology gives unique, chemically specific electrical information that is difficult to obtain by other techniques.« less
Customized electric power storage device for inclusion in a collective microgrid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinett, III, Rush D.; Wilson, David G.; Goldsmith, Steven Y.
An electric power storage device is described herein, wherein the electric power storage device is included in a microgrid. The electric power storage device has at least one of a charge rate, a discharge rate, or a power retention capacity that has been customized for a collective microgrid. The collective microgrid includes at least two connected microgrids. The at least one of the charge rate, the discharge rate, or the power retention capacity of the electric power storage device is computed based at least in part upon specified power source parameters in the at least two connected microgrids and specifiedmore » load parameters in the at least two connected microgrids.« less
Ida, K; Funaba, H; Kado, S; Narihara, K; Tanaka, K; Takeiri, Y; Nakamura, Y; Ohyabu, N; Yamazaki, K; Yokoyama, M; Murakami, S; Ashikawa, N; deVries, P C; Emoto, M; Goto, M; Idei, H; Ikeda, K; Inagaki, S; Inoue, N; Isobe, M; Itoh, K; Kaneko, O; Kawahata, K; Khlopenkov, K; Komori, A; Kubo, S; Kumazawa, R; Liang, Y; Masuzaki, S; Minami, T; Miyazawa, J; Morisaki, T; Morita, S; Mutoh, T; Muto, S; Nagayama, Y; Nakanishi, H; Nishimura, K; Noda, N; Notake, T; Kobuchi, T; Ohdachi, S; Ohkubo, K; Oka, Y; Osakabe, M; Ozaki, T; Pavlichenko, R O; Peterson, B J; Sagara, A; Saito, K; Sakakibara, S; Sakamoto, R; Sanuki, H; Sasao, H; Sasao, M; Sato, K; Sato, M; Seki, T; Shimozuma, T; Shoji, M; Suzuki, H; Sudo, S; Tamura, N; Toi, K; Tokuzawa, T; Torii, Y; Tsumori, K; Yamamoto, T; Yamada, H; Yamada, I; Yamaguchi, S; Yamamoto, S; Yoshimura, Y; Watanabe, K Y; Watari, T; Hamada, Y; Motojima, O; Fujiwara, M
2001-06-04
Recent large helical device experiments revealed that the transition from ion root to electron root occurred for the first time in neutral-beam-heated discharges, where no nonthermal electrons exist. The measured values of the radial electric field were found to be in qualitative agreement with those estimated by neoclassical theory. A clear reduction of ion thermal diffusivity was observed after the mode transition from ion root to electron root as predicted by neoclassical theory when the neoclassical ion loss is more dominant than the anomalous ion loss.
Electric Propulsion: Experimental Research
NASA Technical Reports Server (NTRS)
Ruyten, W. M.; Friedly, V. J.; Keefer, D.
1995-01-01
This paper describes experimental electric propulsion research which was carried out at the University of Tennessee Space Institute with support from the Center for Space Transportation and Applied Research. Specifically, a multiplexed LIF technique for obtaining vector velocities, Doppler temperatures, and relative number densities in the exhaust plumes form electric propulsion devices is described, and results are presented that were obtained on a low power argon arcjet. Also, preliminary Langmuir probe measurements on an ion source are described, and an update on the vacuum facility is presented.
Electric propulsion: Experimental research
NASA Technical Reports Server (NTRS)
Ruyten, W. M.; Friedly, V. J.; Keefer, D.
1992-01-01
This paper describes experimental electric propulsion research which was carried out at the University of Tennessee Space Institute with support from the Center for Space Transportation and Applied Research. Specifically, a multiplexed laser induced fluorescence (LIF) technique for obtaining vector velocities, Doppler temperatures, and relative number densities in the exhaust plumes from electric propulsion devices is described, and results are presented that were obtained on a low power argon arcjet. Also, preliminary Langmuir probe measurements on an ion source are described, and an update on the vacuum facility is presented.
NASA Astrophysics Data System (ADS)
Wang, Yaogong; Zhang, Xiaoning; Liu, Lingguang; Zhou, Xuan; Liu, Chunliang; Zhang, Qiaogen
2018-04-01
The excitation dynamics and self-oriented plasma coupling of a micro-structure plasma device with a rectangular cross-section are investigated. The device consists of 7 × 7 microcavity arrays, which are blended into a unity by a 50 μm-thick bulk area above them. The device is operated in argon with a pressure of 200 Torr, driven by a bipolar pulse waveform of 20 kHz. The discharge evolution is characterized by means of electrical measurements and optical emission profiles. It has been found that different emission patterns are observed within microcavities. The formation of these patterns induced by the combined action between the applied electric field and surface deactivation is discussed. The microplasma distribution in some specific regions along the diagonal direction of cavities in the bulk area is observed, and self-oriented microplasma coupling is explored, while the plasma interaction occurred between cross adjacent cavities, contributed by the ionization wave propagation. The velocity of ionization wave propagation is measured to be 1.2 km/s to 3.5 km/s. The exploration of this plasma interaction in the bulk area is of value to applications in electromagnetics and signal processing.
2010-01-01
Background Due to controversially discussed results in scientific literature concerning changes of electrical skin impedance before and during acupuncture a new measurement system has been developed. Methods The prototype measures and analyzes the electrical skin impedance computer-based and simultaneously in 48 channels within a 2.5×3.5 cm matrix. Preliminary measurements in one person were performed using metal needle and violet laser (405 nm) acupuncture at the acupoint Kongzui (LU6). The new system is an improvement on devices previously developed by other researchers for this purpose. Results Skin impedance in the immediate surroundings of the acupoint was lowered reproducibly following needle stimulation and also violet laser stimulation. Conclusions A new instrumentation for skin impedance measurements is presented. The following hypotheses suggested by our results will have to be tested in further studies: Needle acupuncture causes significant, specific local changes of electrical skin impedance parameters. Optical stimulation (violet laser) at an acupoint causes direct electrical biosignal changes. PMID:21092296
Experimental evaluation of cooling efficiency of the high performance cooling device
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan
2016-06-01
This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.
Electrically Variable or Programmable Nonvolatile Capacitors
NASA Technical Reports Server (NTRS)
Shangqing, Liu; NaiJuan, Wu; Ignatieu, Alex; Jianren, Li
2009-01-01
Electrically variable or programmable capacitors based on the unique properties of thin perovskite films are undergoing development. These capacitors show promise of overcoming two important deficiencies of prior electrically programmable capacitors: Unlike in the case of varactors, it is not necessary to supply power continuously to make these capacitors retain their capacitance values. Hence, these capacitors may prove useful as components of nonvolatile analog and digital electronic memories. Unlike in the case of ferroelectric capacitors, it is possible to measure the capacitance values of these capacitors without changing the values. In other words, whereas readout of ferroelectric capacitors is destructive, readout of these capacitors can be nondestructive. A capacitor of this type is a simple two terminal device. It includes a thin film of a suitable perovskite as the dielectric layer, sandwiched between two metal or metal oxide electrodes (for example, see Figure 1). The utility of this device as a variable capacitor is based on a phenomenon, known as electrical-pulse-induced capacitance (EPIC), that is observed in thin perovskite films and especially in those thin perovskite films that exhibit the colossal magnetoresistive (CMR) effect. In EPIC, the application of one or more electrical pulses that exceed a threshold magnitude (typically somewhat less than 1 V) gives rise to a nonvolatile change in capacitance. The change in capacitance depends on the magnitude duration, polarity, and number of pulses. It is not necessary to apply a magnetic field or to cool the device below (or heat it above) room temperature to obtain EPIC. Examples of suitable CMR perovskites include Pr(1-x)Ca(x)MnO3, La(1-x)S-r(x)MnO3,and Nb(1-x)Ca(x)MnO3. Figure 2 is a block diagram showing an EPIC capacitor connected to a circuit that can vary the capacitance, measure the capacitance, and/or measure the resistance of the capacitor.
[Electromagnetic fields in the vicinity of DECT cordless telephones and mobile phones].
Mamrot, Paweł; Mariańska, Magda; Aniołczyk, Halina; Politański, Piotr
2015-01-01
Mobile telephones belong to the most frequently used personal devices. In their surroundings they produce the electromagnetic field (EMF), in which exposure range there are not only users but also nearby bystanders. The aim of the investigations and EMF measurements in the vicinity of phones was to identify the electric field levels with regard to various working modes. Twelve sets of DECT (digital enhanced cordless telecommunications) cordless phones (12 base units and 15 handsets), 21 mobile telephones produced by different manufactures, and 16 smartphones in various applications, (including multimedia) in the conditions of daily use in living rooms were measured. Measurements were taken using the point method in predetermined distances of 0.05-1 m from the devices without the presence of users. In the vicinity of DECT cordless phone handsets, electric field strength ranged from 0.26 to 2.30 V/m in the distance of 0.05 m - 0.18-0.26 V/m (1 m). In surroundings of DECT cordless telephones base units the values of EMF were from 1.78-5.44 V/m (0.05 m) to 0.19- 0.41 V/m (1 m). In the vicinity of mobile phones working in GSM mode with voice transmission, the electric field strength ranged from 2.34-9.14 V/m (0.05 m) to 0.18-0.47 V/m (1 m) while in the vicinity of mobile phones working in WCDMA (Wideband Code Division Multiple Access) mode the electric field strength ranged from 0.22-1.83 V/m (0.05 m) to 0.18-0.20 V/m (1 m). The mean values of the electric field strength for each group of devices, mobile phones and DECT wireless phones sets do not exceed the reference value of 7 V/m, adopted as the limit for general public exposure. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
NASA Astrophysics Data System (ADS)
Tazlauanu, Mihai
The research work reported in this thesis details a new fabrication technology for high speed integrated circuits in the broadest sense, including original contributions to device modeling, circuit simulation, integrated circuit design, wafer fabrication, micro-physical and electrical characterization, process flow and final device testing as part of an electrical system. The primary building block of this technology is the heterostructure insulated gate field effect transistor, HIGFET. We used an InP/InGaAs epitaxial heterostructure to ensure a high charge carrier mobility and hence obtain a higher operating frequency than that currently possible for silicon devices. We designed and built integrated circuits with two system architectures. The first architecture integrates the clock signal generator with the sample and hold circuitry on the InP die, while the second is a hybrid architecture of an InP sample and hold assembled with an external clock signal generator made with ECL circuits on GaAs. To generate the clock signals on the same die with the sample and hold circuits, we developed a digital circuit family based on an original inverter, appropriate for depletion mode NMOS technology. We used this circuit to design buffer amplifiers and ring oscillators. Four mask sets produced in a Cadence environment, have permitted the fabrication of test and working devices. Each new mask generation has reflected the previous achievements and has implemented new structures and circuit techniques. The fabrication technology has undergone successive modifications and refinements to optimize device manufacturing. Particular attention has been paid to the technological robustness. The plasma enhanced etching process (RIE) had been used for an exhaustive study for the statistical simulation of the technological steps. Electrical measurements, performed on the experimental samples, have permitted the modeling of the devices, technological processing to be adjusted and circuit design improved. Electrical measurements performed on dedicated test structures, during the fabrication cycle, allowed the identification and correction of some technological problems (ohmic contacts, current leakage, interconnection integrity, and thermal instabilities). Feedback corrections were validated by dedicated experiments with the experimental effort optimized by statistical techniques (factorial fractional design). (Abstract shortened by UMI.)
Radiation dose response of N channel MOSFET submitted to filtered X-ray photon beam
NASA Astrophysics Data System (ADS)
Gonçalves Filho, Luiz C.; Monte, David S.; Barros, Fabio R.; Santos, Luiz A. P.
2018-01-01
MOSFET can operate as a radiation detector mainly in high-energy photon beams, which are normally used in cancer treatments. In general, such an electronic device can work as a dosimeter from threshold voltage shift measurements. The purpose of this article is to show a new way for measuring the dose-response of MOSFETs when they are under X-ray beams generated from 100kV potential range, which is normally used in diagnostic radiology. Basically, the method consists of measuring the MOSFET drain current as a function of the radiation dose. For this the type of device, it has to be biased with a high value resistor aiming to see a substantial change in the drain current after it has been irradiated with an amount of radiation dose. Two types of N channel device were used in the experiment: a signal transistor and a power transistor. The delivered dose to the device was varied and the electrical curves were plotted. Also, a sensitivity analysis of the power MOSFET response was made, by varying the tube potential of about 20%. The results show that both types of devices have responses very similar, the shift in the electrical curve is proportional to the radiation dose. Unlike the power MOSFET, the signal transistor does not provide a linear function between the dose rate and its drain current. We also have observed that the variation in the tube potential of the X-ray equipment produces a very similar dose-response.
Experiments with Coler magnetic current apparatus
NASA Astrophysics Data System (ADS)
Ludwig, T.
Experiments with a replica of the famous Coler "Magnetstromapparat" (magnetic current apparatus) were conducted. The replica was built at the same institute at the Technical University of Berlin where the original was tested by Prof. Kloss in 1925. The details of the setup will be presented in this paper. The investigation of the Coler device was done with modern methods. The output was measured with a digital multi meter (DMM) and a digital storage oscilloscope (DSO). The results of the measurements will be presented. Did Coler convert vacuum fluctuations via magnetic, electric and acoustic resonance into electricity? There is a strong connection between magnetism and quantum field radiation energy. The magnetic moment of the electron is in part an energy exchange with the radiation field. The energy output of the Coler apparatus is measured. Furthermore the dynamics of the ferromagnetic magnets that Coler reported as the working principle of his device was investigated with magnetic force microscopy (MFM) and the spectroscopy mode of an atomic force microscope (AFM). The magnetic and acoustic resonance was investigated with magnetic force microscopy (MFM). The connection between ZPE and magnetism will be discussed as well as the perspective of using magnetic systems as a means to convert vacuum fluctuations into usable electricity.
Electrical device fabrication from nanotube formations
Nicholas, Nolan Walker; Kittrell, W. Carter; Kim, Myung Jong; Schmidt, Howard K.
2013-03-12
A method for forming nanotube electrical devices, arrays of nanotube electrical devices, and device structures and arrays of device structures formed by the methods. Various methods of the present invention allow creation of semiconducting and/or conducting devices from readily grown SWNT carpets rather than requiring the preparation of a patterned growth channel and takes advantage of the self-controlling nature of these carpet heights to ensure a known and controlled channel length for reliable electronic properties as compared to the prior methods.
Optimizing the Combination of Acoustic and Electric Hearing in the Implanted Ear
Karsten, Sue A.; Turner, Christopher W.; Brown, Carolyn J.; Jeon, Eun Kyung; Abbas, Paul J.; Gantz, Bruce J.
2016-01-01
Objectives The aim of this study was to determine an optimal approach to program combined acoustic plus electric (A+E) hearing devices in the same ear to maximize speech-recognition performance. Design Ten participants with at least 1 year of experience using Nucleus Hybrid (short electrode) A+E devices were evaluated across three different fitting conditions that varied in the frequency ranges assigned to the acoustically and electrically presented portions of the spectrum. Real-ear measurements were used to optimize the acoustic component for each participant, and the acoustic stimulation was then held constant across conditions. The lower boundary of the electric frequency range was systematically varied to create three conditions with respect to the upper boundary of the acoustic spectrum: Meet, Overlap, and Gap programming. Consonant recognition in quiet and speech recognition in competing-talker babble were evaluated after participants were given the opportunity to adapt by using the experimental programs in their typical everyday listening situations. Participants provided subjective ratings and evaluations for each fitting condition. Results There were no significant differences in performance between conditions (Meet, Overlap, Gap) for consonant recognition in quiet. A significant decrement in performance was measured for the Overlap fitting condition for speech recognition in babble. Subjective ratings indicated a significant preference for the Meet fitting regimen. Conclusions Participants using the Hybrid ipsilateral A+E device generally performed better when the acoustic and electric spectra were programmed to meet at a single frequency region, as opposed to a gap or overlap. Although there is no particular advantage for the Meet fitting strategy for recognition of consonants in quiet, the advantage becomes evident for speech recognition in competing-talker babble and in patient preferences. PMID:23059851
Multidimensional materials and device architectures for future hybrid energy storage
Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury
2016-09-07
Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated ‘Internet of Things’, there are intensive efforts to develop miniature yet powerful electrical energy storage devices. Here, this review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.
Multidimensional materials and device architectures for future hybrid energy storage
NASA Astrophysics Data System (ADS)
Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury
2016-09-01
Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated `Internet of Things', there are intensive efforts to develop miniature yet powerful electrical energy storage devices. This review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.
Multidimensional materials and device architectures for future hybrid energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury
Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated ‘Internet of Things’, there are intensive efforts to develop miniature yet powerful electrical energy storage devices. Here, this review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.
Squeeze-Film Air Damping of a Five-Axis Electrostatic Bearing for Rotary Micromotors
Wang, Shunyue; Han, Fengtian; Sun, Boqian; Li, Haixia
2017-01-01
Air-film damping, which dominates over other losses, plays a significant role in the dynamic response of many micro-fabricated devices with a movable mass suspended by various bearing mechanisms. Modeling the damping characteristics accurately will be greatly helpful to the bearing design, control, and test in various micromotor devices. This paper presents the simulated and experimental squeeze-film air damping results of an electrostatic bearing for use in a rotary high-speed micromotor. It is shown that the boundary condition to solve the three-dimensional Reynolds equation, which governs the squeeze-film damping in the air gap between the rotor and its surrounding stator sealed in a three-layer evacuated cavity, behaves with strong cross-axis coupling characteristics. To accurately characterize the damping effect, a set of multiphysics finite-element simulations are performed by computing both the rotor velocity and the distribution of the viscous damping force acting on the rotor. The damping characteristics varying with several key structure parameters are simulated and discussed to optimize the device structure for desirable rotor dynamics. An electrical measurement method is also proposed and applied to validate the numerical results of the damping coefficients experimentally. Given that the frequency response of the electric bearing is critically dependent on the damping coefficients at atmospheric pressure, a solution to the air-film damping measurement problem is presented by taking approximate curve fitting of multi-axis experimental frequency responses. The measured squeeze-film damping coefficients for the five-axis electric bearing agrees well with the numerical solutions. This indicates that numerical multiphysics simulation is an effective method to accurately examine the air-film damping effect for complex device geometry and arbitrary boundary condition. The accurate damping coefficients obtained by FEM simulation will greatly simplify the design of the five-axis bearing control system and facilitate the initial suspension test of the rotor for various micromotor devices. PMID:28505089
Squeeze-Film Air Damping of a Five-Axis Electrostatic Bearing for Rotary Micromotors.
