Sample records for electrical neuroimaging evidence

  1. Understanding the impact of TV commercials: electrical neuroimaging.

    PubMed

    Vecchiato, Giovanni; Kong, Wanzeng; Maglione, Anton Giulio; Wei, Daming

    2012-01-01

    Today, there is a greater interest in the marketing world in using neuroimaging tools to evaluate the efficacy of TV commercials. This field of research is known as neuromarketing. In this article, we illustrate some applications of electrical neuroimaging, a discipline that uses electroencephalography (EEG) and intensive signal processing techniques for the evaluation of marketing stimuli. We also show how the proper usage of these methodologies can provide information related to memorization and attention while people are watching marketing-relevant stimuli. We note that temporal and frequency patterns of EEG signals are able to provide possible descriptors that convey information about the cognitive process in subjects observing commercial advertisements (ads). Such information could be unobtainable through common tools used in standard marketing research. Evidence of this research shows how EEG methodologies could be employed to better design new products that marketers are going to promote and to analyze the global impact of video commercials already broadcast on TV.

  2. Linking Essential Tremor to the Cerebellum-Neuroimaging Evidence.

    PubMed

    Cerasa, Antonio; Quattrone, Aldo

    2016-06-01

    Essential tremor (ET) is the most common pathological tremor disorder in the world, and post-mortem evidence has shown that the cerebellum is the most consistent area of pathology in ET. In the last few years, advanced neuroimaging has tried to confirm this evidence. The aim of the present review is to discuss to what extent the evidence provided by this field of study may be generalised. We performed a systematic literature search combining the terms ET with the following keywords: MRI, VBM, MRS, DTI, fMRI, PET and SPECT. We summarised and discussed each study and placed the results in the context of existing knowledge regarding the cerebellar involvement in ET. A total of 51 neuroimaging studies met our search criteria, roughly divided into 19 structural and 32 functional studies. Despite clinical and methodological differences, both functional and structural imaging studies showed similar findings but without defining a clear topography of neurodegeneration. Indeed, the vast majority of studies found functional and structural abnormalities in several parts of the anterior and posterior cerebellar lobules, but it remains to be established to what degree these neural changes contribute to clinical symptoms of ET. Currently, advanced neuroimaging has confirmed the involvement of the cerebellum in pathophysiological processes of ET, although a high variability in results persists. For this reason, the translation of this knowledge into daily clinical practice is again partially limited, although new advanced multivariate neuroimaging approaches (machine-learning) are proving interesting changes of perspective.

  3. Targeting neuronal dysfunction in schizophrenia with nicotine: Evidence from neurophysiology to neuroimaging

    PubMed Central

    Smucny, Jason; Tregellas, Jason R

    2018-01-01

    Patients with schizophrenia self-administer nicotine at rates higher than is self-administered for any other psychiatric illness. Although the reasons are unclear, one hypothesis suggests that nicotine is a form of ‘self-medication’ in order to restore normal levels of nicotinic signaling and target abnormalities in neuronal function associated with cognitive processes. This brief review discusses evidence from neurophysiological and neuroimaging studies in schizophrenia patients that nicotinic agonists may effectively target dysfunctional neuronal circuits in the illness. Evidence suggests that nicotine significantly modulates a number of these circuits, although relatively few studies have used modern neuroimaging techniques (e.g. functional magnetic resonance imaging (fMRI)) to examine the effects of nicotinic drugs on disease-related neurobiology. The neuronal effects of nicotine and other nicotinic agonists in schizophrenia remain a priority for psychiatry research. PMID:28441884

  4. Childhood-Onset Schizophrenia: Insights from Neuroimaging Studies

    ERIC Educational Resources Information Center

    Gogtay, Nitin; Rapoport, Judith L.

    2008-01-01

    The use of longitudinal neuroimaging to study the developmental perspectives of brain pathology in children with childhood-onset schizophrenia (COS) is described. Structural neuroimaging is capable of providing evidence of neurobiological specificity of COS to distinguish it from other brain abnormalities seen in neuropsychiatric illnesses like…

  5. Turner Syndrome: Neuroimaging Findings--Structural and Functional

    ERIC Educational Resources Information Center

    Mullaney, Ronan; Murphy, Declan

    2009-01-01

    Neuroimaging studies of Turner syndrome can advance our understanding of the X chromosome in brain development, and the modulatory influence of endocrine factors. There is increasing evidence from neuroimaging studies that TX individuals have significant differences in the anatomy, function, and metabolism of a number of brain regions; including…

  6. Neuromarketing: the hope and hype of neuroimaging in business.

    PubMed

    Ariely, Dan; Berns, Gregory S

    2010-04-01

    The application of neuroimaging methods to product marketing - neuromarketing - has recently gained considerable popularity. We propose that there are two main reasons for this trend. First, the possibility that neuroimaging will become cheaper and faster than other marketing methods; and second, the hope that neuroimaging will provide marketers with information that is not obtainable through conventional marketing methods. Although neuroimaging is unlikely to be cheaper than other tools in the near future, there is growing evidence that it may provide hidden information about the consumer experience. The most promising application of neuroimaging methods to marketing may come before a product is even released - when it is just an idea being developed.

  7. Transcranial electric stimulation (tES) and NeuroImaging: the state-of-the-art, new insights and prospects in basic and clinical neuroscience.

    PubMed

    Soekadar, Surjo R; Herring, Jim Don; McGonigle, David

    2016-10-15

    Transcranial electric stimulation (tES) of the brain has attracted an increased interest in recent years. Yet, despite remarkable research efforts to date, the underlying neurobiological mechanisms of tES' effects are still incompletely understood. This Special Issue aims to provide a comprehensive and up-to-date overview of the state-of-the-art in studies combining tES and neuroimaging, while introducing most recent insights and outlining future prospects related to this new and rapidly growing field. The findings reported here combine methodological advancements with insights into the underlying mechanisms of tES itself. At the same time, they also point to the many caveats and specific challenges associated with such studies, which can arise from both technical and biological sources. Besides promising to advance basic neuroscience, combined tES and neuroimaging studies may also substantially change previous conceptions about the methods of action of electric or magnetic stimulation on the brain. Copyright © 2016. Published by Elsevier Inc.

  8. Neuromarketing: the hope and hype of neuroimaging in business

    PubMed Central

    Ariely, Dan; Berns, Gregory S.

    2010-01-01

    The application of neuroimaging methods to product marketing — neuromarketing — has recently gained considerable popularity. We propose that there are two main reasons for this trend. First, the possibility that neuroimaging will become cheaper and faster than other marketing methods; and second, the hope that neuroimaging will provide marketers with information that is not obtainable through conventional marketing methods. Although neuroimaging is unlikely to be cheaper than other tools in the near future, there is growing evidence that it may provide hidden information about the consumer experience. The most promising application of neuroimaging methods to marketing may come before a product is even released — when it is just an idea being developed. PMID:20197790

  9. MEDIAL TEMPORAL LOBE CONTRIBUTIONS TO FUTURE THINKING: EVIDENCE FROM NEUROIMAGING AND AMNESIA.

    PubMed

    Verfaellie, Mieke; Race, Elizabeth; Keane, Margaret M

    2012-09-01

    Following early amnesic case reports, there is now considerable evidence suggesting a link between remembering the past and envisioning the future. This link is evident in the overlap in neural substrates as well as cognitive processes involved in both kinds of tasks. While constructing a future narrative requires multiple processes, neuroimaging and lesion data converge on a critical role for the medial temporal lobes (MTL) in retrieving and recombining details from memory in the service of novel simulations. Deficient detail retrieval and recombination may lead to impairments not only in episodic, but also in semantic prospection. MTL contributions to scene construction and mental time travel may further compound impairments in amnesia on tasks that pose additional demands on these processes, but are unlikely to form the core deficit underlying amnesics' cross-domain future thinking impairment. Future studies exploring the role of episodic memory in other forms of self-projection or future-oriented behaviour may elucidate further the adaptive role of memory.

  10. MEDIAL TEMPORAL LOBE CONTRIBUTIONS TO FUTURE THINKING: EVIDENCE FROM NEUROIMAGING AND AMNESIA

    PubMed Central

    Verfaellie, Mieke; Race, Elizabeth; Keane, Margaret M.

    2013-01-01

    Following early amnesic case reports, there is now considerable evidence suggesting a link between remembering the past and envisioning the future. This link is evident in the overlap in neural substrates as well as cognitive processes involved in both kinds of tasks. While constructing a future narrative requires multiple processes, neuroimaging and lesion data converge on a critical role for the medial temporal lobes (MTL) in retrieving and recombining details from memory in the service of novel simulations. Deficient detail retrieval and recombination may lead to impairments not only in episodic, but also in semantic prospection. MTL contributions to scene construction and mental time travel may further compound impairments in amnesia on tasks that pose additional demands on these processes, but are unlikely to form the core deficit underlying amnesics’ cross-domain future thinking impairment. Future studies exploring the role of episodic memory in other forms of self-projection or future-oriented behaviour may elucidate further the adaptive role of memory. PMID:23447709

  11. Functional neuroimaging of extraversion-introversion.

    PubMed

    Lei, Xu; Yang, Tianliang; Wu, Taoyu

    2015-12-01

    Neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography have provided an unprecedented neurobiological perspective for research on personality traits. Evidence from task-related neuroimaging has shown that extraversion is associated with activations in regions of the anterior cingulate cortex, dorsolateral prefrontal cortex, middle temporal gyrus and the amygdala. Currently, resting-state neuroimaging is being widely used in cognitive neuroscience. Initial exploration of extraversion has revealed correlations with the medial prefrontal cortex, anterior cingulate cortex, insular cortex, and the precuneus. Recent research work has indicated that the long-range temporal dependence of the resting-state spontaneous oscillation has high test-retest reliability. Moreover, the long-range temporal dependence of the resting-state networks is highly correlated with personality traits, and this can be used for the prediction of extraversion. As the long-range temporal dependence reflects real-time information updating in individuals, this method may provide a new approach to research on personality traits.

  12. Neural Correlates of Visual Perceptual Expertise: Evidence from Cognitive Neuroscience Using Functional Neuroimaging

    ERIC Educational Resources Information Center

    Gegenfurtner, Andreas; Kok, Ellen M.; van Geel, Koos; de Bruin, Anique B. H.; Sorger, Bettina

    2017-01-01

    Functional neuroimaging is a useful approach to study the neural correlates of visual perceptual expertise. The purpose of this paper is to review the functional-neuroimaging methods that have been implemented in previous research in this context. First, we will discuss research questions typically addressed in visual expertise research. Second,…

  13. Functions of the human frontoparietal attention network: Evidence from neuroimaging

    PubMed Central

    Scolari, Miranda; Seidl-Rathkopf, Katharina N; Kastner, Sabine

    2016-01-01

    Human frontoparietal cortex has long been implicated as a source of attentional control. However, the mechanistic underpinnings of these control functions have remained elusive due to limitations of neuroimaging techniques that rely on anatomical landmarks to localize patterns of activation. The recent advent of topographic mapping via functional magnetic resonance imaging (fMRI) has allowed the reliable parcellation of the network into 18 independent subregions in individual subjects, thereby offering unprecedented opportunities to address a wide range of empirical questions as to how mechanisms of control operate. Here, we review the human neuroimaging literature that has begun to explore space-based, feature-based, object-based and category-based attentional control within the context of topographically defined frontoparietal cortex. PMID:27398396

  14. Neuroimaging of Pain: Human Evidence and Clinical Relevance of Central Nervous System Processes and Modulation.

    PubMed

    Martucci, Katherine T; Mackey, Sean C

    2018-06-01

    Neuroimaging research has demonstrated definitive involvement of the central nervous system in the development, maintenance, and experience of chronic pain. Structural and functional neuroimaging has helped elucidate central nervous system contributors to chronic pain in humans. Neuroimaging of pain has provided a tool for increasing our understanding of how pharmacologic and psychologic therapies improve chronic pain. To date, findings from neuroimaging pain research have benefitted clinical practice by providing clinicians with an educational framework to discuss the biopsychosocial nature of pain with patients. Future advances in neuroimaging-based therapeutics (e.g., transcranial magnetic stimulation, real-time functional magnetic resonance imaging neurofeedback) may provide additional benefits for clinical practice. In the future, with standardization and validation, brain imaging could provide objective biomarkers of chronic pain, and guide treatment for personalized pain management. Similarly, brain-based biomarkers may provide an additional predictor of perioperative prognoses.

  15. Neurobiological model of obsessive-compulsive disorder: evidence from recent neuropsychological and neuroimaging findings.

    PubMed

    Nakao, Tomohiro; Okada, Kayo; Kanba, Shigenobu

    2014-08-01

    Obsessive-compulsive disorder (OCD) was previously considered refractory to most types of therapeutic intervention. There is now, however, ample evidence that selective serotonin reuptake inhibitors and behavior therapy are highly effective methods for treatment of OCD. Furthermore, recent neurobiological studies of OCD have found a close correlation between clinical symptoms, cognitive function, and brain function. A large number of previous neuroimaging studies using positron emission tomography, single-photon emission computed tomography or functional magnetic resonance imaging (fMRI) have identified abnormally high activities throughout the frontal cortex and subcortical structures in patients with OCD. Most studies reported excessive activation of these areas during symptom provocation. Furthermore, these hyperactivities were decreased after successful treatment using either selective serotonin reuptake inhibitors or behavioral therapy. Based on these findings, an orbitofronto-striatal model has been postulated as an abnormal neural circuit that mediates symptomatic expression of OCD. On the other hand, previous neuropsychological studies of OCD have reported cognitive dysfunction in executive function, attention, nonverbal memory, and visuospatial skills. Moreover, recent fMRI studies have revealed a correlation between neuropsychological dysfunction and clinical symptoms in OCD by using neuropsychological tasks during fMRI. The evidence from fMRI studies suggests that broader regions, including dorsolateral prefrontal and posterior regions, might be involved in the pathophysiology of OCD. Further, we should consider that OCD is heterogeneous and might have several different neural systems related to clinical factors, such as symptom dimensions. This review outlines recent neuropsychological and neuroimaging studies of OCD. We will also describe several neurobiological models that have been developed recently. Advanced findings in these fields will update the

  16. The role of the amygdala in the pathophysiology of panic disorder: evidence from neuroimaging studies

    PubMed Central

    2012-01-01

    Although the neurobiological mechanisms underlying panic disorder (PD) are not yet clearly understood, increasing amount of evidence from animal and human studies suggests that the amygdala, which plays a pivotal role in neural network of fear and anxiety, has an important role in the pathogenesis of PD. This article aims to (1) review the findings of structural, chemical, and functional neuroimaging studies on PD, (2) relate the amygdala to panic attacks and PD development, (3) discuss the possible causes of amygdalar abnormalities in PD, (4) and suggest directions for future research. PMID:23168129

  17. Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence.

    PubMed Central

    Hillyard, S A; Vogel, E K; Luck, S J

    1998-01-01

    Both physiological and behavioral studies have suggested that stimulus-driven neural activity in the sensory pathways can be modulated in amplitude during selective attention. Recordings of event-related brain potentials indicate that such sensory gain control or amplification processes play an important role in visual-spatial attention. Combined event-related brain potential and neuroimaging experiments provide strong evidence that attentional gain control operates at an early stage of visual processing in extrastriate cortical areas. These data support early selection theories of attention and provide a basis for distinguishing between separate mechanisms of attentional suppression (of unattended inputs) and attentional facilitation (of attended inputs). PMID:9770220

  18. Ethical and Legal Implications of the Methodological Crisis in Neuroimaging.

    PubMed

    Kellmeyer, Philipp

    2017-10-01

    Currently, many scientific fields such as psychology or biomedicine face a methodological crisis concerning the reproducibility, replicability, and validity of their research. In neuroimaging, similar methodological concerns have taken hold of the field, and researchers are working frantically toward finding solutions for the methodological problems specific to neuroimaging. This article examines some ethical and legal implications of this methodological crisis in neuroimaging. With respect to ethical challenges, the article discusses the impact of flawed methods in neuroimaging research in cognitive and clinical neuroscience, particularly with respect to faulty brain-based models of human cognition, behavior, and personality. Specifically examined is whether such faulty models, when they are applied to neurological or psychiatric diseases, could put patients at risk, and whether this places special obligations on researchers using neuroimaging. In the legal domain, the actual use of neuroimaging as evidence in United States courtrooms is surveyed, followed by an examination of ways that the methodological problems may create challenges for the criminal justice system. Finally, the article reviews and promotes some promising ideas and initiatives from within the neuroimaging community for addressing the methodological problems.

  19. Functional Neuro-Imaging and Post-Traumatic Olfactory Impairment

    PubMed Central

    Roberts, Richard J.; Sheehan, William; Thurber, Steven; Roberts, Mary Ann

    2010-01-01

    Objective: To evaluate via a research literature survey the anterior neurological significance of decreased olfactory functioning following traumatic brain injuries. Materials and Methods: A computer literature review was performed to locate all functional neuro-imaging studies on patients with post-traumatic anosmia and other olfactory deficits. Results: A convergence of findings from nine functional neuro-imaging studies indicating evidence for reduced metabolic activity at rest or relative hypo-perfusion during olfactory activations. Hypo-activation of the prefrontal regions was apparent in all nine post-traumatic samples, with three samples yielding evidence of reduced activity in the temporal regions as well. Conclusions: The practical ramifications include the reasonable hypothesis that a total anosmic head trauma patient likely has frontal lobe involvement. PMID:21716782

  20. Neuroimaging findings in treatment-resistant schizophrenia: a systematic review

    PubMed Central

    Nakajima, Shinichiro; Takeuchi, Hiroyoshi; Plitman, Eric; Fervaha, Gagan; Gerretsen, Philip; Caravaggio, Fernando; Chung, Jun Ku; Iwata, Yusuke; Remington, Gary; Graff-Guerrero, Ariel

    2015-01-01

    Background Recent developments in neuroimaging have advanced understanding biological mechanisms underlying schizophrenia. However, neuroimaging correlates of treatment-resistant schizophrenia (TRS) and superior effects of clozapine on TRS remain unclear. Methods Systematic search was performed to identify neuroimaging characteristics unique to TRS and ultra-resistant schizophrenia (i.e. clozapine-resistant [URS]), and clozapine's efficacy in TRS using Embase, Medline, and PsychInfo. Search terms included (schizophreni*) and (resistan* OR refractory OR clozapine) and (ASL OR CT OR DTI OR FMRI OR MRI OR MRS OR NIRS OR PET OR SPECT). Results 25 neuroimaging studies have investigated TRS and effects of clozapine. Only 5 studies have compared TRS and non-TRS, collectively providing no replicated neuroimaging finding specific to TRS. Studies comparing TRS and healthy controls suggest hypometabolism in the prefrontal cortex, hypermetabolism in the basal ganglia, and structural anomalies in the corpus callosum contribute to TRS. Clozapine may increase prefrontal hypoactivation in TRS although this was not related to clinical improvement; in contrast, evidence has suggested a link between clozapine efficacy and decreased metabolism in the basal ganglia and thalamus. Conclusion Existing literature does not elucidate neuroimaging correlates specific to TRS or URS, which, if present, might also shed light on clozapine's efficacy in TRS. This said, leads from other lines of investigation, including the glutamatergic system can prove useful in guiding future neuroimaging studies focused on, in particular, the frontocortical-basal ganglia-thalamic circuits. Critical to the success of this work will be precise subtyping of study subjects based on treatment response/nonresponse and the use of multimodal neuroimaging. PMID:25684554

  1. Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers.

    PubMed

    Cole, James H; Franke, Katja

    2017-12-01

    The brain changes as we age and these changes are associated with functional deterioration and neurodegenerative disease. It is vital that we better understand individual differences in the brain ageing process; hence, techniques for making individualised predictions of brain ageing have been developed. We present evidence supporting the use of neuroimaging-based 'brain age' as a biomarker of an individual's brain health. Increasingly, research is showing how brain disease or poor physical health negatively impacts brain age. Importantly, recent evidence shows that having an 'older'-appearing brain relates to advanced physiological and cognitive ageing and the risk of mortality. We discuss controversies surrounding brain age and highlight emerging trends such as the use of multimodality neuroimaging and the employment of 'deep learning' methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Clocking the social mind by identifying mental processes in the IAT with electrical neuroimaging

    PubMed Central

    Schiller, Bastian; Gianotti, Lorena R. R.; Baumgartner, Thomas; Nash, Kyle; Koenig, Thomas; Knoch, Daria

    2016-01-01

    Why do people take longer to associate the word “love” with outgroup words (incongruent condition) than with ingroup words (congruent condition)? Despite the widespread use of the implicit association test (IAT), it has remained unclear whether this IAT effect is due to additional mental processes in the incongruent condition, or due to longer duration of the same processes. Here, we addressed this previously insoluble issue by assessing the spatiotemporal evolution of brain electrical activity in 83 participants. From stimulus presentation until response production, we identified seven processes. Crucially, all seven processes occurred in the same temporal sequence in both conditions, but participants needed more time to perform one early occurring process (perceptual processing) and one late occurring process (implementing cognitive control to select the motor response) in the incongruent compared with the congruent condition. We also found that the latter process contributed to individual differences in implicit bias. These results advance understanding of the neural mechanics of response time differences in the IAT: They speak against theories that explain the IAT effect as due to additional processes in the incongruent condition and speak in favor of theories that assume a longer duration of specific processes in the incongruent condition. More broadly, our data analysis approach illustrates the potential of electrical neuroimaging to illuminate the temporal organization of mental processes involved in social cognition. PMID:26903643

  3. Clocking the social mind by identifying mental processes in the IAT with electrical neuroimaging.

    PubMed

    Schiller, Bastian; Gianotti, Lorena R R; Baumgartner, Thomas; Nash, Kyle; Koenig, Thomas; Knoch, Daria

    2016-03-08

    Why do people take longer to associate the word "love" with outgroup words (incongruent condition) than with ingroup words (congruent condition)? Despite the widespread use of the implicit association test (IAT), it has remained unclear whether this IAT effect is due to additional mental processes in the incongruent condition, or due to longer duration of the same processes. Here, we addressed this previously insoluble issue by assessing the spatiotemporal evolution of brain electrical activity in 83 participants. From stimulus presentation until response production, we identified seven processes. Crucially, all seven processes occurred in the same temporal sequence in both conditions, but participants needed more time to perform one early occurring process (perceptual processing) and one late occurring process (implementing cognitive control to select the motor response) in the incongruent compared with the congruent condition. We also found that the latter process contributed to individual differences in implicit bias. These results advance understanding of the neural mechanics of response time differences in the IAT: They speak against theories that explain the IAT effect as due to additional processes in the incongruent condition and speak in favor of theories that assume a longer duration of specific processes in the incongruent condition. More broadly, our data analysis approach illustrates the potential of electrical neuroimaging to illuminate the temporal organization of mental processes involved in social cognition.

  4. Computational Modeling and Neuroimaging Techniques for Targeting during Deep Brain Stimulation

    PubMed Central

    Sweet, Jennifer A.; Pace, Jonathan; Girgis, Fady; Miller, Jonathan P.

    2016-01-01

    Accurate surgical localization of the varied targets for deep brain stimulation (DBS) is a process undergoing constant evolution, with increasingly sophisticated techniques to allow for highly precise targeting. However, despite the fastidious placement of electrodes into specific structures within the brain, there is increasing evidence to suggest that the clinical effects of DBS are likely due to the activation of widespread neuronal networks directly and indirectly influenced by the stimulation of a given target. Selective activation of these complex and inter-connected pathways may further improve the outcomes of currently treated diseases by targeting specific fiber tracts responsible for a particular symptom in a patient-specific manner. Moreover, the delivery of such focused stimulation may aid in the discovery of new targets for electrical stimulation to treat additional neurological, psychiatric, and even cognitive disorders. As such, advancements in surgical targeting, computational modeling, engineering designs, and neuroimaging techniques play a critical role in this process. This article reviews the progress of these applications, discussing the importance of target localization for DBS, and the role of computational modeling and novel neuroimaging in improving our understanding of the pathophysiology of diseases, and thus paving the way for improved selective target localization using DBS. PMID:27445709

  5. Neuroimaging: beginning to appreciate its complexities.

    PubMed

    Parens, Erik; Johnston, Josephine

    2014-01-01

    For over a century, scientists have sought to see through the protective shield of the human skull and into the living brain. Today, an array of technologies allows researchers and clinicians to create astonishingly detailed images of our brain's structure as well as colorful depictions of the electrical and physiological changes that occur within it when we see, hear, think and feel. These technologies-and the images they generate-are an increasingly important tool in medicine and science. Given the role that neuroimaging technologies now play in biomedical research, both neuroscientists and nonexperts should aim to be as clear as possible about how neuroimages are made and what they can-and cannot-tell us. Add to this that neuroimages have begun to be used in courtrooms at both the determination of guilt and sentencing stages, that they are being employed by marketers to refine advertisements and develop new products, that they are being sold to consumers for the diagnosis of mental disorders and for the detection of lies, and that they are being employed in arguments about the nature (or absence) of powerful concepts like free will and personhood, and the need for citizens to have a basic understanding of how this technology works and what it can and cannot tell us becomes even more pressing. © 2014 by The Hastings Center.

  6. Language and thought are not the same thing: evidence from neuroimaging and neurological patients

    PubMed Central

    Fedorenko, Evelina; Varley, Rosemary

    2016-01-01

    Is thought possible without language? Individuals with global aphasia, who have almost no ability to understand or produce language, provide a powerful opportunity to find out. Astonishingly, despite their near-total loss of language, these individuals are nonetheless able to add and subtract, solve logic problems, think about another person’s thoughts, appreciate music, and successfully navigate their environments. Further, neuroimaging studies show that healthy adults strongly engage the brain’s language areas when they understand a sentence, but not when they perform other nonlinguistic tasks like arithmetic, storing information in working memory, inhibiting prepotent responses, or listening to music. Taken together, these two complementary lines of evidence provide a clear answer to the classic question: many aspects of thought engage distinct brain regions from, and do not depend on, language. PMID:27096882

  7. Language and thought are not the same thing: evidence from neuroimaging and neurological patients.

    PubMed

    Fedorenko, Evelina; Varley, Rosemary

    2016-04-01

    Is thought possible without language? Individuals with global aphasia, who have almost no ability to understand or produce language, provide a powerful opportunity to find out. Surprisingly, despite their near-total loss of language, these individuals are nonetheless able to add and subtract, solve logic problems, think about another person's thoughts, appreciate music, and successfully navigate their environments. Further, neuroimaging studies show that healthy adults strongly engage the brain's language areas when they understand a sentence, but not when they perform other nonlinguistic tasks such as arithmetic, storing information in working memory, inhibiting prepotent responses, or listening to music. Together, these two complementary lines of evidence provide a clear answer: many aspects of thought engage distinct brain regions from, and do not depend on, language. © 2016 New York Academy of Sciences.

  8. Choosing Wisely: A Neurosurgical Perspective on Neuroimaging for Headaches

    PubMed Central

    Hawasli, Ammar H.; Chicoine, Michael R.; Dacey, Ralph G.

    2016-01-01

    Multiple national initiatives seek to curb spending in order to address increasing health care costs in the United States. The Choosing Wisely® initiative is one popular initiative that focuses on reducing health care spending by setting guidelines to limit tests and procedures requested by patients and ordered by physicians. To reduce spending on neuroimaging, the Choosing Wisely® initiative and other organizations have offered guidelines to limit neuroimaging for headaches. Although the intentions are laudable, these guidelines are inconsistent with the neurosurgeon’s experience with brain tumor patients. If adopted by governing or funding organizations, these guidelines threaten to negatively impact the care and outcomes of patients with brain tumors, who frequently present with minimal symptoms or isolated headaches syndromes. As we grapple with the difficult conflict between evidence-based cost-cutting guidelines and individualized patient-tailored medicine, a physician must carefully balance the costs and benefits of discretionary services such as neuroimaging for headaches. By participating in the development of validated clinical decision rules on neuroimaging for headaches, neurosurgeons can advocate for their patients and improve their patients’ outcomes. PMID:25255253

  9. Structural, Metabolic, and Functional Brain Abnormalities as a Result of Prenatal Exposure to Drugs of Abuse: Evidence from Neuroimaging

    PubMed Central

    Roussotte, Florence; Soderberg, Lindsay

    2010-01-01

    Prenatal exposure to alcohol and stimulants negatively affects the developing trajectory of the central nervous system in many ways. Recent advances in neuroimaging methods have allowed researchers to study the structural, metabolic, and functional abnormalities resulting from prenatal exposure to drugs of abuse in living human subjects. Here we review the neuroimaging literature of prenatal exposure to alcohol, cocaine, and methamphetamine. Neuroimaging studies of prenatal alcohol exposure have reported differences in the structure and metabolism of many brain systems, including in frontal, parietal, and temporal regions, in the cerebellum and basal ganglia, as well as in the white matter tracts that connect these brain regions. Functional imaging studies have identified significant differences in brain activation related to various cognitive domains as a result of prenatal alcohol exposure. The published literature of prenatal exposure to cocaine and methamphetamine is much smaller, but evidence is beginning to emerge suggesting that exposure to stimulant drugs in utero may be particularly toxic to dopamine-rich basal ganglia regions. Although the interpretation of such findings is somewhat limited by the problem of polysubstance abuse and by the difficulty of obtaining precise exposure histories in retrospective studies, such investigations provide important insights into the effects of drugs of abuse on the structure, function, and metabolism of the developing human brain. These insights may ultimately help clinicians develop better diagnostic tools and devise appropriate therapeutic interventions to improve the condition of children with prenatal exposure to drugs of abuse. PMID:20978945

  10. High Frequency of Neuroimaging Abnormalities Among Pediatric Patients With Sepsis Who Undergo Neuroimaging.

    PubMed

    Sandquist, Mary K; Clee, Mark S; Patel, Smruti K; Howard, Kelli A; Yunger, Toni; Nagaraj, Usha D; Jones, Blaise V; Fei, Lin; Vadivelu, Sudhakar; Wong, Hector R

    2017-07-01

    This study was intended to describe and correlate the neuroimaging findings in pediatric patients after sepsis. Retrospective chart review. Single tertiary care PICU. Patients admitted to Cincinnati Children's Hospital Medical Center with a discharge diagnosis of sepsis or septic shock between 2004 and 2013 were crossmatched with patients who underwent neuroimaging during the same time period. All neuroimaging studies that occurred during or subsequent to a septic event were reviewed, and all new imaging findings were recorded and classified. As many patients experienced multiple septic events and/or had multiple neuroimaging studies after sepsis, our statistical analysis utilized the most recent or "final" imaging study available for each patient so that only brain imaging findings that persisted were included. A total of 389 children with sepsis and 1,705 concurrent or subsequent neuroimaging studies were included in the study. Median age at first septic event was 3.4 years (interquartile range, 0.7-11.5). Median time from first sepsis event to final neuroimaging was 157 days (interquartile range, 10-1,054). The most common indications for final imaging were follow-up (21%), altered mental status (18%), and fever/concern for infection (15%). Sixty-three percentage (n = 243) of final imaging studies demonstrated abnormal findings, the most common of which were volume loss (39%) and MRI signal and/or CT attenuation abnormalities (21%). On multivariable logistic regression, highest Pediatric Risk of Mortality score and presence of oncologic diagnosis/organ transplantation were independently associated with any abnormal final neuroimaging study findings (odds ratio, 1.032; p = 0.048 and odds ratio, 1.632; p = 0.041), although early timing of neuroimaging demonstrated a negative association (odds ratio, 0.606; p = 0.039). The most common abnormal finding of volume loss was independently associated with highest Pediatric Risk of Mortality score (odds ratio, 1.037; p

  11. Basic Emotions in Human Neuroscience: Neuroimaging and Beyond.

    PubMed

    Celeghin, Alessia; Diano, Matteo; Bagnis, Arianna; Viola, Marco; Tamietto, Marco

    2017-01-01

    The existence of so-called 'basic emotions' and their defining attributes represents a long lasting and yet unsettled issue in psychology. Recently, neuroimaging evidence, especially related to the advent of neuroimaging meta-analytic methods, has revitalized this debate in the endeavor of systems and human neuroscience. The core theme focuses on the existence of unique neural bases that are specific and characteristic for each instance of basic emotion. Here we review this evidence, outlining contradictory findings, strengths and limits of different approaches. Constructionism dismisses the existence of dedicated neural structures for basic emotions, considering that the assumption of a one-to-one relationship between neural structures and their functions is central to basic emotion theories. While these critiques are useful to pinpoint current limitations of basic emotions theories, we argue that they do not always appear equally generative in fostering new testable accounts on how the brain relates to affective functions. We then consider evidence beyond PET and fMRI, including results concerning the relation between basic emotions and awareness and data from neuropsychology on patients with focal brain damage. Evidence from lesion studies are indeed particularly informative, as they are able to bring correlational evidence typical of neuroimaging studies to causation, thereby characterizing which brain structures are necessary for, rather than simply related to, basic emotion processing. These other studies shed light on attributes often ascribed to basic emotions, such as automaticity of perception, quick onset, and brief duration. Overall, we consider that evidence in favor of the neurobiological underpinnings of basic emotions outweighs dismissive approaches. In fact, the concept of basic emotions can still be fruitful, if updated to current neurobiological knowledge that overcomes traditional one-to-one localization of functions in the brain. In particular

  12. Basic Emotions in Human Neuroscience: Neuroimaging and Beyond

    PubMed Central

    Celeghin, Alessia; Diano, Matteo; Bagnis, Arianna; Viola, Marco; Tamietto, Marco

    2017-01-01

    The existence of so-called ‘basic emotions’ and their defining attributes represents a long lasting and yet unsettled issue in psychology. Recently, neuroimaging evidence, especially related to the advent of neuroimaging meta-analytic methods, has revitalized this debate in the endeavor of systems and human neuroscience. The core theme focuses on the existence of unique neural bases that are specific and characteristic for each instance of basic emotion. Here we review this evidence, outlining contradictory findings, strengths and limits of different approaches. Constructionism dismisses the existence of dedicated neural structures for basic emotions, considering that the assumption of a one-to-one relationship between neural structures and their functions is central to basic emotion theories. While these critiques are useful to pinpoint current limitations of basic emotions theories, we argue that they do not always appear equally generative in fostering new testable accounts on how the brain relates to affective functions. We then consider evidence beyond PET and fMRI, including results concerning the relation between basic emotions and awareness and data from neuropsychology on patients with focal brain damage. Evidence from lesion studies are indeed particularly informative, as they are able to bring correlational evidence typical of neuroimaging studies to causation, thereby characterizing which brain structures are necessary for, rather than simply related to, basic emotion processing. These other studies shed light on attributes often ascribed to basic emotions, such as automaticity of perception, quick onset, and brief duration. Overall, we consider that evidence in favor of the neurobiological underpinnings of basic emotions outweighs dismissive approaches. In fact, the concept of basic emotions can still be fruitful, if updated to current neurobiological knowledge that overcomes traditional one-to-one localization of functions in the brain. In

  13. Neuroimaging of Human Balance Control: A Systematic Review

    PubMed Central

    Wittenberg, Ellen; Thompson, Jessica; Nam, Chang S.; Franz, Jason R.

    2017-01-01

    This review examined 83 articles using neuroimaging modalities to investigate the neural correlates underlying static and dynamic human balance control, with aims to support future mobile neuroimaging research in the balance control domain. Furthermore, this review analyzed the mobility of the neuroimaging hardware and research paradigms as well as the analytical methodology to identify and remove movement artifact in the acquired brain signal. We found that the majority of static balance control tasks utilized mechanical perturbations to invoke feet-in-place responses (27 out of 38 studies), while cognitive dual-task conditions were commonly used to challenge balance in dynamic balance control tasks (20 out of 32 studies). While frequency analysis and event related potential characteristics supported enhanced brain activation during static balance control, that in dynamic balance control studies was supported by spatial and frequency analysis. Twenty-three of the 50 studies utilizing EEG utilized independent component analysis to remove movement artifacts from the acquired brain signals. Lastly, only eight studies used truly mobile neuroimaging hardware systems. This review provides evidence to support an increase in brain activation in balance control tasks, regardless of mechanical, cognitive, or sensory challenges. Furthermore, the current body of literature demonstrates the use of advanced signal processing methodologies to analyze brain activity during movement. However, the static nature of neuroimaging hardware and conventional balance control paradigms prevent full mobility and limit our knowledge of neural mechanisms underlying balance control. PMID:28443007

  14. Neuroimaging of Central Sensitivity Syndromes: Key Insights from the Scientific Literature

    PubMed Central

    Walitt, Brian; Čeko, Marta; Gracely, John L.; Gracely, Richard H.

    2016-01-01

    Central sensitivity syndromes are characterized by distressing symptoms, such as pain and fatigue, in the absence of clinically obvious pathology. The scientific underpinnings of these disorders are not currently known. Modern neuroimaging techniques promise new insights into mechanisms mediating these postulated syndromes. We review the results of neuroimaging applied to five central sensitivity syndromes: fibromyalgia, chronic fatigue syndrome, irritable bowel syndrome, temporomandibular joint disorder, and vulvodynia syndrome. Neuroimaging studies of basal metabolism, anatomic constitution, molecular constituents, evoked neural activity, and treatment effect are compared across all of these syndromes. Evoked sensory paradigms reveal sensory augmentation to both painful and non-painful stimulation. This is a transformative observation for these syndromes, which were historically considered to be completely of hysterical or feigned in origin. However, whether sensory augmentation represents the cause of these syndromes, a predisposing factor, an endophenotype, or an epiphenomenon cannot be discerned from the current literature. Further, the result from cross-sectional neuroimaging studies of basal activity, anatomy, and molecular constituency are extremely heterogeneous within and between the syndromes. A defining neuroimaging “signature” cannot be discerned for any of the particular syndromes or for an over-arching central sensitization mechanism common to all of the syndromes. Several issues confound initial attempts to meaningfully measure treatment effects in these syndromes. At this time, the existence of “central sensitivity syndromes” is based more soundly on clinical and epidemiological evidence. A coherent picture of a “central sensitization” mechanism that bridges across all of these syndromes does not emerge from the existing scientific evidence. PMID:26717948

  15. Neuroimaging of epilepsy

    PubMed Central

    Cendes, Fernando; Theodore, William H.; Brinkmann, Benjamin H.; Sulc, Vlastimil; Cascino, Gregory D.

    2017-01-01

    Imaging is pivotal in the evaluation and management of patients with seizure disorders. Elegant structural neuroimaging with magnetic resonance imaging (MRI) may assist in determining the etiology of focal epilepsy and demonstrating the anatomical changes associated with seizure activity. The high diagnostic yield of MRI to identify the common pathological findings in individuals with focal seizures including mesial temporal sclerosis, vascular anomalies, low-grade glial neoplasms and malformations of cortical development has been demonstrated. Positron emission tomography (PET) is the most commonly performed interictal functional neuroimaging technique that may reveal a focal hypometabolic region concordant with seizure onset. Single photon emission computed tomography (SPECT) studies may assist performance of ictal neuroimaging in patients with pharmacoresistant focal epilepsy being considered for neurosurgical treatment. This chapter highlights neuroimaging developments and innovations, and provides a comprehensive overview of the imaging strategies used to improve the care and management of people with epilepsy. PMID:27430454

  16. Neuroimaging for psychotherapy research: Current trends

    PubMed Central

    WEINGARTEN, CAROL P.; STRAUMAN, TIMOTHY J.

    2014-01-01

    Objective This article reviews neuroimaging studies that inform psychotherapy research. An introduction to neuroimaging methods is provided as background for the increasingly sophisticated breadth of methods and findings appearing in psychotherapy research. Method We compiled and assessed a comprehensive list of neuroimaging studies of psychotherapy outcome, along with selected examples of other types of studies that also are relevant to psychotherapy research. We emphasized magnetic resonance imaging (MRI) since it is the dominant neuroimaging modality in psychological research. Results We summarize findings from neuroimaging studies of psychotherapy outcome, including treatment for depression, obsessive-compulsive disorder (OCD), and schizophrenia. Conclusions The increasing use of neuroimaging methods in the study of psychotherapy continues to refine our understanding of both outcome and process. We suggest possible directions for future neuroimaging studies in psychotherapy research. PMID:24527694

  17. Are the Neural Correlates of Consciousness in the Front or in the Back of the Cerebral Cortex? Clinical and Neuroimaging Evidence

    PubMed Central

    Massimini, Marcello; Postle, Bradley R.; Koch, Christof

    2017-01-01

    The role of the frontal cortex in consciousness remains a matter of debate. In this Perspective, we will critically review the clinical and neuroimaging evidence for the involvement of the front versus the back of the cortex in specifying conscious contents and discuss promising research avenues. Dual Perspectives Companion Paper: Should a Few Null Findings Falsify Prefrontal Theories of Conscious Perception?, by Brian Odegaard, Robert T. Knight, and Hakwan Lau PMID:28978697

  18. Systematic Redaction for Neuroimage Data

    PubMed Central

    Matlock, Matt; Schimke, Nakeisha; Kong, Liang; Macke, Stephen; Hale, John

    2013-01-01

    In neuroscience, collaboration and data sharing are undermined by concerns over the management of protected health information (PHI) and personal identifying information (PII) in neuroimage datasets. The HIPAA Privacy Rule mandates measures for the preservation of subject privacy in neuroimaging studies. Unfortunately for the researcher, the management of information privacy is a burdensome task. Wide scale data sharing of neuroimages is challenging for three primary reasons: (i) A dearth of tools to systematically expunge PHI/PII from neuroimage data sets, (ii) a facility for tracking patient identities in redacted datasets has not been produced, and (iii) a sanitization workflow remains conspicuously absent. This article describes the XNAT Redaction Toolkit—an integrated redaction workflow which extends a popular neuroimage data management toolkit to remove PHI/PII from neuroimages. Quickshear defacing is also presented as a complementary technique for deidentifying the image data itself. Together, these tools improve subject privacy through systematic removal of PII/PHI. PMID:24179597

  19. Neuroimaging Week: A Novel, Engaging, and Effective Curriculum for Teaching Neuroimaging to Junior Psychiatric Residents

    ERIC Educational Resources Information Center

    Downar, Jonathan; Krizova, Adriana; Ghaffar, Omar; Zaretsky, Ari

    2010-01-01

    Objective: Neuroimaging techniques are increasingly important in psychiatric research and clinical practice, but few postgraduate psychiatry programs offer formal training in neuroimaging. To address this need, the authors developed a course to prepare psychiatric residents to use neuroimaging techniques effectively in independent practice.…

  20. Data sharing in neuroimaging research

    PubMed Central

    Poline, Jean-Baptiste; Breeze, Janis L.; Ghosh, Satrajit; Gorgolewski, Krzysztof; Halchenko, Yaroslav O.; Hanke, Michael; Haselgrove, Christian; Helmer, Karl G.; Keator, David B.; Marcus, Daniel S.; Poldrack, Russell A.; Schwartz, Yannick; Ashburner, John; Kennedy, David N.

    2012-01-01

    Significant resources around the world have been invested in neuroimaging studies of brain function and disease. Easier access to this large body of work should have profound impact on research in cognitive neuroscience and psychiatry, leading to advances in the diagnosis and treatment of psychiatric and neurological disease. A trend toward increased sharing of neuroimaging data has emerged in recent years. Nevertheless, a number of barriers continue to impede momentum. Many researchers and institutions remain uncertain about how to share data or lack the tools and expertise to participate in data sharing. The use of electronic data capture (EDC) methods for neuroimaging greatly simplifies the task of data collection and has the potential to help standardize many aspects of data sharing. We review here the motivations for sharing neuroimaging data, the current data sharing landscape, and the sociological or technical barriers that still need to be addressed. The INCF Task Force on Neuroimaging Datasharing, in conjunction with several collaborative groups around the world, has started work on several tools to ease and eventually automate the practice of data sharing. It is hoped that such tools will allow researchers to easily share raw, processed, and derived neuroimaging data, with appropriate metadata and provenance records, and will improve the reproducibility of neuroimaging studies. By providing seamless integration of data sharing and analysis tools within a commodity research environment, the Task Force seeks to identify and minimize barriers to data sharing in the field of neuroimaging. PMID:22493576

  1. Practical management of heterogeneous neuroimaging metadata by global neuroimaging data repositories.

    PubMed

    Neu, Scott C; Crawford, Karen L; Toga, Arthur W

    2012-01-01

    Rapidly evolving neuroimaging techniques are producing unprecedented quantities of digital data at the same time that many research studies are evolving into global, multi-disciplinary collaborations between geographically distributed scientists. While networked computers have made it almost trivial to transmit data across long distances, collecting and analyzing this data requires extensive metadata if the data is to be maximally shared. Though it is typically straightforward to encode text and numerical values into files and send content between different locations, it is often difficult to attach context and implicit assumptions to the content. As the number of and geographic separation between data contributors grows to national and global scales, the heterogeneity of the collected metadata increases and conformance to a single standardization becomes implausible. Neuroimaging data repositories must then not only accumulate data but must also consolidate disparate metadata into an integrated view. In this article, using specific examples from our experiences, we demonstrate how standardization alone cannot achieve full integration of neuroimaging data from multiple heterogeneous sources and why a fundamental change in the architecture of neuroimaging data repositories is needed instead.

  2. Neuroimaging and Drug Taking in Primates Abbreviated title: Neuroimaging and Drug taking

    PubMed Central

    Murnane, Kevin S.; Howell, Leonard L.

    2011-01-01

    Rationale Neuroimaging techniques have led to significant advances in our understanding of the neurobiology of drug-taking and the treatment of drug addiction in humans. Neuroimaging approaches provide a powerful translational approach that can link findings from humans and laboratory animals. Objective This review describes the utility of neuroimaging toward understanding the neurobiological basis of drug taking, and documents the close concordance that can be achieved among neuroimaging, neurochemical and behavioral endpoints. Results The study of drug interactions with dopamine and serotonin transporters in vivo has identified pharmacological mechanisms of action associated with the abuse liability of stimulants. Neuroimaging has identified the extended limbic system, including the prefrontal cortex and anterior cingulate, as important neuronal circuitry that underlies drug taking. The ability to conduct within-subject, longitudinal assessments of brain chemistry and neuronal function has enhanced our efforts to document long-term changes in dopamine D2 receptors, monoamine transporters, and prefrontal metabolism due to chronic drug exposure. Dysregulation of dopamine function and brain metabolic changes in areas involved in reward circuitry have been linked to drug-taking behavior, cognitive impairment and treatment response. Conclusions Experimental designs employing neuroimaging should consider well-documented determinants of drug taking, including pharmacokinetic considerations, subject history and environmental variables. Methodological issues to consider include limited molecular probes, lack of neurochemical specificity in brain activation studies, and the potential influence of anesthetics in animal studies. Nevertheless, these integrative approaches should have important implications for understanding drug-taking behavior and the treatment of drug addiction. PMID:21360099

  3. CAN NEUROIMAGING HELP US TO UNDERSTAND AND CLASSIFY SOMATOFORM DISORDERS? A SYSTEMATIC AND CRITICAL REVIEW

    PubMed Central

    Browning, Michael; Fletcher, Paul; Sharpe, Michael

    2011-01-01

    Objective Debate about the nature of the somatoform disorders and their current diagnostic classification has been stimulated by the anticipation of new editions of the DSM and ICD diagnostic classifications. In the current paper we systematically review the literature on the neuroimaging of somatoform disorders and related conditions with the aim of addressing two specific questions: Is there evidence of altered neural function or structure that is specifically associated with somatoform disorders? What conclusions can we draw from these findings about the etiology of somatoform disorders? Methods Studies reporting neuroimaging findings in patients with a somatoform disorder, or a functional somatic syndrome (such as Fibromyalgia) were found using Pubmed, PsycINFO and EMBASE database searches. Reported structural and functional neuroimaging findings were then extracted to form a narrative review. Results A relatively mature literature on symptoms of pain, and less developed literatures on conversion and fatigue symptoms were identified. The available evidence indicates that, when compared to non-clinical groups, somatoform diagnoses are associated with increased activity of limbic regions in response to painful stimuli and a generalized decrease in grey matter density; however methodological considerations restrict the interpretation of these findings. Conclusions While the neuroimaging literature has provided evidence about the possible mechanisms underlying somatoform disorders this is not yet sufficient to provide a basis for classification. By adopting a wider variety of experimental designs and a more dynamic approach to diagnosis there is every reason to be hopeful that neuroimaging data will play a significant role in future taxonomies. PMID:21217095

  4. The neuroimaging of sacred values.

    PubMed

    Vilarroya, Oscar; Hilferty, Joseph

    2013-09-01

    Sacred (or protected) values (SVs) constitute core beliefs that define primary reference groups. There is significant research on SVs at a behavioral level, but their neural underpinnings are just beginning to be discovered. In this paper, we highlight the current state of neuroimaging research concerning SVs. Given that SVs are considered to be strongly motivated by moral principles, we first provide an outline of the neural circuits that have been found to be involved in moral cognition. We then review various neuroimaging studies that have explored the notion of SVs. Specifically, we concentrate on neuroimaging studies dealing with intergroup bias and those that focus on social norms, since these are two basic dimensions of SVs that have been studied with neuroimaging techniques. Finally, we review two studies that have directly addressed SVs with neuroimaging techniques, and we offer suggestions for further avenues of study. © 2013 New York Academy of Sciences.

  5. Practical management of heterogeneous neuroimaging metadata by global neuroimaging data repositories

    PubMed Central

    Neu, Scott C.; Crawford, Karen L.; Toga, Arthur W.

    2012-01-01

    Rapidly evolving neuroimaging techniques are producing unprecedented quantities of digital data at the same time that many research studies are evolving into global, multi-disciplinary collaborations between geographically distributed scientists. While networked computers have made it almost trivial to transmit data across long distances, collecting and analyzing this data requires extensive metadata if the data is to be maximally shared. Though it is typically straightforward to encode text and numerical values into files and send content between different locations, it is often difficult to attach context and implicit assumptions to the content. As the number of and geographic separation between data contributors grows to national and global scales, the heterogeneity of the collected metadata increases and conformance to a single standardization becomes implausible. Neuroimaging data repositories must then not only accumulate data but must also consolidate disparate metadata into an integrated view. In this article, using specific examples from our experiences, we demonstrate how standardization alone cannot achieve full integration of neuroimaging data from multiple heterogeneous sources and why a fundamental change in the architecture of neuroimaging data repositories is needed instead. PMID:22470336

  6. Neural modeling and functional neuroimaging.

    PubMed

    Horwitz, B; Sporns, O

    1994-01-01

    Two research areas that so far have had little interaction with one another are functional neuroimaging and computational neuroscience. The application of computational models and techniques to the inherently rich data sets generated by "standard" neurophysiological methods has proven useful for interpreting these data sets and for providing predictions and hypotheses for further experiments. We suggest that both theory- and data-driven computational modeling of neuronal systems can help to interpret data generated by functional neuroimaging methods, especially those used with human subjects. In this article, we point out four sets of questions, addressable by computational neuroscientists whose answere would be of value and interest to those who perform functional neuroimaging. The first set consist of determining the neurobiological substrate of the signals measured by functional neuroimaging. The second set concerns developing systems-level models of functional neuroimaging data. The third set of questions involves integrating functional neuroimaging data across modalities, with a particular emphasis on relating electromagnetic with hemodynamic data. The last set asks how one can relate systems-level models to those at the neuronal and neural ensemble levels. We feel that there are ample reasons to link functional neuroimaging and neural modeling, and that combining the results from the two disciplines will result in furthering our understanding of the central nervous system. © 1994 Wiley-Liss, Inc. This Article is a US Goverment work and, as such, is in the public domain in the United State of America. Copyright © 1994 Wiley-Liss, Inc.

  7. The role of neuroimaging in the discovery of processing stages. A review.

    PubMed

    Mulder, G; Wijers, A A; Lange, J J; Buijink, B M; Mulder, L J; Willemsen, A T; Paans, A M

    1995-11-01

    In this contribution we show how neuroimaging methods can augment behavioural methods to discover processing stages. Event Related Brain Potentials (ERPs), Brain Electrical Source Analysis (BESA) and regional changes in cerebral blood flow (rCBF) do not necessarily require behavioural responses. With the aid of rCBF we are able to discover several cortical and subcortical brain systems (processors) active in selective attention and memory search tasks. BESA describes cortical activity with high temporal resolution in terms of a limited number of neural generators within these brain systems. The combination of behavioural methods and neuroimaging provides a picture of the functional architecture of the brain. The review is organized around three processors: the Visual, Cognitive and Manual Motor Processors.

  8. Towards a model-based cognitive neuroscience of stopping - a neuroimaging perspective.

    PubMed

    Sebastian, Alexandra; Forstmann, Birte U; Matzke, Dora

    2018-07-01

    Our understanding of the neural correlates of response inhibition has greatly advanced over the last decade. Nevertheless the specific function of regions within this stopping network remains controversial. The traditional neuroimaging approach cannot capture many processes affecting stopping performance. Despite the shortcomings of the traditional neuroimaging approach and a great progress in mathematical and computational models of stopping, model-based cognitive neuroscience approaches in human neuroimaging studies are largely lacking. To foster model-based approaches to ultimately gain a deeper understanding of the neural signature of stopping, we outline the most prominent models of response inhibition and recent advances in the field. We highlight how a model-based approach in clinical samples has improved our understanding of altered cognitive functions in these disorders. Moreover, we show how linking evidence-accumulation models and neuroimaging data improves the identification of neural pathways involved in the stopping process and helps to delineate these from neural networks of related but distinct functions. In conclusion, adopting a model-based approach is indispensable to identifying the actual neural processes underlying stopping. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Clinical neuroimaging in the preterm infant: Diagnosis and prognosis.

    PubMed

    Hinojosa-Rodríguez, Manuel; Harmony, Thalía; Carrillo-Prado, Cristina; Van Horn, John Darrell; Irimia, Andrei; Torgerson, Carinna; Jacokes, Zachary

    2017-01-01

    Perinatal care advances emerging over the past twenty years have helped to diminish the mortality and severe neurological morbidity of extremely and very preterm neonates (e.g., cystic Periventricular Leukomalacia [c-PVL] and Germinal Matrix Hemorrhage - Intraventricular Hemorrhage [GMH-IVH grade 3-4/4]; 22 to < 32 weeks of gestational age, GA). However, motor and/or cognitive disabilities associated with mild-to-moderate white and gray matter injury are frequently present in this population (e.g., non-cystic Periventricular Leukomalacia [non-cystic PVL], neuronal-axonal injury and GMH-IVH grade 1-2/4). Brain research studies using magnetic resonance imaging (MRI) report that 50% to 80% of extremely and very preterm neonates have diffuse white matter abnormalities (WMA) which correspond to only the minimum grade of severity. Nevertheless, mild-to-moderate diffuse WMA has also been associated with significant affectations of motor and cognitive activities. Due to increased neonatal survival and the intrinsic characteristics of diffuse WMA, there is a growing need to study the brain of the premature infant using non-invasive neuroimaging techniques sensitive to microscopic and/or diffuse lesions. This emerging need has led the scientific community to try to bridge the gap between concepts or ideas from different methodologies and approaches; for instance, neuropathology, neuroimaging and clinical findings. This is evident from the combination of intense pre-clinical and clinicopathologic research along with neonatal neurology and quantitative neuroimaging research. In the following review, we explore literature relating the most frequently observed neuropathological patterns with the recent neuroimaging findings in preterm newborns and infants with perinatal brain injury. Specifically, we focus our discussions on the use of neuroimaging to aid diagnosis, measure morphometric brain damage, and track long-term neurodevelopmental outcomes.

  10. Neuroimaging Endophenotypes in Autism Spectrum Disorder

    PubMed Central

    Mahajan, Rajneesh; Mostofsky, Stewart H.

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder that has a strong genetic basis, and is heterogeneous in its etiopathogenesis and clinical presentation. Neuroimaging studies, in concert with neuropathological and clinical research, have been instrumental in delineating trajectories of development in children with ASD. Structural neuroimaging has revealed ASD to be a disorder with general and regional brain enlargement, especially in the frontotemporal cortices, while functional neuroimaging studies have highlighted diminished connectivity, especially between frontal-posterior regions. The diverse and specific neuroimaging findings may represent potential neuroendophenotypes, and may offer opportunities to further understand the etiopathogenesis of ASD, predict treatment response and lead to the development of new therapies. PMID:26234701

  11. Is a picture worth a thousand (forgotten) words?: neuroimaging evidence for the cognitive deficits in 'chemo-fog'/'chemo-brain'.

    PubMed

    Raffa, R B

    2010-02-01

    The diminution in cognitive function reported to occur in patients treated with adjuvant cancer chemotherapy (a phenomenon known as 'chemo-fog, 'chemo-brain' or similar designation) is supported with varying degrees of evidence by prospective and retrospective clinical studies. However, the cognitive deficits are often subtle and the methodologies used to measure them not consistent. Additionally, patients might be able to compensate for the deficits, thereby leading to underestimates of the problem by this type of assessment. For these reasons, direct neuroimaging techniques might provide additional insight. The relatively few such studies, and fewer electrophysiological studies, offer an alternative way to evaluate changes that might be related to cognitive deficits in patients treated with cancer chemotherapeutic regimens.

  12. Neuroimaging of child abuse: a critical review

    PubMed Central

    Hart, Heledd; Rubia, Katya

    2012-01-01

    Childhood maltreatment is a stressor that can lead to the development of behavior problems and affect brain structure and function. This review summarizes the current evidence for the effects of childhood maltreatment on behavior, cognition and the brain in adults and children. Neuropsychological studies suggest an association between child abuse and deficits in IQ, memory, working memory, attention, response inhibition and emotion discrimination. Structural neuroimaging studies provide evidence for deficits in brain volume, gray and white matter of several regions, most prominently the dorsolateral and ventromedial prefrontal cortex but also hippocampus, amygdala, and corpus callosum (CC). Diffusion tensor imaging (DTI) studies show evidence for deficits in structural interregional connectivity between these areas, suggesting neural network abnormalities. Functional imaging studies support this evidence by reporting atypical activation in the same brain regions during response inhibition, working memory, and emotion processing. There are, however, several limitations of the abuse research literature which are discussed, most prominently the lack of control for co-morbid psychiatric disorders, which make it difficult to disentangle which of the above effects are due to maltreatment, the associated psychiatric conditions or a combination or interaction between both. Overall, the better controlled studies that show a direct correlation between childhood abuse and brain measures suggest that the most prominent deficits associated with early childhood abuse are in the function and structure of lateral and ventromedial fronto-limbic brain areas and networks that mediate behavioral and affect control. Future, large scale multimodal neuroimaging studies in medication-naïve subjects, however, are needed that control for psychiatric co-morbidities in order to elucidate the structural and functional brain sequelae that are associated with early environmental adversity

  13. Neuroimaging in attention-deficit hyperactivity disorder: beyond the frontostriatal circuitry.

    PubMed

    Cherkasova, Mariya V; Hechtman, Lily

    2009-10-01

    To review the findings of structural and functional neuroimaging studies in attention-deficit hyperactivity disorder (ADHD), with a focus on abnormalities reported in brain regions that lie outside the frontostriatal circuitry, which is currently believed to play a central role in the pathophysiology of ADHD. Relevant publications were found primarily by searching the MEDLINE and PubMed databases using the keywords ADHD and the abbreviations of magnetic resonance imaging (MRI), functional MRI, positron emission tomography, and single photon emission computed tomography. The reference lists of the articles found through the databases were then reviewed for the purpose of finding additional articles. There is now substantial evidence of structural and functional alterations in regions outside the frontostriatal circuitry in ADHD, most notably in the cerebellum and the parietal lobes. Although there is compelling evidence suggesting that frontostriatal dysfunction may be central to the pathophysiology of ADHD, the neuroimaging findings point to distributed neural substrates rather than a single one. More research is needed to elucidate the nature of contributions of nonfrontostriatal regions to the pathophysiology of ADHD.

  14. Functional neuroimaging in psychiatry.

    PubMed Central

    Fu, C H; McGuire, P K

    1999-01-01

    Functional neuroimaging is one of the most powerful means available for investigating the pathophysiology of psychiatric disorders. In this review, we shall focus on the different ways that it can be employed to this end, describing the major findings in the field in the context of different methodological approaches. We will also discuss practical issues that are particular to studying psychiatric disorders and the potential contribution of functional neuroimaging to future psychiatric research. PMID:10466156

  15. [Functional neuroimaging in the diagnosis of patients with Parkinsonism: Update and recommendations for clinical use].

    PubMed

    Arbizu, J; Luquin, M R; Abella, J; de la Fuente-Fernández, R; Fernandez-Torrón, R; García-Solís, D; Garrastachu, P; Jiménez-Hoyuela, J M; Llaneza, M; Lomeña, F; Lorenzo-Bosquet, C; Martí, M J; Martinez-Castrillo, J C; Mir, P; Mitjavila, M; Ruiz-Martínez, J; Vela, L

    2014-01-01

    Functional Neuroimaging has been traditionally used in research for patients with different Parkinsonian syndromes. However, the emergence of commercial radiotracers together with the availability of single photon emission computed tomography (SPECT) and, more recently, positron emission tomography (PET) have made them available for clinical practice. Particularly, the development of clinical evidence achieved by functional neuroimaging techniques over the past two decades have motivated a progressive inclusion of several biomarkers in the clinical diagnostic criteria for neurodegenerative diseases that occur with Parkinsonism. However, the wide range of radiotracers designed to assess the involvement of different pathways in the neurodegenerative process underlying Parkinsonian syndromes (dopaminergic nigrostriatal pathway integrity, basal ganglia and cortical neuronal activity, myocardial sympathetic innervation), and the different neuroimaging techniques currently available (scintigraphy, SPECT and PET), have generated some controversy concerning the best neuroimaging test that should be indicated for the differential diagnosis of Parkinsonism. In this article, a panel of nuclear medicine and neurology experts has evaluated the functional neuroimaging techniques emphazising practical considerations related to the diagnosis of patients with uncertain origin parkinsonism and the assessment Parkinson's disease progression. Copyright © 2014 Elsevier España, S.L. and SEMNIM. All rights reserved.

  16. “Can It Read My Mind?” – What Do the Public and Experts Think of the Current (Mis)Uses of Neuroimaging?

    PubMed Central

    Wardlaw, Joanna M.; O'Connell, Garret; Shuler, Kirsten; DeWilde, Janet; Haley, Jane; Escobar, Oliver; Murray, Shaun; Rae, Robert; Jarvie, Donald; Sandercock, Peter; Schafer, Burkhard

    2011-01-01

    Emerging applications of neuroimaging outside medicine and science have received intense public exposure through the media. Media misrepresentations can create a gulf between public and scientific understanding of the capabilities of neuroimaging and raise false expectations. To determine the extent of this effect and determine public opinions on acceptable uses and the need for regulation, we designed an electronic survey to obtain anonymous opinions from as wide a range of members of the public and neuroimaging experts as possible. The surveys ran from 1st June to 30 September 2010, asked 10 and 21 questions, respectively, about uses of neuroimaging outside traditional medical diagnosis, data storage, science communication and potential methods of regulation. We analysed the responses using descriptive statistics; 660 individuals responded to the public and 303 individuals responded to the expert survey. We found evidence of public skepticism about the use of neuroimaging for applications such as lie detection or to determine consumer preferences and considerable disquiet about use by employers or government and about how their data would be stored and used. While also somewhat skeptical about new applications of neuroimaging, experts grossly underestimated how often neuroimaging had been used as evidence in court. Although both the public and the experts rated highly the importance of a better informed public in limiting the inappropriate uses to which neuroimaging might be put, opinions differed on the need for, and mechanism of, actual regulation. Neuroscientists recognized the risks of inaccurate reporting of neuroimaging capabilities in the media but showed little motivation to engage with the public. The present study also emphasizes the need for better frameworks for scientific engagement with media and public education. PMID:21991367

  17. Integrating Genetic, Psychopharmacological and Neuroimaging Studies: A Converging Methods Approach to Understanding the Neurobiology of ADHD

    ERIC Educational Resources Information Center

    Durston, Sarah; Konrad, Kerstin

    2007-01-01

    This paper aims to illustrate how combining multiple approaches can inform us about the neurobiology of ADHD. Converging evidence from genetic, psychopharmacological and functional neuroimaging studies has implicated dopaminergic fronto-striatal circuitry in ADHD. However, while the observation of converging evidence from multiple vantage points…

  18. Neuroimaging findings in pediatric sports-related concussion.

    PubMed

    Ellis, Michael J; Leiter, Jeff; Hall, Thomas; McDonald, Patrick J; Sawyer, Scott; Silver, Norm; Bunge, Martin; Essig, Marco

    2015-09-01

    The goal in this review was to summarize the results of clinical neuroimaging studies performed in patients with sports-related concussion (SRC) who were referred to a multidisciplinar ypediatric concussion program. The authors conducted a retrospective review of medical records and neuroimaging findings for all patients referred to a multidisciplinary pediatric concussion program between September 2013 and July 2014. Inclusion criteria were as follows: 1) age ≤ 19 years; and 2) physician-diagnosed SRC. All patients underwent evaluation and follow-up by the same neurosurgeon. The 2 outcomes examined in this review were the frequency of neuroimaging studies performed in this population (including CT and MRI) and the findings of those studies. Clinical indications for neuroimaging and the impact of neuroimaging findings on clinical decision making were summarized where available. This investigation was approved by the local institutional ethics review board. A total of 151 patients (mean age 14 years, 59% female) were included this study. Overall, 36 patients (24%) underwent neuroimaging studies, the results of which were normal in 78% of cases. Sixteen percent of patients underwent CT imaging; results were normal in 79% of cases. Abnormal CT findings included the following: arachnoid cyst (1 patient), skull fracture (2 patients), suspected intracranial hemorrhage (1 patient), and suspected hemorrhage into an arachnoid cyst (1 patient). Eleven percent of patients underwent MRI; results were normal in 75% of cases. Abnormal MRI findings included the following: intraparenchymal hemorrhage and sylvian fissure arachnoid cyst (1 patient); nonhemorrhagic contusion (1 patient); demyelinating disease (1 patient); and posterior fossa arachnoid cyst, cerebellar volume loss, and nonspecific white matter changes (1 patient). Results of clinical neuroimaging studies are normal in the majority of pediatric patients with SRC. However, in selected cases neuroimaging can provide

  19. [Neuroimaging follow-up of cerebral aneurysms treated with endovascular techniques].