Wang, Shunyue; Han, Fengtian; Sun, Boqian; Li, Haixia
2017-05-13
Air-film damping, which dominates over other losses, plays a significant role in the dynamic response of many micro-fabricated devices with a movable mass suspended by various bearing mechanisms. Modeling the damping characteristics accurately will be greatly helpful to the bearing design, control, and test in various micromotor devices. This paper presents the simulated and experimental squeeze-film air damping results of an electrostatic bearing for use in a rotary high-speed micromotor. It is shown that the boundary condition to solve the three-dimensional Reynolds equation, which governs the squeeze-film damping in the air gap between the rotor and its surrounding stator sealed in a three-layer evacuated cavity, behaves with strong cross-axis coupling characteristics. To accurately characterize the damping effect, a set of multiphysics finite-element simulations are performed by computing both the rotor velocity and the distribution of the viscous damping force acting on the rotor. The damping characteristics varying with several key structure parameters are simulated and discussed to optimize the device structure for desirable rotor dynamics. An electrical measurement method is also proposed and applied to validate the numerical results of the damping coefficients experimentally. Given that the frequency response of the electric bearing is critically dependent on the damping coefficients at atmospheric pressure, a solution to the air-film damping measurement problem is presented by taking approximate curve fitting of multi-axis experimental frequency responses. The measured squeeze-film damping coefficients for the five-axis electric bearing agrees well with the numerical solutions. This indicates that numerical multiphysics simulation is an effective method to accurately examine the air-film damping effect for complex device geometry and arbitrary boundary condition. The accurate damping coefficients obtained by FEM simulation will greatly simplify the design of the five-axis bearing control system and facilitate the initial suspension test of the rotor for various micromotor devices.
Capillary zone electrophoresis-mass spectrometer interface
D`Silva, A.
1996-08-06
A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.
Capillary zone electrophoresis-mass spectrometer interface
D'Silva, Arthur
1996-08-06
A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conducts is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer.
NASA Astrophysics Data System (ADS)
Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin
2015-09-01
Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua
Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissuemore » voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.« less
Monitoring method and apparatus using high-frequency carrier
Haynes, H.D.
1996-04-30
A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.
Customized electric power storage device for inclusion in a microgrid
Goldsmith, Steven Y.; Wilson, David; Robinett, III, Rush D.
2017-08-01
An electric power storage device included in a microgrid is described herein. The electric power storage device has at least one of a charge rate, a discharge rate, or a power retention capacity that has been customized for the microgrid. The at least one of the charge rate, the discharge rate, or the power retention capacity of the electric power storage device is computed based at least in part upon specified power source parameters in the microgrid and specified load parameters in the microgrid.
Goldfuss, G.T.
1975-09-16
This invention relates to a device for sensing the level of a liquid while preventing the deposition and accumulation of materials on the exterior surfaces thereof. Two dissimilar metal wires are enclosed within an electrical insulating material, the wires being joined together at one end to form a thermocouple junction outside the insulating material. Heating means is disposed within the electrical insulating material and maintains the device at a temperature substantially greater than that of the environment surrounding the device, the heating means being electrically insulated from the two dissimilar thermocouple wires. In addition, a metal sheath surrounds and contacts both the electrical insulating material and the thermocouple junction. Electrical connections are provided for connecting the heating means with a power source and for connecting the thermocouple wires with a device for sensing the electrical potential across the thermocouple junction. (auth)
Comparing Hall Effect and Field Effect Measurements on the Same Single Nanowire.
Hultin, Olof; Otnes, Gaute; Borgström, Magnus T; Björk, Mikael; Samuelson, Lars; Storm, Kristian
2016-01-13
We compare and discuss the two most commonly used electrical characterization techniques for nanowires (NWs). In a novel single-NW device, we combine Hall effect and back-gated and top-gated field effect measurements and quantify the carrier concentrations in a series of sulfur-doped InP NWs. The carrier concentrations from Hall effect and field effect measurements are found to correlate well when using the analysis methods described in this work. This shows that NWs can be accurately characterized with available electrical methods, an important result toward better understanding of semiconductor NW doping.
A test technique for measuring lightning-induced voltages on aircraft electrical circuits
NASA Technical Reports Server (NTRS)
Walko, L. C.
1974-01-01
The development of a test technique used for the measurement of lightning-induced voltages in the electrical circuits of a complete aircraft is described. The resultant technique utilizes a portable device known as a transient analyzer capable of generating unidirectional current impulses similar to lightning current surges, but at a lower current level. A linear relationship between the magnitude of lightning current and the magnitude of induced voltage permitted the scaling up of measured induced values to full threat levels. The test technique was found to be practical when used on a complete aircraft.
Time-resolved photoluminescence of SiOx encapsulated Si
NASA Astrophysics Data System (ADS)
Kalem, Seref; Hannas, Amal; Österman, Tomas; Sundström, Villy
Silicon and its oxide SiOx offer a number of exciting electrical and optical properties originating from defects and size reduction enabling engineering new electronic devices including resistive switching memories. Here we present the results of photoluminescence dynamics relevant to defects and quantum confinement effects. Time-resolved luminescence at room temperature exhibits an ultrafast decay component of less than 10 ps at around 480 nm and a slower component of around 60 ps as measured by streak camera. Red shift at the initial stages of the blue luminescence decay confirms the presence of a charge transfer to long lived states. Time-correlated single photon counting measurements revealed a life-time of about 5 ns for these states. The same quantum structures emit in near infrared close to optical communication wavelengths. Nature of the emission is described and modeling is provided for the luminescence dynamics. The electrical characteristics of metal-oxide-semiconductor devices were correlated with the optical and vibrational measurement results in order to have better insight into the switching mechanisms in such resistive devices as possible next generation RAM memory elements. ``This work was supported by ENIAC Joint Undertaking and Laser-Lab Europe''.
Self-heating and scaling of thin body transistors
NASA Astrophysics Data System (ADS)
Pop, Eric
The most often cited technological roadblock of nanoscale electronics is the "power problem," i.e. power densities and device temperatures reaching levels that will prevent their reliable operation. Technology roadmap (ITRS) requirements are expected to lead to more heat dissipation problems, especially with the transition towards geometrically confined device geometries (SOI, FinFET, nanowires), and new materials with poor thermal properties. This work examines the physics of heat generation in silicon, and in the context of nanoscale CMOS transistors. A new Monte Carlo code (MONET) is introduced which uses analytic descriptions of both the electron bands and the phonon dispersion. Detailed heat generation statistics are computed in bulk and strained silicon, and within simple device geometries. It is shown that non-stationary transport affects heat generation near strongly peaked electric fields, and that self-heating occurs almost entirely in the drain end of short, quasi-ballistic devices. The dissipated power is spectrally distributed between the (slow) optical and (fast) acoustic phonon modes approximately by a ratio of two to one. In addition, this work explores the limits of device design and scaling from an electrical and thermal point of view. A self-consistent electro-thermal compact model for thin-body (SOI, GOI) devices is introduced for calculating operating temperature, saturation current and intrinsic gate delay. Self-heating is sensitive to several device parameters, such as raised source/drain height and material boundary thermal resistance. An experimental method is developed for extracting via/contact thermal resistance from electrical measurements. The analysis suggests it is possible to optimize device geometry in order to simultaneously minimize operating temperature and intrinsic gate delay. Electro-thermal contact and device design are expected to become more important with continued scaling.
Device USB interface and software development for electric parameter measuring instrument
NASA Astrophysics Data System (ADS)
Li, Deshi; Chen, Jian; Wu, Yadong
2003-09-01
Aimed at general devices development, this paper discussed the development of USB interface and software development. With an example, using PDIUSBD12 which support parallel interface, the paper analyzed its technical characteristics. Designed different interface circuit with 80C52 singlechip microcomputer and TMS320C54 series digital signal processor, analyzed the address allocation, register access. According to USB1.1 standard protocol, designed the device software and application layer protocol. The paper designed the data exchange protocol, and carried out system functions.
Thin-Film Photovoltaic Device Fabrication
NASA Technical Reports Server (NTRS)
Scofield, John H.
2003-01-01
This project will primarily involve the fabrication and characterization of thin films and devices for photovoltaic applications. The materials involved include Il-VI materials such as zinc oxide, cadmium sulfide, and doped analogs. The equipment ot be used will be sputtering and physical evaporations. The types of characterization includes electrical, XRD, SEM and CV and related measurements to establish the efficiency of the devices. The faculty fellow will be involved in a research team composed of NASA and University researchers as well as students and other junior researchers.
Ti:LiNbO3 Integrated Optic Electric-Field Sensors based on Electro-Optic Effect
NASA Astrophysics Data System (ADS)
Jung, Hongsik
2016-07-01
The need for electric-field sensing technology has widely increased, playing a critical role in various scientific and technical areas. This article comprehensively reviews and compares Ti:LiNbO3 integrated optic electric-field sensors, including the asymmetric Mach-Zehnder interferometer (MZI), 1 × 2 directional coupler (DC), and Y-fed balanced-bridge Mach-Zehnder interferometer (YBB-MZI), based on the operating principles, the electrical and optical performance, and measurements of each fabricated device. We also discuss future works to improve the sensitivity, operating stability, response speed, and bandwidth.
Accelerated Aging System for Prognostics of Power Semiconductor Devices
NASA Technical Reports Server (NTRS)
Celaya, Jose R.; Vashchenko, Vladislav; Wysocki, Philip; Saha, Sankalita
2010-01-01
Prognostics is an engineering discipline that focuses on estimation of the health state of a component and the prediction of its remaining useful life (RUL) before failure. Health state estimation is based on actual conditions and it is fundamental for the prediction of RUL under anticipated future usage. Failure of electronic devices is of great concern as future aircraft will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. Therefore, development of prognostics solutions for electronics is of key importance. This paper presents an accelerated aging system for gate-controlled power transistors. This system allows for the understanding of the effects of failure mechanisms, and the identification of leading indicators of failure which are essential in the development of physics-based degradation models and RUL prediction. In particular, this system isolates electrical overstress from thermal overstress. Also, this system allows for a precise control of internal temperatures, enabling the exploration of intrinsic failure mechanisms not related to the device packaging. By controlling the temperature within safe operation levels of the device, accelerated aging is induced by electrical overstress only, avoiding the generation of thermal cycles. The temperature is controlled by active thermal-electric units. Several electrical and thermal signals are measured in-situ and recorded for further analysis in the identification of leading indicators of failures. This system, therefore, provides a unique capability in the exploration of different failure mechanisms and the identification of precursors of failure that can be used to provide a health management solution for electronic devices.
Flexible Thin Metal Film Thermal Sensing System
NASA Technical Reports Server (NTRS)
Thomsen, Donald Laurence (Inventor)
2012-01-01
A flexible thin metal film thermal sensing system is provided. A thermally-conductive film made from a thermally-insulating material is doped with thermally-conductive material. At least one layer of electrically-conductive metal is deposited directly onto a surface of the thermally-conductive film. One or more devices are coupled to the layer(s) to measure an electrical characteristic associated therewith as an indication of temperature.
Thompson, Damien; Nijhuis, Christian A
2016-10-18
This Account describes a body of research in atomic level design, synthesis, physicochemical characterization, and macroscopic electrical testing of molecular devices made from ferrocene-functionalized alkanethiol molecules, which are molecular diodes, with the aim to identify, and resolve, the failure modes that cause leakage currents. The mismatch in size between the ferrocene headgroup and alkane rod makes waxlike highly dynamic self-assembled monolayers (SAMs) on coinage metals that show remarkable atomic-scale sensitivity in their electrical properties. Our results make clear that molecular tunnel junction devices provide an excellent testbed to probe the electronic and supramolecular structures of SAMs on inorganic substrates. Contacting these SAMs to a eutectic "EGaIn" alloy top-electrode, we designed highly stable long-lived molecular switches of the form electrode-SAM-electrode with robust rectification ratios of up to 3 orders of magnitude. The graphic that accompanies this conspectus displays a computed SAM packing structure, illustrating the lollipop shape of the molecules that gives dynamic SAM supramolecular structures and also the molecule-electrode van der Waals (vdW) contacts that must be controlled to form good SAM-based devices. In this Account, we first trace the evolution of SAM-based electronic devices and rationalize their operation using energy level diagrams. We describe the measurement of device properties using near edge X-ray absorption fine structure spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy complemented by molecular dynamics and electronic structure calculations together with large numbers of electrical measurements. We discuss how data obtained from these combined experimental/simulation codesign studies demonstrate control over the supramolecular and electronic structure of the devices, tuning odd-even effects to optimize inherent packing tendencies of the molecules in order to minimize leakage currents in the junctions. It is now possible, but still very costly to create atomically smooth electrodes and we discuss progress toward masking electrode imperfections using cooperative molecule-electrode contacts that are only accessible by dynamic SAM structures. Finally, the unique ability of SAM devices to achieve simultaneously high and atom-sensitive electrical switching is summarized and discussed. While putting these structures to work as real world electronic devices remains very challenging, we speculate on the scientific and technological advances that are required to further improve electronic and supramolecular structure, toward the creation of high yields of long-lived molecular devices with (very) large, reproducible rectification ratios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klepper, C Christopher; Martin, Elijah H; Isler, Ralph C
2014-01-01
An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (> 1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma,more » in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klepper, C. C., E-mail: kleppercc@ornl.gov; Isler, R. C.; Biewer, T. M.
2014-11-15
An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>∼1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, inmore » front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.« less
Klepper, C C; Martin, E H; Isler, R C; Colas, L; Goniche, M; Hillairet, J; Panayotis, S; Pegourié, B; Jacquot, J; Lotte, Ph; Colledani, G; Biewer, T M; Caughman, J B; Ekedahl, A; Green, D L; Harris, J H; Hillis, D L; Shannon, S C; Litaudon, X
2014-11-01
An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>∼1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.
Hybrid electric vehicle power management system
Bissontz, Jay E.
2015-08-25
Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.
Giusi, G; Giordano, O; Scandurra, G; Rapisarda, M; Calvi, S; Ciofi, C
2016-04-01
Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz(1/2), while DC performances are limited only by the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giusi, G.; Giordano, O.; Scandurra, G.
Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz{sup 1/2}, while DC performances are limited only bymore » the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.« less
Proton-Induced Conductivity Enhancement in AlGaN/GaN HEMT Devices
NASA Astrophysics Data System (ADS)
Lee, In Hak; Lee, Chul; Choi, Byoung Ki; Yun, Yeseul; Chang, Young Jun; Jang, Seung Yup
2018-04-01
We investigated the influence of proton irradiation on the AlGaN/GaN high-electron-mobility transistor (HEMT) devices. Unlike previous studies on the degradation behavior upon proton irradiation, we observed improvements in their electrical conductivity and carrier concentration of up to 25% for the optimal condition. As we increased the proton dose, the carrier concentration and the mobility showed a gradual increase and decrease, respectively. From the photoluminescence measurements, we observed a reduction in the near-band-edge peak of GaN ( 366 nm), which correlate on the observed electrical properties. However, neither the Raman nor the X-ray diffraction analysis showed any changes, implying a negligible influence of protons on the crystal structures. We demonstrated that high-energy proton irradiation could be utilized to modify the transport properties of HEMT devices without damaging their crystal structures.
Standards for dielectric elastomer transducers
NASA Astrophysics Data System (ADS)
Carpi, Federico; Anderson, Iain; Bauer, Siegfried; Frediani, Gabriele; Gallone, Giuseppe; Gei, Massimiliano; Graaf, Christian; Jean-Mistral, Claire; Kaal, William; Kofod, Guggi; Kollosche, Matthias; Kornbluh, Roy; Lassen, Benny; Matysek, Marc; Michel, Silvain; Nowak, Stephan; O'Brien, Benjamin; Pei, Qibing; Pelrine, Ron; Rechenbach, Björn; Rosset, Samuel; Shea, Herbert
2015-10-01
Dielectric elastomer transducers consist of thin electrically insulating elastomeric membranes coated on both sides with compliant electrodes. They are a promising electromechanically active polymer technology that may be used for actuators, strain sensors, and electrical generators that harvest mechanical energy. The rapid development of this field calls for the first standards, collecting guidelines on how to assess and compare the performance of materials and devices. This paper addresses this need, presenting standardized methods for material characterisation, device testing and performance measurement. These proposed standards are intended to have a general scope and a broad applicability to different material types and device configurations. Nevertheless, they also intentionally exclude some aspects where knowledge and/or consensus in the literature were deemed to be insufficient. This is a sign of a young and vital field, whose research development is expected to benefit from this effort towards standardisation.