    PubMed

    Delgado, F; Saiz, A; Hilario, A; Murias, E; San Román Manzanera, L; Lagares Gomez-Abascal, A; Gabarrós, A; González García, A

    2014-01-01

    There are no specific recommendations in clinical guidelines about the best time, imaging tests, or intervals for following up patients with intracranial aneurysms treated with endovascular techniques. We reviewed the literature, using the following keywords to search in the main medical databases: cerebral aneurysm, coils, endovascular procedure, and follow-up. Within the Cerebrovascular Disease Group of the Spanish Society of Neuroradiology, we aimed to propose recommendations and an orientative protocol based on the scientific evidence for using neuroimaging to monitor intracranial aneurysms that have been treated with endovascular techniques. We aimed to specify the most appropriate neuroimaging techniques, the interval, the time of follow-up, and the best approach to defining the imaging findings, with the ultimate goal of improving clinical outcomes while optimizing and rationalizing the use of available resources. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.

  20. The Role of Functional Neuroimaging in Pre-Surgical Epilepsy Evaluation

    PubMed Central

    Pittau, Francesca; Grouiller, Frédéric; Spinelli, Laurent; Seeck, Margitta; Michel, Christoph M.; Vulliemoz, Serge

    2014-01-01

    The prevalence of epilepsy is about 1% and one-third of cases do not respond to medical treatment. In an eligible subset of patients with drug-resistant epilepsy, surgical resection of the epileptogenic zone is the only treatment that can possibly cure the disease. Non-invasive techniques provide information for the localization of the epileptic focus in the majority of cases, whereas in others invasive procedures are required. In the last years, non-invasive neuroimaging techniques, such as simultaneous recording of functional magnetic resonance imaging and electroencephalogram (EEG-fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), electric and magnetic source imaging (MSI, ESI), spectroscopy (MRS), have proved their usefulness in defining the epileptic focus. The combination of these functional techniques can yield complementary information and their concordance is crucial for guiding clinical decision, namely the planning of invasive EEG recordings or respective surgery. The aim of this review is to present these non-invasive neuroimaging techniques, their potential combination, and their role in the pre-surgical evaluation of patients with pharmaco-resistant epilepsy. PMID:24715886

  1. Noninvasive Electrical Neuroimaging of the Human Brain during Mobile Tasks including Walking and Running

    DTIC Science & Technology

    2012-01-01

    not trivial, and the increase is not without drawbacks . For high-density EEG systems, data processing can take a significant amount of time, even...existing wireless transmission systems. Given these drawbacks , a question naturally arises: how many electrodes are needed for MoBI? The answer will...state motor output. Neuroimage 36, 785-792. Kuo, A.D., Donelan, J.M., Ruina, A., 2005. Energetic consequences of walking like an inverted pendulum

  2. Effects of sex chromosome aneuploidies on brain development: evidence from neuroimaging studies.

    PubMed

    Lenroot, Rhoshel K; Lee, Nancy Raitano; Giedd, Jay N

    2009-01-01

    Variation in the number of sex chromosomes is a relatively common genetic condition, affecting as many as 1/400 individuals. The sex chromosome aneuploidies (SCAs) are associated with characteristic behavioral and cognitive phenotypes, although the degree to which specific individuals are affected can fall within a wide range. Understanding the effects of different dosages of sex chromosome genes on brain development may help to understand the basis for functional differences in affected individuals. It may also be informative regarding how sex chromosomes contribute to typical sexual differentiation. Studies of 47,XXY males make up the bulk of the current literature of neuroimaging studies in individuals with supernumerary sex chromosomes, with a few small studies or case reports of the other SCAs. Findings in 47,XXY males typically include decreased gray and white matter volumes, with most pronounced effects in the frontal and temporal lobes. Functional studies have shown evidence of decreased lateralization. Although the hypogonadism typically found in 47,XXY males may contribute to the decreased brain volume, the observation that 47,XXX females also show decreased brain volume in the presence of normal pubertal maturation suggests a possible direct dosage effect of X chromosome genes. Additional X chromosomes, such as in 49,XXXXY males, are associated with more markedly decreased brain volume and increased incidence of white matter hyperintensities. The limited data regarding effects of having two Y chromosomes (47,XYY) do not find significant differences in brain volume, although there are some reports of increased head size.

  3. Effects of Sex Chromosome Aneuploidies on Brain Development: Evidence From Neuroimaging Studies

    PubMed Central

    Lenroot, Rhoshel K.; Lee, Nancy Raitano; Giedd, Jay N.

    2010-01-01

    Variation in the number of sex chromosomes is a relatively common genetic condition, affecting as many as 1/400 individuals. The sex chromosome aneuploidies (SCAs) are associated with characteristic behavioral and cognitive phenotypes, although the degree to which specific individuals are affected can fall within a wide range. Understanding the effects of different dosages of sex chromosome genes on brain development may help to understand the basis for functional differences in affected individuals. It may also be informative regarding how sex chromosomes contribute to typical sexual differentiation. Studies of 47,XXY males make up the bulk of the current literature of neuroimaging studies in individuals with supernumerary sex chromosomes, with a few small studies or case reports of the other SCAs. Findings in 47,XXY males typically include decreased gray and white matter volumes, with most pronounced effects in the frontal and temporal lobes. Functional studies have shown evidence of decreased lateralization. Although the hypogonadism typically found in 47,XXY males may contribute to the decreased brain volume, the observation that 47,XXX females also show decreased brain volume in the presence of normal pubertal maturation suggests a possible direct dosage effect of X chromosome genes. Additional X chromosomes, such as in 49,XXXXY males, are associated with more markedly decreased brain volume and increased incidence of white matter hyperintensities. The limited data regarding effects of having two Y chromosomes (47,XYY) do not find significant differences in brain volume, although there are some reports of increased head size. PMID:20014372

  4. Neuroimaging of neurocutaneous diseases.

    PubMed

    Nandigam, Kaveer; Mechtler, Laszlo L; Smirniotopoulos, James G

    2014-02-01

    An in-depth knowledge of the imaging characteristics of the common neurocutaneous diseases (NCD) described in this article will help neurologists understand the screening imaging modalities in these patients. The future of neuroimaging is geared towards developing and refining magnetic resonance imaging (MRI) sequences. The detection of tumors in NCD has greatly improved with availability of high-field strength 3T MRI machines. Neuroimaging will remain at the heart and soul of the multidisciplinary care of such complex diagnoses to guide early detection and monitor treatment. Published by Elsevier Inc.

  5. Multimodal neuroimaging in presurgical evaluation of drug-resistant epilepsy☆

    PubMed Central

    Zhang, Jing; Liu, Weifang; Chen, Hui; Xia, Hong; Zhou, Zhen; Mei, Shanshan; Liu, Qingzhu; Li, Yunlin

    2013-01-01

    Intracranial EEG (icEEG) monitoring is critical in epilepsy surgical planning, but it has limitations. The advances of neuroimaging have made it possible to reveal epileptic abnormalities that could not be identified previously and improve the localization of the seizure focus and the vital cortex. A frequently asked question in the field is whether non-invasive neuroimaging could replace invasive icEEG or reduce the need for icEEG in presurgical evaluation. This review considers promising neuroimaging techniques in epilepsy presurgical assessment in order to address this question. In addition, due to large variations in the accuracies of neuroimaging across epilepsy centers, multicenter neuroimaging studies are reviewed, and there is much need for randomized controlled trials (RCTs) to better reveal the utility of presurgical neuroimaging. The results of multiple studies indicate that non-invasive neuroimaging could not replace invasive icEEG in surgical planning especially in non-lesional or extratemporal lobe epilepsies, but it could reduce the need for icEEG in certain cases. With technical advances, multimodal neuroimaging may play a greater role in presurgical evaluation to reduce the costs and risks of epilepsy surgery, and provide surgical options for more patients with drug-resistant epilepsy. PMID:24282678

  6. Neuroimaging Field Methods Using Functional Near Infrared Spectroscopy (NIRS) Neuroimaging to Study Global Child Development: Rural Sub-Saharan Africa.

    PubMed

    Jasińska, Kaja K; Guei, Sosthène

    2018-02-02

    Portable neuroimaging approaches provide new advances to the study of brain function and brain development with previously inaccessible populations and in remote locations. This paper shows the development of field functional Near Infrared Spectroscopy (fNIRS) imaging to the study of child language, reading, and cognitive development in a rural village setting of Côte d'Ivoire. Innovation in methods and the development of culturally appropriate neuroimaging protocols allow a first-time look into the brain's development and children's learning outcomes in understudied environments. This paper demonstrates protocols for transporting and setting up a mobile laboratory, discusses considerations for field versus laboratory neuroimaging, and presents a guide for developing neuroimaging consent procedures and building meaningful long-term collaborations with local government and science partners. Portable neuroimaging methods can be used to study complex child development contexts, including the impact of significant poverty and adversity on brain development. The protocol presented here has been developed for use in Côte d'Ivoire, the world's primary source of cocoa, and where reports of child labor in the cocoa sector are common. Yet, little is known about the impact of child labor on brain development and learning. Field neuroimaging methods have the potential to yield new insights into such urgent issues, and the development of children globally.

  7. Auditory neuroimaging with fMRI and PET.

    PubMed

    Talavage, Thomas M; Gonzalez-Castillo, Javier; Scott, Sophie K

    2014-01-01

    For much of the past 30 years, investigations of auditory perception and language have been enhanced or even driven by the use of functional neuroimaging techniques that specialize in localization of central responses. Beginning with investigations using positron emission tomography (PET) and gradually shifting primarily to usage of functional magnetic resonance imaging (fMRI), auditory neuroimaging has greatly advanced our understanding of the organization and response properties of brain regions critical to the perception of and communication with the acoustic world in which we live. As the complexity of the questions being addressed has increased, the techniques, experiments and analyses applied have also become more nuanced and specialized. A brief review of the history of these investigations sets the stage for an overview and analysis of how these neuroimaging modalities are becoming ever more effective tools for understanding the auditory brain. We conclude with a brief discussion of open methodological issues as well as potential clinical applications for auditory neuroimaging. This article is part of a Special Issue entitled Human Auditory Neuroimaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury

    PubMed Central

    Bigler, Erin D.

    2016-01-01

    The patient who sustains a traumatic brain injury (TBI) typically undergoes neuroimaging studies, usually in the form of computed tomography (CT) and magnetic resonance imaging (MRI). In most cases the neuroimaging findings are clinically assessed with descriptive statements that provide qualitative information about the presence/absence of visually identifiable abnormalities; though little if any of the potential information in a scan is analyzed in any quantitative manner, except in research settings. Fortunately, major advances have been made, especially during the last decade, in regards to image quantification techniques, especially those that involve automated image analysis methods. This review argues that a systems biology approach to understanding quantitative neuroimaging findings in TBI provides an appropriate framework for better utilizing the information derived from quantitative neuroimaging and its relation with neuropsychological outcome. Different image analysis methods are reviewed in an attempt to integrate quantitative neuroimaging methods with neuropsychological outcome measures and to illustrate how different neuroimaging techniques tap different aspects of TBI-related neuropathology. Likewise, how different neuropathologies may relate to neuropsychological outcome is explored by examining how damage influences brain connectivity and neural networks. Emphasis is placed on the dynamic changes that occur following TBI and how best to capture those pathologies via different neuroimaging methods. However, traditional clinical neuropsychological techniques are not well suited for interpretation based on contemporary and advanced neuroimaging methods and network analyses. Significant improvements need to be made in the cognitive and behavioral assessment of the brain injured individual to better interface with advances in neuroimaging-based network analyses. By viewing both neuroimaging and neuropsychological processes within a systems biology

  9. Graphical Neuroimaging Informatics: Application to Alzheimer’s Disease

    PubMed Central

    Bowman, Ian; Joshi, Shantanu H.; Greer, Vaughan

    2013-01-01

    The Informatics Visualization for Neuroimaging (INVIZIAN) framework allows one to graphically display image and meta-data information from sizeable collections of neuroimaging data as a whole using a dynamic and compelling user interface. Users can fluidly interact with an entire collection of cortical surfaces using only their mouse. In addition, users can cluster and group brains according in multiple ways for subsequent comparison using graphical data mining tools. In this article, we illustrate the utility of INVIZIAN for simultaneous exploration and mining a large collection of extracted cortical surface data arising in clinical neuroimaging studies of patients with Alzheimer’s Disease, mild cognitive impairment, as well as healthy control subjects. Alzheimer’s Disease is particularly interesting due to the wide-spread effects on cortical architecture and alterations of volume in specific brain areas associated with memory. We demonstrate INVIZIAN’s ability to render multiple brain surfaces from multiple diagnostic groups of subjects, showcase the interactivity of the system, and showcase how INVIZIAN can be employed to generate hypotheses about the collection of data which would be suitable for direct access to the underlying raw data and subsequent formal statistical analysis. Specifically, we use INVIZIAN show how cortical thickness and hippocampal volume differences between group are evident even in the absence of more formal hypothesis testing. In the context of neurological diseases linked to brain aging such as AD, INVIZIAN provides a unique means for considering the entirety of whole brain datasets, look for interesting relationships among them, and thereby derive new ideas for further research and study. PMID:24203652

  10. Making Individual Prognoses in Psychiatry Using Neuroimaging and Machine Learning.

    PubMed

    Janssen, Ronald J; Mourão-Miranda, Janaina; Schnack, Hugo G

    2018-04-22

    Psychiatric prognosis is a difficult problem. Making a prognosis requires looking far into the future, as opposed to making a diagnosis, which is concerned with the current state. During the follow-up period, many factors will influence the course of the disease. Combined with the usually scarcer longitudinal data and the variability in the definition of outcomes/transition, this makes prognostic predictions a challenging endeavor. Employing neuroimaging data in this endeavor introduces the additional hurdle of high dimensionality. Machine-learning techniques are especially suited to tackle this challenging problem. This review starts with a brief introduction to machine learning in the context of its application to clinical neuroimaging data. We highlight a few issues that are especially relevant for prediction of outcome and transition using neuroimaging. We then review the literature that discusses the application of machine learning for this purpose. Critical examination of the studies and their results with respect to the relevant issues revealed the following: 1) there is growing evidence for the prognostic capability of machine-learning-based models using neuroimaging; and 2) reported accuracies may be too optimistic owing to small sample sizes and the lack of independent test samples. Finally, we discuss options to improve the reliability of (prognostic) prediction models. These include new methodologies and multimodal modeling. Paramount, however, is our conclusion that future work will need to provide properly (cross-)validated accuracy estimates of models trained on sufficiently large datasets. Nevertheless, with the technological advances enabling acquisition of large databases of patients and healthy subjects, machine learning represents a powerful tool in the search for psychiatric biomarkers. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Intergenerational Neuroimaging of Human Brain Circuitry

    PubMed Central

    Ho, Tiffany C.; Sanders, Stephan J.; Gotlib, Ian H.; Hoeft, Fumiko

    2016-01-01

    Neuroscientists are increasingly using advanced neuroimaging methods to elucidate the intergenerational transmission of human brain circuitry. This new line of work promises to shed insight into the ontogeny of complex behavioral traits, including psychiatric disorders, and possible mechanisms of transmission. Here, we highlight recent intergenerational neuroimaging studies and provide recommendations for future work. PMID:27623194

  12. A very simple, re-executable neuroimaging publication

    PubMed Central

    Ghosh, Satrajit S.; Poline, Jean-Baptiste; Keator, David B.; Halchenko, Yaroslav O.; Thomas, Adam G.; Kessler, Daniel A.; Kennedy, David N.

    2017-01-01

    Reproducible research is a key element of the scientific process. Re-executability of neuroimaging workflows that lead to the conclusions arrived at in the literature has not yet been sufficiently addressed and adopted by the neuroimaging community. In this paper, we document a set of procedures, which include supplemental additions to a manuscript, that unambiguously define the data, workflow, execution environment and results of a neuroimaging analysis, in order to generate a verifiable re-executable publication. Re-executability provides a starting point for examination of the generalizability and reproducibility of a given finding. PMID:28781753

  13. The neural basis of episodic memory: evidence from functional neuroimaging.

    PubMed Central

    Rugg, Michael D; Otten, Leun J; Henson, Richard N A

    2002-01-01

    We review some of our recent research using functional neuroimaging to investigate neural activity supporting the encoding and retrieval of episodic memories, that is, memories for unique events. Findings from studies of encoding indicate that, at the cortical level, the regions responsible for the effective encoding of a stimulus event as an episodic memory include some of the regions that are also engaged to process the event 'online'. Thus, it appears that there is no single cortical site or circuit responsible for episodic encoding. The results of retrieval studies indicate that successful recollection of episodic information is associated with activation of lateral parietal cortex, along with more variable patterns of activity in dorsolateral and anterior prefrontal cortex. Whereas parietal regions may play a part in the representation of retrieved information, prefrontal areas appear to support processes that act on the products of retrieval to align behaviour with the demands of the retrieval task. PMID:12217177

  14. Neuroimaging evaluation in refractory epilepsy

    PubMed Central

    Granados, Ana M; Orejuela, Juan F

    2015-01-01

    Purpose To describe the application of neuroimaging analysis, compared to neuropsychological tests and video-electroencephalogram, for the evaluation of refractory epilepsy in a reference centre in Cali, Colombia. Methods Between March 2013 and November 2014, 29 patients, 19 men and 10 women, aged 9–65 years and with refractory epilepsy, were assessed by structural and functional magnetic resonance imaging while performing tasks related to language, verbal and non-verbal memory. Also, volumetric evaluation was performed. A 1.5 Tesla magnetic resonance imaging scanner was used in all cases. Results Neuroimaging evaluation identified 13 patients with mesial temporal sclerosis. The remaining patients were classified as: 10 patients with neoplastic masses, two patients with cortical atrophy, two patients with scarring lesions and two patients with non-structural aetiology. Among patients with mesial temporal sclerosis, comparison between techniques for lateralising the epileptogenic foci was made; the κ index between functional magnetic resonance imaging and hippocampi volumetry was κ = 1.00, agreement between neuroimaging and video-electroencephalogram was good (κ = 0.78) and comparison with a neuropsychological test was mild (κ = 0.24). Conclusions Neuroimaging studies allow the assessment of functional and structural damage related to epileptogenic lesions and foci, and are helpful to select surgical treatment, conduct intraoperative neuronavigation techniques, predict surgical deficits and evaluate patient recovery. PMID:26427897

  15. A Review on the Bioinformatics Tools for Neuroimaging

    PubMed Central

    MAN, Mei Yen; ONG, Mei Sin; Mohamad, Mohd Saberi; DERIS, Safaai; SULONG, Ghazali; YUNUS, Jasmy; CHE HARUN, Fauzan Khairi

    2015-01-01

    Neuroimaging is a new technique used to create images of the structure and function of the nervous system in the human brain. Currently, it is crucial in scientific fields. Neuroimaging data are becoming of more interest among the circle of neuroimaging experts. Therefore, it is necessary to develop a large amount of neuroimaging tools. This paper gives an overview of the tools that have been used to image the structure and function of the nervous system. This information can help developers, experts, and users gain insight and a better understanding of the neuroimaging tools available, enabling better decision making in choosing tools of particular research interest. Sources, links, and descriptions of the application of each tool are provided in this paper as well. Lastly, this paper presents the language implemented, system requirements, strengths, and weaknesses of the tools that have been widely used to image the structure and function of the nervous system. PMID:27006633

  16. Cognitive neuroimaging: cognitive science out of the armchair.

    PubMed

    de Zubicaray, Greig I

    2006-04-01

    Cognitive scientists were not quick to embrace the functional neuroimaging technologies that emerged during the late 20th century. In this new century, cognitive scientists continue to question, not unreasonably, the relevance of functional neuroimaging investigations that fail to address questions of interest to cognitive science. However, some ultra-cognitive scientists assert that these experiments can never be of relevance to the study of cognition. Their reasoning reflects an adherence to a functionalist philosophy that arbitrarily and purposefully distinguishes mental information-processing systems from brain or brain-like operations. This article addresses whether data from properly conducted functional neuroimaging studies can inform and subsequently constrain the assumptions of theoretical cognitive models. The article commences with a focus upon the functionalist philosophy espoused by the ultra-cognitive scientists, contrasting it with the materialist philosophy that motivates both cognitive neuroimaging investigations and connectionist modelling of cognitive systems. Connectionism and cognitive neuroimaging share many features, including an emphasis on unified cognitive and neural models of systems that combine localist and distributed representations. The utility of designing cognitive neuroimaging studies to test (primarily) connectionist models of cognitive phenomena is illustrated using data from functional magnetic resonance imaging (fMRI) investigations of language production and episodic memory.

  17. Neuroimaging Evidence of a Bilateral Representation for Visually Presented Numbers.

    PubMed

    Grotheer, Mareike; Herrmann, Karl-Heinz; Kovács, Gyula

    2016-01-06

    The clustered architecture of the brain for different visual stimulus categories is one of the most fascinating topics in the cognitive neurosciences. Interestingly, recent research suggests the existence of additional regions for newly acquired stimuli such as letters (letter form area; LFA; Thesen et al., 2012) and numbers (visual number form area; NFA; Shum et al., 2013). However, neuroimaging methods thus far have failed to visualize the NFA in healthy participants, likely due to fMRI signal dropout caused by the air/bone interface of the petrous bone (Shum et al., 2013). In the current study, we combined a 64-channel head coil with high spatial resolution, localized shimming, and liberal smoothing, thereby decreasing the signal dropout and increasing the temporal signal-to-noise ratio in the neighborhood of the NFA. We presented subjects with numbers, letters, false numbers, false letters, objects and their Fourier randomized versions. A group analysis showed significant activations in the inferior temporal gyrus at the previously proposed location of the NFA. Crucially, we found the NFA to be present in both hemispheres. Further, we could identify the NFA on the single-subject level in most of our participants. A detailed analysis of the response profile of the NFA in two separate experiments confirmed the whole-brain results since responses to numbers were significantly higher than to any other presented stimulus in both hemispheres. Our results show for the first time the existence and stimulus selectivity of the NFA in the healthy human brain. This fMRI study shows for the first time a cluster of neurons selective for visually presented numbers in healthy human adults. This visual number form area (NFA) was found in both hemispheres. Crucially, numbers have gained importance for humans too recently for neuronal specialization to be established by evolution. Therefore, investigations of this region will greatly advance our understanding of learning and

  18. Inhibitory Control and Emotional Stress Regulation: Neuroimaging Evidence for Frontal-Limbic Dysfunction in Psycho-stimulant Addiction

    PubMed Central

    Ray Li, Chiang-shan; Sinha, Rajita

    2008-01-01

    This review focuses on neuroimaging studies that examined stress processing and regulation and cognitive inhibitory control in patients with psycho-stimulant addiction. We provide an overview of these studies, summarizing converging evidence and discrepancies as they occur in the literature. We also adopt an analytic perspective and dissect these psychological processes into their sub-components, to identify the neural pathways specific to each component process and those that are more specifically involved in psycho-stimulant addiction. To this aim we refer frequently to studies conducted in healthy individuals. Despite the separate treatment of stress/affect regulation, stress-related craving or compulsive drug seeking, and inhibitory control, neural underpinnings of these processes overlap significantly. In particular, the ventromedial prefrontal regions including the anterior cingulate cortex, amygdala and the striatum are implicated in psychostimulant dependence. Our overarching thesis is that prefrontal activity ensures intact emotional stress regulation and inhibitory control. Altered prefrontal activity along with heightened striatal responses to addicted drug and drug-related salient stimuli perpetuates habitual drug seeking. Further studies that examine the functional relationships of these neural systems will likely provide the key to understanding the mechanisms underlying compulsive drug use behaviors in psycho-stimulant dependence. PMID:18164058

  19. Auditory Neuroimaging with fMRI and PET

    PubMed Central

    Talavage, Thomas M.; Gonzalez-Castillo, Javier; Scott, Sophie K.

    2013-01-01

    For much of the past 30 years, investigations of auditory perception and language have been enhanced or even driven by the use of functional neuroimaging techniques that specialize in localization of central responses. Beginning with investigations using positron emission tomography (PET) and gradually shifting primarily to usage of functional magnetic resonance imaging (fMRI), auditory neuroimaging has greatly advanced our understanding of the organization and response properties of brain regions critical to the perception of and communication with the acoustic world in which we live. As the complexity of the questions being addressed has increased, the techniques, experiments and analyses applied have also become more nuanced and specialized. A brief review of the history of these investigations sets the stage for an overview and analysis of how these neuroimaging modalities are becoming ever more effective tools for understanding the auditory brain. We conclude with a brief discussion of open methodological issues as well as potential clinical applications for auditory neuroimaging. PMID:24076424

  20. Neuroimaging in mental health care: voices in translation

    PubMed Central

    Borgelt, Emily L.; Buchman, Daniel Z.; Illes, Judy

    2012-01-01

    Images of brain function, popularly called “neuroimages,” have become a mainstay of contemporary communication about neuroscience and mental health. Paralleling media coverage of neuroimaging research and the high visibility of clinics selling scans is pressure from sponsors to move basic research about brain function along the translational pathway. Indeed, neuroimaging may offer benefits to mental health care: early or tailored intervention, opportunities for education and planning, and access to resources afforded by objectification of disorder. However, risks of premature technology transfer, such as misinterpretation, misrepresentation, and increased stigmatization, could compromise patient care. The insights of stakeholder groups about neuroimaging for mental health care are a largely untapped resource of information and guidance for translational efforts. We argue that the insights of key stakeholders—including researchers, healthcare providers, patients, and families—have an essential role to play upstream in professional, critical, and ethical discourse surrounding neuroimaging in mental health. Here we integrate previously orthogonal lines of inquiry involving stakeholder research to describe the translational landscape as well as challenges on its horizon. PMID:23097640

  1. [How to start a neuroimaging study].

    PubMed

    Narumoto, Jin

    2012-06-01

    In order to help researchers understand how to start a neuroimaging study, several tips are described in this paper. These include 1) Choice of an imaging modality, 2) Statistical method, and 3) Interpretation of the results. 1) There are several imaging modalities available in clinical research. Advantages and disadvantages of each modality are described. 2) Statistical Parametric Mapping, which is the most common statistical software for neuroimaging analysis, is described in terms of parameter setting in normalization and level of significance. 3) In the discussion section, the region which shows a significant difference between patients and normal controls should be discussed in relation to the neurophysiology of the disease, making reference to previous reports from neuroimaging studies in normal controls, lesion studies and animal studies. A typical pattern of discussion is described.

  2. Neuroimaging of Cognitive Load in Instructional Multimedia

    ERIC Educational Resources Information Center

    Whelan, Robert R.

    2007-01-01

    This paper reviews research literature on cognitive load measurement in learning and neuroimaging, and describes a mapping between the main elements of cognitive load theory and findings in functional neuroanatomy. It is argued that these findings may lead to the improved measurement of cognitive load using neuroimaging. The paper describes how…

  3. Near-Infrared Neuroimaging with NinPy

    PubMed Central

    Strangman, Gary E.; Zhang, Quan; Zeffiro, Thomas

    2009-01-01

    There has been substantial recent growth in the use of non-invasive optical brain imaging in studies of human brain function in health and disease. Near-infrared neuroimaging (NIN) is one of the most promising of these techniques and, although NIN hardware continues to evolve at a rapid pace, software tools supporting optical data acquisition, image processing, statistical modeling, and visualization remain less refined. Python, a modular and computationally efficient development language, can support functional neuroimaging studies of diverse design and implementation. In particular, Python's easily readable syntax and modular architecture allow swift prototyping followed by efficient transition to stable production systems. As an introduction to our ongoing efforts to develop Python software tools for structural and functional neuroimaging, we discuss: (i) the role of non-invasive diffuse optical imaging in measuring brain function, (ii) the key computational requirements to support NIN experiments, (iii) our collection of software tools to support NIN, called NinPy, and (iv) future extensions of these tools that will allow integration of optical with other structural and functional neuroimaging data sources. Source code for the software discussed here will be made available at www.nmr.mgh.harvard.edu/Neural_SystemsGroup/software.html. PMID:19543449

  4. Neuroimaging and Research into Second Language Acquisition

    ERIC Educational Resources Information Center

    Sabourin, Laura

    2009-01-01

    Neuroimaging techniques are becoming not only more and more sophisticated but are also coming to be increasingly accessible to researchers. One thing that one should take note of is the potential of neuroimaging research within second language acquisition (SLA) to contribute to issues pertaining to the plasticity of the adult brain and to general…

  5. Big Data and Neuroimaging.

    PubMed

    Webb-Vargas, Yenny; Chen, Shaojie; Fisher, Aaron; Mejia, Amanda; Xu, Yuting; Crainiceanu, Ciprian; Caffo, Brian; Lindquist, Martin A

    2017-12-01

    Big Data are of increasing importance in a variety of areas, especially in the biosciences. There is an emerging critical need for Big Data tools and methods, because of the potential impact of advancements in these areas. Importantly, statisticians and statistical thinking have a major role to play in creating meaningful progress in this arena. We would like to emphasize this point in this special issue, as it highlights both the dramatic need for statistical input for Big Data analysis and for a greater number of statisticians working on Big Data problems. We use the field of statistical neuroimaging to demonstrate these points. As such, this paper covers several applications and novel methodological developments of Big Data tools applied to neuroimaging data.

  6. Structural neuroimaging across early-stage psychosis: Aberrations in neurobiological trajectories and implications for the staging model.

    PubMed

    Bartholomeusz, Cali F; Cropley, Vanessa L; Wannan, Cassandra; Di Biase, Maria; McGorry, Patrick D; Pantelis, Christos

    2017-05-01

    This review critically examines the structural neuroimaging evidence in psychotic illness, with a focus on longitudinal imaging across the first-episode psychosis and ultra-high-risk of psychosis illness stages. A thorough search of the literature involving specifically longitudinal neuroimaging in early illness stages of psychosis was conducted. The evidence supporting abnormalities in brain morphology and altered neurodevelopmental trajectories is discussed in the context of a clinical staging model. In general, grey matter (and, to a lesser extent, white matter) declines across multiple frontal, temporal (especially superior regions), insular and parietal regions during the first episode of psychosis, which has a steeper trajectory than that of age-matched healthy counterparts. Although the ultra-high-risk of psychosis literature is considerably mixed, evidence indicates that certain volumetric structural aberrations predate psychotic illness onset (e.g. prefrontal cortex thinning), while other abnormalities present in ultra-high-risk of psychosis populations are potentially non-psychosis-specific (e.g. hippocampal volume reductions). We highlight the advantages of longitudinal designs, discuss the implications such studies have on clinical staging and provide directions for future research.

  7. The Status of the Quality Control in Acupuncture-Neuroimaging Studies

    PubMed Central

    Qiu, Ke; Jing, Miaomiao; Liu, Xiaoyan; Gao, Feifei; Liang, Fanrong; Zeng, Fang

    2016-01-01

    Using neuroimaging techniques to explore the central mechanism of acupuncture gains increasing attention, but the quality control of acupuncture-neuroimaging study remains to be improved. We searched the PubMed Database during 1995 to 2014. The original English articles with neuroimaging scan performed on human beings were included. The data involved quality control including the author, sample size, characteristics of the participant, neuroimaging technology, and acupuncture intervention were extracted and analyzed. The rigorous inclusion and exclusion criteria are important guaranty for the participants' homogeneity. The standard operation process of acupuncture and the stricter requirement for acupuncturist play significant role in quality control. More attention should be paid to the quality control in future studies to improve the reproducibility and reliability of the acupuncture-neuroimaging studies. PMID:27242911

  8. Aging, neurodegenerative disease, and traumatic brain injury: the role of neuroimaging.

    PubMed

    Esopenko, Carrie; Levine, Brian

    2015-02-15

    Traumatic brain injury (TBI) is a highly prevalent condition with significant effects on cognition and behavior. While the acute and sub-acute effects of TBI recover over time, relatively little is known about the long-term effects of TBI in relation to neurodegenerative disease. This issue has recently garnered a great deal of attention due to publicity surrounding chronic traumatic encephalopathy (CTE) in professional athletes, although CTE is but one of several neurodegenerative disorders associated with a history of TBI. Here, we review the literative on neurodegenerative disorders linked to remote TBI. We also review the evidence for neuroimaging changes associated with unhealthy brain aging in the context of remote TBI. We conclude that neuroimaging biomarkers have significant potential to increase understanding of the mechanisms of unhealthy brain aging and neurodegeneration following TBI, with potential for identifying those at risk for unhealthy brain aging prior to the clinical manifestation of neurodegenerative disease.

  9. Molecular neuroimaging of emotional decision-making.

    PubMed

    Takahashi, Hidehiko

    2013-04-01

    With the dissemination of non-invasive human neuroimaging techniques such as fMRI and the advancement of cognitive science, neuroimaging studies focusing on emotions and social cognition have become established. Along with this advancement, behavioral economics taking emotional and social factors into account for economic decisions has been merged with neuroscientific studies, and this interdisciplinary approach is called neuroeconomics. Past neuroeconomics studies have demonstrated that subcortical emotion-related brain structures play an important role in "irrational" decision-making. The research field that investigates the role of central neurotransmitters in this process is worthy of further development. Here, we provide an overview of recent molecular neuroimaging studies to further the understanding of the neurochemical basis of "irrational" or emotional decision-making and the future direction, including clinical implications, of the field. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  10. GPU Accelerated Browser for Neuroimaging Genomics.

    PubMed

    Zigon, Bob; Li, Huang; Yao, Xiaohui; Fang, Shiaofen; Hasan, Mohammad Al; Yan, Jingwen; Moore, Jason H; Saykin, Andrew J; Shen, Li

    2018-04-25

    Neuroimaging genomics is an emerging field that provides exciting opportunities to understand the genetic basis of brain structure and function. The unprecedented scale and complexity of the imaging and genomics data, however, have presented critical computational bottlenecks. In this work we present our initial efforts towards building an interactive visual exploratory system for mining big data in neuroimaging genomics. A GPU accelerated browsing tool for neuroimaging genomics is created that implements the ANOVA algorithm for single nucleotide polymorphism (SNP) based analysis and the VEGAS algorithm for gene-based analysis, and executes them at interactive rates. The ANOVA algorithm is 110 times faster than the 4-core OpenMP version, while the VEGAS algorithm is 375 times faster than its 4-core OpenMP counter part. This approach lays a solid foundation for researchers to address the challenges of mining large-scale imaging genomics datasets via interactive visual exploration.

  11. Structural neuroimaging in neuropsychology: History and contemporary applications.

    PubMed

    Bigler, Erin D

    2017-11-01

    Neuropsychology's origins began long before there were any in vivo methods to image the brain. That changed with the advent of computed tomography in the 1970s and magnetic resonance imaging in the early 1980s. Now computed tomography and magnetic resonance imaging are routinely a part of neuropsychological investigations with an increasing number of sophisticated methods for image analysis. This review examines the history of neuroimaging utilization in neuropsychological investigations, highlighting the basic methods that go into image quantification and the various metrics that can be derived. Neuroimaging methods and limitations for identify what constitutes a lesion are discussed. Likewise, the influence of various demographic and developmental factors that influence quantification of brain structure are reviewed. Neuroimaging is an integral part of 21st Century neuropsychology. The importance of neuroimaging to advancing neuropsychology is emphasized. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Neuroimaging of amblyopia and binocular vision: a review

    PubMed Central

    Joly, Olivier; Frankó, Edit

    2014-01-01

    Amblyopia is a cerebral visual impairment considered to derive from abnormal visual experience (e.g., strabismus, anisometropia). Amblyopia, first considered as a monocular disorder, is now often seen as a primarily binocular disorder resulting in more and more studies examining the binocular deficits in the patients. The neural mechanisms of amblyopia are not completely understood even though they have been investigated with electrophysiological recordings in animal models and more recently with neuroimaging techniques in humans. In this review, we summarize the current knowledge about the brain regions that underlie the visual deficits associated with amblyopia with a focus on binocular vision using functional magnetic resonance imaging. The first studies focused on abnormal responses in the primary and secondary visual areas whereas recent evidence shows that there are also deficits at higher levels of the visual pathways within the parieto-occipital and temporal cortices. These higher level areas are part of the cortical network involved in 3D vision from binocular cues. Therefore, reduced responses in these areas could be related to the impaired binocular vision in amblyopic patients. Promising new binocular treatments might at least partially correct the activation in these areas. Future neuroimaging experiments could help to characterize the brain response changes associated with these treatments and help devise them. PMID:25147511

  13. Neuroimaging of amblyopia and binocular vision: a review.

    PubMed

    Joly, Olivier; Frankó, Edit

    2014-01-01

    Amblyopia is a cerebral visual impairment considered to derive from abnormal visual experience (e.g., strabismus, anisometropia). Amblyopia, first considered as a monocular disorder, is now often seen as a primarily binocular disorder resulting in more and more studies examining the binocular deficits in the patients. The neural mechanisms of amblyopia are not completely understood even though they have been investigated with electrophysiological recordings in animal models and more recently with neuroimaging techniques in humans. In this review, we summarize the current knowledge about the brain regions that underlie the visual deficits associated with amblyopia with a focus on binocular vision using functional magnetic resonance imaging. The first studies focused on abnormal responses in the primary and secondary visual areas whereas recent evidence shows that there are also deficits at higher levels of the visual pathways within the parieto-occipital and temporal cortices. These higher level areas are part of the cortical network involved in 3D vision from binocular cues. Therefore, reduced responses in these areas could be related to the impaired binocular vision in amblyopic patients. Promising new binocular treatments might at least partially correct the activation in these areas. Future neuroimaging experiments could help to characterize the brain response changes associated with these treatments and help devise them.

  14. The Co-evolution of Neuroimaging and Psychiatric Neurosurgery.

    PubMed

    Dyster, Timothy G; Mikell, Charles B; Sheth, Sameer A

    2016-01-01

    The role of neuroimaging in psychiatric neurosurgery has evolved significantly throughout the field's history. Psychiatric neurosurgery initially developed without the benefit of information provided by modern imaging modalities, and thus lesion targets were selected based on contemporary theories of frontal lobe dysfunction in psychiatric disease. However, by the end of the 20th century, the availability of structural and functional magnetic resonance imaging (fMRI) allowed for the development of mechanistic theories attempting to explain the anatamofunctional basis of these disorders, as well as the efficacy of stereotactic neuromodulatory treatments. Neuroimaging now plays a central and ever-expanding role in the neurosurgical management of psychiatric disorders, by influencing the determination of surgical candidates, allowing individualized surgical targeting and planning, and identifying network-level changes in the brain following surgery. In this review, we aim to describe the coevolution of psychiatric neurosurgery and neuroimaging, including ways in which neuroimaging has proved useful in elucidating the therapeutic mechanisms of neuromodulatory procedures. We focus on ablative over stimulation-based procedures given their historical precedence and the greater opportunity they afford for post-operative re-imaging, but also discuss important contributions from the deep brain stimulation (DBS) literature. We conclude with a discussion of how neuroimaging will transition the field of psychiatric neurosurgery into the era of precision medicine.

  15. The use of functional neuroimaging to evaluate psychological and other non-pharmacological treatments for clinical pain

    PubMed Central

    Jensen, Karin B.; Berna, Chantal; Loggia, Marco L.; Wasan, Ajay; Edwards, Robert R.; Gollub, Randy L.

    2013-01-01

    A large number of studies have provided evidence for the efficacy of psychological and other non-pharmacological interventions in the treatment of chronic pain. While these methods are increasingly used to treat pain, remarkably few studies focused on the exploration of their neural correlates. The aim of this article was to review the findings from neuroimaging studies that evaluated the neural response to distraction-based techniques, cognitive behavioral therapy (CBT), clinical hypnosis, mental imagery, physical therapy/exercise, biofeedback, and mirror therapy. To date, the results from studies that used neuroimaging to evaluate these methods have not been conclusive and the experimental methods have been suboptimal for assessing clinical pain. Still, several different psychological and non-pharmacological treatment modalities were associated with increased painrelated activations of executive cognitive brain regions, such as the ventral- and dorsolateral prefrontal cortex. There was also evidence for decreased pain-related activations in afferent pain regions and limbic structures. If future studies will address the technical and methodological challenges of today’s experiments, neuroimaging might have the potential of segregating the neural mechanisms of different treatment interventions and elucidate predictive and mediating factors for successful treatment outcomes. Evaluations of treatment-related brain changes (functional and structural) might also allow for sub-grouping of patients and help to develop individualized treatments. PMID:22445888

  16. Systematic review with meta-analysis: neuroimaging in hepatitis C chronic infection.

    PubMed

    Oriolo, G; Egmond, E; Mariño, Z; Cavero, M; Navines, R; Zamarrenho, L; Solà, R; Pujol, J; Bargallo, N; Forns, X; Martin-Santos, R

    2018-05-01

    Chronic hepatitis C is considered a systemic disease because of extra-hepatic manifestations. Neuroimaging has been employed in hepatitis C virus-infected patients to find in vivo evidence of central nervous system alterations. Systematic review and meta-analysis of neuroimaging research in chronic hepatitis C treatment naive patients, or patients previously treated without sustained viral response, to study structural and functional brain impact of hepatitis C. Using PRISMA guidelines a database search was conducted from inception up until 1 May 2017 for peer-reviewed studies on structural or functional neuroimaging assessment of chronic hepatitis C patients without cirrhosis or encephalopathy, with control group. Meta-analyses were performed when possible. The final sample comprised 25 studies (magnetic resonance spectroscopy [N = 12], perfusion weighted imaging [N = 1], positron emission tomography [N = 3], single-photon emission computed tomography [N = 4], functional connectivity in resting state [N = 1], diffusion tensor imaging [N = 2] and structural magnetic resonance imaging [N = 2]). The whole sample was of 509 chronic hepatitis C patients, with an average age of 41.5 years old and mild liver disease. A meta-analysis of magnetic resonance spectroscopy studies showed increased levels of choline/creatine ratio (mean difference [MD] 0.12, 95% confidence interval [CI] 0.06-0.18), creatine (MD 0.85, 95% CI 0.42-1.27) and glutamate plus glutamine (MD 1.67, 95% CI 0.39-2.96) in basal ganglia and increased levels of choline/creatine ratio in centrum semiovale white matter (MD 0.13, 95% CI 0.07-0.19) in chronic hepatitis C patients compared with healthy controls. Photon emission tomography studies meta-analyses did not find significant differences in PK11195 binding potential in cortical and subcortical regions of chronic hepatitis C patients compared with controls. Correlations were observed between various neuroimaging alterations and

  17. Cognitive Neuroimaging: Cognitive Science out of the Armchair

    ERIC Educational Resources Information Center

    de Zubicaray, Greig I.

    2006-01-01

    Cognitive scientists were not quick to embrace the functional neuroimaging technologies that emerged during the late 20th century. In this new century, cognitive scientists continue to question, not unreasonably, the relevance of functional neuroimaging investigations that fail to address questions of interest to cognitive science. However, some…

  18. Machine learning for neuroimaging with scikit-learn.

    PubMed

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  19. Machine learning for neuroimaging with scikit-learn

    PubMed Central

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain. PMID:24600388

  20. Source counting in MEG neuroimaging

    NASA Astrophysics Data System (ADS)

    Lei, Tianhu; Dell, John; Magee, Ralphy; Roberts, Timothy P. L.

    2009-02-01

    Magnetoencephalography (MEG) is a multi-channel, functional imaging technique. It measures the magnetic field produced by the primary electric currents inside the brain via a sensor array composed of a large number of superconducting quantum interference devices. The measurements are then used to estimate the locations, strengths, and orientations of these electric currents. This magnetic source imaging technique encompasses a great variety of signal processing and modeling techniques which include Inverse problem, MUltiple SIgnal Classification (MUSIC), Beamforming (BF), and Independent Component Analysis (ICA) method. A key problem with Inverse problem, MUSIC and ICA methods is that the number of sources must be detected a priori. Although BF method scans the source space on a point-to-point basis, the selection of peaks as sources, however, is finally made by subjective thresholding. In practice expert data analysts often select results based on physiological plausibility. This paper presents an eigenstructure approach for the source number detection in MEG neuroimaging. By sorting eigenvalues of the estimated covariance matrix of the acquired MEG data, the measured data space is partitioned into the signal and noise subspaces. The partition is implemented by utilizing information theoretic criteria. The order of the signal subspace gives an estimate of the number of sources. The approach does not refer to any model or hypothesis, hence, is an entirely data-led operation. It possesses clear physical interpretation and efficient computation procedure. The theoretical derivation of this method and the results obtained by using the real MEG data are included to demonstrates their agreement and the promise of the proposed approach.

  1. Pituitary gland in psychiatric disorders: a review of neuroimaging findings.

    PubMed

    Atmaca, Murad

    2014-08-01

    In this paper, it was reviewed neuroimaging results of the pituitary gland in psychiatric disorders, particularly schizophrenia, mood disorders, anxiety disorders, and somatoform disorders. The author made internet search in detail by using PubMed database including the period between 1980 and 2012 October. It was included in the articles in English, Turkish and French languages on pituitary gland in psychiatric disorders through structural or functional neuroimaging results. After searching mentioned in the Methods section in detail, investigations were obtained on pituitary gland neuroimaging in a variety of psychiatric disorders. There have been so limited investigations on pituitary neuroimaging in psychiatric disorders including major psychiatric illnesses like schizophrenia and mood disorders. Current findings are so far from the generalizability of the results. For this reason, it is required to perform much more neuroimaging studies of pituitary gland in all psychiatric disorders to reach the diagnostic importance of measuring it.

  2. Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning.

    PubMed

    Chein, Jason M; Schneider, Walter

    2005-12-01

    Functional magnetic resonance imaging and a meta-analysis of prior neuroimaging studies were used to characterize cortical changes resulting from extensive practice and to evaluate a dual-processing account of the neural mechanisms underlying human learning. Three core predictions of the dual processing theory are evaluated: 1) that practice elicits generalized reductions in regional activity by reducing the load on the cognitive control mechanisms that scaffold early learning; 2) that these control mechanisms are domain-general; and 3) that no separate processing pathway emerges as skill develops. To evaluate these predictions, a meta-analysis of prior neuroimaging studies and a within-subjects fMRI experiment contrasting unpracticed to practiced performance in a paired-associate task were conducted. The principal effect of practice was found to be a reduction in the extent and magnitude of activity in a cortical network spanning bilateral dorsal prefrontal, left ventral prefrontal, medial frontal (anterior cingulate), left insular, bilateral parietal, and occipito-temporal (fusiform) areas. These activity reductions are shown to occur in common regions across prior neuroimaging studies and for both verbal and nonverbal paired-associate learning in the present fMRI experiment. The implicated network of brain regions is interpreted as a domain-general system engaged specifically to support novice, but not practiced, performance.

  3. Dreaming as mind wandering: evidence from functional neuroimaging and first-person content reports.

    PubMed

    Fox, Kieran C R; Nijeboer, Savannah; Solomonova, Elizaveta; Domhoff, G William; Christoff, Kalina

    2013-01-01

    Isolated reports have long suggested a similarity in content and thought processes across mind wandering (MW) during waking, and dream mentation during sleep. This overlap has encouraged speculation that both "daydreaming" and dreaming may engage similar brain mechanisms. To explore this possibility, we systematically examined published first-person experiential reports of MW and dreaming and found many similarities: in both states, content is largely audiovisual and emotional, follows loose narratives tinged with fantasy, is strongly related to current concerns, draws on long-term memory, and simulates social interactions. Both states are also characterized by a relative lack of meta-awareness. To relate first-person reports to neural evidence, we compared meta-analytic data from numerous functional neuroimaging (PET, fMRI) studies of the default mode network (DMN, with high chances of MW) and rapid eye movement (REM) sleep (with high chances of dreaming). Our findings show large overlaps in activation patterns of cortical regions: similar to MW/DMN activity, dreaming and REM sleep activate regions implicated in self-referential thought and memory, including medial prefrontal cortex (PFC), medial temporal lobe structures, and posterior cingulate. Conversely, in REM sleep numerous PFC executive regions are deactivated, even beyond levels seen during waking MW. We argue that dreaming can be understood as an "intensified" version of waking MW: though the two share many similarities, dreams tend to be longer, more visual and immersive, and to more strongly recruit numerous key hubs of the DMN. Further, whereas MW recruits fewer PFC regions than goal-directed thought, dreaming appears to be characterized by an even deeper quiescence of PFC regions involved in cognitive control and metacognition, with a corresponding lack of insight and meta-awareness. We suggest, then, that dreaming amplifies the same features that distinguish MW from goal-directed waking thought.

  4. Dreaming as mind wandering: evidence from functional neuroimaging and first-person content reports

    PubMed Central

    Fox, Kieran C. R.; Nijeboer, Savannah; Solomonova, Elizaveta; Domhoff, G. William; Christoff, Kalina

    2013-01-01

    Isolated reports have long suggested a similarity in content and thought processes across mind wandering (MW) during waking, and dream mentation during sleep. This overlap has encouraged speculation that both “daydreaming” and dreaming may engage similar brain mechanisms. To explore this possibility, we systematically examined published first-person experiential reports of MW and dreaming and found many similarities: in both states, content is largely audiovisual and emotional, follows loose narratives tinged with fantasy, is strongly related to current concerns, draws on long-term memory, and simulates social interactions. Both states are also characterized by a relative lack of meta-awareness. To relate first-person reports to neural evidence, we compared meta-analytic data from numerous functional neuroimaging (PET, fMRI) studies of the default mode network (DMN, with high chances of MW) and rapid eye movement (REM) sleep (with high chances of dreaming). Our findings show large overlaps in activation patterns of cortical regions: similar to MW/DMN activity, dreaming and REM sleep activate regions implicated in self-referential thought and memory, including medial prefrontal cortex (PFC), medial temporal lobe structures, and posterior cingulate. Conversely, in REM sleep numerous PFC executive regions are deactivated, even beyond levels seen during waking MW. We argue that dreaming can be understood as an “intensified” version of waking MW: though the two share many similarities, dreams tend to be longer, more visual and immersive, and to more strongly recruit numerous key hubs of the DMN. Further, whereas MW recruits fewer PFC regions than goal-directed thought, dreaming appears to be characterized by an even deeper quiescence of PFC regions involved in cognitive control and metacognition, with a corresponding lack of insight and meta-awareness. We suggest, then, that dreaming amplifies the same features that distinguish MW from goal-directed waking

  5. Terminology development towards harmonizing multiple clinical neuroimaging research repositories.

    PubMed

    Turner, Jessica A; Pasquerello, Danielle; Turner, Matthew D; Keator, David B; Alpert, Kathryn; King, Margaret; Landis, Drew; Calhoun, Vince D; Potkin, Steven G; Tallis, Marcelo; Ambite, Jose Luis; Wang, Lei

    2015-07-01

    Data sharing and mediation across disparate neuroimaging repositories requires extensive effort to ensure that the different domains of data types are referred to by commonly agreed upon terms. Within the SchizConnect project, which enables querying across decentralized databases of neuroimaging, clinical, and cognitive data from various studies of schizophrenia, we developed a model for each data domain, identified common usable terms that could be agreed upon across the repositories, and linked them to standard ontological terms where possible. We had the goal of facilitating both the current user experience in querying and future automated computations and reasoning regarding the data. We found that existing terminologies are incomplete for these purposes, even with the history of neuroimaging data sharing in the field; and we provide a model for efforts focused on querying multiple clinical neuroimaging repositories.

  6. Terminology development towards harmonizing multiple clinical neuroimaging research repositories

    PubMed Central

    Turner, Jessica A.; Pasquerello, Danielle; Turner, Matthew D.; Keator, David B.; Alpert, Kathryn; King, Margaret; Landis, Drew; Calhoun, Vince D.; Potkin, Steven G.; Tallis, Marcelo; Ambite, Jose Luis; Wang, Lei

    2015-01-01

    Data sharing and mediation across disparate neuroimaging repositories requires extensive effort to ensure that the different domains of data types are referred to by commonly agreed upon terms. Within the SchizConnect project, which enables querying across decentralized databases of neuroimaging, clinical, and cognitive data from various studies of schizophrenia, we developed a model for each data domain, identified common usable terms that could be agreed upon across the repositories, and linked them to standard ontological terms where possible. We had the goal of facilitating both the current user experience in querying and future automated computations and reasoning regarding the data. We found that existing terminologies are incomplete for these purposes, even with the history of neuroimaging data sharing in the field; and we provide a model for efforts focused on querying multiple clinical neuroimaging repositories. PMID:26688838

  7. 25 years of neuroimaging in amyotrophic lateral sclerosis.

    PubMed

    Foerster, Bradley R; Welsh, Robert C; Feldman, Eva L

    2013-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which a precise cause has not yet been identified. Standard CT or MRI evaluation does not demonstrate gross structural nervous system changes in ALS, so conventional neuroimaging techniques have provided little insight into the pathophysiology of this disease. Advanced neuroimaging techniques--such as structural MRI, diffusion tensor imaging and proton magnetic resonance spectroscopy--allow evaluation of alterations of the nervous system in ALS. These alterations include focal loss of grey and white matter and reductions in white matter tract integrity, as well as changes in neural networks and in the chemistry, metabolism and receptor distribution in the brain. Given their potential for investigation of both brain structure and function, advanced neuroimaging methods offer important opportunities to improve diagnosis, guide prognosis, and direct future treatment strategies in ALS. In this article, we review the contributions made by various advanced neuroimaging techniques to our understanding of the impact of ALS on different brain regions, and the potential role of such measures in biomarker development.

  8. 25 years of neuroimaging in amyotrophic lateral sclerosis

    PubMed Central

    Foerster, Bradley R.; Welsh, Robert C.; Feldman, Eva L.

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which a precise cause has not yet been identified. Standard CT or MRI evaluation does not demonstrate gross structural nervous system changes in ALS, so conventional neuroimaging techniques have provided little insight into the pathophysiology of this disease. Advanced neuroimaging techniques—such as structural MRI, diffusion tensor imaging and proton magnetic resonance spectroscopy—allow evaluation of alterations of the nervous system in ALS. These alterations include focal loss of grey and white matter and reductions in white matter tract integrity, as well as changes in neural networks and in the chemistry, metabolism and receptor distribution in the brain. Given their potential for investigation of both brain structure and function, advanced neuroimaging methods offer important opportunities to improve diagnosis, guide prognosis, and direct future treatment strategies in ALS. In this article, we review the contributions made by various advanced neuroimaging techniques to our understanding of the impact of ALS on different brain regions, and the potential role of such measures in biomarker development. PMID:23917850

  9. Neuropsychological and neuroimaging underpinnings of schizoaffective disorder: a systematic review.

    PubMed

    Madre, M; Canales-Rodríguez, E J; Ortiz-Gil, J; Murru, A; Torrent, C; Bramon, E; Perez, V; Orth, M; Brambilla, P; Vieta, E; Amann, B L

    2016-07-01

    The neurobiological basis and nosological status of schizoaffective disorder remains elusive and controversial. This study provides a systematic review of neurocognitive and neuroimaging findings in the disorder. A comprehensive literature search was conducted via PubMed, ScienceDirect, Scopus and Web of Knowledge (from 1949 to 31st March 2015) using the keyword 'schizoaffective disorder' and any of the following terms: 'neuropsychology', 'cognition', 'structural neuroimaging', 'functional neuroimaging', 'multimodal', 'DTI' and 'VBM'. Only studies that explicitly examined a well defined sample, or subsample, of patients with schizoaffective disorder were included. Twenty-two of 43 neuropsychological and 19 of 51 neuroimaging articles fulfilled inclusion criteria. We found a general trend towards schizophrenia and schizoaffective disorder being related to worse cognitive performance than bipolar disorder. Grey matter volume loss in schizoaffective disorder is also more comparable to schizophrenia than to bipolar disorder which seems consistent across further neuroimaging techniques. Neurocognitive and neuroimaging abnormalities in schizoaffective disorder resemble more schizophrenia than bipolar disorder. This is suggestive for schizoaffective disorder being a subtype of schizophrenia or being part of the continuum spectrum model of psychosis, with schizoaffective disorder being more skewed towards schizophrenia than bipolar disorder. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Mapping the Schizophrenia Genes by Neuroimaging: The Opportunities and the Challenges

    PubMed Central

    2018-01-01

    Schizophrenia (SZ) is a heritable brain disease originating from a complex interaction of genetic and environmental factors. The genes underpinning the neurobiology of SZ are largely unknown but recent data suggest strong evidence for genetic variations, such as single nucleotide polymorphisms, making the brain vulnerable to the risk of SZ. Structural and functional brain mapping of these genetic variations are essential for the development of agents and tools for better diagnosis, treatment and prevention of SZ. Addressing this, neuroimaging methods in combination with genetic analysis have been increasingly used for almost 20 years. So-called imaging genetics, the opportunities of this approach along with its limitations for SZ research will be outlined in this invited paper. While the problems such as reproducibility, genetic effect size, specificity and sensitivity exist, opportunities such as multivariate analysis, development of multisite consortia for large-scale data collection, emergence of non-candidate gene (hypothesis-free) approach of neuroimaging genetics are likely to contribute to a rapid progress for gene discovery besides to gene validation studies that are related to SZ. PMID:29324666

  11. Overlapping neurobehavioral circuits in ADHD, obesity, and binge eating: Evidence from Neuroimaging Research

    PubMed Central

    Seymour, Karen E.; Reinblatt, Shauna P.; Benson, Leora; Carnell, Susan

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) and conditions involving excessive eating (e.g. obesity, binge / loss of control eating) are increasingly prevalent within pediatric populations, and correlational and some longitudinal studies have suggested inter-relationships between these disorders. In addition, a number of common neural correlates are emerging across conditions, e.g. functional abnormalities within circuits subserving reward processing and executive functioning. To explore this potential cross-condition overlap in neurobehavioral underpinnings, we selectively review relevant functional neuroimaging literature, specifically focusing on studies probing i) reward processing, ii) response inhibition, and iii) emotional processing and regulation, and outline three specific shared neurobehavioral circuits. Based on our review, we also identify gaps within the literature that would benefit from further research. PMID:26098969

  12. Towards structured sharing of raw and derived neuroimaging data across existing resources

    PubMed Central

    Keator, D.B.; Helmer, K.; Steffener, J.; Turner, J.A.; Van Erp, T.G.M.; Gadde, S.; Ashish, N.; Burns, G.A.; Nichols, B.N.

    2013-01-01

    Data sharing efforts increasingly contribute to the acceleration of scientific discovery. Neuroimaging data is accumulating in distributed domain-specific databases and there is currently no integrated access mechanism nor an accepted format for the critically important meta-data that is necessary for making use of the combined, available neuroimaging data. In this manuscript, we present work from the Derived Data Working Group, an open-access group sponsored by the Biomedical Informatics Research Network (BIRN) and the International Neuroimaging Coordinating Facility (INCF) focused on practical tools for distributed access to neuroimaging data. The working group develops models and tools facilitating the structured interchange of neuroimaging meta-data and is making progress towards a unified set of tools for such data and meta-data exchange. We report on the key components required for integrated access to raw and derived neuroimaging data as well as associated meta-data and provenance across neuroimaging resources. The components include (1) a structured terminology that provides semantic context to data, (2) a formal data model for neuroimaging with robust tracking of data provenance, (3) a web service-based application programming interface (API) that provides a consistent mechanism to access and query the data model, and (4) a provenance library that can be used for the extraction of provenance data by image analysts and imaging software developers. We believe that the framework and set of tools outlined in this manuscript have great potential for solving many of the issues the neuroimaging community faces when sharing raw and derived neuroimaging data across the various existing database systems for the purpose of accelerating scientific discovery. PMID:23727024

  13. Recent neuroimaging techniques in mild traumatic brain injury.

    PubMed

    Belanger, Heather G; Vanderploeg, Rodney D; Curtiss, Glenn; Warden, Deborah L

    2007-01-01

    Mild traumatic brain injury (TBI) is characterized by acute physiological changes that result in at least some acute cognitive difficulties and typically resolve by 3 months postinjury. Because the majority of mild TBI patients have normal structural magnetic resonance imaging (MRI)/computed tomography (CT) scans, there is increasing attention directed at finding objective physiological correlates of persistent cognitive and neuropsychiatric symptoms through experimental neuroimaging techniques. The authors review studies utilizing these techniques in patients with mild TBI; these techniques may provide more sensitive assessment of structural and functional abnormalities following mild TBI. Particular promise is evident with fMRI, PET, and SPECT scanning, as demonstrated by associations between brain activation and clinical outcomes.

  14. Neuroimaging of love: fMRI meta-analysis evidence toward new perspectives in sexual medicine.

    PubMed

    Ortigue, Stephanie; Bianchi-Demicheli, Francesco; Patel, Nisa; Frum, Chris; Lewis, James W

    2010-11-01

    Brain imaging is becoming a powerful tool in the study of human cerebral functions related to close personal relationships. Outside of subcortical structures traditionally thought to be involved in reward-related systems, a wide range of neuroimaging studies in relationship science indicate a prominent role for different cortical networks and cognitive factors. Thus, the field needs a better anatomical/network/whole-brain model to help translate scientific knowledge from lab bench to clinical models and ultimately to the patients suffering from disorders associated with love and couple relationships. The aim of the present review is to provide a review across wide range of functional magnetic resonance imaging (fMRI) studies to critically identify the cortical networks associated with passionate love, and to compare and contrast it with other types of love (such as maternal love and unconditional love for persons with intellectual disabilities). Retrospective review of pertinent neuroimaging literature. Review of published literature on fMRI studies of love illustrating brain regions associated with different forms of love. Although all fMRI studies of love point to the subcortical dopaminergic reward-related brain systems (involving dopamine and oxytocin receptors) for motivating individuals in pair-bonding, the present meta-analysis newly demonstrated that different types of love involve distinct cerebral networks, including those for higher cognitive functions such as social cognition and bodily self-representation. These metaresults provide the first stages of a global neuroanatomical model of cortical networks involved in emotions related to different aspects of love. Developing this model in future studies should be helpful for advancing clinical approaches helpful in sexual medicine and couple therapy. © 2010 International Society for Sexual Medicine.

  15. [Pedophilia: contribution of neurology and neuroimaging techniques].

    PubMed

    Fonteille, V; Cazala, F; Moulier, V; Stoléru, S

    2012-12-01

    Pedophilia is characterized by a persistent sexual interest of an adult for prepubescent children. The development of neuroimaging techniques such as functional Magnetic Resonance Imaging (fMRI) is starting to clarify the cerebral basis of disorders of sexual behavior such as pedophilia, which had been previously suggested by case studies. To review structural and functional neuroimaging studies of pedophilia. An exhaustive consultation of PubMed and Ovid databases was conducted. We obtained 19 articles presented in the present review of the literature. Case studies have demonstrated various changes of sexual behavior in relation to brain lesions, including the late appearance in adults of a sexual attraction to prepubescent children. In most cases of pedophilia associated with brain lesions, these lesions were located in frontal or in temporal regions. Structural neuroimaging studies have compared pedophiles with healthy subjects and tried to relate pedophilia to anatomical differences between these two groups. The location of structural changes is inconsistent across studies. Recent functional neuroimaging studies have also attempted to investigate the cerebral correlates of pedophilia. Results suggest that the activation pattern found in pedophiles in response to pictures of prepubescent nude girls or boys is similar to the pattern observed in healthy subjects in response to pictures of adult nude women or men. However, regions that become more activated in patients than in healthy controls in response to the presentation of pictures of children vary across studies. Studies that have begun to investigate the cerebral correlates of pedophilia demonstrate that it is possible to explore them through neuroimaging techniques. These initial results have to be confirmed by new studies backed with objective measurements of sexual arousal such as phallometry. Copyright © 2012 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  16. Neural Substrate of Group Mental Health: Insights from Multi-Brain Reference Frame in Functional Neuroimaging.

    PubMed

    Ray, Dipanjan; Roy, Dipanjan; Sindhu, Brahmdeep; Sharan, Pratap; Banerjee, Arpan

    2017-01-01

    Contemporary mental health practice primarily centers around the neurobiological and psychological processes at the individual level. However, a more careful consideration of interpersonal and other group-level attributes (e.g., interpersonal relationship, mutual trust/hostility, interdependence, and cooperation) and a better grasp of their pathology can add a crucial dimension to our understanding of mental health problems. A few recent studies have delved into the interpersonal behavioral processes in the context of different psychiatric abnormalities. Neuroimaging can supplement these approaches by providing insight into the neurobiology of interpersonal functioning. Keeping this view in mind, we discuss a recently developed approach in functional neuroimaging that calls for a shift from a focus on neural information contained within brain space to a multi-brain framework exploring degree of similarity/dissimilarity of neural signals between multiple interacting brains. We hypothesize novel applications of quantitative neuroimaging markers like inter-subject correlation that might be able to evaluate the role of interpersonal attributes affecting an individual or a group. Empirical evidences of the usage of these markers in understanding the neurobiology of social interactions are provided to argue for their application in future mental health research.

  17. Neural Substrate of Group Mental Health: Insights from Multi-Brain Reference Frame in Functional Neuroimaging

    PubMed Central

    Ray, Dipanjan; Roy, Dipanjan; Sindhu, Brahmdeep; Sharan, Pratap; Banerjee, Arpan

    2017-01-01

    Contemporary mental health practice primarily centers around the neurobiological and psychological processes at the individual level. However, a more careful consideration of interpersonal and other group-level attributes (e.g., interpersonal relationship, mutual trust/hostility, interdependence, and cooperation) and a better grasp of their pathology can add a crucial dimension to our understanding of mental health problems. A few recent studies have delved into the interpersonal behavioral processes in the context of different psychiatric abnormalities. Neuroimaging can supplement these approaches by providing insight into the neurobiology of interpersonal functioning. Keeping this view in mind, we discuss a recently developed approach in functional neuroimaging that calls for a shift from a focus on neural information contained within brain space to a multi-brain framework exploring degree of similarity/dissimilarity of neural signals between multiple interacting brains. We hypothesize novel applications of quantitative neuroimaging markers like inter-subject correlation that might be able to evaluate the role of interpersonal attributes affecting an individual or a group. Empirical evidences of the usage of these markers in understanding the neurobiology of social interactions are provided to argue for their application in future mental health research. PMID:29033866

  18. Imperial College near infrared spectroscopy neuroimaging analysis framework.

    PubMed

    Orihuela-Espina, Felipe; Leff, Daniel R; James, David R C; Darzi, Ara W; Yang, Guang-Zhong

    2018-01-01

    This paper describes the Imperial College near infrared spectroscopy neuroimaging analysis (ICNNA) software tool for functional near infrared spectroscopy neuroimaging data. ICNNA is a MATLAB-based object-oriented framework encompassing an application programming interface and a graphical user interface. ICNNA incorporates reconstruction based on the modified Beer-Lambert law and basic processing and data validation capabilities. Emphasis is placed on the full experiment rather than individual neuroimages as the central element of analysis. The software offers three types of analyses including classical statistical methods based on comparison of changes in relative concentrations of hemoglobin between the task and baseline periods, graph theory-based metrics of connectivity and, distinctively, an analysis approach based on manifold embedding. This paper presents the different capabilities of ICNNA in its current version.

  19. Single Subject Prediction of Brain Disorders in Neuroimaging: Promises and Pitfalls

    PubMed Central

    Arbabshirani, Mohammad R.; Plis, Sergey; Sui, Jing; Calhoun, Vince D.

    2016-01-01

    Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there are extensive evidences showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need

  20. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls.

    PubMed

    Arbabshirani, Mohammad R; Plis, Sergey; Sui, Jing; Calhoun, Vince D

    2017-01-15

    Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there is extensive evidence showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need

  1. Functional neuroimaging: technical, logical, and social perspectives.

    PubMed

    Aguirre, Geoffrey K

    2014-01-01

    Neuroscientists have long sought to study the dynamic activity of the human brain-what's happening in the brain, that is, while people are thinking, feeling, and acting. Ideally, an inside look at brain function would simultaneously and continuously measure the biochemical state of every cell in the central nervous system. While such a miraculous method is science fiction, a century of progress in neuroimaging technologies has made such simultaneous and continuous measurement a plausible fiction. Despite this progress, practitioners of modern neuroimaging struggle with two kinds of limitations: those that attend the particular neuroimaging methods we have today and those that would limit any method of imaging neural activity, no matter how powerful. In this essay, I consider the liabilities and potential of techniques that measure human brain activity. I am concerned here only with methods that measure relevant physiologic states of the central nervous system and relate those measures to particular mental states. I will consider in particular the preeminent method of functional neuroimaging: BOLD fMRI. While there are several practical limits on the biological information that current technologies can measure, these limits-as important as they are-are minor in comparison to the fundamental logical restraints on the conclusions that can be drawn from brain imaging studies. © 2014 by The Hastings Center.

  2. Evolving Evidence for the Value of Neuroimaging Methods and Biological Markers in Subjects Categorized with Subjective Cognitive Decline.

    PubMed

    Lista, Simone; Molinuevo, Jose L; Cavedo, Enrica; Rami, Lorena; Amouyel, Philippe; Teipel, Stefan J; Garaci, Francesco; Toschi, Nicola; Habert, Marie-Odile; Blennow, Kaj; Zetterberg, Henrik; O'Bryant, Sid E; Johnson, Leigh; Galluzzi, Samantha; Bokde, Arun L W; Broich, Karl; Herholz, Karl; Bakardjian, Hovagim; Dubois, Bruno; Jessen, Frank; Carrillo, Maria C; Aisen, Paul S; Hampel, Harald

    2015-09-24

    There is evolving evidence that individuals categorized with subjective cognitive decline (SCD) are potentially at higher risk for developing objective and progressive cognitive impairment compared to cognitively healthy individuals without apparent subjective complaints. Interestingly, SCD, during advancing preclinical Alzheimer's disease (AD), may denote very early, subtle cognitive decline that cannot be identified using established standardized tests of cognitive performance. The substantial heterogeneity of existing SCD-related research data has led the Subjective Cognitive Decline Initiative (SCD-I) to accomplish an international consensus on the definition of a conceptual research framework on SCD in preclinical AD. In the area of biological markers, the cerebrospinal fluid signature of AD has been reported to be more prevalent in subjects with SCD compared to healthy controls; moreover, there is a pronounced atrophy, as demonstrated by magnetic resonance imaging, and an increased hypometabolism, as revealed by positron emission tomography, in characteristic brain regions affected by AD. In addition, SCD individuals carrying an apolipoprotein ɛ4 allele are more likely to display AD-phenotypic alterations. The urgent requirement to detect and diagnose AD as early as possible has led to the critical examination of the diagnostic power of biological markers, neurophysiology, and neuroimaging methods for AD-related risk and clinical progression in individuals defined with SCD. Observational studies on the predictive value of SCD for developing AD may potentially be of practical value, and an evidence-based, validated, qualified, and fully operationalized concept may inform clinical diagnostic practice and guide earlier designs in future therapy trials.

  3. Subependymal giant cell astrocytoma: clinical and neuroimaging features of four cases.

    PubMed

    Nishio, S; Morioka, T; Suzuki, S; Kira, R; Mihara, F; Fukui, M

    2001-01-01

    The clinical history, neuroimaging features, treatments, and outcome of 4 patients with histologically verified subependymal giant cell astrocytomas (SEGA) were retrospectively reviewed. The average age at the time of surgery was 13.3 years. Headache related to raised intracranial pressure was the first and only sign in 2 patients, with the remaining 2 being admitted because of sequential neuroimaging studies over several years revealing the growth of 'subependymal nodules' into intraventricular tumours. In each case the tumour was in the region of Monro's foramen and was associated with ventricular dilatation. On computed tomography (CT), multiple subependymal nodules were found in 3 patients, and these well circumscribed isodense SEGAs were markedly enhanced by contrast medium. On magnetic resonance imaging (MRI), which was obtained in 3 patients, 2 SEGAs were isointense with the cerebral cortex and one with the white matter on T1-weighted images, and on T2-weighted images, 2 were isointense with the cortex and one with the white matter. At surgery the tumours appeared to originate from the inferolateral wall of the lateral ventricle in the region of the head of the caudate nuclei. Total macroscopic removal was achieved in 3 patients, and subtotal removal in one patient. Follow up ranged from 4.6 to 13.2 years, and all patients have exhibited similar physical and mental conditions to preoperative. So far there has been no evidence of any recurrences. The diagnosis and the surgical indications for SEGA are discussed, with periodic monitoring with neuroimaging studies being recommended even for asymptomatic patients with 'subependymal nodules'.

  4. Advanced Neuroimaging in Traumatic Brain Injury

    PubMed Central

    Edlow, Brian L.; Wu, Ona

    2013-01-01

    Advances in structural and functional neuroimaging have occurred at a rapid pace over the past two decades. Novel techniques for measuring cerebral blood flow, metabolism, white matter connectivity, and neural network activation have great potential to improve the accuracy of diagnosis and prognosis for patients with traumatic brain injury (TBI), while also providing biomarkers to guide the development of new therapies. Several of these advanced imaging modalities are currently being implemented into clinical practice, whereas others require further development and validation. Ultimately, for advanced neuroimaging techniques to reach their full potential and improve clinical care for the many civilians and military personnel affected by TBI, it is critical for clinicians to understand the applications and methodological limitations of each technique. In this review, we examine recent advances in structural and functional neuroimaging and the potential applications of these techniques to the clinical care of patients with TBI. We also discuss pitfalls and confounders that should be considered when interpreting data from each technique. Finally, given the vast amounts of advanced imaging data that will soon be available to clinicians, we discuss strategies for optimizing data integration, visualization and interpretation. PMID:23361483

  5. Neuroimaging and Recovery of Language in Aphasia

    PubMed Central

    Thompson, Cynthia K.; den Ouden, Dirk-Bart

    2010-01-01

    The use of functional neuroimaging techniques has advanced what is known about the neural mechanisms used to support language processing in aphasia resulting from brain damage. This paper highlights recent findings derived from neuroimaging studies focused on neuroplasticity of language networks, the role of the left and right hemispheres in this process, and studies examining how treatment affects the neurobiology of recovery. We point out variability across studies as well as factors related to this variability, and we emphasize challenges that remain for research. PMID:18957184

  6. The coordinate-based meta-analysis of neuroimaging data.

    PubMed

    Samartsidis, Pantelis; Montagna, Silvia; Nichols, Thomas E; Johnson, Timothy D

    2017-01-01

    Neuroimaging meta-analysis is an area of growing interest in statistics. The special characteristics of neuroimaging data render classical meta-analysis methods inapplicable and therefore new methods have been developed. We review existing methodologies, explaining the benefits and drawbacks of each. A demonstration on a real dataset of emotion studies is included. We discuss some still-open problems in the field to highlight the need for future research.

  7. The coordinate-based meta-analysis of neuroimaging data

    PubMed Central

    Samartsidis, Pantelis; Montagna, Silvia; Nichols, Thomas E.; Johnson, Timothy D.

    2017-01-01

    Neuroimaging meta-analysis is an area of growing interest in statistics. The special characteristics of neuroimaging data render classical meta-analysis methods inapplicable and therefore new methods have been developed. We review existing methodologies, explaining the benefits and drawbacks of each. A demonstration on a real dataset of emotion studies is included. We discuss some still-open problems in the field to highlight the need for future research. PMID:29545671

  8. Neuroimaging studies of social cognition in schizophrenia.

    PubMed

    Fujiwara, Hironobu; Yassin, Walid; Murai, Toshiya

    2015-05-01

    Impaired social cognition is considered a core contributor to unfavorable psychosocial functioning in schizophrenia. Rather than being a unitary process, social cognition is a collection of multifaceted processes that recruit multiple brain structures, thus structural and functional neuroimaging techniques are ideal methodologies for revealing the underlying pathophysiology of impaired social cognition. Many neuroimaging studies have suggested that in addition to white-matter deficits, schizophrenia is associated with decreased gray-matter volume in multiple brain areas, especially fronto-temporal and limbic regions. However, few schizophrenia studies have examined associations between brain abnormalities and social cognitive disabilities. During the last decade, we have investigated structural brain abnormalities in schizophrenia using high-resolution magnetic resonance imaging, and our findings have been confirmed by us and others. By assessing different types of social cognitive abilities, structural abnormalities in multiple brain regions have been found to be associated with disabilities in social cognition, such as recognition of facial emotion, theory of mind, and empathy. These structural deficits have also been associated with alexithymia and quality of life in ways that are closely related to the social cognitive disabilities found in schizophrenia. Here, we overview a series of neuroimaging studies from our laboratory that exemplify current research into this topic, and discuss how it can be further tackled using recent advances in neuroimaging technology. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  9. Acute pediatric encephalitis neuroimaging: single-institution series as part of the California encephalitis project.

    PubMed

    Bykowski, Julie; Kruk, Peter; Gold, Jeffrey J; Glaser, Carol A; Sheriff, Heather; Crawford, John R

    2015-06-01

    Diagnosing pediatric encephalitis is challenging because of varied clinical presentation, nonspecific neuroimaging features, and rare confirmation of causality. We reviewed acute neuroimaging of children with clinically suspected encephalitis to identify findings that may correlate with etiology and length of stay. Imaging of 141 children with clinically suspected encephalitis as part of The California Encephalitis Project from 2005 to 2012 at a single institution was reviewed to compare the extent of neuroimaging abnormalities to patient age, gender, length of stay, and unknown, possible, or confirmed pathogen. Scan review was blinded and categorized by extent and distribution of abnormal findings. Abnormal findings were evident on 23% (22/94) of computed tomography and 50% (67/134) of magnetic resonance imaging studies in the acute setting. Twenty children with normal admission computed tomography had abnormal findings on magnetic resonance imaging performed within 2 days. Length of stay was significantly longer among children with abnormal acute magnetic resonance imaging (P < 0.001) and correlated with increased complexity (Spearman rho = 0.4, P < 0.001) categorized as: no imaging abnormality, meningeal enhancement and/or focal nonenhancing lesion, multifocal lesions, confluent lesions, and lesions plus diffusion restriction, hemorrhage, or hydrocephalus. There was no correlation between neuroimaging findings and an identifiable pathogen (P = 0.8). Abnormal magnetic resonance imaging findings are more common than abnormal computed tomography findings in pediatric encephalitis. Increasing complexity of magnetic resonance imaging findings correlated with disease severity as evidenced by longer length of stay, but were not specific for an identifiable pathogen using a standardized diagnostic encephalitis panel. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Functional neuroimaging of emotional learning and autonomic reactions.

    PubMed

    Peper, Martin; Herpers, Martin; Spreer, Joachim; Hennig, Jürgen; Zentner, Josef

    2006-06-01

    This article provides a selective overview of the functional neuroimaging literature with an emphasis on emotional activation processes. Emotions are fast and flexible response systems that provide basic tendencies for adaptive action. From the range of involved component functions, we first discuss selected automatic mechanisms that control basic adaptational changes. Second, we illustrate how neuroimaging work has contributed to the mapping of the network components associated with basic emotion families (fear, anger, disgust, happiness), and secondary dimensional concepts that organise the meaning space for subjective experience and verbal labels (emotional valence, activity/intensity, approach/withdrawal, etc.). Third, results and methodological difficulties are discussed in view of own neuroimaging experiments that investigated the component functions involved in emotional learning. The amygdala, prefrontal cortex, and striatum form a network of reciprocal connections that show topographically distinct patterns of activity as a correlate of up and down regulation processes during an emotional episode. Emotional modulations of other brain systems have attracted recent research interests. Emotional neuroimaging calls for more representative designs that highlight the modulatory influences of regulation strategies and socio-cultural factors responsible for inhibitory control and extinction. We conclude by emphasising the relevance of the temporal process dynamics of emotional activations that may provide improved prediction of individual differences in emotionality.

  11. Neuroimaging in psychiatric pharmacogenetics research: the promise and pitfalls.

    PubMed

    Falcone, Mary; Smith, Ryan M; Chenoweth, Meghan J; Bhattacharjee, Abesh Kumar; Kelsoe, John R; Tyndale, Rachel F; Lerman, Caryn

    2013-11-01

    The integration of research on neuroimaging and pharmacogenetics holds promise for improving treatment for neuropsychiatric conditions. Neuroimaging may provide a more sensitive early measure of treatment response in genetically defined patient groups, and could facilitate development of novel therapies based on an improved understanding of pathogenic mechanisms underlying pharmacogenetic associations. This review summarizes progress in efforts to incorporate neuroimaging into genetics and treatment research on major psychiatric disorders, such as schizophrenia, major depressive disorder, bipolar disorder, attention-deficit/hyperactivity disorder, and addiction. Methodological challenges include: performing genetic analyses in small study populations used in imaging studies; inclusion of patients with psychiatric comorbidities; and the extensive variability across studies in neuroimaging protocols, neurobehavioral task probes, and analytic strategies. Moreover, few studies use pharmacogenetic designs that permit testing of genotype × drug effects. As a result of these limitations, few findings have been fully replicated. Future studies that pre-screen participants for genetic variants selected a priori based on drug metabolism and targets have the greatest potential to advance the science and practice of psychiatric treatment.

  12. Neuroimaging of the Periaqueductal Gray: State of the Field

    PubMed Central

    Linnman, Clas; Moulton, Eric A.; Barmettler, Gabi; Becerra, Lino; Borsook, David

    2011-01-01

    This review and meta-analysis aims at summarizing and integrating the human neuroimaging studies that report periaqueductal gray (PAG) involvement; 250 original manuscripts on human neuroimaging of the PAG were identified. A narrative review and meta-analysis using activation likelihood estimates is included. Behaviors covered include pain and pain modulation, anxiety, bladder and bowel function and autonomic regulation. Methods include structural and functional magnetic resonance imaging, functional connectivity measures, diffusion weighted imaging and positron emission tomography. Human neuroimaging studies in healthy and clinical populations largely confirm the animal literature indicating that the PAG is involved in homeostatic regulation of salient functions such as pain, anxiety and autonomic function. Methodological concerns in the current literature, including resolution constraints, imaging artifacts and imprecise neuroanatomical labeling are discussed, and future directions are proposed. A general conclusion is that PAG neuroimaging is a field with enormous potential to translate animal data onto human behaviors, but with some growing pains that can and need to be addressed in order to add to our understanding of the neurobiology of this key region. PMID:22197740

  13. Neuroimaging in human MDMA (Ecstasy) users.

    PubMed

    Cowan, Ronald L; Roberts, Deanne M; Joers, James M

    2008-10-01

    MDMA (3,4 methylenedioxymethamphetamine) has been used by millions of people worldwide as a recreational drug. The terms "MDMA" and "Ecstasy" are often used synonymously, but it is important to note that the purity of Ecstasy sold as MDMA is not certain. MDMA use is of public health concern, not so much because MDMA produces a common or severe dependence syndrome, but rather because rodent and nonhuman primate studies have indicated that MDMA (when administered at certain dosages and intervals) can cause long-lasting reductions in markers of brain serotonin (5-HT) that appear specific to fine-diameter axons arising largely from the dorsal raphe nucleus (DR). Given the popularity of MDMA, the potential for the drug to produce long-lasting or permanent 5-HT axon damage or loss, and the widespread role of 5-HT function in the brain, there is a great need for a better understanding of brain function in human users of this drug. To this end, neuropsychological, neuroendocrine, and neuroimaging studies have all suggested that human MDMA users may have long-lasting changes in brain function consistent with 5-HT toxicity. Data from animal models leads to testable hypotheses regarding MDMA's effects on the human brain. Because neuropsychological and neuroimaging findings have focused on the neocortex, a cortical model is developed to provide a context for designing and interpreting neuroimaging studies in MDMA users. Aspects of the model are supported by the available neuroimaging data, but there are controversial findings in some areas and most findings have not been replicated across different laboratories and using different modalities. This paper reviews existing findings in the context of a cortical model and suggests directions for future research.

  14. Functional neuroimaging in epileptic encephalopathies.

    PubMed

    Siniatchkin, Michael; Capovilla, Giuseppe

    2013-11-01

    Epileptic encephalopathies (EEs) represent a group of severe epileptic disorders associated with cognitive and behavioral disturbances. The mechanisms of cognitive disability in EEs remain unclear. This review summarized neuroimaging studies that have tried to describe specific fingerprints of brain activation in EE. Although the epileptic activity can be generated individually in different brain regions, it seems likely that the activity propagates in a syndrome-specific way. In some EEs, the epileptiform discharges were associated with an interruption of activity in the default mode network. In another EE, other mechanisms seem to underlie cognitive disability associated with epileptic activity, for example, abnormal connectivity pattern or interfering activity in the thalamocortical network. Further neuroimaging studies are needed to investigate the short-term and long-term impact of epileptic activity on cognition and development. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  15. Multimodal Neuroimaging: Basic Concepts and Classification of Neuropsychiatric Diseases.

    PubMed

    Tulay, Emine Elif; Metin, Barış; Tarhan, Nevzat; Arıkan, Mehmet Kemal

    2018-06-01

    Neuroimaging techniques are widely used in neuroscience to visualize neural activity, to improve our understanding of brain mechanisms, and to identify biomarkers-especially for psychiatric diseases; however, each neuroimaging technique has several limitations. These limitations led to the development of multimodal neuroimaging (MN), which combines data obtained from multiple neuroimaging techniques, such as electroencephalography, functional magnetic resonance imaging, and yields more detailed information about brain dynamics. There are several types of MN, including visual inspection, data integration, and data fusion. This literature review aimed to provide a brief summary and basic information about MN techniques (data fusion approaches in particular) and classification approaches. Data fusion approaches are generally categorized as asymmetric and symmetric. The present review focused exclusively on studies based on symmetric data fusion methods (data-driven methods), such as independent component analysis and principal component analysis. Machine learning techniques have recently been introduced for use in identifying diseases and biomarkers of disease. The machine learning technique most widely used by neuroscientists is classification-especially support vector machine classification. Several studies differentiated patients with psychiatric diseases and healthy controls with using combined datasets. The common conclusion among these studies is that the prediction of diseases increases when combining data via MN techniques; however, there remain a few challenges associated with MN, such as sample size. Perhaps in the future N-way fusion can be used to combine multiple neuroimaging techniques or nonimaging predictors (eg, cognitive ability) to overcome the limitations of MN.

  16. Feasibility of functional neuroimaging to understand adolescent women's sexual decision making.

    PubMed

    Hensel, Devon J; Hummer, Tom A; Acrurio, Lindsay R; James, Thomas W; Fortenberry, J Dennis

    2015-04-01

    For young women, new sexual experiences normatively increase after puberty and coincide with extensive changes to brain regions governing self-regulation of risk behavior. These neurodevelopmental changes could leave some young women vulnerable for negative sexual outcomes, including sexually transmitted infection and unintended pregnancy. We evaluated the feasibility of using functional neuroimaging to understand the sexual decision making of adolescent women. Adolescent women (N = 14; 14-15 years) completed enrollment interviews, a neuroimaging task gauging neural activation to appetitive stimuli, and 30 days of prospective diaries following the scan characterizing daily affect and sexual behaviors. Descriptive and inferential statistics assessed the association between imaging and behavioral data. Young women were highly compliant with neuroimaging and diary protocol. Neural activity in a cognitive-affective network, including prefrontal and anterior cingulate regions, was significantly greater during low-risk decisions. Compared with other decisions, high-risk sexual decisions elicited greater activity in the anterior cingulate, and low-risk sexual decision elicited greater activity in regions of the visual cortex. Young women's sexual decision ratings were linked to their sexual history characteristics and daily self-reports of sexual emotions and behaviors. It is feasible to recruit and retain a cohort of female participants to perform a functional magnetic resonance imaging task focused on making decisions about sex, on the basis of varying levels of hypothetical sexual risk, and to complete longitudinal prospective diaries following this task. Preliminary evidence suggests that risk level differentially impacts brain activity related to sexual decision making in these women, which may be related to past and future sexual behaviors. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  17. The Brain Network for Deductive Reasoning: A Quantitative Meta-analysis of 28 Neuroimaging Studies

    PubMed Central

    Prado, Jérôme; Chadha, Angad; Booth, James R.

    2011-01-01

    Over the course of the past decade, contradictory claims have been made regarding the neural bases of deductive reasoning. Researchers have been puzzled by apparent inconsistencies in the literature. Some have even questioned the effectiveness of the methodology used to study the neural bases of deductive reasoning. However, the idea that neuroimaging findings are inconsistent is not based on any quantitative evidence. Here, we report the results of a quantitative meta-analysis of 28 neuroimaging studies of deductive reasoning published between 1997 and 2010, combining 382 participants. Consistent areas of activations across studies were identified using the multilevel kernel density analysis method. We found that results from neuroimaging studies are more consistent than what has been previously assumed. Overall, studies consistently report activations in specific regions of a left fronto-parietal system, as well as in the left Basal Ganglia. This brain system can be decomposed into three subsystems that are specific to particular types of deductive arguments: relational, categorical, and propositional. These dissociations explain inconstancies in the literature. However, they are incompatible with the notion that deductive reasoning is supported by a single cognitive system relying either on visuospatial or rule-based mechanisms. Our findings provide critical insight into the cognitive organization of deductive reasoning and need to be accounted for by cognitive theories. PMID:21568632

  18. Neuroimaging with functional near infrared spectroscopy: From formation to interpretation

    NASA Astrophysics Data System (ADS)

    Herrera-Vega, Javier; Treviño-Palacios, Carlos G.; Orihuela-Espina, Felipe

    2017-09-01

    Functional Near Infrared Spectroscopy (fNIRS) is gaining momentum as a functional neuroimaging modality to investigate the cerebral hemodynamics subsequent to neural metabolism. As other neuroimaging modalities, it is neuroscience's tool to understand brain systems functions at behaviour and cognitive levels. To extract useful knowledge from functional neuroimages it is critical to understand the series of transformations applied during the process of the information retrieval and how they bound the interpretation. This process starts with the irradiation of the head tissues with infrared light to obtain the raw neuroimage and proceeds with computational and statistical analysis revealing hidden associations between pixels intensities and neural activity encoded to end up with the explanation of some particular aspect regarding brain function.To comprehend the overall process involved in fNIRS there is extensive literature addressing each individual step separately. This paper overviews the complete transformation sequence through image formation, reconstruction and analysis to provide an insight of the final functional interpretation.

  19. Neuroimaging: A Window to the Neurological Foundations of Learning and Behavior in Children.

    ERIC Educational Resources Information Center

    Lyon, G. Reid, Ed.; Rumsey, Judith M., Ed.

    This book presents 11 papers on the use of neuroimaging technology in brain-related disorders. The text contains full-color neuroimaging scans and provides both theoretical and methodological explanations of the various neuroimaging techniques and their application to developmental disorders in children. The papers are grouped into three sections,…

  20. Seeing responsibility: can neuroimaging teach us anything about moral and legal responsibility?

    PubMed

    Wasserman, David; Johnston, Josephine

    2014-01-01

    As imaging technologies help us understand the structure and function of the brain, providing insight into human capabilities as basic as vision and as complex as memory, and human conditions as impairing as depression and as fraught as psychopathy, some have asked whether they can also help us understand human agency. Specifically, could neuroimaging lead us to reassess the socially significant practice of assigning and taking responsibility? While responsibility itself is not a psychological process open to investigation through neuroimaging, decision-making is. Over the past decade, different researchers and scholars have sought to use neuroimaging (or the results of neuroimaging studies) to investigate what is going on in the brain when we make decisions. The results of this research raise the question whether neuroscience-especially now that it includes neuroimaging-can and should alter our understandings of responsibility and our related practice of holding people responsible. It is this question that we investigate here. © 2014 by The Hastings Center.

  1. The Shepherd's Crook Sign: A New Neuroimaging Pareidolia in Joubert Syndrome.

    PubMed

    Manley, Andrew T; Maertens, Paul M

    2015-01-01

    By pareidolically recognizing specific patterns indicative of particular diseases, neuroimagers reinforce their mnemonic strategies and improve their neuroimaging diagnostic skills. Joubert Syndrome (JS) is an autosomal recessive disorder characterized clinically by mental retardation, episodes of abnormal deep and rapid breathing, abnormal eye movements, and ataxia. Many neuroimaging signs characteristic of JS have been reported. In retrospective case study, two consanguineous neonates diagnosed with JS were evaluated with brain magnetic resonance imaging (MRI), computed tomography (CT), and neurosonography. Both cranial ultrasound and MRI of the brain showed the characteristic molar tooth sign. There was a shepherd's crook in the sagittal views of the posterior fossa where the shaft of the crook is made by the brainstem and the pons. The arc of the crook is made by the abnormal superior cerebellar peduncle and cerebellar hemisphere. By ultrasound, the shepherd's crook sign was seen through the posterior fontanelle only. CT imaging also showed the shepherd's crook sign. Neuroimaging diagnosis of JS, which already involves the pareidolical recognition of specific patterns indicative of the disease, can be improved by recognition of the shepherd's crook sign on MRI, CT, and cranial ultrasound. Copyright © 2014 by the American Society of Neuroimaging.

  2. Multimodal Neuroimaging in Schizophrenia: Description and Dissemination.

    PubMed

    Aine, C J; Bockholt, H J; Bustillo, J R; Cañive, J M; Caprihan, A; Gasparovic, C; Hanlon, F M; Houck, J M; Jung, R E; Lauriello, J; Liu, J; Mayer, A R; Perrone-Bizzozero, N I; Posse, S; Stephen, J M; Turner, J A; Clark, V P; Calhoun, Vince D

    2017-10-01

    In this paper we describe an open-access collection of multimodal neuroimaging data in schizophrenia for release to the community. Data were acquired from approximately 100 patients with schizophrenia and 100 age-matched controls during rest as well as several task activation paradigms targeting a hierarchy of cognitive constructs. Neuroimaging data include structural MRI, functional MRI, diffusion MRI, MR spectroscopic imaging, and magnetoencephalography. For three of the hypothesis-driven projects, task activation paradigms were acquired on subsets of ~200 volunteers which examined a range of sensory and cognitive processes (e.g., auditory sensory gating, auditory/visual multisensory integration, visual transverse patterning). Neuropsychological data were also acquired and genetic material via saliva samples were collected from most of the participants and have been typed for both genome-wide polymorphism data as well as genome-wide methylation data. Some results are also presented from the individual studies as well as from our data-driven multimodal analyses (e.g., multimodal examinations of network structure and network dynamics and multitask fMRI data analysis across projects). All data will be released through the Mind Research Network's collaborative informatics and neuroimaging suite (COINS).

  3. Responsible Reporting: Neuroimaging News in the Age of Responsible Research and Innovation.

    PubMed

    de Jong, Irja Marije; Kupper, Frank; Arentshorst, Marlous; Broerse, Jacqueline

    2016-08-01

    Besides offering opportunities in both clinical and non-clinical domains, the application of novel neuroimaging technologies raises pressing dilemmas. 'Responsible Research and Innovation' (RRI) aims to stimulate research and innovation activities that take ethical and social considerations into account from the outset. We previously identified that Dutch neuroscientists interpret "responsible innovation" as educating the public on neuroimaging technologies via the popular press. Their aim is to mitigate (neuro)hype, an aim shared with the wider emerging RRI community. Here, we present results of a media-analysis undertaken to establish whether the body of articles in the Dutch popular press presents balanced conversations on neuroimaging research to the public. We found that reporting was mostly positive and framed in terms of (healthcare) progress. There was rarely a balance between technology opportunities and limitations, and even fewer articles addressed societal or ethical aspects of neuroimaging research. Furthermore, neuroimaging metaphors seem to favour oversimplification. Current reporting is therefore more likely to enable hype than to mitigate it. How can neuroscientists, given their self-ascribed social responsibility, address this conundrum? We make a case for a collective and shared responsibility among neuroscientists, journalists and other stakeholders, including funders, committed to responsible reporting on neuroimaging research.

  4. Similarities and Differences in Neuroimaging.

    PubMed

    Sun, Yan-Kun; Sun, Yan; Lin, Xiao; Lu, Lin; Shi, Jie

    2017-01-01

    Addiction is a chronically relapsing disease characterized by drug intoxication, craving, bingeing, and withdrawal with loss of control. An increasing number of studies have indicated that non-substance addiction, like internet addiction and pathological gambling, share clinical, phenomenological, and biological features with substance addiction. With the development of imaging technology in the past three decades, neuroimaging studies have provided information on the neurobiological effects, and revealed neurochemical and functional changes in the brains of both drug-addicted and non-substance addicted subjects. Imaging techniques play a more critical role in understanding the neuronal processes of addiction and will lead the direction in future research for medication development of addiction treatment, especially for non-substance addiction, which shares an increasing percentage of addiction disorder. This article will review the similarities and differences between substance and non-substance addiction based on neuroimaging studies that may provide clues for future study on these two main kinds of addiction, especially the growing non-substance addiction.

  5. A cognitive neurobiological account of deception: evidence from functional neuroimaging.

    PubMed Central

    Spence, Sean A; Hunter, Mike D; Farrow, Tom F D; Green, Russell D; Leung, David H; Hughes, Catherine J; Ganesan, Venkatasubramanian

    2004-01-01

    An organism may use misinformation, knowingly (through deception) or unknowingly (as in the case of camouflage), to gain advantage in a competitive environment. From an evolutionary perspective, greater tactical deception occurs among primates closer to humans, with larger neocortices. In humans, the onset of deceptive behaviours in childhood exhibits a developmental trajectory, which may be regarded as 'normal' in the majority and deficient among a minority with certain neurodevelopmental disorders (e.g. autism). In the human adult, deception and lying exhibit features consistent with their use of 'higher' or 'executive' brain systems. Accurate detection of deception in humans may be of particular importance in forensic practice, while an understanding of its cognitive neurobiology may have implications for models of 'theory of mind' and social cognition, and societal notions of responsibility, guilt and mitigation. In recent years, functional neuroimaging techniques (especially functional magnetic resonance imaging) have been used to study deception. Though few in number, and using very different experimental protocols, studies published in the peer-reviewed literature exhibit certain consistencies. Attempted deception is associated with activation of executive brain regions (particularly prefrontal and anterior cingulate cortices), while truthful responding has not been shown to be associated with any areas of increased activation (relative to deception). Hence, truthful responding may comprise a relative 'baseline' in human cognition and communication. The subject who lies may necessarily engage 'higher' brain centres, consistent with a purpose or intention (to deceive). While the principle of executive control during deception remains plausible, its precise anatomy awaits elucidation. PMID:15590616

  6. Running Neuroimaging Applications on Amazon Web Services: How, When, and at What Cost?

    PubMed

    Madhyastha, Tara M; Koh, Natalie; Day, Trevor K M; Hernández-Fernández, Moises; Kelley, Austin; Peterson, Daniel J; Rajan, Sabreena; Woelfer, Karl A; Wolf, Jonathan; Grabowski, Thomas J

    2017-01-01

    The contribution of this paper is to identify and describe current best practices for using Amazon Web Services (AWS) to execute neuroimaging workflows "in the cloud." Neuroimaging offers a vast set of techniques by which to interrogate the structure and function of the living brain. However, many of the scientists for whom neuroimaging is an extremely important tool have limited training in parallel computation. At the same time, the field is experiencing a surge in computational demands, driven by a combination of data-sharing efforts, improvements in scanner technology that allow acquisition of images with higher image resolution, and by the desire to use statistical techniques that stress processing requirements. Most neuroimaging workflows can be executed as independent parallel jobs and are therefore excellent candidates for running on AWS, but the overhead of learning to do so and determining whether it is worth the cost can be prohibitive. In this paper we describe how to identify neuroimaging workloads that are appropriate for running on AWS, how to benchmark execution time, and how to estimate cost of running on AWS. By benchmarking common neuroimaging applications, we show that cloud computing can be a viable alternative to on-premises hardware. We present guidelines that neuroimaging labs can use to provide a cluster-on-demand type of service that should be familiar to users, and scripts to estimate cost and create such a cluster.

  7. Classical hallucinogens and neuroimaging: A systematic review of human studies: Hallucinogens and neuroimaging.

    PubMed

    Dos Santos, Rafael G; Osório, Flávia L; Crippa, José Alexandre S; Hallak, Jaime E C

    2016-12-01

    Serotonergic hallucinogens produce alterations of perceptions, mood, and cognition, and have anxiolytic, antidepressant, and antiaddictive properties. These drugs act as agonists of frontocortical 5-HT 2A receptors, but the neural basis of their effects are not well understood. Thus, we conducted a systematic review of neuroimaging studies analyzing the effects of serotonergic hallucinogens in man. Studies published in the PubMed, Lilacs, and SciELO databases until 12 April 2016 were included using the following keywords: "ayahuasca", "DMT", "psilocybin", "LSD", "mescaline" crossed one by one with the terms "mri", "fmri", "pet", "spect", "imaging" and "neuroimaging". Of 279 studies identified, 25 were included. Acute effects included excitation of frontolateral/frontomedial cortex, medial temporal lobe, and occipital cortex, and inhibition of the default mode network. Long-term use was associated with thinning of the posterior cingulate cortex, thickening of the anterior cingulate cortex, and decreased neocortical 5-HT 2A receptor binding. Despite the high methodological heterogeneity and the small sample sizes, the results suggest that hallucinogens increase introspection and positive mood by modulating brain activity in the fronto-temporo-parieto-occipital cortex. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Integration of a neuroimaging processing pipeline into a pan-canadian computing grid

    NASA Astrophysics Data System (ADS)

    Lavoie-Courchesne, S.; Rioux, P.; Chouinard-Decorte, F.; Sherif, T.; Rousseau, M.-E.; Das, S.; Adalat, R.; Doyon, J.; Craddock, C.; Margulies, D.; Chu, C.; Lyttelton, O.; Evans, A. C.; Bellec, P.

    2012-02-01

    The ethos of the neuroimaging field is quickly moving towards the open sharing of resources, including both imaging databases and processing tools. As a neuroimaging database represents a large volume of datasets and as neuroimaging processing pipelines are composed of heterogeneous, computationally intensive tools, such open sharing raises specific computational challenges. This motivates the design of novel dedicated computing infrastructures. This paper describes an interface between PSOM, a code-oriented pipeline development framework, and CBRAIN, a web-oriented platform for grid computing. This interface was used to integrate a PSOM-compliant pipeline for preprocessing of structural and functional magnetic resonance imaging into CBRAIN. We further tested the capacity of our infrastructure to handle a real large-scale project. A neuroimaging database including close to 1000 subjects was preprocessed using our interface and publicly released to help the participants of the ADHD-200 international competition. This successful experiment demonstrated that our integrated grid-computing platform is a powerful solution for high-throughput pipeline analysis in the field of neuroimaging.

  9. The 100 most-cited articles in neuroimaging: A bibliometric analysis.

    PubMed

    Kim, Hye Jeong; Yoon, Dae Young; Kim, Eun Soo; Lee, Kwanseop; Bae, Jong Seok; Lee, Ju-Hun

    2016-10-01

    The purpose of our study was to identify and characterize the 100 most-cited articles in neuroimaging. Based on the database of Journal Citation Reports, we selected 669 journals that were considered as potential outlets for neuroimaging articles. The Web of Science search tools were used to identify the 100 most-cited articles relevant to neuroimaging within the selected journals. The following information was recorded for each article: publication year, journal, category and impact factor of journal, number of citations, number of annual citations, authorship, department, institution, country, article type, imaging technique used, and topic. The 100 most-cited articles in neuroimaging were published between 1980 and 2012, with 1995-2004 producing 69 articles. Citations ranged from 4384 to 673 and annual citations ranged from 313.1 to 24.9. The majority of articles were published in radiology/imaging journals (n=75), originated in the United States (n=58), were original articles (n=63), used MRI as imaging modality (n=85), and dealt with imaging technique (n=45). The Oxford Centre for Functional Magnetic Resonance Imaging of the Brain at John Radcliffe Hospital (n=10) was the leading institutions and Karl J. Friston (n=11) was the most prolific author. Our study presents a detailed list and an analysis of the 100 most-cited articles in the field of neuroimaging, which provides an insight into historical developments and allows for recognition of the important advances in this field. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Right brain, left brain in depressive disorders: Clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings.

    PubMed

    Bruder, Gerard E; Stewart, Jonathan W; McGrath, Patrick J

    2017-07-01

    The right and left side of the brain are asymmetric in anatomy and function. We review electrophysiological (EEG and event-related potential), behavioral (dichotic and visual perceptual asymmetry), and neuroimaging (PET, MRI, NIRS) evidence of right-left asymmetry in depressive disorders. Recent electrophysiological and fMRI studies of emotional processing have provided new evidence of altered laterality in depressive disorders. EEG alpha asymmetry and neuroimaging findings at rest and during cognitive or emotional tasks are consistent with reduced left prefrontal activity in depressed patients, which may impair downregulation of amygdala response to negative emotional information. Dichotic listening and visual hemifield findings for non-verbal or emotional processing have revealed abnormal perceptual asymmetry in depressive disorders, and electrophysiological findings have shown reduced right-lateralized responsivity to emotional stimuli in occipitotemporal or parietotemporal cortex. We discuss models of neural networks underlying these alterations. Of clinical relevance, individual differences among depressed patients on measures of right-left brain function are related to diagnostic subtype of depression, comorbidity with anxiety disorders, and clinical response to antidepressants or cognitive behavioral therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python.

    PubMed

    Gorgolewski, Krzysztof; Burns, Christopher D; Madison, Cindee; Clark, Dav; Halchenko, Yaroslav O; Waskom, Michael L; Ghosh, Satrajit S

    2011-01-01

    Current neuroimaging software offer users an incredible opportunity to analyze their data in different ways, with different underlying assumptions. Several sophisticated software packages (e.g., AFNI, BrainVoyager, FSL, FreeSurfer, Nipy, R, SPM) are used to process and analyze large and often diverse (highly multi-dimensional) data. However, this heterogeneous collection of specialized applications creates several issues that hinder replicable, efficient, and optimal use of neuroimaging analysis approaches: (1) No uniform access to neuroimaging analysis software and usage information; (2) No framework for comparative algorithm development and dissemination; (3) Personnel turnover in laboratories often limits methodological continuity and training new personnel takes time; (4) Neuroimaging software packages do not address computational efficiency; and (5) Methods sections in journal articles are inadequate for reproducing results. To address these issues, we present Nipype (Neuroimaging in Python: Pipelines and Interfaces; http://nipy.org/nipype), an open-source, community-developed, software package, and scriptable library. Nipype solves the issues by providing Interfaces to existing neuroimaging software with uniform usage semantics and by facilitating interaction between these packages using Workflows. Nipype provides an environment that encourages interactive exploration of algorithms, eases the design of Workflows within and between packages, allows rapid comparative development of algorithms and reduces the learning curve necessary to use different packages. Nipype supports both local and remote execution on multi-core machines and clusters, without additional scripting. Nipype is Berkeley Software Distribution licensed, allowing anyone unrestricted usage. An open, community-driven development philosophy allows the software to quickly adapt and address the varied needs of the evolving neuroimaging community, especially in the context of increasing demand for

  12. Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python

    PubMed Central

    Gorgolewski, Krzysztof; Burns, Christopher D.; Madison, Cindee; Clark, Dav; Halchenko, Yaroslav O.; Waskom, Michael L.; Ghosh, Satrajit S.

    2011-01-01

    Current neuroimaging software offer users an incredible opportunity to analyze their data in different ways, with different underlying assumptions. Several sophisticated software packages (e.g., AFNI, BrainVoyager, FSL, FreeSurfer, Nipy, R, SPM) are used to process and analyze large and often diverse (highly multi-dimensional) data. However, this heterogeneous collection of specialized applications creates several issues that hinder replicable, efficient, and optimal use of neuroimaging analysis approaches: (1) No uniform access to neuroimaging analysis software and usage information; (2) No framework for comparative algorithm development and dissemination; (3) Personnel turnover in laboratories often limits methodological continuity and training new personnel takes time; (4) Neuroimaging software packages do not address computational efficiency; and (5) Methods sections in journal articles are inadequate for reproducing results. To address these issues, we present Nipype (Neuroimaging in Python: Pipelines and Interfaces; http://nipy.org/nipype), an open-source, community-developed, software package, and scriptable library. Nipype solves the issues by providing Interfaces to existing neuroimaging software with uniform usage semantics and by facilitating interaction between these packages using Workflows. Nipype provides an environment that encourages interactive exploration of algorithms, eases the design of Workflows within and between packages, allows rapid comparative development of algorithms and reduces the learning curve necessary to use different packages. Nipype supports both local and remote execution on multi-core machines and clusters, without additional scripting. Nipype is Berkeley Software Distribution licensed, allowing anyone unrestricted usage. An open, community-driven development philosophy allows the software to quickly adapt and address the varied needs of the evolving neuroimaging community, especially in the context of increasing demand for

  13. Sleep Deprivation Promotes Habitual Control over Goal-Directed Control: Behavioral and Neuroimaging Evidence.

    PubMed

    Chen, Jie; Liang, Jie; Lin, Xiao; Zhang, Yang; Zhang, Yan; Lu, Lin; Shi, Jie

    2017-12-06

    Sleep is one of the most fundamental processes of life, playing an important role in the regulation of brain function. The long-term lack of sleep can cause memory impairments, declines in learning ability, and executive dysfunction. In the present study, we evaluated the effects of sleep deprivation on instrumental learning behavior, particularly goal-directed and habitual actions in humans, and investigated the underlying neural mechanisms. Healthy college students of either gender were enrolled and randomly divided into sleep deprivation group and sleep control group. fMRI data were collected. We found that one night of sleep deprivation led to greater responsiveness to stimuli that were associated with devalued outcomes in the slips-of-action test, indicating a deficit in the formation of goal-directed control and an overreliance on habits. Furthermore, sleep deprivation had no effect on the expression of acquired goal-directed action. The level of goal-directed action after sleep deprivation was positively correlated with baseline working memory capacity. The neuroimaging data indicated that goal-directed learning mainly recruited the ventromedial PFC (vmPFC), the activation of which was less pronounced during goal-directed learning after sleep deprivation. Activation of the vmPFC during goal-directed learning during training was positively correlated with the level of goal-directed action performance. The present study suggests that people rely predominantly on habits at the expense of goal-directed control after sleep deprivation, and this process involves the vmPFC. These results contribute to a better understanding of the effects of sleep loss on decision-making. SIGNIFICANCE STATEMENT Understanding the cognitive consequences of sleep deprivation has become extremely important over the past half century, given the continued decline in sleep duration in industrialized societies. Our results provide novel evidence that goal-directed action may be

  14. Culture-sensitive neural substrates of human cognition: a transcultural neuroimaging approach.

    PubMed

    Han, Shihui; Northoff, Georg

    2008-08-01

    Our brains and minds are shaped by our experiences, which mainly occur in the context of the culture in which we develop and live. Although psychologists have provided abundant evidence for diversity of human cognition and behaviour across cultures, the question of whether the neural correlates of human cognition are also culture-dependent is often not considered by neuroscientists. However, recent transcultural neuroimaging studies have demonstrated that one's cultural background can influence the neural activity that underlies both high- and low-level cognitive functions. The findings provide a novel approach by which to distinguish culture-sensitive from culture-invariant neural mechanisms of human cognition.

  15. Running Neuroimaging Applications on Amazon Web Services: How, When, and at What Cost?

    PubMed Central

    Madhyastha, Tara M.; Koh, Natalie; Day, Trevor K. M.; Hernández-Fernández, Moises; Kelley, Austin; Peterson, Daniel J.; Rajan, Sabreena; Woelfer, Karl A.; Wolf, Jonathan; Grabowski, Thomas J.

    2017-01-01

    The contribution of this paper is to identify and describe current best practices for using Amazon Web Services (AWS) to execute neuroimaging workflows “in the cloud.” Neuroimaging offers a vast set of techniques by which to interrogate the structure and function of the living brain. However, many of the scientists for whom neuroimaging is an extremely important tool have limited training in parallel computation. At the same time, the field is experiencing a surge in computational demands, driven by a combination of data-sharing efforts, improvements in scanner technology that allow acquisition of images with higher image resolution, and by the desire to use statistical techniques that stress processing requirements. Most neuroimaging workflows can be executed as independent parallel jobs and are therefore excellent candidates for running on AWS, but the overhead of learning to do so and determining whether it is worth the cost can be prohibitive. In this paper we describe how to identify neuroimaging workloads that are appropriate for running on AWS, how to benchmark execution time, and how to estimate cost of running on AWS. By benchmarking common neuroimaging applications, we show that cloud computing can be a viable alternative to on-premises hardware. We present guidelines that neuroimaging labs can use to provide a cluster-on-demand type of service that should be familiar to users, and scripts to estimate cost and create such a cluster. PMID:29163119

  16. What do people with dementia and their carers want to know about neuroimaging for dementia?

    PubMed

    Featherstone, Hannah; Butler, Marie-Louise; Ciblis, Aurelia; Bokde, Arun L; Mullins, Paul G; McNulty, Jonathan P

    2017-05-01

    Neuroimaging forms an important part of dementia diagnosis. Provision of information on neuroimaging to people with dementia and their carers may aid understanding of the pathological, physiological and psychosocial changes of the disease, and increase understanding of symptoms. This qualitative study aimed to investigate participants' knowledge of the dementia diagnosis pathway, their understanding of neuroimaging and its use in diagnosis, and to determine content requirements for a website providing neuroimaging information. Structured interviews and a focus group were conducted with carers and people with dementia. The findings demonstrate an unmet need for information on neuroimaging both before and after the examination. Carers were keen to know about neuroimaging at a practical and technical level to help avoid diagnosis denial. People with dementia requested greater information, but with a caveat to avoid overwhelming detail, and were less likely to favour an Internet resource.

  17. Neuroimaging training among neuropsychologists: A survey of the state of current training and recommendations for trainees

    PubMed Central

    Benitez, Andreana; Hassenstab, Jason; Bangen, Katherine J.

    2013-01-01

    Neuroimaging has gained widespread use in neuropsychological research and practice. However, there are neither established guidelines on how neuropsychologists might become competent researchers or consumers of neuroimaging data, nor any published studies describing the state of neuroimaging training among neuropsychologists. We report the results of two online surveys, one of 13 expert neuropsychologist-neuroimagers, whose responses informed the formulation of a second, larger survey to neuropsychologists-at-large that were a random selection of a third of the members of the International Neuropsychological Society and American Academy of Clinical Neuropsychology. 237 doctoral-level neuropsychologists, or 15.3% of potential participants, provided complete responses. Most respondents (69.2%) received training in neuroimaging, mostly at the post-doctoral level, largely through independent study, clinical conferences, instruction by clinical supervisors, and individualized mentoring, on topics such as neuroimaging modalities in neurology, neuroanatomy, and the appropriate information to glean from neuroradiology reports. Of the remaining respondents who did not receive training in neuroimaging, 64.4% indicated that such training would be very or extremely beneficial to one’s career as a neuropsychologist. Both neuropsychologist-neuroimagers and neuropsychologists-at-large provided specific recommendations for training. Findings from this initial effort will guide trainees who seek to develop competence in neuroimaging, and inform future formulations of neuropsychological training. PMID:24215451

  18. The Complexity of Clinical Huntington's Disease: Developments in Molecular Genetics, Neuropathology and Neuroimaging Biomarkers.

    PubMed

    Tippett, Lynette J; Waldvogel, Henry J; Snell, Russell G; Vonsattel, Jean-Paul; Young, Anne B; Faull, Richard L M

    2017-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterised by extensive neuronal loss in the striatum and cerebral cortex, and a triad of clinical symptoms affecting motor, cognitive/behavioural and mood functioning. The mutation causing HD is an expansion of a CAG tract in exon 1 of the HTT gene. This chapter provides a multifaceted overview of the clinical complexity of HD. We explore recent directions in molecular genetics including the identification of loci that are genetic modifiers of HD that could potentially reveal therapeutic targets beyond the HTT gene transcript and protein. The variability of clinical symptomatology in HD is considered alongside recent findings of variability in cellular and neurochemical changes in the striatum and cerebral cortex in human brain. We review evidence from structural neuroimaging methods of progressive changes of striatum, cerebral cortex and white matter in pre-symptomatic and symptomatic HD, with a particular focus on the potential identification of neuroimaging biomarkers that could be used to test promising disease-specific and modifying treatments. Finally we provide an overview of completed clinical trials in HD and future therapeutic developments.

  19. Uncovering the etiology of conversion disorder: insights from functional neuroimaging

    PubMed Central

    Ejareh dar, Maryam; Kanaan, Richard AA

    2016-01-01

    Conversion disorder (CD) is a syndrome of neurological symptoms arising without organic cause, arguably in response to emotional stress, but the exact neural substrates of these symptoms and the underlying mechanisms remain poorly understood with the hunt for a biological basis afoot for centuries. In the past 15 years, novel insights have been gained with the advent of functional neuroimaging studies in patients suffering from CDs in both motor and nonmotor domains. This review summarizes recent functional neuroimaging studies including functional magnetic resonance imaging (fMRI), single photon emission computerized tomography (SPECT), and positron emission tomography (PET) to see whether they bring us closer to understanding the etiology of CD. Convergent functional neuroimaging findings suggest alterations in brain circuits that could point to different mechanisms for manifesting functional neurological symptoms, in contrast with feigning or healthy controls. Abnormalities in emotion processing and in emotion-motor processing suggest a diathesis, while differential reactions to certain stressors implicate a specific response to trauma. No comprehensive theory emerges from these clues, and all results remain preliminary, but functional neuroimaging has at least given grounds for hope that a model for CD may soon be found. PMID:26834476

  20. Functional Neuroimaging in Psychopathy.

    PubMed

    Del Casale, Antonio; Kotzalidis, Georgios D; Rapinesi, Chiara; Di Pietro, Simone; Alessi, Maria Chiara; Di Cesare, Gianluigi; Criscuolo, Silvia; De Rossi, Pietro; Tatarelli, Roberto; Girardi, Paolo; Ferracuti, Stefano

    2015-01-01

    Psychopathy is associated with cognitive and affective deficits causing disruptive, harmful and selfish behaviour. These have considerable societal costs due to recurrent crime and property damage. A better understanding of the neurobiological bases of psychopathy could improve therapeutic interventions, reducing the related social costs. To analyse the major functional neural correlates of psychopathy, we reviewed functional neuroimaging studies conducted on persons with this condition. We searched the PubMed database for papers dealing with functional neuroimaging and psychopathy, with a specific focus on how neural functional changes may correlate with task performances and human behaviour. Psychopathy-related behavioural disorders consistently correlated with dysfunctions in brain areas of the orbitofrontal-limbic (emotional processing and somatic reaction to emotions; behavioural planning and responsibility taking), anterior cingulate-orbitofrontal (correct assignment of emotional valence to social stimuli; violent/aggressive behaviour and challenging attitude) and prefrontal-temporal-limbic (emotional stimuli processing/response) networks. Dysfunctional areas more consistently included the inferior frontal, orbitofrontal, dorsolateral prefrontal, ventromedial prefrontal, temporal (mainly the superior temporal sulcus) and cingulated cortices, the insula, amygdala, ventral striatum and other basal ganglia. Emotional processing and learning, and several social and affective decision-making functions are impaired in psychopathy, which correlates with specific changes in neural functions. © 2015 S. Karger AG, Basel.

  1. Neuroimaging Data Sharing on the Neuroinformatics Database Platform

    PubMed Central

    Book, Gregory A; Stevens, Michael; Assaf, Michal; Glahn, David; Pearlson, Godfrey D

    2015-01-01

    We describe the Neuroinformatics Database (NiDB), an open-source database platform for archiving, analysis, and sharing of neuroimaging data. Data from the multi-site projects Autism Brain Imaging Data Exchange (ABIDE), Bipolar-Schizophrenia Network on Intermediate Phenotypes parts one and two (B-SNIP1, B-SNIP2), and Monetary Incentive Delay task (MID) are available for download from the public instance of NiDB, with more projects sharing data as it becomes available. As demonstrated by making several large datasets available, NiDB is an extensible platform appropriately suited to archive and distribute shared neuroimaging data. PMID:25888923

  2. Linking neuroimaging signals to behavioral responses in single cases: Challenges and opportunities.

    PubMed

    Sander, Tilmann H; Zhou, Bin

    2016-09-01

    Despite rapid progress both in psychology and neuroimaging, there is still a convergence gap between the results of these two scientific disciplines. This is particularly unsatisfactory, as the variability between single subjects needs to be understood both for basic science and for patient diagnostics in, for example, the field of age-related cognitive changes. Active and passive behaviors are the observables in psychology and can be studied alone or in combination with the neuroimaging approach. Various physical signatures of brain activity are the observables in neuroimaging and can be measured concurrent with behaviors. Despite the intrinsic relationship between behaviors and the corresponding neuroimaging patterns and the obvious advantages in integrating behavioral and neuroimaging measurements, the results of combined studies can be difficult to interpret. Experiments are often optimized to yield either a novel behavioral or a novel physiological result, but rarely designed for a better match between the two. Since integrating the results is probably a key to future progress in clinical psychology and basic research, an attempt is made here to identify some difficulties and to provide some ideas for future research. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  3. Lin4Neuro: a customized Linux distribution ready for neuroimaging analysis

    PubMed Central

    2011-01-01

    Background A variety of neuroimaging software packages have been released from various laboratories worldwide, and many researchers use these packages in combination. Though most of these software packages are freely available, some people find them difficult to install and configure because they are mostly based on UNIX-like operating systems. We developed a live USB-bootable Linux package named "Lin4Neuro." This system includes popular neuroimaging analysis tools. The user interface is customized so that even Windows users can use it intuitively. Results The boot time of this system was only around 40 seconds. We performed a benchmark test of inhomogeneity correction on 10 subjects of three-dimensional T1-weighted MRI scans. The processing speed of USB-booted Lin4Neuro was as fast as that of the package installed on the hard disk drive. We also installed Lin4Neuro on a virtualization software package that emulates the Linux environment on a Windows-based operation system. Although the processing speed was slower than that under other conditions, it remained comparable. Conclusions With Lin4Neuro in one's hand, one can access neuroimaging software packages easily, and immediately focus on analyzing data. Lin4Neuro can be a good primer for beginners of neuroimaging analysis or students who are interested in neuroimaging analysis. It also provides a practical means of sharing analysis environments across sites. PMID:21266047

  4. Lin4Neuro: a customized Linux distribution ready for neuroimaging analysis.

    PubMed

    Nemoto, Kiyotaka; Dan, Ippeita; Rorden, Christopher; Ohnishi, Takashi; Tsuzuki, Daisuke; Okamoto, Masako; Yamashita, Fumio; Asada, Takashi

    2011-01-25

    A variety of neuroimaging software packages have been released from various laboratories worldwide, and many researchers use these packages in combination. Though most of these software packages are freely available, some people find them difficult to install and configure because they are mostly based on UNIX-like operating systems. We developed a live USB-bootable Linux package named "Lin4Neuro." This system includes popular neuroimaging analysis tools. The user interface is customized so that even Windows users can use it intuitively. The boot time of this system was only around 40 seconds. We performed a benchmark test of inhomogeneity correction on 10 subjects of three-dimensional T1-weighted MRI scans. The processing speed of USB-booted Lin4Neuro was as fast as that of the package installed on the hard disk drive. We also installed Lin4Neuro on a virtualization software package that emulates the Linux environment on a Windows-based operation system. Although the processing speed was slower than that under other conditions, it remained comparable. With Lin4Neuro in one's hand, one can access neuroimaging software packages easily, and immediately focus on analyzing data. Lin4Neuro can be a good primer for beginners of neuroimaging analysis or students who are interested in neuroimaging analysis. It also provides a practical means of sharing analysis environments across sites.

  5. A systematic literature review of neuroimaging research on developmental stuttering between 1995 and 2016.

    PubMed

    Etchell, Andrew C; Civier, Oren; Ballard, Kirrie J; Sowman, Paul F

    2018-03-01

    Stuttering is a disorder that affects millions of people all over the world. Over the past two decades, there has been a great deal of interest in investigating the neural basis of the disorder. This systematic literature review is intended to provide a comprehensive summary of the neuroimaging literature on developmental stuttering. It is a resource for researchers to quickly and easily identify relevant studies for their areas of interest and enable them to determine the most appropriate methodology to utilize in their work. The review also highlights gaps in the literature in terms of methodology and areas of research. We conducted a systematic literature review on neuroimaging studies on developmental stuttering according to the PRISMA guidelines. We searched for articles in the pubmed database containing "stuttering" OR "stammering" AND either "MRI", "PET", "EEG", "MEG", "TMS"or "brain" that were published between 1995/​01/​01 and 2016/​01/​01. The search returned a total of 359 items with an additional 26 identified from a manual search. Of these, there were a total of 111 full text articles that met criteria for inclusion in the systematic literature review. We also discuss neuroimaging studies on developmental stuttering published throughout 2016. The discussion of the results is organized first by methodology and second by population (i.e., adults or children) and includes tables that contain all items returned by the search. There are widespread abnormalities in the structural architecture and functional organization of the brains of adults and children who stutter. These are evident not only in speech tasks, but also non-speech tasks. Future research should make greater use of functional neuroimaging and noninvasive brain stimulation, and employ structural methodologies that have greater sensitivity. Newly planned studies should also investigate sex differences, focus on augmenting treatment, examine moments of dysfluency and longitudinally or

  6. [Recent progress of neuroimaging studies on sleeping brain].

    PubMed

    Sasaki, Yuka

    2012-06-01

    Although sleep is a familiar phenomenon, its functions are yet to be elucidated. Understanding these functions of sleep is an important focus area in neuroscience. Electroencephalography (EEG) has been the predominantly used method in human sleep research but does not provide detailed spatial information about brain activation during sleep. To supplement the spatial information provided by this method, researchers have started using a combination of EEG and various advanced neuroimaging techniques that have been recently developed, including positron emission tomography (PET) and magnetic resonance imaging (MRI). In this paper, we will review the recent progress in sleep studies, especially studies that have used such advanced neuroimaging techniques. First, we will briefly introduce several neuroimaging techniques available for use in sleep studies. Next, we will review the spatiotemporal brain activation patterns during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep, the dynamics of functional connectivity during sleep, and the consolidation of learning and memory during sleep; studies on the neural correlates of dreams, which have not yet been identified, will also be discussed. Lastly, possible directions for future research in this area will be discussed.

  7. Neuroimaging correlates of aggression in schizophrenia: an update.

    PubMed

    Hoptman, Matthew J; Antonius, Daniel

    2011-03-01

    Aggression in schizophrenia is associated with poor treatment outcomes, hospital admissions, and stigmatization of patients. As such it represents an important public health issue. This article reviews recent neuroimaging studies of aggression in schizophrenia, focusing on PET/single photon emission computed tomography and MRI methods. The neuroimaging literature on aggression in schizophrenia is in a period of development. This is attributable in part to the heterogeneous nature and basis of that aggression. Radiological methods have consistently shown reduced activity in frontal and temporal regions. MRI brain volumetric studies have been less consistent, with some studies finding increased volumes of inferior frontal structures, and others finding reduced volumes in aggressive individuals with schizophrenia. Functional MRI studies have also had inconsistent results, with most finding reduced activity in inferior frontal and temporal regions, but some also finding increased activity in other regions. Some studies have made a distinction between types of aggression in schizophrenia in the context of antisocial traits, and this appears to be useful in understanding the neuroimaging literature. Frontal and temporal abnormalities appear to be a consistent feature of aggression in schizophrenia, but their precise nature likely differs because of the heterogeneous nature of that behavior.

  8. Neuroimaging of Cerebrovascular Disease in the Aging Brain

    PubMed Central

    Gupta, Ajay; Nair, Sreejit; Schweitzer, Andrew D.; Kishore, Sirish; Johnson, Carl E.; Comunale, Joseph P.; Tsiouris, Apostolos J.; Sanelli, Pina C.

    2012-01-01

    Cerebrovascular disease remains a significant public health burden with its greatest impact on the elderly population. Advances in neuroimaging techniques allow detailed and sophisticated evaluation of many manifestations of cerebrovascular disease in the brain parenchyma as well as in the intracranial and extracranial vasculature. These tools continue to contribute to our understanding of the multifactorial processes that occur in the age-dependent development of cerebrovascular disease. Structural abnormalities related to vascular disease in the brain and vessels have been well characterized with CT and MRI based techniques. We review some of the pathophysiologic mechanisms in the aging brain and cerebral vasculature and the related structural abnormalities detectable on neuroimaging, including evaluation of age-related white matter changes, atherosclerosis of the cerebral vasculature, and cerebral infarction. In addition, newer neuroimaging techniques, such as diffusion tensor imaging, perfusion techniques, and assessment of cerebrovascular reserve, are also reviewed, as these techniques can detect physiologic alterations which complement the morphologic changes that cause cerebrovascular disease in the aging brain.Further investigation of these advanced imaging techniques has potential application to the understanding and diagnosis of cerebrovascular disease in the elderly. PMID:23185721

  9. Cholinergic modulation of cognition: Insights from human pharmacological functional neuroimaging

    PubMed Central

    Bentley, Paul; Driver, Jon; Dolan, Raymond J.

    2011-01-01

    Evidence from lesion and cortical-slice studies implicate the neocortical cholinergic system in the modulation of sensory, attentional and memory processing. In this review we consider findings from sixty-three healthy human cholinergic functional neuroimaging studies that probe interactions of cholinergic drugs with brain activation profiles, and relate these to contemporary neurobiological models. Consistent patterns that emerge are: (1) the direction of cholinergic modulation of sensory cortex activations depends upon top-down influences; (2) cholinergic hyperstimulation reduces top-down selective modulation of sensory cortices; (3) cholinergic hyperstimulation interacts with task-specific frontoparietal activations according to one of several patterns, including: suppression of parietal-mediated reorienting; decreasing ‘effort’-associated activations in prefrontal regions; and deactivation of a ‘resting-state network’ in medial cortex, with reciprocal recruitment of dorsolateral frontoparietal regions during performance-challenging conditions; (4) encoding-related activations in both neocortical and hippocampal regions are disrupted by cholinergic blockade, or enhanced with cholinergic stimulation, while the opposite profile is observed during retrieval; (5) many examples exist of an ‘inverted-U shaped’ pattern of cholinergic influences by which the direction of functional neural activation (and performance) depends upon both task (e.g. relative difficulty) and subject (e.g. age) factors. Overall, human cholinergic functional neuroimaging studies both corroborate and extend physiological accounts of cholinergic function arising from other experimental contexts, while providing mechanistic insights into cholinergic-acting drugs and their potential clinical applications. PMID:21708219

  10. Robust regression for large-scale neuroimaging studies.

    PubMed

    Fritsch, Virgile; Da Mota, Benoit; Loth, Eva; Varoquaux, Gaël; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Brühl, Rüdiger; Butzek, Brigitte; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Lemaitre, Hervé; Mann, Karl; Nees, Frauke; Paus, Tomas; Schad, Daniel J; Schümann, Gunter; Frouin, Vincent; Poline, Jean-Baptiste; Thirion, Bertrand

    2015-05-01

    Multi-subject datasets used in neuroimaging group studies have a complex structure, as they exhibit non-stationary statistical properties across regions and display various artifacts. While studies with small sample sizes can rarely be shown to deviate from standard hypotheses (such as the normality of the residuals) due to the poor sensitivity of normality tests with low degrees of freedom, large-scale studies (e.g. >100 subjects) exhibit more obvious deviations from these hypotheses and call for more refined models for statistical inference. Here, we demonstrate the benefits of robust regression as a tool for analyzing large neuroimaging cohorts. First, we use an analytic test based on robust parameter estimates; based on simulations, this procedure is shown to provide an accurate statistical control without resorting to permutations. Second, we show that robust regression yields more detections than standard algorithms using as an example an imaging genetics study with 392 subjects. Third, we show that robust regression can avoid false positives in a large-scale analysis of brain-behavior relationships with over 1500 subjects. Finally we embed robust regression in the Randomized Parcellation Based Inference (RPBI) method and demonstrate that this combination further improves the sensitivity of tests carried out across the whole brain. Altogether, our results show that robust procedures provide important advantages in large-scale neuroimaging group studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A pilot treatment study for mild traumatic brain injury: Neuroimaging changes detected by MEG after low-intensity pulse-based transcranial electrical stimulation.

    PubMed

    Huang, Ming-Xiong; Swan, Ashley Robb; Quinto, Annemarie Angeles; Matthews, Scott; Harrington, Deborah L; Nichols, Sharon; Bruder, Barry J; Snook, Corey C; Huang, Charles W; Baker, Dewleen G; Lee, Roland R

    2017-01-01

    Mild traumatic brain injury (mTBI) is a leading cause of sustained impairments in military service members, Veterans, and civilians. However, few treatments are available for mTBI, partially because the mechanism of persistent mTBI deficits is not fully understood. We used magnetoencephalography (MEG) to investigate neuronal changes in individuals with mTBI following a passive neurofeedback-based treatment programme called IASIS. This programme involved applying low-intensity pulses using transcranial electrical stimulation (LIP-tES) with electroencephalography monitoring. Study participants included six individuals with mTBI and persistent post-concussive symptoms (PCS). MEG exams were performed at baseline and follow-up to evaluate the effect of IASIS on brain functioning. At the baseline MEG exam, all participants had abnormal slow-waves. In the follow-up MEG exam, the participants showed significantly reduced abnormal slow-waves with an average reduction of 53.6 ± 24.6% in slow-wave total score. The participants also showed significant reduction of PCS scores after IASIS treatment, with an average reduction of 52.76 ± 26.4% in PCS total score. The present study demonstrates, for the first time, the neuroimaging-based documentation of the effect of LIP-tES treatment on brain functioning in mTBI. The mechanisms of LIP-tES treatment are discussed, with an emphasis on LIP-tES's potentiation of the mTBI healing process.