Gain studies of 1.3-μm dilute nitride HELLISH-VCSOA for optical communications
2012-01-01
The hot electron light emitting and lasing in semiconductor heterostructure-vertical-cavity semiconductor optical amplifier (HELLISH-VCSOA) device is based on Ga0.35In0.65 N0.02As0.08/GaAs material for operation in the 1.3-μm window of the optical communications. The device has undoped distributed Bragg reflectors (DBRs). Therefore, problems such as those associated with refractive index contrast and current injection, which are common with doped DBRs in conventional VCSOAs, are avoided. The gain versus applied electric field curves are measured at different wavelengths using a tunable laser as the source signal. The highest gain is obtained for the 1.3-μm wavelength when an electric field in excess of 2 kV/cm is applied along the layers of the device. PMID:23009105
Shepertycky, Michael; Li, Qingguo
2015-01-01
Background Much research in the field of energy harvesting has sought to develop devices capable of generating electricity during daily activities with minimum user effort. No previous study has considered the metabolic cost of carrying the harvester when determining the energetic effects it has on the user. When considering device carrying costs, no energy harvester to date has demonstrated the ability to generate a substantial amount of electricity (> 5W) while maintaining a user effort at the same level or lower than conventional power generation methods (e.g. hand crank generator). Methodology/Principal Findings We developed a lower limb-driven energy harvester that is able to generate approximately 9W of electricity. To quantify the performance of the harvester, we introduced a new performance measure, total cost of harvesting (TCOH), which evaluates a harvester’s overall efficiency in generating electricity including the device carrying cost. The new harvester captured the motion from both lower limbs and operated in the generative braking mode to assist the knee flexor muscles in slowing the lower limbs. From a testing on 10 participants under different walking conditions, the harvester achieved an average TCOH of 6.1, which is comparable to the estimated TCOH for a conventional power generation method of 6.2. When generating 5.2W of electricity, the TCOH of the lower limb-driven energy harvester (4.0) is lower than that of conventional power generation methods. Conclusions/Significance These results demonstrated that the lower limb-driven energy harvester is an energetically effective option for generating electricity during daily activities. PMID:26039493
Shepertycky, Michael; Li, Qingguo
2015-01-01
Much research in the field of energy harvesting has sought to develop devices capable of generating electricity during daily activities with minimum user effort. No previous study has considered the metabolic cost of carrying the harvester when determining the energetic effects it has on the user. When considering device carrying costs, no energy harvester to date has demonstrated the ability to generate a substantial amount of electricity (> 5W) while maintaining a user effort at the same level or lower than conventional power generation methods (e.g. hand crank generator). We developed a lower limb-driven energy harvester that is able to generate approximately 9W of electricity. To quantify the performance of the harvester, we introduced a new performance measure, total cost of harvesting (TCOH), which evaluates a harvester's overall efficiency in generating electricity including the device carrying cost. The new harvester captured the motion from both lower limbs and operated in the generative braking mode to assist the knee flexor muscles in slowing the lower limbs. From a testing on 10 participants under different walking conditions, the harvester achieved an average TCOH of 6.1, which is comparable to the estimated TCOH for a conventional power generation method of 6.2. When generating 5.2W of electricity, the TCOH of the lower limb-driven energy harvester (4.0) is lower than that of conventional power generation methods. These results demonstrated that the lower limb-driven energy harvester is an energetically effective option for generating electricity during daily activities.
Conductive Atomic Force Microscopy | Materials Science | NREL
electrical measurement techniques is the high spatial resolution. For example, C-AFM measurements on : High-resolution image of a sample semiconductor device; the image shows white puff-like clusters on a dark background and was obtained using atomic force microscopy. Bottom: High-resolution image of the
Implanted Blood-Pressure-Measuring Device
NASA Technical Reports Server (NTRS)
Fischell, Robert E.
1988-01-01
Arterial pressure compared with ambient bodily-fluid pressure. Implanted apparatus, capable of measuring blood pressure of patient, includes differential-pressure transducer connected to pressure sensor positioned in major artery. Electrical signal is function of differential pressure between blood-pressure sensor and reference-pressure sensor transmitted through skin of patient to recorder or indicator.
Interaction of ultrashort laser pulses and silicon solar cells under short circuit conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mundus, M., E-mail: markus.mundus@ise.fraunhofer.de; Giesecke, J. A.; Fischer, P.
Ultrashort pulse lasers are promising tools for numerous measurement purposes. Among other benefits their high peak powers allow for efficient generation of wavelengths in broad spectral ranges and at spectral powers that are orders of magnitude higher than in conventional light sources. Very recently this has been exploited for the establishment of sophisticated measurement facilities for electrical characterization of photovoltaic (PV) devices. As the high peak powers of ultrashort pulses promote nonlinear optical effects they might also give rise to nonlinear interactions with the devices under test that possibly manipulate the measurement outcome. In this paper, we present a comprehensivemore » theoretical and experimental study of the nonlinearities affecting short circuit current (I{sub SC}) measurements of silicon (Si) solar cells. We derive a set of coupled differential equations describing the radiation-device interaction and discuss the nonlinearities incorporated in those. By a semi-analytical approach introducing a quasi-steady-state approximation and integrating a Green's function we solve the system of equations and obtain simulated I{sub SC} values. We validate the theoretical model by I{sub SC} ratios obtained from a double ring resonator setup capable for reproducible generation of various ultrashort pulse trains. Finally, we apply the model to conduct the most prominent comparison of I{sub SC} generated by ultrashort pulses versus continuous illumination. We conclude by the important finding that the nonlinearities induced by ultrashort pulses are negligible for the most common I{sub SC} measurements. However, we also find that more specialized measurements (e.g., of concentrating PV or Si-multijunction devices as well as highly localized electrical characterizations) will be biased by two-photon-absorption distorting the I{sub SC} measurement.« less
NASA Astrophysics Data System (ADS)
Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.
2016-10-01
A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (< 100 psec), a regime that is not accessible in semiconductors using traditional Hanle techniques. The measurements were carried out on epitaxial Heusler alloy (Co2FeSi or Co2MnSi)/n-GaAs heterostructures. Lateral spin valve devices were fabricated by electron beam and photolithography. We compare measurements carried out by the new FMR-based technique with traditional non-local and three-terminal Hanle measurements. A full model appropriate for the measurements will be introduced, and a broader discussion in the context of spin pumping experimenments will be included in the talk. The new technique provides a simple and powerful means for detecting spin accumulation at high temperatures. Reference: C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296
Resonance measurement of nonlocal spin torque in a three-terminal magnetic device.
Xue, Lin; Wang, Chen; Cui, Yong-Tao; Liu, Luqiao; Swander, A; Sun, J Z; Buhrman, R A; Ralph, D C
2012-04-06
A pure spin current generated within a nonlocal spin valve can exert a spin-transfer torque on a nanomagnet. This nonlocal torque enables new design schemes for magnetic memory devices that do not require the application of large voltages across tunnel barriers that can suffer electrical breakdown. Here we report a quantitative measurement of this nonlocal spin torque using spin-torque-driven ferromagnetic resonance. Our measurement agrees well with the prediction of an effective circuit model for spin transport. Based on this model, we suggest strategies for optimizing the strength of nonlocal torque. © 2012 American Physical Society
Ferroelectric devices using lead zirconate titanate (PZT) nanoparticles.
Paik, Young Hun; Kojori, Hossein Shokri; Kim, Sung Jin
2016-02-19
We successfully demonstrate the synthesis of lead zirconate titanate nanoparticles (PZT NPs) and a ferroelectric device using the synthesized PZT NPs. The crystalline structure and the size of the nanocrystals are studied using x-ray diffraction and transmission electron microscopy, respectively. We observe <100 nm of PZT NPs and this result matches dynamic light scattering measurements. A solution-based low-temperature process is used to fabricate PZT NP-based devices on an indium tin oxide substrate. The fabricated ferroelectric devices are characterized using various optical and electrical measurements and we verify ferroelectric properties including ferroelectric hysteresis and the ferroelectric photovoltaic effect. Our approach enables low-temperature solution-based processes that could be used for various applications. To the best of our knowledge, this low-temperature solution processed ferroelectric device using PZT NPs is the first successful demonstration of its kind.
Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells.
Fang, Chaolong; Zheng, Jun; Zhang, Yaoju; Li, Yijie; Liu, Siyuan; Wang, Weiji; Jiang, Tao; Zhao, Xuesong; Li, Zhihong
2018-06-21
Microlens arrays can improve light transmittance in optical devices or enhance the photoelectrical conversion efficiency of photovoltaic devices. Their surface morphology (aspect ratio and packed density) is vital to photon management in solar cells. Here, we report a 100% packed density paraboloidal microlens array (PMLA), with a large aspect ratio, fabricated by direct-write UV laser photolithography coupled with soft imprint lithography. Optical characterization shows that the PMLA structure can remarkably decrease the front-side reflectance of solar cell device. The measured electrical parameters of the solar cell device clearly and consistently demonstrate that the PMLA film can considerably improve the photoelectrical conversion efficiency. In addition, the PMLA film has superhydrophobic properties, verified by measurement of a large water contact angle, and can enhance the self-cleaning capability of solar cell devices.
Ferroelectric devices using lead zirconate titanate (PZT) nanoparticles
NASA Astrophysics Data System (ADS)
Paik, Young Hun; Shokri Kojori, Hossein; Kim, Sung Jin
2016-02-01
We successfully demonstrate the synthesis of lead zirconate titanate nanoparticles (PZT NPs) and a ferroelectric device using the synthesized PZT NPs. The crystalline structure and the size of the nanocrystals are studied using x-ray diffraction and transmission electron microscopy, respectively. We observe <100 nm of PZT NPs and this result matches dynamic light scattering measurements. A solution-based low-temperature process is used to fabricate PZT NP-based devices on an indium tin oxide substrate. The fabricated ferroelectric devices are characterized using various optical and electrical measurements and we verify ferroelectric properties including ferroelectric hysteresis and the ferroelectric photovoltaic effect. Our approach enables low-temperature solution-based processes that could be used for various applications. To the best of our knowledge, this low-temperature solution processed ferroelectric device using PZT NPs is the first successful demonstration of its kind.
Electromagnetic pulse-induced current measurement device
NASA Astrophysics Data System (ADS)
Gandhi, Om P.; Chen, Jin Y.
1991-08-01
To develop safety guidelines for exposure to high fields associated with an electromagnetic pulse (EMP), it is necessary to devise techniques that would measure the peak current induced in the human body. The main focus of this project was to design, fabricate, and test a portable, self-contained stand-on device that would measure and hold the peak current and the integrated change Q. The design specifications of the EMP-Induced Current Measurement Device are as follows: rise time of the current pulse, 5 ns; peak current, 20-600 A; charge Q, 0-20 microcoulombs. The device uses a stand-on parallel-plate bilayer sensor and fast high-frequency circuit that are well-shielded against spurious responses to high incident fields. Since the polarity of the incident peak electric field of the EMP may be either positive or negative, the induced peak current can also be positive or negative. Therefore, the device is designed to respond to either of these polarities and measure and hold both the peak current and the integrated charge which are simultaneously displayed on two separate 3-1/2 digit displays. The prototype device has been preliminarily tested with the EMP's generated at the Air Force Weapons Laboratory (ALECS facility) at Kirtland AFB, New Mexico.
Karsten, Stanislav L; Kumemura, Momoko; Jalabert, Laurent; Lafitte, Nicolas; Kudo, Lili C; Collard, Dominique; Fujita, Hiroyuki
2016-05-24
Previously, we reported the application of micromachined silicon nanotweezers (SNT) integrated with a comb-drive actuator and capacitive sensors for capturing and mechanical characterization of DNA bundles. Here, we demonstrate direct DNA amplification on such a MEMS structure with subsequent electrical and mechanical characterization of a single stranded DNA (ssDNA) bundle generated between the tips of SNT via isothermal rolling circle amplification (RCA) and dielectrophoresis (DEP). An in situ generated ssDNA bundle was visualized and evaluated via electrical conductivity (I-V) and mechanical frequency response measurements. Colloidal gold nanoparticles significantly enhanced (P < 0.01) the electrical properties of thin ssDNA bundles. The proposed technology allows direct in situ synthesis of DNA with a predefined sequence on the tips of a MEMS sensor device, such as SNT, followed by direct DNA electrical and mechanical characterization. In addition, our data provides a "proof-of-principle" for the feasibility of the on-chip label free DNA detection device that can be used for a variety of biomedical applications focused on sequence specific DNA detection.
Electrical properties of dislocations in III-Nitrides
NASA Astrophysics Data System (ADS)
Cavalcoli, D.; Minj, A.; Pandey, S.; Cavallini, A.
2014-02-01
Research on GaN, AlN, InN (III-N) and their alloys is achieving new heights due their high potential applications in photonics and electronics. III-N semiconductors are mostly grown epitaxially on sapphire, and due to the large lattice mismatch and the differences in the thermal expansion coefficients, the structures usually contain many threading dislocations (TDs). While their structural properties have been widely investigated, their electrical characteristics and their role in the transport properties of the devices are still debated. In the present contribution we will show conductive AFM studies of TDs in GaN and Al/In GaN ternary alloys to evidence the role of strain, different surface polarity and composition on their electrical properties. Local I-V curves measured at TDs allowed us to clarify their role in the macroscopic electrical properties (leakage current, mobilities) of III-N based devices. Samples obtained by different growers (AIXTRON, III-V Lab) were studied. The comparison between the results obtained in the different alloys allowed us to understand the role of In and Al on the TDs electrical properties.
Multi-channel temperature measurement system for automotive battery stack
NASA Astrophysics Data System (ADS)
Lewczuk, Radoslaw; Wojtkowski, Wojciech
2017-08-01
A multi-channel temperature measurement system for monitoring of automotive battery stack is presented in the paper. The presented system is a complete battery temperature measuring system for hybrid / electric vehicles that incorporates multi-channel temperature measurements with digital temperature sensors communicating through 1-Wire buses, individual 1-Wire bus for each sensor for parallel computing (parallel measurements instead of sequential), FPGA device which collects data from sensors and translates it for CAN bus frames. CAN bus is incorporated for communication with car Battery Management System and uses additional CAN bus controller which communicates with FPGA device through SPI bus. The described system can parallel measure up to 12 temperatures but can be easily extended in the future in case of additional needs. The structure of the system as well as particular devices are described in the paper. Selected results of experimental investigations which show proper operation of the system are presented as well.
Versatile apparatus for thermoelectric characterization of oxides at high temperatures
NASA Astrophysics Data System (ADS)
Schrade, Matthias; Fjeld, Harald; Norby, Truls; Finstad, Terje G.
2014-10-01
An apparatus for measuring the Seebeck coefficient and electrical conductivity is presented and characterized. The device can be used in a wide temperature range from room temperature to 1050 °C and in all common atmospheres, including oxidizing, reducing, humid, and inert. The apparatus is suitable for samples with different geometries (disk-, bar-shaped), allowing a complete thermoelectric characterization (including thermal conductivity) on a single sample. The Seebeck coefficient α can be measured in both sample directions (in-plane and cross-plane) simultaneously. Electrical conductivity is measured via the van der Pauw method. Perovskite-type CaMnO3 and the misfit cobalt oxide (Ca2CoO3)q(CoO2) are studied to demonstrate the temperature range and to investigate the variation of the electrical properties as a function of the measurement atmosphere.
Versatile apparatus for thermoelectric characterization of oxides at high temperatures.
Schrade, Matthias; Fjeld, Harald; Norby, Truls; Finstad, Terje G
2014-10-01
An apparatus for measuring the Seebeck coefficient and electrical conductivity is presented and characterized. The device can be used in a wide temperature range from room temperature to 1050 °C and in all common atmospheres, including oxidizing, reducing, humid, and inert. The apparatus is suitable for samples with different geometries (disk-, bar-shaped), allowing a complete thermoelectric characterization (including thermal conductivity) on a single sample. The Seebeck coefficient α can be measured in both sample directions (in-plane and cross-plane) simultaneously. Electrical conductivity is measured via the van der Pauw method. Perovskite-type CaMnO3 and the misfit cobalt oxide (Ca2CoO3)q(CoO2) are studied to demonstrate the temperature range and to investigate the variation of the electrical properties as a function of the measurement atmosphere.
Battery self-warming mechanism using the inverter and the battery main disconnect circuitry
Ashtiani, Cyrus N.; Stuart, Thomas A.
2005-04-19
An apparatus connected to an energy storage device for powering an electric motor and optionally providing a warming function for the energy storage device is disclosed. The apparatus includes a circuit connected to the electric motor and the energy storage device for generating a current. The apparatus also includes a switching device operably associated with the circuit for selectively directing the current to one of the electric motor and the energy storage device.
Memory effects in a Al/Ti:HfO2/CuPc metal-oxide-semiconductor device
NASA Astrophysics Data System (ADS)
Tripathi, Udbhav; Kaur, Ramneek
2016-05-01
Metal oxide semiconductor structured organic memory device has been successfully fabricated. Ti doped hafnium oxide (Ti:HfO2) nanoparticles has been fabricated by precipitation method and further calcinated at 800 °C. Copper phthalocyanine, a hole transporting material has been utilized as an organic semiconductor. The electrical properties of the fabricated device have been studied by measuring the current-voltage and capacitance-voltage characteristics. The amount of charge stored in the nanoparticles has been calculated by using flat band condition. This simple approach for fabricating MOS memory device has opens up opportunities for the development of next generation memory devices.
NASA Astrophysics Data System (ADS)
Xia, Minggang; Liang, Chunping; Hu, Ruixue; Cheng, Zhaofang; Liu, Shiru; Zhang, Shengli
2018-05-01
It is imperative and highly desirable to buffer the stress in flexible electronic devices. In this study, we designed and fabricated lamellate poly(dimethylsiloxane) (PDMS) samples with gradient elastic moduli, motivated by the protection of the pomelo pulp by its skin, followed by the measurements of their elastic moduli. We demonstrated that the electrical and fatigue performances of a Ag-nanowire thin film device on the PDMS substrate with a gradient elastic modulus are significantly better than those of a device on a substrate with a monolayer PDMS. This study provides a robust scheme to effectively protect flexible electronic devices.
Hu, Xuelu; Wang, Xiao; Fan, Peng; Li, Yunyun; Zhang, Xuehong; Liu, Qingbo; Zheng, Weihao; Xu, Gengzhao; Wang, Xiaoxia; Zhu, Xiaoli; Pan, Anlian
2018-05-09
Metal halide perovskite nanostructures have recently been the focus of intense research due to their exceptional optoelectronic properties and potential applications in integrated photonics devices. Charge transport in perovskite nanostructure is a crucial process that defines efficiency of optoelectronic devices but still requires a deep understanding. Herein, we report the study of the charge transport, particularly the drift of minority carrier in both all-inorganic CsPbBr 3 and organic-inorganic hybrid CH 3 NH 3 PbBr 3 perovskite nanoplates by electric field modulated photoluminescence (PL) imaging. Bias voltage dependent elongated PL emission patterns were observed due to the carrier drift at external electric fields. By fitting the drift length as a function of electric field, we obtained the carrier mobility of about 28 cm 2 V -1 S -1 in the CsPbBr 3 perovskite nanoplate. The result is consistent with the spatially resolved PL dynamics measurement, confirming the feasibility of the method. Furthermore, the electric field modulated PL imaging is successfully applied to the study of temperature-dependent carrier mobility in CsPbBr 3 nanoplates. This work not only offers insights for the mobile carrier in metal halide perovskite nanostructures, which is essential for optimizing device design and performance prediction, but also provides a novel and simple method to investigate charge transport in many other optoelectronic materials.
Single-Walled Carbon Nanotubes Probed with Insulator-Based Dielectrophoresis
2017-01-01
Single-walled carbon nanotubes (SWNTs) offer unique electrical and optical properties. Common synthesis processes yield SWNTs with large length polydispersity (several tens of nanometers up to centimeters) and heterogeneous electrical and optical properties. Applications often require suitable selection and purification. Dielectrophoresis is one manipulation method for separating SWNTs based on dielectric properties and geometry. Here, we present a study of surfactant and single-stranded DNA-wrapped SWNTs suspended in aqueous solutions manipulated by insulator-based dielectrophoresis (iDEP). This method allows us to manipulate SWNTs with the help of arrays of insulating posts in a microfluidic device around which electric field gradients are created by the application of an electric potential to the extremities of the device. Semiconducting SWNTs were imaged during dielectrophoretic manipulation with fluorescence microscopy making use of their fluorescence emission in the near IR. We demonstrate SWNT trapping at low-frequency alternating current (AC) electric fields with applied potentials not exceeding 1000 V. Interestingly, suspended SWNTs showed both positive and negative dielectrophoresis, which we attribute to their ζ potential and the suspension properties. Such behavior agrees with common theoretical models for nanoparticle dielectrophoresis. We further show that the measured ζ potentials and suspension properties are in excellent agreement with a numerical model predicting the trapping locations in the iDEP device. This study is fundamental for the future application of low-frequency AC iDEP for technological applications of SWNTs. PMID:29131586
21 CFR 890.3110 - Electric positioning chair.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electric positioning chair. 890.3110 Section 890.3110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3110 Electric...
21 CFR 890.3110 - Electric positioning chair.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electric positioning chair. 890.3110 Section 890.3110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3110 Electric...
21 CFR 890.3110 - Electric positioning chair.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electric positioning chair. 890.3110 Section 890.3110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3110 Electric...
21 CFR 890.3110 - Electric positioning chair.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electric positioning chair. 890.3110 Section 890.3110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3110 Electric...
21 CFR 890.3110 - Electric positioning chair.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electric positioning chair. 890.3110 Section 890.3110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3110 Electric...
Design and Characterization of p-i-n Devices for Betavoltaic Microbatteries on Gallium Nitride
NASA Astrophysics Data System (ADS)
Khan, Muhammad Raziuddin A.
Betavoltaic microbatteries convert nuclear energy released as beta particles directly into electrical energy. These batteries are well suited for electrical applications such as micro-electro-mechanical systems (MEMS), implantable medical devices and sensors. Such devices are often located in hard to access places where long life, micro-size and lightweight are required. The working principle of a betavoltaic device is similar to a photovoltaic device; they differ only in that the electron hole pairs (EHPs) are generated in the device by electrons instead of photons. In this study, the performance of a betavoltaic device fabricated from gallium nitride (GaN) is investigated for beta particle energies equivalent to Tritium (3H) and Nickel-63 (N63) beta sources. GaN is an attractive choice for fabricating betavoltaic devices due to its wide band gap and radiation resistance. Another advantage GaN has is that it can be alloyed with aluminum (Al) to further increase the bandgap, resulting in a higher output power and increased efficiency. Betavoltaic devices were fabricated on p-i-n GaN structures grown by metalorganic chemical vapor deposition (MOCVD). The devices were characterized using current - voltage (IV) measurements without illumination (light or beta), using a laser driven light source, and under an electron beam. Dark IV measurements showed a turn on-voltage of ~ 3.4 V, specific-on-resistance of 15.1 m O-cm2, and a leakage current of 0.5 mA at -- 10 V. A clear photo-response was observed when IV curves were measured for these devices under a light source at a wavelength of 310 nm (4.0 eV). These devices were tested under an electron beam in order to evaluate their behavior as betavoltaic microbatteries without using radioactive materials. Output power of 70 nW and 640 nW with overall efficiencies of 1.2% and 4.0% were determined at the average energy emission of 3H (5.6 keV) and 63N (17 keV) respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Drew Adam; Backhaus, Scott N.
Control of consumer electrical devices for providing electrical grid services is expanding in both the scope and the diversity of loads that are engaged in control, but there are few experimentally-based models of these devices suitable for control designs and for assessing the cost of control. A laboratory-scale test system is developed to experimentally evaluate the use of a simple window-mount air conditioner for electrical grid regulation services. The experimental test bed is a single, isolated air conditioner embedded in a test system that both emulates the thermodynamics of an air conditioned room and also isolates the air conditioner frommore » the real-world external environmental and human variables that perturb the careful measurements required to capture a model that fully characterizes both the control response functions and the cost of control. The control response functions and cost of control are measured using harmonic perturbation of the temperature set point and a test protocol that further isolates the air conditioner from low frequency environmental variability.« less
Electrical Characterization of 3D Au Microelectrodes for Use in Retinal Prostheses.
Lee, Sangmin; Ahn, Jae Hyun; Seo, Jong-Mo; Chung, Hum; Cho, Dong-Il Dan
2015-06-17
In order to provide high-quality visual information to patients who have implanted retinal prosthetic devices, the number of microelectrodes should be large. As the number of microelectrodes is increased, the dimensions of each microelectrode must be decreased, which in turn results in an increased microelectrode interface impedance and decreased injection current dynamic range. In order to improve the trade-off envelope between the number of microelectrodes and the current injection characteristics, a 3D microelectrode structure can be used as an alternative. In this paper, the electrical characteristics of 2D and 3D Au microelectrodes were investigated. In order to examine the effects of the structural difference, 2D and 3D Au microelectrodes with different base areas but similar effective surface areas were fabricated and evaluated. Interface impedances were measured and similar dynamic ranges were obtained for both 2D and 3D Au microelectrodes. These results indicate that more electrodes can be implemented in the same area if 3D designs are used. Furthermore, the 3D Au microelectrodes showed substantially enhanced electrical durability characteristics against over-injected stimulation currents, withstanding electrical currents that are much larger than the limit measured for 2D microelectrodes of similar area. This enhanced electrical durability property of 3D Au microelectrodes is a new finding in microelectrode research, and makes 3D microelectrodes very desirable devices.
Daylight control system device and method
Paton, John Douglas
2007-03-13
A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.
Daylight control system, device and method
Paton, John Douglas
2012-08-28
A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.
Daylight control system device and method
Paton, John Douglas
2009-12-01
A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.
NASA Astrophysics Data System (ADS)
Chen, Wencong; Zhang, Xi; Diao, Dongfeng
2018-05-01
We propose a fast semi-analytical method to predict ion energy distribution functions and sheath electric field in multi-frequency capacitively coupled plasmas, which are difficult to measure in commercial plasma reactors. In the intermediate frequency regime, the ion density within the sheath is strongly modulated by the low-frequency sheath electric field, making the time-independent ion density assumption employed in conventional models invalid. Our results are in a good agreement with experimental measurements and computer simulations. The application of this method will facilitate the understanding of ion–material interaction mechanisms and development of new-generation plasma etching devices.
Electrically detected magnetic resonance in a W-band microwave cavity
NASA Astrophysics Data System (ADS)
Lang, V.; Lo, C. C.; George, R. E.; Lyon, S. A.; Bokor, J.; Schenkel, T.; Ardavan, A.; Morton, J. J. L.
2011-03-01
We describe a low-temperature sample probe for the electrical detection of magnetic resonance in a resonant W-band (94 GHz) microwave cavity. The advantages of this approach are demonstrated by experiments on silicon field-effect transistors. A comparison with conventional low-frequency measurements at X-band (9.7 GHz) on the same devices reveals an up to 100-fold enhancement of the signal intensity. In addition, resonance lines that are unresolved at X-band are clearly separated in the W-band measurements. Electrically detected magnetic resonance at high magnetic fields and high microwave frequencies is therefore a very sensitive technique for studying electron spins with an enhanced spectral resolution and sensitivity.
Detection of picosecond electrical pulses using the intrinsic Franz{endash}Keldysh effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lampin, J. F.; Desplanque, L.; Mollot, F.
2001-06-25
We report time-resolved measurements of ultrafast electrical pulses propagating on a coplanar transmission line using the intrinsic Franz{endash}Keldysh effect. A low-temperature-grown GaAs layer deposited on a GaAs substrate allows generation and also detection of ps pulses via electroabsorption sampling (EAS). This all-optical method does not require any external sampling probe. A typical rise time of 1.1 ps has been measured. EAS is a good candidate for use in THz characterization of ultrafast devices. {copyright} 2001 American Institute of Physics.
Multifunctional semiconductor micro-Hall devices for magnetic, electric, and photo-detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbertson, A. M.; Cohen, L. F.; Sadeghi, Hatef
2015-12-07
We report the real-space voltage response of InSb/AlInSb micro-Hall devices to local photo-excitation, electric, and magnetic fields at room temperature using scanning probe microscopy. We show that the ultrafast generation of localised photocarriers results in conductance perturbations analogous to those produced by local electric fields. Experimental results are in good agreement with tight-binding transport calculations in the diffusive regime. The magnetic, photo, and charge sensitivity of a 2 μm wide probe are evaluated at a 10 μA bias current in the Johnson noise limit (valid at measurement frequencies > 10 kHz) to be, respectively, 500 nT/√Hz; 20 pW/√Hz (λ = 635 nm) comparable to commercial photoconductive detectors;more » and 0.05 e/√Hz comparable to that of single electron transistors. These results demonstrate the remarkably versatile sensing attributes of simple semiconductor micro-Hall devices that can be applied to a host of imaging and sensing applications.« less
Repetitive transcranial magnetic stimulator with controllable pulse parameters
NASA Astrophysics Data System (ADS)
Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.
2011-06-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.
Direct mapping of electrical noise sources in molecular wire-based devices
Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun
2017-01-01
We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices. PMID:28233821
NASA Astrophysics Data System (ADS)
Zanoni, Enrico; Meneghesso, Gaudenzio; Menozzi, Roberto
2000-03-01
Hot electron in III-V FETs can be indirectly monitored by measuring the current coming out from the gate when the device is biased at high electric fields. This negative current is due to the collection of holes generated by impact ionization in the gate-to drain region. Electroluminescence represents a powerful tool in order to characterize not only hot electrons but also material properties. By using spatially resolved emission microscopy it is possible to show that the light due to cold electron/hole recombination is emitted between the gate and the source (low electric field region), while the contribution due to hot electrons is emitted between the gate and the drain (high electric field region). Deep-traps created in the device by hot carriers can be analysed by means of drain current deep level transient spectroscopy and by transconductance frequency dispersion. Cathodoluminescence, optical beam induced current, X-ray spectroscopy, electron energy loss spectroscopy in combination with a transmission electron microscopy are powerful tools in order to identify and localize surface modification following hot-electron stress tests.
Repetitive transcranial magnetic stimulator with controllable pulse parameters.
Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H
2011-06-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.
Direct mapping of electrical noise sources in molecular wire-based devices
NASA Astrophysics Data System (ADS)
Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun
2017-02-01
We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices.
Device, system and method for a sensing electrical circuit
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
2009-01-01
The invention relates to a driven ground electrical circuit. A driven ground is a current-measuring ground termination to an electrical circuit with the current measured as a vector with amplification. The driven ground module may include an electric potential source V.sub.S driving an electric current through an impedance (load Z) to a driven ground. Voltage from the source V.sub.S excites the minus terminal of an operational amplifier inside the driven ground which, in turn, may react by generating an equal and opposite voltage to drive the net potential to approximately zero (effectively ground). A driven ground may also be a means of passing information via the current passing through one grounded circuit to another electronic circuit as input. It may ground one circuit, amplify the information carried in its current and pass this information on as input to the next circuit.
Duncan, Diane Irvine; Kim, Theresa H. M.; Temaat, Robbin
2016-01-01
Noninvasive fat reduction is claimed by many device manufacturers, but proof of efficacy has been difficult to establish. This prospective study was designed to measure the reduction of fat thickness and actual volume reduction in 20 female patients treated with an external radiofrequency (RF) device. This device combines RF heat, suction coupled vacuum, and oscillating electrical pulses that induce adipocyte death over time. Patients underwent pre- and post-treatment and intercurrent measurements of weight, body mass index, ultrasonic transcutaneous fat thickness, and 2D and 3D Vectra photography with independent calculation of circumferential and volumetric change. Mean transcutaneous ultrasound thickness at reproducible points was 2.78 cm; at 1-month post-treatment, the mean fat thickness was 1.71 cm. At 3-month post-treatment, the mean fat thickness reduction was 39.6%. Vectra circumference measurements were taken at 10-mm intervals, with postural and breathing cycle control. Independent analysis of serial measurements from + 60 to − 70 mm showed mean abdominal circumference measurement of 2.3 cm. Mean abdominal volume loss was 202.4 and 428.5 cc at 1- and 3-month post-treatment, respectively. Scanning electron microscopy confirmed that permanent cell destruction was caused by irreversible electroporation. Pyroptosis appears to be the mechanism of action. PMID:26962636
Duncan, Diane Irvine; Kim, Theresa H M; Temaat, Robbin
2016-10-01
Noninvasive fat reduction is claimed by many device manufacturers, but proof of efficacy has been difficult to establish. This prospective study was designed to measure the reduction of fat thickness and actual volume reduction in 20 female patients treated with an external radiofrequency (RF) device. This device combines RF heat, suction coupled vacuum, and oscillating electrical pulses that induce adipocyte death over time. Patients underwent pre- and post-treatment and intercurrent measurements of weight, body mass index, ultrasonic transcutaneous fat thickness, and 2D and 3D Vectra photography with independent calculation of circumferential and volumetric change. Mean transcutaneous ultrasound thickness at reproducible points was 2.78 cm; at 1-month post-treatment, the mean fat thickness was 1.71 cm. At 3-month post-treatment, the mean fat thickness reduction was 39.6%. Vectra circumference measurements were taken at 10-mm intervals, with postural and breathing cycle control. Independent analysis of serial measurements from + 60 to - 70 mm showed mean abdominal circumference measurement of 2.3 cm. Mean abdominal volume loss was 202.4 and 428.5 cc at 1- and 3-month post-treatment, respectively. Scanning electron microscopy confirmed that permanent cell destruction was caused by irreversible electroporation. Pyroptosis appears to be the mechanism of action.
Strobel, Sebastian; Sperling, Ralph A; Fenk, Bernhard; Parak, Wolfgang J; Tornow, Marc
2011-06-07
We report on the successful dielectrophoretic trapping and electrical characterization of DNA-coated gold nanoparticles on vertical nanogap devices (VNDs). The nanogap devices with an electrode distance of 13 nm were fabricated from Silicon-on-Insulator (SOI) material using a combination of anisotropic reactive ion etching (RIE), selective wet chemical etching and metal thin-film deposition. Au nanoparticles (diameter 40 nm) coated with a monolayer of dithiolated 8 base pairs double stranded DNA were dielectrophoretically trapped into the nanogap from electrolyte buffer solution at MHz frequencies as verified by scanning and transmission electron microscopy (SEM/TEM) analysis. First electrical transport measurements through the formed DNA-Au-DNA junctions partially revealed an approximately linear current-voltage characteristic with resistance in the range of 2-4 GΩ when measured in solution. Our findings point to the importance of strong covalent bonding to the electrodes in order to observe DNA conductance, both in solution and in the dry state. We propose our setup for novel applications in biosensing, addressing the direct interaction of biomolecular species with DNA in aqueous electrolyte media.
Robust high temperature composite and CO sensor made from such composite
Dutta, Prabir K.; Ramasamy, Ramamoorthy; Li, Xiaogan; Akbar, Sheikh A.
2010-04-13
Described herein is a composite exhibiting a change in electrical resistance proportional to the concentration of a reducing gas present in a gas mixture, detector and sensor devices comprising the composite, a method for making the composite and for making devices comprising the composite, and a process for detecting and measuring a reducing gas in an atmosphere. In particular, the reducing gas may be carbon monoxide and the composite may comprise rutile-phase TiO2 particles and platinum nanoclusters. The composite, upon exposure to a gas mixture containing CO in concentrations of up to 10,000 ppm, exhibits an electrical resistance proportional to the concentration of the CO present. The composite is useful for making sensitive, low drift, fast recovering detectors and sensors, and for measuring CO concentrations in a gas mixture present at levels from sub-ppm up to 10,000 ppm. The composites, and devices made from the composites, are stable and operable in a temperature range of from about 450.degree. C. to about 700.degree. C., such as may be found in a combustion chamber.
Low-Field and High-Field Characterization of THUNDER Actuators
NASA Technical Reports Server (NTRS)
Ounaies, Z.; Mossi, K.; Smith, R.; Bernd, J.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
THUNDER (THin UNimorph DrivER) actuators are pre-stressed piezoelectric devices developed at NASA Langley Research Center (LaRC) that exhibit enhanced strain capabilities. As a result, they are of interest in a variety of aerospace applications. Characterization of their performance as a function of electric field, temperature and frequency is needed in order to optimize their operation. Towards that end, a number of THUNDER devices were obtained from FACE International Co. with a stainless steel substrate varying in thickness from 1 mil to 20 mils. The various devices were evaluated to determine low-field and high-field displacement its well as the polarization hysteresis loops. The thermal stability of these drivers was evaluated by two different methods. First, the samples were thermally cycled under electric field by systematically increasing the maximum temperature from 25 C to 200 C while the displacement was being measured. Second, the samples were isothermally aged at 0 C, 50 C, 100 C. and 150 C in air, and the isothermal decay of the displacement was measured at room temperature as a function of time.
NASA Technical Reports Server (NTRS)
Watring, Dale A. (Inventor); Johnson, Martin L. (Inventor)
1996-01-01
An ampoule failure system for use in material processing furnaces comprising a containment cartridge and an ampoule failure sensor. The containment cartridge contains an ampoule of toxic material therein and is positioned within a furnace for processing. An ampoule failure probe is positioned in the containment cartridge adjacent the ampoule for detecting a potential harmful release of toxic material therefrom during processing. The failure probe is spaced a predetermined distance from the ampoule and is chemically chosen so as to undergo a timely chemical reaction with the toxic material upon the harmful release thereof. The ampoule failure system further comprises a data acquisition system which is positioned externally of the furnace and is electrically connected to the ampoule failure probe so as to form a communicating electrical circuit. The data acquisition system includes an automatic shutdown device for shutting down the furnace upon the harmful release of toxic material. It also includes a resistance measuring device for measuring the resistance of the failure probe during processing. The chemical reaction causes a step increase in resistance of the failure probe whereupon the automatic shutdown device will responsively shut down the furnace.