  12. Visual Systems for Interactive Exploration and Mining of Large-Scale Neuroimaging Data Archives

    PubMed Central

    Bowman, Ian; Joshi, Shantanu H.; Van Horn, John D.

    2012-01-01

    While technological advancements in neuroimaging scanner engineering have improved the efficiency of data acquisition, electronic data capture methods will likewise significantly expedite the populating of large-scale neuroimaging databases. As they do and these archives grow in size, a particular challenge lies in examining and interacting with the information that these resources contain through the development of compelling, user-driven approaches for data exploration and mining. In this article, we introduce the informatics visualization for neuroimaging (INVIZIAN) framework for the graphical rendering of, and dynamic interaction with the contents of large-scale neuroimaging data sets. We describe the rationale behind INVIZIAN, detail its development, and demonstrate its usage in examining a collection of over 900 T1-anatomical magnetic resonance imaging (MRI) image volumes from across a diverse set of clinical neuroimaging studies drawn from a leading neuroimaging database. Using a collection of cortical surface metrics and means for examining brain similarity, INVIZIAN graphically displays brain surfaces as points in a coordinate space and enables classification of clusters of neuroanatomically similar MRI images and data mining. As an initial step toward addressing the need for such user-friendly tools, INVIZIAN provides a highly unique means to interact with large quantities of electronic brain imaging archives in ways suitable for hypothesis generation and data mining. PMID:22536181

  13. Neuroimaging and Anxiety: the Neural Substrates of Pathological and Non-pathological Anxiety.

    PubMed

    Taylor, James M; Whalen, Paul J

    2015-06-01

    Advances in the use of noninvasive neuroimaging to study the neural correlates of pathological and non-pathological anxiety have shone new light on the underlying neural bases for both the development and manifestation of anxiety. This review summarizes the most commonly observed neural substrates of the phenotype of anxiety. We focus on the neuroimaging paradigms that have shown promise in exposing this relevant brain circuitry. In this way, we offer a broad overview of how anxiety is studied in the neuroimaging laboratory and the key findings that offer promise for future research and a clearer understanding of anxiety.

  14. Reading the Freudian theory of sexual drives from a functional neuroimaging perspective

    PubMed Central

    Stoléru, Serge

    2014-01-01

    One of the essential tasks of neuropsychoanalysis is to investigate the neural correlates of sexual drives. Here, we consider the four defining characteristics of sexual drives as delineated by Freud: their pressure, aim, object, and source. We systematically examine the relations between these characteristics and the four-component neurophenomenological model that we have proposed based on functional neuroimaging studies, which comprises a cognitive, a motivational, an emotional and an autonomic/neuroendocrine component. Functional neuroimaging studies of sexual arousal (SA) have thrown a new light on the four fundamental characteristics of sexual drives by identifying their potential neural correlates. While these studies are essentially consistent with the Freudian model of drives, the main difference emerging between the functional neuroimaging perspective on sexual drives and the Freudian theory relates to the source of drives. From a functional neuroimaging perspective, sources of sexual drives, conceived by psychoanalysis as processes of excitation occurring in a peripheral organ, do not seem, at least in adult subjects, to be an essential part of the determinants of SA. It is rather the central processing of visual or genital stimuli that gives to these stimuli their sexually arousing and sexually pleasurable character. Finally, based on functional neuroimaging results, some possible improvements to the psychoanalytic theory of sexual drives are suggested. PMID:24672467

  15. Neuroimaging and Fetal Alcohol Spectrum Disorders

    ERIC Educational Resources Information Center

    Norman, Andria L.; Crocker, Nicole; Mattson, Sarah N.; Riley, Edward P.

    2009-01-01

    The detrimental effects of prenatal alcohol exposure on the developing brain include structural brain anomalies as well as cognitive and behavioral deficits. Initial neuroimaging studies of fetal alcohol spectrum disorders (FASD) using magnetic resonance imaging (MRI) confirmed previous autopsy reports of overall reduction in brain volume and…

  16. Red flag findings in children with headaches: Prevalence and association with emergency department neuroimaging.

    PubMed

    Tsze, Daniel S; Ochs, Julie B; Gonzalez, Ariana E; Dayan, Peter S

    2018-01-01

    Background Clinicians appear to obtain emergent neuroimaging for children with headaches based on the presence of red flag findings. However, little data exists regarding the prevalence of these findings in emergency department populations, and whether the identification of red flag findings is associated with potentially unnecessary emergency department neuroimaging. Objectives We aimed to determine the prevalence of red flag findings and their association with neuroimaging in otherwise healthy children presenting with headaches to the emergency department. Our secondary aim was to determine the prevalence of emergent intracranial abnormalities in this population. Methods A prospective cohort study of otherwise healthy children 2-17 years of age presenting to an urban pediatric emergency department with non-traumatic headaches was undertaken. Emergency department physicians completed a standardized form to document headache descriptors and characteristics, associated symptoms, and physical and neurological exam findings. Children who did not receive emergency department neuroimaging received 4-month telephone follow-up. Outcomes included emergency department neuroimaging and the presence of emergent intracranial abnormalities. Results We enrolled 224 patients; 197 (87.9%) had at least one red flag finding on history. Several red flag findings were reported by more than a third of children, including: Headache waking from sleep (34.8%); headache present with or soon after waking (39.7%); or headaches increasing in frequency, duration and severity (40%, 33.1%, and 46.3%). Thirty-three percent of children received emergency department neuroimaging. The prevalence of emergent intracranial abnormalities was 1% (95% CI 0.1, 3.6). Abnormal neurological exam, extreme pain intensity of presenting headache, vomiting, and positional symptoms were independently associated with emergency department neuroimaging. Conclusions Red flag findings are common in children presenting

  17. Energy landscape analysis of neuroimaging data

    NASA Astrophysics Data System (ADS)

    Ezaki, Takahiro; Watanabe, Takamitsu; Ohzeki, Masayuki; Masuda, Naoki

    2017-05-01

    Computational neuroscience models have been used for understanding neural dynamics in the brain and how they may be altered when physiological or other conditions change. We review and develop a data-driven approach to neuroimaging data called the energy landscape analysis. The methods are rooted in statistical physics theory, in particular the Ising model, also known as the (pairwise) maximum entropy model and Boltzmann machine. The methods have been applied to fitting electrophysiological data in neuroscience for a decade, but their use in neuroimaging data is still in its infancy. We first review the methods and discuss some algorithms and technical aspects. Then, we apply the methods to functional magnetic resonance imaging data recorded from healthy individuals to inspect the relationship between the accuracy of fitting, the size of the brain system to be analysed and the data length. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.

  18. Neuroimaging essentials in essential tremor: A systematic review

    PubMed Central

    Sharifi, Sarvi; Nederveen, Aart J.; Booij, Jan; van Rootselaar, Anne-Fleur

    2014-01-01

    Background Essential tremor is regarded to be a disease of the central nervous system. Neuroimaging is a rapidly growing field with potential benefits to both diagnostics and research. The exact role of imaging techniques with respect to essential tremor in research and clinical practice is not clear. A systematic review of the different imaging techniques in essential tremor is lacking in the literature. Methods We performed a systematic literature search combining the terms essential tremor and familial tremor with the following keywords: imaging, MRI, VBM, DWI, fMRI, PET and SPECT, both in abbreviated form as well as in full form. We summarize and discuss the quality and the external validity of each study and place the results in the context of existing knowledge regarding the pathophysiology of essential tremor. Results A total of 48 neuroimaging studies met our search criteria, roughly divided into 19 structural and 29 functional and metabolic studies. The quality of the studies varied, especially concerning inclusion criteria. Functional imaging studies indicated cerebellar hyperactivity during rest and during tremor. The studies also pointed to the involvement of the thalamus, the inferior olive and the red nucleus. Structural studies showed less consistent results. Discussion and conclusion Neuroimaging techniques in essential tremor give insight into the pathophysiology of essential tremor indicating the involvement of the cerebellum as the most consistent finding. GABAergic dysfunction might be a major premise in the pathophysiological hypotheses. Inconsistencies between studies can be partly explained by the inclusion of heterogeneous patient groups. Improvement of scientific research requires more stringent inclusion criteria and application of advanced analysis techniques. Also, the use of multimodal neuroimaging techniques is a promising development in movement disorders research. Currently, the role of imaging techniques in essential tremor in daily

  19. Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing.

    PubMed

    Shatil, Anwar S; Younas, Sohail; Pourreza, Hossein; Figley, Chase R

    2015-01-01

    With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed) the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1) inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2) highlight their main advantages; 3) discuss when it may (and may not) be advisable to use them; 4) review some of their potential problems and barriers to access; and finally 5) give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc.), a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications.

  20. Incidental Findings in Neuroimaging: Ethical and Medicolegal Considerations

    PubMed Central

    Leung, Lawrence

    2013-01-01

    With the rapid advances in neurosciences in the last three decades, there has been an exponential increase in the use of neuroimaging both in basic sciences and clinical research involving human subjects. During routine neuroimaging, incidental findings that are not part of the protocol or scope of research agenda can occur and they often pose a challenge as to how they should be handled to abide by the medicolegal principles of research ethics. This paper reviews the issue from various ethical (do no harm, general duty to rescue, and mutual benefits and owing) and medicolegal perspectives (legal liability, fiduciary duties, Law of Tort, and Law of Contract) with a suggested protocol of approach. PMID:26317093

  1. Incidental Findings in Neuroimaging: Ethical and Medicolegal Considerations.

    PubMed

    Leung, Lawrence

    2013-01-01

    With the rapid advances in neurosciences in the last three decades, there has been an exponential increase in the use of neuroimaging both in basic sciences and clinical research involving human subjects. During routine neuroimaging, incidental findings that are not part of the protocol or scope of research agenda can occur and they often pose a challenge as to how they should be handled to abide by the medicolegal principles of research ethics. This paper reviews the issue from various ethical (do no harm, general duty to rescue, and mutual benefits and owing) and medicolegal perspectives (legal liability, fiduciary duties, Law of Tort, and Law of Contract) with a suggested protocol of approach.

  2. Relationships between cognitive performance, neuroimaging, and vascular disease: the DHS-Mind Study

    PubMed Central

    Hsu, Fang-Chi; Raffield, Laura M.; Hugenschmidt, Christina E.; Cox, Amanda; Xu, Jianzhao; Carr, J. Jeffery; Freedman, Barry I.; Maldjian, Joseph A.; Williamson, Jeff D.; Bowden, Donald W.

    2015-01-01

    Background Type 2 diabetes mellitus increases risk for cognitive decline and dementia; elevated burdens of vascular disease are hypothesized to contribute to this risk. These relationships were examined in the Diabetes Heart Study-Mind using a battery of cognitive tests, neuroimaging measures, and subclinical cardiovascular disease (CVD) burden assessed by coronary artery calcified plaque (CAC). We hypothesized that CAC would attenuate the association between neuroimaging measures and cognition performance. Methods Associations were examined using marginal models in this family-based cohort of 572 European Americans from 263 families. All models were adjusted for age, gender, education, type 2 diabetes, and hypertension, with some neuroimaging measures additionally adjusted for intracranial volume. Results Higher total brain volume (TBV) was associated with better performance on the Digit Symbol Substitution Task (DSST) and Semantic Fluency (both p≤7.0 x 10−4). Higher gray matter volume (GMV) was associated with better performance on the Modified Mini-Mental State Examination and Semantic Fluency (both p≤9.0 x 10−4). Adjusting for CAC caused minimal changes to the results. Conclusions Relationships exist between neuroimaging measures and cognitive performance in a type 2 diabetes-enriched European American cohort. Associations were minimally attenuated after adjusting for subclinical CVD. Additional work is needed to understand how subclinical CVD burden interacts with other factors and impacts relationships between neuroimaging and cognitive testing measures. PMID:26185004

  3. Neuroimaging Insights into the Pathophysiology of Sleep Disorders

    PubMed Central

    Desseilles, Martin; Dang-Vu, Thanh; Schabus, Manuel; Sterpenich, Virginie; Maquet, Pierre; Schwartz, Sophie

    2008-01-01

    Neuroimaging methods can be used to investigate whether sleep disorders are associated with specific changes in brain structure or regional activity. However, it is still unclear how these new data might improve our understanding of the pathophysiology underlying adult sleep disorders. Here we review functional brain imaging findings in major intrinsic sleep disorders (i.e., idiopathic insomnia, narcolepsy, and obstructive sleep apnea) and in abnormal motor behavior during sleep (i.e., periodic limb movement disorder and REM sleep behavior disorder). The studies reviewed include neuroanatomical assessments (voxel-based morphometry, magnetic resonance spectroscopy), metabolic/functional investigations (positron emission tomography, single photon emission computed tomography, functional magnetic resonance imaging), and ligand marker measurements. Based on the current state of the research, we suggest that brain imaging is a useful approach to assess the structural and functional correlates of sleep impairments as well as better understand the cerebral consequences of various therapeutic approaches. Modern neuroimaging techniques therefore provide a valuable tool to gain insight into possible pathophysiological mechanisms of sleep disorders in adult humans. Citation: Desseilles M; Dang-Vu TD; Schabus M; Sterpenich V; Maquet P; Schwartz S. Neuroimaging insights into the pathophysiology of sleep disorders. SLEEP 2008;31(6):777–794. PMID:18548822

  4. Mind-Body Practices and the Adolescent Brain: Clinical Neuroimaging Studies

    PubMed Central

    Sharma, Anup; Newberg, Andrew B

    2016-01-01

    Background Mind-Body practices constitute a large and diverse group of practices that can substantially affect neurophysiology in both healthy individuals and those with various psychiatric disorders. In spite of the growing literature on the clinical and physiological effects of mind-body practices, very little is known about their impact on central nervous system (CNS) structure and function in adolescents with psychiatric disorders. Method This overview highlights findings in a select group of mind-body practices including yoga postures, yoga breathing techniques and meditation practices. Results Mind-body practices offer novel therapeutic approaches for adolescents with psychiatric disorders. Findings from these studies provide insights into the design and implementation of neuroimaging studies for adolescents with psychiatric disorders. Conclusions Clinical neuroimaging studies will be critical in understanding how different practices affect disease pathogenesis and symptomatology in adolescents. Neuroimaging of mind-body practices on adolescents with psychiatric disorders will certainly be an open and exciting area of investigation. PMID:27347478

  5. Sharing brain mapping statistical results with the neuroimaging data model

    PubMed Central

    Maumet, Camille; Auer, Tibor; Bowring, Alexander; Chen, Gang; Das, Samir; Flandin, Guillaume; Ghosh, Satrajit; Glatard, Tristan; Gorgolewski, Krzysztof J.; Helmer, Karl G.; Jenkinson, Mark; Keator, David B.; Nichols, B. Nolan; Poline, Jean-Baptiste; Reynolds, Richard; Sochat, Vanessa; Turner, Jessica; Nichols, Thomas E.

    2016-01-01

    Only a tiny fraction of the data and metadata produced by an fMRI study is finally conveyed to the community. This lack of transparency not only hinders the reproducibility of neuroimaging results but also impairs future meta-analyses. In this work we introduce NIDM-Results, a format specification providing a machine-readable description of neuroimaging statistical results along with key image data summarising the experiment. NIDM-Results provides a unified representation of mass univariate analyses including a level of detail consistent with available best practices. This standardized representation allows authors to relay methods and results in a platform-independent regularized format that is not tied to a particular neuroimaging software package. Tools are available to export NIDM-Result graphs and associated files from the widely used SPM and FSL software packages, and the NeuroVault repository can import NIDM-Results archives. The specification is publically available at: http://nidm.nidash.org/specs/nidm-results.html. PMID:27922621

  6. Neuroimaging Studies Illustrate the Commonalities Between Ageing and Brain Diseases.

    PubMed

    Cole, James H

    2018-07-01

    The lack of specificity in neuroimaging studies of neurological and psychiatric diseases suggests that these different diseases have more in common than is generally considered. Potentially, features that are secondary effects of different pathological processes may share common neurobiological underpinnings. Intriguingly, many of these mechanisms are also observed in studies of normal (i.e., non-pathological) brain ageing. Different brain diseases may be causing premature or accelerated ageing to the brain, an idea that is supported by a line of "brain ageing" research that combines neuroimaging data with machine learning analysis. In reviewing this field, I conclude that such observations could have important implications, suggesting that we should shift experimental paradigm: away from characterizing the average case-control brain differences resulting from a disease toward methods that place individuals in their age-appropriate context. This will also lead naturally to clinical applications, whereby neuroimaging can contribute to a personalized-medicine approach to improve brain health. © 2018 WILEY Periodicals, Inc.

  7. Mind-Body Practices and the Adolescent Brain: Clinical Neuroimaging Studies.

    PubMed

    Sharma, Anup; Newberg, Andrew B

    Mind-Body practices constitute a large and diverse group of practices that can substantially affect neurophysiology in both healthy individuals and those with various psychiatric disorders. In spite of the growing literature on the clinical and physiological effects of mind-body practices, very little is known about their impact on central nervous system (CNS) structure and function in adolescents with psychiatric disorders. This overview highlights findings in a select group of mind-body practices including yoga postures, yoga breathing techniques and meditation practices. Mind-body practices offer novel therapeutic approaches for adolescents with psychiatric disorders. Findings from these studies provide insights into the design and implementation of neuroimaging studies for adolescents with psychiatric disorders. Clinical neuroimaging studies will be critical in understanding how different practices affect disease pathogenesis and symptomatology in adolescents. Neuroimaging of mind-body practices on adolescents with psychiatric disorders will certainly be an open and exciting area of investigation.

  8. Brain dysfunction behind functional symptoms: neuroimaging and somatoform, conversive, and dissociative disorders.

    PubMed

    García-Campayo, Javier; Fayed, Nicolas; Serrano-Blanco, Antoni; Roca, Miquel

    2009-03-01

    Neuroimaging research in psychiatry has been increasing exponentially in recent years, yet many psychiatrists are relatively unfamiliar with this field. This article summarizes the findings of the most relevant research articles on the neuroimaging of somatoform, conversive, and dissociative disorders published from January 2007 through June 2008. Neuroimaging findings summarized here include alterations of stress regulation and coping in somatoform pain disorders, the importance of catastrophizing in somatization disorder, and the relevance of a history of physical/sexual abuse in irritable bowel syndrome. Regarding fibromyalgia, three of the most significant advances have been the impossibility of differentiating primary and concomitant fibromyalgia in the presence of quiescent underlying disease, the role of hippocampal dysfunction, and the possibility that fibromyalgia may be characterized as an aging process. In dissociative disorders, the high levels of elaborative memory encoding and the reduced size of the parietal lobe are highlighted. The most promising clinical consequence of these studies, in addition to improving knowledge about the etiology of these illnesses, is the possibility of using neuroimaging findings to identify subgroups of patients, which could allow treatments to be tailored.

  9. Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing

    PubMed Central

    Shatil, Anwar S.; Younas, Sohail; Pourreza, Hossein; Figley, Chase R.

    2015-01-01

    With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed) the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1) inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2) highlight their main advantages; 3) discuss when it may (and may not) be advisable to use them; 4) review some of their potential problems and barriers to access; and finally 5) give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc.), a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications. PMID:27279746

  10. Experimental evidence for improved neuroimaging interpretation using three-dimensional graphic models.

    PubMed

    Ruisoto, Pablo; Juanes, Juan Antonio; Contador, Israel; Mayoral, Paula; Prats-Galino, Alberto

    2012-01-01

    Three-dimensional (3D) or volumetric visualization is a useful resource for learning about the anatomy of the human brain. However, the effectiveness of 3D spatial visualization has not yet been assessed systematically. This report analyzes whether 3D volumetric visualization helps learners to identify and locate subcortical structures more precisely than classical cross-sectional images based on a two dimensional (2D) approach. Eighty participants were assigned to each experimental condition: 2D cross-sectional visualization vs. 3D volumetric visualization. Both groups were matched for age, gender, visual-spatial ability, and previous knowledge of neuroanatomy. Accuracy in identifying brain structures, execution time, and level of confidence in the response were taken as outcome measures. Moreover, interactive effects between the experimental conditions (2D vs. 3D) and factors such as level of competence (novice vs. expert), image modality (morphological and functional), and difficulty of the structures were analyzed. The percentage of correct answers (hit rate) and level of confidence in responses were significantly higher in the 3D visualization condition than in the 2D. In addition, the response time was significantly lower for the 3D visualization condition in comparison with the 2D. The interaction between the experimental condition (2D vs. 3D) and difficulty was significant, and the 3D condition facilitated the location of difficult images more than the 2D condition. 3D volumetric visualization helps to identify brain structures such as the hippocampus and amygdala, more accurately and rapidly than conventional 2D visualization. This paper discusses the implications of these results with regards to the learning process involved in neuroimaging interpretation. Copyright © 2012 American Association of Anatomists.

  11. High-throughput neuroimaging-genetics computational infrastructure

    PubMed Central

    Dinov, Ivo D.; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Hobel, Sam; Vespa, Paul; Woo Moon, Seok; Van Horn, John D.; Franco, Joseph; Toga, Arthur W.

    2014-01-01

    Many contemporary neuroscientific investigations face significant challenges in terms of data management, computational processing, data mining, and results interpretation. These four pillars define the core infrastructure necessary to plan, organize, orchestrate, validate, and disseminate novel scientific methods, computational resources, and translational healthcare findings. Data management includes protocols for data acquisition, archival, query, transfer, retrieval, and aggregation. Computational processing involves the necessary software, hardware, and networking infrastructure required to handle large amounts of heterogeneous neuroimaging, genetics, clinical, and phenotypic data and meta-data. Data mining refers to the process of automatically extracting data features, characteristics and associations, which are not readily visible by human exploration of the raw dataset. Result interpretation includes scientific visualization, community validation of findings and reproducible findings. In this manuscript we describe the novel high-throughput neuroimaging-genetics computational infrastructure available at the Institute for Neuroimaging and Informatics (INI) and the Laboratory of Neuro Imaging (LONI) at University of Southern California (USC). INI and LONI include ultra-high-field and standard-field MRI brain scanners along with an imaging-genetics database for storing the complete provenance of the raw and derived data and meta-data. In addition, the institute provides a large number of software tools for image and shape analysis, mathematical modeling, genomic sequence processing, and scientific visualization. A unique feature of this architecture is the Pipeline environment, which integrates the data management, processing, transfer, and visualization. Through its client-server architecture, the Pipeline environment provides a graphical user interface for designing, executing, monitoring validating, and disseminating of complex protocols that utilize

  12. Gray matter abnormalities in opioid-dependent patients: A neuroimaging meta-analysis.

    PubMed

    Wollman, Scott C; Alhassoon, Omar M; Hall, Matthew G; Stern, Mark J; Connors, Eric J; Kimmel, Christine L; Allen, Kenneth E; Stephan, Rick A; Radua, Joaquim

    2017-09-01

    Prior research utilizing whole-brain neuroimaging techniques has identified structural differences in gray matter in opioid-dependent individuals. However, the results have been inconsistent. The current study meta-analytically examines the neuroimaging findings of studies published before 2016 comparing opioid-dependent individuals to drug-naïve controls. Exhaustive search of five databases yielded 12 studies that met inclusion criteria. Anisotropic Effect-Size Seed-Based d Mapping (AES-SDM) was used to analyze the data extracted by three independent researchers. Voxel-based AES-SDM distinguishes increases and decreases in brain matter significant at the whole-brain level. AES-SDM identified the fronto-temporal region, bilaterally, as being the primary site of gray matter deficits associated with opioid use. Moderator analysis revealed that length of opioid use was negatively associated with gray matter in the left cerebellar vermis and the right Rolandic operculum, including the insula. Meta-regression revealed no remaining significant areas of gray matter reductions, except in the precuneus, following longer abstinence from opioids. Opioid-dependent individuals had significantly less gray matter in several regions that play a key role in cognitive and affective processing. The findings provide evidence that opioid dependence may result in the breakdown of two distinct yet highly overlapping structural and functional systems. These are the fronto-cerebellar system that might be more responsible for impulsivity, compulsive behaviors, and affective disturbances and the fronto-insular system that might account more for the cognitive and decision-making impairments.

  13. Using neuroimaging to understand the cortical mechanisms of auditory selective attention

    PubMed Central

    Lee, Adrian KC; Larson, Eric; Maddox, Ross K; Shinn-Cunningham, Barbara G

    2013-01-01

    Over the last four decades, a range of different neuroimaging tools have been used to study human auditory attention, spanning from classic event-related potential studies using electroencephalography to modern multimodal imaging approaches (e.g., combining anatomical information based on magnetic resonance imaging with magneto- and electroencephalography). This review begins by exploring the different strengths and limitations inherent to different neuroimaging methods, and then outlines some common behavioral paradigms that have been adopted to study auditory attention. We argue that in order to design a neuroimaging experiment that produces interpretable, unambiguous results, the experimenter must not only have a deep appreciation of the imaging technique employed, but also a sophisticated understanding of perception and behavior. Only with the proper caveats in mind can one begin to infer how the cortex supports a human in solving the “cocktail party” problem. PMID:23850664

  14. The cerebellum and cognition: evidence from functional imaging studies.

    PubMed

    Stoodley, Catherine J

    2012-06-01

    Evidence for a role of the human cerebellum in cognitive functions comes from anatomical, clinical and neuroimaging data. Functional neuroimaging reveals cerebellar activation during a variety of cognitive tasks, including language, visual-spatial, executive, and working memory processes. It is important to note that overt movement is not a prerequisite for cerebellar activation: the cerebellum is engaged during conditions which either control for motor output or do not involve motor responses. Resting-state functional connectivity data reveal that, in addition to networks underlying motor control, the cerebellum is part of "cognitive" networks with prefrontal and parietal association cortices. Consistent with these findings, regional differences in activation patterns within the cerebellum are evident depending on the task demands, suggesting that the cerebellum can be broadly divided into functional regions based on the patterns of anatomical connectivity between different regions of the cerebellum and sensorimotor and association areas of the cerebral cortex. However, the distinct contribution of the cerebellum to cognitive tasks is not clear. Here, the functional neuroimaging evidence for cerebellar involvement in cognitive functions is reviewed and related to hypotheses as to why the cerebellum is active during such tasks. Identifying the precise role of the cerebellum in cognition-as well as the mechanism by which the cerebellum modulates performance during a wide range of tasks-remains a challenge for future investigations.

  15. Neuroimaging the interaction of mind and metabolism in humans

    PubMed Central

    D’Agostino, Alexandra E.; Small, Dana M.

    2012-01-01

    Hormonal and metabolic signals interact with neural circuits orchestrating behavior to guide food intake. Neuroimaging techniques such as functional magnetic resonance imaging (fMRI) enable the identification of where in the brain particular mental processes like desire, satiety and pleasure occur. Once these neural circuits are described it then becomes possible to determine how metabolic and hormonal signals can alter brain response to influence psychological states and decision-making processes to guide intake. Here, we provide an overview of the contributions of functional neuroimaging to the understanding of how subjective and neural responses to food and food cues interact with metabolic/hormonal factors. PMID:24024114

  16. Brain mapping in cognitive disorders: a multidisciplinary approach to learning the tools and applications of functional neuroimaging

    PubMed Central

    Kelley, Daniel J; Johnson, Sterling C

    2007-01-01

    Background With rapid advances in functional imaging methods, human studies that feature functional neuroimaging techniques are increasing exponentially and have opened a vast arena of new possibilities for understanding brain function and improving the care of patients with cognitive disorders in the clinical setting. There is a growing need for medical centers to offer clinically relevant functional neuroimaging courses that emphasize the multifaceted and multidisciplinary nature of this field. In this paper, we describe the implementation of a functional neuroimaging course focusing on cognitive disorders that might serve as a model for other medical centers. We identify key components of an active learning course design that impact student learning gains in methods and issues pertaining to functional neuroimaging that deserve consideration when optimizing the medical neuroimaging curriculum. Methods Learning gains associated with the course were assessed using polychoric correlation analysis of responses to the SALG (Student Assessment of Learning Gains) instrument. Results Student gains in the functional neuroimaging of cognition as assessed by the SALG instrument were strongly associated with several aspects of the course design. Conclusion Our implementation of a multidisciplinary and active learning functional neuroimaging course produced positive learning outcomes. Inquiry-based learning activities and an online learning environment contributed positively to reported gains. This functional neuroimaging course design may serve as a useful model for other medical centers. PMID:17953758

  17. Differential Motor and Prefrontal Cerebello-Cortical Network Development: Evidence from Multimodal Neuroimaging

    PubMed Central

    Bernard, Jessica A.; Orr, Joseph M.; Mittal, Vijay A.

    2015-01-01

    While our understanding of cerebellar structural development through adolescence and young adulthood has expanded, we still lack knowledge of the developmental patterns of cerebellar networks during this critical portion of the lifespan. Volume in lateral posterior cerebellar regions associated with cognition and the prefrontal cortex develops more slowly, reaching their peak volume in adulthood, particularly as compared to motor Lobule V. We predicted that resting state functional connectivity of the lateral posterior regions would show a similar pattern of development during adolescence and young adulthood. That is, we expected to see changes over time in Crus I and Crus II connectivity with the cortex, but no changes in Lobule V connectivity. Additionally, we were interested in how structural connectivity changes in cerebello-thalamo-cortical white matter are related to changes in functional connectivity. A sample of 23 individuals between 12 and 21 years old underwent neuroimaging scans at baseline and 12-months later. Functional networks of Crus I and Crus II showed significant connectivity decreases over 12-months, though there were no differences in Lobule V. Furthermore, these functional connectivity changes were correlated with increases in white matter structural integrity in the corresponding cerebello-thalamo-cortical white matter tract. We suggest that these functional network changes are due to both later pruning in the prefrontal cortex as well as further development of the white matter tracts linking these brain regions. PMID:26391125

  18. Statistical Challenges in "Big Data" Human Neuroimaging.

    PubMed

    Smith, Stephen M; Nichols, Thomas E

    2018-01-17

    Smith and Nichols discuss "big data" human neuroimaging studies, with very large subject numbers and amounts of data. These studies provide great opportunities for making new discoveries about the brain but raise many new analytical challenges and interpretational risks. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Deep learning for neuroimaging: a validation study.

    PubMed

    Plis, Sergey M; Hjelm, Devon R; Salakhutdinov, Ruslan; Allen, Elena A; Bockholt, Henry J; Long, Jeffrey D; Johnson, Hans J; Paulsen, Jane S; Turner, Jessica A; Calhoun, Vince D

    2014-01-01

    Deep learning methods have recently made notable advances in the tasks of classification and representation learning. These tasks are important for brain imaging and neuroscience discovery, making the methods attractive for porting to a neuroimager's toolbox. Success of these methods is, in part, explained by the flexibility of deep learning models. However, this flexibility makes the process of porting to new areas a difficult parameter optimization problem. In this work we demonstrate our results (and feasible parameter ranges) in application of deep learning methods to structural and functional brain imaging data. These methods include deep belief networks and their building block the restricted Boltzmann machine. We also describe a novel constraint-based approach to visualizing high dimensional data. We use it to analyze the effect of parameter choices on data transformations. Our results show that deep learning methods are able to learn physiologically important representations and detect latent relations in neuroimaging data.

  20. Functional neuroimaging for addiction medicine: From mechanisms to practical considerations.

    PubMed

    Ekhtiari, Hamed; Faghiri, Ashkan; Oghabian, Mohammad-Ali; Paulus, Martin P

    2016-01-01

    During last 20 years, neuroimaging with functional magnetic resonance imaging (fMRI) in people with drug addictions has introduced a wide range of quantitative biomarkers from brain's regional or network level activities during different cognitive functions. These quantitative biomarkers could be potentially used for assessment, planning, prediction, and monitoring for "addiction medicine" during screening, acute intoxication, admission to a program, completion of an acute program, admission to a long-term program, and postgraduation follow-up. In this chapter, we have briefly reviewed main neurocognitive targets for fMRI studies associated with addictive behaviors, main study types using fMRI among drug dependents, and potential applications for fMRI in addiction medicine. Main challenges and limitations for extending fMRI studies and evidences aiming at clinical applications in addiction medicine are also discussed. There is still a significant gap between available evidences from group-based fMRI studies and personalized decisions during daily practices in addiction medicine. It will be important to fill this gap with large-scale clinical trials and longitudinal studies using fMRI measures with a well-defined strategic plan for the future. © 2016 Elsevier B.V. All rights reserved.

  1. The search for the number form area: A functional neuroimaging meta-analysis.

    PubMed

    Yeo, Darren J; Wilkey, Eric D; Price, Gavin R

    2017-07-01

    Recent studies report a putative "number form area" (NFA) in the inferior temporal gyrus (ITG) suggested to be specialized for Arabic numeral processing. However, a number of earlier studies report no such NFA. The reasons for such discrepancies across studies are unclear. To examine evidence for a convergent NFA across studies, we conducted two activation likelihood estimation meta-analyses on 31 and a subset of 20 neuroimaging studies that have contrasted digits with other meaningful symbols. Results suggest the potential existence of an NFA in the right ITG, in addition to a 'symbolic number processing network' comprising bilateral parietal regions, and right-lateralized superior and inferior frontal regions. Critically, convergent localization for the NFA was only evident when contrasts were appropriately controlled for task demands, and does not appear to depend on employing methods designed to overcome fMRI signal dropout in the ITG. Importantly, only five studies had foci within the identified ITG NFA cluster boundary, indicating that more empirical evidence is necessary to determine the true functional specialization and regional specificity of the putative NFA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Neuroimaging in human MDMA (Ecstasy) users: A cortical model

    PubMed Central

    Cowan, Ronald L; Roberts, Deanne M; Joers, James M

    2009-01-01

    MDMA (3,4 methylenedioxymethamphetamine) has been used by millions of people worldwide as a recreational drug. MDMA and Ecstasy are often used synonymously but it is important to note that the purity of Ecstasy sold as MDMA is not certain. MDMA use is of public health concern, not so much because MDMA produces a common or severe dependence syndrome, but rather because rodent and non-human primate studies have indicated that MDMA (when administered at certain dosages and intervals) can cause long-lasting reductions in markers of brain serotonin (5-HT) that appear specific to fine diameter axons arising largely from the dorsal raphe nucleus (DR). Given the popularity of MDMA, the potential for the drug to produce long-lasting or permanent 5-HT axon damage or loss, and the widespread role of 5-HT function in the brain, there is a great need for a better understanding of brain function in human users of this drug. To this end, neuropsychological, neuroendocrine, and neuroimaging studies have all suggested that human MDMA users may have long-lasting changes in brain function consistent with 5-HT toxicity. Data from animal models leads to testable hypotheses regarding MDMA effects on the human brain. Because neuropsychological and neuroimaging findings have focused on the neocortex, a cortical model is developed to provide context for designing and interpreting neuroimaging studies in MDMA users. Aspects of the model are supported by the available neuroimaging data but there are controversial findings in some areas and most findings have not been replicated across different laboratories and using different modalities. This paper reviews existing findings in the context of a cortical model and suggests directions for future research. PMID:18991874

  3. [Neuroimaging and Blood Biomarkers in Functional Prognosis after Stroke].

    PubMed

    Branco, João Paulo; Costa, Joana Santos; Sargento-Freitas, João; Oliveira, Sandra; Mendes, Bruno; Laíns, Jorge; Pinheiro, João

    2016-11-01

    Stroke remains one of the leading causes of morbidity and mortality around the world and it is associated with an important long-term functional disability. Some neuroimaging resources and certain peripheral blood or cerebrospinal fluid proteins can give important information about etiology, therapeutic approach, follow-up and functional prognosis in acute ischemic stroke patients. However, among the scientific community, there is currently more interest in the stroke vital prognosis over the functional prognosis. Predicting the functional prognosis during acute phase would allow more objective rehabilitation programs and better management of the available resources. The aim of this work is to review the potential role of acute phase neuroimaging and blood biomarkers as functional recovery predictors after ischemic stroke. Review of the literature published between 2005 and 2015, in English, using the terms "ischemic stroke", "neuroimaging" e "blood biomarkers". We included nine studies, based on abstract reading. Computerized tomography, transcranial doppler ultrasound and diffuse magnetic resonance imaging show potential predictive value, based on the blood flow study and the evaluation of stroke's volume and localization, especially when combined with the National Institutes of Health Stroke Scale. Several biomarkers have been studied as diagnostic, risk stratification and prognostic tools, namely the S100 calcium binding protein B, C-reactive protein, matrix metalloproteinases and cerebral natriuretic peptide. Although some biomarkers and neuroimaging techniques have potential predictive value, none of the studies were able to support its use, alone or in association, as a clinically useful functionality predictor model. All the evaluated markers were considered insufficient to predict functional prognosis at three months, when applied in the first hours after stroke. Additional studies are necessary to identify reliable predictive markers for functional

  4. Parsing brain activity with fMRI and mixed designs: what kind of a state is neuroimaging in?

    PubMed

    Donaldson, David I

    2004-08-01

    Neuroimaging is often pilloried for providing little more than pretty pictures that simply show where activity occurs in the brain. Strong critics (notably Uttal) have even argued that neuroimaging is nothing more than a modern day version of phrenology: destined to fail, and fundamentally uninformative. Here, I make the opposite case, arguing that neuroimaging is in a vibrant and healthy state of development. As recent investigations of memory illustrate, when used well, neuroimaging goes beyond asking 'where' activity is occurring, to ask questions concerned more with 'what' functional role the activity reflects.

  5. Functional Neuroimaging Studies of Written Sentence Comprehension

    ERIC Educational Resources Information Center

    Caplan, David

    2004-01-01

    Sentences convey relationships between the meanings of words, such as who is accomplishing an action or receiving it. Functional neuroimaging based on positron-emission tomography and functional magnetic resonance imaging has been used to identify areas of the brain involved in structuring sentences and determining aspects of meaning associated…

  6. Neuroimaging in ophthalmology

    PubMed Central

    Kim, James D.; Hashemi, Nafiseh; Gelman, Rachel; Lee, Andrew G.

    2012-01-01

    In the past three decades, there have been countless advances in imaging modalities that have revolutionized evaluation, management, and treatment of neuro-ophthalmic disorders. Non-invasive approaches for early detection and monitoring of treatments have decreased morbidity and mortality. Understanding of basic methods of imaging techniques and choice of imaging modalities in cases encountered in neuro-ophthalmology clinic is critical for proper evaluation of patients. Two main imaging modalities that are often used are computed tomography (CT) and magnetic resonance imaging (MRI). However, variations of these modalities and appropriate location of imaging must be considered in each clinical scenario. In this article, we review and summarize the best neuroimaging studies for specific neuro-ophthalmic indications and the diagnostic radiographic findings for important clinical entities. PMID:23961025

  7. The use of neuroimaging in the management of chronic headache in children in clinical practice versus clinical practice guidelines.

    PubMed

    Prpić, Igor; Ahel, Tea; Rotim, Krešimir; Gajski, Domagoj; Vukelić, Petar; Sasso, Antun

    2014-12-01

    In daily practice, neuroimaging studies are frequently performed for the management of childhood headache. The aim of this study was to determine whether there is significant discrepancy between clinical practice and clinical practice guidelines on the indications for neuroimaging studies. Medical records of children with chronic headache, aged 2 to 18 years and treated at Rijeka University Hospital Center, Kantrida Department of Pediatrics, were retrospectively reviewed. Indications for brain magnetic resonance imaging and computed tomography (MRI/CT) scanning were reviewed and compared with clinical practice guidelines. Brain imaging was performed in 164 (76.3%) of 215 children, MRI in 93 (56.7%) and CT in 71 (43.3%) children. Indications for brain MRI/CT were as follows: anxiety and/or insistence by the child's family (71.3%), presence of associated features suggesting neurologic dysfunction (13.4%), age under 5 years (12.8%) and abnormal neurologic examination (2.4%). The majority of children (71.4%) had normal neuroimaging findings. In the rest of imaging studies (28.1%), MRI/CT revealed different intracerebral/extracerebral findings not influencing changes in headache management. Only one (0.60%) patient required change in headache management after MRI/CT. Study results proved that, despite available evidence-based clinical guidelines, brain imaging in children with chronic headaches is overused, mostly in order to decrease anxiety of the family/patient.

  8. Understanding Actions of Others: The Electrodynamics of the Left and Right Hemispheres. A High-Density EEG Neuroimaging Study

    PubMed Central

    Ortigue, Stephanie; Sinigaglia, Corrado; Rizzolatti, Giacomo; Grafton, Scott T.

    2010-01-01

    Background When we observe an individual performing a motor act (e.g. grasping a cup) we get two types of information on the basis of how the motor act is done and the context: what the agent is doing (i.e. grasping) and the intention underlying it (i.e. grasping for drinking). Here we examined the temporal dynamics of the brain activations that follow the observation of a motor act and underlie the observer's capacity to understand what the agent is doing and why. Methodology/Principal Findings Volunteers were presented with two-frame video-clips. The first frame (T0) showed an object with or without context; the second frame (T1) showed a hand interacting with the object. The volunteers were instructed to understand the intention of the observed actions while their brain activity was recorded with a high-density 128-channel EEG system. Visual event-related potentials (VEPs) were recorded time-locked with the frame showing the hand-object interaction (T1). The data were analyzed by using electrical neuroimaging, which combines a cluster analysis performed on the group-averaged VEPs with the localization of the cortical sources that give rise to different spatio-temporal states of the global electrical field. Electrical neuroimaging results revealed four major steps: 1) bilateral posterior cortical activations; 2) a strong activation of the left posterior temporal and inferior parietal cortices with almost a complete disappearance of activations in the right hemisphere; 3) a significant increase of the activations of the right temporo-parietal region with simultaneously co-active left hemispheric sources, and 4) a significant global decrease of cortical activity accompanied by the appearance of activation of the orbito-frontal cortex. Conclusions/Significance We conclude that the early striking left hemisphere involvement is due to the activation of a lateralized action-observation/action execution network. The activation of this lateralized network mediates the

  9. Legal liability and research ethics boards: the case of neuroimaging and incidental findings.

    PubMed

    Zarzeczny, Amy; Caulfield, Timothy

    2012-01-01

    Neuroimaging research covers a wide range of intriguing issues from revealing brain structures to investigating what happens in our brain when we lie. The field appears to be thriving, but skepticism and alertness to the various ethical, scientific, policy and philosophical challenges associated with it also appear to be on the rise. One particularly complex issue concerns what to do with incidental findings that emerge during the course of neuroimaging research. Research ethics boards (REBs) play a central role in research oversight. In this paper, we will consider some of the potential issues associated with REB liability in negligence in the context of incidental findings in neuroimaging research. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain injury.

    PubMed

    Lu, Liyan; Wei, Xiaoer; Li, Minghua; Li, Yuehua; Li, Wenbin

    2014-01-01

    Traumatic brain injury (TBI) is one of the leading causes of death worldwide, and mild traumatic brain injury (mTBI) is the most common traumatic injury. It is difficult to detect mTBI using a routine neuroimaging. Advanced techniques with greater sensitivity and specificity for the diagnosis and treatment of mTBI are required. The aim of this review is to offer an overview of various emerging neuroimaging methodologies that can solve the clinical health problems associated with mTBI. Important findings and improvements in neuroimaging that hold value for better detection, characterization and monitoring of objective brain injuries in patients with mTBI are presented. Conventional computed tomography (CT) and magnetic resonance imaging (MRI) are not very efficient for visualizing mTBI. Moreover, techniques such as diffusion tensor imaging, magnetization transfer imaging, susceptibility-weighted imaging, functional MRI, single photon emission computed tomography, positron emission tomography and magnetic resonance spectroscopy imaging were found to be useful for mTBI imaging.

  11. Internet and Gaming Addiction: A Systematic Literature Review of Neuroimaging Studies

    PubMed Central

    Kuss, Daria J.; Griffiths, Mark D.

    2012-01-01

    In the past decade, research has accumulated suggesting that excessive Internet use can lead to the development of a behavioral addiction. Internet addiction has been considered as a serious threat to mental health and the excessive use of the Internet has been linked to a variety of negative psychosocial consequences. The aim of this review is to identify all empirical studies to date that used neuroimaging techniques to shed light upon the emerging mental health problem of Internet and gaming addiction from a neuroscientific perspective. Neuroimaging studies offer an advantage over traditional survey and behavioral research because with this method, it is possible to distinguish particular brain areas that are involved in the development and maintenance of addiction. A systematic literature search was conducted, identifying 18 studies. These studies provide compelling evidence for the similarities between different types of addictions, notably substance-related addictions and Internet and gaming addiction, on a variety of levels. On the molecular level, Internet addiction is characterized by an overall reward deficiency that entails decreased dopaminergic activity. On the level of neural circuitry, Internet and gaming addiction led to neuroadaptation and structural changes that occur as a consequence of prolonged increased activity in brain areas associated with addiction. On a behavioral level, Internet and gaming addicts appear to be constricted with regards to their cognitive functioning in various domains. The paper shows that understanding the neuronal correlates associated with the development of Internet and gaming addiction will promote future research and will pave the way for the development of addiction treatment approaches. PMID:24961198

  12. Internet and gaming addiction: a systematic literature review of neuroimaging studies.

    PubMed

    Kuss, Daria J; Griffiths, Mark D

    2012-09-05

    In the past decade, research has accumulated suggesting that excessive Internet use can lead to the development of a behavioral addiction. Internet addiction has been considered as a serious threat to mental health and the excessive use of the Internet has been linked to a variety of negative psychosocial consequences. The aim of this review is to identify all empirical studies to date that used neuroimaging techniques to shed light upon the emerging mental health problem of Internet and gaming addiction from a neuroscientific perspective. Neuroimaging studies offer an advantage over traditional survey and behavioral research because with this method, it is possible to distinguish particular brain areas that are involved in the development and maintenance of addiction. A systematic literature search was conducted, identifying 18 studies. These studies provide compelling evidence for the similarities between different types of addictions, notably substance-related addictions and Internet and gaming addiction, on a variety of levels. On the molecular level, Internet addiction is characterized by an overall reward deficiency that entails decreased dopaminergic activity. On the level of neural circuitry, Internet and gaming addiction led to neuroadaptation and structural changes that occur as a consequence of prolonged increased activity in brain areas associated with addiction. On a behavioral level, Internet and gaming addicts appear to be constricted with regards to their cognitive functioning in various domains. The paper shows that understanding the neuronal correlates associated with the development of Internet and gaming addiction will promote future research and will pave the way for the development of addiction treatment approaches.

  13. Volumetric neuroimage analysis extensions for the MIPAV software package.

    PubMed

    Bazin, Pierre-Louis; Cuzzocreo, Jennifer L; Yassa, Michael A; Gandler, William; McAuliffe, Matthew J; Bassett, Susan S; Pham, Dzung L

    2007-09-15

    We describe a new collection of publicly available software tools for performing quantitative neuroimage analysis. The tools perform semi-automatic brain extraction, tissue classification, Talairach alignment, and atlas-based measurements within a user-friendly graphical environment. They are implemented as plug-ins for MIPAV, a freely available medical image processing software package from the National Institutes of Health. Because the plug-ins and MIPAV are implemented in Java, both can be utilized on nearly any operating system platform. In addition to the software plug-ins, we have also released a digital version of the Talairach atlas that can be used to perform regional volumetric analyses. Several studies are conducted applying the new tools to simulated and real neuroimaging data sets.

  14. Visualization and unsupervised predictive clustering of high-dimensional multimodal neuroimaging data.

    PubMed

    Mwangi, Benson; Soares, Jair C; Hasan, Khader M

    2014-10-30

    Neuroimaging machine learning studies have largely utilized supervised algorithms - meaning they require both neuroimaging scan data and corresponding target variables (e.g. healthy vs. diseased) to be successfully 'trained' for a prediction task. Noticeably, this approach may not be optimal or possible when the global structure of the data is not well known and the researcher does not have an a priori model to fit the data. We set out to investigate the utility of an unsupervised machine learning technique; t-distributed stochastic neighbour embedding (t-SNE) in identifying 'unseen' sample population patterns that may exist in high-dimensional neuroimaging data. Multimodal neuroimaging scans from 92 healthy subjects were pre-processed using atlas-based methods, integrated and input into the t-SNE algorithm. Patterns and clusters discovered by the algorithm were visualized using a 2D scatter plot and further analyzed using the K-means clustering algorithm. t-SNE was evaluated against classical principal component analysis. Remarkably, based on unlabelled multimodal scan data, t-SNE separated study subjects into two very distinct clusters which corresponded to subjects' gender labels (cluster silhouette index value=0.79). The resulting clusters were used to develop an unsupervised minimum distance clustering model which identified 93.5% of subjects' gender. Notably, from a neuropsychiatric perspective this method may allow discovery of data-driven disease phenotypes or sub-types of treatment responders. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. An expanded role for neuroimaging in the evaluation of memory impairment

    PubMed Central

    Desikan, Rahul S.; Rafii, Michael S.; Brewer, James B.; Hess, Christopher P.

    2014-01-01

    Alzheimer’s disease (AD) affects millions of people worldwide. The neuropathologic process underlying AD begins years, if not decades, before the onset of memory decline. Recent advances in neuroimaging suggest that it is now possible to detect AD-associated neuropathological changes well before dementia onset. Here, we evaluate the role of recently developed in vivo biomarkers in the clinical evaluation of AD. We discuss how assessment strategies might incorporate neuroimaging markers to better inform patients, families and clinicians when memory impairment prompts a search for diagnosis and management options. PMID:23764728

  16. In Vivo Characterization of Traumatic Brain Injury Neuropathology with Structural and Functional Neuroimaging

    PubMed Central

    LEVINE, BRIAN; FUJIWARA, ESTHER; O’CONNOR, CHARLENE; RICHARD, NADINE; KOVACEVIC, NATASA; MANDIC, MARINA; RESTAGNO, ADRIANA; EASDON, CRAIG; ROBERTSON, IAN H.; GRAHAM, SIMON J.; CHEUNG, GORDON; GAO, FUQIANG; SCHWARTZ, MICHAEL L.; BLACK, SANDRA E.

    2007-01-01

    Quantitative neuroimaging is increasingly used to study the effects of traumatic brain injury (TBI) on brain structure and function. This paper reviews quantitative structural and functional neuroimaging studies of patients with TBI, with an emphasis on the effects of diffuse axonal injury (DAI), the primary neuropathology in TBI. Quantitative structural neuroimaging has evolved from simple planometric measurements through targeted region-of-interest analyses to whole-brain analysis of quantified tissue compartments. Recent studies converge to indicate widespread volume loss of both gray and white matter in patients with moderate-to-severe TBI. These changes can be documented even when patients with focal lesions are excluded. Broadly speaking, performance on standard neuropsychological tests of speeded information processing are related to these changes, but demonstration of specific brain-behavior relationships requires more refined experimental behavioral measures. The functional consequences of these structural changes can be imaged with activation functional neuroimaging. Although this line of research is at an early stage, results indicate that TBI causes a more widely dispersed activation in frontal and posterior cortices. Further progress in analysis of the consequences of TBI on neural structure and function will require control of variability in neuropathology and behavior. PMID:17020478

  17. Content-specific evidence accumulation in inferior temporal cortex during perceptual decision-making

    PubMed Central

    Tremel, Joshua J.; Wheeler, Mark E.

    2015-01-01

    During a perceptual decision, neuronal activity can change as a function of time-integrated evidence. Such neurons may serve as decision variables, signaling a choice when activity reaches a boundary. Because the signals occur on a millisecond timescale, translating to human decision-making using functional neuroimaging has been challenging. Previous neuroimaging work in humans has identified patterns of neural activity consistent with an accumulation account. However, the degree to which the accumulating neuroimaging signals reflect specific sources of perceptual evidence is unknown. Using an extended face/house discrimination task in conjunction with cognitive modeling, we tested whether accumulation signals, as measured using functional magnetic resonance imaging (fMRI), are stimulus-specific. Accumulation signals were defined as a change in the slope of the rising edge of activation corresponding with response time (RT), with higher slopes associated with faster RTs. Consistent with an accumulation account, fMRI activity in face- and house-selective regions in the inferior temporal cortex increased at a rate proportional to decision time in favor of the preferred stimulus. This finding indicates that stimulus-specific regions perform an evidence integrative function during goal-directed behavior and that different sources of evidence accumulate separately. We also assessed the decision-related function of other regions throughout the brain and found that several regions were consistent with classifications from prior work, suggesting a degree of domain generality in decision processing. Taken together, these results provide support for an integration-to-boundary decision mechanism and highlight possible roles of both domain-specific and domain-general regions in decision evidence evaluation. PMID:25562821

  18. Neuroimaging in repetitive brain trauma

    PubMed Central

    2014-01-01

    Sports-related concussions are one of the major causes of mild traumatic brain injury. Although most patients recover completely within days to weeks, those who experience repetitive brain trauma (RBT) may be at risk for developing a condition known as chronic traumatic encephalopathy (CTE). While this condition is most commonly observed in athletes who experience repetitive concussive and/or subconcussive blows to the head, such as boxers, football players, or hockey players, CTE may also affect soldiers on active duty. Currently, the only means by which to diagnose CTE is by the presence of phosphorylated tau aggregations post-mortem. Non-invasive neuroimaging, however, may allow early diagnosis as well as improve our understanding of the underlying pathophysiology of RBT. The purpose of this article is to review advanced neuroimaging methods used to investigate RBT, including diffusion tensor imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, susceptibility weighted imaging, and positron emission tomography. While there is a considerable literature using these methods in brain injury in general, the focus of this review is on RBT and those subject populations currently known to be susceptible to RBT, namely athletes and soldiers. Further, while direct detection of CTE in vivo has not yet been achieved, all of the methods described in this review provide insight into RBT and will likely lead to a better characterization (diagnosis), in vivo, of CTE than measures of self-report. PMID:25031630

  19. Structural and Functional Neuroimaging of Visual Hallucinations in Lewy Body Disease: A Systematic Literature Review

    PubMed Central

    Cagnin, Annachiara; Bandmann, Oliver; Venneri, Annalena

    2017-01-01

    Patients with Lewy body disease (LBD) frequently experience visual hallucinations (VH), well-formed images perceived without the presence of real stimuli. The structural and functional brain mechanisms underlying VH in LBD are still unclear. The present review summarises the current literature on the neural correlates of VH in LBD, namely Parkinson’s disease (PD), and dementia with Lewy bodies (DLB). Following a systematic literature search, 56 neuroimaging studies of VH in PD and DLB were critically reviewed and evaluated for quality assessment. The main structural neuroimaging results on VH in LBD revealed grey matter loss in frontal areas in patients with dementia, and parietal and occipito-temporal regions in PD without dementia. Parietal and temporal hypometabolism was also reported in hallucinating PD patients. Disrupted functional connectivity was detected especially in the default mode network and fronto-parietal regions. However, evidence on structural and functional connectivity is still limited and requires further investigation. The current literature is in line with integrative models of VH suggesting a role of attention and perception deficits in the development of VH. However, despite the close relationship between VH and cognitive impairment, its associations with brain structure and function have been explored only by a limited number of studies. PMID:28714891

  20. Combined neurostimulation and neuroimaging in cognitive neuroscience: past, present, and future.

    PubMed

    Bestmann, Sven; Feredoes, Eva

    2013-08-01

    Modern neurostimulation approaches in humans provide controlled inputs into the operations of cortical regions, with highly specific behavioral consequences. This enables causal structure-function inferences, and in combination with neuroimaging, has provided novel insights into the basic mechanisms of action of neurostimulation on distributed networks. For example, more recent work has established the capacity of transcranial magnetic stimulation (TMS) to probe causal interregional influences, and their interaction with cognitive state changes. Combinations of neurostimulation and neuroimaging now face the challenge of integrating the known physiological effects of neurostimulation with theoretical and biological models of cognition, for example, when theoretical stalemates between opposing cognitive theories need to be resolved. This will be driven by novel developments, including biologically informed computational network analyses for predicting the impact of neurostimulation on brain networks, as well as novel neuroimaging and neurostimulation techniques. Such future developments may offer an expanded set of tools with which to investigate structure-function relationships, and to formulate and reconceptualize testable hypotheses about complex neural network interactions and their causal roles in cognition. © 2013 New York Academy of Sciences.

  1. Human Fear Conditioning and Extinction in Neuroimaging: A Systematic Review

    PubMed Central

    Sehlmeyer, Christina; Schöning, Sonja; Zwitserlood, Pienie; Pfleiderer, Bettina; Kircher, Tilo; Arolt, Volker; Konrad, Carsten

    2009-01-01

    Fear conditioning and extinction are basic forms of associative learning that have gained considerable clinical relevance in enhancing our understanding of anxiety disorders and facilitating their treatment. Modern neuroimaging techniques have significantly aided the identification of anatomical structures and networks involved in fear conditioning. On closer inspection, there is considerable variation in methodology and results between studies. This systematic review provides an overview of the current neuroimaging literature on fear conditioning and extinction on healthy subjects, taking into account methodological issues such as the conditioning paradigm. A Pubmed search, as of December 2008, was performed and supplemented by manual searches of bibliographies of key articles. Two independent reviewers made the final study selection and data extraction. A total of 46 studies on cued fear conditioning and/or extinction on healthy volunteers using positron emission tomography or functional magnetic resonance imaging were reviewed. The influence of specific experimental factors, such as contingency and timing parameters, assessment of conditioned responses, and characteristics of conditioned and unconditioned stimuli, on cerebral activation patterns was examined. Results were summarized descriptively. A network consisting of fear-related brain areas, such as amygdala, insula, and anterior cingulate cortex, is activated independently of design parameters. However, some neuroimaging studies do not report these findings in the presence of methodological heterogeneities. Furthermore, other brain areas are differentially activated, depending on specific design parameters. These include stronger hippocampal activation in trace conditioning and tactile stimulation. Furthermore, tactile unconditioned stimuli enhance activation of pain related, motor, and somatosensory areas. Differences concerning experimental factors may partly explain the variance between neuroimaging

  2. Pain perception and hypnosis: findings from recent functional neuroimaging studies.

    PubMed

    Del Casale, Antonio; Ferracuti, Stefano; Rapinesi, Chiara; Serata, Daniele; Caltagirone, Saverio Simone; Savoja, Valeria; Piacentino, Daria; Callovini, Gemma; Manfredi, Giovanni; Sani, Gabriele; Kotzalidis, Georgios D; Girardi, Paolo

    2015-01-01

    Hypnosis modulates pain perception and tolerance by affecting cortical and subcortical activity in brain regions involved in these processes. By reviewing functional neuroimaging studies focusing on pain perception under hypnosis, the authors aimed to identify brain activation-deactivation patterns occurring in hypnosis-modulated pain conditions. Different changes in brain functionality occurred throughout all components of the pain network and other brain areas. The anterior cingulate cortex appears to be central in modulating pain circuitry activity under hypnosis. Most studies also showed that the neural functions of the prefrontal, insular, and somatosensory cortices are consistently modified during hypnosis-modulated pain conditions. Functional neuroimaging studies support the clinical use of hypnosis in the management of pain conditions.

  3. Neuroimaging the Effectiveness of Substance Use Disorder Treatments.

    PubMed

    Cabrera, Elizabeth A; Wiers, Corinde E; Lindgren, Elsa; Miller, Gregg; Volkow, Nora D; Wang, Gene-Jack

    2016-09-01

    Neuroimaging techniques to measure the function and biochemistry of the human brain such as positron emission tomography (PET), proton magnetic resonance spectroscopy ((1)H MRS), and functional magnetic resonance imaging (fMRI), are powerful tools for assessing neurobiological mechanisms underlying the response to treatments in substance use disorders. Here, we review the neuroimaging literature on pharmacological and behavioral treatment in substance use disorder. We focus on neural effects of medications that reduce craving (e.g., naltrexone, bupropion hydrochloride, baclofen, methadone, varenicline) and that improve cognitive control (e.g., modafinil, N-acetylcysteine), of behavioral treatments for substance use disorders (e.g., cognitive bias modification training, virtual reality, motivational interventions) and neuromodulatory interventions such as neurofeedback and transcranial magnetic stimulation. A consistent finding for the effectiveness of therapeutic interventions identifies the improvement of executive control networks and the dampening of limbic activation, highlighting their values as targets for therapeutic interventions in substance use disorders.

  4. [Neuropsychology of Tourette's disorder: cognition, neuroimaging and creativity].

    PubMed

    Espert, R; Gadea, M; Alino, M; Oltra-Cucarella, J

    2017-02-24

    Tourette's disorder is the result of fronto-striatal brain dysfunction affecting people of all ages, with a debut in early childhood and continuing into adolescence and adulthood. This article reviews the main cognitive, functional neuroimaging and creativity-related studies in a disorder characterized by an excess of dopamine in the brain. Given the special cerebral configuration of these patients, neuropsychological alterations, especially in executive functions, should be expected. However, the findings are inconclusive and are conditioned by factors such as comorbidity with attention deficit hyperactivity disorder and obsessive-compulsive disorder, age or methodological variables. On the other hand, the neuroimaging studies carried out over the last decade have been able to explain the clinical symptoms of Tourette's disorder patients, with special relevance for the supplementary motor area and the anterior cingulate gyrus. Finally, although there is no linear relationship between excess of dopamine and creativity, the scientific literature emphasizes an association between Tourette's disorder and musical creativity, which could be translated into intervention programs based on music.

  5. The iconography of mourning and its neural correlates: a functional neuroimaging study

    PubMed Central

    Labek, Karin; Berger, Samantha; Buchheim, Anna; Bosch, Julia; Spohrs, Jennifer; Dommes, Lisa; Beschoner, Petra; Stingl, Julia C.

    2017-01-01

    Abstract The present functional neuroimaging study focuses on the iconography of mourning. A culture-specific pattern of body postures of mourning individuals, mostly suggesting withdrawal, emerged from a survey of visual material. When used in different combinations in stylized drawings in our neuroimaging study, this material activated cortical areas commonly seen in studies of social cognition (temporo-parietal junction, superior temporal gyrus, and inferior temporal lobe), empathy for pain (somatosensory cortex), and loss (precuneus, middle/posterior cingular gyrus). This pattern of activation developed over time. While in the early phases of exposure lower association areas, such as the extrastriate body area, were active, in the late phases activation in parietal and temporal association areas and the prefrontal cortex was more prominent. These findings are consistent with the conventional and contextual character of iconographic material, and further differentiate it from emotionally negatively valenced and high-arousing stimuli. In future studies, this neuroimaging assay may be useful in characterizing interpretive appraisal of material of negative emotional valence. PMID:28449116

  6. Therapeutic orthosis and electrical stimulation for upper extremity hemiplegia after stroke: a review of effectiveness based on evidence.

    PubMed

    Aoyagi, Yoichiro; Tsubahara, Akio

    2004-01-01

    Upper extremity hemiplegia after stroke is common and disabling. Apart from conventional physical and occupational therapy, a number of additional approaches that use devices such as orthoses, prostheses, electrical stimulation, and robots have been introduced. The purpose of this review was to assess the clinical efficacy of such devices used for the affected upper extremities of acute, subacute, and chronic stroke patients. Assessments of their effectiveness and recommendations were based on the weight of published scientific evidence. The amount of evidence with respect to hand splints and shoulder slings is limited. Further study with a well-designed randomized controlled trial (RCT) is required to investigate accurately their short- and long-term efficacy. A number of studies suggested that the use of electrical stimulation for reducing shoulder subluxation or improving the function of wrist and finger extensors is effective during or shortly after the daily treatment period. The robotic approach to hemiplegic upper extremities appears to be a novel therapeutic strategy that may help improve hand and arm function. However, the longer term effectiveness after discontinuation as well as the motor recovery mechanism of electrical stimulation or robotic devices remains unclear. More research is needed to determine the evidence-based effectiveness of electrical stimulation or other devices for stroke survivors.

  7. Making an unknown unknown a known unknown: Missing data in longitudinal neuroimaging studies.

    PubMed

    Matta, Tyler H; Flournoy, John C; Byrne, Michelle L

    2017-10-28

    The analysis of longitudinal neuroimaging data within the massively univariate framework provides the opportunity to study empirical questions about neurodevelopment. Missing outcome data are an all-to-common feature of any longitudinal study, a feature that, if handled improperly, can reduce statistical power and lead to biased parameter estimates. The goal of this paper is to provide conceptual clarity of the issues and non-issues that arise from analyzing incomplete data in longitudinal studies with particular focus on neuroimaging data. This paper begins with a review of the hierarchy of missing data mechanisms and their relationship to likelihood-based methods, a review that is necessary not just for likelihood-based methods, but also for multiple-imputation methods. Next, the paper provides a series of simulation studies with designs common in longitudinal neuroimaging studies to help illustrate missing data concepts regardless of interpretation. Finally, two applied examples are used to demonstrate the sensitivity of inferences under different missing data assumptions and how this may change the substantive interpretation. The paper concludes with a set of guidelines for analyzing incomplete longitudinal data that can improve the validity of research findings in developmental neuroimaging research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. The Alzheimer's Disease Neuroimaging Initiative 2 PET Core: 2015.

    PubMed

    Jagust, William J; Landau, Susan M; Koeppe, Robert A; Reiman, Eric M; Chen, Kewei; Mathis, Chester A; Price, Julie C; Foster, Norman L; Wang, Angela Y

    2015-07-01

    This article reviews the work done in the Alzheimer's Disease Neuroimaging Initiative positron emission tomography (ADNI PET) core over the past 5 years, largely concerning techniques, methods, and results related to amyloid imaging in ADNI. The PET Core has used [(18)F]florbetapir routinely on ADNI participants, with over 1600 scans available for download. Four different laboratories are involved in data analysis, and have examined factors such as longitudinal florbetapir analysis, use of [(18)F]fluorodeoxyglucose (FDG)-PET in clinical trials, and relationships between different biomarkers and cognition. Converging evidence from the PET Core has indicated that cross-sectional and longitudinal florbetapir analyses require different reference regions. Studies have also examined the relationship between florbetapir data obtained immediately after injection, which reflects perfusion, and FDG-PET results. Finally, standardization has included the translation of florbetapir PET data to a centiloid scale. The PET Core has demonstrated a variety of methods for the standardization of biomarkers such as florbetapir PET in a multicenter setting. Copyright © 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  9. Neuroimaging and Neurodevelopmental Outcome in Extremely Preterm Infants

    PubMed Central

    Barnes, Patrick D.; Bulas, Dorothy; Slovis, Thomas L.; Finer, Neil N.; Wrage, Lisa A.; Das, Abhik; Tyson, Jon E.; Stevenson, David K.; Carlo, Waldemar A.; Walsh, Michele C.; Laptook, Abbot R.; Yoder, Bradley A.; Van Meurs, Krisa P.; Faix, Roger G.; Rich, Wade; Newman, Nancy S.; Cheng, Helen; Heyne, Roy J.; Vohr, Betty R.; Acarregui, Michael J.; Vaucher, Yvonne E.; Pappas, Athina; Peralta-Carcelen, Myriam; Wilson-Costello, Deanne E.; Evans, Patricia W.; Goldstein, Ricki F.; Myers, Gary J.; Poindexter, Brenda B.; McGowan, Elisabeth C.; Adams-Chapman, Ira; Fuller, Janell; Higgins, Rosemary D.

    2015-01-01

    BACKGROUND: Extremely preterm infants are at risk for neurodevelopmental impairment (NDI). Early cranial ultrasound (CUS) is usual practice, but near-term brain MRI has been reported to better predict outcomes. We prospectively evaluated MRI white matter abnormality (WMA) and cerebellar lesions, and serial CUS adverse findings as predictors of outcomes at 18 to 22 months’ corrected age. METHODS: Early and late CUS, and brain MRI were read by masked central readers, in a large cohort (n = 480) of infants <28 weeks’ gestation surviving to near term in the Neonatal Research Network. Outcomes included NDI or death after neuroimaging, and significant gross motor impairment or death, with NDI defined as cognitive composite score <70, significant gross motor impairment, and severe hearing or visual impairment. Multivariable models evaluated the relative predictive value of neuroimaging while controlling for other factors. RESULTS: Of 480 infants, 15 died and 20 were lost. Increasing severity of WMA and significant cerebellar lesions on MRI were associated with adverse outcomes. Cerebellar lesions were rarely identified by CUS. In full multivariable models, both late CUS and MRI, but not early CUS, remained independently associated with NDI or death (MRI cerebellar lesions: odds ratio, 3.0 [95% confidence interval: 1.3–6.8]; late CUS: odds ratio, 9.8 [95% confidence interval: 2.8–35]), and significant gross motor impairment or death. In models that did not include late CUS, MRI moderate-severe WMA was independently associated with adverse outcomes. CONCLUSIONS: Both late CUS and near-term MRI abnormalities were associated with outcomes, independent of early CUS and other factors, underscoring the relative prognostic value of near-term neuroimaging. PMID:25554820

  10. Neuroimaging Craving: Urge Intensity Matters

    PubMed Central

    Wilson, Stephen J.; Sayette, Michael A.

    2015-01-01

    Functional neuroimaging has become an increasingly common tool for studying drug craving. Furthermore, functional neuroimaging studies, which have addressed an incredibly diverse array of questions regarding the nature and treatment of craving, have had a substantial impact on theoretical models of addiction. Here, we offer three points related to this sizeable and influential body of research. First, we assert that the craving most investigators seek to study represents not just a desire but a strong desire to use drugs, consistent with prominent theoretical and clinical descriptions of craving. Second, we highlight that, despite the clear conceptual and clinical emphasis on craving as an intense desire, brain imaging studies often have been explicitly designed in a way that reduces the ability to generate powerful cravings. We illustrate this point by reviewing the peak urge levels endorsed by participants in functional magnetic resonance imaging (fMRI) studies of cigarette craving in nicotine-deprived versus nondeprived smokers. Third, we suggest that brain responses measured during mild states of desire (such as following satiety) differ in fundamental ways from those measured during states of overpowering desire (i.e., craving) to use drugs. We support this position by way of a meta-analysis revealing that fMRI cue exposure studies using nicotine-deprived smokers have produced different patterns of brain activation than those using nondeprived smokers. Regarding brain imaging studies of craving, intensity of the urges matter, and more explicit attention to urge intensity in future work has the potential to yield valuable information about the nature of craving. PMID:25073979

  11. The Washington University Central Neuroimaging Data Archive

    PubMed Central

    Gurney, Jenny; Olsen, Timothy; Flavin, John; Ramaratnam, Mohana; Archie, Kevin; Ransford, James; Herrick, Rick; Wallace, Lauren; Cline, Jeanette; Horton, Will; Marcus, Daniel S

    2016-01-01

    Since the early 2000’s, much of the neuroimaging work at Washington University (WU) has been facilitated by the Central Neuroimaging Data Archive (CNDA), an XNAT-based imaging informatics system. The CNDA is uniquely related to XNAT, as it served as the original codebase for the XNAT open source platform. The CNDA hosts data acquired in over 1000 research studies, encompassing 36,000 subjects and more than 60,000 imaging sessions. Most imaging modalities used in modern human research are represented in the CNDA, including magnetic resonance (MR), positron emission tomography (PET), computed tomography (CT), nuclear medicine (NM), computed radiography (CR), digital radiography (DX), and ultrasound (US). However, the majority of the imaging data in the CNDA are MR and PET of the human brain. Currently, about 20% of the total imaging data in the CNDA is available by request to external researchers. CNDA’s available data includes large sets of imaging sessions and in some cases clinical, psychometric, tissue, or genetic data acquired in the study of Alzheimer’s disease, brain metabolism, cancer, HIV, sickle cell anemia, and Tourette syndrome. PMID:26439514

  12. Animal minds and neuroimaging--bridging the gap between science and ethics?

    PubMed

    Buller, Tom

    2014-04-01

    As Colin Allen has argued, discussions between science and ethics about the mentality and moral status of nonhuman animals often stall on account of the fact that the properties that ethics presents as evidence of animal mentality and moral status, namely consciousness and sentience, are not observable "scientifically respectable" properties. In order to further discussion between science and ethics, it seems, therefore, that we need to identify properties that would satisfy both domains. In this article I examine the mentality and moral status of nonhuman animals from the perspective of neuroethics. By adopting this perspective, we can see how advances in neuroimaging regarding (1) research into the neurobiology of pain, (2) "brain reading," and (3) the minimally conscious state may enable us to identify properties that help bridge the gap between science and ethics, and hence help further the debate about the mentality and moral status of nonhuman animals.

  13. [Seeking the aetiology of autistic spectrum disorder. Part 2: Functional neuroimaging].

    PubMed

    Bryńska, Anita

    2012-01-01

    Multiple functional imaging techniques help to a better understanding of the neurobiological basis of autism-spectrum disorders (ASD). The early functional imaging studies on ASD focused on task-specific methods related to core symptom domains and explored patterns of activation in response to face processing, theory of mind tasks, language processing and executive function tasks. On the other hand, fMRI research in ASD focused on the development of functional connectivity methods and has provided evidence of alterations in cortical connectivity in ASD and establish autism as a disorder of under-connectivity among the brain regions participating in cortical networks. This atypical functional connectivity in ASD results in inefficiency and poor integration of processing in network connections to achieve task performance. The goal of this review is to summarise the actual neuroimaging functional data and examine their implication for understanding of the neurobiology of ASD.

  14. Neuroimaging Study Designs, Computational Analyses and Data Provenance Using the LONI Pipeline

    PubMed Central

    Dinov, Ivo; Lozev, Kamen; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Pierce, Jonathan; Zamanyan, Alen; Chakrapani, Shruthi; Van Horn, John; Parker, D. Stott; Magsipoc, Rico; Leung, Kelvin; Gutman, Boris; Woods, Roger; Toga, Arthur

    2010-01-01

    Modern computational neuroscience employs diverse software tools and multidisciplinary expertise to analyze heterogeneous brain data. The classical problems of gathering meaningful data, fitting specific models, and discovering appropriate analysis and visualization tools give way to a new class of computational challenges—management of large and incongruous data, integration and interoperability of computational resources, and data provenance. We designed, implemented and validated a new paradigm for addressing these challenges in the neuroimaging field. Our solution is based on the LONI Pipeline environment [3], [4], a graphical workflow environment for constructing and executing complex data processing protocols. We developed study-design, database and visual language programming functionalities within the LONI Pipeline that enable the construction of complete, elaborate and robust graphical workflows for analyzing neuroimaging and other data. These workflows facilitate open sharing and communication of data and metadata, concrete processing protocols, result validation, and study replication among different investigators and research groups. The LONI Pipeline features include distributed grid-enabled infrastructure, virtualized execution environment, efficient integration, data provenance, validation and distribution of new computational tools, automated data format conversion, and an intuitive graphical user interface. We demonstrate the new LONI Pipeline features using large scale neuroimaging studies based on data from the International Consortium for Brain Mapping [5] and the Alzheimer's Disease Neuroimaging Initiative [6]. User guides, forums, instructions and downloads of the LONI Pipeline environment are available at http://pipeline.loni.ucla.edu. PMID:20927408

  15. ABrIL - Advanced Brain Imaging Lab : a cloud based computation environment for cooperative neuroimaging projects.

    PubMed

    Neves Tafula, Sérgio M; Moreira da Silva, Nádia; Rozanski, Verena E; Silva Cunha, João Paulo

    2014-01-01

    Neuroscience is an increasingly multidisciplinary and highly cooperative field where neuroimaging plays an important role. Neuroimaging rapid evolution is demanding for a growing number of computing resources and skills that need to be put in place at every lab. Typically each group tries to setup their own servers and workstations to support their neuroimaging needs, having to learn from Operating System management to specific neuroscience software tools details before any results can be obtained from each setup. This setup and learning process is replicated in every lab, even if a strong collaboration among several groups is going on. In this paper we present a new cloud service model - Brain Imaging Application as a Service (BiAaaS) - and one of its implementation - Advanced Brain Imaging Lab (ABrIL) - in the form of an ubiquitous virtual desktop remote infrastructure that offers a set of neuroimaging computational services in an interactive neuroscientist-friendly graphical user interface (GUI). This remote desktop has been used for several multi-institution cooperative projects with different neuroscience objectives that already achieved important results, such as the contribution to a high impact paper published in the January issue of the Neuroimage journal. The ABrIL system has shown its applicability in several neuroscience projects with a relatively low-cost, promoting truly collaborative actions and speeding up project results and their clinical applicability.

  16. Order Information in Working Memory: An Integrative Review of Evidence From Brain and Behavior

    ERIC Educational Resources Information Center

    Marshuetz, Christy

    2005-01-01

    Evidence about memory for order information comes from a number of different methodologies: human cognition, patient studies, neuroimaging studies, and animal lesion and behavioral studies. The present article discusses (a) evidence that order and item memory are separable; (b) proposed mechanisms for order memory (interitem associations, direct…

  17. Neuroimaging-based biomarkers in psychiatry: clinical opportunities of a paradigm shift.

    PubMed

    Fu, Cynthia H Y; Costafreda, Sergi G

    2013-09-01

    Neuroimaging research has substantiated the functional and structural abnormalities underlying psychiatric disorders but has, thus far, failed to have a significant impact on clinical practice. Recently, neuroimaging-based diagnoses and clinical predictions derived from machine learning analysis have shown significant potential for clinical translation. This review introduces the key concepts of this approach, including how the multivariate integration of patterns of brain abnormalities is a crucial component. We survey recent findings that have potential application for diagnosis, in particular early and differential diagnoses in Alzheimer disease and schizophrenia, and the prediction of clinical response to treatment in depression. We discuss the specific clinical opportunities and the challenges for developing biomarkers for psychiatry in the absence of a diagnostic gold standard. We propose that longitudinal outcomes, such as early diagnosis and prediction of treatment response, offer definite opportunities for progress. We propose that efforts should be directed toward clinically challenging predictions in which neuroimaging may have added value, compared with the existing standard assessment. We conclude that diagnostic and prognostic biomarkers will be developed through the joint application of expert psychiatric knowledge in addition to advanced methods of analysis.

  18. The Evolution of Neuroimaging Research and Developmental Language Disorders.

    ERIC Educational Resources Information Center

    Lane, Angela B.; Foundas, Anne L.; Leonard, Christiana M.

    2001-01-01

    This article reviews current neuroimaging literature, including computer tomography, positron emission tomography, single photon emission spectroscopy, and magnetic resonance imaging, on individuals with developmental language disorders. The review suggests a complicated relationship between cortical morphometry and language development that is…

  19. Pain as a fact and heuristic: how pain neuroimaging illuminates moral dimensions of law.

    PubMed

    Pustilnik, Amanda C

    2012-05-01

    In legal domains ranging from tort to torture, pain and its degree do important definitional work by delimiting boundaries of lawfulness and of entitlements. Yet, for all the work done by pain as a term in legal texts and practice, it has a confounding lack of external verifiability. Now, neuroimaging is rendering pain and myriad other subjective states at least partly ascertainable. This emerging ability to ascertain and quantify subjective states is prompting a "hedonic" or a "subjectivist" turn in legal scholarship, which has sparked a vigorous debate as to whether the quantification of subjective states might affect legal theory and practice. Subjectivists contend that much values-talk in law has been a necessary but poor substitute for quantitative determinations of subjective states--determinations that will be possible in the law's "experiential future." This Article argues the converse: that pain discourse in law frequently is a heuristic for values. Drawing on interviews and laboratory visits with neuroimaging researchers, this Article shows current and in-principle limitations of pain quantification through neuroimaging. It then presents case studies on torture-murder, torture, the death penalty, and abortion to show the largely heuristic role of pain discourse in law. Introducing the theory of "embodied morality," the Article describes how moral conceptions of rights and duties are informed by human physicality and constrained by the limits of empathic identification. Pain neuroimaging helps reveal this dual factual and heuristic nature of pain in the law, and thus itself points to the translational work required for neuroimaging to influence, much less transform, legal practice and doctrine.

  20. A Developmental Neuroimaging Investigation of the Change Paradigm

    ERIC Educational Resources Information Center

    Thomas, Laura A.; Hall, Julie M.; Skup, Martha; Jenkins, Sarah E.; Pine, Daniel S.; Leibenluft, Ellen

    2011-01-01

    This neuroimaging study examines the development of cognitive flexibility using the Change task in a sample of youths and adults. The Change task requires subjects to inhibit a prepotent response and substitute an alternative response, and the task incorporates an algorithm that adjusts task difficulty in response to subject performance. Data from…

  1. Nervous System Injury and Neuroimaging of Zika Virus Infection.

    PubMed

    Wu, Shanshan; Zeng, Yu; Lerner, Alexander; Gao, Bo; Law, Meng

    2018-01-01

    In 2016, World Health Organization announced Zika virus infection and its neurological sequalae are a public health emergency of global scope. Preliminary studies have confirmed a relationship between Zika virus infection and certain neurological disorders, including microcephaly and Guillain-Barre syndrome (GBS). The neuroimaging features of microcephaly secondary to Zika virus infection include calcifications at the junction of gray-white matter and subcortical white matter with associated cortical abnormalities, diminution of white matter, large ventricles with or without hydrocephalus, cortical malformations, hypoplasia of cerebellum and brainstem, and enlargement of cerebellomedullary cistern. Contrast enhancement of the cauda equine nerve roots is the typical neuroimaging finding of GBS associated with Zika virus. This review describes the nervous system disorders and associated imaging findings seen in Zika virus infection, with the aim to improve the understanding of this disease. Imaging plays a key role on accurate diagnosis and prognostic evaluation of this disease.

  2. The iconography of mourning and its neural correlates: a functional neuroimaging study.

    PubMed

    Labek, Karin; Berger, Samantha; Buchheim, Anna; Bosch, Julia; Spohrs, Jennifer; Dommes, Lisa; Beschoner, Petra; Stingl, Julia C; Viviani, Roberto

    2017-08-01

    The present functional neuroimaging study focuses on the iconography of mourning. A culture-specific pattern of body postures of mourning individuals, mostly suggesting withdrawal, emerged from a survey of visual material. When used in different combinations in stylized drawings in our neuroimaging study, this material activated cortical areas commonly seen in studies of social cognition (temporo-parietal junction, superior temporal gyrus, and inferior temporal lobe), empathy for pain (somatosensory cortex), and loss (precuneus, middle/posterior cingular gyrus). This pattern of activation developed over time. While in the early phases of exposure lower association areas, such as the extrastriate body area, were active, in the late phases activation in parietal and temporal association areas and the prefrontal cortex was more prominent. These findings are consistent with the conventional and contextual character of iconographic material, and further differentiate it from emotionally negatively valenced and high-arousing stimuli. In future studies, this neuroimaging assay may be useful in characterizing interpretive appraisal of material of negative emotional valence. © The Author (2017). Published by Oxford University Press.

  3. Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology.

    PubMed

    Coull, J T

    1998-07-01

    Attention and arousal are multi-dimensional psychological processes, which interact closely with one another. The neural substrates of attention, as well as the interaction between arousal and attention, are discussed in this review. After a brief discussion of psychological and neuropsychological theories of attention, event-related potential correlates of attention are discussed. Essentially, attention acts to modulate stimulus-induced electrical potentials (N100/P100, P300, N400), rather than generating any unique potentials of its own. Functional neuroimaging studies of attentional orienting, selective attention, divided attention and sustained attention (and its inter-dependence on underlying levels of arousal) are then reviewed. A distinction is drawn between the brain areas which are crucially involved in the top-down modulation of attention (the 'sources' of attention) and those sensory-association areas whose activity is modulated by attention (the 'sites' of attentional expression). Frontal and parietal (usually right-lateralised) cortices and thalamus are most often associated with the source of attentional modulation. Also, the use of functional neuroimaging to test explicit hypotheses about psychological theories of attention is emphasised. These experimental paradigms form the basis for a 'new generation' of functional imaging studies which exploit the dynamic aspect of imaging and demonstrate how it can be used as more than just a 'brain mapping' device. Finally, a review of psychopharmacological studies in healthy human volunteers outlines the contributions of the noradrenergic, cholinergic and dopaminergic neurotransmitter systems to the neurochemical modulation of human attention and arousal. While, noradrenergic and cholinergic systems are involved in 'low-level' aspects of attention (e.g. attentional orienting), the dopaminergic system is associated with more 'executive' aspects of attention such as attentional set-shifting or working memory.

  4. Self-development: integrating cognitive, socioemotional, and neuroimaging perspectives.

    PubMed

    Pfeifer, Jennifer H; Peake, Shannon J

    2012-01-01

    This review integrates cognitive, socioemotional, and neuroimaging perspectives on self-development. Neural correlates of key processes implicated in personal and social identity are reported from studies of children, adolescents, and adults, including autobiographical memory, direct and reflected self-appraisals, and social exclusion. While cortical midline structures of medial prefrontal cortex and medial posterior parietal cortex are consistently identified in neuroimaging studies considering personal identity from a primarily cognitive perspective ("who am I?"), additional regions are implicated by studies considering personal and social identity from a more socioemotional perspective ("what do others think about me, where do I fit in?"), especially in child or adolescent samples. The involvement of these additional regions (including tempo-parietal junction and posterior superior temporal sulcus, temporal poles, anterior insula, ventral striatum, anterior cingulate cortex, middle cingulate cortex, and ventrolateral prefrontal cortex) suggests mentalizing, emotion, and emotion regulation are central to self-development. In addition, these regions appear to function atypically during personal and social identity tasks in autism and depression, exhibiting a broad pattern of hypoactivation and hyperactivation, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Multiple brain atlas database and atlas-based neuroimaging system.

    PubMed

    Nowinski, W L; Fang, A; Nguyen, B T; Raphel, J K; Jagannathan, L; Raghavan, R; Bryan, R N; Miller, G A

    1997-01-01

    For the purpose of developing multiple, complementary, fully labeled electronic brain atlases and an atlas-based neuroimaging system for analysis, quantification, and real-time manipulation of cerebral structures in two and three dimensions, we have digitized, enhanced, segmented, and labeled the following print brain atlases: Co-Planar Stereotaxic Atlas of the Human Brain by Talairach and Tournoux, Atlas for Stereotaxy of the Human Brain by Schaltenbrand and Wahren, Referentially Oriented Cerebral MRI Anatomy by Talairach and Tournoux, and Atlas of the Cerebral Sulci by Ono, Kubik, and Abernathey. Three-dimensional extensions of these atlases have been developed as well. All two- and three-dimensional atlases are mutually preregistered and may be interactively registered with an actual patient's data. An atlas-based neuroimaging system has been developed that provides support for reformatting, registration, visualization, navigation, image processing, and quantification of clinical data. The anatomical index contains about 1,000 structures and over 400 sulcal patterns. Several new applications of the brain atlas database also have been developed, supported by various technologies such as virtual reality, the Internet, and electronic publishing. Fusion of information from multiple atlases assists the user in comprehensively understanding brain structures and identifying and quantifying anatomical regions in clinical data. The multiple brain atlas database and atlas-based neuroimaging system have substantial potential impact in stereotactic neurosurgery and radiotherapy by assisting in visualization and real-time manipulation in three dimensions of anatomical structures, in quantitative neuroradiology by allowing interactive analysis of clinical data, in three-dimensional neuroeducation, and in brain function studies.

  6. Insights from neuroenergetics into the interpretation of functional neuroimaging: an alternative empirical model for studying the brain's support of behavior

    PubMed Central

    Shulman, Robert G; Hyder, Fahmeed; Rothman, Douglas L

    2014-01-01

    Functional neuroimaging measures quantitative changes in neurophysiological parameters coupled to neuronal activity during observable behavior. These results have usually been interpreted by assuming that mental causation of behavior arises from the simultaneous actions of distinct psychological mechanisms or modules. However, reproducible localization of these modules in the brain using functional magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging has been elusive other than for sensory systems. In this paper, we show that neuroenergetic studies using PET, calibrated functional magnetic resonance imaging (fMRI), 13C magnetic resonance spectroscopy, and electrical recordings do not support the standard approach, which identifies the location of mental modules from changes in brain activity. Of importance in reaching this conclusion is that changes in neuronal activities underlying the fMRI signal are many times smaller than the high ubiquitous, baseline neuronal activity, or energy in resting, awake humans. Furthermore, the incremental signal depends on the baseline activity contradicting theoretical assumptions about linearity and insertion of mental modules. To avoid these problems, while making use of these valuable results, we propose that neuroimaging should be used to identify observable brain activities that are necessary for a person's observable behavior rather than being used to seek hypothesized mental processes. PMID:25160670

  7. Neuroimaging craving: urge intensity matters.

    PubMed

    Wilson, Stephen J; Sayette, Michael A

    2015-02-01

    Functional neuroimaging has become an increasingly common tool for studying drug craving. Furthermore, functional neuroimaging studies, which have addressed an incredibly diverse array of questions regarding the nature and treatment of craving, have had a substantial impact on theoretical models of addiction. Here, we offer three points related to this sizeable and influential body of research. First, we assert that the craving most investigators seek to study represents not just a desire but a strong desire to use drugs, consistent with prominent theoretical and clinical descriptions of craving. Secondly, we highlight that, despite the clear conceptual and clinical emphasis on craving as an intense desire, brain imaging studies often have been designed explicitly in a way that reduces the ability to generate powerful cravings. We illustrate this point by reviewing the peak urge levels endorsed by participants in functional magnetic resonance imaging (fMRI) studies of cigarette craving in nicotine-deprived versus non-deprived smokers. Thirdly, we suggest that brain responses measured during mild states of desire (such as following satiety) differ in fundamental ways from those measured during states of overpowering desire (i.e. craving) to use drugs. We support this position by way of a meta-analysis revealing that fMRI cue exposure studies using nicotine-deprived smokers have produced different patterns of brain activation to those using non-deprived smokers. Regarding brain imaging studies of craving, intensity of the urges matter, and more explicit attention to urge intensity in future work has the potential to yield valuable information about the nature of craving. © 2014 Society for the Study of Addiction.

  8. Altered Brain Activity in Unipolar Depression Revisited: Meta-analyses of Neuroimaging Studies.

    PubMed

    Müller, Veronika I; Cieslik, Edna C; Serbanescu, Ilinca; Laird, Angela R; Fox, Peter T; Eickhoff, Simon B

    2017-01-01

    During the past 20 years, numerous neuroimaging experiments have investigated aberrant brain activation during cognitive and emotional processing in patients with unipolar depression (UD). The results of those investigations, however, vary considerably; moreover, previous meta-analyses also yielded inconsistent findings. To readdress aberrant brain activation in UD as evidenced by neuroimaging experiments on cognitive and/or emotional processing. Neuroimaging experiments published from January 1, 1997, to October 1, 2015, were identified by a literature search of PubMed, Web of Science, and Google Scholar using different combinations of the terms fMRI (functional magnetic resonance imaging), PET (positron emission tomography), neural, major depression, depression, major depressive disorder, unipolar depression, dysthymia, emotion, emotional, affective, cognitive, task, memory, working memory, inhibition, control, n-back, and Stroop. Neuroimaging experiments (using fMRI or PET) reporting whole-brain results of group comparisons between adults with UD and healthy control individuals as coordinates in a standard anatomic reference space and using an emotional or/and cognitive challenging task were selected. Coordinates reported to show significant activation differences between UD and healthy controls during emotional or cognitive processing were extracted. By using the revised activation likelihood estimation algorithm, different meta-analyses were calculated. Meta-analyses tested for brain regions consistently found to show aberrant brain activation in UD compared with controls. Analyses were calculated across all emotional processing experiments, all cognitive processing experiments, positive emotion processing, negative emotion processing, experiments using emotional face stimuli, experiments with a sex discrimination task, and memory processing. All meta-analyses were calculated across experiments independent of reporting an increase or decrease of activity in

  9. Neuroimaging in pediatric traumatic head injury: diagnostic considerations and relationships to neurobehavioral outcome.

    PubMed

    Bigler, E D

    1999-08-01

    Contemporary neuorimaging techniques in child traumatic brain injury are reviewed, with an emphasis on computerized tomography (CT) and magnetic resonance (MR) imaging. A brief overview of MR spectroscopy (MRS), functional MR imaging (fMRI), single-photon emission computed tomography (SPECT), and magnetoencephalography (MEG) is also provided because these techniques will likely constitute important neuroimaging techniques of the future. Numerous figures are provided to illustrate the multifaceted manner in which traumatic deficits can be imaged and the role of neuroimaging information as it relates to TBI outcome.

  10. Is the statistic value all we should care about in neuroimaging?

    PubMed

    Chen, Gang; Taylor, Paul A; Cox, Robert W

    2017-02-15

    Here we address an important issue that has been embedded within the neuroimaging community for a long time: the absence of effect estimates in results reporting in the literature. The statistic value itself, as a dimensionless measure, does not provide information on the biophysical interpretation of a study, and it certainly does not represent the whole picture of a study. Unfortunately, in contrast to standard practice in most scientific fields, effect (or amplitude) estimates are usually not provided in most results reporting in the current neuroimaging publications and presentations. Possible reasons underlying this general trend include (1) lack of general awareness, (2) software limitations, (3) inaccurate estimation of the BOLD response, and (4) poor modeling due to our relatively limited understanding of FMRI signal components. However, as we discuss here, such reporting damages the reliability and interpretability of the scientific findings themselves, and there is in fact no overwhelming reason for such a practice to persist. In order to promote meaningful interpretation, cross validation, reproducibility, meta and power analyses in neuroimaging, we strongly suggest that, as part of good scientific practice, effect estimates should be reported together with their corresponding statistic values. We provide several easily adaptable recommendations for facilitating this process. Published by Elsevier Inc.

  11. Neuroimaging Research with Children: Ethical Issues and Case Scenarios

    ERIC Educational Resources Information Center

    Coch, Donna

    2007-01-01

    There are few available resources for learning and teaching about ethical issues in neuroimaging research with children, who constitute a special and vulnerable population. Here, a brief review of ethical issues in developmental research, situated within the emerging field of neuroethics, highlights the increasingly interdisciplinary nature of…

  12. Cognitive and emotional processes during dreaming: a neuroimaging view.

    PubMed

    Desseilles, Martin; Dang-Vu, Thien Thanh; Sterpenich, Virginie; Schwartz, Sophie

    2011-12-01

    Dream is a state of consciousness characterized by internally-generated sensory, cognitive and emotional experiences occurring during sleep. Dream reports tend to be particularly abundant, with complex, emotional, and perceptually vivid experiences after awakenings from rapid eye movement (REM) sleep. This is why our current knowledge of the cerebral correlates of dreaming, mainly derives from studies of REM sleep. Neuroimaging results show that REM sleep is characterized by a specific pattern of regional brain activity. We demonstrate that this heterogeneous distribution of brain activity during sleep explains many typical features in dreams. Reciprocally, specific dream characteristics suggest the activation of selective brain regions during sleep. Such an integration of neuroimaging data of human sleep, mental imagery, and the content of dreams is critical for current models of dreaming; it also provides neurobiological support for an implication of sleep and dreaming in some important functions such as emotional regulation. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Nervous System Injury and Neuroimaging of Zika Virus Infection

    PubMed Central

    Wu, Shanshan; Zeng, Yu; Lerner, Alexander; Gao, Bo; Law, Meng

    2018-01-01

    In 2016, World Health Organization announced Zika virus infection and its neurological sequalae are a public health emergency of global scope. Preliminary studies have confirmed a relationship between Zika virus infection and certain neurological disorders, including microcephaly and Guillain–Barre syndrome (GBS). The neuroimaging features of microcephaly secondary to Zika virus infection include calcifications at the junction of gray–white matter and subcortical white matter with associated cortical abnormalities, diminution of white matter, large ventricles with or without hydrocephalus, cortical malformations, hypoplasia of cerebellum and brainstem, and enlargement of cerebellomedullary cistern. Contrast enhancement of the cauda equine nerve roots is the typical neuroimaging finding of GBS associated with Zika virus. This review describes the nervous system disorders and associated imaging findings seen in Zika virus infection, with the aim to improve the understanding of this disease. Imaging plays a key role on accurate diagnosis and prognostic evaluation of this disease. PMID:29740383

  14. Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence.

    PubMed

    Doeller, Christian F; Opitz, Bertram; Mecklinger, Axel; Krick, Christoph; Reith, Wolfgang; Schröger, Erich

    2003-10-01

    Previous electrophysiological and neuroimaging studies suggest that the mismatch negativity (MMN) is generated by a temporofrontal network subserving preattentive auditory change detection. In two experiments we employed event-related brain potentials (ERP) and event-related functional magnetic resonance imaging (fMRI) to examine neural and hemodynamic activity related to deviance processing, using three types of deviant tones (small, medium, and large) in both a pitch and a space condition. In the pitch condition, hemodynamic activity in the right superior temporal gyrus (STG) increased as a function of deviance. Comparisons between small and medium and between small and large deviants revealed right prefrontal activation in the inferior frontal gyrus (IFG; BA 44/45) and middle frontal gyrus (MFG; BA 46), whereas large relative to medium deviants led to left and right IFG (BA 44/45) activation. In the ERP experiment the amplitude of the early MMN (90-120 ms) increased as a function of deviance, by this paralleling the right STG activation in the fMRI experiment. A U-shaped relationship between MMN amplitude and the degree of deviance was observed in a late time window (140-170 ms) resembling the right IFG activation pattern. In a subsequent source analysis constrained by fMRI activation foci, early and late MMN activity could be modeled by dipoles placed in the STG and IFG, respectively. In the spatial condition no reliable hemodynamic activation could be observed. The MMN amplitude was substantially smaller than in the pitch condition for all three spatial deviants in the ERP experiment. In contrast to the pitch condition it increased as a function of deviance in the early and in the late time window. We argue that the right IFG mediates auditory deviance detection in case of low discriminability between a sensory memory trace and auditory input. This prefrontal mechanism might be part of top-down modulation of the deviance detection system in the STG.

  15. Neuroimaging Findings of Congenital Toxoplasmosis, Cytomegalovirus, and Zika Virus Infections: A Comparison of Three Cases.

    PubMed

    Werner, Heron; Daltro, Pedro; Fazecas, Tatiana; Zare Mehrjardi, Mohammad; Araujo Júnior, Edward

    2017-12-01

    Toxoplasmosis, cytomegalovirus (CMV), and Zika virus (ZIKV) are among the common infectious agents that may infect the fetuses vertically. Clinical presentations of these congenital infections overlap significantly, and it is usually impossible to determine the causative agent clinically. The objective was the comparison of neuroimaging findings in three fetuses who underwent intrauterine infection by toxoplasmosis, CMV, and ZIKV. Three confirmed cases of congenital toxoplasmosis, CMV, and ZIKV infections were included in the study over 7 months prospectively. Prenatal ultrasound, fetal brain MRI, and postnatal neuroimaging (CT or MRI) were performed on all of the included cases and interpreted by an expert radiologist. The mean GA at the time of prenatal imaging was 34.5 ± 3.5 weeks. The main neuroimaging findings in congenital toxoplasmosis were randomly distributed brain calcifications and ventricular dilatation on ultrasounds (US), as well as white matter signal change on fetal brain MRI. The main neuroimaging findings of congenital CMV infection included microcephaly, ventriculomegaly, and periventricular calcifications on US, as well as pachygyria revealed by fetal MRI. The case of congenital ZIKV infection showed microcephaly, ventriculomegaly, and periventricular calcifications on ultrasound, as well as brain atrophy and brain surface smoothness on fetal MRI. Although the neuroimaging findings in congenital infections are not pathognomonic, in combination with the patient history may be suggestive of one of the infectious agents, which will guide the management strategy. Copyright © 2017 The Society of Obstetricians and Gynaecologists of Canada/La Société des obstétriciens et gynécologues du Canada. Published by Elsevier Inc. All rights reserved.

  16. Pain measurement and brain activity: will neuroimages replace pain ratings?

    PubMed

    Robinson, Michael E; Staud, Roland; Price, Donald D

    2013-04-01

    Arguments made for the advantages of replacing pain ratings with brain-imaging data include assumptions that pain ratings are less reliable and objective and that brain image data would greatly benefit the measurement of treatment efficacy. None of these assumptions are supported by available evidence. Self-report of pain is predictable and does not necessarily reflect unreliability or error. Because pain is defined as an experience, magnitudes of its dimensions can be estimated by well-established methods, including those used to validate brain imaging of pain. Brain imaging helps to study pain mechanisms and might be used as proxy measures of pain in persons unable to provide verbal reports. Yet eliminating pain ratings or replacing them with neuroimaging data is misguided because brain images only help explain pain if they are used in conjunction with self-report. There is no objective readout mechanism of pain (pain thermometer) that is unaffected by psychological factors. Benefits from including neuroimaging data might include increased understanding of underlying neural mechanisms of treatment efficacy, discovery of new treatment vectors, and support of conclusions derived from self-report. However, neither brain imaging nor self-report data are privileged over the other. The assumption that treatment efficacy is hampered by self-report has not been shown; there is a plethora of treatment studies showing that self-report is sensitive to treatment. Dismissal of patients' self-reports (pain ratings) by brain-imaging data is potentially harmful. The aim of replacing self-report with brain-imaging data is misguided and has no scientific or philosophical foundation. Although brain imaging may offer considerable insight into the neural mechanisms of pain, including relevant causes and correlations, brain images cannot and should not replace self-report. Only the latter assesses the experience of pain, which is not identical to neural activity. Brain imaging may

  17. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data.

    PubMed

    Thompson, Paul M; Stein, Jason L; Medland, Sarah E; Hibar, Derrek P; Vasquez, Alejandro Arias; Renteria, Miguel E; Toro, Roberto; Jahanshad, Neda; Schumann, Gunter; Franke, Barbara; Wright, Margaret J; Martin, Nicholas G; Agartz, Ingrid; Alda, Martin; Alhusaini, Saud; Almasy, Laura; Almeida, Jorge; Alpert, Kathryn; Andreasen, Nancy C; Andreassen, Ole A; Apostolova, Liana G; Appel, Katja; Armstrong, Nicola J; Aribisala, Benjamin; Bastin, Mark E; Bauer, Michael; Bearden, Carrie E; Bergmann, Orjan; Binder, Elisabeth B; Blangero, John; Bockholt, Henry J; Bøen, Erlend; Bois, Catherine; Boomsma, Dorret I; Booth, Tom; Bowman, Ian J; Bralten, Janita; Brouwer, Rachel M; Brunner, Han G; Brohawn, David G; Buckner, Randy L; Buitelaar, Jan; Bulayeva, Kazima; Bustillo, Juan R; Calhoun, Vince D; Cannon, Dara M; Cantor, Rita M; Carless, Melanie A; Caseras, Xavier; Cavalleri, Gianpiero L; Chakravarty, M Mallar; Chang, Kiki D; Ching, Christopher R K; Christoforou, Andrea; Cichon, Sven; Clark, Vincent P; Conrod, Patricia; Coppola, Giovanni; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Deary, Ian J; de Geus, Eco J C; den Braber, Anouk; Delvecchio, Giuseppe; Depondt, Chantal; de Haan, Lieuwe; de Zubicaray, Greig I; Dima, Danai; Dimitrova, Rali; Djurovic, Srdjan; Dong, Hongwei; Donohoe, Gary; Duggirala, Ravindranath; Dyer, Thomas D; Ehrlich, Stefan; Ekman, Carl Johan; Elvsåshagen, Torbjørn; Emsell, Louise; Erk, Susanne; Espeseth, Thomas; Fagerness, Jesen; Fears, Scott; Fedko, Iryna; Fernández, Guillén; Fisher, Simon E; Foroud, Tatiana; Fox, Peter T; Francks, Clyde; Frangou, Sophia; Frey, Eva Maria; Frodl, Thomas; Frouin, Vincent; Garavan, Hugh; Giddaluru, Sudheer; Glahn, David C; Godlewska, Beata; Goldstein, Rita Z; Gollub, Randy L; Grabe, Hans J; Grimm, Oliver; Gruber, Oliver; Guadalupe, Tulio; Gur, Raquel E; Gur, Ruben C; Göring, Harald H H; Hagenaars, Saskia; Hajek, Tomas; Hall, Geoffrey B; Hall, Jeremy; Hardy, John; Hartman, Catharina A; Hass, Johanna; Hatton, Sean N; Haukvik, Unn K; Hegenscheid, Katrin; Heinz, Andreas; Hickie, Ian B; Ho, Beng-Choon; Hoehn, David; Hoekstra, Pieter J; Hollinshead, Marisa; Holmes, Avram J; Homuth, Georg; Hoogman, Martine; Hong, L Elliot; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E; Hwang, Kristy S; Jack, Clifford R; Jenkinson, Mark; Johnston, Caroline; Jönsson, Erik G; Kahn, René S; Kasperaviciute, Dalia; Kelly, Sinead; Kim, Sungeun; Kochunov, Peter; Koenders, Laura; Krämer, Bernd; Kwok, John B J; Lagopoulos, Jim; Laje, Gonzalo; Landen, Mikael; Landman, Bennett A; Lauriello, John; Lawrie, Stephen M; Lee, Phil H; Le Hellard, Stephanie; Lemaître, Herve; Leonardo, Cassandra D; Li, Chiang-Shan; Liberg, Benny; Liewald, David C; Liu, Xinmin; Lopez, Lorna M; Loth, Eva; Lourdusamy, Anbarasu; Luciano, Michelle; Macciardi, Fabio; Machielsen, Marise W J; Macqueen, Glenda M; Malt, Ulrik F; Mandl, René; Manoach, Dara S; Martinot, Jean-Luc; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mattingsdal, Morten; Meyer-Lindenberg, Andreas; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Milaneschi, Yuri; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Moses, Eric K; Mueller, Bryon A; Muñoz Maniega, Susana; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Mwangi, Benson; Nauck, Matthias; Nho, Kwangsik; Nichols, Thomas E; Nilsson, Lars-Göran; Nugent, Allison C; Nyberg, Lars; Olvera, Rene L; Oosterlaan, Jaap; Ophoff, Roel A; Pandolfo, Massimo; Papalampropoulou-Tsiridou, Melina; Papmeyer, Martina; Paus, Tomas; Pausova, Zdenka; Pearlson, Godfrey D; Penninx, Brenda W; Peterson, Charles P; Pfennig, Andrea; Phillips, Mary; Pike, G Bruce; Poline, Jean-Baptiste; Potkin, Steven G; Pütz, Benno; Ramasamy, Adaikalavan; Rasmussen, Jerod; Rietschel, Marcella; Rijpkema, Mark; Risacher, Shannon L; Roffman, Joshua L; Roiz-Santiañez, Roberto; Romanczuk-Seiferth, Nina; Rose, Emma J; Royle, Natalie A; Rujescu, Dan; Ryten, Mina; Sachdev, Perminder S; Salami, Alireza; Satterthwaite, Theodore D; Savitz, Jonathan; Saykin, Andrew J; Scanlon, Cathy; Schmaal, Lianne; Schnack, Hugo G; Schork, Andrew J; Schulz, S Charles; Schür, Remmelt; Seidman, Larry; Shen, Li; Shoemaker, Jody M; Simmons, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soares, Jair C; Sponheim, Scott R; Sprooten, Emma; Starr, John M; Steen, Vidar M; Strakowski, Stephen; Strike, Lachlan; Sussmann, Jessika; Sämann, Philipp G; Teumer, Alexander; Toga, Arthur W; Tordesillas-Gutierrez, Diana; Trabzuni, Daniah; Trost, Sarah; Turner, Jessica; Van den Heuvel, Martijn; van der Wee, Nic J; van Eijk, Kristel; van Erp, Theo G M; van Haren, Neeltje E M; van 't Ent, Dennis; van Tol, Marie-Jose; Valdés Hernández, Maria C; Veltman, Dick J; Versace, Amelia; Völzke, Henry; Walker, Robert; Walter, Henrik; Wang, Lei; Wardlaw, Joanna M; Weale, Michael E; Weiner, Michael W; Wen, Wei; Westlye, Lars T; Whalley, Heather C; Whelan, Christopher D; White, Tonya; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Zilles, David; Zwiers, Marcel P; Thalamuthu, Anbupalam; Schofield, Peter R; Freimer, Nelson B; Lawrence, Natalia S; Drevets, Wayne

    2014-06-01

    The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.

  18. Functional neuroimaging applications for assessment and rehabilitation planning in patients with disorders of consciousness.

    PubMed

    Giacino, Joseph T; Hirsch, Joy; Schiff, Nicholas; Laureys, Steven

    2006-12-01

    To describe the theoretic framework, design, and potential clinical applications of functional neuroimaging protocols in patients with disorders of consciousness. Recent published literature and authors' own work. Studies using functional neuroimaging techniques to investigate cognitive processing in patients diagnosed with vegetative and minimally conscious state. Not applicable. Positron-emission tomography activation studies suggest that the vegetative state represents a global disconnection syndrome in which higher order association cortices are functionally disconnected from primary cortical areas. In contrast, patterns of activation in functional magnetic resonance imaging studies of patients in the minimally conscious state show preservation of large-scale cortical networks associated with language and visual processing. Novel applications of functional neuroimaging in patients with disorders of consciousness may aid in differential diagnosis, prognostic assessment and identification of pathophysiologic mechanisms. Improvements in patient characterization may, in turn, provide new opportunities for restoration of function through interventional neuromodulation.

  19. Neuroimaging evidence for a role of neural social stress processing in ethnic minority-associated environmental risk.

    PubMed

    Akdeniz, Ceren; Tost, Heike; Streit, Fabian; Haddad, Leila; Wüst, Stefan; Schäfer, Axel; Schneider, Michael; Rietschel, Marcella; Kirsch, Peter; Meyer-Lindenberg, Andreas

    2014-06-01

    Relative risk for the brain disorder schizophrenia is more than doubled in ethnic minorities, an effect that is evident across countries and linked to socially relevant cues such as skin color, making ethnic minority status a well-established social environmental risk factor. Pathoepidemiological models propose a role for chronic social stress and perceived discrimination for mental health risk in ethnic minorities, but the neurobiology is unexplored. To study neural social stress processing, using functional magnetic resonance imaging, and associations with perceived discrimination in ethnic minority individuals. Cross-sectional design in a university setting using 3 validated paradigms to challenge neural social stress processing and, to probe for specificity, emotional and cognitive brain functions. Healthy participants included those with German lineage (n = 40) and those of ethnic minority (n = 40) from different ethnic backgrounds matched for sociodemographic, psychological, and task performance characteristics. Control comparisons examined stress processing with matched ethnic background of investigators (23 Turkish vs 23 German participants) and basic emotional and cognitive tasks (24 Turkish vs 24 German participants). Blood oxygenation level-dependent response, functional connectivity, and psychological and physiological measures. There were significant increases in heart rate (P < .001), subjective emotional response (self-related emotions, P < .001; subjective anxiety, P = .006), and salivary cortisol level (P = .004) during functional magnetic resonance imaging stress induction. Ethnic minority individuals had significantly higher perceived chronic stress levels (P = .02) as well as increased activation (family-wise error-corrected [FWE] P = .005, region of interest corrected) and increased functional connectivity (PFWE = .01, region of interest corrected) of perigenual anterior cingulate cortex (ACC). The effects were specific to

  20. Neuroinformatics Database (NiDB) – A Modular, Portable Database for the Storage, Analysis, and Sharing of Neuroimaging Data

    PubMed Central

    Anderson, Beth M.; Stevens, Michael C.; Glahn, David C.; Assaf, Michal; Pearlson, Godfrey D.

    2013-01-01

    We present a modular, high performance, open-source database system that incorporates popular neuroimaging database features with novel peer-to-peer sharing, and a simple installation. An increasing number of imaging centers have created a massive amount of neuroimaging data since fMRI became popular more than 20 years ago, with much of that data unshared. The Neuroinformatics Database (NiDB) provides a stable platform to store and manipulate neuroimaging data and addresses several of the impediments to data sharing presented by the INCF Task Force on Neuroimaging Datasharing, including 1) motivation to share data, 2) technical issues, and 3) standards development. NiDB solves these problems by 1) minimizing PHI use, providing a cost effective simple locally stored platform, 2) storing and associating all data (including genome) with a subject and creating a peer-to-peer sharing model, and 3) defining a sample, normalized definition of a data storage structure that is used in NiDB. NiDB not only simplifies the local storage and analysis of neuroimaging data, but also enables simple sharing of raw data and analysis methods, which may encourage further sharing. PMID:23912507

  1. Annual Research Review: Understudied populations within the autism spectrum – current trends and future directions in neuroimaging research

    PubMed Central

    Jack, Allison; Pelphrey, Kevin

    2017-01-01

    Background Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental conditions that vary in both etiology and phenotypic expression. Expressions of ASD characterized by a more severe phenotype, including autism with intellectual disability (ASD+ID), autism with a history of developmental regression (ASD+R), and minimally verbal autism (ASD+MV) are understudied generally, and especially in the domain of neuroimaging. However, neuroimaging methods are a potentially powerful tool for understanding the etiology of these ASD subtypes. Scope and Methodology This review evaluates existing neuroimaging research on ASD+MV, ASD+ID, and ASD+R, identified by a search of the literature using the PubMed database, and discusses methodological, theoretical, and practical considerations for future research involving neuroimaging assessment of these populations. Findings There is a paucity of neuroimaging research on ASD+ID, ASD+MV, and ASD+R, and what findings do exist are often contradictory, or so sparse as to be ungeneralizable. We suggest that while greater sample sizes and more studies are necessary, more important would be a paradigm shift toward multimodal (e.g., imaging genetics) approaches that allow for the characterization of heterogeneity within etiologically diverse samples. PMID:28102566

  2. The Appropriate Use of Neuroimaging in the Diagnostic Work-Up of Dementia

    PubMed Central

    2014-01-01

    Background Diagnosis of dementia is challenging and requires both ruling out potentially treatable underlying causes and ruling in a diagnosis of dementia subtype to manage patients and suitably plan for the future. Objectives This analysis sought to determine the appropriate use of neuroimaging during the diagnostic work-up of dementia, including indications for neuroimaging and comparative accuracy of alternative technologies. Data Sources A literature search was performed using Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid Embase, the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database, for studies published between 2000 and 2013. Review Methods Data on diagnostic accuracy and impact on clinical decision making were abstracted from included studies. Quality of evidence was assessed using GRADE. Results The search yielded 5,374 citations and 15 studies were included. Approximately 10% of dementia cases are potentially treatable, though less than 1% reverse partially or fully. Neither prediction rules nor clinical indications reliably select the subset of patients who will likely benefit from neuroimaging. Clinical utility is highest in ambiguous cases or where dementia may be mixed, and lowest for clinically diagnosed Alzheimer disease or clinically excluded vascular dementia. There is a lack of evidence that MRI is superior to CT in detecting a vascular component to dementia. Accuracy of structural imaging is moderate to high for discriminating different types of dementia. Limitations There was significant heterogeneity in estimates of diagnostic accuracy, which often prohibited a statistical summary of findings. The quality of data reported by studies prohibited calculation of likelihood ratios in the present analysis. No studies from primary care were found; thus, generalizability beyond tertiary care settings may be limited. Conclusions A diagnosis of reversible dementia is rare. Imaging has the most

  3. Attention to pain! A neurocognitive perspective on attentional modulation of pain in neuroimaging studies.

    PubMed

    Torta, D M; Legrain, V; Mouraux, A; Valentini, E

    2017-04-01

    Several studies have used neuroimaging techniques to investigate brain correlates of the attentional modulation of pain. Although these studies have advanced the knowledge in the field, important confounding factors such as imprecise theoretical definitions of attention, incomplete operationalization of the construct under exam, and limitations of techniques relying on measuring regional changes in cerebral blood flow have hampered the potential relevance of the conclusions. Here, we first provide an overview of the major theories of attention and of attention in the study of pain to bridge theory and experimental results. We conclude that load and motivational/affective theories are particularly relevant to study the attentional modulation of pain and should be carefully integrated in functional neuroimaging studies. Then, we summarize previous findings and discuss the possible neural correlates of the attentional modulation of pain. We discuss whether classical functional neuroimaging techniques are suitable to measure the effect of a fluctuating process like attention, and in which circumstances functional neuroimaging can be reliably used to measure the attentional modulation of pain. Finally, we argue that the analysis of brain networks and spontaneous oscillations may be a crucial future development in the study of attentional modulation of pain, and why the interplay between attention and pain, as examined so far, may rely on neural mechanisms shared with other sensory modalities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Predicting the Naturalistic Course of Major Depressive Disorder Using Clinical and Multimodal Neuroimaging Information: A Multivariate Pattern Recognition Study.

    PubMed

    Schmaal, Lianne; Marquand, Andre F; Rhebergen, Didi; van Tol, Marie-José; Ruhé, Henricus G; van der Wee, Nic J A; Veltman, Dick J; Penninx, Brenda W J H

    2015-08-15

    A chronic course of major depressive disorder (MDD) is associated with profound alterations in brain volumes and emotional and cognitive processing. However, no neurobiological markers have been identified that prospectively predict MDD course trajectories. This study evaluated the prognostic value of different neuroimaging modalities, clinical characteristics, and their combination to classify MDD course trajectories. One hundred eighteen MDD patients underwent structural and functional magnetic resonance imaging (MRI) (emotional facial expressions and executive functioning) and were clinically followed-up at 2 years. Three MDD trajectories (chronic n = 23, gradual improving n = 36, and fast remission n = 59) were identified based on Life Chart Interview measuring the presence of symptoms each month. Gaussian process classifiers were employed to evaluate prognostic value of neuroimaging data and clinical characteristics (including baseline severity, duration, and comorbidity). Chronic patients could be discriminated from patients with more favorable trajectories from neural responses to various emotional faces (up to 73% accuracy) but not from structural MRI and functional MRI related to executive functioning. Chronic patients could also be discriminated from remitted patients based on clinical characteristics (accuracy 69%) but not when age differences between the groups were taken into account. Combining different task contrasts or data sources increased prediction accuracies in some but not all cases. Our findings provide evidence that the prediction of naturalistic course of depression over 2 years is improved by considering neuroimaging data especially derived from neural responses to emotional facial expressions. Neural responses to emotional salient faces more accurately predicted outcome than clinical data. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Right hemispheric dysfunction in a case of pure progressive aphemia: fusion of multimodal neuroimaging.

    PubMed

    Vitali, Paolo; Nobili, Flavio; Raiteri, Umberto; Canfora, Michela; Rosa, Marco; Calvini, Piero; Girtler, Nicola; Regesta, Giovanni; Rodriguez, Guido

    2004-01-15

    This article describes the unusual case of a 60-year-old woman suffering from pure progressive aphemia. The fusion of multimodal neuroimaging (MRI, perfusion SPECT) implicated the right frontal lobe, especially the inferior frontal gyrus. This area also showed the greatest functional MRI activation during the performance of a covert phonemic fluency task. Results are discussed in terms of bihemispheric language representation. The fusion of three sets of neuroimages has aided in the interpretation of the patient's cognitive brain dysfunction.

  6. Altered Brain Activity in Unipolar Depression Revisited Meta-analyses of Neuroimaging Studies

    PubMed Central

    Müller, Veronika I.; Cieslik, Edna C.; Serbanescu, Ilinca; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.

    2017-01-01

    IMPORTANCE During the past 20 years, numerous neuroimaging experiments have investigated aberrant brain activation during cognitive and emotional processing in patients with unipolar depression (UD). The results of those investigations, however, vary considerably; moreover, previous meta-analyses also yielded inconsistent findings. OBJECTIVE To readdress aberrant brain activation in UD as evidenced by neuroimaging experiments on cognitive and/or emotional processing. DATA SOURCES Neuroimaging experiments published from January 1, 1997, to October 1, 2015, were identified by a literature search of PubMed, Web of Science, and Google Scholar using different combinations of the terms fMRI (functional magnetic resonance imaging), PET (positron emission tomography), neural, major depression, depression, major depressive disorder, unipolar depression, dysthymia, emotion, emotional, affective, cognitive, task, memory, working memory, inhibition, control, n-back, and Stroop. STUDY SELECTION Neuroimaging experiments (using fMRI or PET) reporting whole-brain results of group comparisons between adults with UD and healthy control individuals as coordinates in a standard anatomic reference space and using an emotional or/and cognitive challenging task were selected. DATA EXTRACTION AND SYNTHESIS Coordinates reported to show significant activation differences between UD and healthy controls during emotional or cognitive processing were extracted. By using the revised activation likelihood estimation algorithm, different meta-analyses were calculated. MAIN OUTCOMES AND MEASURES Meta-analyses tested for brain regions consistently found to show aberrant brain activation in UD compared with controls. Analyses were calculated across all emotional processing experiments, all cognitive processing experiments, positive emotion processing, negative emotion processing, experiments using emotional face stimuli, experiments with a sex discrimination task, and memory processing. All meta

  7. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity

    PubMed Central

    Val-Laillet, D.; Aarts, E.; Weber, B.; Ferrari, M.; Quaresima, V.; Stoeckel, L.E.; Alonso-Alonso, M.; Audette, M.; Malbert, C.H.; Stice, E.

    2015-01-01

    Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well as dopaminergic alterations have been described in obese subjects, in parallel with increased activation of reward brain areas in response to palatable food cues. Elevated reward region responsivity may trigger food craving and predict future weight gain. This opens the way to prevention studies using functional and molecular neuroimaging to perform early diagnostics and to phenotype subjects at risk by exploring different neurobehavioral dimensions of the food choices and motivation processes. In the first part of this review, advantages and limitations of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), pharmacogenetic fMRI and functional near-infrared spectroscopy (fNIRS) will be discussed in the context of recent work dealing with eating behavior, with a particular focus on obesity. In the second part of the review, non-invasive strategies to modulate food-related brain processes and functions will be presented. At the leading edge of non-invasive brain-based technologies is real-time fMRI (rtfMRI) neurofeedback, which is a powerful tool to better understand the complexity of human brain–behavior relationships. rtfMRI, alone or when combined with other techniques and tools such as EEG and cognitive therapy, could be used to alter neural plasticity and learned behavior to optimize and/or restore healthy cognition and eating behavior. Other promising non-invasive neuromodulation approaches being explored are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS). Converging evidence points at the value of

  8. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity.

    PubMed

    Val-Laillet, D; Aarts, E; Weber, B; Ferrari, M; Quaresima, V; Stoeckel, L E; Alonso-Alonso, M; Audette, M; Malbert, C H; Stice, E

    2015-01-01

    Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well as dopaminergic alterations have been described in obese subjects, in parallel with increased activation of reward brain areas in response to palatable food cues. Elevated reward region responsivity may trigger food craving and predict future weight gain. This opens the way to prevention studies using functional and molecular neuroimaging to perform early diagnostics and to phenotype subjects at risk by exploring different neurobehavioral dimensions of the food choices and motivation processes. In the first part of this review, advantages and limitations of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), pharmacogenetic fMRI and functional near-infrared spectroscopy (fNIRS) will be discussed in the context of recent work dealing with eating behavior, with a particular focus on obesity. In the second part of the review, non-invasive strategies to modulate food-related brain processes and functions will be presented. At the leading edge of non-invasive brain-based technologies is real-time fMRI (rtfMRI) neurofeedback, which is a powerful tool to better understand the complexity of human brain-behavior relationships. rtfMRI, alone or when combined with other techniques and tools such as EEG and cognitive therapy, could be used to alter neural plasticity and learned behavior to optimize and/or restore healthy cognition and eating behavior. Other promising non-invasive neuromodulation approaches being explored are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS). Converging evidence points at the value of

  9. ARIANNA: A research environment for neuroimaging studies in autism spectrum disorders.

    PubMed

    Retico, Alessandra; Arezzini, Silvia; Bosco, Paolo; Calderoni, Sara; Ciampa, Alberto; Coscetti, Simone; Cuomo, Stefano; De Santis, Luca; Fabiani, Dario; Fantacci, Maria Evelina; Giuliano, Alessia; Mazzoni, Enrico; Mercatali, Pietro; Miscali, Giovanni; Pardini, Massimiliano; Prosperi, Margherita; Romano, Francesco; Tamburini, Elena; Tosetti, Michela; Muratori, Filippo

    2017-08-01

    The complexity and heterogeneity of Autism Spectrum Disorders (ASD) require the implementation of dedicated analysis techniques to obtain the maximum from the interrelationship among many variables that describe affected individuals, spanning from clinical phenotypic characterization and genetic profile to structural and functional brain images. The ARIANNA project has developed a collaborative interdisciplinary research environment that is easily accessible to the community of researchers working on ASD (https://arianna.pi.infn.it). The main goals of the project are: to analyze neuroimaging data acquired in multiple sites with multivariate approaches based on machine learning; to detect structural and functional brain characteristics that allow the distinguishing of individuals with ASD from control subjects; to identify neuroimaging-based criteria to stratify the population with ASD to support the future development of personalized treatments. Secure data handling and storage are guaranteed within the project, as well as the access to fast grid/cloud-based computational resources. This paper outlines the web-based architecture, the computing infrastructure and the collaborative analysis workflows at the basis of the ARIANNA interdisciplinary working environment. It also demonstrates the full functionality of the research platform. The availability of this innovative working environment for analyzing clinical and neuroimaging information of individuals with ASD is expected to support researchers in disentangling complex data thus facilitating their interpretation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Evidence for distinct human auditory cortex regions for sound location versus identity processing

    PubMed Central

    Ahveninen, Jyrki; Huang, Samantha; Nummenmaa, Aapo; Belliveau, John W.; Hung, An-Yi; Jääskeläinen, Iiro P.; Rauschecker, Josef P.; Rossi, Stephanie; Tiitinen, Hannu; Raij, Tommi

    2014-01-01

    Neurophysiological animal models suggest that anterior auditory cortex (AC) areas process sound-identity information, whereas posterior ACs specialize in sound location processing. In humans, inconsistent neuroimaging results and insufficient causal evidence have challenged the existence of such parallel AC organization. Here we transiently inhibit bilateral anterior or posterior AC areas using MRI-guided paired-pulse transcranial magnetic stimulation (TMS) while subjects listen to Reference/Probe sound pairs and perform either sound location or identity discrimination tasks. The targeting of TMS pulses, delivered 55–145 ms after Probes, is confirmed with individual-level cortical electric-field estimates. Our data show that TMS to posterior AC regions delays reaction times (RT) significantly more during sound location than identity discrimination, whereas TMS to anterior AC regions delays RTs significantly more during sound identity than location discrimination. This double dissociation provides direct causal support for parallel processing of sound identity features in anterior AC and sound location in posterior AC. PMID:24121634

  11. Neuroimaging in epilepsy.

    PubMed

    Sidhu, Meneka Kaur; Duncan, John S; Sander, Josemir W

    2018-05-17

    Epilepsy neuroimaging is important for detecting the seizure onset zone, predicting and preventing deficits from surgery and illuminating mechanisms of epileptogenesis. An aspiration is to integrate imaging and genetic biomarkers to enable personalized epilepsy treatments. The ability to detect lesions, particularly focal cortical dysplasia and hippocampal sclerosis, is increased using ultra high-field imaging and postprocessing techniques such as automated volumetry, T2 relaxometry, voxel-based morphometry and surface-based techniques. Statistical analysis of PET and single photon emission computer tomography (STATISCOM) are superior to qualitative analysis alone in identifying focal abnormalities in MRI-negative patients. These methods have also been used to study mechanisms of epileptogenesis and pharmacoresistance.Recent language fMRI studies aim to localize, and also lateralize language functions. Memory fMRI has been recommended to lateralize mnemonic function and predict outcome after surgery in temporal lobe epilepsy. Combinations of structural, functional and post-processing methods have been used in multimodal and machine learning models to improve the identification of the seizure onset zone and increase understanding of mechanisms underlying structural and functional aberrations in epilepsy.

  12. Making MR Imaging Child's Play - Pediatric Neuroimaging Protocol, Guidelines and Procedure

    PubMed Central

    Raschle, Nora M.; Lee, Michelle; Buechler, Roman; Christodoulou, Joanna A.; Chang, Maria; Vakil, Monica; Stering, Patrice L.; Gaab, Nadine

    2009-01-01

    Within the last decade there has been an increase in the use of structural and functional magnetic resonance imaging (fMRI) to investigate the neural basis of human perception, cognition and behavior 1, 2. Moreover, this non-invasive imaging method has grown into a tool for clinicians and researchers to explore typical and atypical brain development. Although advances in neuroimaging tools and techniques are apparent, (f)MRI in young pediatric populations remains relatively infrequent 2. Practical as well as technical challenges when imaging children present clinicians and research teams with a unique set of problems 3, 2. To name just a few, the child participants are challenged by a need for motivation, alertness and cooperation. Anxiety may be an additional factor to be addressed. Researchers or clinicians need to consider time constraints, movement restriction, scanner background noise and unfamiliarity with the MR scanner environment2,4-10. A progressive use of functional and structural neuroimaging in younger age groups, however, could further add to our understanding of brain development. As an example, several research groups are currently working towards early detection of developmental disorders, potentially even before children present associated behavioral characteristics e.g.11. Various strategies and techniques have been reported as a means to ensure comfort and cooperation of young children during neuroimaging sessions. Play therapy 12, behavioral approaches 13, 14,15, 16-18 and simulation 19, the use of mock scanner areas 20,21, basic relaxation 22 and a combination of these techniques 23 have all been shown to improve the participant's compliance and thus MRI data quality. Even more importantly, these strategies have proven to increase the comfort of families and children involved 12. One of the main advances of such techniques for the clinical practice is the possibility of avoiding sedation or general anesthesia (GA) as a way to manage children

  13. Can Emotional and Behavioral Dysregulation in Youth Be Decoded from Functional Neuroimaging?

    PubMed

    Portugal, Liana C L; Rosa, Maria João; Rao, Anil; Bebko, Genna; Bertocci, Michele A; Hinze, Amanda K; Bonar, Lisa; Almeida, Jorge R C; Perlman, Susan B; Versace, Amelia; Schirda, Claudiu; Travis, Michael; Gill, Mary Kay; Demeter, Christine; Diwadkar, Vaibhav A; Ciuffetelli, Gary; Rodriguez, Eric; Forbes, Erika E; Sunshine, Jeffrey L; Holland, Scott K; Kowatch, Robert A; Birmaher, Boris; Axelson, David; Horwitz, Sarah M; Arnold, Eugene L; Fristad, Mary A; Youngstrom, Eric A; Findling, Robert L; Pereira, Mirtes; Oliveira, Leticia; Phillips, Mary L; Mourao-Miranda, Janaina

    2016-01-01

    High comorbidity among pediatric disorders characterized by behavioral and emotional dysregulation poses problems for diagnosis and treatment, and suggests that these disorders may be better conceptualized as dimensions of abnormal behaviors. Furthermore, identifying neuroimaging biomarkers related to dimensional measures of behavior may provide targets to guide individualized treatment. We aimed to use functional neuroimaging and pattern regression techniques to determine whether patterns of brain activity could accurately decode individual-level severity on a dimensional scale measuring behavioural and emotional dysregulation at two different time points. A sample of fifty-seven youth (mean age: 14.5 years; 32 males) was selected from a multi-site study of youth with parent-reported behavioral and emotional dysregulation. Participants performed a block-design reward paradigm during functional Magnetic Resonance Imaging (fMRI). Pattern regression analyses consisted of Relevance Vector Regression (RVR) and two cross-validation strategies implemented in the Pattern Recognition for Neuroimaging toolbox (PRoNTo). Medication was treated as a binary confounding variable. Decoded and actual clinical scores were compared using Pearson's correlation coefficient (r) and mean squared error (MSE) to evaluate the models. Permutation test was applied to estimate significance levels. Relevance Vector Regression identified patterns of neural activity associated with symptoms of behavioral and emotional dysregulation at the initial study screen and close to the fMRI scanning session. The correlation and the mean squared error between actual and decoded symptoms were significant at the initial study screen and close to the fMRI scanning session. However, after controlling for potential medication effects, results remained significant only for decoding symptoms at the initial study screen. Neural regions with the highest contribution to the pattern regression model included

  14. Neuroimaging studies of cognitive remediation in schizophrenia: A systematic and critical review.

    PubMed

    Penadés, Rafael; González-Rodríguez, Alexandre; Catalán, Rosa; Segura, Bàrbara; Bernardo, Miquel; Junqué, Carme

    2017-03-22

    To examine the effects of cognitive remediation therapies on brain functioning through neuroimaging procedures in patients with schizophrenia. A systematic, computerised literature search was conducted in the PubMed/Medline and PsychInfo databases. The search was performed through February 2016 without any restrictions on language or publication date. The search was performed using the following search terms: [("cogniti*" and "remediation" or "training" or "enhancement") and ("fMRI" or "MRI" or "PET" or "SPECT") and (schizophrenia or schiz*)]. The search was accompanied by a manual online search and a review of the references from each of the papers selected, and those papers fulfilling our inclusion criteria were also included. A total of 101 studies were found, but only 18 of them fulfilled the inclusion criteria. These studies indicated that cognitive remediation improves brain activation in neuroimaging studies. The most commonly reported changes were those that involved the prefrontal and thalamic regions. Those findings are in agreement with the hypofrontality hypothesis, which proposes that frontal hypoactivation is the underlying mechanism of cognitive impairments in schizophrenia. Nonetheless, great heterogeneity among the studies was found. They presented different hypotheses, different results and different findings. The results of more recent studies interpreted cognitive recovery within broader frameworks, namely, as amelioration of the efficiency of different networks. Furthermore, advances in neuroimaging methodologies, such as the use of whole-brain analysis, tractography, graph analysis, and other sophisticated methodologies of data processing, might be conditioning the interpretation of results and generating new theoretical frameworks. Additionally, structural changes were described in both the grey and white matter, suggesting a neuroprotective effect of cognitive remediation. Cognitive, functional and structural improvements tended to be

  15. "Good and bad, I defined these terms, quite clear no doubt somehow": Neuroimaging and competency to be executed after Panetti.