Code of Federal Regulations, 2011 CFR
2011-07-01
... covered electric furnaces and other smelting operations with wet air pollution control devices subcategory... Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.20 Applicability; description of the covered electric furnaces and other smelting operations with wet air pollution control devices...
Code of Federal Regulations, 2010 CFR
2010-07-01
... covered electric furnaces and other smelting operations with wet air pollution control devices subcategory... Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.20 Applicability; description of the covered electric furnaces and other smelting operations with wet air pollution control devices...
Code of Federal Regulations, 2012 CFR
2012-07-01
... covered electric furnaces and other smelting operations with wet air pollution control devices subcategory... Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.20 Applicability; description of the covered electric furnaces and other smelting operations with wet air pollution control devices...
Code of Federal Regulations, 2013 CFR
2013-07-01
... covered electric furnaces and other smelting operations with wet air pollution control devices subcategory... Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.20 Applicability; description of the covered electric furnaces and other smelting operations with wet air pollution control devices...
Code of Federal Regulations, 2014 CFR
2014-07-01
... covered electric furnaces and other smelting operations with wet air pollution control devices subcategory... Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.20 Applicability; description of the covered electric furnaces and other smelting operations with wet air pollution control devices...
Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation.
Takeda, Kotaro; Tanino, Genichi; Miyasaka, Hiroyuki
2017-01-01
Neuromuscular electrical stimulation (NMES), specifically functional electrical stimulation (FES) that compensates for voluntary motion, and therapeutic electrical stimulation (TES) aimed at muscle strengthening and recovery from paralysis are widely used in stroke rehabilitation. The electrical stimulation of muscle contraction should be synchronized with intended motion to restore paralysis. Therefore, NMES devices, which monitor electromyogram (EMG) or electroencephalogram (EEG) changes with motor intention and use them as a trigger, have been developed. Devices that modify the current intensity of NMES, based on EMG or EEG, have also been proposed. Given the diversity in devices and stimulation methods of NMES, the aim of the current review was to introduce some commercial FES and TES devices and application methods, which depend on the condition of the patient with stroke, including the degree of paralysis.
Jiang, Chun-Sheng; Yang, Mengjin; Zhou, Yuanyuan; To, Bobby; Nanayakkara, Sanjini U.; Luther, Joseph M.; Zhou, Weilie; Berry, Joseph J.; van de Lagemaat, Jao; Padture, Nitin P.; Zhu, Kai; Al-Jassim, Mowafak M.
2015-01-01
Organometal–halide perovskite solar cells have greatly improved in just a few years to a power conversion efficiency exceeding 20%. This technology shows unprecedented promise for terawatt-scale deployment of solar energy because of its low-cost, solution-based processing and earth-abundant materials. We have studied charge separation and transport in perovskite solar cells—which are the fundamental mechanisms of device operation and critical factors for power output—by determining the junction structure across the device using the nanoelectrical characterization technique of Kelvin probe force microscopy. The distribution of electrical potential across both planar and porous devices demonstrates p–n junction structure at the TiO2/perovskite interfaces and minority-carrier diffusion/drift operation of the devices, rather than the operation mechanism of either an excitonic cell or a p-i-n structure. Combining the potential profiling results with solar cell performance parameters measured on optimized and thickened devices, we find that carrier mobility is a main factor that needs to be improved for further gains in efficiency of the perovskite solar cells. PMID:26411597
Jiang, Chun-Sheng; Yang, Mengjin; Zhou, Yuanyuan; ...
2015-09-28
Organometal–halide perovskite solar cells have greatly improved in just a few years to a power conversion efficiency exceeding 20%. This technology shows unprecedented promise for terawatt-scale deployment of solar energy because of its low-cost, solution-based processing and earth-abundant materials. We have studied charge separation and transport in perovskite solar cells—which are the fundamental mechanisms of device operation and critical factors for power output—by determining the junction structure across the device using the nanoelectrical characterization technique of Kelvin probe force microscopy. Moreover, the distribution of electrical potential across both planar and porous devices demonstrates p–n junction structure at the TiO2/perovskite interfacesmore » and minority-carrier diffusion/drift operation of the devices, rather than the operation mechanism of either an excitonic cell or a p-i-n structure. When we combined the potential profiling results with solar cell performance parameters measured on optimized and thickened devices, we find that carrier mobility is a main factor that needs to be improved for further gains in efficiency of the perovskite solar cells.« less
Qiu, Yongqiang; Gigliotti, James V.; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E. M.; Cochran, Sandy; Trolier-McKinstry, Susan
2015-01-01
Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed. PMID:25855038
Qiu, Yongqiang; Gigliotti, James V; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E M; Cochran, Sandy; Trolier-McKinstry, Susan
2015-04-03
Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed.
Oil leakage detection for electric power equipment based on ultraviolet fluorescence effect
NASA Astrophysics Data System (ADS)
Zhang, Jing; Wang, Jian-hui; Xu, Bin; Huang, Zhi-dong; Huang, Lan-tao
2018-03-01
This paper presents a method to detect the oil leakage of high voltage power equipment based on ultraviolet fluorescence effect. The method exploits the principle that the insulating oil has the fluorescent effect under the irradiation of specific ultraviolet light. The emission spectrum of insulating oil under excitation light with different wavelengths is measured and analyzed first. On this basis, a portable oil leakage detective device for high voltage power equipment is designed and developed with a selected 365 nm ultraviolet as the excitation light and the low light level camera as the fluorescence image collector. Then, the feasibility of the proposed method and device in different conditions is experimentally verified in the laboratory environment. Finally, the developed oil leakage detective device is applied to 500 kV Xiamen substation and Quanzhou substation. And the results show that the device can detect the oil leakage of high voltage electrical equipment quickly and conveniently even under the condition of a slight oil leakage especially in the low light environment.
Development and fabrication of an augmented power transistor
NASA Technical Reports Server (NTRS)
Geisler, M. J.; Hill, F. E.; Ostop, J. A.
1983-01-01
The development of device design and processing techniques for the fabrication of an augmented power transistor capable of fast switching and high voltage power conversion is discussed. The major device goals sustaining voltages in the range of 800 to 1000 V at 80 A and 50 A, respectively, at a gain of 14. The transistor switching rise and fall times were both to have been less than 0.5 microseconds. The development of a passivating glass technique to shield the device high voltage junction from moisture and ionic contaminants is discussed as well as the development of an isolated package that separates the thermal and electrical interfaces. A new method was found to alloy the transistors to the molybdenum disc at a relatively low temperature. The measured electrical performance compares well with the predicted optimum design specified in the original proposed design. A 40 mm diameter transistor was fabricated with seven times the emitter area of the earlier 23 mm diameter device.
Pallett, Edward J; Rentowl, Patricia; Johnson, Mark I; Watson, Paul J
2014-03-01
The efficacy of transcutaneous electrical nerve stimulation (TENS) for pain relief has not been reliably established. Inconclusive findings could be due to inadequate TENS delivery and inappropriate outcome assessment. Electronic monitoring devices were used to determine patient compliance with a TENS intervention and outcome assessment protocol, to record pain scores before, during, and after TENS, and measure electrical output settings. Patients with chronic back pain consented to use TENS daily for 2 weeks and to report pain scores before, during, and after 1-hour treatments. A ≥ 30% reduction in pain scores was used to classify participants as TENS responders. Electronic monitoring devices "TLOG" and "TSCORE" recorded time and duration of TENS use, electrical settings, and pain scores. Forty-two patients consented to participate. One of 35 (3%) patients adhered completely to the TENS use and pain score reporting protocol. Fourteen of 33 (42%) were TENS responders according to electronic pain score data. Analgesia onset occurred within 30 to 60 minutes for 13/14 (93%) responders. It was not possible to correlate TENS amplitude, frequency, or pulse width measurements with therapeutic response. Findings from TENS research studies depend on the timing of outcome assessment; pain should be recorded during stimulation. TENS device sophistication might be an issue and parameter restriction should be considered. Careful protocol design is required to improve adherence and monitoring is necessary to evaluate the validity of findings. This observational study provides objective evidence to support concerns about poor implementation fidelity in TENS research.
21 CFR 880.2460 - Electrically powered spinal fluid pressure monitor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrically powered spinal fluid pressure monitor... Personal Use Monitoring Devices § 880.2460 Electrically powered spinal fluid pressure monitor. (a) Identification. An electrically powered spinal fluid pressure monitor is an electrically powered device used to...
21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Transcutaneous electrical nerve stimulator for... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to...
21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Transcutaneous electrical nerve stimulator for...
21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Transcutaneous electrical nerve stimulator for...
21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Transcutaneous electrical nerve stimulator for...
21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Transcutaneous electrical nerve stimulator for...
21 CFR 876.5310 - Nonimplanted, peripheral electrical continence device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonimplanted, peripheral electrical continence device. 876.5310 Section 876.5310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876...
21 CFR 876.5310 - Nonimplanted, peripheral electrical continence device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nonimplanted, peripheral electrical continence device. 876.5310 Section 876.5310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876...
NASA Astrophysics Data System (ADS)
Alif, S. M.; Nugroho, A. P.; Leksono, B. E.
2018-03-01
Energy security has one of its dimensions: Short-term energy security which focuses on the ability of the energy system to react promptly to sudden changes within the supply-demand balance. Non-energy components (such as land parcel) that comprise an energy system are analysed comprehensively with other component to measure energy security related to energy supply. Multipurpose cadastre which is an integrated land information system containing legal, physical, and cultural is used to evaluate energy (electrical energy) security of land parcel. The fundamental component of multipurpose cadastre used to evaluate energy security is attribute data which is the value of land parcel facilities. Other fundamental components (geographic control data, base map data, cadastral data) are used as position information and provide weight in room (part of land parcel) valuation. High value-room means the room is comfortable and/or used productively by its occupant. The method of valuation is by comparing one facility to other facilities. Facilities included in room valuation are relatively static items (such as chair, desk, and cabinet) except lamps and other electronic devices. The room value and number of electronic devices which consume electrical energy are correlated with each other. Consumption of electrical energy of electronic devices in the room with average value remains constant while consumption in other room needs to be evaluated to save the energy. The result of this research shows that room value correlate weakly with number of electronic device in corresponding room. It shows excess energy consumed in low-value room. Although numbers of electronic devices do not always mean the consumption of electrical energy and there are plenty electronic devices, it is recommended for occupant to be careful in utilizing electronic devices in low-value room to minimize energy consumption.
In-situ comprehensive calibration of a tri-port nano-electro-mechanical device.
Collin, E; Defoort, M; Lulla, K; Moutonet, T; Heron, J-S; Bourgeois, O; Bunkov, Yu M; Godfrin, H
2012-04-01
We report on experiments performed in vacuum and at cryogenic temperatures on a tri-port nano-electro-mechanical (NEMS) device. One port is a very nonlinear capacitive actuation, while the two others implement the magnetomotive scheme with a linear input force port and a (quasi-linear) output velocity port. We present an experimental method enabling a full characterization of the nanomechanical device harmonic response: the nonlinear capacitance function C(x) is derived, and the normal parameters k and m (spring constant and mass) of the mode under study are measured through a careful definition of the motion (in meters) and of the applied forces (in Newtons). These results are obtained with a series of purely electric measurements performed without disconnecting/reconnecting the device, and rely only on known dc properties of the circuit, making use of a thermometric property of the oscillator itself: we use the Young modulus of the coating metal as a thermometer, and the resistivity for Joule heating. The setup requires only three connecting lines without any particular matching, enabling the preservation of a high impedance NEMS environment even at MHz frequencies. The experimental data are fit to a detailed electrical and thermal model of the NEMS device, demonstrating a complete understanding of its dynamics. These methods are quite general and can be adapted (as a whole, or in parts) to a large variety of electromechanical devices. © 2012 American Institute of Physics
Liu, Ming; Zhang, Xiang
2018-01-23
This disclosure provides systems, methods, and apparatus related to catalytic devices. In one aspect, a device includes a substrate, an electrically insulating layer disposed on the substrate, a layer of material disposed on the electrically insulating layer, and a catalyst disposed on the layer of material. The substrate comprises an electrically conductive material. The substrate and the layer of material are electrically coupled to one another and configured to have a voltage applied across them.
Measuring In-Situ Mdf Velocity Of Detonation
Horine, Frank M.; James, Jr., Forrest B.
2005-10-25
A system for determining the velocity of detonation of a mild detonation fuse mounted on the surface of a device includes placing the device in a predetermined position with respect to an apparatus that carries a couple of sensors that sense the passage of a detonation wave at first and second spaced locations along the fuse. The sensors operate a timer and the time and distance between the locations is used to determine the velocity of detonation. The sensors are preferably electrical contacts that are held spaced from but close to the fuse such that expansion of the fuse caused by detonation causes the fuse to touch the contact, causing an electrical signal to actuate the timer.
Fulford, Janice M.; Clayton, Christopher S.
2015-10-09
The calibration device and proposed method were used to calibrate a sample of in-service USGS steel and electric groundwater tapes. The sample of in-service groundwater steel tapes were in relatively good condition. All steel tapes, except one, were accurate to ±0.01 ft per 100 ft over their entire length. One steel tape, which had obvious damage in the first hundred feet, was marginally outside the accuracy of ±0.01 ft per 100 ft by 0.001 ft. The sample of in-service groundwater-level electric tapes were in a range of conditions—from like new, with cosmetic damage, to nonfunctional. The in-service electric tapes did not meet the USGS accuracy recommendation of ±0.01 ft. In-service electric tapes, except for the nonfunctional tape, were accurate to about ±0.03 ft per 100 ft. A comparison of new with in-service electric tapes found that steel-core electric tapes maintained their length and accuracy better than electric tapes without a steel core. The in-service steel tapes could be used as is and achieve USGS accuracy recommendations for groundwater-level measurements. The in-service electric tapes require tape corrections to achieve USGS accuracy recommendations for groundwater-level measurement.
NASA Astrophysics Data System (ADS)
Shafiq, Natis
Energy transfer (ET) based sensitization of silicon (Si) using proximal nanocrystal quantum dots (NQDs) has been studied extensively in recent years as a means to develop thin and flexible Si based solar cells. The driving force for this research activity is a reduction in materials cost. To date, the main method for determining the role of ET in sensitizing Si has been optical spectroscopic studies. The quantitative contribution from two modes of ET (namely, nonradiative and radiative) has been reported using time-resolved photoluminescence (TRPL) spectroscopy coupled with extensive theoretical modelling. Thus, optical techniques have established the potential for utilizing ET based sensitization of Si as a feasible way to develop novel NQD-Si hybrid solar cells. However, the ultimate measure of the efficiency of ET-based mechanisms is the generation of electron-hole pairs by the impinging photons. It is therefore important to perform electrical measurements. However, only a couple of studies have attempted electrical quantification of ET modes. A few studies have focused on photocurrent measurements, without considering industrially relevant photovoltaic (PV) systems. Therefore, there is a need to develop a systematic approach for the electrical quantification of ET-generated charges and to help engineer new PV architectures optimized for harnessing the full advantages of ET mechanisms. Within this context, the work presented in this dissertation aims to develop an experimental testing protocol that can be applied to different PV structures for quantifying ET contributions from electrical measurements. We fabricated bulk Si solar cells (SCs) as a test structure and utilized CdSe/ZnS NQDs for ET based sensitization. The NQD-bulk Si hybrid devices showed ˜30% PV enhancement after NQD deposition. We measured external quantum efficiency (EQE) of these devices to quantify ET-generated charges. Reflectance measurements were also performed to decouple contributions of intrinsic optical effects (i.e., anti-reflection) from NQD mediated ET processes. Our analysis indicates that the contribution of ET-generated charges cannot be detected by EQE measurements. Instead, changes in the optical properties (i.e., anti-reflection property) due to the NQD layer are found to be the primary source of the photocurrent enhancement. Based on this finding, we propose to minimize bulk Si absorption by using an ultrathin (˜300 nm) Si PV architecture which should enable measurements of ET-generated charges. We describe an optimized process flow for fabricating such ultrathin Si devices. The devices fabricated by this method behave like photo-detectors and show enhanced sensitivity under 1 Sun AM1.5G illumination. The geometry and process flow of these devices make it possible to incorporate NQDs for sensitization. Overall, this dissertation provides a protocol for the quantification of ET-generated charges and documents an optimized process flow for the development of an ultrathin Si solar cells.
Device for limiting single phase ground fault of mining machines
NASA Astrophysics Data System (ADS)
Fediuk, R. S.; Stoyushko, N. Yu; Yevdokimova, Yu G.; Smoliakov, A. K.; Batarshin, V. O.; Timokhin, R. A.
2017-10-01
The paper shows the reasons and consequences of the single-phase ground fault. With all the variety of devices for limiting the current single-phase ground fault, it was found that the most effective are Peterson coils having different switching circuits. Measuring of the capacity of the network is of great importance in this case, a number of options capacitance measurement are presented. A closer look is taken at the device for limiting the current of single-phase short circuit, developed in the Far Eastern Federal University under the direction of Dr. G.E. Kuvshinov. The calculation of single-phase short-circuit currents in the electrical network, without compensation and with compensation of capacitive current is carried out. Simulation of a single-phase circuit in a network with the proposed device is conducted.
Electrically induced microflows probed by fluorescence correlation spectroscopy.
Ybert, C; Nadal, F; Salomé, R; Argoul, F; Bourdieu, L
2005-03-01
We report on the experimental characterisation of electrically induced flows at the micrometer scale through Fluorescence Correlation Spectroscopy (FCS) measurements. We stress the potential of FCS as a useful characterisation technique in microfluidics devices for transport properties cartography. The experimental results obtained in a model situation are in agreement with previous calculations (F. Nadal, F. Argoul, P. Kestener, B. Pouligny, C. Ybert, A. Ajdari, Eur. Phys. J. E 9, 387 (2002)) predicting the structure and electric-field dependency of the induced flow. Additionally, the present study evidences a complex behaviour of the probe nanobeads under electric field whose precise understanding might prove relevant for situations where nano-objects interact with an external electric field.
Sasaki, Kana; Matsunaga, Toshiki; Tomite, Takenori; Yoshikawa, Takayuki; Shimada, Yoichi
2012-04-01
Hemiplegia is a common sequel of stroke and assisted living care is needed in many cases. The purpose of this study was to evaluate the effect of using surface electrode stimulation device in rehabilitation, in terms of functional improvement in upper limb and the changes in brain activation related to central nervous system reconstruction. Five patients with chronic hemiplegia received electrical stimulation therapy using the orthosis-type surface electrode stimulation device for 12 weeks. Training time was 30 min/day for the first weeks, and increased 30 min/day in every 4 weeks. Upper limb outcome measures included Brunnstrom stage, range of motion, Fugl-Meyer assessment and manual function test. Brain activation was measured using functional MRI. After therapy with therapeutic electrical stimulation (TES) for 12 weeks upper limb function improved in all cases. The results of brain activation showed two patterns. In the first, the stimulation produced an activity in the bilateral somatosensory cortices (SMC), which was seen to continue over time. The second, activation was bilateral and extensive before stimulation, but localized to the SMC after intervention. Treatment with TES using an orthosis-type electrode stimulation device improves upper limb function in chronic hemiplegia patients. The present findings suggest that there are not only efferent but also afferent effects that may promote central nervous system remodeling.
Self-report of physical symptoms associated with using mobile phones and other electrical devices.
Korpinen, Leena H; Pääkkönen, Rauno J
2009-09-01
The aim of our work was to study the working-age population's self-reported physical symptoms associated with using mobile phones and other electrical devices. A qualitative method was applied using an open-ended question in a questionnaire, which included questions about the possible influence of new technical equipment on health. We then created subgroups of respondents for different self-reported symptoms associated with mobile phones and other electrical devices. The research questions were: (1) how the respondents described physical symptoms associated with using mobile phones and other electrical devices and (2) how the answers can be classified into subgroups based on symptoms or devices. We identified the following categories: (1) respondents with different self-reported symptoms which they associated with using mobile phones (headache, earache, or warmth sensations), (2) respondents who had skin symptoms when they stayed in front of a computer screen, (3) respondents who mentioned physical symptoms associated with using mobile phones and other electrical devices. Total prevalence of self-reported physical symptoms associated with using mobile phones and other electrical devices (categories 1 and 2) was 0.7%. In the future it will be possible to obtain new knowledge of these topics by using qualitative methods.
NASA Astrophysics Data System (ADS)
Hapenciuc, C. L.; Borca-Tasciuc, T.; Mihailescu, I. N.
2017-04-01
Thermoelectric materials are used today in thermoelectric devices for heat to electricity(thermoelectric generators-TEG) or electricity to heat(heat pumps) conversion in a large range of applications. In the case of TEGs the final measure of their performance is given by a quantity named the maximum efficiency which shows how much from the heat input is converted into electrical power. Therefore it is of great interest to know correctly how much is the efficiency of a device to can make commercial assessments. The concept of engineering figure of merit, Zeng, and engineering power factor, Peng, were already introduced in the field to quantify the efficiency of a single material under temperature dependent thermoelectric properties, with the mention that the formulas derivation was limited to one leg of the thermoelectric generator. In this paper we propose to extend the concept of engineering figure of merit to a thermoelectric generator by introducing a more general concept of device engineering thermoelectric figure of merit, Zd,eng, which depends on the both TEG materials properties and which shall be the right quantity to be used when we are interested in the evaluation of the efficiency. Also, this work takes into account the electrical contact resistance between the electrodes and thermoelement legs in an attempt to quantify its influence upon the performance of a TEG. Finally, a new formula is proposed for the maximum efficiency of a TEG.
A Wearable Body Controlling Device for Application of Functional Electrical Stimulation
Jeffery, Nicholas D.
2018-01-01
In this research, we describe a new balancing device used to stabilize the rear quarters of a patient dog with spinal cord injuries. Our approach uses inertial measurement sensing and direct leg actuation to lay a foundation for eventual muscle control by means of direct functional electrical stimulation (FES). During this phase of development, we designed and built a mechanical test-bed to develop the control and stimulation algorithms before we use the device on our animal subjects. We designed the bionic test-bed to mimic the typical walking gait of a dog and use it to develop and test the functionality of the balancing device for stabilization of patient dogs with hindquarter paralysis. We present analysis for various muscle stimulation and balancing strategies, and our device can be used by veterinarians to tailor the stimulation strength and temporal distribution for any individual patient dog. We develop stabilizing muscle stimulation strategies using the robotic test-bed to enhance walking stability. We present experimental results using the bionic test-bed to demonstrate that the balancing device can provide an effective sensing strategy and deliver the required motion control commands for stabilizing an actual dog with a spinal cord injury. PMID:29670039
A Wearable Body Controlling Device for Application of Functional Electrical Stimulation.
Taghavi, Nazita; Luecke, Greg R; Jeffery, Nicholas D
2018-04-18
In this research, we describe a new balancing device used to stabilize the rear quarters of a patient dog with spinal cord injuries. Our approach uses inertial measurement sensing and direct leg actuation to lay a foundation for eventual muscle control by means of direct functional electrical stimulation (FES). During this phase of development, we designed and built a mechanical test-bed to develop the control and stimulation algorithms before we use the device on our animal subjects. We designed the bionic test-bed to mimic the typical walking gait of a dog and use it to develop and test the functionality of the balancing device for stabilization of patient dogs with hindquarter paralysis. We present analysis for various muscle stimulation and balancing strategies, and our device can be used by veterinarians to tailor the stimulation strength and temporal distribution for any individual patient dog. We develop stabilizing muscle stimulation strategies using the robotic test-bed to enhance walking stability. We present experimental results using the bionic test-bed to demonstrate that the balancing device can provide an effective sensing strategy and deliver the required motion control commands for stabilizing an actual dog with a spinal cord injury.
Electric-field enhanced performance in catalysis and solid-state devices involving gases
Blackburn, Bryan M.; Wachsman, Eric D.; Van Assche, IV, Frederick Martin
2015-05-19
Electrode configurations for electric-field enhanced performance in catalysis and solid-state devices involving gases are provided. According to an embodiment, electric-field electrodes can be incorporated in devices such as gas sensors and fuel cells to shape an electric field provided with respect to sensing electrodes for the gas sensors and surfaces of the fuel cells. The shaped electric fields can alter surface dynamics, system thermodynamics, reaction kinetics, and adsorption/desorption processes. In one embodiment, ring-shaped electric-field electrodes can be provided around sensing electrodes of a planar gas sensor.
Code of Federal Regulations, 2012 CFR
2012-01-01
... less for the freezing and storage of ice. 1.3“Anti-sweat heater” means a device incorporated into the... interior surfaces of the cabinet. 1.4“Anti-sweat heater switch” means a user-controllable switch or user interface which modifies the activation or control of anti-sweat heaters. 1.5“Automatic defrost” means a...
Code of Federal Regulations, 2012 CFR
2012-01-01
... capacity (14.2 liters) or less for the freezing and storage of ice. 1.3“Anti-sweat heater” means a device... on the exterior or interior surfaces of the cabinet. 1.4“Anti-sweat heater switch” means a user-controllable switch or user interface which modifies the activation or control of anti-sweat heaters. 1.5...
Code of Federal Regulations, 2014 CFR
2014-01-01
... capacity (14.2 liters) or less for the freezing and storage of ice. 1.3 “Anti-sweat heater” means a device... on the exterior or interior surfaces of the cabinet. 1.4 “Anti-sweat heater switch” means a user-controllable switch or user interface which modifies the activation or control of anti-sweat heaters. 1.5...
Code of Federal Regulations, 2014 CFR
2014-01-01
... less for the freezing and storage of ice. 1.3 “Anti-sweat heater” means a device incorporated into the... interior surfaces of the cabinet. 1.4 “Anti-sweat heater switch” means a user-controllable switch or user interface which modifies the activation or control of anti-sweat heaters. 1.5 “Automatic defrost” means a...
Code of Federal Regulations, 2013 CFR
2013-01-01
... capacity (14.2 liters) or less for the freezing and storage of ice. 1.3“Anti-sweat heater” means a device... on the exterior or interior surfaces of the cabinet. 1.4“Anti-sweat heater switch” means a user-controllable switch or user interface which modifies the activation or control of anti-sweat heaters. 1.5...
Maezawa, Shota; Kudo, Daisuke; Furukawa, Hajime; Nakagawa, Atsuhiro; Yamanouchi, Satoshi; Matsumura, Takashi; Egawa, Shinichi; Tominaga, Teiji; Kushimoto, Shigeki
2014-12-01
This study aimed to clarify the management of emergency electric power and the operation of radiology diagnostic devices after the Great East Japan Earthquake. Timing of electricity restoration, actual emergency electric power generation, and whether radiology diagnostic devices were operational and the reason if not were investigated through a questionnaire submitted to all 14 disaster base hospitals in Miyagi Prefecture in February and March 2013. Commercial electricity supply resumed within 3 days after the earthquake at 13 of 14 hospitals. Actual emergency electric power generation was lower than pre-disaster estimates at most of the hospitals. Only 4 of 11 hospitals were able to generate 60% of the power normally consumed. Under emergency electric power, conventional X-ray and computed tomography (CT) scanners worked in 9 of 14 (64%) and 8 of 14 (57%) hospitals, respectively. The main reason conventional X-ray and CT scanners did not operate was that hospitals had not planned to use these devices under emergency electric power. Only 2 of the 14 hospitals had a pre-disaster plan to allocate emergency electric power, and all devices operated at these 2 hospitals. Pre-disaster plans to allocate emergency electric power are required for disaster base hospitals to effectively operate radiology diagnostic devices after a disaster. (Disaster Med Public Health Preparedness. 2014;8:548-552).
Electrical Maxwell Demon and Szilard Engine Utilizing Johnson Noise, Measurement, Logic and Control
Kish, Laszlo Bela; Granqvist, Claes-Göran
2012-01-01
We introduce a purely electrical version of Maxwell's demon which does not involve mechanically moving parts such as trapdoors, etc. It consists of a capacitor, resistors, amplifiers, logic circuitry and electronically controlled switches and uses thermal noise in resistors (Johnson noise) to pump heat. The only types of energy of importance in this demon are electrical energy and heat. We also demonstrate an entirely electrical version of Szilard's engine, i.e., an information-controlled device that can produce work by employing thermal fluctuations. The only moving part is a piston that executes work, and the engine has purely electronic controls and it is free of the major weakness of the original Szilard engine in not requiring removal and repositioning the piston at the end of the cycle. For both devices, the energy dissipation in the memory and other binary informatics components are insignificant compared to the exponentially large energy dissipation in the analog part responsible for creating new information by measurement and decision. This result contradicts the view that the energy dissipation in the memory during erasure is the most essential dissipation process in a demon. Nevertheless the dissipation in the memory and information processing parts is sufficient to secure the Second Law of Thermodynamics. PMID:23077525
Electrical Maxwell demon and Szilard engine utilizing Johnson noise, measurement, logic and control.
Kish, Laszlo Bela; Granqvist, Claes-Göran
2012-01-01
We introduce a purely electrical version of Maxwell's demon which does not involve mechanically moving parts such as trapdoors, etc. It consists of a capacitor, resistors, amplifiers, logic circuitry and electronically controlled switches and uses thermal noise in resistors (Johnson noise) to pump heat. The only types of energy of importance in this demon are electrical energy and heat. We also demonstrate an entirely electrical version of Szilard's engine, i.e., an information-controlled device that can produce work by employing thermal fluctuations. The only moving part is a piston that executes work, and the engine has purely electronic controls and it is free of the major weakness of the original Szilard engine in not requiring removal and repositioning the piston at the end of the cycle. For both devices, the energy dissipation in the memory and other binary informatics components are insignificant compared to the exponentially large energy dissipation in the analog part responsible for creating new information by measurement and decision. This result contradicts the view that the energy dissipation in the memory during erasure is the most essential dissipation process in a demon. Nevertheless the dissipation in the memory and information processing parts is sufficient to secure the Second Law of Thermodynamics.
Mbengue, Serigne Saliou; Buiron, Nicolas; Lanfranchi, Vincent
2016-04-16
During the manufacturing process and use of ferromagnetic sheets, operations such as rolling, cutting, and tightening induce anisotropy that changes the material's behavior. Consequently for more accuracy in magnetization and magnetostriction calculations in electric devices such as transformers, anisotropic effects should be considered. In the following sections, we give an overview of a macroscopic model which takes into account the magnetic and magnetoelastic anisotropy of the material for both magnetization and magnetostriction computing. Firstly, a comparison between the model results and measurements from a Single Sheet Tester (SST) and values will be shown. Secondly, the model is integrated in a finite elements code to predict magnetostrictive deformation of an in-house test bench which is a stack of 40 sheets glued together by the Vacuum-Pressure Impregnation (VPI) method. Measurements on the test bench and Finite Elements results are presented.
Chemical detection demonstrated using an evanescent wave graphene optical sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maliakal, Ashok; Reith, Leslie; Cabot, Steve
Graphene devices have been constructed on silicon mirrors, and the graphene is optically probed through an evanescent wave interaction in an attenuated total reflectance configuration using an infrared spectrometer. The graphene is electrically biased in order to tune its optical properties. Exposure of the device to the chemicals iodine and ammonia causes observable and reversible changes to graphene's optical absorption spectra in the mid to near infrared range which can be utilized for the purpose of sensing. Electrical current measurements through the graphene are made simultaneously with optical measurements allowing for simultaneous sensing using two separate detection modalities. Our currentmore » results reveal sub-ppm detection limits for iodine and approximately 100 ppm detection limits for ammonia. We have also demonstrated that this approach will work at 1.55 μm, which opens up the possibility for graphene optical sensors that leverage commercial telecom light sources.« less
A review on single photon sources in silicon carbide.
Lohrmann, A; Johnson, B C; McCallum, J C; Castelletto, S
2017-03-01
This paper summarizes key findings in single-photon generation from deep level defects in silicon carbide (SiC) and highlights the significance of these individually addressable centers for emerging quantum applications. Single photon emission from various defect centers in both bulk and nanostructured SiC are discussed as well as their formation and possible integration into optical and electrical devices. The related measurement protocols, the building blocks of quantum communication and computation network architectures in solid state systems, are also summarized. This includes experimental methodologies developed for spin control of different paramagnetic defects, including the measurement of spin coherence times. Well established doping, and micro- and nanofabrication procedures for SiC may allow the quantum properties of paramagnetic defects to be electrically and mechanically controlled efficiently. The integration of single defects into SiC devices is crucial for applications in quantum technologies and we will review progress in this direction.
Mestayer, Mac; Christo, Steve; Taylor, Mark
2014-10-21
A device and method for characterizing quality of a conducting surface. The device including a gaseous ionizing chamber having centrally located inside the chamber a conducting sample to be tested to which a negative potential is applied, a plurality of anode or "sense" wires spaced regularly about the central test wire, a plurality of "field wires" at a negative potential are spaced regularly around the sense, and a plurality of "guard wires" at a positive potential are spaced regularly around the field wires in the chamber. The method utilizing the device to measure emission currents from the conductor.
21 CFR 880.2460 - Electrically powered spinal fluid pressure monitor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and... electrical signal. The device includes signal amplification, conditioning, and display equipment. (b...
21 CFR 880.2460 - Electrically powered spinal fluid pressure monitor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and... electrical signal. The device includes signal amplification, conditioning, and display equipment. (b...
21 CFR 880.2460 - Electrically powered spinal fluid pressure monitor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and... electrical signal. The device includes signal amplification, conditioning, and display equipment. (b...
NASA Technical Reports Server (NTRS)
Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.
1985-01-01
The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.
King, Paul E [Corvallis, OR; Woodside, Charles Rigel [Corvallis, OR
2012-02-07
The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.
NASA Astrophysics Data System (ADS)
Dwivedi, Neeraj; Dhand, Chetna; Rawal, Ishpal; Kumar, Sushil; Malik, Hitendra K.; Lakshminarayanan, Rajamani
2017-06-01
A longstanding concern in the research of amorphous carbon films is their poor electrical conductivity at room temperature which constitutes a major barrier for the development of cost effective electronic and optoelectronic devices. Here, we propose metal/carbon hybrid multijunction devices as a promising facile way to overcome room temperature electron transport issues in amorphous carbon films. By the tuning of carbon thickness and swapping metal layers, we observe giant (upto ˜7 orders) reduction of electrical resistance in metal/carbon multijunction devices with respect to monolithic amorphous carbon device. We engineer the maximum current (electrical resistance) from about 10-7 to 10-3 A (˜107 to 103 Ω) in metal (Cu or Ti)/carbon hybrid multijunction devices with a total number of 10 junctions. The introduction of thin metal layers breaks the continuity of relatively higher resistance carbon layer as well as promotes the nanostructuring of carbon. These contribute to low electrical resistance of metal/carbon hybrid multijunction devices, with respect to monolithic carbon device, which is further reduced by decreasing the thickness of carbon layers. We also propose and discuss equivalent circuit model to explain electrical resistance in monolithic carbon and metal/carbon multijunction devices. Cu/carbon multijunction devices display relatively better electrical transport than Ti/carbon devices owing to low affinity of Cu with carbon that restricts carbide formation. We also observe that in metal/carbon multijunction devices, the transport mechanism changes from Poole-Frenkel/Schottky model to the hopping model with a decrease in carbon thickness. Our approach opens a new route to develop carbon-based inexpensive electronic and optoelectronic devices.
Electrical Characterization of Semiconductor Materials and Devices
NASA Astrophysics Data System (ADS)
Deen, M.; Pascal, Fabien
Semiconductor materials and devices continue to occupy a preeminent technological position due to their importance when building integrated electronic systems used in a wide range of applications from computers, cell-phones, personal digital assistants, digital cameras and electronic entertainment systems, to electronic instrumentation for medical diagnositics and environmental monitoring. Key ingredients of this technological dominance have been the rapid advances made in the quality and processing of materials - semiconductors, conductors and dielectrics - which have given metal oxide semiconductor device technology its important characteristics of negligible standby power dissipation, good input-output isolation, surface potential control and reliable operation. However, when assessing material quality and device reliability, it is important to have fast, nondestructive, accurate and easy-to-use electrical characterization techniques available, so that important parameters such as carrier doping density, type and mobility of carriers, interface quality, oxide trap density, semiconductor bulk defect density, contact and other parasitic resistances and oxide electrical integrity can be determined. This chapter describes some of the more widely employed and popular techniques that are used to determine these important parameters. The techniques presented in this chapter range in both complexity and test structure requirements from simple current-voltage measurements to more sophisticated low-frequency noise, charge pumping and deep-level transient spectroscopy techniques.