    PubMed

    Perlin, Michael L

    2010-01-01

    There has been little consideration, in either the caselaw or the scholarly literature, of the potential impact of neuroimaging on cases assessing whether a seriously mentally disabled death row defendant is competent to be executed. The Supreme Court's 2007 decision in Panetti v. Quarterman significantly expanded its jurisprudence by ruling that such a defendant had a constitutional right to make a showing that his mental illness "obstruct[ed] a rational understanding of the State's reason for his execution." This article considers the impact of neuroimaging testimony on post-Panetti competency determination hearings, and looks at multiple questions of admissibility of evidence, adequacy of counsel, availability of expert assistance, juror attitudes, trial tactics, and application of the Daubert doctrine, and also considers the implications of the lesser-known Panetti holding (that enhances the role of expert witnesses in all competency-to-be-executed inquiries). It warns that the power of the testimony in question has the capacity to inappropriately affect fact-finders in ways that may lead "to outcomes that are both factually and legally inaccurate and constitutionally flawed." Copyright © 2010 John Wiley & Sons, Ltd.

  16. The Perfect Neuroimaging-Genetics-Computation Storm: Collision of Petabytes of Data, Millions of Hardware Devices and Thousands of Software Tools

    PubMed Central

    Dinov, Ivo D.; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Zamanyan, Alen; Torri, Federica; Macciardi, Fabio; Hobel, Sam; Moon, Seok Woo; Sung, Young Hee; Jiang, Zhiguo; Labus, Jennifer; Kurth, Florian; Ashe-McNalley, Cody; Mayer, Emeran; Vespa, Paul M.; Van Horn, John D.; Toga, Arthur W.

    2013-01-01

    The volume, diversity and velocity of biomedical data are exponentially increasing providing petabytes of new neuroimaging and genetics data every year. At the same time, tens-of-thousands of computational algorithms are developed and reported in the literature along with thousands of software tools and services. Users demand intuitive, quick and platform-agnostic access to data, software tools, and infrastructure from millions of hardware devices. This explosion of information, scientific techniques, computational models, and technological advances leads to enormous challenges in data analysis, evidence-based biomedical inference and reproducibility of findings. The Pipeline workflow environment provides a crowd-based distributed solution for consistent management of these heterogeneous resources. The Pipeline allows multiple (local) clients and (remote) servers to connect, exchange protocols, control the execution, monitor the states of different tools or hardware, and share complete protocols as portable XML workflows. In this paper, we demonstrate several advanced computational neuroimaging and genetics case-studies, and end-to-end pipeline solutions. These are implemented as graphical workflow protocols in the context of analyzing imaging (sMRI, fMRI, DTI), phenotypic (demographic, clinical), and genetic (SNP) data. PMID:23975276

  17. Is advanced neuroimaging for neuroradiologists? A systematic review of the scientific literature of the last decade.

    PubMed

    Cocozza, Sirio; Russo, Camilla; Pontillo, Giuseppe; Ugga, Lorenzo; Macera, Antonio; Cervo, Amedeo; De Liso, Maria; Di Paolo, Nilde; Ginocchio, Maria Isabella; Giordano, Flavio; Leone, Giuseppe; Rusconi, Giovanni; Stanzione, Arnaldo; Briganti, Francesco; Quarantelli, Mario; Caranci, Ferdinando; D'Amico, Alessandra; Elefante, Andrea; Tedeschi, Enrico; Brunetti, Arturo

    2016-12-01

    To evaluate if advanced neuroimaging research is mainly conducted by imaging specialists, we investigated the number of first authorships by radiologists and non-radiologist scientists in articles published in the field of advanced neuroimaging in the past 10 years. Articles in the field of advanced neuroimaging identified in this retrospective bibliometric analysis were divided in four groups, depending on the imaging technique used. For all included studies, educational background of the first authors was recorded (based on available online curriculum vitae) and classified in subgroups, depending on their specialty. Finally, journal impact factors were recorded and comparatively assessed among subgroups as a metric of research quality. A total number of 3831 articles were included in the study. Radiologists accounted as first authors for only 12.8 % of these publications, while 56.9 % of first authors were researchers without a medical degree. Mean impact factor (IF) of journals with non-MD researchers as first authors was significantly higher than the MD subgroup (p < 10 -20 ), while mean IF of journals with radiologists as first authors was significantly lower than articles authored by other MD specialists (p < 10 -11 ). The majority of the studies in the field of advanced neuroimaging in the last decade is conducted by professional figures other than radiologists, who account for less than the 13 % of the publications. Furthermore, the mean IF value of radiologists-authored articles was the lowest among all subgroups. These results, taken together, should question the radiology community about its future role in the development of advanced neuroimaging.

  18. Identifying Predictors, Moderators, and Mediators of Antidepressant Response in Major Depressive Disorder: Neuroimaging Approaches

    PubMed Central

    Phillips, Mary L.; Chase, Henry W.; Sheline, Yvette I.; Etkin, Amit; Almeida, Jorge R.C.; Deckersbach, Thilo; Trivedi, Madhukar H.

    2015-01-01

    Objective Despite significant advances in neuroscience and treatment development, no widely accepted biomarkers are available to inform diagnostics or identify preferred treatments for individuals with major depressive disorder. Method In this critical review, the authors examine the extent to which multimodal neuroimaging techniques can identify biomarkers reflecting key pathophysiologic processes in depression and whether such biomarkers may act as predictors, moderators, and mediators of treatment response that might facilitate development of personalized treatments based on a better understanding of these processes. Results The authors first highlight the most consistent findings from neuroimaging studies using different techniques in depression, including structural and functional abnormalities in two parallel neural circuits: serotonergically modulated implicit emotion regulation circuitry, centered on the amygdala and different regions in the medial prefrontal cortex; and dopaminergically modulated reward neural circuitry, centered on the ventral striatum and medial prefrontal cortex. They then describe key findings from the relatively small number of studies indicating that specific measures of regional function and, to a lesser extent, structure in these neural circuits predict treatment response in depression. Conclusions Limitations of existing studies include small sample sizes, use of only one neuroimaging modality, and a focus on identifying predictors rather than moderators and mediators of differential treatment response. By addressing these limitations and, most importantly, capitalizing on the benefits of multimodal neuroimaging, future studies can yield moderators and mediators of treatment response in depression to facilitate significant improvements in shorter- and longer-term clinical and functional outcomes. PMID:25640931

  19. The extended fronto-striatal model of obsessive compulsive disorder: convergence from event-related potentials, neuropsychology and neuroimaging

    PubMed Central

    Melloni, Margherita; Urbistondo, Claudia; Sedeño, Lucas; Gelormini, Carlos; Kichic, Rafael; Ibanez, Agustin

    2012-01-01

    In this work, we explored convergent evidence supporting the fronto-striatal model of obsessive-compulsive disorder (FSMOCD) and the contribution of event-related potential (ERP) studies to this model. First, we considered minor modifications to the FSMOCD model based on neuroimaging and neuropsychological data. We noted the brain areas most affected in this disorder -anterior cingulate cortex (ACC), basal ganglia (BG), and orbito-frontal cortex (OFC) and their related cognitive functions, such as monitoring and inhibition. Then, we assessed the ERPs that are directly related to the FSMOCD, including the error-related negativity (ERN), N200, and P600. Several OCD studies present enhanced ERN and N2 responses during conflict tasks as well as an enhanced P600 during working memory (WM) tasks. Evidence from ERP studies (especially regarding ERN and N200 amplitude enhancement), neuroimaging and neuropsychological findings suggests abnormal activity in the OFC, ACC, and BG in OCD patients. Moreover, additional findings from these analyses suggest dorsolateral prefrontal and parietal cortex involvement, which might be related to executive function (EF) deficits. Thus, these convergent results suggest the existence of a self-monitoring imbalance involving inhibitory deficits and executive dysfunctions. OCD patients present an impaired ability to monitor, control, and inhibit intrusive thoughts, urges, feelings, and behaviors. In the current model, this imbalance is triggered by an excitatory role of the BG (associated with cognitive or motor actions without volitional control) and inhibitory activity of the OFC as well as excessive monitoring of the ACC to block excitatory impulses. This imbalance would interact with the reduced activation of the parietal-DLPC network, leading to executive dysfunction. ERP research may provide further insight regarding the temporal dynamics of action monitoring and executive functioning in OCD. PMID:23015786

  20. Improving the clinical assessment of consciousness with advances in electrophysiological and neuroimaging techniques

    PubMed Central

    2010-01-01

    In clinical neurology, a comprehensive understanding of consciousness has been regarded as an abstract concept - best left to philosophers. However, times are changing and the need to clinically assess consciousness is increasingly becoming a real-world, practical challenge. Current methods for evaluating altered levels of consciousness are highly reliant on either behavioural measures or anatomical imaging. While these methods have some utility, estimates of misdiagnosis are worrisome (as high as 43%) - clearly this is a major clinical problem. The solution must involve objective, physiologically based measures that do not rely on behaviour. This paper reviews recent advances in physiologically based measures that enable better evaluation of consciousness states (coma, vegetative state, minimally conscious state, and locked in syndrome). Based on the evidence to-date, electroencephalographic and neuroimaging based assessments of consciousness provide valuable information for evaluation of residual function, formation of differential diagnoses, and estimation of prognosis. PMID:20113490

  1. Associations between Verbal Learning Slope and Neuroimaging Markers across the Cognitive Aging Spectrum.

    PubMed

    Gifford, Katherine A; Phillips, Jeffrey S; Samuels, Lauren R; Lane, Elizabeth M; Bell, Susan P; Liu, Dandan; Hohman, Timothy J; Romano, Raymond R; Fritzsche, Laura R; Lu, Zengqi; Jefferson, Angela L

    2015-07-01

    A symptom of mild cognitive impairment (MCI) and Alzheimer's disease (AD) is a flat learning profile. Learning slope calculation methods vary, and the optimal method for capturing neuroanatomical changes associated with MCI and early AD pathology is unclear. This study cross-sectionally compared four different learning slope measures from the Rey Auditory Verbal Learning Test (simple slope, regression-based slope, two-slope method, peak slope) to structural neuroimaging markers of early AD neurodegeneration (hippocampal volume, cortical thickness in parahippocampal gyrus, precuneus, and lateral prefrontal cortex) across the cognitive aging spectrum [normal control (NC); (n=198; age=76±5), MCI (n=370; age=75±7), and AD (n=171; age=76±7)] in ADNI. Within diagnostic group, general linear models related slope methods individually to neuroimaging variables, adjusting for age, sex, education, and APOE4 status. Among MCI, better learning performance on simple slope, regression-based slope, and late slope (Trial 2-5) from the two-slope method related to larger parahippocampal thickness (all p-values<.01) and hippocampal volume (p<.01). Better regression-based slope (p<.01) and late slope (p<.01) were related to larger ventrolateral prefrontal cortex in MCI. No significant associations emerged between any slope and neuroimaging variables for NC (p-values ≥.05) or AD (p-values ≥.02). Better learning performances related to larger medial temporal lobe (i.e., hippocampal volume, parahippocampal gyrus thickness) and ventrolateral prefrontal cortex in MCI only. Regression-based and late slope were most highly correlated with neuroimaging markers and explained more variance above and beyond other common memory indices, such as total learning. Simple slope may offer an acceptable alternative given its ease of calculation.

  2. Pharyngeal electrical stimulation device for the treatment of neurogenic dysphagia: technology update.

    PubMed

    Restivo, Domenico A; Hamdy, Shaheen

    2018-01-01

    Neurogenic dysphagia (ND) can occur in patients with nervous system diseases of varying etiologies. Moreover, recovery from ND is not guaranteed. The therapeutic approaches for oropharyngeal ND have drastically changed over the last decade, mainly due to a better knowledge of the neurophysiology of swallowing along with the progress of neuroimaging and neurophysiological studies. For this reason, it is a priority to develop a treatment that is repeatable, safe, and can be carried out at the bedside as well as for outpatients. Pharyngeal electrical stimulation (PES) is a novel rehabilitation treatment for ND. PES is carried out via location-specific intraluminal catheters that are introduced transnasally and enable clinicians to stimulate the pharynx directly. This technique has demonstrated increasingly promising evidence in improving swallowing performance in patients with ND associated with stroke and multiple sclerosis, probably by increasing the corticobulbar excitability and inducing cortical reorganization of swallowing motor cortex. In this article, we update the reader as to both the physiologic background and past and current studies of PES in an effort to highlight the clinical progress of this important technique.

  3. Effects of cannabis on impulsivity: a systematic review of neuroimaging findings.

    PubMed

    Wrege, Johannes; Schmidt, Andre; Walter, Anna; Smieskova, Renata; Bendfeldt, Kerstin; Radue, Ernst-Wilhelm; Lang, Undine E; Borgwardt, Stefan

    2014-01-01

    We conducted a systematic review to assess the evidence for specific effects of cannabis on impulsivity, disinhibition and motor control. The review had a specific focus on neuroimaging findings associated with acute and chronic use of the drug and covers literature published up until May 2012. Seventeen studies were identified, of which 13 met the inclusion criteria; three studies investigated acute effects of cannabis (1 fMRI, 2 PET), while six studies investigated non-acute functional effects (4 fMRI, 2 PET), and four studies investigated structural alterations. Functional imaging studies of impulsivity studies suggest that prefrontal blood flow is lower in chronic cannabis users than in controls. Studies of acute administration of THC or marijuana report increased brain metabolism in several brain regions during impulsivity tasks. Structural imaging studies of cannabis users found differences in reduced prefrontal volumes and white matter integrity that might mediate the abnormal impulsivity and mood observed in marijuana users. To address the question whether impulsivity as a trait precedes cannabis consumption or whether cannabis aggravates impulsivity and discontinuation of usage more longitudinal study designs are warranted.

  4. Ethical and Clinical Considerations at the Intersection of Functional Neuroimaging and Disorders of Consciousness.

    PubMed

    Byram, Adrian C; Lee, Grace; Owen, Adrian M; Ribary, Urs; Stoessl, A Jon; Townson, Andrea; Illes, Judy

    2016-10-01

    Recent neuroimaging research on disorders of consciousness provides direct evidence of covert consciousness otherwise not detected clinically in a subset of severely brain-injured patients. These findings have motivated strategic development of binary communication paradigms, from which researchers interpret voluntary modulations in brain activity to glean information about patients' residual cognitive functions and emotions. The discovery of such responsiveness raises ethical and legal issues concerning the exercise of autonomy and capacity for decisionmaking on matters such as healthcare, involvement in research, and end of life. These advances have generated demands for access to the technology against a complex background of continued scientific advancement, questions about just allocation of healthcare resources, and unresolved legal issues. Interviews with professionals whose work is relevant to patients with disorders of consciousness reveal priorities concerning further basic research, legal and policy issues, and clinical considerations.

  5. Reproducibility of neuroimaging analyses across operating systems

    PubMed Central

    Glatard, Tristan; Lewis, Lindsay B.; Ferreira da Silva, Rafael; Adalat, Reza; Beck, Natacha; Lepage, Claude; Rioux, Pierre; Rousseau, Marc-Etienne; Sherif, Tarek; Deelman, Ewa; Khalili-Mahani, Najmeh; Evans, Alan C.

    2015-01-01

    Neuroimaging pipelines are known to generate different results depending on the computing platform where they are compiled and executed. We quantify these differences for brain tissue classification, fMRI analysis, and cortical thickness (CT) extraction, using three of the main neuroimaging packages (FSL, Freesurfer and CIVET) and different versions of GNU/Linux. We also identify some causes of these differences using library and system call interception. We find that these packages use mathematical functions based on single-precision floating-point arithmetic whose implementations in operating systems continue to evolve. While these differences have little or no impact on simple analysis pipelines such as brain extraction and cortical tissue classification, their accumulation creates important differences in longer pipelines such as subcortical tissue classification, fMRI analysis, and cortical thickness extraction. With FSL, most Dice coefficients between subcortical classifications obtained on different operating systems remain above 0.9, but values as low as 0.59 are observed. Independent component analyses (ICA) of fMRI data differ between operating systems in one third of the tested subjects, due to differences in motion correction. With Freesurfer and CIVET, in some brain regions we find an effect of build or operating system on cortical thickness. A first step to correct these reproducibility issues would be to use more precise representations of floating-point numbers in the critical sections of the pipelines. The numerical stability of pipelines should also be reviewed. PMID:25964757

  6. Reproducibility of neuroimaging analyses across operating systems.

    PubMed

    Glatard, Tristan; Lewis, Lindsay B; Ferreira da Silva, Rafael; Adalat, Reza; Beck, Natacha; Lepage, Claude; Rioux, Pierre; Rousseau, Marc-Etienne; Sherif, Tarek; Deelman, Ewa; Khalili-Mahani, Najmeh; Evans, Alan C

    2015-01-01

    Neuroimaging pipelines are known to generate different results depending on the computing platform where they are compiled and executed. We quantify these differences for brain tissue classification, fMRI analysis, and cortical thickness (CT) extraction, using three of the main neuroimaging packages (FSL, Freesurfer and CIVET) and different versions of GNU/Linux. We also identify some causes of these differences using library and system call interception. We find that these packages use mathematical functions based on single-precision floating-point arithmetic whose implementations in operating systems continue to evolve. While these differences have little or no impact on simple analysis pipelines such as brain extraction and cortical tissue classification, their accumulation creates important differences in longer pipelines such as subcortical tissue classification, fMRI analysis, and cortical thickness extraction. With FSL, most Dice coefficients between subcortical classifications obtained on different operating systems remain above 0.9, but values as low as 0.59 are observed. Independent component analyses (ICA) of fMRI data differ between operating systems in one third of the tested subjects, due to differences in motion correction. With Freesurfer and CIVET, in some brain regions we find an effect of build or operating system on cortical thickness. A first step to correct these reproducibility issues would be to use more precise representations of floating-point numbers in the critical sections of the pipelines. The numerical stability of pipelines should also be reviewed.

  7. Spatial information is processed even when it is task-irrelevant: implications for neuroimaging task design.

    PubMed

    Meegan, Daniel V; Honsberger, Michael J M

    2005-05-01

    Many neuroimaging studies have been designed to differentiate domain-specific processes in the brain. A common design constraint is to use identical stimuli for different domain-specific tasks. For example, an experiment investigating spatial versus identity processing would present compound spatial-identity stimuli in both spatial and identity tasks, and participants would be instructed to attend to, encode, maintain, or retrieve spatial information in the spatial task, and identity information in the identity task. An assumption in such studies is that spatial information will not be processed in the identity task, as it is irrelevant for that task. We report three experiments demonstrating violations of this assumption. Our results suggest that comparisons of spatial and identity tasks in existing neuroimaging studies have underestimated the amount of brain activation that is spatial-specific. For future neuroimaging studies, we recommend unique stimulus displays for each domain-specific task, and event-related measurement of post-stimulus processing.

  8. Chronic disorders of consciousness: role of neuroimaging

    NASA Astrophysics Data System (ADS)

    Kremneva, E.; Sergeev, D.; Zmeykina, E.; Legostaeva, L.; Piradov, M.

    2017-08-01

    Chronic disorders of consciousness are clinically challenging conditions, and advanced methods of imaging for better understanding of diagnosis and prognosis are needed. Recent functional neuroradiological studies utilizing PET and fMRI demonstrated that besides widespread neuronal loss disruption of interconnection between certain cortical networks after the injury may also play the leading role in the development of behaviourally assessed unresponsiveness. Functional and structural connectivity, evaluated by neuroimaging approaches, may correlate with clinical status and may also play prognostic role. Integration of data from various diagnostic modalities is needed for further progress in this area.

  9. A Comparison of Neuroimaging Abnormalities in Multiple Sclerosis, Major Depression and Chronic Fatigue Syndrome (Myalgic Encephalomyelitis): is There a Common Cause?

    PubMed

    Morris, Gerwyn; Berk, Michael; Puri, Basant K

    2018-04-01

    There is copious evidence of abnormalities in resting-state functional network connectivity states, grey and white matter pathology and impaired cerebral perfusion in patients afforded a diagnosis of multiple sclerosis, major depression or chronic fatigue syndrome (CFS) (myalgic encephalomyelitis). Systemic inflammation may well be a major element explaining such findings. Inter-patient and inter-illness variations in neuroimaging findings may arise at least in part from regional genetic, epigenetic and environmental variations in the functions of microglia and astrocytes. Regional differences in neuronal resistance to oxidative and inflammatory insults and in the performance of antioxidant defences in the central nervous system may also play a role. Importantly, replicated experimental findings suggest that the use of high-resolution SPECT imaging may have the capacity to differentiate patients afforded a diagnosis of CFS from those with a diagnosis of depression. Further research involving this form of neuroimaging appears warranted in an attempt to overcome the problem of aetiologically heterogeneous cohorts which probably explain conflicting findings produced by investigative teams active in this field. However, the ionising radiation and relative lack of sensitivity involved probably preclude its use as a routine diagnostic tool.

  10. Legal and ethical issues in neuroimaging research: human subjects protection, medical privacy, and the public communication of research results.

    PubMed

    Kulynych, Jennifer

    2002-12-01

    Humans subjects research entails significant legal and ethical obligations. Neuroimaging researchers must be familiar with the requirements of human subjects protection, including evolving standards for the protection of privacy and the disclosure of risk in "non-therapeutic" research. Techniques for creating veridical surface renderings from volumetric anatomical imaging data raise new privacy concerns, particularly under the federal medical privacy regulation. Additionally, neuroimaging researchers must consider their obligation to communicate research results responsibly. The emerging field of neuroethics should strive to raise awareness of these issues and to involve neuroimaging researchers in the legal, ethical, and policy debates that currently surround human subjects research.

  11. Musical hallucinations: a brief review of functional neuroimaging findings.

    PubMed

    Bernardini, Francesco; Attademo, Luigi; Blackmon, Karen; Devinsky, Orrin

    2017-10-01

    Musical hallucinations are uncommon phenomena characterized by intrusive and frequently distressful auditory musical percepts without an external source, often associated with hypoacusis, psychiatric illness, focal brain lesion, epilepsy, and intoxication/pharmacology. Their physiological basis is thought to involve diverse mechanisms, including "release" from normal sensory or inhibitory inputs as well as stimulation during seizures, or they can be produced by functional or structural disorders in diverse cortical and subcortical areas. The aim of this review is to further explore their pathophysiology, describing the functional neuroimaging findings regarding musical hallucinations. A literature search of the PubMed electronic database was conducted through to 29 December 2015. Search terms included "musical hallucinations" combined with the names of specific functional neuroimaging techniques. A total of 18 articles, all clinical case reports, providing data on 23 patients, comprised the set we reviewed. Diverse pathological processes and patient populations with musical hallucinations were included in the studies. Converging data from multiple studies suggest that the superior temporal sulcus is the most common site and that activation is the most common mechanism. Further neurobiological research is needed to clarify the pathophysiology of musical hallucinations.

  12. Animate and Inanimate Objects in Human Visual Cortex: Evidence for Task-Independent Category Effects

    ERIC Educational Resources Information Center

    Wiggett, Alison J.; Pritchard, Iwan C.; Downing, Paul E.

    2009-01-01

    Evidence from neuropsychology suggests that the distinction between animate and inanimate kinds is fundamental to human cognition. Previous neuroimaging studies have reported that viewing animate objects activates ventrolateral visual brain regions, whereas inanimate objects activate ventromedial regions. However, these studies have typically…

  13. Neuroimaging studies of cognitive remediation in schizophrenia: A systematic and critical review

    PubMed Central

    Penadés, Rafael; González-Rodríguez, Alexandre; Catalán, Rosa; Segura, Bàrbara; Bernardo, Miquel; Junqué, Carme

    2017-01-01

    AIM To examine the effects of cognitive remediation therapies on brain functioning through neuroimaging procedures in patients with schizophrenia. METHODS A systematic, computerised literature search was conducted in the PubMed/Medline and PsychInfo databases. The search was performed through February 2016 without any restrictions on language or publication date. The search was performed using the following search terms: [(“cogniti*” and “remediation” or “training” or “enhancement”) and (“fMRI” or “MRI” or “PET” or “SPECT”) and (schizophrenia or schiz*)]. The search was accompanied by a manual online search and a review of the references from each of the papers selected, and those papers fulfilling our inclusion criteria were also included. RESULTS A total of 101 studies were found, but only 18 of them fulfilled the inclusion criteria. These studies indicated that cognitive remediation improves brain activation in neuroimaging studies. The most commonly reported changes were those that involved the prefrontal and thalamic regions. Those findings are in agreement with the hypofrontality hypothesis, which proposes that frontal hypoactivation is the underlying mechanism of cognitive impairments in schizophrenia. Nonetheless, great heterogeneity among the studies was found. They presented different hypotheses, different results and different findings. The results of more recent studies interpreted cognitive recovery within broader frameworks, namely, as amelioration of the efficiency of different networks. Furthermore, advances in neuroimaging methodologies, such as the use of whole-brain analysis, tractography, graph analysis, and other sophisticated methodologies of data processing, might be conditioning the interpretation of results and generating new theoretical frameworks. Additionally, structural changes were described in both the grey and white matter, suggesting a neuroprotective effect of cognitive remediation. Cognitive

  14. Introduction and overview of the special issue "Brain imaging and aging": The new era of neuroimaging in aging research.

    PubMed

    Furukawa, Katsutoshi; Ishiki, Aiko; Tomita, Naoki; Onaka, Yuta; Saito, Haruka; Nakamichi, Tomoko; Hara, Kazunari; Kusano, Yusuke; Ebara, Masamune; Arata, Yuki; Sakota, Miku; Miyazawa, Isabelle; Totsune, Tomoko; Okinaga, Shoji; Okamura, Nobuyuki; Kudo, Yukitsuka; Arai, Hiroyuki

    2016-09-01

    It is well known that the brain is one of the organs particularly affected by aging in terms of function, relative to the gastrointestinal tract and liver, which exhibit less functional decline. There is also a wide range of age-related neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. Therefore, it is very important to understand the relationship between functional age-related change and neurological dysfunction. Neuroimaging techniques including magnetic resonance imaging and positron emission tomography have been significantly improved over recent years. Many physicians and researchers have investigated various mechanisms of age-related cerebral change and associated neurological disorders using neuroimaging techniques. In this special issue of Ageing Research Reviews, we focus on cerebral- and neuro-imaging, which are a range of tools used to visualize structure, functions, and pathogenic molecules in the nervous system. In addition, we summarize several review articles about the history, present values, and future perspectives of neuroimaging modalities. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Application of positron emission tomography to neuroimaging in sports sciences.

    PubMed

    Tashiro, Manabu; Itoh, Masatoshi; Fujimoto, Toshihiko; Masud, Md Mehedi; Watanuki, Shoichi; Yanai, Kazuhiko

    2008-08-01

    To investigate exercise-induced regional metabolic and perfusion changes in the human brain, various methods are available, such as positron emission tomography (PET), functional magnetic resonance imaging (fMRI), near-infrared spectroscopy (NIRS) and electroencephalography (EEG). In this paper, details of methods of metabolic measurement using PET, [(18)F]fluorodeoxyglucose ([(18)F]FDG) and [(15)O]radio-labelled water ([(15)O]H(2)O) will be explained. Functional neuroimaging in the field of neuroscience was started in the 1970s using an autoradiography technique on experimental animals. The first human functional neuroimaging exercise study was conducted in 1987 using a rough measurement system known as (133)Xe inhalation. Although the data was useful, more detailed and exact functional neuroimaging, especially with respect to spatial resolution, was achieved by positron emission tomography. Early studies measured the cerebral blood flow changes during exercise. Recently, PET was made more applicable to exercise physiology and psychology by the use of the tracer [(18)F]FDG. This technique allowed subjects to be scanned after an exercise task is completed but still obtain data from the exercise itself, which is similar to autoradiography studies. In this report, methodological information is provided with respect to the recommended protocol design, the selection of the scanning mode, how to evaluate the cerebral glucose metabolism and how to interpret the regional brain activity using voxel-by-voxel analysis and regions of interest techniques (ROI). Considering the important role of exercise in health promotion, further efforts in this line of research should be encouraged in order to better understand health behavior. Although the number of research papers is still limited, recent work has indicated that the [(18)F]FDG-PET technique is a useful tool to understand brain activity during exercise.

  16. Pediatric functional magnetic resonance neuroimaging: tactics for encouraging task compliance.

    PubMed

    Schlund, Michael W; Cataldo, Michael F; Siegle, Greg J; Ladouceur, Cecile D; Silk, Jennifer S; Forbes, Erika E; McFarland, Ashley; Iyengar, Satish; Dahl, Ronald E; Ryan, Neal D

    2011-05-06

    Neuroimaging technology has afforded advances in our understanding of normal and pathological brain function and development in children and adolescents. However, noncompliance involving the inability to remain in the magnetic resonance imaging (MRI) scanner to complete tasks is one common and significant problem. Task noncompliance is an especially significant problem in pediatric functional magnetic resonance imaging (fMRI) research because increases in noncompliance produces a greater risk that a study sample will not be representative of the study population. In this preliminary investigation, we describe the development and application of an approach for increasing the number of fMRI tasks children complete during neuroimaging. Twenty-eight healthy children ages 9-13 years participated. Generalization of the approach was examined in additional fMRI and event-related potential investigations with children at risk for depression, children with anxiety and children with depression (N=120). Essential features of the approach include a preference assessment for identifying multiple individualized rewards, increasing reinforcement rates during imaging by pairing tasks with chosen rewards and presenting a visual 'road map' listing tasks, rewards and current progress. Our results showing a higher percentage of fMRI task completion by healthy children provides proof of concept data for the recommended tactics. Additional support was provided by results showing our approach generalized to several additional fMRI and event-related potential investigations and clinical populations. We proposed that some forms of task noncompliance may emerge from less than optimal reward protocols. While our findings may not directly support the effectiveness of the multiple reward compliance protocol, increased attention to how rewards are selected and delivered may aid cooperation with completing fMRI tasks. The proposed approach contributes to the pediatric neuroimaging literature by

  17. Applications of Optical Neuroimaging in Usability Research

    PubMed Central

    Hill, Audrey P.; Bohil, Corey J.

    2016-01-01

    FEATURE AT A GLANCE In this article we review recent and potential applications of optical neuroimaging to human factors and usability research. We focus specifically on functional near-infrared spectroscopy (fNIRS) because of its cost-effectiveness and ease of implementation. Researchers have used fNIRS to assess a range of psychological phenomena relevant to human factors, such as cognitive workload, attention, motor activity, and more. It offers the opportunity to measure hemodynamic correlates of mental activity during task completion in human factors and usability studies. We also consider some limitations and future research directions. PMID:28286404

  18. [Conversion disorder : functional neuroimaging and neurobiological mechanisms].

    PubMed

    Lejeune, J; Piette, C; Salmon, E; Scantamburlo, G

    2017-04-01

    Conversion disorder is a psychiatric disorder often encountered in neurology services. This condition without organic lesions was and still is sometimes referred as an imaginary illness or feigning. However, the absence of organic lesions does not exclude the possibility of cerebral dysfunction. The etiologic mechanisms underlying this disorder remain uncertain even today.The advent of cognitive and functional imaging opens up a field of exploration for psychiatry in understanding the neurobiological mechanisms underlying mental disorders and especially the conversion disorder. This article reports several neuroimaging studies of conversion disorder and attempts to generate hypotheses about neurobiological mechanisms.

  19. Whole-Brain Microscopy Meets In Vivo Neuroimaging: Techniques, Benefits, and Limitations.

    PubMed

    Aswendt, Markus; Schwarz, Martin; Abdelmoula, Walid M; Dijkstra, Jouke; Dedeurwaerdere, Stefanie

    2017-02-01

    Magnetic resonance imaging, positron emission tomography, and optical imaging have emerged as key tools to understand brain function and neurological disorders in preclinical mouse models. They offer the unique advantage of monitoring individual structural and functional changes over time. What remained unsolved until recently was to generate whole-brain microscopy data which can be correlated to the 3D in vivo neuroimaging data. Conventional histological sections are inappropriate especially for neuronal tracing or the unbiased screening for molecular targets through the whole brain. As part of the European Society for Molecular Imaging (ESMI) meeting 2016 in Utrecht, the Netherlands, we addressed this issue in the Molecular Neuroimaging study group meeting. Presentations covered new brain clearing methods, light sheet microscopes for large samples, and automatic registration of microscopy to in vivo imaging data. In this article, we summarize the discussion; give an overview of the novel techniques; and discuss the practical needs, benefits, and limitations.

  20. Alzheimer’s Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans

    PubMed Central

    Saykin, Andrew J.; Shen, Li; Foroud, Tatiana M.; Potkin, Steven G.; Swaminathan, Shanker; Kim, Sungeun; Risacher, Shannon L.; Nho, Kwangsik; Huentelman, Matthew J.; Craig, David W.; Thompson, Paul M.; Stein, Jason L.; Moore, Jason H.; Farrer, Lindsay A.; Green, Robert C.; Bertram, Lars; Jack, Clifford R.; Weiner, Michael W.

    2010-01-01

    The role of the Alzheimer’s Disease Neuroimaging Initiative Genetics Core is to facilitate the investigation of genetic influences on disease onset and trajectory as reflected in structural, functional, and molecular imaging changes; fluid biomarkers; and cognitive status. Major goals include (1) blood sample processing, genotyping, and dissemination, (2) genome-wide association studies (GWAS) of longitudinal phenotypic data, and (3) providing a central resource, point of contact and planning group for genetics within Alzheimer’s Disease Neuroimaging Initiative. Genome-wide array data have been publicly released and updated, and several neuroimaging GWAS have recently been reported examining baseline magnetic resonance imaging measures as quantitative phenotypes. Other preliminary investigations include copy number variation in mild cognitive impairment and Alzheimer’s disease and GWAS of baseline cerebrospinal fluid biomarkers and longitudinal changes on magnetic resonance imaging. Blood collection for RNA studies is a new direction. Genetic studies of longitudinal phenotypes hold promise for elucidating disease mechanisms and risk, development of therapeutic strategies, and refining selection criteria for clinical trials. PMID:20451875

  1. A Neuroimaging Web Services Interface as a Cyber Physical System for Medical Imaging and Data Management in Brain Research: Design Study.

    PubMed

    Lizarraga, Gabriel; Li, Chunfei; Cabrerizo, Mercedes; Barker, Warren; Loewenstein, David A; Duara, Ranjan; Adjouadi, Malek

    2018-04-26

    Structural and functional brain images are essential imaging modalities for medical experts to study brain anatomy. These images are typically visually inspected by experts. To analyze images without any bias, they must be first converted to numeric values. Many software packages are available to process the images, but they are complex and difficult to use. The software packages are also hardware intensive. The results obtained after processing vary depending on the native operating system used and its associated software libraries; data processed in one system cannot typically be combined with data on another system. The aim of this study was to fulfill the neuroimaging community’s need for a common platform to store, process, explore, and visualize their neuroimaging data and results using Neuroimaging Web Services Interface: a series of processing pipelines designed as a cyber physical system for neuroimaging and clinical data in brain research. Neuroimaging Web Services Interface accepts magnetic resonance imaging, positron emission tomography, diffusion tensor imaging, and functional magnetic resonance imaging. These images are processed using existing and custom software packages. The output is then stored as image files, tabulated files, and MySQL tables. The system, made up of a series of interconnected servers, is password-protected and is securely accessible through a Web interface and allows (1) visualization of results and (2) downloading of tabulated data. All results were obtained using our processing servers in order to maintain data validity and consistency. The design is responsive and scalable. The processing pipeline started from a FreeSurfer reconstruction of Structural magnetic resonance imaging images. The FreeSurfer and regional standardized uptake value ratio calculations were validated using Alzheimer’s Disease Neuroimaging Initiative input images, and the results were posted at the Laboratory of Neuro Imaging data archive. Notable

  2. A Neuroimaging Web Services Interface as a Cyber Physical System for Medical Imaging and Data Management in Brain Research: Design Study

    PubMed Central

    2018-01-01

    Background Structural and functional brain images are essential imaging modalities for medical experts to study brain anatomy. These images are typically visually inspected by experts. To analyze images without any bias, they must be first converted to numeric values. Many software packages are available to process the images, but they are complex and difficult to use. The software packages are also hardware intensive. The results obtained after processing vary depending on the native operating system used and its associated software libraries; data processed in one system cannot typically be combined with data on another system. Objective The aim of this study was to fulfill the neuroimaging community’s need for a common platform to store, process, explore, and visualize their neuroimaging data and results using Neuroimaging Web Services Interface: a series of processing pipelines designed as a cyber physical system for neuroimaging and clinical data in brain research. Methods Neuroimaging Web Services Interface accepts magnetic resonance imaging, positron emission tomography, diffusion tensor imaging, and functional magnetic resonance imaging. These images are processed using existing and custom software packages. The output is then stored as image files, tabulated files, and MySQL tables. The system, made up of a series of interconnected servers, is password-protected and is securely accessible through a Web interface and allows (1) visualization of results and (2) downloading of tabulated data. Results All results were obtained using our processing servers in order to maintain data validity and consistency. The design is responsive and scalable. The processing pipeline started from a FreeSurfer reconstruction of Structural magnetic resonance imaging images. The FreeSurfer and regional standardized uptake value ratio calculations were validated using Alzheimer’s Disease Neuroimaging Initiative input images, and the results were posted at the Laboratory of

  3. NeuroImaging Radiological Interpretation System (NIRIS) for Acute Traumatic Brain Injury (TBI).

    PubMed

    Wintermark, Max; Li, Ying; Ding, Victoria Y; Xu, Yingding; Jiang, Bin; Ball, Robyn L; Zeineh, Michael; Gean, Alisa; Sanelli, Pina

    2018-04-18

    To develop an outcome-based NeuroImaging Radiological Interpretation System (NIRIS) for acute traumatic brain injury (TBI) patients that would standardize the interpretation of non-contrast head CTs and consolidate imaging findings into ordinal severity categories that would inform specific patient management actions and that could be used as a clinical decision support tool. We retrospectively identified all patients transported to our emergency department by ambulance or helicopter, for whom a trauma alert was triggered per established criteria and who underwent a non-contrast head CT due to suspicion of TBI, between November 2015 and April 2016. Two neuroradiologists reviewed the non-contrast head CTs and assessed the TBI imaging common data elements (CDEs), as defined by the National Institutes of Health (NIH). Using descriptive statistics and receiver operating characteristic curve analyses to identify imaging characteristics and associated thresholds that best distinguished among outcomes, we classified patients into five mutually exclusive categories: 0-discharge from the emergency department; 1-follow-up brain imaging and/or admission; 2-admission to an advanced care unit; 3-neurosurgical procedure; 4-death up to 6 months after TBI. Sensitivity of NIRIS with respect to each patient's true outcome was then evaluated and compared to that of the Marshall and Rotterdam scoring systems for TBI. In our cohort of 542 TBI patients, NIRIS was developed to predict discharge (182 patients), follow-up brain imaging/admission (187 patients), need for advanced care unit (151 patients). neurosurgical procedures (10 patients) and death (12 patients). NIRIS performed similarly to the Marshall and Rotterdam scoring systems in terms of predicting mortality. We developed an interpretation system for neuroimaging using the CDEs that informs specific patient management actions and could be used as a clinical decision support tool for patients with TBI. Our NIRIS classification

  4. Neuroimaging studies of acute effects of THC and CBD in humans and animals: a systematic review.

    PubMed

    Batalla, A; Crippa, J A; Busatto, G F; Guimaraes, F S; Zuardi, A W; Valverde, O; Atakan, Z; McGuire, P K; Bhattacharyya, S; Martín-Santos, R

    2014-01-01

    In recent years, growing concerns about the effects of cannabis use on mental health have renewed interest in cannabis research. In particular, there has been a marked increase in the number of neuroimaging studies of the effects of cannabinoids. We conducted a systematic review to assess the impact of acute cannabis exposure on brain function in humans and in experimental animals. Papers published until June 2012 were included from EMBASE, Medline, PubMed and LILACS databases following a comprehensive search strategy and pre-determined set of criteria for article selection. Only pharmacological challenge studies involving the acute experimental administration of cannabinoids in occasional or naïve cannabis users, and naïve animals were considered. Two hundred and twenty-four studies were identified, of which 45 met our inclusion criteria. Twenty-four studies were in humans and 21 in animals. Most comprised studies of the acute effects of cannabinoids on brain functioning in the context of either resting state activity or activation during cognitive paradigms. In general, THC and CBD had opposite neurophysiological effects. There were also a smaller number of neurochemical imaging studies: overall, these did not support a central role for increased dopaminergic activity in THC-induced psychosis. There was a considerable degree of methodological heterogeneity in the imaging literature reviewed. Functional neuroimaging studies have provided extensive evidence for the acute modulation of brain function by cannabinoids, but further studies are needed in order to understand the neural mechanisms underlying these effects. Future studies should also consider the need for more standardised methodology and the replication of findings.

  5. Offering to Share: How to Put Heads Together in Autism Neuroimaging

    ERIC Educational Resources Information Center

    Belmonte, Matthew K.; Mazziotta, John C.; Minshew, Nancy J.; Evans, Alan C.; Courchesne, Eric; Dager, Stephen R.; Bookheimer, Susan Y.; Aylward, Elizabeth H.; Amaral, David G.; Cantor, Rita M.; Chugani, Diane C.; Dale, Anders M.; Davatzikos, Christos; Gerig, Guido; Herbert, Martha R.; Lainhart, Janet E.; Murphy, Declan G.; Piven, Joseph; Reiss, Allan L.; Schultz, Robert T.; Zeffiro, Thomas A.; Levi-Pearl, Susan; Lajonchere, Clara; Colamarino, Sophia A.

    2008-01-01

    Data sharing in autism neuroimaging presents scientific, technical, and social obstacles. We outline the desiderata for a data-sharing scheme that combines imaging with other measures of phenotype and with genetics, defines requirements for comparability of derived data and recommendations for raw data, outlines a core protocol including…

  6. Structured illumination diffuse optical tomography for noninvasive functional neuroimaging in mice.

    PubMed

    Reisman, Matthew D; Markow, Zachary E; Bauer, Adam Q; Culver, Joseph P

    2017-04-01

    Optical intrinsic signal (OIS) imaging has been a powerful tool for capturing functional brain hemodynamics in rodents. Recent wide field-of-view implementations of OIS have provided efficient maps of functional connectivity from spontaneous brain activity in mice. However, OIS requires scalp retraction and is limited to superficial cortical tissues. Diffuse optical tomography (DOT) techniques provide noninvasive imaging, but previous DOT systems for rodent neuroimaging have been limited either by sparse spatial sampling or by slow speed. Here, we develop a DOT system with asymmetric source-detector sampling that combines the high-density spatial sampling (0.4 mm) detection of a scientific complementary metal-oxide-semiconductor camera with the rapid (2 Hz) imaging of a few ([Formula: see text]) structured illumination (SI) patterns. Analysis techniques are developed to take advantage of the system's flexibility and optimize trade-offs among spatial sampling, imaging speed, and signal-to-noise ratio. An effective source-detector separation for the SI patterns was developed and compared with light intensity for a quantitative assessment of data quality. The light fall-off versus effective distance was also used for in situ empirical optimization of our light model. We demonstrated the feasibility of this technique by noninvasively mapping the functional response in the somatosensory cortex of the mouse following electrical stimulation of the forepaw.

  7. Investigating the pathogenesis of posttraumatic stress disorder with neuroimaging.

    PubMed

    Pitman, R K; Shin, L M; Rauch, S L

    2001-01-01

    Rapidly evolving brain neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) are proving fruitful in exploring the pathogenesis and pathophysiology of posttraumatic stress disorder (PTSD). Structural abnormalities in PTSD found with MRI include nonspecific white matter lesions and decreased hippocampal volume. These abnormalities may reflect pretrauma vulnerability to develop PTSD, or they may be a consequence of traumatic exposure, PTSD, and/or PTSD sequelae. Functional neuroimaging symptom provocation and cognitive activation paradigms using PET measurement of regional cerebral blood flow have revealed greater activation of the amygdala and anterior paralimbic structures (which are known to be involved in processing negative emotions such as fear), greater deactivation of Broca's region (motor speech) and other nonlimbic cortical regions, and failure of activation of the cingulate cortex (which possibly plays an inhibitory role) in response to trauma-related stimuli in individuals with PTSD. Functional MRI research has shown the amygdala to be hyperresponsive to fear-related stimuli in this disorder. Research with PET suggests that cortical, notably hippocampal, metabolism is suppressed to a greater extent by pharmacologic stimulation of the noradrenergic system in persons with PTSD. The growth of knowledge concerning the anatomical and neurochemical basis of this important mental disorder will hopefully eventually lead to rational psychological and pharmacologic treatments.

  8. Effects of Cannabis on Impulsivity: A Systematic Review of Neuroimaging Findings

    PubMed Central

    Wrege, Johannes; Schmidt, André; Walter, Anna; Smieskova, Renata; Bendfeldt, Kerstin; Radue, Ernst-Wilhelm; Lang, Undine E.; Borgwardt, Stefan

    2014-01-01

    We conducted a systematic review to assess the evidence for specific effects of cannabis on impulsivity, disinhibition and motor control. The review had a specific focus on neuroimaging findings associated with acute and chronic use of the drug and covers literature published up until May 2012. Seventeen studies were identified, of which 13 met the inclusion criteria; three studies investigated acute effects of cannabis (1 fMRI, 2 PET), while six studies investigated non-acute functional effects (4 fMRI, 2 PET), and four studies investigated structural alterations. Functional imaging studies of impulsivity studies suggest that prefrontal blood flow is lower in chronic cannabis users than in controls. Studies of acute administration of THC or marijuana report increased brain metabolism in several brain regions during impulsivity tasks. Structural imaging studies of cannabis users found differences in reduced prefrontal volumes and white matter integrity that might mediate the abnormal impulsivity and mood observed in marijuana users. To address the question whether impulsivity as a trait precedes cannabis consumption or whether cannabis aggravates impulsivity and discontinuation of usage more longitudinal study designs are warranted. PMID:23829358

  9. The Body of Evidence: What Can Neuroscience Tell Us about Embodied Semantics?

    PubMed Central

    Hauk, Olaf; Tschentscher, Nadja

    2013-01-01

    Semantic knowledge is based on the way we perceive and interact with the world. However, the jury is still out on the question: to what degree are neuronal systems that subserve acquisition of semantic knowledge, such as sensory-motor networks, involved in its representation and processing? We will begin with a critical evaluation of the main behavioral and neuroimaging methods with respect to their capability to define the functional roles of specific brain areas. Any behavioral or neuroscientific measure is a conflation of representations and processes. Hence, a combination of behavioral and neurophysiological interactions as well as time-course information is required to define the functional roles of brain areas. This will guide our review of the empirical literature. Most research in this area has been done on semantics of concrete words, where clear theoretical frameworks for an involvement of sensory-motor systems in semantics exist. Most of this evidence still stems from correlational studies that are ambiguous with respect to the behavioral relevance of effects. Evidence for causal effects of sensory-motor systems on semantic processes is still scarce but evolving. Relatively few neuroscientific studies so far have investigated the embodiment of abstract semantics for words, numbers, and arithmetic facts. Here, some correlational evidence exists, but data on causality are mostly absent. We conclude that neuroimaging data, just as behavioral data, have so far not disentangled the fundamental link between process and representation. Future studies should therefore put more emphasis on the effects of task and context on semantic processing. Strong conclusions can only be drawn from a combination of methods that provide time-course information, determine the connectivity among poly- or amodal and sensory-motor areas, link behavioral with neuroimaging measures, and allow causal inferences. We will conclude with suggestions on how this could be accomplished in

  10. Effects of computerized cognitive training on neuroimaging outcomes in older adults: a systematic review.

    PubMed

    Ten Brinke, Lisanne F; Davis, Jennifer C; Barha, Cindy K; Liu-Ambrose, Teresa

    2017-07-10

    Worldwide, the population is aging and the number of individuals diagnosed with dementia is rising rapidly. Currently, there are no effective pharmaceutical cures. Hence, identifying lifestyle approaches that may prevent, delay, or treat cognitive impairment and dementia in older adults is becoming increasingly important. Computerized Cognitive Training (CCT) is a promising strategy to combat cognitive decline. Yet, the underlying mechanisms of the effect of CCT on cognition remain poorly understood. Hence, the primary objective of this systematic review was to examine peer-reviewed literature ascertaining the effect of CCT on both structural and functional neuroimaging measures among older adults to gain insight into the underlying mechanisms by which CCT may benefit cognitive function. In accordance with PRISMA guidelines, we used the following databases: MEDLINE, EMBASE, and CINAHL. Two independent reviewers abstracted data using pre-defined terms. These included: main study characteristics such as the type of training (i.e., single- versus multi-domain), participant demographics (age ≥ 50 years; no psychiatric conditions), and the inclusion of neuroimaging outcomes. The Physiotherapy Evidence Database (PEDro) scale was used to assess quality of all studies included in this systematic review. Nine studies were included in this systematic review, with four studies including multiple MRI sequences. Results of this systematic review are mixed: CCT was found to increase and decrease both brain structure and function in older adults. In addition, depending on region of interest, both increases and decreases in structure and function were associated with behavioural performance. Of all studies included in this systematic review, results from the highest quality studies, which were two randomized controlled trials, demonstrated that multi-domain CCT could lead to increases in hippocampal functional connectivity. Further high quality studies that include an active

  11. Source preference and ambiguity aversion: models and evidence from behavioral and neuroimaging experiments.

    PubMed

    Chew, Soo Hong; Li, King King; Chark, Robin; Zhong, Songfa

    2008-01-01

    -Sagi model. Our finding also supports the Levy et al. (2007) contention of a single valuation system encompassing risk and ambiguity aversion. This is the first neuroimaging study of the source preference hypothesis using a design which can discriminate among decision models ranging from risk-based ones to those relying on multiple priors.

  12. Neuroimaging of the Dopamine/Reward System in Adolescent Drug Use

    PubMed Central

    Ernst, Monique; Luciana, Monica

    2015-01-01

    Adolescence is characterized by heightened risk-taking, including substance misuse. These behavioral patterns are influenced by ontogenic changes in neurotransmitter systems, particularly the dopamine system, which is fundamentally involved in the neural coding of reward and motivated approach behavior. During adolescence, this system evidences a peak in activity. At the same time, the dopamine system is neuroplastically altered by substance abuse, impacting subsequent function. Here, we describe properties of the dopamine system that change with typical adolescent development and that are altered with substance abuse. Much of this work has been gleaned from animal models due to limitations in measuring dopamine in pediatric samples. Structural and functional neuroimaging techniques have been used to examine structures that are heavily DA-innervated; they measure morphological and functional changes with age and with drug exposure. Presenting marijuana abuse as an exemplar, we consider recent findings that support an adolescent peak in DA-driven reward-seeking behavior and related deviations in motivational systems that are associated with marijuana abuse/dependence. Clinicians are advised that (1) chronic adolescent marijuana use may lead to deficiencies in incentive motivation, (2) that this state is due to marijuana’s interactions with the developing DA system, and (3) that treatment strategies should be directed to remediating resultant deficiencies in goal-directed activity. PMID:26095977

  13. Providing traceability for neuroimaging analyses.

    PubMed

    McClatchey, Richard; Branson, Andrew; Anjum, Ashiq; Bloodsworth, Peter; Habib, Irfan; Munir, Kamran; Shamdasani, Jetendr; Soomro, Kamran

    2013-09-01

    With the increasingly digital nature of biomedical data and as the complexity of analyses in medical research increases, the need for accurate information capture, traceability and accessibility has become crucial to medical researchers in the pursuance of their research goals. Grid- or Cloud-based technologies, often based on so-called Service Oriented Architectures (SOA), are increasingly being seen as viable solutions for managing distributed data and algorithms in the bio-medical domain. For neuroscientific analyses, especially those centred on complex image analysis, traceability of processes and datasets is essential but up to now this has not been captured in a manner that facilitates collaborative study. Few examples exist, of deployed medical systems based on Grids that provide the traceability of research data needed to facilitate complex analyses and none have been evaluated in practice. Over the past decade, we have been working with mammographers, paediatricians and neuroscientists in three generations of projects to provide the data management and provenance services now required for 21st century medical research. This paper outlines the finding of a requirements study and a resulting system architecture for the production of services to support neuroscientific studies of biomarkers for Alzheimer's disease. The paper proposes a software infrastructure and services that provide the foundation for such support. It introduces the use of the CRISTAL software to provide provenance management as one of a number of services delivered on a SOA, deployed to manage neuroimaging projects that have been studying biomarkers for Alzheimer's disease. In the neuGRID and N4U projects a Provenance Service has been delivered that captures and reconstructs the workflow information needed to facilitate researchers in conducting neuroimaging analyses. The software enables neuroscientists to track the evolution of workflows and datasets. It also tracks the outcomes of

  14. A simple tool for neuroimaging data sharing

    PubMed Central

    Haselgrove, Christian; Poline, Jean-Baptiste; Kennedy, David N.

    2014-01-01

    Data sharing is becoming increasingly common, but despite encouragement and facilitation by funding agencies, journals, and some research efforts, most neuroimaging data acquired today is still not shared due to political, financial, social, and technical barriers to sharing data that remain. In particular, technical solutions are few for researchers that are not a part of larger efforts with dedicated sharing infrastructures, and social barriers such as the time commitment required to share can keep data from becoming publicly available. We present a system for sharing neuroimaging data, designed to be simple to use and to provide benefit to the data provider. The system consists of a server at the International Neuroinformatics Coordinating Facility (INCF) and user tools for uploading data to the server. The primary design principle for the user tools is ease of use: the user identifies a directory containing Digital Imaging and Communications in Medicine (DICOM) data, provides their INCF Portal authentication, and provides identifiers for the subject and imaging session. The user tool anonymizes the data and sends it to the server. The server then runs quality control routines on the data, and the data and the quality control reports are made public. The user retains control of the data and may change the sharing policy as they need. The result is that in a few minutes of the user’s time, DICOM data can be anonymized and made publicly available, and an initial quality control assessment can be performed on the data. The system is currently functional, and user tools and access to the public image database are available at http://xnat.incf.org/. PMID:24904398

  15. Drug Addiction and Its Underlying Neurobiological Basis: Neuroimaging Evidence for the Involvement of the Frontal Cortex

    PubMed Central

    Goldstein, Rita Z.; Volkow, Nora D.

    2005-01-01

    Objective Studies of the neurobiological processes underlying drug addiction primarily have focused on limbic subcortical structures. Here the authors evaluated the role of frontal cortical structures in drug addiction. Method An integrated model of drug addiction that encompasses intoxication, bingeing, withdrawal, and craving is proposed. This model and findings from neuroimaging studies on the behavioral, cognitive, and emotional processes that are at the core of drug addiction were used to analyze the involvement of frontal structures in drug addiction. Results The orbitofrontal cortex and the anterior cingulate gyrus, which are regions neuroanatomically connected with limbic structures, are the frontal cortical areas most frequently implicated in drug addiction. They are activated in addicted subjects during intoxication, craving, and bingeing, and they are deactivated during withdrawal. These regions are also involved in higher-order cognitive and motivational functions, such as the ability to track, update, and modulate the salience of a reinforcer as a function of context and expectation and the ability to control and inhibit prepotent responses. Conclusions These results imply that addiction connotes cortically regulated cognitive and emotional processes, which result in the overvaluing of drug reinforcers, the undervaluing of alternative reinforcers, and deficits in inhibitory control for drug responses. These changes in addiction, which the authors call I-RISA (impaired response inhibition and salience attribution), expand the traditional concepts of drug dependence that emphasize limbic-regulated responses to pleasure and reward. PMID:12359667

  16. Age-specific MRI templates for pediatric neuroimaging

    PubMed Central

    Sanchez, Carmen E.; Richards, John E.; Almli, C. Robert

    2012-01-01

    This study created a database of pediatric age-specific MRI brain templates for normalization and segmentation. Participants included children from 4.5 through 19.5 years, totaling 823 scans from 494 subjects. Open-source processing programs (FSL, SPM, ANTS) constructed head, brain and segmentation templates in 6 month intervals. The tissue classification (WM, GM, CSF) showed changes over age similar to previous reports. A volumetric analysis of age-related changes in WM and GM based on these templates showed expected increase/decrease pattern in GM and an increase in WM over the sampled ages. This database is available for use for neuroimaging studies (blindedforreview). PMID:22799759

  17. Neuroimaging of Narcolepsy and Kleine-Levin Syndrome.

    PubMed

    Hong, Seung Bong

    2017-09-01

    Narcolepsy is a chronic neurologic disorder with the abnormal regulation of the sleep-wake cycle, resulting in excessive daytime sleepiness, disturbed nocturnal sleep, and manifestations related to rapid eye movement sleep, such as cataplexy, sleep paralysis, and hypnagogic hallucination. Over the past decade, numerous neuroimaging studies have been performed to characterize the pathophysiology and various clinical features of narcolepsy. This article reviews structural and functional brain imaging findings in narcolepsy and Kleine-Levin syndrome. Based on the current state of research, brain imaging is a useful tool to investigate and understand the neuroanatomic correlates and brain abnormalities of narcolepsy and other hypersomnia. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Improving mass-univariate analysis of neuroimaging data by modelling important unknown covariates: Application to Epigenome-Wide Association Studies.

    PubMed

    Guillaume, Bryan; Wang, Changqing; Poh, Joann; Shen, Mo Jun; Ong, Mei Lyn; Tan, Pei Fang; Karnani, Neerja; Meaney, Michael; Qiu, Anqi

    2018-06-01

    Statistical inference on neuroimaging data is often conducted using a mass-univariate model, equivalent to fitting a linear model at every voxel with a known set of covariates. Due to the large number of linear models, it is challenging to check if the selection of covariates is appropriate and to modify this selection adequately. The use of standard diagnostics, such as residual plotting, is clearly not practical for neuroimaging data. However, the selection of covariates is crucial for linear regression to ensure valid statistical inference. In particular, the mean model of regression needs to be reasonably well specified. Unfortunately, this issue is often overlooked in the field of neuroimaging. This study aims to adopt the existing Confounder Adjusted Testing and Estimation (CATE) approach and to extend it for use with neuroimaging data. We propose a modification of CATE that can yield valid statistical inferences using Principal Component Analysis (PCA) estimators instead of Maximum Likelihood (ML) estimators. We then propose a non-parametric hypothesis testing procedure that can improve upon parametric testing. Monte Carlo simulations show that the modification of CATE allows for more accurate modelling of neuroimaging data and can in turn yield a better control of False Positive Rate (FPR) and Family-Wise Error Rate (FWER). We demonstrate its application to an Epigenome-Wide Association Study (EWAS) on neonatal brain imaging and umbilical cord DNA methylation data obtained as part of a longitudinal cohort study. Software for this CATE study is freely available at http://www.bioeng.nus.edu.sg/cfa/Imaging_Genetics2.html. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Hypnosis and pain perception: An Activation Likelihood Estimation (ALE) meta-analysis of functional neuroimaging studies.

    PubMed

    Del Casale, Antonio; Ferracuti, Stefano; Rapinesi, Chiara; De Rossi, Pietro; Angeletti, Gloria; Sani, Gabriele; Kotzalidis, Georgios D; Girardi, Paolo

    2015-12-01

    Several studies reported that hypnosis can modulate pain perception and tolerance by affecting cortical and subcortical activity in brain regions involved in these processes. We conducted an Activation Likelihood Estimation (ALE) meta-analysis on functional neuroimaging studies of pain perception under hypnosis to identify brain activation-deactivation patterns occurring during hypnotic suggestions aiming at pain reduction, including hypnotic analgesic, pleasant, or depersonalization suggestions (HASs). We searched the PubMed, Embase and PsycInfo databases; we included papers published in peer-reviewed journals dealing with functional neuroimaging and hypnosis-modulated pain perception. The ALE meta-analysis encompassed data from 75 healthy volunteers reported in 8 functional neuroimaging studies. HASs during experimentally-induced pain compared to control conditions correlated with significant activations of the right anterior cingulate cortex (Brodmann's Area [BA] 32), left superior frontal gyrus (BA 6), and right insula, and deactivation of right midline nuclei of the thalamus. HASs during experimental pain impact both cortical and subcortical brain activity. The anterior cingulate, left superior frontal, and right insular cortices activation increases could induce a thalamic deactivation (top-down inhibition), which may correlate with reductions in pain intensity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Exploration of Prostate Cancer Treatment Induced Neurotoxicity with Neuroimaging

    DTIC Science & Technology

    2008-05-01

    report are those of the author( s ) and should not be construed as an official Department of the Army position, policy or decision unless so designated...Prostate Cancer Treatment Induced Neurotoxicity with Neuroimaging 5b. GRANT NUMBER W81XWH-06-1-0033 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Jeri...Janowsky, Ph.D. 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: janowskj@ohsu.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND

  1. Pediatric functional magnetic resonance neuroimaging: tactics for encouraging task compliance

    PubMed Central

    2011-01-01

    Background Neuroimaging technology has afforded advances in our understanding of normal and pathological brain function and development in children and adolescents. However, noncompliance involving the inability to remain in the magnetic resonance imaging (MRI) scanner to complete tasks is one common and significant problem. Task noncompliance is an especially significant problem in pediatric functional magnetic resonance imaging (fMRI) research because increases in noncompliance produces a greater risk that a study sample will not be representative of the study population. Method In this preliminary investigation, we describe the development and application of an approach for increasing the number of fMRI tasks children complete during neuroimaging. Twenty-eight healthy children ages 9-13 years participated. Generalization of the approach was examined in additional fMRI and event-related potential investigations with children at risk for depression, children with anxiety and children with depression (N = 120). Essential features of the approach include a preference assessment for identifying multiple individualized rewards, increasing reinforcement rates during imaging by pairing tasks with chosen rewards and presenting a visual 'road map' listing tasks, rewards and current progress. Results Our results showing a higher percentage of fMRI task completion by healthy children provides proof of concept data for the recommended tactics. Additional support was provided by results showing our approach generalized to several additional fMRI and event-related potential investigations and clinical populations. Discussion We proposed that some forms of task noncompliance may emerge from less than optimal reward protocols. While our findings may not directly support the effectiveness of the multiple reward compliance protocol, increased attention to how rewards are selected and delivered may aid cooperation with completing fMRI tasks Conclusion The proposed approach

  2. Neuroimaging basis in the conversion of aMCI patients with APOE-ε4 to AD: study protocol of a prospective diagnostic trial.

    PubMed

    Chen, Guan-Qun; Sheng, Can; Li, Yu-Xia; Yu, Yang; Wang, Xiao-Ni; Sun, Yu; Li, Hong-Yan; Li, Xuan-Yu; Xie, Yun-Yan; Han, Ying

    2016-05-12

    The ε4 allele of the Apolipoprotein E gene (APOE-ε4) is a potent genetic risk factor for sporadic Alzheimer's disease (AD). Amnestic mild cognitive impairment (aMCI) is an intermediate state between normal cognitive aging and dementia, which is easy to convert to AD dementia. It is an urgent problem in the field of cognitive neuroscience to reveal the conversion of aMCI-ε4 to AD. Based on our preliminary work, we will study the neuroimaging features in the special group of aMCI-ε4 with multi-modality magnetic resonance imaging (structural MRI, resting state-fMRI and diffusion tensor imaging) longitudinally. In this study, 200 right-handed subjects who are diagnosed as aMCI with APOE-ε4 will be recruited at the memory clinic of the Neurology Department, XuanWu Hospital, Capital Medical University, Beijing, China. All subjects will undergo the neuroimaging and neuropsychological evaluation at a 1 year-interval for 3 years. The primary outcome measures are 1) Microstructural alterations revealed with multimodal MRI scans including structure MRI (sMRI), resting state functional MRI (rs-fMRI), diffusion tensor imaging (DTI); 2) neuropsychological evaluation, including the World Health Organization-University of California-LosAngeles Auditory Verbal Learning Test (WHO-UCLA AVLT), Addenbrook's cognitive examination-revised (ACE-R), mini-mental state examination (MMSE), Montreal Cognitive Assessment (MoCA), Clinical Dementia Rating scale (CDR). This study is to find out the neuroimaging biomarker and the changing laws of the marker during the progress of aMCI-ε4 to AD, and the final purpose is to provide scientific evidence for new prevention, diagnosis and treatment of AD. This study has been registered to ClinicalTrials.gov (NCT02225964, https://www.clinicaltrials.gov/ ) in August 24, 2014.

  3. What Is Self-Specific? Theoretical Investigation and Critical Review of Neuroimaging Results

    ERIC Educational Resources Information Center

    Legrand, Dorothee; Ruby, Perrine

    2009-01-01

    The authors propose a paradigm shift in the investigation of the self. Synthesizing neuroimaging results from studies investigating the self, the authors first demonstrate that self-relatedness evaluation involves a wide cerebral network, labeled E-network, comprising the medial prefrontal cortex, precuneus, temporoparietal junction, and temporal…

  4. Integrating Functional Brain Neuroimaging and Developmental Cognitive Neuroscience in Child Psychiatry Research

    ERIC Educational Resources Information Center

    Pavuluri, Mani N.; Sweeney, John A.

    2008-01-01

    The use of cognitive neuroscience and functional brain neuroimaging to understand brain dysfunction in pediatric psychiatric disorders is discussed. Results show that bipolar youths demonstrate impairment in affective and cognitive neural systems and in these two circuits' interface. Implications for the diagnosis and treatment of psychiatric…

  5. Adolescent Schizophrenia: A Methodologic Review of the Current Neuroimaging and Neuropsychologic Literature.

    ERIC Educational Resources Information Center

    Findling, Robert L.; And Others

    1995-01-01

    This paper reviews the methodology in articles that have reported structural neuroimaging or neuropsychological data in adolescent patients with schizophrenia. Identification of methodological issues led to the finding that, at present, no conclusions can be made regarding the presence or absence of neuropsychologic dysfunction or structural…

  6. Neuroimaging of classic neuralgic amyotrophy.

    PubMed

    Lieba-Samal, Doris; Jengojan, Suren; Kasprian, Gregor; Wöber, Christian; Bodner, Gerd

    2016-12-01

    Neuralgic amyotrophy (NA) often imposes diagnostic problems. Recently, MRI and high-resolution ultrasound (HRUS) have proven useful in diagnosing peripheral nerve disorders. We performed a chart and imaging review of patients who were examined using neuroimaging and who were referred because of clinically diagnosed NA between March 1, 2014 and May 1, 2015. Six patients were included. All underwent HRUS, and 5 underwent MRI. Time from onset to evaluation ranged from 2 weeks to 6 months. HRUS showed segmental swelling of all clinically affected nerves/trunks. Atrophy of muscles was detected in those assessed >1 month after onset. MRI showed T2-weighted hyperintensity in all clinically affected nerves, except for the long thoracic nerve, and denervation edema of muscles. HRUS and MRI are valuable diagnostic tools in NA. This could change the diagnostic approach from one now focused on excluding other disorders to confirming NA through imaging markers. Muscle Nerve 54: 1079-1085, 2016. © 2016 Wiley Periodicals, Inc.

  7. Effects of Behavioral Genetic Evidence on Perceptions of Criminal Responsibility and Appropriate Punishment.

    PubMed

    Appelbaum, Paul S; Scurich, Nicholas; Raad, Raymond

    2015-05-01

    Demonstrations of a link between genetic variants and criminal behavior have stimulated increasing use of genetic evidence to reduce perceptions of defendants' responsibility for criminal behavior and to mitigate punishment. However, because only limited data exist regarding the impact of such evidence on decision makers and the public at large, we recruited a representative sample of the U.S. adult population (n=960) for a web-based survey. Participants were presented with descriptions of three legal cases and were asked to: determine the length of incarceration for a convicted murderer; adjudicate an insanity defense; and decide whether a defendant should receive the death penalty. A fully crossed, between-participants, factorial design was used, varying the type of evidence (none, genetic, neuroimaging, both), heinousness of the crime, and past criminal record, with sentence or verdict as the primary outcome. Also assessed were participants' apprehension of the defendant, belief in free will, political ideology, and genetic knowledge. Across all three cases, genetic evidence had no significant effects on outcomes. Neuroimaging data showed an inconsistent effect in one of the two cases in which it was introduced. In contrast, heinousness of the offense and past criminal record were strongly related to participants' decisions. Moreover, participants' beliefs about the controllability of criminal behavior and political orientations were significantly associated with their choices. Our findings suggest that neither hopes that genetic evidence will modify judgments of culpability and punishment nor fears about the impact of genetic evidence on decision makers are likely to come to fruition.

  8. Effects of Behavioral Genetic Evidence on Perceptions of Criminal Responsibility and Appropriate Punishment

    PubMed Central

    Appelbaum, Paul S.; Scurich, Nicholas; Raad, Raymond

    2015-01-01

    Demonstrations of a link between genetic variants and criminal behavior have stimulated increasing use of genetic evidence to reduce perceptions of defendants’ responsibility for criminal behavior and to mitigate punishment. However, because only limited data exist regarding the impact of such evidence on decision makers and the public at large, we recruited a representative sample of the U.S. adult population (n=960) for a web-based survey. Participants were presented with descriptions of three legal cases and were asked to: determine the length of incarceration for a convicted murderer; adjudicate an insanity defense; and decide whether a defendant should receive the death penalty. A fully crossed, between-participants, factorial design was used, varying the type of evidence (none, genetic, neuroimaging, both), heinousness of the crime, and past criminal record, with sentence or verdict as the primary outcome. Also assessed were participants’ apprehension of the defendant, belief in free will, political ideology, and genetic knowledge. Across all three cases, genetic evidence had no significant effects on outcomes. Neuroimaging data showed an inconsistent effect in one of the two cases in which it was introduced. In contrast, heinousness of the offense and past criminal record were strongly related to participants’ decisions. Moreover, participants’ beliefs about the controllability of criminal behavior and political orientations were significantly associated with their choices. Our findings suggest that neither hopes that genetic evidence will modify judgments of culpability and punishment nor fears about the impact of genetic evidence on decision makers are likely to come to fruition. PMID:26240516

  9. Neuroimaging in aphasia treatment research: Consensus and practical guidelines for data analysis

    PubMed Central

    Meinzer, Marcus; Beeson, Pélagie M.; Cappa, Stefano; Crinion, Jenny; Kiran, Swathi; Saur, Dorothee; Parrish, Todd; Crosson, Bruce; Thompson, Cynthia K.

    2012-01-01

    Functional magnetic resonance imaging is the most widely used imaging technique to study treatment-induced recovery in post-stroke aphasia. The longitudinal design of such studies adds to the challenges researchers face when studying patient populations with brain damage in cross-sectional settings. The present review focuses on issues specifically relevant to neuroimaging data analysis in aphasia treatment research identified in discussions among international researchers at the Neuroimaging in Aphasia Treatment Research Workshop held at Northwestern University (Evanston, Illinois, USA). In particular, we aim to provide the reader with a critical review of unique problems related to the pre-processing, statistical modeling and interpretation of such data sets. Despite the fact that data analysis procedures critically depend on specific design features of a given study, we aim to discuss and communicate a basic set of practical guidelines that should be applicable to a wide range of studies and useful as a reference for researchers pursuing this line of research. PMID:22387474

  10. Functional neuroimaging studies in addiction: multisensory drug stimuli and neural cue reactivity.

    PubMed

    Yalachkov, Yavor; Kaiser, Jochen; Naumer, Marcus J

    2012-02-01

    Neuroimaging studies on cue reactivity have substantially contributed to the understanding of addiction. In the majority of studies drug cues were presented in the visual modality. However, exposure to conditioned cues in real life occurs often simultaneously in more than one sensory modality. Therefore, multisensory cues should elicit cue reactivity more consistently than unisensory stimuli and increase the ecological validity and the reliability of brain activation measurements. This review includes the data from 44 whole-brain functional neuroimaging studies with a total of 1168 subjects (812 patients and 356 controls). Correlations between neural cue reactivity and clinical covariates such as craving have been reported significantly more often for multisensory than unisensory cues in the motor cortex, insula and posterior cingulate cortex. Thus, multisensory drug cues are particularly effective in revealing brain-behavior relationships in neurocircuits of addiction responsible for motivation, craving awareness and self-related processing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Electrical stimulation of the dorsolateral prefrontal cortex improves memory monitoring.

    PubMed

    Chua, Elizabeth F; Ahmed, Rifat

    2016-05-01

    The ability to accurately monitor one's own memory is an important feature of normal memory function. Converging evidence from neuroimaging and lesion studies have implicated the dorsolateral prefrontal cortex (DLPFC) in memory monitoring. Here we used high definition transcranial direct stimulation (HD-tDCS), a non-invasive form of brain stimulation, to test whether the DLPFC has a causal role in memory monitoring, and the nature of that role. We used a metamemory monitoring task, in which participants first attempted to recall the answer to a general knowledge question, then gave a feeling-of-knowing (FOK) judgment, followed by a forced choice recognition task. When participants received DLPFC stimulation, their feeling-of-knowing judgments were better predictors of memory performance, i.e., they had better memory monitoring accuracy, compared to stimulation of a control site, the anterior temporal lobe (ATL). Effects of DLPFC stimulation were specific to monitoring accuracy, as there was no significant increase in memory performance, and if anything, there was poorer memory performance with DLPFC stimulation. Thus we have demonstrated a causal role for the DLPFC in memory monitoring, and showed that electrically stimulating the left DLPFC led people to more accurately monitor and judge their own memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Oxytocin and Social Adaptation: Insights from Neuroimaging Studies of Healthy and Clinical Populations.

    PubMed

    Ma, Yina; Shamay-Tsoory, Simone; Han, Shihui; Zink, Caroline F

    2016-02-01

    Adaptation to the social environment is critical for human survival. The neuropeptide oxytocin (OT), implicated in social cognition and emotions pivotal to sociality and well-being, is a promising pharmacological target for social and emotional dysfunction. We suggest here that the multifaceted role of OT in socio-affective processes improves the capability for social adaptation. We review OT effects on socio-affective processes, with a focus on OT-neuroimaging studies, to elucidate neuropsychological mechanisms through which OT promotes social adaptation. We also review OT-neuroimaging studies of individuals with social deficits and suggest that OT ameliorates impaired social adaptation by normalizing hyper- or hypo-brain activity. The social adaption model (SAM) provides an integrative understanding of discrepant OT effects and the modulations of OT action by personal milieu and context. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Neuroimaging studies of aggressive and violent behavior: current findings and implications for criminology and criminal justice.

    PubMed

    Bufkin, Jana L; Luttrell, Vickie R

    2005-04-01

    With the availability of new functional and structural neuroimaging techniques, researchers have begun to localize brain areas that may be dysfunctional in offenders who are aggressive and violent. Our review of 17 neuroimaging studies reveals that the areas associated with aggressive and/or violent behavioral histories, particularly impulsive acts, are located in the prefrontal cortex and the medial temporal regions. These findings are explained in the context of negative emotion regulation, and suggestions are provided concerning how such findings may affect future theoretical frameworks in criminology, crime prevention efforts, and the functioning of the criminal justice system.

  14. Application of neuroanatomical ontologies for neuroimaging data annotation.

    PubMed

    Turner, Jessica A; Mejino, Jose L V; Brinkley, James F; Detwiler, Landon T; Lee, Hyo Jong; Martone, Maryann E; Rubin, Daniel L

    2010-01-01

    The annotation of functional neuroimaging results for data sharing and re-use is particularly challenging, due to the diversity of terminologies of neuroanatomical structures and cortical parcellation schemes. To address this challenge, we extended the Foundational Model of Anatomy Ontology (FMA) to include cytoarchitectural, Brodmann area labels, and a morphological cortical labeling scheme (e.g., the part of Brodmann area 6 in the left precentral gyrus). This representation was also used to augment the neuroanatomical axis of RadLex, the ontology for clinical imaging. The resulting neuroanatomical ontology contains explicit relationships indicating which brain regions are "part of" which other regions, across cytoarchitectural and morphological labeling schemas. We annotated a large functional neuroimaging dataset with terms from the ontology and applied a reasoning engine to analyze this dataset in conjunction with the ontology, and achieved successful inferences from the most specific level (e.g., how many subjects showed activation in a subpart of the middle frontal gyrus) to more general (how many activations were found in areas connected via a known white matter tract?). In summary, we have produced a neuroanatomical ontology that harmonizes several different terminologies of neuroanatomical structures and cortical parcellation schemes. This neuroanatomical ontology is publicly available as a view of FMA at the Bioportal website. The ontological encoding of anatomic knowledge can be exploited by computer reasoning engines to make inferences about neuroanatomical relationships described in imaging datasets using different terminologies. This approach could ultimately enable knowledge discovery from large, distributed fMRI studies or medical record mining.

  15. Differential Diagnosis of Dysgraphia, Dyslexia, and OWL LD: Behavioral and Neuroimaging Evidence

    ERIC Educational Resources Information Center

    Berninger, Virginia W.; Richards, Todd L.; Abbott, Robert D.

    2015-01-01

    In Study 1, children in grades 4-9 (N = 88, 29 females and 59 males) with persisting reading and/or writing disabilities, despite considerable prior specialized instruction in and out of school, were given an evidence-based comprehensive assessment battery at the university while parents completed questionnaires regarding past and current history…

  16. Intention, false beliefs, and delusional jealousy: insights into the right hemisphere from neurological patients and neuroimaging studies.

    PubMed

    Ortigue, Stephanie; Bianchi-Demicheli, Francesco

    2011-01-01

    Jealousy sits high atop of a list comprised of the most human emotional experiences, although its nature, rationale, and origin are poorly understood. In the past decade, a series of neurological case reports and neuroimaging findings have been particularly helpful in piecing together jealousy's puzzle. In order to understand and quantify the neurological factors that might be important in jealousy, we reviewed the current literature in this specific field. We made an electronic search, and examined all literature with at least an English abstract, through Mars 2010. The search identified a total of 20 neurological patients, who experienced jealousy in relation with a neurological disorder; and 22 healthy individuals, who experienced jealousy under experimental neuroimaging settings. Most of the clinical cases of reported jealousy after a stroke had delusional-type jealousy. Right hemispheric stroke was the most frequently reported neurological disorder in these patients, although there was a wide range of more diffuse neurological disorders that may be reported to be associated with different other types of jealousy. This is in line with recent neuroimaging data on false beliefs, moral judgments, and intention [mis]understanding. Together the present findings provide physicians and psychologists with a potential for high impact in understanding the neural mechanisms and treatment of jealousy. By combining findings from case reports and neuroimaging data, the present article allows for a novel and unique perspective, and explores new directions into the neurological jealous mind.

  17. Intention, false beliefs, and delusional jealousy: Insights into the right hemisphere from neurological patients and neuroimaging studies

    PubMed Central

    Ortigue, Stephanie; Bianchi-Demicheli, Francesco

    2011-01-01

    Summary Jealousy sits high atop of a list comprised of the most human emotional experiences, although its nature, rationale, and origin are poorly understood. In the past decade, a series of neurological case reports and neuroimaging findings have been particularly helpful in piecing together jealousy’s puzzle. In order to understand and quantify the neurological factors that might be important in jealousy, we reviewed the current literature in this specific field. We made an electronic search, and examined all literature with at least an English abstract, through Mars 2010. The search identified a total of 20 neurological patients, who experienced jealousy in relation with a neurological disorder; and 22 healthy individuals, who experienced jealousy under experimental neuroimaging settings. Most of the clinical cases of reported jealousy after a stroke had delusional-type jealousy. Right hemispheric stroke was the most frequently reported neurological disorder in these patients, although there was a wide range of more diffuse neurological disorders that may be reported to be associated with different other types of jealousy. This is in line with recent neuroimaging data on false beliefs, moral judgments, and intention [mis]understanding. Together the present findings provide physicians and psychologists with a potential for high impact in understanding the neural mechanisms and treatment of jealousy. By combining findings from case reports and neuroimaging data, the present article allows for a novel and unique perspective, and explores new directions into the neurological jealous mind. PMID:21169919

  18. Digging Deeper Using Neuroimaging Tools Reveals Important Clues to Early-Onset Schizophrenia

    ERIC Educational Resources Information Center

    Kumra, Sanjiv

    2008-01-01

    The article describes the use of structural neuroimaging to understand the psychopathology of childhood-onset schizophrenia. Results showed an increase in lateral volumes, reduced total and regional volumes of gray matter in the cortex and increased basal ganglia volumes as in adult-onset schizophrenia in comparison with healthy subjects.

  19. How Acute Total Sleep Loss Affects the Attending Brain: A Meta-Analysis of Neuroimaging Studies

    PubMed Central

    Ma, Ning; Dinges, David F.; Basner, Mathias; Rao, Hengyi

    2015-01-01

    Study Objectives: Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Design: Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. Methods: The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. Results: The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Conclusion: Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. Citation: Ma N, Dinges DF, Basner M, Rao H. How acute total

  20. Immunological and neuroimaging biomarkers of complicated grief

    PubMed Central

    O'Connor, Mary-Frances

    2012-01-01

    Complicated grief (CG) is a disorder marked by intense and persistent yearning for the deceased, in addition to other criteria. The present article reviews what is known about the immunologic and neuroimaging biomarkers of both acute grief and CG, Attachment theory and cognitive stress theory are reviewed as they pertain to bereavement, as is the biopsychosocial model of CG. Reduced immune cell function has been replicated in a variety of bereaved populations. The regional brain activation to grief cues frequently includes the dorsal anterior cingulate cortex and insula, and also the posterior cingulate cortex. Using theory to point to future research directions, we may eventually learn which biomarkers are helpful in predicting CG, and its treatment. PMID:22754286

  1. The Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software

    PubMed Central

    Lucas, Blake C.; Bogovic, John A.; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L.; Pham, Dzung

    2010-01-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC). PMID:20077162

  2. The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software.

    PubMed

    Lucas, Blake C; Bogovic, John A; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L; Pham, Dzung L; Landman, Bennett A

    2010-03-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC).

  3. Biological Evidence Regarding Psychopathy Does Not Affect Mock Jury Sentencing.

    PubMed

    Remmel, Rheanna J; Glenn, Andrea L; Cox, Jennifer

    2018-02-22

    Research on the biological factors influencing criminal behavior is increasingly being introduced into court, necessitating research on how such evidence is perceived and influences decision makers. Research on how this evidence influences sentencing recommendations is inconclusive. In this study, we focus on biological evidence related to psychopathy, a construct commonly associated with criminal behavior. Approximately 800 community members were presented with a case vignette detailing an individual who is described as having a high level of psychopathic traits. Participants received either psychological information about psychopathy (i.e., no biological evidence), evidence the defendant had genetic risk factors for psychopathy, or written neuroimaging evidence the defendant had brain deficits associated with psychopathy. Participants then recommended a sentence. Overall, recommended sentence lengths did not differ between evidence conditions. These findings add to a growing body of research suggesting that biological evidence may not have as much of an influence on jurors as previously thought.

  4. The Alzheimer’s Disease Neuroimaging Initiative Informatics Core: A Decade in Review

    PubMed Central

    Toga, Arthur W.; Crawford, Karen L.

    2015-01-01

    The Informatics Core of the Alzheimer’s Diseases Neuroimaging Initiative (ADNI) has coordinated data integration and dissemination for a continually growing and complex dataset in which both data contributors and recipients span institutions, scientific disciplines and geographic boundaries. This article provides an update on the accomplishments and future plans. PMID:26194316

  5. Motor Knowledge Is One Dimension for Concept Organization: Further Evidence from a Chinese Semantic Dementia Case

    ERIC Educational Resources Information Center

    Lin, Nan; Guo, Qihao; Han, Zaizhu; Bi, Yanchao

    2011-01-01

    Neuropsychological and neuroimaging studies have indicated that motor knowledge is one potential dimension along which concepts are organized. Here we present further direct evidence for the effects of motor knowledge in accounting for categorical patterns across object domains (living vs. nonliving) and grammatical domains (nouns vs. verbs), as…

  6. A Bayesian spatial model for neuroimaging data based on biologically informed basis functions.

    PubMed

    Huertas, Ismael; Oldehinkel, Marianne; van Oort, Erik S B; Garcia-Solis, David; Mir, Pablo; Beckmann, Christian F; Marquand, Andre F

    2017-11-01

    The dominant approach to neuroimaging data analysis employs the voxel as the unit of computation. While convenient, voxels lack biological meaning and their size is arbitrarily determined by the resolution of the image. Here, we propose a multivariate spatial model in which neuroimaging data are characterised as a linearly weighted combination of multiscale basis functions which map onto underlying brain nuclei or networks or nuclei. In this model, the elementary building blocks are derived to reflect the functional anatomy of the brain during the resting state. This model is estimated using a Bayesian framework which accurately quantifies uncertainty and automatically finds the most accurate and parsimonious combination of basis functions describing the data. We demonstrate the utility of this framework by predicting quantitative SPECT images of striatal dopamine function and we compare a variety of basis sets including generic isotropic functions, anatomical representations of the striatum derived from structural MRI, and two different soft functional parcellations of the striatum derived from resting-state fMRI (rfMRI). We found that a combination of ∼50 multiscale functional basis functions accurately represented the striatal dopamine activity, and that functional basis functions derived from an advanced parcellation technique known as Instantaneous Connectivity Parcellation (ICP) provided the most parsimonious models of dopamine function. Importantly, functional basis functions derived from resting fMRI were more accurate than both structural and generic basis sets in representing dopamine function in the striatum for a fixed model order. We demonstrate the translational validity of our framework by constructing classification models for discriminating parkinsonian disorders and their subtypes. Here, we show that ICP approach is the only basis set that performs well across all comparisons and performs better overall than the classical voxel-based approach

  7. Neuroimaging studies of the striatum in cognition Part I: healthy individuals

    PubMed Central

    Provost, Jean-Sebastien; Hanganu, Alexandru; Monchi, Oury

    2015-01-01

    The striatum has traditionally mainly been associated with playing a key role in the modulation of motor functions. Indeed, lesion studies in animals and studies of some neurological conditions in humans have brought further evidence to this idea. However, better methods of investigation have raised concerns about this notion, and it was proposed that the striatum could also be involved in different types of functions including cognitive ones. Although the notion was originally a matter of debate, it is now well-accepted that the caudate nucleus contributes to cognition, while the putamen could be involved in motor functions, and to some extent in cognitive functions as well. With the arrival of modern neuroimaging techniques in the early 1990, knowledge supporting the cognitive aspect of the striatum has greatly increased, and a substantial number of scientific papers were published studying the role of the striatum in healthy individuals. For the first time, it was possible to assess the contribution of specific areas of the brain during the execution of a cognitive task. Neuroanatomical studies have described functional loops involving the striatum and the prefrontal cortex suggesting a specific interaction between these two structures. This review examines the data up to date and provides strong evidence for a specific contribution of the fronto-striatal regions in different cognitive processes, such as set-shifting, self-initiated responses, rule learning, action-contingency, and planning. Finally, a new two-level functional model involving the prefrontal cortex and the dorsal striatum is proposed suggesting an essential role of the dorsal striatum in selecting between competing potential responses or actions, and in resolving a high level of ambiguity. PMID:26500513

  8. Neuroimaging studies of the striatum in cognition Part I: healthy individuals.

    PubMed

    Provost, Jean-Sebastien; Hanganu, Alexandru; Monchi, Oury

    2015-01-01

    The striatum has traditionally mainly been associated with playing a key role in the modulation of motor functions. Indeed, lesion studies in animals and studies of some neurological conditions in humans have brought further evidence to this idea. However, better methods of investigation have raised concerns about this notion, and it was proposed that the striatum could also be involved in different types of functions including cognitive ones. Although the notion was originally a matter of debate, it is now well-accepted that the caudate nucleus contributes to cognition, while the putamen could be involved in motor functions, and to some extent in cognitive functions as well. With the arrival of modern neuroimaging techniques in the early 1990, knowledge supporting the cognitive aspect of the striatum has greatly increased, and a substantial number of scientific papers were published studying the role of the striatum in healthy individuals. For the first time, it was possible to assess the contribution of specific areas of the brain during the execution of a cognitive task. Neuroanatomical studies have described functional loops involving the striatum and the prefrontal cortex suggesting a specific interaction between these two structures. This review examines the data up to date and provides strong evidence for a specific contribution of the fronto-striatal regions in different cognitive processes, such as set-shifting, self-initiated responses, rule learning, action-contingency, and planning. Finally, a new two-level functional model involving the prefrontal cortex and the dorsal striatum is proposed suggesting an essential role of the dorsal striatum in selecting between competing potential responses or actions, and in resolving a high level of ambiguity.

  9. Mutism and amnesia following high-voltage electrical injury: psychogenic symptomatology triggered by organic dysfunction?

    PubMed

    Mishra, Nishant K; Russmann, Heike; Granziera, Cristina; Maeder, Philippe; Annoni, Jean-Marie

    2011-01-01

    Mutism and dense retrograde amnesia are found both in organic and dissociative contexts. Moreover, dissociative symptoms may be modulated by right prefrontal activity. A single case, M.R., developed left hemiparesis, mutism and retrograde amnesia after a high-voltage electric shock without evidence of lasting brain lesions. M.R. suddenly recovered from his mutism following a mild brain trauma 2 years later. M.R.'s neuropsychological pattern and anatomoclinical correlations were studied through (i) language and memory assessment to characterize his deficits, (ii) functional neuroimaging during a standard language paradigm, and (iii) assessment of frontal and left insular connectivity through diffusion tractography imaging and transcranial magnetic stimulation. A control evaluation was repeated after recovery. M.R. recovered from the left hemiparesis within 90 days of the accident, which indicated a transient right brain impairment. One year later, neurobehavioral, language and memory evaluations strongly suggested a dissociative component in the mutism and retrograde amnesia. Investigations (including MRI, fMRI, diffusion tensor imaging, EEG and r-TMS) were normal. Twenty-seven months after the electrical injury, M.R. had a very mild head injury which was followed by a rapid recovery of speech. However, the retrograde amnesia persisted. This case indicates an interaction of both organic and dissociative mechanisms in order to explain the patient's symptoms. The study also illustrates dissociation in the time course of the two different dissociative symptoms in the same patient. Copyright © 2011 S. Karger AG, Basel.

  10. Functional neuroimaging studies of prospective memory: what have we learnt so far?

    PubMed

    Burgess, Paul W; Gonen-Yaacovi, Gil; Volle, Emmanuelle

    2011-07-01

    The complexity of the behaviour described by the term "prospective memory" meant that it was not at all clear, when the earliest studies were conducted, that this would prove a fruitful area for neuroimaging study. However, a consistent relation rapidly emerged between activation in rostral prefrontal cortex (approximating Brodmann Area 10) and performance of prospective memory paradigms. This consistency has greatly increased the accumulation of findings, since each study has offered perspectives on the previous ones. Considerable help too has come from broad agreement between functional neuroimaging findings and those from other methods (e.g. human lesion studies, electrophysiology). The result has been a quite startling degree of advance given the relatively few studies that have been conducted. These findings are summarised, along with those from other brain regions, and new directions suggested. Key points are that there is a medial-lateral dissociation within rostral PFC. Some (but not all) regions of medial rostral PFC are typically more active during performance of the ongoing task only, and lateral aspects are relatively more active during conditions involving delayed intentions. Some of these rostral PFC activations seem remarkably insensitive to the form of stimulus material presented, the nature of the ongoing task, the specifics of the intention, how easy or hard the PM cue is to detect, or the intended action is to recall. However there are other regions within rostral PFC where haemodynamic changes vary with alterations in these, and other, aspects of prospective memory paradigms. It is concluded that rostral PFC most likely plays a super-ordinate role during many stages of creating, maintaining and enacting delayed intentions, which in some cases may be linked to recent evidence showing that this brain region is involved in the control of stimulus-oriented vs. stimulus-independent attending. Other key brain regions activated during prospective

  11. Cognitive Contributions to Gait and Falls: Evidence and Implications

    PubMed Central

    Amboni, Marianna; Barone, Paolo; Hausdorff, Jeffrey M.

    2014-01-01

    Dementia and gait impairments often coexist in older adults and patients with neurodegenerative disease. Both conditions represent independent risk factors for falls. The relationship between cognitive function and gait has recently received increasing attention. Gait is no longer considered merely automated motor activity but rather an activity that requires executive function and attention as well as judgment of external and internal cues. In this review, we intend to: (1) summarize and synthesize the experimental, neuropsychological, and neuroimaging evidence that supports the role played by cognition in the control of gait; and (2) briefly discuss the implications deriving from the interplay between cognition and gait. In recent years, the dual task paradigm has been widely used as an experimental method to explore the interplay between gait and cognition. Several neuropsychological investigations have also demonstrated that walking relies on the use of several cognitive domains, including executive-attentional function, visuospatial abilities, and even memory resources. A number of morphological and functional neuroimaging studies have offered additional evidence supporting the relationship between gait and cognitive resources. Based on the findings from 3 lines of studies, it appears that a growing body of evidence indicates a pivotal role of cognition in gait control and fall prevention. The interplay between higher-order neural function and gait has a number of clinical implications, ranging from integrated assessment tools to possible innovative lines of interventions, including cognitive therapy for falls prevention on one hand and walking program for reducing dementia risk on the other. PMID:24132840

  12. Neural Signature of DCD: A Critical Review of MRI Neuroimaging Studies

    PubMed Central

    Biotteau, Maëlle; Chaix, Yves; Blais, Mélody; Tallet, Jessica; Péran, Patrice; Albaret, Jean-Michel

    2016-01-01

    The most common neurodevelopmental disorders (e.g., developmental dyslexia (DD), autism, attention-deficit hyperactivity disorder (ADHD)) have been the subject of numerous neuroimaging studies, leading to certain brain regions being identified as neural correlates of these conditions, referring to a neural signature of disorders. Developmental coordination disorder (DCD), however, remains one of the least understood and studied neurodevelopmental disorders. Given the acknowledged link between motor difficulties and brain features, it is surprising that so few research studies have systematically explored the brains of children with DCD. The aim of the present review was to ascertain whether it is currently possible to identify a neural signature for DCD, based on the 14 magnetic resonance imaging neuroimaging studies that have been conducted in DCD to date. Our results indicate that several brain areas are unquestionably linked to DCD: cerebellum, basal ganglia, parietal lobe, and parts of the frontal lobe (medial orbitofrontal cortex and dorsolateral prefrontal cortex). However, research has been too sparse and studies have suffered from several limitations that constitute a serious obstacle to address the question of a well-established neural signature for DCD. PMID:28018285

  13. Unified Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms

    PubMed Central

    Joshi, Alark; Scheinost, Dustin; Okuda, Hirohito; Belhachemi, Dominique; Murphy, Isabella; Staib, Lawrence H.; Papademetris, Xenophon

    2011-01-01

    Developing both graphical and command-line user interfaces for neuroimaging algorithms requires considerable effort. Neuroimaging algorithms can meet their potential only if they can be easily and frequently used by their intended users. Deployment of a large suite of such algorithms on multiple platforms requires consistency of user interface controls, consistent results across various platforms and thorough testing. We present the design and implementation of a novel object-oriented framework that allows for rapid development of complex image analysis algorithms with many reusable components and the ability to easily add graphical user interface controls. Our framework also allows for simplified yet robust nightly testing of the algorithms to ensure stability and cross platform interoperability. All of the functionality is encapsulated into a software object requiring no separate source code for user interfaces, testing or deployment. This formulation makes our framework ideal for developing novel, stable and easy-to-use algorithms for medical image analysis and computer assisted interventions. The framework has been both deployed at Yale and released for public use in the open source multi-platform image analysis software—BioImage Suite (bioimagesuite.org). PMID:21249532

  14. HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).

    PubMed

    Makkie, Milad; Zhao, Shijie; Jiang, Xi; Lv, Jinglei; Zhao, Yu; Ge, Bao; Li, Xiang; Han, Junwei; Liu, Tianming

    Tremendous efforts have thus been devoted on the establishment of functional MRI informatics systems that recruit a comprehensive collection of statistical/computational approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are especially designed for specific fMRI sessions or studies of which the data size is not really big, and thus has difficulty in handling fMRI 'big data.' Given the size of fMRI data are growing explosively recently due to the advancement of neuroimaging technologies, an effective and efficient fMRI informatics system which can process and analyze fMRI big data is much needed. To address this challenge, in this work, we introduce our newly developed informatics platform, namely, 'HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).' HELPNI implements our recently developed computational framework of sparse representation of whole-brain fMRI signals which is called holistic atlases of functional networks and interactions (HAFNI) for fMRI data analysis. HELPNI provides integrated solutions to archive and process large-scale fMRI data automatically and structurally, to extract and visualize meaningful results information from raw fMRI data, and to share open-access processed and raw data with other collaborators through web. We tested the proposed HELPNI platform using publicly available 1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and meaningful functional brain networks across individuals and populations based on resting state fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate that our HELPNI system has superior performance than other systems for large-scale fMRI data in terms of processing and storing the data and associated results much faster.

  15. HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).

    PubMed

    Makkie, Milad; Zhao, Shijie; Jiang, Xi; Lv, Jinglei; Zhao, Yu; Ge, Bao; Li, Xiang; Han, Junwei; Liu, Tianming

    2015-12-01

    Tremendous efforts have thus been devoted on the establishment of functional MRI informatics systems that recruit a comprehensive collection of statistical/computational approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are especially designed for specific fMRI sessions or studies of which the data size is not really big, and thus has difficulty in handling fMRI 'big data.' Given the size of fMRI data are growing explosively recently due to the advancement of neuroimaging technologies, an effective and efficient fMRI informatics system which can process and analyze fMRI big data is much needed. To address this challenge, in this work, we introduce our newly developed informatics platform, namely, 'HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).' HELPNI implements our recently developed computational framework of sparse representation of whole-brain fMRI signals which is called holistic atlases of functional networks and interactions (HAFNI) for fMRI data analysis. HELPNI provides integrated solutions to archive and process large-scale fMRI data automatically and structurally, to extract and visualize meaningful results information from raw fMRI data, and to share open-access processed and raw data with other collaborators through web. We tested the proposed HELPNI platform using publicly available 1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and meaningful functional brain networks across individuals and populations based on resting state fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate that our HELPNI system has superior performance than other systems for large-scale fMRI data in terms of processing and storing the data and associated results much faster.

  16. The Role of Neuroimaging Techniques in Establishing Diagnosis, Prognosis and Therapy in Disorders of Consciousness

    PubMed Central

    Gosseries, Olivia; Pistoia, Francesca; Charland-Verville, Vanessa; Carolei, Antonio; Sacco, Simona; Laureys, Steven

    2016-01-01

    Non-communicative brain damaged patients raise important clinical and scientific issues. Here, we review three major pathological disorders of consciousness: coma, the unresponsive wakefulness syndrome and the minimally conscious state. A number of clinical studies highlight the difficulty in making a correct diagnosis in patients with disorders of consciousness based only on behavioral examinations. The increasing use of neuroimaging techniques allows improving clinical characterization of these patients. Recent neuroimaging studies using positron emission tomography, functional magnetic resonance imaging, electroencephalography and transcranial magnetic stimulation can help assess diagnosis, prognosis, and therapeutic treatment. These techniques, using resting state, passive and active paradigms, also highlight possible dissociations between consciousness and responsiveness, and are facilitating a more accurate understanding of brain function in this challenging population. PMID:27347265

  17. Testosterone in the brain: neuroimaging findings and the potential role for neuropsychopharmacology.

    PubMed

    Höfer, Peter; Lanzenberger, Rupert; Kasper, Siegfried

    2013-02-01

    Testosterone plays a substantial role in a number of physiological processes in the brain. It is able to modulate the expression of certain genes by binding to androgen receptors. Acting via neurotransmitter receptors, testosterone shows the potential to mediate a non-genomic so-called "neuroactive effect". Various neurotransmitter systems are also influenced by the aromatized form of testosterone, estradiol. The following article summarizes the findings of preclinical and clinical neuroimaging studies including structural and functional magnetic resonance imaging (MRI/fMRI), voxel based morphometry (VBM), as well as pharmacological fMRI (phfMRI) and positron emission tomography (PET) regarding the effects of testosterone on the human brain. The impact of testosterone on the pathogenesis of psychiatric disorders and on sex-related prevalence differences have been supported by a wide range of clinical studies. An antidepressant effect of testosterone can be implicitly explained by its effects on the limbic system--especially amygdala, a major target in the treatment of depression--solidly demonstrated by a large body of neuroimaging findings. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.

  18. Imaging evidence and recommendations for traumatic brain injury: advanced neuro- and neurovascular imaging techniques.

    PubMed

    Wintermark, M; Sanelli, P C; Anzai, Y; Tsiouris, A J; Whitlow, C T

    2015-02-01

    Neuroimaging plays a critical role in the evaluation of patients with traumatic brain injury, with NCCT as the first-line of imaging for patients with traumatic brain injury and MR imaging being recommended in specific settings. Advanced neuroimaging techniques, including MR imaging DTI, blood oxygen level-dependent fMRI, MR spectroscopy, perfusion imaging, PET/SPECT, and magnetoencephalography, are of particular interest in identifying further injury in patients with traumatic brain injury when conventional NCCT and MR imaging findings are normal, as well as for prognostication in patients with persistent symptoms. These advanced neuroimaging techniques are currently under investigation in an attempt to optimize them and substantiate their clinical relevance in individual patients. However, the data currently available confine their use to the research arena for group comparisons, and there remains insufficient evidence at the time of this writing to conclude that these advanced techniques can be used for routine clinical use at the individual patient level. TBI imaging is a rapidly evolving field, and a number of the recommendations presented will be updated in the future to reflect the advances in medical knowledge. © 2015 by American Journal of Neuroradiology.

  19. Neuroimaging of Fear-Associated Learning

    PubMed Central

    Greco, John A; Liberzon, Israel

    2016-01-01

    Fear conditioning has been commonly used as a model of emotional learning in animals and, with the introduction of functional neuroimaging techniques, has proven useful in establishing the neurocircuitry of emotional learning in humans. Studies of fear acquisition suggest that regions such as amygdala, insula, anterior cingulate cortex, and hippocampus play an important role in acquisition of fear, whereas studies of fear extinction suggest that the amygdala is also crucial for safety learning. Extinction retention testing points to the ventromedial prefrontal cortex as an essential region in the recall of the safety trace, and explicit learning of fear and safety associations recruits additional cortical and subcortical regions. Importantly, many of these findings have implications in our understanding of the pathophysiology of psychiatric disease. Recent studies using clinical populations have lent insight into the changes in regional activity in specific disorders, and treatment studies have shown how pharmaceutical and other therapeutic interventions modulate brain activation during emotional learning. Finally, research investigating individual differences in neurotransmitter receptor genotypes has highlighted the contribution of these systems in fear-associated learning. PMID:26294108

  20. Open Science CBS Neuroimaging Repository: Sharing ultra-high-field MR images of the brain.

    PubMed

    Tardif, Christine Lucas; Schäfer, Andreas; Trampel, Robert; Villringer, Arno; Turner, Robert; Bazin, Pierre-Louis

    2016-01-01

    Magnetic resonance imaging at ultra high field opens the door to quantitative brain imaging at sub-millimeter isotropic resolutions. However, novel image processing tools to analyze these new rich datasets are lacking. In this article, we introduce the Open Science CBS Neuroimaging Repository: a unique repository of high-resolution and quantitative images acquired at 7 T. The motivation for this project is to increase interest for high-resolution and quantitative imaging and stimulate the development of image processing tools developed specifically for high-field data. Our growing repository currently includes datasets from MP2RAGE and multi-echo FLASH sequences from 28 and 20 healthy subjects respectively. These datasets represent the current state-of-the-art in in-vivo relaxometry at 7 T, and are now fully available to the entire neuroimaging community. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Neuroimaging supports behavioral personality assessment: Overlapping activations during reflective and impulsive risk taking.

    PubMed

    Pletzer, Belinda; M Ortner, Tuulia

    2016-09-01

    Personality assessment has been challenged by the fact that different assessment methods (implicit measures, behavioral measures and explicit rating scales) show little or no convergence in behavioral studies. In this neuroimaging study we address for the first time, whether different assessment methods rely on separate or overlapping neuronal systems. Fifty nine healthy adult participants completed two objective personality tests of risk propensity: the more implicit Balloon Analogue Risk Task (BART) and the more explicit Game of Dice Task (GDT). Significant differences in activation, as well as connectivity patterns between both tasks were observed. In both tasks, risky decisions yielded significantly stronger activations than safe decisions in the bilateral caudate, as well as the bilateral Insula. The finding of overlapping brain areas validates different assessment methods, despite their behavioral non-convergence. This suggests that neuroimaging can be an important tool of validation in the field of personality assessment. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Neuroimaging Feature Terminology: A Controlled Terminology for the Annotation of Brain Imaging Features

    PubMed Central

    Iyappan, Anandhi; Younesi, Erfan; Redolfi, Alberto; Vrooman, Henri; Khanna, Shashank; Frisoni, Giovanni B.; Hofmann-Apitius, Martin

    2017-01-01

    Ontologies and terminologies are used for interoperability of knowledge and data in a standard manner among interdisciplinary research groups. Existing imaging ontologies capture general aspects of the imaging domain as a whole such as methodological concepts or calibrations of imaging instruments. However, none of the existing ontologies covers the diagnostic features measured by imaging technologies in the context of neurodegenerative diseases. Therefore, the Neuro-Imaging Feature Terminology (NIFT) was developed to organize the knowledge domain of measured brain features in association with neurodegenerative diseases by imaging technologies. The purpose is to identify quantitative imaging biomarkers that can be extracted from multi-modal brain imaging data. This terminology attempts to cover measured features and parameters in brain scans relevant to disease progression. In this paper, we demonstrate the systematic retrieval of measured indices from literature and how the extracted knowledge can be further used for disease modeling that integrates neuroimaging features with molecular processes. PMID:28731430

  3. Neuroimaging Feature Terminology: A Controlled Terminology for the Annotation of Brain Imaging Features.

    PubMed

    Iyappan, Anandhi; Younesi, Erfan; Redolfi, Alberto; Vrooman, Henri; Khanna, Shashank; Frisoni, Giovanni B; Hofmann-Apitius, Martin

    2017-01-01

    Ontologies and terminologies are used for interoperability of knowledge and data in a standard manner among interdisciplinary research groups. Existing imaging ontologies capture general aspects of the imaging domain as a whole such as methodological concepts or calibrations of imaging instruments. However, none of the existing ontologies covers the diagnostic features measured by imaging technologies in the context of neurodegenerative diseases. Therefore, the Neuro-Imaging Feature Terminology (NIFT) was developed to organize the knowledge domain of measured brain features in association with neurodegenerative diseases by imaging technologies. The purpose is to identify quantitative imaging biomarkers that can be extracted from multi-modal brain imaging data. This terminology attempts to cover measured features and parameters in brain scans relevant to disease progression. In this paper, we demonstrate the systematic retrieval of measured indices from literature and how the extracted knowledge can be further used for disease modeling that integrates neuroimaging features with molecular processes.

  4. Genetic Testing and Neuroimaging for Youth at Risk for Mental Illness: Trading off Benefit and Risk.

    PubMed

    Lee, Grace; Mizgalewicz, Ania; Borgelt, Emily; Illes, Judy

    2015-01-01

    According to the World Health Organization, mental illness is one of the leading causes of disability worldwide. The first onset of mental illness usually occurs during childhood or adolescence, with nearly 12 million diagnosed cases in the United States alone. Neuroimaging and genetic testing have been invaluable in research on behavioral, affective, and attentional disorders, particularly with their potential predictive capabilities, and ability to improve diagnosis and to decrease the associated burdens of disease. The present study focused specifically the perspectives of mental health providers on the role of neuroimaging and genetic testing in clinical practice with children and adolescents. We interviewed 38 psychiatrists, psychologists, and allied mental health professionals who work primarily with youth about their receptivity toward either the use of neuroimaging or genetic testing. Interviews probed the role they foresee for these modalities for prediction, diagnosis, treatment planning, and the benefits and risks they anticipate. Practitioners anticipated three major benefits associated with clinical introduction of imaging and genetic testing in the mental health care for youth: (1) improved understanding of the brain and mental illness, (2) more accurate diagnosis than available through conventional clinical examination, and (3) legitimization of treatment plans. They also perceived three major risks: (1) misuse or misinterpretation of the imaging or genetic data, (2) potential adverse impacts on employment and insurance as adolescents reach adulthood, and (3) infringements on self-esteem or self-motivation. The nature of the interview questions focused on the future of neuroimaging and genetic testing testing research in the context of clinical neuroscience. Therefore, the responses from interview participants are based on anticipated rather than actual experience. Continued expansion of brain imaging and genetic testing into clinical care will

  5. The impacts of cognitive-behavioral therapy on the treatment of phobic disorders measured by functional neuroimaging techniques: a systematic review.

    PubMed

    Galvao-de Almeida, Amanda; Araujo Filho, Gerardo Maria de; Berberian, Arthur de Almeida; Trezsniak, Clarissa; Nery-Fernandes, Fabiana; Araujo Neto, Cesar Augusto; Jackowski, Andrea Parolin; Miranda-Scippa, Angela; Oliveira, Irismar Reis de

    2013-01-01

    Functional neuroimaging techniques represent fundamental tools in the context of translational research integrating neurobiology, psychopathology, neuropsychology, and therapeutics. In addition, cognitive-behavioral therapy (CBT) has proven its efficacy in the treatment of anxiety disorders and may be useful in phobias. The literature has shown that feelings and behaviors are mediated by specific brain circuits, and changes in patterns of interaction should be associated with cerebral alterations. Based on these concepts, a systematic review was conducted aiming to evaluate the impact of CBT on phobic disorders measured by functional neuroimaging techniques. A systematic review of the literature was conducted including studies published between January 1980 and April 2012. Studies written in English, Spanish or Portuguese evaluating changes in the pattern of functional neuroimaging before and after CBT in patients with phobic disorders were included. The initial search strategy retrieved 45 studies. Six of these studies met all inclusion criteria. Significant deactivations in the amygdala, insula, thalamus and hippocampus, as well as activation of the medial orbitofrontal cortex, were observed after CBT in phobic patients when compared with controls. In spite of their technical limitations, neuroimaging techniques provide neurobiological support for the efficacy of CBT in the treatment of phobic disorders. Further studies are needed to confirm this conclusion.

  6. Neuroimaging Studies of Normal Brain Development and Their Relevance for Understanding Childhood Neuropsychiatric Disorders

    ERIC Educational Resources Information Center

    Marsh, Rachel; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    Neuroimaging findings which identify normal brain development trajectories are presented. Results show that early brain development begins with the neural tube formation and ends with myelintation. How disturbances in brain development patterns are related to childhood psychiatric disorders is examined.

  7. A simple electrical-mechanical model of the heart applied to the study of electrical-mechanical alternans

    NASA Technical Reports Server (NTRS)

    Clancy, Edward A.; Smith, Joseph M.; Cohen, Richard J.

    1991-01-01

    Recent evidence has shown that a subtle alternation in the surface ECG (electrical alternans) may be correlated with the susceptibility to ventricular fibrillation. In the present work, the author presents evidence that a mechanical alternation in the heartbeat (mechanical alternans) generally accompanies electrical alternans. A simple finite-element computer model which emulates both the electrical and the mechanical activity of the heart is presented. A pilot animal study is also reported. The computer model and the animal study both found that (1) there exists a regime of combined electrical-mechanical alternans during the transition from a normal rhythm towards a fibrillatory rhythm, (2) the detected degree of alternation is correlated with the relative instability of the rhythm, and (3) the electrical and mechanical alternans may result from a dispersion in local electrical properties leading to a spatial-temporal alternation in the electrical conduction process.

  8. Automatic analysis (aa): efficient neuroimaging workflows and parallel processing using Matlab and XML.

    PubMed

    Cusack, Rhodri; Vicente-Grabovetsky, Alejandro; Mitchell, Daniel J; Wild, Conor J; Auer, Tibor; Linke, Annika C; Peelle, Jonathan E

    2014-01-01

    Recent years have seen neuroimaging data sets becoming richer, with larger cohorts of participants, a greater variety of acquisition techniques, and increasingly complex analyses. These advances have made data analysis pipelines complicated to set up and run (increasing the risk of human error) and time consuming to execute (restricting what analyses are attempted). Here we present an open-source framework, automatic analysis (aa), to address these concerns. Human efficiency is increased by making code modular and reusable, and managing its execution with a processing engine that tracks what has been completed and what needs to be (re)done. Analysis is accelerated by optional parallel processing of independent tasks on cluster or cloud computing resources. A pipeline comprises a series of modules that each perform a specific task. The processing engine keeps track of the data, calculating a map of upstream and downstream dependencies for each module. Existing modules are available for many analysis tasks, such as SPM-based fMRI preprocessing, individual and group level statistics, voxel-based morphometry, tractography, and multi-voxel pattern analyses (MVPA). However, aa also allows for full customization, and encourages efficient management of code: new modules may be written with only a small code overhead. aa has been used by more than 50 researchers in hundreds of neuroimaging studies comprising thousands of subjects. It has been found to be robust, fast, and efficient, for simple-single subject studies up to multimodal pipelines on hundreds of subjects. It is attractive to both novice and experienced users. aa can reduce the amount of time neuroimaging laboratories spend performing analyses and reduce errors, expanding the range of scientific questions it is practical to address.

  9. The dynamics of Alzheimer's disease biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort.

    PubMed

    Caroli, A; Frisoni, G B

    2010-08-01

    The aim of this study was to investigate the dynamics of four of the most validated biomarkers for Alzheimer's disease (AD), cerebro-spinal fluid (CSF) Abeta 1-42, tau, hippocampal volume, and FDG-PET, in patients at different stage of AD. Two hundred twenty-nine cognitively healthy subjects, 154 mild cognitive impairment (MCI) patients converted to AD, and 193 (95 early and 98 late) AD patients were selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. For each biomarker, individual values were Z-transformed and plotted against ADAS-cog scores, and sigmoid and linear fits were compared. For most biomarkers the sigmoid model fitted data significantly better than the linear model. Abeta 1-42 time course followed a steep curve, stabilizing early in the disease course. CSF tau and hippocampal volume changed later showing similar monotonous trends, reflecting disease progression. Hippocampal loss trend was steeper and occurred earlier in time in APOE epsilon4 carriers than in non-carriers. FDG-PET started changing early in time and likely followed a linear decline. In conclusion, this study provides the first evidence in favor of the dynamic biomarker model which has recently been proposed. 2010 Elsevier Inc. All rights reserved.

  10. The Application of Neuroimaging to Social Inequity and Language Disparity: A Cautionary Examination

    PubMed Central

    Ellwood-Lowe, Monica E.; Sacchet, Matthew D.; Gotlib, Ian H.

    2016-01-01

    In the nascent field of the cognitive neuroscience of socioeconomic status (SES), researchers are using neuroimaging to examine how growing up in poverty affects children's neurocognitive development, particularly their language abilities. In this review we highlight difficulties inherent in the frequent use of reverse inference to interpret SES-related abnormalities in brain regions that support language. While there is growing evidence suggesting that SES moderates children's developing brain structure and function, no studies to date have elucidated explicitly how these neural findings are related to variations in children's language abilities, or precisely what it is about SES that underlies or contributes to these differences. This issue is complicated by the fact that SES is confounded with such linguistic factors as cultural language use, first language, and bilingualism. Thus, SES-associated differences in brain regions that support language may not necessarily indicate differences in neurocognitive abilities. In this review we consider the multidimensionality of SES, discuss studies that have found SES-related differences in structure and function in brain regions that support language, and suggest future directions for studies in the area of cognitive neuroscience of SES that are less reliant on reverse inference. PMID:27744097

  11. An empirical comparison of different approaches for combining multimodal neuroimaging data with support vector machine

    PubMed Central

    Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F.; Joules, Richard; Catani, Marco; Williams, Steve C. R.; Allen, Paul; McGuire, Philip; Mechelli, Andrea

    2014-01-01

    In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no “magic bullet” for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the

  12. An empirical comparison of different approaches for combining multimodal neuroimaging data with support vector machine.

    PubMed

    Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F; Joules, Richard; Catani, Marco; Williams, Steve C R; Allen, Paul; McGuire, Philip; Mechelli, Andrea

    2014-01-01

    In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no "magic bullet" for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the

  13. Towards evidence based emergency medicine: best BETs from the Manchester Royal Infirmary. Electrical stimulation and Bell's palsy.

    PubMed

    Buttress, Susan; Herren, Katrina

    2002-09-01

    A short cut review was carried out to establish whether electrical stimulation had any advantages over facial exercises in promoting recovery after Bell's palsy. Altogether 270 papers were found using the reported search, of which one presented the best evidence to answer the clinical question. The author, date, and country of publication, patient group studied, study type, relevant outcomes, results, and study weaknesses of this best paper are tabulated. A clinical bottom line is stated.

  14. Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: A basis for high-definition tDCS

    PubMed Central

    Edwards, Dylan; Cortes, Mar; Datta, Abhishek; Minhas, Preet; Wassermann, Eric M.; Bikson, Marom

    2015-01-01

    Transcranial Direct Current Stimulation (tDCS) is a non-invasive, low-cost, well-tolerated technique producing lasting modulation of cortical excitability. Behavioral and therapeutic outcomes of tDCS are linked to the targeted brain regions, but there is little evidence that current reaches the brain as intended. We aimed to: (1) validate a computational model for estimating cortical electric fields in human transcranial stimulation, and (2) assess the magnitude and spread of cortical electric field with a novel High-Definition tDCS (HD-tDCS) scalp montage using a 4×1-Ring electrode configuration. In three healthy adults, Transcranial Electrical Stimulation (TES) over primary motor cortex (M1) was delivered using the 4×1 montage (4× cathode, surrounding a single central anode; montage radius ~3 cm) with sufficient intensity to elicit a discrete muscle twitch in the hand. The estimated current distribution in M1 was calculated using the individualized MRI-based model, and compared with the observed motor response across subjects. The response magnitude was quantified with stimulation over motor cortex as well as anterior and posterior to motor cortex. In each case the model data were consistent with the motor response across subjects. The estimated cortical electric fields with the 4×1 montage were compared (area, magnitude, direction) for TES and tDCS in each subject. We provide direct evidence in humans that TES with a 4×1-Ring configuration can activate motor cortex and that current does not substantially spread outside the stimulation area. Computational models predict that both TES and tDCS waveforms using the 4×1-Ring configuration generate electric fields in cortex with comparable gross current distribution, and preferentially directed normal (inward) currents. The agreement of modeling and experimental data for both current delivery and focality support the use of the HD-tDCS 4×1-Ring montage for cortically targeted neuromodulation. PMID:23370061

  15. Porcupine: A visual pipeline tool for neuroimaging analysis

    PubMed Central

    Snoek, Lukas; Knapen, Tomas

    2018-01-01

    The field of neuroimaging is rapidly adopting a more reproducible approach to data acquisition and analysis. Data structures and formats are being standardised and data analyses are getting more automated. However, as data analysis becomes more complicated, researchers often have to write longer analysis scripts, spanning different tools across multiple programming languages. This makes it more difficult to share or recreate code, reducing the reproducibility of the analysis. We present a tool, Porcupine, that constructs one’s analysis visually and automatically produces analysis code. The graphical representation improves understanding of the performed analysis, while retaining the flexibility of modifying the produced code manually to custom needs. Not only does Porcupine produce the analysis code, it also creates a shareable environment for running the code in the form of a Docker image. Together, this forms a reproducible way of constructing, visualising and sharing one’s analysis. Currently, Porcupine links to Nipype functionalities, which in turn accesses most standard neuroimaging analysis tools. Our goal is to release researchers from the constraints of specific implementation details, thereby freeing them to think about novel and creative ways to solve a given problem. Porcupine improves the overview researchers have of their processing pipelines, and facilitates both the development and communication of their work. This will reduce the threshold at which less expert users can generate reusable pipelines. With Porcupine, we bridge the gap between a conceptual and an implementational level of analysis and make it easier for researchers to create reproducible and shareable science. We provide a wide range of examples and documentation, as well as installer files for all platforms on our website: https://timvanmourik.github.io/Porcupine. Porcupine is free, open source, and released under the GNU General Public License v3.0. PMID:29746461

  16. Differential Effects of Age-of-Acquisition for Concrete Nouns and Action Verbs: Evidence for Partly Distinct Representations?

    ERIC Educational Resources Information Center

    Boulenger, Veronique; Decoppet, Nathalie; Roy, Alice C.; Paulignan, Yves; Nazir, Tatjana A.

    2007-01-01

    There is growing evidence that words that are acquired early in life are processed faster and more accurately than words acquired later, even by adults. As neuropsychological and neuroimaging studies have implicated different brain networks in the processing of action verbs and concrete nouns, the present study was aimed at contrasting reaction…

  17. Multimodal neuroimaging investigations of alterations to consciousness: the relationship between absence epilepsy and sleep.

    PubMed

    Bagshaw, Andrew P; Rollings, David T; Khalsa, Sakh; Cavanna, Andrea E

    2014-01-01

    The link between epilepsy and sleep is well established on many levels. The focus of the current review is on recent neuroimaging investigations into the alterations of consciousness that are observed during absence seizures and the descent into sleep. Functional neuroimaging provides simultaneous cortical and subcortical recording of activity throughout the brain, allowing a detailed definition and characterization of large-scale brain networks and the interactions between them. This has led to the identification of a set of regions which collectively form the consciousness system, which includes contributions from the default mode network (DMN), ascending arousal systems, and the thalamus. Electrophysiological and neuroimaging investigations have also clearly demonstrated the importance of thalamocortical and corticothalamic networks in the evolution of sleep and absence epilepsy, two phenomena in which the subject experiences an alteration to the conscious state and a disconnection from external input. However, the precise relationship between the consciousness system, thalamocortical networks, and consciousness itself remains to be clarified. One of the fundamental challenges is to understand how distributed brain networks coordinate their activity in order to maintain and implement complex behaviors such as consciousness and how modifications to this network activity lead to alterations in consciousness. By taking into account not only the level of activation of individual brain regions but also their connectivity within specific networks and the activity and connectivity of other relevant networks, a more specific quantification of brain states can be achieved. This, in turn, may provide a more fundamental understanding of the alterations to consciousness experienced in sleep and epilepsy. © 2013.

  18. Genetic Testing and Neuroimaging: Trading off Benefit and Risk for Youth with Mental Illness

    PubMed Central

    Lee, Grace; Mizgalewicz, Ania; Borgelt, Emily; Illes, Judy

    2015-01-01

    According to the World Health Organization, mental illness is one of the leading causes of disability worldwide. The first onset of mental illness usually occurs during childhood or adolescence. Neuroimaging and genetic testing have been invaluable in research on behavioral and intentional disorders, particularly with their potential to lead to improved diagnostic and predictive capabilities and to decrease the associated burdens of disease. The present study focused specifically the perspectives of mental health providers on the role of neuroimaging and genetic testing in clinical practice with children and adolescents. We interviewed 38 psychiatrists, psychologists, and allied mental health professionals who work primarily with youth about their receptivity towards either the use of neuroimaging or genetic testing. Interviews probed the role they foresee for these modalities for prediction, diagnosis, and treatment planning, and the benefits and risks they anticipate. Practitioners anticipated three major benefits associated with clinical introduction of imaging and genetic testing in the mental health care for youth: (1) improved understanding of illness, (2) more accurate diagnosis than available through conventional clinical examination, and (3) validation of treatment plans. They also perceived three major risks: (1) potential adverse impacts on employment and insurance as adolescents reach adulthood, (2) misuse or misinterpretation of the imaging or genetic data, and (3) infringements on self-esteem or self-motivation. Movement of brain imaging and genetic testing into clinical care will require a delicate balance of biology and respect for autonomy in the still-evolving cognitive and affective world of young individuals. PMID:26949737

  19. Distinguishing between Unipolar Depression and Bipolar Depression: Current and Future Clinical and Neuroimaging Perspectives

    PubMed Central

    de Almeida, Jorge Renner Cardoso; Phillips, Mary Louise

    2012-01-01

    Differentiating bipolar disorder (BD) from recurrent unipolar depression (UD) is a major clinical challenge. Main reasons for this include the higher prevalence of depressive relative to hypo/manic symptoms during the course of BD illness and the high prevalence of subthreshold manic symptoms in both BD and UD depression. Identifying objective markers of BD might help improve accuracy in differentiating between BD and UD depression, to ultimately optimize clinical and functional outcome for all depressed individuals. Yet, only eight neuroimaging studies to date directly compared UD and BD depressed individuals. Findings from these studies suggest more widespread abnormalities in white matter connectivity and white matter hyperintensities in BD than UD depression, habenula volume reductions in BD but not UD depression, and differential patterns of functional abnormalities in emotion regulation and attentional control neural circuitry in the two depression types. These findings suggest different pathophysiologic processes, especially in emotion regulation, reward and attentional control neural circuitry in BD versus UD depression. This review thereby serves as a “call to action” to highlight the pressing need for more neuroimaging studies, using larger samples sizes, comparing BD and UD depressed individuals. These future studies should also include dimensional approaches, studies of at risk individuals, and more novel neuroimaging approaches, such as, connectivity analysis and machine learning. Ultimately, these approaches might provide biomarkers to identify individuals at future risk for BD versus UD, and biological targets for more personalized treatment and new treatment developments for BD and UD depression. PMID:22784485

  20. Distinguishing between unipolar depression and bipolar depression: current and future clinical and neuroimaging perspectives.

    PubMed

    Cardoso de Almeida, Jorge Renner; Phillips, Mary Louise

    2013-01-15

    Differentiating bipolar disorder (BD) from recurrent unipolar depression (UD) is a major clinical challenge. Main reasons for this include the higher prevalence of depressive relative to hypo/manic symptoms during the course of BD illness and the high prevalence of subthreshold manic symptoms in both BD and UD depression. Identifying objective markers of BD might help improve accuracy in differentiating between BD and UD depression, to ultimately optimize clinical and functional outcome for all depressed individuals. Yet, only eight neuroimaging studies to date have directly compared UD and BD depressed individuals. Findings from these studies suggest more widespread abnormalities in white matter connectivity and white matter hyperintensities in BD than UD depression, habenula volume reductions in BD but not UD depression, and differential patterns of functional abnormalities in emotion regulation and attentional control neural circuitry in the two depression types. These findings suggest different pathophysiologic processes, especially in emotion regulation, reward, and attentional control neural circuitry in BD versus UD depression. This review thereby serves as a call to action to highlight the pressing need for more neuroimaging studies, using larger samples sizes, comparing BD and UD depressed individuals. These future studies should also include dimensional approaches, studies of at-risk individuals, and more novel neuroimaging approaches, such as connectivity analysis and machine learning. Ultimately, these approaches might provide biomarkers to identify individuals at future risk for BD versus UD and biological targets for more personalized treatment and new treatment developments for BD and UD depression. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. The teen brain: insights from neuroimaging.

    PubMed

    Giedd, Jay N

    2008-04-01

    Few parents of a teenager are surprised to hear that the brain of a 16-year-old is different from the brain of an 8-year-old. Yet to pin down these differences in a rigorous scientific way has been elusive. Magnetic resonance imaging, with the capacity to provide exquisitely accurate quantifications of brain anatomy and physiology without the use of ionizing radiation, has launched a new era of adolescent neuroscience. Longitudinal studies of subjects from ages 3-30 years demonstrate a general pattern of childhood peaks of gray matter followed by adolescent declines, functional and structural increases in connectivity and integrative processing, and a changing balance between limbic/subcortical and frontal lobe functions, extending well into young adulthood. Although overinterpretation and premature application of neuroimaging findings for diagnostic purposes remains a risk, converging data from multiple imaging modalities is beginning to elucidate the implications of these brain changes on cognition, emotion, and behavior.

  2. Diphtheric encephalitis and brain neuroimaging features.

    PubMed

    Foo, Jen Chun; Rahmat, Kartini; Mumin, Nazimah Ab; Koh, Mia Tuang; Gan, Chin Seng; Ramli, Norlisah; Fong, Choong Yi

    2017-11-01

    We report a rare case of paediatric diphtheria complicated with encephalitis. A 6-year-old boy who did not receive his scheduled diptheria-tetanus-pertusis vaccination presented with one episode of generalised convulsive seizure. His illness was preceded by a 3day history of fever associated with enlarged exudative tonsils with a pseudomembrane. He was commenced on intravenous penicillin and oral erythromycin. However, he developed progressive encephalopathy with focal neurological deficit which required intubation on day 5 of illness. Throat swab polymerase chain reaction for diphtheria toxin A and B were positive and diphtheria antitoxin was given. Magnetic resonance imaging (MRI) of brain showed T2-weighted hyperintensities over the anterior cingulate gyri, insular cortex and cerebellum. This is the first reported MRI finding of diphtheric encephalitis. Our report highlights the importance of neuroimaging in diagnosing diphtheric encephalitis particularly in cases with unremarkable cerebrospinal findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes

    PubMed Central

    2013-01-01

    Motivation Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. Results We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity

  4. Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes.

    PubMed

    Wang, Yue; Goh, Wilson; Wong, Limsoon; Montana, Giovanni

    2013-01-01

    Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly

  5. Neuroimaging in Pediatric Traumatic Brain Injury: Current and Future Predictors of Functional Outcome

    ERIC Educational Resources Information Center

    Suskauer, Stacy J.; Huisman, Thierry A. G. M.

    2009-01-01

    Although neuroimaging has long played a role in the acute management of pediatric traumatic brain injury (TBI), until recently, its use as a tool for understanding and predicting long-term brain-behavior relationships after TBI has been limited by the relatively poor sensitivity of routine clinical imaging for detecting diffuse axonal injury…

  6. Functional-structural reorganisation of the neuronal network for auditory perception in subjects with unilateral hearing loss: Review of neuroimaging studies.

    PubMed

    Heggdal, Peder O Laugen; Brännström, Jonas; Aarstad, Hans Jørgen; Vassbotn, Flemming S; Specht, Karsten

    2016-02-01

    This paper aims to provide a review of studies using neuroimaging to measure functional-structural reorganisation of the neuronal network for auditory perception after unilateral hearing loss. A literature search was performed in PubMed. Search criterions were peer reviewed original research papers in English completed by the 11th of March 2015. Twelve studies were found to use neuroimaging in subjects with unilateral hearing loss. An additional five papers not identified by the literature search were provided by a reviewer. Thus, a total of 17 studies were included in the review. Four different neuroimaging methods were used in these studies: Functional magnetic resonance imaging (fMRI) (n = 11), diffusion tensor imaging (DTI) (n = 4), T1/T2 volumetric images (n = 2), magnetic resonance spectroscopy (MRS) (n = 1). One study utilized two imaging methods (fMRI and T1 volumetric images). Neuroimaging techniques could provide valuable information regarding the effects of unilateral hearing loss on both auditory and non-auditory performance. fMRI-studies showing a bilateral BOLD-response in patients with unilateral hearing loss have not yet been followed by DTI studies confirming their microstructural correlates. In addition, the review shows that an auditory modality-specific deficit could affect multi-modal brain regions and their connections. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. An innovative therapy for peri-implantitis based on radio frequency electric current: numerical simulation results and clinical evidence.