A Systematic Review of Electric-Acoustic Stimulation
Ching, Teresa Y. C.; Cowan, Robert
2013-01-01
Cochlear implant systems that combine electric and acoustic stimulation in the same ear are now commercially available and the number of patients using these devices is steadily increasing. In particular, electric-acoustic stimulation is an option for patients with severe, high frequency sensorineural hearing impairment. There have been a range of approaches to combining electric stimulation and acoustic hearing in the same ear. To develop a better understanding of fitting practices for devices that combine electric and acoustic stimulation, we conducted a systematic review addressing three clinical questions: what is the range of acoustic hearing in the implanted ear that can be effectively preserved for an electric-acoustic fitting?; what benefits are provided by combining acoustic stimulation with electric stimulation?; and what clinical fitting practices have been developed for devices that combine electric and acoustic stimulation? A search of the literature was conducted and 27 articles that met the strict evaluation criteria adopted for the review were identified for detailed analysis. The range of auditory thresholds in the implanted ear that can be successfully used for an electric-acoustic application is quite broad. The effectiveness of combined electric and acoustic stimulation as compared with electric stimulation alone was consistently demonstrated, highlighting the potential value of preservation and utilization of low frequency hearing in the implanted ear. However, clinical procedures for best fitting of electric-acoustic devices were varied. This clearly identified a need for further investigation of fitting procedures aimed at maximizing outcomes for recipients of electric-acoustic devices. PMID:23539259
High photoresponse of individual WS2 nanowire-nanoflake hybrid materials
NASA Astrophysics Data System (ADS)
Asres, Georgies Alene; Järvinen, Topias; Lorite, Gabriela S.; Mohl, Melinda; Pitkänen, Olli; Dombovari, Aron; Tóth, Geza; Spetz, Anita Lloyd; Vajtai, Robert; Ajayan, Pulickel M.; Lei, Sidong; Talapatra, Saikat; Kordas, Krisztian
2018-06-01
van der Waals solids have been recognized as highly photosensitive materials that compete conventional Si and compound semiconductor based devices. While 2-dimensional nanosheets of single and multiple layers and 1-dimensional nanowires of molybdenum and tungsten chalcogenides have been studied, their nanostructured derivatives with complex morphologies are not explored yet. Here, we report on the electrical and photosensitive properties of WS2 nanowire-nanoflake hybrid materials we developed lately. We probe individual hybrid nanostructured particles along the structure using focused ion beam deposited Pt contacts. Further, we use conductive atomic force microscopy to analyze electrical behavior across the nanostructure in the transverse direction. The electrical measurements are complemented by in situ laser beam illumination to explore the photoresponse of the nanohybrids in the visible optical spectrum. Photodetectors with responsivity up to ˜0.4 AW-1 are demonstrated outperforming graphene as well as most of the other transition metal dichalcogenide based devices.
Facile Dry Surface Cleaning of Graphene by UV Treatment
NASA Astrophysics Data System (ADS)
Kim, Jin Hong; Haidari, Mohd Musaib; Choi, Jin Sik; Kim, Hakseong; Yu, Young-Jun; Park, Jonghyurk
2018-05-01
Graphene has been considered an ideal material for application in transparent lightweight wearable electronics due to its extraordinary mechanical, optical, and electrical properties originating from its ordered hexagonal carbon atomic lattice in a layer. Precise surface control is critical in maximizing its performance in electronic applications. Graphene grown by chemical vapor deposition is widely used but it produces polymeric residue following wet/chemical transfer process, which strongly affects its intrinsic electrical properties and limits the doping efficiency by adsorption. Here, we introduce a facile dry-cleaning method based on UV irradiation to eliminate the organic residues even after device fabrication. Through surface topography, Raman analysis, and electrical transport measurement characteristics, we confirm that the optimized UV treatment can recover the clean graphene surface and improve graphene-FET performance more effectively than thermal treatment. We propose our UV irradiation method as a systematically controllable and damage-free post process for application in large-area devices.
Camino, Fernando E.; Nam, Chang-Yong; Pang, Yutong T.; ...
2014-05-15
Here we present a methodology for probing light-matter interactions in prototype photovoltaic devices consisting of an organic semiconductor active layer with a semitransparent metal electrical contact exhibiting surface plasmon-based enhanced optical transmission. We achieve high-spectral irradiance in a spot size of less than 100 μm using a high-brightness laser-driven light source and appropriate coupling optics. Spatially resolved Fourier transform photocurrent spectroscopy in the visible and near-infrared spectral regions allows us to measure external quantum efficiency with high sensitivity in small-area devices (<1 mm 2). Lastly, this allows for rapid fabrication of variable-pitch sub-wavelength hole arrays in metal films for usemore » as transparent electrical contacts, and evaluation of the evanescent and propagating mode coupling to resonances in the active layer.« less
NASA Astrophysics Data System (ADS)
Turba, Tomasz; Frącz, Paweł
2017-10-01
The paper presents results of a comparative analysis of parameters of two kinds of solid dielectrics used in air insulation systems to prevent occurring partial discharges. The research works regarded materials made of: cellulose pressboard and aramid paper. All measurements were performed under laboratory conditions by changing the value of partial discharges generation voltage until breakdown occurred in the inhomogeneous environment that was simulated using needle-plate (made of copper) electrode system. The main contribution which resulted from studies is a statement that potential use of aramid paper as a dielectric can extend the life of a high voltage electric device as compared to standard cellulose pressboard usage due to higher electric resistances to breakdown or detection of corona voltage. Results shown that the aramid paper has greater electric resistance to breakdown in comparison to cellulose with no difference between both on detecting corona of partial discharge.
Veerbeek, Janneke; Firet, Nienke J; Vijselaar, Wouter; Elbersen, Rick; Gardeniers, Han; Huskens, Jurriaan
2017-01-11
Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based solar cells. Organic monolayers were coupled to silicon surfaces by hydrosilylation in order to avoid an insulating silicon oxide layer at the surface. Monolayers of 1-tetradecyne were shown to passivate silicon micropillar-based solar cells with radial junctions, by which the efficiency increased from 8.7% to 9.9% for n + /p junctions and from 7.8% to 8.8% for p + /n junctions. This electrical passivation of the surface, most likely by removal of dangling bonds, is reflected in a higher shunt resistance in the J-V measurements. Monolayers of 1,8-nonadiyne were still reactive for click chemistry with a model catalyst, thus enabling simultaneous passivation and future catalyst coupling.
Electrical Switching of Perovskite Thin-Film Resistors
NASA Technical Reports Server (NTRS)
Liu, Shangqing; Wu, Juan; Ignatiev, Alex
2010-01-01
Electronic devices that exploit electrical switching of physical properties of thin films of perovskite materials (especially colossal magnetoresistive materials) have been invented. Unlike some related prior devices, these devices function at room temperature and do not depend on externally applied magnetic fields. Devices of this type can be designed to function as sensors (exhibiting varying electrical resistance in response to varying temperature, magnetic field, electric field, and/or mechanical pressure) and as elements of electronic memories. The underlying principle is that the application of one or more short electrical pulse(s) can induce a reversible, irreversible, or partly reversible change in the electrical, thermal, mechanical, and magnetic properties of a thin perovskite film. The energy in the pulse must be large enough to induce the desired change but not so large as to destroy the film. Depending on the requirements of a specific application, the pulse(s) can have any of a large variety of waveforms (e.g., square, triangular, or sine) and be of positive, negative, or alternating polarity. In some applications, it could be necessary to use multiple pulses to induce successive incremental physical changes. In one class of applications, electrical pulses of suitable shapes, sizes, and polarities are applied to vary the detection sensitivities of sensors. Another class of applications arises in electronic circuits in which certain resistance values are required to be variable: Incorporating the affected resistors into devices of the present type makes it possible to control their resistances electrically over wide ranges, and the lifetimes of electrically variable resistors exceed those of conventional mechanically variable resistors. Another and potentially the most important class of applications is that of resistance-based nonvolatile-memory devices, such as a resistance random access memory (RRAM) described in the immediately following article, Electrically Variable Resistive Memory Devices (MFS-32511-1).
Simplifying Nanowire Hall Effect Characterization by Using a Three-Probe Device Design.
Hultin, Olof; Otnes, Gaute; Samuelson, Lars; Storm, Kristian
2017-02-08
Electrical characterization of nanowires is a time-consuming and challenging task due to the complexity of single nanowire device fabrication and the difficulty in interpreting the measurements. We present a method to measure Hall effect in nanowires using a three-probe device that is simpler to fabricate than previous four-probe nanowire Hall devices and allows characterization of nanowires with smaller diameter. Extraction of charge carrier concentration from the three-probe measurements using an analytical model is discussed and compared to simulations. The validity of the method is experimentally verified by a comparison between results obtained with the three-probe method and results obtained using four-probe nanowire Hall measurements. In addition, a nanowire with a diameter of only 65 nm is characterized to demonstrate the capabilities of the method. The three-probe Hall effect method offers a relatively fast and simple, yet accurate way to quantify the charge carrier concentration in nanowires and has the potential to become a standard characterization technique for nanowires.
Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation
Takeda, Kotaro; Tanino, Genichi; Miyasaka, Hiroyuki
2017-01-01
Neuromuscular electrical stimulation (NMES), specifically functional electrical stimulation (FES) that compensates for voluntary motion, and therapeutic electrical stimulation (TES) aimed at muscle strengthening and recovery from paralysis are widely used in stroke rehabilitation. The electrical stimulation of muscle contraction should be synchronized with intended motion to restore paralysis. Therefore, NMES devices, which monitor electromyogram (EMG) or electroencephalogram (EEG) changes with motor intention and use them as a trigger, have been developed. Devices that modify the current intensity of NMES, based on EMG or EEG, have also been proposed. Given the diversity in devices and stimulation methods of NMES, the aim of the current review was to introduce some commercial FES and TES devices and application methods, which depend on the condition of the patient with stroke, including the degree of paralysis. PMID:28883745
Non-Invasive Monitoring of Intra-Abdominal Bleeding Rate Using Electrical Impedance Tomography
2009-09-01
labeled ‘Measurement Index’, represents each of the 40 transimpedance measurements. The measurement index variable corresponds to the 40 measurements...system are amplified , and digitized by a 14-bit ADC (AD9240, Analog Devices). Waveforms are then sampled synchronous with the source, at 32 samples per...voltage changes (decreases in transimpedance ) during this phase were in measurements between the two outermost electrodes. We believe the apparent
Zeng, Shengke; Powers, John R; Newbraugh, Bradley H
2010-06-01
Construction workers suffer the most electrocutions among all industries. Currently, there are no electrical contact warning devices on the market to protect workers. This paper proposes a worker-worn electric-field sensor. As the worker is in proximity to, or in contact with, a live power-circuit, the sensor sets off an audible/visual warning alarm. The sensor also has the potential to wirelessly trip a wireless-capable circuit breaker, and to trigger a wireless transmitter to notify emergency response of an electrical contact. An experiment was conducted to measure electric-field variation on simulated human-wrists (10 defrosted hog-legs) in various proximities and in electrical-contact to a simulated power-circuit. The purpose of these tests was to determine the feasibility of developing a worker-worn electric-field detection sensor for use in protecting workers from contact with energized electrical conductors. This study observed a significant electric-field-magnitude increase as a hog-leg approaches the live-circuit, and the distinct electric-field-magnitude jump as the leg contacts with the live-circuit. The observation indicates that this sensor can be an effective device to warn the workers of electrical hazards. Additionally, the sensor has the potential to wirelessly trip a wireless-capable circuit-breaker and trigger a wireless transmitter (such as a cell phone) to notify an emergency response. The prompt notification prevents the worker from further injury caused by postponed medical-care. Widespread use of this sensor could lower electrocution and electrically related injury rates in the construction industry. (c) 2010 Elsevier Ltd. All rights reserved.
Sakashita, Kazumi; Matthews, Wallace J; Yamamoto, Loren G
2013-06-01
Children and youth with special health care needs (CYSHCN) are complex and often dependent on electrical devices (technoelectric dependent) for life support/maintenance. Because they are reliant on electricity and electricity failure is common, the purpose of this study was to survey their preparedness for electricity failure. Parents and caregivers of technoelectric CYSHCN were asked to complete a preparedness questionnaire. We collected a convenience sample of 50 patients. These 50 patients utilized a total of 166 electrical devices. A home ventilator, oxygen concentrator, and a feeding pump were identified as the most important device for the children in 35 of the 50 patients, yet only 19 of the 35 patients could confirm that this device had a battery backup. Also, 22 of the 50 patients had a prolonged power failure preparedness plan. Technoelectric-dependent CYSHCN are poorly prepared for electrical power failure.
Grid regulation services for energy storage devices based on grid frequency
Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K
2013-07-02
Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
Grid regulation services for energy storage devices based on grid frequency
Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.
2017-09-05
Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
Grid regulation services for energy storage devices based on grid frequency
Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K
2014-04-15
Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).
Organic electrochemical transistors for cell-based impedance sensing
NASA Astrophysics Data System (ADS)
Rivnay, Jonathan; Ramuz, Marc; Leleux, Pierre; Hama, Adel; Huerta, Miriam; Owens, Roisin M.
2015-01-01
Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.
NASA Technical Reports Server (NTRS)
Jung, Tae-Won; Lindholm, Fredrik A.; Neugroschel, Arnost
1987-01-01
An improved measurement system for electrical short-circuit current decay is presented that extends applicability of the method to silicon solar cells having an effective lifetime as low as 1 microsec. The system uses metal/oxide/semiconductor transistors as voltage-controlled switches. Advances in theory developed here increase precision and sensitivity in the determination of the minority-carrier recombination lifetime and recombination velocity. A variation of the method, which exploits measurements made on related back-surface field and back-ohmic contact devices, further improves precision and sensitivity. The improvements are illustrated by application to 15 different silicon solar cells.
MIS capacitor studies on silicon carbide single crystals
NASA Technical Reports Server (NTRS)
Kopanski, J. J.
1990-01-01
Cubic SIC metal-insulator-semiconductor (MIS) capacitors with thermally grown or chemical-vapor-deposited (CVD) insulators were characterized by capacitance-voltage (C-V), conductance-voltage (G-V), and current-voltage (I-V) measurements. The purpose of these measurements was to determine the four charge densities commonly present in an MIS capacitor (oxide fixed charge, N(f); interface trap level density, D(it); oxide trapped charge, N(ot); and mobile ionic charge, N(m)) and to determine the stability of the device properties with electric-field stress and temperature. The section headings in the report include the following: Capacitance-voltage and conductance-voltage measurements; Current-voltage measurements; Deep-level transient spectroscopy; and Conclusions (Electrical characteristics of SiC MIS capacitors).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-11
... either 110 volts AC or 12 volts DC, such as from a car battery. The Alcotest 9510 uses fuel cell and...-dispersive infra-red device that is powered by either 120 volts AC power or 12 volts DC, such as from a car.... Louis, Missouri: Photo Electric Intoximeter *...... X GC Intoximeter MK II X X GC Intoximeter MK IV X X...
Investigation of Basic Mechanisms of Radiation Effects in Carbon-Based Electronic Materials
2017-06-01
materials characterization, and carbon nanotube diodes, FET, and PZT-memory test device structures for electrical measurements. Pre - and post -irradiation...definition (Radiation exposure) Task 2) The grantee shall perform testing to include: - Radiation testing . May be multiple types. - Pre and post -rad...technologies for electronic devices. Experiential radiation testing has included exposure to 10 keV X-rays, 4 MeV protons, heavy ions, and Ultra
Spin Seebeck devices using local on-chip heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Stephen M.; Fradin, Frank Y.; Hoffman, Jason
2015-05-07
A micro-patterned spin Seebeck device is fabricated using an on-chip heater. Current is driven through a Au heater layer electrically isolated from a bilayer consisting of Fe3O4 (insulating ferrimagnet) and a spin detector layer. It is shown that through this method it is possible to measure the longitudinal spin Seebeck effect (SSE) for small area magnetic devices, equivalent to traditional macroscopic SSE experiments. Using a lock-in detection technique, it is possible to more sensitively characterize both the SSE and the anomalous Nernst effect (ANE), as well as the inverse spin Hall effect in various spin detector materials. By using themore » spin detector layer as a thermometer, we can obtain a value for the temperature gradient across the device. These results are well matched to values obtained through electromagnetic/thermal modeling of the device structure and with large area spin Seebeck measurements.« less
Spin Seebeck devices using local on-chip heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Stephen M., E-mail: swu@anl.gov; Fradin, Frank Y.; Hoffman, Jason
2015-05-07
A micro-patterned spin Seebeck device is fabricated using an on-chip heater. Current is driven through a Au heater layer electrically isolated from a bilayer consisting of Fe{sub 3}O{sub 4} (insulating ferrimagnet) and a spin detector layer. It is shown that through this method it is possible to measure the longitudinal spin Seebeck effect (SSE) for small area magnetic devices, equivalent to traditional macroscopic SSE experiments. Using a lock-in detection technique, it is possible to more sensitively characterize both the SSE and the anomalous Nernst effect (ANE), as well as the inverse spin Hall effect in various spin detector materials. Bymore » using the spin detector layer as a thermometer, we can obtain a value for the temperature gradient across the device. These results are well matched to values obtained through electromagnetic/thermal modeling of the device structure and with large area spin Seebeck measurements.« less
Large thermoelectric figure of merit in graphene layered devices at low temperature
NASA Astrophysics Data System (ADS)
Olaya, Daniel; Hurtado-Morales, Mikel; Gómez, Daniel; Alejandro Castañeda-Uribe, Octavio; Juang, Zhen-Yu; Hernández, Yenny
2018-01-01
Nanostructured materials have emerged as an alternative to enhance the figure of merit (ZT) of thermoelectric (TE) devices. Graphene exhibits a high electrical conductivity (in-plane) that is necessary for a high ZT; however, this effect is countered by its impressive thermal conductivity. In this work TE layered devices composed of electrochemically exfoliated graphene (EEG) and a phonon blocking material such as poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), polyaniline (PANI) and gold nanoparticles (AuNPs) at the interface were prepared. The figure of merit, ZT, of each device was measured in the cross-plane direction using the Transient Harman Method (THM) and complemented with AFM-based measurements. The results show remarkable high ZT values (0.81 < ZT < 2.45) that are directly related with the topography, surface potential, capacitance gradient and resistance of the devices at the nanoscale.
Temperature Dependence of the Seebeck Coefficient in Zinc Oxide Thin Films
NASA Astrophysics Data System (ADS)
Noori, Amirreza; Masoumi, Saeed; Hashemi, Najmeh
2017-12-01
Thermoelectric devices are reliable tools for converting waste heat into electricity as they last long, produce no noise or vibration, have no moving elements, and their light weight makes them suitable for the outer space usage. Materials with high thermoelectric figure of merit (zT) have the most important role in the fabrication of efficient thermoelectric devices. Metal oxide semiconductors, specially zinc oxide has recently received attention as a material suitable for sensor, optoelectronic and thermoelectric device applications because of their wide direct bandgap, chemical stability, high-energy radiation endurance, transparency and acceptable zT. Understanding the thermoelectric properties of the undoped ZnO thin films can help design better ZnO-based devices. Here, we report the results of our experimental work on the thermoelectric properties of the undoped polycrystalline ZnO thin films. These films are deposited on alumina substrates by thermal evaporation of zinc in vacuum followed by a controlled oxidation process in air carried out at the 350-500 °C temperature range. The experimental setup including gradient heaters, thermometry system and Seebeck voltage measurement equipment for high resistance samples is described. Seebeck voltage and electrical resistivity of the samples are measured at different conditions. The observed temperature dependence of the Seebeck coefficient is discussed.
Tex, David M; Nakamura, Tetsuya; Imaizumi, Mitsuru; Ohshima, Takeshi; Kanemitsu, Yoshihiko
2017-05-16
Tandem solar cells are suited for space applications due to their high performance, but also have to be designed in such a way to minimize influence of degradation by the high energy particle flux in space. The analysis of the subcell performance is crucial to understand the device physics and achieve optimized designs of tandem solar cells. Here, the radiation-induced damage of inverted grown InGaP/GaAs/InGaAs triple-junction solar cells for various electron fluences are characterized using conventional current-voltage (I-V) measurements and time-resolved photoluminescence (PL). The conversion efficiencies of the entire device before and after damage are measured with I-V curves and compared with the efficiencies predicted from the time-resolved method. Using the time-resolved data the change in the carrier dynamics in the subcells can be discussed. Our optical method allows to predict the absolute electrical conversion efficiency of the device with an accuracy of better than 5%. While both InGaP and GaAs subcells suffered from significant material degradation, the performance loss of the total device can be completely ascribed to the damage in the GaAs subcell. This points out the importance of high internal electric fields at the operating point.
NASA Astrophysics Data System (ADS)
Demir, K. Çinar; Kurudirek, S. V.; Oz, S.; Biber, M.; Aydoğan, Ş.; Şahin, Y.; Coşkun, C.
We fabricated 25 Au/n-GaP/Al Schottky devices and investigated the influence of high electron irradiation, which has 12MeV on the devices, at room temperature. The X-ray diffraction patterns, scanning electron microscopic images and Raman spectra of a gallium phosphide (GaP) semiconductor before and after electron irradiation have been analyzed. Furthermore, some electrical measurements of the devices were carried out through the current-voltage (I-V) and capacitance-voltage (C-V) measurements. From the I-V characteristics, experimental ideality factor n and barrier height Φ values of these Schottky diodes have been determined before and after irradiation, respectively. The results have also been analyzed statically, and a gauss distribution has been obtained. The built-in potential Vbi, barrier height Φ, Fermi level EF and donor concentration Nd values have been determined from the reverse bias C-V and C-2-V curves of Au/n-GaP/Al Schottky barrier diodes at 100kHz before and after 12MeV electron irradiation. Furthermore, we obtained the series resistance values of Au/n-GaP/Al Schottky barrier diodes with the help of different methods. Experimental results confirmed that the electrical characterization of the device changed with the electron irradiation.
Seamless lamination of a concave-convex architecture with single-layer graphene.
Park, Ji-Hoon; Lim, Taekyung; Baik, Jaeyoon; Seo, Keumyoung; Moon, Youngkwon; Park, Noejung; Shin, Hyun-Joon; Kwak, Sang Kyu; Ju, Sanghyun; Ahn, Joung Real
2015-11-21
Graphene has been used as an electrode and channel material in electronic devices because of its superior physical properties. Recently, electronic devices have changed from a planar to a complicated three-dimensional (3D) geometry to overcome the limitations of planar devices. The evolution of electronic devices requires that graphene be adaptable to a 3D substrate. Here, we demonstrate that chemical-vapor-deposited single-layer graphene can be transferred onto a silicon dioxide substrate with a 3D geometry, such as a concave-convex architecture. A variety of silicon dioxide concave-convex architectures were uniformly and seamlessly laminated with graphene using a thermal treatment. The planar graphene was stretched to cover the concave-convex architecture, and the resulting strain on the curved graphene was spatially resolved by confocal Raman spectroscopy; molecular dynamic simulations were also conducted and supported the observations. Changes in electrical resistivity caused by the spatially varying strain induced as the graphene-silicon dioxide laminate varies dimensionally from 2D to 3D were measured by using a four-point probe. The resistivity measurements suggest that the electrical resistivity can be systematically controlled by the 3D geometry of the graphene-silicon dioxide laminate. This 3D graphene-insulator laminate will broaden the range of graphene applications beyond planar structures to 3D materials.
Materials challenges for repeatable RF wireless device reconfiguration with microfluidic channels
NASA Astrophysics Data System (ADS)
Griffin, Anthony S.; Sottos, Nancy R.; White, Scott R.
2018-03-01
Recently, adaptive wireless devices have utilized displacement of EGaIn within microchannels as an electrical switching mechanism to enable reconfigurable electronics. Device reconfiguration using EGaIn in microchannels overcomes many challenges encountered by more traditional reconfiguration mechanisms such as diodes and microelectromechanical systems (MEMS). Reconfiguration using EGaIn is severely limited by undesired permanent shorting due to retention of the liquid in microchannels caused by wetting and rapid oxide skin formation. Here, we investigate the conditions which prevent repeatable electrical switching using EGaIn in microchannels. Initial contact angle tests of EGaIn on epoxy surfaces demonstrate the wettability of EGaIn on flat surfaces. SEM cross-sections of microchannels reveal adhesion of EGaIn residue to channel walls. Micro-computed tomography (microCT) scans of provide volumetric measurements of EGaIn remaining inside channels after flow cycling. Non-wetting coatings are proposed as materials based strategy to overcome these issues in future work.
Electrical properties of MOS devices fabricated on the 4H-SiC C-face.
NASA Astrophysics Data System (ADS)
Chen, Zengjun; Ahyi, A. C.; Williams, J. R.
2007-11-01
The electrical characteristics of MOS devices fabricated on the carbon face of 4H-SiC will be described. The C-face has a higher oxidation rate and a higher interface trap density compared to the Si-face. The thermal oxidation rate and the distribution of interface traps under different oxidation conditions will be discussed in this presentation. Sequential post-oxidation anneals in nitric oxide and hydrogen effectively reduces the interface density (Dit) near the conduction band edge. However, deeper in the band gap, the trap density remains higher compared to the Si-face. Time-dependent dielectric breakdown (TDDB) studies have also been performed to investigate oxide reliability on the C-face, and current-voltage measurements show that a low barrier height against carrier injection likely contributes to oxide degradation. Nevertheless, the effective channel mobility and threshold voltage for n-channel C-face lateral MOSFETs compare favorably with similar Si-face devices.
Basic investigation into the electrical performance of solid electrolyte membranes
NASA Technical Reports Server (NTRS)
Richter, R.
1982-01-01
The electrical performance of solid electrolyte membranes was investigated analytically and the results were compared with experimental data. It is concluded that in devices that are used for pumping oxygen the major power losses have to be attributed to the thin film electrodes. Relations were developed by which the effectiveness of tubular solid electrolyte membranes can be determined and the optimum length evaluated. The observed failure of solid electrolyte tube membranes in very localized areas is explained by the highly non-uniform current distribution in the membranes. The analysis points to a possible contact resistance between the electrodes and the solid electrolyte material. This possible contact resistance remains to be investigated experimentally. It is concluded that film electrodes are not appropriate for devices which operate with current flow, i.e., pumps though they can be employed without reservation in devices that measure oxygen pressures if a limited increase in the response time can be tolerated.
Stencil Nano Lithography Based on a Nanoscale Polymer Shadow Mask: Towards Organic Nanoelectronics
Yun, Hoyeol; Kim, Sangwook; Kim, Hakseong; Lee, Junghyun; McAllister, Kirstie; Kim, Junhyung; Pyo, Sengmoon; Sung Kim, Jun; Campbell, Eleanor E. B.; Hyoung Lee, Wi; Wook Lee, Sang
2015-01-01
A stencil lithography technique has been developed to fabricate organic-material-based electronic devices with sub-micron resolution. Suspended polymethylmethacrylate (PMMA) membranes were used as shadow masks for defining organic channels and top electrodes. Arrays of pentacene field effect transistors (FETs) with various channel lengths from 50 μm down to 500 nm were successfully produced from the same batch using this technique. Electrical transport measurements showed that the electrical contacts of all devices were stable and the normalized contact resistances were much lower than previously studied organic FETs. Scaling effects, originating from the bulk space charge current, were investigated by analyzing the channel-length-dependent mobility and hysteresis behaviors. This novel lithography method provides a reliable means for studying the fundamental transport properties of organic materials at the nanoscale as well as enabling potential applications requiring the fabrication of integrated organic nanoelectronic devices. PMID:25959389
Stencil nano lithography based on a nanoscale polymer shadow mask: towards organic nanoelectronics.
Yun, Hoyeol; Kim, Sangwook; Kim, Hakseong; Lee, Junghyun; McAllister, Kirstie; Kim, Junhyung; Pyo, Sengmoon; Sung Kim, Jun; Campbell, Eleanor E B; Hyoung Lee, Wi; Wook Lee, Sang
2015-05-11
A stencil lithography technique has been developed to fabricate organic-material-based electronic devices with sub-micron resolution. Suspended polymethylmethacrylate (PMMA) membranes were used as shadow masks for defining organic channels and top electrodes. Arrays of pentacene field effect transistors (FETs) with various channel lengths from 50 μm down to 500 nm were successfully produced from the same batch using this technique. Electrical transport measurements showed that the electrical contacts of all devices were stable and the normalized contact resistances were much lower than previously studied organic FETs. Scaling effects, originating from the bulk space charge current, were investigated by analyzing the channel-length-dependent mobility and hysteresis behaviors. This novel lithography method provides a reliable means for studying the fundamental transport properties of organic materials at the nanoscale as well as enabling potential applications requiring the fabrication of integrated organic nanoelectronic devices.
Electrical and optical evaluation of n-type doping in In x Ga(1-x)P nanowires.
Zeng, Xulu; Mourão, Renato T; Otnes, Gaute; Hultin, Olof; Dagytė, Vilgailė; Heurlin, Magnus; Borgström, Magnus T
2018-06-22
To harvest the benefits of III-V nanowires in optoelectronic devices, the development of ternary materials with controlled doping is needed. In this work, we performed a systematic study of n-type dopant incorporation in dense In x Ga (1-x) P nanowire arrays using tetraethyl tin (TESn) and hydrogen sulfide (H 2 S) as dopant precursors. The morphology, crystal structure and material composition of the nanowires were characterized by use of scanning electron microscopy, transmission electron microscopy and energy dispersive x-ray analysis. To investigate the electrical properties, the nanowires were broken off from the substrate and mechanically transferred to thermally oxidized silicon substrates, after which electron beam lithography and metal evaporation were used to define electrical contacts to selected nanowires. Electrical characterization, including four-probe resistivity and Hall effect, as well as back-gated field effect measurements, is combined with photoluminescence spectroscopy to achieve a comprehensive evaluation of the carrier concentration in the doped nanowires. We measure a carrier concentration of ∼1 × 10 16 cm -3 in nominally intrinsic nanowires, and the maximum doping level achieved by use of TESn and H 2 S as dopant precursors using our parameters is measured to be ∼2 × 10 18 cm -3 , and ∼1 × 10 19 cm -3 , respectively (by Hall effect measurements). Hence, both TESn and H 2 S are suitable precursors for a wide range of n-doping levels in In x Ga (1-x) P nanowires needed for optoelectronic devices, grown via the vapor-liquid-solid mode.
Electrical and optical evaluation of n-type doping in In x Ga(1‑x)P nanowires
NASA Astrophysics Data System (ADS)
Zeng, Xulu; Mourão, Renato T.; Otnes, Gaute; Hultin, Olof; Dagytė, Vilgailė; Heurlin, Magnus; Borgström, Magnus T.
2018-06-01
To harvest the benefits of III–V nanowires in optoelectronic devices, the development of ternary materials with controlled doping is needed. In this work, we performed a systematic study of n-type dopant incorporation in dense In x Ga(1‑x)P nanowire arrays using tetraethyl tin (TESn) and hydrogen sulfide (H2S) as dopant precursors. The morphology, crystal structure and material composition of the nanowires were characterized by use of scanning electron microscopy, transmission electron microscopy and energy dispersive x-ray analysis. To investigate the electrical properties, the nanowires were broken off from the substrate and mechanically transferred to thermally oxidized silicon substrates, after which electron beam lithography and metal evaporation were used to define electrical contacts to selected nanowires. Electrical characterization, including four-probe resistivity and Hall effect, as well as back-gated field effect measurements, is combined with photoluminescence spectroscopy to achieve a comprehensive evaluation of the carrier concentration in the doped nanowires. We measure a carrier concentration of ∼1 × 1016 cm‑3 in nominally intrinsic nanowires, and the maximum doping level achieved by use of TESn and H2S as dopant precursors using our parameters is measured to be ∼2 × 1018 cm‑3, and ∼1 × 1019 cm‑3, respectively (by Hall effect measurements). Hence, both TESn and H2S are suitable precursors for a wide range of n-doping levels in In x Ga(1‑x)P nanowires needed for optoelectronic devices, grown via the vapor–liquid–solid mode.
Electronic firing systems and methods for firing a device
Frickey, Steven J [Boise, ID; Svoboda, John M [Idaho Falls, ID
2012-04-24
An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.
Operations manual for the patient assist device. [to handle electrical appliances
NASA Technical Reports Server (NTRS)
Schrader, M. A.
1973-01-01
Quadriplegic patients and multiple amputee patients are almost totally dependent on nursing personnel for any activities or interests in which they participate. A patient assist device is reported which provides patient control over electrical devices in his environment. The patient operates three switches to acquire control over a desired electrical appliance. The type switches employed are chosen to conform to patient capabilities, even when such capabilities are as limited as eye or head movements. The switch operations are sensed and converted into command signals by the patient assist device to control ten electrical appliances simulataneously and independently.
Motor monitoring method and apparatus using high frequency current components
Casada, D.A.
1996-05-21
A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.
Motor monitoring method and apparatus using high frequency current components
Casada, Donald A.
1996-01-01
A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.
Chen, Yu-Liang; Jiang, Hong-Ren
2017-06-23
This article provides a simple method to prepare partially or fully coated metallic particles and to perform the rapid fabrication of electrode arrays, which can facilitate electrical experiments in microfluidic devices. Janus particles are asymmetric particles that contain two different surface properties on their two sides. To prepare Janus particles, a monolayer of silica particles is prepared by a drying process. Gold (Au) is deposited on one side of each particle using a sputtering device. The fully coated metallic particles are completed after the second coating process. To analyze the electrical surface properties of Janus particles, alternating current (AC) electrokinetic measurements, such as dielectrophoresis (DEP) and electrorotation (EROT)- which require specifically designed electrode arrays in the experimental device- are performed. However, traditional methods to fabricate electrode arrays, such as the photolithographic technique, require a series of complicated procedures. Here, we introduce a flexible method to fabricate a designed electrode array. An indium tin oxide (ITO) glass is patterned by a fiber laser marking machine (1,064 nm, 20 W, 90 to 120 ns pulse-width, and 20 to 80 kHz pulse repetition frequency) to create a four-phase electrode array. To generate the four-phase electric field, the electrodes are connected to a 2-channel function generator and to two invertors. The phase shift between the adjacent electrodes is set at either 90° (for EROT) or 180° (for DEP). Representative results of AC electrokinetic measurements with a four-phase ITO electrode array are presented.
Corrected body surface potential mapping.
Krenzke, Gerhard; Kindt, Carsten; Hetzer, Roland
2007-02-01
In the method for body surface potential mapping described here, the influence of thorax shape on measured ECG values is corrected. The distances of the ECG electrodes from the electrical heart midpoint are determined using a special device for ECG recording. These distances are used to correct the ECG values as if they had been measured on the surface of a sphere with a radius of 10 cm with its midpoint localized at the electrical heart midpoint. The equipotential lines of the electrical heart field are represented on the virtual surface of such a sphere. It is demonstrated that the character of a dipole field is better represented if the influence of the thorax shape is reduced. The site of the virtual reference electrode is also important for the dipole character of the representation of the electrical heart field.
Increasing throughput of multiplexed electrical bus in pipe-lined architecture
Asaad, Sameh; Brezzo, Bernard V; Kapur, Mohit
2014-05-27
Techniques are disclosed for increasing the throughput of a multiplexed electrical bus by exploiting available pipeline stages of a computer or other system. For example, a method for increasing a throughput of an electrical bus that connects at least two devices in a system comprises introducing at least one signal hold stage in a signal-receiving one of the two devices, such that a maximum frequency at which the two devices are operated is not limited by a number of cycles of an operating frequency of the electrical bus needed for a signal to propagate from a signal-transmitting one of the two devices to the signal-receiving one of the two devices. Preferably, the signal hold stage introduced in the signal-receiving one of the two devices is a pipeline stage re-allocated from the signal-transmitting one of the two devices.