    PubMed

    Cosoli, G; Scalise, L; Tricarico, G; Tomasini, E P; Cerri, G

    2016-08-01

    Peri-implantitis is a severe inflammatory pathology that affects soit and hard tissues surrounding dental implants. Nowadays, only prevention is effective to contrast peri-implantitis, but, in recent years, there is the clinical evidence of the efficiency of a therapy based on the application of radio frequency electric current, reporting that 81% of the cases (66 implants, 46 patients) were successfully treated. The aim of this paper is to present the therapy mechanism, exploring the distribution of the electric currents in normal and pathologic tissues. A 3D numerical FEM model of tooth root with a dental implant screwed in the alveolar bone has been realized and the therapy has been simulated in COMSOL Multiphysics® environment. Results show that the electric current is focused in the inflamed zone around the implant, due to the fact that its conductivity is higher than the healthy tissue one. Moreover, by means of a movable return electrode, the electric current and field lines can be guided in the most inflamed area, limiting the interference on healthy tissues and improving the therapy in the area of interest. In conclusion, it can be stated that this innovative therapy would make a personalized therapy for peri-implantitis possible, also through impedance measurements, allowing the clinician to evaluate the tissue inflammation state.

  8. The energetics of electric organ discharge generation in gymnotiform weakly electric fish.

    PubMed

    Salazar, Vielka L; Krahe, Rüdiger; Lewis, John E

    2013-07-01

    Gymnotiform weakly electric fish produce an electric signal to sense their environment and communicate with conspecifics. Although the generation of such relatively large electric signals over an entire lifetime is expected to be energetically costly, supporting evidence to date is equivocal. In this article, we first provide a theoretical analysis of the energy budget underlying signal production. Our analysis suggests that wave-type and pulse-type species invest a similar fraction of metabolic resources into electric signal generation, supporting previous evidence of a trade-off between signal amplitude and frequency. We then consider a comparative and evolutionary framework in which to interpret and guide future studies. We suggest that species differences in signal generation and plasticity, when considered in an energetics context, will not only help to evaluate the role of energetic constraints in the evolution of signal diversity but also lead to important general insights into the energetics of bioelectric signal generation.

  9. Contribution of Neuroimaging Studies to Understanding Development of Human Cognitive Brain Functions

    PubMed Central

    Morita, Tomoyo; Asada, Minoru; Naito, Eiichi

    2016-01-01

    Humans experience significant physical and mental changes from birth to adulthood, and a variety of perceptual, cognitive and motor functions mature over the course of approximately 20 years following birth. To deeply understand such developmental processes, merely studying behavioral changes is not sufficient; simultaneous investigation of the development of the brain may lead us to a more comprehensive understanding. Recent advances in noninvasive neuroimaging technologies largely contribute to this understanding. Here, it is very important to consider the development of the brain from the perspectives of “structure” and “function” because both structure and function of the human brain mature slowly. In this review, we first discuss the process of structural brain development, i.e., how the structure of the brain, which is crucial when discussing functional brain development, changes with age. Second, we introduce some representative studies and the latest studies related to the functional development of the brain, particularly for visual, facial recognition, and social cognition functions, all of which are important for humans. Finally, we summarize how brain science can contribute to developmental study and discuss the challenges that neuroimaging should address in the future. PMID:27695409

  10. Interpreting support vector machine models for multivariate group wise analysis in neuroimaging

    PubMed Central

    Gaonkar, Bilwaj; Shinohara, Russell T; Davatzikos, Christos

    2015-01-01

    Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913

  11. [Methodological aspects of functional neuroimaging at high field strength: a critical review].

    PubMed

    Scheef, L; Landsberg, M W; Boecker, H

    2007-09-01

    The last few years have proven that high field magnetic resonance imaging (MRI) is superior in nearly every way to conventional equipment up to 1.5 tesla (T). Following the global success of 3T-scanners in research institutes and medical practices, a new generation of MRI devices with field strengths of 7T and higher is now on the horizon. The introduction of ultra high fields has brought MRI technology closer to the physical limitations and increasingly greater costs are required to achieve this goal. This article provides a critical overview of the advantages and problems of functional neuroimaging using ultra high field strengths. This review is principally limited to T2*-based functional imaging techniques not dependent on contrast agents. The main issues include the significance of high field technology with respect to SNR, CNR, resolution, and sequences, as well as artifacts, noise exposure, and SAR. Of great relevance is the discussion of parallel imaging, which will presumably determine the further development of high and ultra high field strengths. Finally, the importance of high field strengths for functional neuroimaging is explained by selected publications.

  12. Tracking Brain Development and Dimensional Psychiatric Symptoms in Children: A Longitudinal Population-Based Neuroimaging Study.

    PubMed

    Muetzel, Ryan L; Blanken, Laura M E; van der Ende, Jan; El Marroun, Hanan; Shaw, Philip; Sudre, Gustavo; van der Lugt, Aad; Jaddoe, Vincent W V; Verhulst, Frank C; Tiemeier, Henning; White, Tonya

    2018-01-01

    Psychiatric symptomatology during childhood predicts persistent mental illness later in life. While neuroimaging methodologies are routinely applied cross-sectionally to the study of child and adolescent psychopathology, the nature of the relationship between childhood symptoms and the underlying neurodevelopmental processes remains unclear. The authors used a prospective population-based cohort to delineate the longitudinal relationship between childhood psychiatric problems and brain development. A total of 845 children participated in the study. Psychiatric symptoms were measured with the parent-rated Child Behavior Checklist at ages 6 and 10. MRI data were collected at ages 8 and 10. Cross-lagged panel models and linear mixed-effects models were used to determine the associations between psychiatric symptom ratings and quantitative anatomic and white matter microstructural measures over time. Higher ratings for externalizing and internalizing symptoms at baseline predicted smaller increases in both subcortical gray matter volume and global fractional anisotropy over time. The reverse relationship did not hold; thus, baseline measures of gray matter and white matter were not significantly related to changes in symptom ratings over time. Children presenting with behavioral problems at an early age show differential subcortical and white matter development. Most neuroimaging models tend to explain brain differences observed in psychopathology as an underlying (causal) neurobiological substrate. However, the present work suggests that future neuroimaging studies showing effects that are pathogenic in nature should additionally explore the possibility of the downstream effects of psychopathology on the brain.

  13. Neuroimaging of cognitive dysfunction and depression in aging retired National Football League players: a cross-sectional study.

    PubMed

    Hart, John; Kraut, Michael A; Womack, Kyle B; Strain, Jeremy; Didehbani, Nyaz; Bartz, Elizabeth; Conover, Heather; Mansinghani, Sethesh; Lu, Hanzhang; Cullum, C Munro

    2013-03-01

    OBJECTIVES To assess cognitive impairment and depression in aging former professional football (National Football League [NFL]) players and to identify neuroimaging correlates of these dysfunctions. DESIGN We compared former NFL players with cognitive impairment and depression, cognitively normal retired players who were not depressed, and matched healthy control subjects. SETTING Research center in the North Texas region of the United States. PATIENTS Cross-sectional sample of former NFL players with and without a history of concussion recruited from the North Texas region and age-, education-, and IQ-matched controls. Thirty-four retired NFL players (mean age, 61.8 years) underwent neurological and neuropsychological assessment. A subset of 26 players also underwent detailed neuroimaging; imaging data in this subset were compared with imaging data acquired in 26 healthy matched controls. MAIN OUTCOME MEASURES Neuropsychological measures, clinical diagnoses of depression, neuroimaging mea-sures of white matter pathology, and a measure of cerebral blood flow. RESULTS Of the 34 former NFL players, 20 were cognitively normal. Four were diagnosed as having a fixed cognitive deficit; 8, mild cognitive impairment; 2, dementia; and 8, depression. Of the subgroup in whom neuroimaging data were acquired, cognitively impaired participants showed the greatest deficits on tests of naming, word finding, and visual/verbal episodic memory. We found significant differences in white matter abnormalities in cognitively impaired and depressed retired players compared with their respective controls. Regional blood flow differences in the cognitively impaired group (left temporal pole, inferior parietal lobule, and superior temporal gyrus) corresponded to regions associated with impaired neurocognitive performance (problems with memory, naming, and word finding). CONCLUSIONS Cognitive deficits and depression appear to be more common in aging former NFL players compared with healthy

  14. Individual differences in cognition, affect, and performance: Behavioral, neuroimaging, and molecular genetic approaches

    PubMed Central

    Parasuraman, Raja; Jiang, Yang

    2012-01-01

    We describe the use of behavioral, neuroimaging, and genetic methods to examine individual differences in cognition and affect, guided by three criteria: (1) relevance to human performance in work and everyday settings; (2) interactions between working memory, decision-making, and affective processing; and (3) examination of individual differences. The results of behavioral, functional MRI (fMRI), event-related potential (ERP), and molecular genetic studies show that analyses at the group level often mask important findings associated with sub-groups of individuals. Dopaminergic/noradrenergic genes influencing prefrontal cortex activity contribute to inter-individual variation in working memory and decision behavior, including performance in complex simulations of military decision-making. The interactive influences of individual differences in anxiety, sensation seeking, and boredom susceptibility on evaluative decision-making can be systematically described using ERP and fMRI methods. We conclude that a multi-modal neuroergonomic approach to examining brain function (using both neuroimaging and molecular genetics) can be usefully applied to understanding individual differences in cognition and affect and has implications for human performance at work. PMID:21569853

  15. Neuroimaging classification of progression patterns in glioblastoma: a systematic review.

    PubMed

    Piper, Rory J; Senthil, Keerthi K; Yan, Jiun-Lin; Price, Stephen J

    2018-03-30

    Our primary objective was to report the current neuroimaging classification systems of spatial patterns of progression in glioblastoma. In addition, we aimed to report the terminology used to describe 'progression' and to assess the compliance with the Response Assessment in Neuro-Oncology (RANO) Criteria. We conducted a systematic review to identify all neuroimaging studies of glioblastoma that have employed a categorical classification system of spatial progression patterns. Our review was registered with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) registry. From the included 157 results, we identified 129 studies that used labels of spatial progression patterns that were not based on radiation volumes (Group 1) and 50 studies that used labels that were based on radiation volumes (Group 2). In Group 1, we found 113 individual labels and the most frequent were: local/localised (58%), distant/distal (51%), diffuse (20%), multifocal (15%) and subependymal/subventricular zone (15%). We identified 13 different labels used to refer to 'progression', of which the most frequent were 'recurrence' (99%) and 'progression' (92%). We identified that 37% (n = 33/90) of the studies published following the release of the RANO classification were adherent compliant with the RANO criteria. Our review reports significant heterogeneity in the published systems used to classify glioblastoma spatial progression patterns. Standardization of terminology and classification systems used in studying progression would increase the efficiency of our research in our attempts to more successfully treat glioblastoma.

  16. Identifying Treatment Response of Sertraline in a Teenager with Selective Mutism using Electrophysiological Neuroimaging

    PubMed Central

    Eugene, Andy R.; Masiak, Jolanta

    2016-01-01

    Background Selective Mutism is described as the inability to verbally express oneself in anxiety provoking social situations and may result in awkward social interactions in school-aged children. In this case-report we present the baseline electrophysiological neuroimaging results and after treatment with Sertraline for 6-weeks. Methods A 20-channel EEG event-related potential recording was acquired during an internal voice task at baseline prior to the initiation of 50mg of Sertraline and then repeated 6-weeks after treatment with Sertraline. EEG signals were processed for movement, eye-blink, and muscle artifacts and ERP signal averaging was completed. ERPs were analyzed using Standard Low Resolution Brain Electromagnetic Tomography (sLORETA). Results At baseline, Sertraline increased the neuronal activation in the middle temporal gyrus and the anterior cingulate gyrus from baseline in the patient following 6-weeks of treatment. Conclusion Our findings suggest that electrophysiological neuroimaging may provide a creative approach for personalizing medicine by providing insight to the pharmacodynamics of antidepressants. PMID:27468379

  17. Identifying Treatment Response of Sertraline in a Teenager with Selective Mutism using Electrophysiological Neuroimaging.

    PubMed

    Eugene, Andy R; Masiak, Jolanta

    2016-06-01

    Selective Mutism is described as the inability to verbally express oneself in anxiety provoking social situations and may result in awkward social interactions in school-aged children. In this case-report we present the baseline electrophysiological neuroimaging results and after treatment with Sertraline for 6-weeks. A 20-channel EEG event-related potential recording was acquired during an internal voice task at baseline prior to the initiation of 50mg of Sertraline and then repeated 6-weeks after treatment with Sertraline. EEG signals were processed for movement, eye-blink, and muscle artifacts and ERP signal averaging was completed. ERPs were analyzed using Standard Low Resolution Brain Electromagnetic Tomography (sLORETA). At baseline, Sertraline increased the neuronal activation in the middle temporal gyrus and the anterior cingulate gyrus from baseline in the patient following 6-weeks of treatment. Our findings suggest that electrophysiological neuroimaging may provide a creative approach for personalizing medicine by providing insight to the pharmacodynamics of antidepressants.

  18. A case study in electricity regulation: Theory, evidence, and policy

    NASA Astrophysics Data System (ADS)

    Luk, Stephen Kai Ming

    This research provides a thorough empirical analysis of the problem of excess capacity found in the electricity supply industry in Hong Kong. I utilize a cost-function based temporary equilibrium framework to investigate empirically whether the current regulatory scheme encourages the two utilities to overinvest in capital, and how much consumers would have saved if the underutilized capacity is eliminated. The research is divided into two main parts. The first section attempts to find any evidence of over-investment in capital. As a point of departure from traditional analysis, I treat physical capital as quasi-fixed, which implies a restricted cost function to represent the firm's short-run cost structure. Under such specification, the firm minimizes the cost of employing variable factor inputs subject to predetermined levels of quasi-fixed factors. Using a transcendental logarithmic restricted cost function, I estimate the cost-side equivalent of marginal product of capital, or commonly referred to as "shadow values" of capital. The estimation results suggest that the two electric utilities consistently over-invest in generation capacity. The second part of this research focuses on the economies of capital utilization, and the estimation of distortion cost in capital investment. Again, I utilize a translog specification of the cost function to estimate the actual cost of the excess capacity, and to find out how much consumers could have saved if the underutilized generation capacity were brought closer to the international standard. Estimation results indicate that an increase in the utilization rate can significantly reduce the costs of both utilities. And if the current excess capacity were reduced to the international standard, the combined savings in costs for both firms will reach 4.4 billion. This amount of savings, if redistributed to all consumers evenly, will translate into a 650 rebate per capita. Finally, two policy recommendations: a more stringent

  19. Pseudotumoral hemicerebellitis as a mimicker of Lhermitte-Duclos disease in children: does neuroimaging help to differentiate them?

    PubMed

    Bosemani, Thangamadhan; Steinlin, Maja; Toelle, Sandra P; Beck, Jürgen; Boltshauser, Eugen; Huisman, Thierry A G M; Poretti, Andrea

    2016-05-01

    The clinical presentation and neuroimaging findings of children with pseudotumoral hemicerebellitis (PTHC) and Lhermitte-Duclos disease (LDD) may be very similar. The differentiation between these entities, however, is important because their management and prognosis are different. We report on three children with PTHC. For all three children, in the acute situation, the differentiation between PTHC and LDD was challenging. A review of the literature shows that a detailed evaluation of conventional and neuroimaging data may help to differentiate between these two entities. A striated folial pattern, brainstem involvement, and prominent veins surrounding the thickened cerebellar foliae on susceptibility weighted imaging favor LDD, while post-contrast enhancement and an increased choline peak on (1)H-Magnetic resonance spectroscopy suggest PTHC.

  20. The "handwriting brain": a meta-analysis of neuroimaging studies of motor versus orthographic processes.

    PubMed

    Planton, Samuel; Jucla, Mélanie; Roux, Franck-Emmanuel; Démonet, Jean-François

    2013-01-01

    Handwriting is a modality of language production whose cerebral substrates remain poorly known although the existence of specific regions is postulated. The description of brain damaged patients with agraphia and, more recently, several neuroimaging studies suggest the involvement of different brain regions. However, results vary with the methodological choices made and may not always discriminate between "writing-specific" and motor or linguistic processes shared with other abilities. We used the "Activation Likelihood Estimate" (ALE) meta-analytical method to identify the cerebral network of areas commonly activated during handwriting in 18 neuroimaging studies published in the literature. Included contrasts were also classified according to the control tasks used, whether non-specific motor/output-control or linguistic/input-control. These data were included in two secondary meta-analyses in order to reveal the functional role of the different areas of this network. An extensive, mainly left-hemisphere network of 12 cortical and sub-cortical areas was obtained; three of which were considered as primarily writing-specific (left superior frontal sulcus/middle frontal gyrus area, left intraparietal sulcus/superior parietal area, right cerebellum) while others related rather to non-specific motor (primary motor and sensorimotor cortex, supplementary motor area, thalamus and putamen) or linguistic processes (ventral premotor cortex, posterior/inferior temporal cortex). This meta-analysis provides a description of the cerebral network of handwriting as revealed by various types of neuroimaging experiments and confirms the crucial involvement of the left frontal and superior parietal regions. These findings provide new insights into cognitive processes involved in handwriting and their cerebral substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Mindfulness meditation-related pain relief: Evidence for unique brain mechanisms in the regulation of pain

    PubMed Central

    Zeidan, F.; Grant, J.A.; Brown, C.A.; McHaffie, J.G.; Coghill, R.C.

    2013-01-01

    The cognitive modulation of pain is influenced by a number of factors ranging from attention, beliefs, conditioning, expectations, mood, and the regulation of emotional responses to noxious sensory events. Recently, mindfulness meditation has been found attenuate pain through some of these mechanisms including enhanced cognitive and emotional control, as well as altering the contextual evaluation of sensory events. This review discusses the brain mechanisms involved in mindfulness meditation-related pain relief across different meditative techniques, expertise and training levels, experimental procedures, and neuroimaging methodologies. Converging lines of neuroimaging evidence reveal that mindfulness meditation-related pain relief is associated with unique appraisal cognitive processes depending on expertise level and meditation tradition. Moreover, it is postulated that mindfulness meditation-related pain relief may share a common final pathway with other cognitive techniques in the modulation of pain. PMID:22487846

  2. A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and roadmap for future research

    PubMed Central

    Phillips, Mary L; Swartz, Holly A.

    2014-01-01

    Objective This critical review appraises neuroimaging findings in bipolar disorder in emotion processing, emotion regulation, and reward processing neural circuitry, to synthesize current knowledge of the neural underpinnings of bipolar disorder, and provide a neuroimaging research “roadmap” for future studies. Method We examined findings from all major studies in bipolar disorder that used fMRI, volumetric analyses, diffusion imaging, and resting state techniques, to inform current conceptual models of larger-scale neural circuitry abnormalities in bipolar disorder Results Bipolar disorder can be conceptualized in neural circuitry terms as parallel dysfunction in bilateral prefrontal cortical (especially ventrolateral prefrontal cortical)-hippocampal-amygdala emotion processing and emotion regulation neural circuitries, together with an “overactive” left-sided ventral striatal-ventrolateral and orbitofrontal cortical reward processing circuitry, that result in characteristic behavioral abnormalities associated with bipolar disorder: emotional lability, emotional dysregulation and heightened reward sensitivity. A potential structural basis for these functional abnormalities are gray matter decreases in prefrontal and temporal cortices, amygdala and hippocampus, and fractional anisotropy decreases in white matter tracts connecting prefrontal and subcortical regions. Conclusion Neuroimaging studies of bipolar disorder clearly demonstrate abnormalities in neural circuitries supporting emotion processing, emotion regulation and reward processing, although there are several limitations to these studies. Future neuroimaging research in bipolar disorder should include studies adopting dimensional approaches; larger studies examining neurodevelopmental trajectories in bipolar disorder and at-risk youth; multimodal neuroimaging studies using integrated systems approaches; and studies using pattern recognition approaches to provide clinically useful, individual

  3. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration

    PubMed Central

    Wardlaw, Joanna M; Smith, Eric E; Biessels, Geert J; Cordonnier, Charlotte; Fazekas, Franz; Frayne, Richard; Lindley, Richard I; O'Brien, John T; Barkhof, Frederik; Benavente, Oscar R; Black, Sandra E; Brayne, Carol; Breteler, Monique; Chabriat, Hugues; DeCarli, Charles; de Leeuw, Frank-Erik; Doubal, Fergus; Duering, Marco; Fox, Nick C; Greenberg, Steven; Hachinski, Vladimir; Kilimann, Ingo; Mok, Vincent; Oostenbrugge, Robert van; Pantoni, Leonardo; Speck, Oliver; Stephan, Blossom C M; Teipel, Stefan; Viswanathan, Anand; Werring, David; Chen, Christopher; Smith, Colin; van Buchem, Mark; Norrving, Bo; Gorelick, Philip B; Dichgans, Martin

    2013-01-01

    Summary Cerebral small vessel disease (SVD) is a common accompaniment of ageing. Features seen on neuroimaging include recent small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, microbleeds, and brain atrophy. SVD can present as a stroke or cognitive decline, or can have few or no symptoms. SVD frequently coexists with neurodegenerative disease, and can exacerbate cognitive deficits, physical disabilities, and other symptoms of neurodegeneration. Terminology and definitions for imaging the features of SVD vary widely, which is also true for protocols for image acquisition and image analysis. This lack of consistency hampers progress in identifying the contribution of SVD to the pathophysiology and clinical features of common neurodegenerative diseases. We are an international working group from the Centres of Excellence in Neurodegeneration. We completed a structured process to develop definitions and imaging standards for markers and consequences of SVD. We aimed to achieve the following: first, to provide a common advisory about terms and definitions for features visible on MRI; second, to suggest minimum standards for image acquisition and analysis; third, to agree on standards for scientific reporting of changes related to SVD on neuroimaging; and fourth, to review emerging imaging methods for detection and quantification of preclinical manifestations of SVD. Our findings and recommendations apply to research studies, and can be used in the clinical setting to standardise image interpretation, acquisition, and reporting. This Position Paper summarises the main outcomes of this international effort to provide the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE). PMID:23867200

  4. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies.

    PubMed

    Ma, Ning; Dinges, David F; Basner, Mathias; Rao, Hengyi

    2015-02-01

    Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. © 2015 Associated Professional Sleep Societies, LLC.

  5. Haptic fMRI: combining functional neuroimaging with haptics for studying the brain's motor control representation.

    PubMed

    Menon, Samir; Brantner, Gerald; Aholt, Chris; Kay, Kendrick; Khatib, Oussama

    2013-01-01

    A challenging problem in motor control neuroimaging studies is the inability to perform complex human motor tasks given the Magnetic Resonance Imaging (MRI) scanner's disruptive magnetic fields and confined workspace. In this paper, we propose a novel experimental platform that combines Functional MRI (fMRI) neuroimaging, haptic virtual simulation environments, and an fMRI-compatible haptic device for real-time haptic interaction across the scanner workspace (above torso ∼ .65×.40×.20m(3)). We implement this Haptic fMRI platform with a novel haptic device, the Haptic fMRI Interface (HFI), and demonstrate its suitability for motor neuroimaging studies. HFI has three degrees-of-freedom (DOF), uses electromagnetic motors to enable high-fidelity haptic rendering (>350Hz), integrates radio frequency (RF) shields to prevent electromagnetic interference with fMRI (temporal SNR >100), and is kinematically designed to minimize currents induced by the MRI scanner's magnetic field during motor displacement (<2cm). HFI possesses uniform inertial and force transmission properties across the workspace, and has low friction (.05-.30N). HFI's RF noise levels, in addition, are within a 3 Tesla fMRI scanner's baseline noise variation (∼.85±.1%). Finally, HFI is haptically transparent and does not interfere with human motor tasks (tested for .4m reaches). By allowing fMRI experiments involving complex three-dimensional manipulation with haptic interaction, Haptic fMRI enables-for the first time-non-invasive neuroscience experiments involving interactive motor tasks, object manipulation, tactile perception, and visuo-motor integration.

  6. The Extended Language Network: A Meta-Analysis of Neuroimaging Studies on Text Comprehension

    PubMed Central

    Ferstl, Evelyn C.; Neumann, Jane; Bogler, Carsten; von Cramon, D. Yves

    2010-01-01

    Language processing in context requires more than merely comprehending words and sentences. Important subprocesses are inferences for bridging successive utterances, the use of background knowledge and discourse context, and pragmatic interpretations. The functional neuroanatomy of these text comprehension processes has only recently been investigated. Although there is evidence for right-hemisphere contributions, reviews have implicated the left lateral prefrontal cortex, left temporal regions beyond Wernicke’s area, and the left dorso-medial prefrontal cortex (dmPFC) for text comprehension. To objectively confirm this extended language network and to evaluate the respective contribution of right hemisphere regions, meta-analyses of 23 neuroimaging studies are reported here. The analyses used replicator dynamics based on activation likelihood estimates. Independent of the baseline, the anterior temporal lobes (aTL) were active bilaterally. In addition, processing of coherent compared with incoherent text engaged the dmPFC and the posterior cingulate cortex. Right hemisphere activations were seen most notably in the analysis of contrasts testing specific subprocesses, such as metaphor comprehension. These results suggest task dependent contributions for the lateral PFC and the right hemisphere. Most importantly, they confirm the role of the aTL and the fronto-medial cortex for language processing in context. PMID:17557297

  7. Functional neuroimaging of psychotherapeutic processes in anxiety and depression: from mechanisms to predictions.

    PubMed

    Lueken, Ulrike; Hahn, Tim

    2016-01-01

    The review provides an update of functional neuroimaging studies that identify neural processes underlying psychotherapy and predict outcomes following psychotherapeutic treatment in anxiety and depressive disorders. Following current developments in this field, studies were classified as 'mechanistic' or 'predictor' studies (i.e., informing neurobiological models about putative mechanisms versus aiming to provide predictive information). Mechanistic evidence points toward a dual-process model of psychotherapy in anxiety disorders with abnormally increased limbic activation being decreased, while prefrontal activity is increased. Partly overlapping findings are reported for depression, albeit with a stronger focus on prefrontal activation following treatment. No studies directly comparing neural pathways of psychotherapy between anxiety and depression were detected. Consensus is accumulating for an overarching role of the anterior cingulate cortex in modulating treatment response across disorders. When aiming to quantify clinical utility, the need for single-subject predictions is increasingly recognized and predictions based on machine learning approaches show high translational potential. Present findings encourage the search for predictors providing clinically meaningful information for single patients. However, independent validation as a crucial prerequisite for clinical use is still needed. Identifying nonresponders a priori creates the need for alternative treatment options that can be developed based on an improved understanding of those neural mechanisms underlying effective interventions.

  8. The application of neuroimaging to social inequity and language disparity: A cautionary examination.

    PubMed

    Ellwood-Lowe, Monica E; Sacchet, Matthew D; Gotlib, Ian H

    2016-12-01

    In the nascent field of the cognitive neuroscience of socioeconomic status (SES), researchers are using neuroimaging to examine how growing up in poverty affects children's neurocognitive development, particularly their language abilities. In this review we highlight difficulties inherent in the frequent use of reverse inference to interpret SES-related abnormalities in brain regions that support language. While there is growing evidence suggesting that SES moderates children's developing brain structure and function, no studies to date have elucidated explicitly how these neural findings are related to variations in children's language abilities, or precisely what it is about SES that underlies or contributes to these differences. This issue is complicated by the fact that SES is confounded with such linguistic factors as cultural language use, first language, and bilingualism. Thus, SES-associated differences in brain regions that support language may not necessarily indicate differences in neurocognitive abilities. In this review we consider the multidimensionality of SES, discuss studies that have found SES-related differences in structure and function in brain regions that support language, and suggest future directions for studies in the area of cognitive neuroscience of SES that are less reliant on reverse inference. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Differentiating Emotional Processing and Attention in Psychopathy with Functional Neuroimaging

    PubMed Central

    Anderson, Nathaniel E.; Steele, Vaughn R.; Maurer, J. Michael; Rao, Vikram; Koenigs, Michael R.; Decety, Jean; Kosson, David; Calhoun, Vince; Kiehl, Kent A.

    2017-01-01

    Psychopathic individuals are often characterized by emotional processing deficits, and recent research has examined the specific contexts and cognitive mechanisms that underlie these abnormalities. Some evidence suggests that abnormal features of attention are fundamental to psychopaths’ emotional deficits, but few studies have demonstrated the neural underpinnings responsible for such effects. Here, we use functional neuroimaging to examine attention-emotion interactions among incarcerated individuals (n=120) evaluated for psychopathic traits using the Hare Psychopathy Checklist – Revised (PCL-R). Using a task designed to manipulate attention to emotional features of visual stimuli, we demonstrate effects representing implicit emotional processing, explicit emotional processing, attention-facilitated emotional processing, and vigilance for emotional content. Results confirm the importance of considering mechanisms of attention when evaluating emotional processing differences related to psychopathic traits. The affective-interpersonal features of psychopathy (PCL-R Factor 1) were associated with relatively lower emotion-dependent augmentation of activity in visual processing areas during implicit emotional processing while antisocial-lifestyle features (PCL-R Factor 2) were associated with elevated activity in the amygdala and related salience-network regions. During explicit emotional processing psychopathic traits were associated with upregulation in the medial prefrontal cortex, insula, and superior frontal regions. Isolating the impact of explicit attention to emotional content, only Factor 1 was related to upregulation of activity in the visual processing stream, which was accompanied by increased activity in the angular gyrus. These effects highlight some important mechanisms underlying abnormal features of attention and emotional processing that accompany psychopathic traits. PMID:28092055

  10. Differentiating emotional processing and attention in psychopathy with functional neuroimaging.

    PubMed

    Anderson, Nathaniel E; Steele, Vaughn R; Maurer, J Michael; Rao, Vikram; Koenigs, Michael R; Decety, Jean; Kosson, David S; Calhoun, Vince D; Kiehl, Kent A

    2017-06-01

    Individuals with psychopathy are often characterized by emotional processing deficits, and recent research has examined the specific contexts and cognitive mechanisms that underlie these abnormalities. Some evidence suggests that abnormal features of attention are fundamental to emotional deficits in persons with psychopathy, but few studies have demonstrated the neural underpinnings responsible for such effects. Here, we use functional neuroimaging to examine attention-emotion interactions among incarcerated individuals (n = 120) evaluated for psychopathic traits using the Hare Psychopathy Checklist-Revised (PCL-R). Using a task designed to manipulate attention to emotional features of visual stimuli, we demonstrate effects representing implicit emotional processing, explicit emotional processing, attention-facilitated emotional processing, and vigilance for emotional content. Results confirm the importance of considering mechanisms of attention when evaluating emotional processing differences related to psychopathic traits. The affective-interpersonal features of psychopathy (PCL-R Factor 1) were associated with relatively lower emotion-dependent augmentation of activity in visual processing areas during implicit emotional processing, while antisocial-lifestyle features (PCL-R Factor 2) were associated with elevated activity in the amygdala and related salience network regions. During explicit emotional processing, psychopathic traits were associated with upregulation in the medial prefrontal cortex, insula, and superior frontal regions. Isolating the impact of explicit attention to emotional content, only Factor 1 was related to upregulation of activity in the visual processing stream, which was accompanied by increased activity in the angular gyrus. These effects highlight some important mechanisms underlying abnormal features of attention and emotional processing that accompany psychopathic traits.

  11. Solar-terrestrial coupling through atmospheric electricity

    NASA Technical Reports Server (NTRS)

    Roble, R. G.; Hays, P. B.

    1979-01-01

    There are a number of measurements of electrical variations that suggest a solar-terrestrial influence on the global atmospheric electrical circuit. The measurements show variations associated with solar flares, solar magnetic sector boundary crossings, geomagnetic activity, aurorae, differences between ground current and potential gradients at high and low latitudes, and solar cycle variations. The evidence for each variation is examined. Both the experimental evidence and the calculations made with a global model of atmospheric electricity indicate that there is solar-terrestrial coupling through atmospheric electricity which operates by altering the global electric current and field distribution. A global redistribution of currents and fields can be caused by large-scale changes in electrical conductivity, by alteration of the columnar resistance between thunderstorm cloud tops and the ionosphere, or by both. If the columnar resistance is altered above thunderstorms, more current will flow in the global circuit, changing the ionospheric potential and basic circuit variables such as current density and electric fields. The observed variations of currents and fields during solar-induced disturbances are generally less than 50% of mean values near the earth's surface.

  12. Neuroimaging to Investigate Multisystem Involvement and Provide Biomarkers in Amyotrophic Lateral Sclerosis

    PubMed Central

    Pradat, Pierre-François; El Mendili, Mohamed-Mounir

    2014-01-01

    Neuroimaging allows investigating the extent of neurological systems degeneration in amyotrophic lateral sclerosis (ALS). Advanced MRI methods can detect changes related to the degeneration of upper motor neurons but have also demonstrated the participation of other systems such as the sensory system or basal ganglia, demonstrating in vivo that ALS is a multisystem disorder. Structural and functional imaging also allows studying dysfunction of brain areas associated with cognitive signs. From a biomarker perspective, numerous studies using diffusion tensor imaging showed a decrease of fractional anisotropy in the intracranial portion of the corticospinal tract but its diagnostic value at the individual level remains limited. A multiparametric approach will be required to use MRI in the diagnostic workup of ALS. A promising avenue is the new methodological developments of spinal cord imaging that has the advantage to investigate the two motor system components that are involved in ALS, that is, the lower and upper motor neuron. For all neuroimaging modalities, due to the intrinsic heterogeneity of ALS, larger pooled banks of images with standardized image acquisition and analysis procedures are needed. In this paper, we will review the main findings obtained with MRI, PET, SPECT, and nuclear magnetic resonance spectroscopy in ALS. PMID:24949452

  13. Differential Diagnosis of Dysgraphia, Dyslexia, and OWL LD: Behavioral and Neuroimaging Evidence

    PubMed Central

    Berninger, Virginia W.; Richards, Todd; Abbott, Robert D.

    2015-01-01

    In Study 1, children in grades 4 to 9 (N= 88, 29 females and 59 males) with persisting reading and/or writing disabilities, despite considerable prior specialized instruction in and out of school, were given an evidence-based comprehensive assessment battery at the university while parents completed questionnaires regarding past and current history of language learning and other difficulties. Profiles (patterns) of normed measures for different levels of oral and written language used to categorize participants into diagnostic groups for dysgraphia (impaired subword handwriting) (n=26), dyslexia (impaired word spelling and reading) (n=38), or oral and written language learning disability OWL LD (impaired oral and written syntax comprehension and expression) (n=13) or control oral and written language learners (OWLs) without SLDs (n=11) were consistent withreported history. Impairments in working memory components supporting language learning were also examined. In Study 2, right handed children from Study 1 who did not wear braces (controls, n=9, dysgraphia, n= 14; dyslexia, n=17, OWL LD, n=5) completed an fMRI functional connectivity brain imaging study in which they performed a word-specific spelling judgment task, which is related to both word reading and spelling, and may be impaired in dysgraphia, dyslexia, and OWL LD for different reasons. fMRI functional connectivity from 4 seed points in brain locations involved in written word processing to other brain regions also differentiated dysgraphia, dyslexia, and OWL LD; both specific regions to which connected and overall number of functional connections differed. Thus, results provide converging neurological and behavioral evidence, for dysgraphia, dyslexia, and OWL LD being different, diagnosable specific learning disabilities (SLDs) for persisting written language problems during middle childhood and early adolescence. Translation of the research findings into practice at policy and administrative levels and

  14. A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula

    PubMed Central

    Giordano, Bruno L.; Kayser, Christoph; Rousselet, Guillaume A.; Gross, Joachim; Schyns, Philippe G.

    2016-01-01

    Abstract We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open‐source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541–1573, 2017. © 2016 Wiley Periodicals, Inc. PMID:27860095

  15. A new era for Nuclear Medicine neuroimaging in Spain: Where do we start from in Spain?

    PubMed

    Balsa, M A; Camacho, V; Garrastachu, P; García-Solís, D; Gómez-Río, M; Rubí, S; Setoain, X; Arbizu, J

    To determine the status of neuroimaging studies of Nuclear Medicine in Spain during 2013 and first quarter of 2014, in order to define the activities of the neuroimaging group of the Spanish Society of Nuclear Medicine and Molecular Imaging (SEMNIM). A questionnaire of 14 questions was designed, divided into 3 parts: characteristics of the departments (equipment and professionals involved); type of scans and clinical indications; and evaluation methods. The questionnaire was sent to 166 Nuclear Medicine departments. A total of 54 departments distributed among all regions completed the questionnaire. Most departments performed between 300 and 800 neuroimaging examinations per year, representing more than 25 scans per month. The average pieces of equipment were three; half of the departments had a PET/CT scanner and SPECT/CT equipment. Scans performed more frequently were brain SPECT with 123 I-FP-CIT, followed by brain perfusion SPECT and PET with 18 F-FDG. The most frequent clinical indications were cognitive impairment followed by movement disorders. For evaluation of the images most sites used only visual assessment, and for the quantitative assessment the most used was quantification by region of interest. These results reflect the clinical activity of 2013 and first quarter of 2014. The main indications of the studies were cognitive impairment and movement disorders. Variability in the evaluation of the studies is among the challenges that will be faced in the coming years. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  16. Neural correlates of the LSD experience revealed by multimodal neuroimaging.

    PubMed

    Carhart-Harris, Robin L; Muthukumaraswamy, Suresh; Roseman, Leor; Kaelen, Mendel; Droog, Wouter; Murphy, Kevin; Tagliazucchi, Enzo; Schenberg, Eduardo E; Nest, Timothy; Orban, Csaba; Leech, Robert; Williams, Luke T; Williams, Tim M; Bolstridge, Mark; Sessa, Ben; McGonigle, John; Sereno, Martin I; Nichols, David; Hellyer, Peter J; Hobden, Peter; Evans, John; Singh, Krish D; Wise, Richard G; Curran, H Valerie; Feilding, Amanda; Nutt, David J

    2016-04-26

    Lysergic acid diethylamide (LSD) is the prototypical psychedelic drug, but its effects on the human brain have never been studied before with modern neuroimaging. Here, three complementary neuroimaging techniques: arterial spin labeling (ASL), blood oxygen level-dependent (BOLD) measures, and magnetoencephalography (MEG), implemented during resting state conditions, revealed marked changes in brain activity after LSD that correlated strongly with its characteristic psychological effects. Increased visual cortex cerebral blood flow (CBF), decreased visual cortex alpha power, and a greatly expanded primary visual cortex (V1) functional connectivity profile correlated strongly with ratings of visual hallucinations, implying that intrinsic brain activity exerts greater influence on visual processing in the psychedelic state, thereby defining its hallucinatory quality. LSD's marked effects on the visual cortex did not significantly correlate with the drug's other characteristic effects on consciousness, however. Rather, decreased connectivity between the parahippocampus and retrosplenial cortex (RSC) correlated strongly with ratings of "ego-dissolution" and "altered meaning," implying the importance of this particular circuit for the maintenance of "self" or "ego" and its processing of "meaning." Strong relationships were also found between the different imaging metrics, enabling firmer inferences to be made about their functional significance. This uniquely comprehensive examination of the LSD state represents an important advance in scientific research with psychedelic drugs at a time of growing interest in their scientific and therapeutic value. The present results contribute important new insights into the characteristic hallucinatory and consciousness-altering properties of psychedelics that inform on how they can model certain pathological states and potentially treat others.

  17. Multivariate pattern recognition for diagnosis and prognosis in clinical neuroimaging: state of the art, current challenges and future trends.

    PubMed

    Haller, Sven; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon; Van De Ville, Dimitri

    2014-05-01

    Many diseases are associated with systematic modifications in brain morphometry and function. These alterations may be subtle, in particular at early stages of the disease progress, and thus not evident by visual inspection alone. Group-level statistical comparisons have dominated neuroimaging studies for many years, proving fascinating insight into brain regions involved in various diseases. However, such group-level results do not warrant diagnostic value for individual patients. Recently, pattern recognition approaches have led to a fundamental shift in paradigm, bringing multivariate analysis and predictive results, notably for the early diagnosis of individual patients. We review the state-of-the-art fundamentals of pattern recognition including feature selection, cross-validation and classification techniques, as well as limitations including inter-individual variation in normal brain anatomy and neurocognitive reserve. We conclude with the discussion of future trends including multi-modal pattern recognition, multi-center approaches with data-sharing and cloud-computing.

  18. The anatomy of language: contributions from functional neuroimaging

    PubMed Central

    PRICE, CATHY J.

    2000-01-01

    This article illustrates how functional neuroimaging can be used to test the validity of neurological and cognitive models of language. Three models of language are described: the 19th Century neurological model which describes both the anatomy and cognitive components of auditory and visual word processing, and 2 20th Century cognitive models that are not constrained by anatomy but emphasise 2 different routes to reading that are not present in the neurological model. A series of functional imaging studies are then presented which show that, as predicted by the 19th Century neurologists, auditory and visual word repetition engage the left posterior superior temporal and posterior inferior frontal cortices. More specifically, the roles Wernicke and Broca assigned to these regions lie respectively in the posterior superior temporal sulcus and the anterior insula. In addition, a region in the left posterior inferior temporal cortex is activated for word retrieval, thereby providing a second route to reading, as predicted by the 20th Century cognitive models. This region and its function may have been missed by the 19th Century neurologists because selective damage is rare. The angular gyrus, previously linked to the visual word form system, is shown to be part of a distributed semantic system that can be accessed by objects and faces as well as speech. Other components of the semantic system include several regions in the inferior and middle temporal lobes. From these functional imaging results, a new anatomically constrained model of word processing is proposed which reconciles the anatomical ambitions of the 19th Century neurologists and the cognitive finesse of the 20th Century cognitive models. The review focuses on single word processing and does not attempt to discuss how words are combined to generate sentences or how several languages are learned and interchanged. Progress in unravelling these and other related issues will depend on the integration of

  19. Multimodal Neuroimaging Differences in Nicotine Abstinent vs. Satiated Smokers.

    PubMed

    Chaarani, Bader; Spechler, Philip A; Ivanciu, Alexandra; Snowe, Mitchell; Nickerson, Joshua P; Higgins, Stephen T; Garavan, Hugh

    2018-04-06

    Research on cigarette smokers suggests cognitive and behavioral impairments. However, much remains unclear how the functional neurobiology of smokers is influenced by nicotine state. Therefore, we sought to determine which state, be it acute nicotine abstinence or satiety, would yield the most robust differences compared to non-smokers when assessing neurobiological markers of nicotine dependence. Smokers(N=15) and sociodemographically matched non-smokers(N=15) were scanned twice using a repeated-measures design. Smokers were scanned after a 24-hour nicotine abstinence, and immediately after smoking their usual brand cigarette. The neuroimaging battery included a stop-signal task of response inhibition and pseudo-continuous arterial spin labeling to measure cerebral blood flow (CBF). Whole brain voxel-wise ANCOVAs were carried out on stop success and stop fail SST contrasts and CBF maps to assess differences among non-, abstinent and satiated smokers. Cluster-correction was performed using AFNI's 3dClustSim to achieve a significance of p<0.05. Smokers exhibited higher brain activation in bilateral inferior frontal gyrus (IFG), a brain region known to be involved in inhibitory control, during successful response inhibitions relative to non-smokers. This effect was significantly higher during nicotine abstinence relative to satiety. Smokers also exhibited lower CBF in the bilateral IFG than non-smokers. These hypo-perfusions were not different between abstinence and satiety. These findings converge on alterations in smokers in prefrontal circuits known to be critical for inhibitory control. These effects are present, even when smokers are satiated, but the neural activity required to achieve performance equal to controls is increased when smokers are in acute abstinence. Our multi-modal neuroimaging study gives neurobiological insights into the cognitive demands of maintaining abstinence and suggest targets for assessing the efficacy of therapeutic interventions.

  20. Neuroimaging biomarkers and impaired olfaction in cognitively normal individuals.

    PubMed

    Vassilaki, Maria; Christianson, Teresa J; Mielke, Michelle M; Geda, Yonas E; Kremers, Walter K; Machulda, Mary M; Knopman, David S; Petersen, Ronald C; Lowe, Val J; Jack, Clifford R; Roberts, Rosebud O

    2017-06-01

    There is a need for inexpensive noninvasive tests to identify older healthy persons at risk for Alzheimer disease (AD) for enrollment in AD prevention trials. Our objective was to examine whether abnormalities in neuroimaging measures of amyloid and neurodegeneration are correlated with odor identification (OI) in the population-based Mayo Clinic Study of Aging. Cognitively normal (CN) participants had olfactory function assessed using the Brief Smell Identification Test (B-SIT), underwent magnetic resonance imaging (n = 829) to assess a composite AD signature cortical thickness and hippocampal volume (HVa), and underwent 11 C-Pittsburgh compound B (n = 306) and 18 fluorodeoxyglucose (n = 305) positron emission tomography scanning to assess amyloid accumulation and brain hypometabolism, respectively. The association of neuroimaging biomarkers with OI was examined using multinomial logistic regression and simple linear regression models adjusted for potential confounders. Among 829 CN participants (mean age = 79.2 years; 51.5% men), 248 (29.9%) were normosmic and 78 (9.4%) had anosmia (B-SIT score < 6). Abnormal AD signature cortical thickness and reduced HVa were associated with decreased OI as a continuous measure (slope = -0.43, 95% confidence interval [CI] = -0.76 to -0.09, p = 0.01 and slope = -0.72, 95% CI = -1.15 to -0.28, p < 0.01, respectively). Reduced HVa, decreased AD signature cortical thickness, and increased amyloid accumulation were significantly associated with increased odds of anosmia. Our findings suggest that OI may be a noninvasive, inexpensive marker for risk stratification, for identifying participants at the preclinical stage of AD who may be at risk for cognitive impairment and eligible for inclusion in AD prevention clinical trials. These cross-sectional findings remain to be validated prospectively. Ann Neurol 2017;81:871-882. © 2017 American Neurological Association.

  1. Neuroimaging and sexual behavior: identification of regional and functional differences.

    PubMed

    Cheng, Joseph C; Secondary, Joseph; Burke, William H; Fedoroff, J Paul; Dwyer, R Gregg

    2015-07-01

    The neuroanatomical correlates of human sexual desire, arousal, and behavior have been characterized in recent years with functional brain imaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET). Here, we briefly review the results of functional neuroimaging studies in humans, whether healthy or suffering from sexual disorders, and the current models of regional and network activation in sexual arousal. Attention is paid, in particular, to findings from both regional and network studies in the past 3 years. We also identify yet unanswered and pressing questions of interest to areas of ongoing investigations for psychiatric, scientific, and forensic disciplines.

  2. The clinical outcome and neuroimaging of acute encephalopathy after status epilepticus in Dravet syndrome.

    PubMed

    Tian, Xiaojuan; Ye, Jintang; Zeng, Qi; Zhang, Jing; Yang, Xiaoling; Liu, Aijie; Yang, Zhixian; Liu, Xiaoyan; Wu, Xiru; Zhang, Yuehua

    2018-06-01

    To analyze the clinical outcome and neuroimaging over a long duration follow-up in the currently largest series of acute encephalopathy after status epilepticus in patients with Dravet syndrome. Clinical and neuroimaging data of patients with Dravet syndrome with a history of acute encephalopathy (coma >24h) after status epilepticus from February 2005 to December 2016 at Peking University First Hospital were reviewed retrospectively. Thirty-five patients (15 males, 20 females) with a history of acute encephalopathy were enrolled from a total of 624 patients with Dravet syndrome (5.6%). The median onset age of acute encephalopathy was 3 years 1 month. The duration of status epilepticus varied between 40 minutes to 12 hours. Thirty-four patients had a high fever when status epilepticus occurred, and only one had a normal temperature. Coma lasted from 2 to 20 days. Twelve patients died and 23 survived with massive neurological regression. The median follow-up time was 2 years 1 month. Neuroimaging of 20 out of 23 survivors during the recovery phase showed diverse degrees of cortical atrophy with or without subcortical lesions. Acute encephalopathy after status epilepticus is more prone to occur in patients with Dravet syndrome who had a high fever. The mortality rate is high in severe cases. Survivors are left with severe neurological sequelae but often with either no seizure or low seizure frequency. Acute encephalopathy is more prone to occur in patients with Dravet syndrome with a high fever. The mortality rate is high for acute encephalopathy after status epilepticus in patients with Dravet syndrome. Survivors have neurological sequelae. © 2018 The Authors. Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press.

  3. A developmental neuroimaging investigation of the change paradigm

    PubMed Central

    Thomas, Laura A.; Hall, Julie M.; Skup, Martha; Jenkins, Sarah E.; Pine, Daniel S.; Leibenluft, Ellen

    2010-01-01

    This neuroimaging study examines the development of cognitive flexibility using the Change task in a sample of youths and adults. The Change task requires subjects to inhibit a prepotent response and substitute an alternate response, and the task incorporates an algorithm that adjusts task difficulty in response to subject performance. Data from both groups combined show a network of prefrontal and parietal areas that are active during the task. For adults vs. youths, a distributed network was more active for successful change trials versus go, baseline, or unsuccessful change trials. This network included areas involved in rule representation, retrieval (lateral PFC), and switching (medial PFC and parietal regions). These results are consistent with data from previous task-switching experiments and inform developmental understandings of cognitive flexibility. PMID:21159096

  4. Combinations of Multiple Neuroimaging Markers using Logistic Regression for Auxiliary Diagnosis of Alzheimer Disease and Mild Cognitive Impairment.

    PubMed

    Mao, Nini; Liu, Yunting; Chen, Kewei; Yao, Li; Wu, Xia

    2018-06-05

    Multiple neuroimaging modalities have been developed providing various aspects of information on the human brain. Used together and properly, these complementary multimodal neuroimaging data integrate multisource information which can facilitate a diagnosis and improve the diagnostic accuracy. In this study, 3 types of brain imaging data (sMRI, FDG-PET, and florbetapir-PET) were fused in the hope to improve diagnostic accuracy, and multivariate methods (logistic regression) were applied to these trimodal neuroimaging indices. Then, the receiver-operating characteristic (ROC) method was used to analyze the outcomes of the logistic classifier, with either each index, multiples from each modality, or all indices from all 3 modalities, to investigate their differential abilities to identify the disease. With increasing numbers of indices within each modality and across modalities, the accuracy of identifying Alzheimer disease (AD) increases to varying degrees. For example, the area under the ROC curve is above 0.98 when all the indices from the 3 imaging data types are combined. Using a combination of different indices, the results confirmed the initial hypothesis that different biomarkers were potentially complementary, and thus the conjoint analysis of multiple information from multiple sources would improve the capability to identify diseases such as AD and mild cognitive impairment. © 2018 S. Karger AG, Basel.

  5. Neural mechanisms for the cannabinoid modulation of cognition and affect in man: a critical review of neuroimaging studies.

    PubMed

    Bhattacharyya, Sagnik; Atakan, Zerrin; Martin-Santos, Rocio; Crippa, Jose A; McGuire, Philip K

    2012-01-01

    Pharmacological challenge in conjunction with neuroimaging techniques has been employed for over two decades now to understand the neural basis of the cognitive, emotional and symptomatic effects of the main ingredients of cannabis, the most widely used illicit drug in the world. This selective critical review focuses on the human neuroimaging studies investigating the effects of delta-9- tetrahydrocannabinol (THC) and cannabidiol (CBD), the two main cannabinoids of interest present in the extract of the cannabis plant. These studies suggest that consistent with the polymorphic and heterogeneous nature of the effects of cannabis, THC and CBD have distinct and often opposing effects on widely distributed neural networks that include medial temporal and prefrontal cortex and striatum, brain regions that are rich in cannabinoid receptors and implicated in the pathophysiology of psychosis. They help elucidate the neurocognitive mechanisms underlying the acute induction of psychotic symptoms by cannabis and provide mechanistic understanding underlying the potential role of CBD as an anxiolytic and antipsychotic. Although there are ethical and methodological caveats, pharmacological neuroimaging studies such as those reviewed here may not only help model different aspects of the psychopathology of mental disorders such as schizophrenia and offer insights into their underlying mechanisms, but may suggest potentially new therapeutic targets for drug discovery.

  6. Behind binge eating: A review of food-specific adaptations of neurocognitive and neuroimaging tasks.

    PubMed

    Berner, Laura A; Winter, Samantha R; Matheson, Brittany E; Benson, Leora; Lowe, Michael R

    2017-07-01

    Recurrent binge eating, or overeating accompanied by a sense of loss of control, is a major public health concern. Identifying similarities and differences among individuals with binge eating and those with other psychiatric symptoms and characterizing the deficits that uniquely predispose individuals to eating problems are essential to improving treatment. Research suggests that altered reward and control-related processes may contribute to dysregulated eating and other impulsive behaviors in binge-eating populations, but the best methods for reliably assessing the contributions of these processes to binge eating are unclear. In this review, we summarize standard neurocognitive and neuroimaging tasks that assess reward and control-related processes, describe adaptations of these tasks used to study eating and food-specific responsivity and deficits, and consider the advantages and limitations of these tasks. Future studies integrating both general and food-specific tasks with neuroimaging will improve understanding of the neurocognitive processes and neural circuits that contribute to binge eating and could inform novel interventions that more directly target or prevent this transdiagnostic behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods

    PubMed Central

    Auer, Tibor; Churchill, Nathan W.; Flandin, Guillaume; Guntupalli, J. Swaroop; Raffelt, David; Quirion, Pierre-Olivier; Smith, Robert E.; Strother, Stephen C.; Varoquaux, Gaël

    2017-01-01

    The rate of progress in human neurosciences is limited by the inability to easily apply a wide range of analysis methods to the plethora of different datasets acquired in labs around the world. In this work, we introduce a framework for creating, testing, versioning and archiving portable applications for analyzing neuroimaging data organized and described in compliance with the Brain Imaging Data Structure (BIDS). The portability of these applications (BIDS Apps) is achieved by using container technologies that encapsulate all binary and other dependencies in one convenient package. BIDS Apps run on all three major operating systems with no need for complex setup and configuration and thanks to the comprehensiveness of the BIDS standard they require little manual user input. Previous containerized data processing solutions were limited to single user environments and not compatible with most multi-tenant High Performance Computing systems. BIDS Apps overcome this limitation by taking advantage of the Singularity container technology. As a proof of concept, this work is accompanied by 22 ready to use BIDS Apps, packaging a diverse set of commonly used neuroimaging algorithms. PMID:28278228

  8. Association analysis of rare variants near the APOE region with CSF and neuroimaging biomarkers of Alzheimer's disease.

    PubMed

    Nho, Kwangsik; Kim, Sungeun; Horgusluoglu, Emrin; Risacher, Shannon L; Shen, Li; Kim, Dokyoon; Lee, Seunggeun; Foroud, Tatiana; Shaw, Leslie M; Trojanowski, John Q; Aisen, Paul S; Petersen, Ronald C; Jack, Clifford R; Weiner, Michael W; Green, Robert C; Toga, Arthur W; Saykin, Andrew J

    2017-05-24

    The APOE ε4 allele is the most significant common genetic risk factor for late-onset Alzheimer's disease (LOAD). The region surrounding APOE on chromosome 19 has also shown consistent association with LOAD. However, no common variants in the region remain significant after adjusting for APOE genotype. We report a rare variant association analysis of genes in the vicinity of APOE with cerebrospinal fluid (CSF) and neuroimaging biomarkers of LOAD. Whole genome sequencing (WGS) was performed on 817 blood DNA samples from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Sequence data from 757 non-Hispanic Caucasian participants was used in the present analysis. We extracted all rare variants (MAF (minor allele frequency) < 0.05) within a 312 kb window in APOE's vicinity encompassing 12 genes. We assessed CSF and neuroimaging (MRI and PET) biomarkers as LOAD-related quantitative endophenotypes. Gene-based analyses of rare variants were performed using the optimal Sequence Kernel Association Test (SKAT-O). A total of 3,334 rare variants (MAF < 0.05) were found within the APOE region. Among them, 72 rare non-synonymous variants were observed. Eight genes spanning the APOE region were significantly associated with CSF Aβ 1-42 (p < 1.0 × 10 -3 ). After controlling for APOE genotype and adjusting for multiple comparisons, 4 genes (CBLC, BCAM, APOE, and RELB) remained significant. Whole-brain surface-based analysis identified highly significant clusters associated with rare variants of CBLC in the temporal lobe region including the entorhinal cortex, as well as frontal lobe regions. Whole-brain voxel-wise analysis of amyloid PET identified significant clusters in the bilateral frontal and parietal lobes showing associations of rare variants of RELB with cortical amyloid burden. Rare variants within genes spanning the APOE region are significantly associated with LOAD-related CSF Aβ 1-42 and neuroimaging biomarkers after adjusting for APOE genotype

  9. Neuroimaging findings in Joubert syndrome with C5orf42 gene mutations: A milder form of molar tooth sign and vermian hypoplasia.

    PubMed

    Enokizono, Mikako; Aida, Noriko; Niwa, Tetsu; Osaka, Hitoshi; Naruto, Takuya; Kurosawa, Kenji; Ohba, Chihiro; Suzuki, Toshifumi; Saitsu, Hirotomo; Goto, Tomohide; Matsumoto, Naomichi

    2017-05-15

    Little is known regarding neuroimaging-genotype correlations in Joubert syndrome (JBTS). To elucidate one of these correlations, we investigated the neuroimaging findings of JBTS patients with C5orf42 mutations. Neuroimaging findings in five JBTS patients with C5orf42 mutations were retrospectively assessed with regard to the infratentorial and supratentorial structures on T1-magnetization prepared rapid gradient echo (MPRAGE), T2-weighted images, and color-coded fractional anisotropy (FA) maps; the findings were compared to those in four JBTS patients with mutations in other genes (including three with AHI1 and one with TMEM67 mutations). In C5orf42-mutant patients, the infratentorial magnetic resonance (MR) images showed normal or minimally thickened and minimally elongated superior cerebellar peduncles (SCP), normal or minimally deepened interpeduncular fossa (IF), and mild vermian hypoplasia (VH). However, in other patients, all had severe abnormalities in the SCP and IF, and moderate to marked VH. Supratentorial abnormalities were found in one individual in other JBTS. In JBTS with all mutations, color-coded FA maps showed the absence of decussation of the SCP (DSCP). The morphological neuroimaging findings in C5orf42-mutant JBTS were distinctly mild and made diagnosis difficult. However, the absence of DSCP on color-coded FA maps may facilitate the diagnosis of JBTS. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Practice Parameter: Evaluation of the child with microcephaly (an evidence-based review)

    PubMed Central

    Ashwal, Stephen; Michelson, David; Plawner, Lauren; Dobyns, William B.

    2009-01-01

    Objective: To make evidence-based recommendations concerning the evaluation of the child with microcephaly. Methods: Relevant literature was reviewed, abstracted, and classified. Recommendations were based on a 4-tiered scheme of evidence classification. Results: Microcephaly is an important neurologic sign but there is nonuniformity in its definition and evaluation. Microcephaly may result from any insult that disturbs early brain growth and can be seen in association with hundreds of genetic syndromes. Annually, approximately 25,000 infants in the United States will be diagnosed with microcephaly (head circumference <−2 SD). Few data are available to inform evidence-based recommendations regarding diagnostic testing. The yield of neuroimaging ranges from 43% to 80%. Genetic etiologies have been reported in 15.5% to 53.3%. The prevalence of metabolic disorders is unknown but is estimated to be 1%. Children with severe microcephaly (head circumference <−3 SD) are more likely (∼80%) to have imaging abnormalities and more severe developmental impairments than those with milder microcephaly (−2 to −3 SD; ∼40%). Coexistent conditions include epilepsy (∼40%), cerebral palsy (∼20%), mental retardation (∼50%), and ophthalmologic disorders (∼20% to ∼50%). Recommendations: Neuroimaging may be considered useful in identifying structural causes in the evaluation of the child with microcephaly (Level C). Targeted and specific genetic testing may be considered in the evaluation of the child with microcephaly who has clinical or imaging abnormalities that suggest a specific diagnosis or who shows no evidence of an acquired or environmental etiology (Level C). Screening for coexistent conditions such as cerebral palsy, epilepsy, and sensory deficits may also be considered (Level C). Further study is needed regarding the yield of diagnostic testing in children with microcephaly. GLOSSARY CP = cerebral palsy; GDD = global developmental delay; HC = head

  11. CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research.

    PubMed

    Sherif, Tarek; Rioux, Pierre; Rousseau, Marc-Etienne; Kassis, Nicolas; Beck, Natacha; Adalat, Reza; Das, Samir; Glatard, Tristan; Evans, Alan C

    2014-01-01

    The Canadian Brain Imaging Research Platform (CBRAIN) is a web-based collaborative research platform developed in response to the challenges raised by data-heavy, compute-intensive neuroimaging research. CBRAIN offers transparent access to remote data sources, distributed computing sites, and an array of processing and visualization tools within a controlled, secure environment. Its web interface is accessible through any modern browser and uses graphical interface idioms to reduce the technical expertise required to perform large-scale computational analyses. CBRAIN's flexible meta-scheduling has allowed the incorporation of a wide range of heterogeneous computing sites, currently including nine national research High Performance Computing (HPC) centers in Canada, one in Korea, one in Germany, and several local research servers. CBRAIN leverages remote computing cycles and facilitates resource-interoperability in a transparent manner for the end-user. Compared with typical grid solutions available, our architecture was designed to be easily extendable and deployed on existing remote computing sites with no tool modification, administrative intervention, or special software/hardware configuration. As October 2013, CBRAIN serves over 200 users spread across 53 cities in 17 countries. The platform is built as a generic framework that can accept data and analysis tools from any discipline. However, its current focus is primarily on neuroimaging research and studies of neurological diseases such as Autism, Parkinson's and Alzheimer's diseases, Multiple Sclerosis as well as on normal brain structure and development. This technical report presents the CBRAIN Platform, its current deployment and usage and future direction.

  12. How Shakespeare tempests the brain: neuroimaging insights.

    PubMed

    Keidel, James L; Davis, Philip M; Gonzalez-Diaz, Victorina; Martin, Clara D; Thierry, Guillaume

    2013-04-01

    Shakespeare made extensive use of the functional shift (FS), a rhetorical device involving a change in the grammatical status of words, e.g., using nouns as verbs. Previous work using event-related brain potentials showed how FS triggers a surprise effect inviting mental re-evaluation, seemingly independent of semantic processing. Here, we used functional magnetic resonance imaging to investigate brain activation in participants making judgements on the semantic relationship between sentences -some containing a Shakespearean FS- and subsequently presented words. Behavioural performance in the semantic decision task was high and unaffected by sentence type. However, neuroimaging results showed that sentences featuring FS elicited significant activation beyond regions classically activated by typical language tasks, including the left caudate nucleus, the right inferior frontal gyrus and the right inferior temporal gyrus. These findings show how Shakespeare's grammatical exploration forces the listener to take a more active role in integrating the meaning of what is said. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The experience of art: insights from neuroimaging.

    PubMed

    Nadal, Marcos

    2013-01-01

    The experience of art is a complex one. It emerges from the interaction of multiple cognitive and affective processes. Neuropsychological and neuroimaging studies are revealing the broadly distributed network of brain regions upon which it relies. This network can be divided into three functional components: (i) prefrontal, parietal, and temporal cortical regions support evaluative judgment, attentional processing, and memory retrieval; (ii) the reward circuit, including cortical, subcortical regions, and some of its regulators, is involved in the generation of pleasurable feelings and emotions, and the valuation and anticipation of reward; and (iii) attentional modulation of activity in low-, mid-, and high-level cortical sensory regions enhances the perceptual processing of certain features, relations, locations, or objects. Understanding how these regions act in concert to produce unique and moving art experiences and determining the impact of personal and cultural meaning and context on this network the biological foundation of the experience of art--remain future challenges. © 2013 Elsevier B.V. All rights reserved.

  14. Age, Sex, and Racial Differences in Neuroimaging Use in Acute Stroke: A Population-Based Study.

    PubMed

    Vagal, A; Sanelli, P; Sucharew, H; Alwell, K A; Khoury, J C; Khatri, P; Woo, D; Flaherty, M; Kissela, B M; Adeoye, O; Ferioli, S; De Los Rios La Rosa, F; Martini, S; Mackey, J; Kleindorfer, D

    2017-10-01

    Limited information is available regarding differences in neuroimaging use for acute stroke work-up. Our objective was to assess whether race, sex, or age differences exist in neuroimaging use and whether these differences depend on the care center type in a population-based study. Patients with stroke (ischemic and hemorrhagic) and transient ischemic attack were identified in a metropolitan, biracial population using the Greater Cincinnati/Northern Kentucky Stroke Study in 2005 and 2010. Multivariable regression was used to determine the odds of advanced imaging use (CT angiography/MR imaging/MR angiography) for race, sex, and age. In 2005 and 2010, there were 3471 and 3431 stroke/TIA events, respectively. If one adjusted for covariates, the odds of advanced imaging were higher for younger (55 years or younger) compared with older patients, blacks compared with whites, and patients presenting to an academic center and those seen by a stroke team or neurologist. The observed association between race and advanced imaging depended on age; in the older age group, blacks had higher odds of advanced imaging compared with whites (odds ratio, 1.34; 95% CI, 1.12-1.61; P < .01), and in the younger group, the association between race and advanced imaging was not statistically significant. Age by race interaction persisted in the academic center subgroup ( P < .01), but not in the nonacademic center subgroup ( P = .58). No significant association was found between sex and advanced imaging. Within a large, biracial stroke/TIA population, there is variation in the use of advanced neuroimaging by age and race, depending on the care center type. © 2017 by American Journal of Neuroradiology.

  15. Electrical Stimulation and Cutaneous Wound Healing: A Review of Clinical Evidence

    PubMed Central

    Ud-Din, Sara; Bayat, Ardeshir

    2014-01-01

    Electrical stimulation (ES) has been shown to have beneficial effects in wound healing. It is important to assess the effects of ES on cutaneous wound healing in order to ensure optimization for clinical practice. Several different applications as well as modalities of ES have been described, including direct current (DC), alternating current (AC), high-voltage pulsed current (HVPC), low-intensity direct current (LIDC) and electrobiofeedback ES. However, no one method has been advocated as the most optimal for the treatment of cutaneous wound healing. Therefore, this review aims to examine the level of evidence (LOE) for the application of different types of ES to enhance cutaneous wound healing in the skin. An extensive search was conducted to identify relevant clinical studies utilising ES for cutaneous wound healing since 1980 using PubMed, Medline and EMBASE. A total of 48 studies were evaluated and assigned LOE. All types of ES demonstrated positive effects on cutaneous wound healing in the majority of studies. However, the reported studies demonstrate contrasting differences in the parameters and types of ES application, leading to an inability to generate sufficient evidence to support any one standard therapeutic approach. Despite variations in the type of current, duration, and dosing of ES, the majority of studies showed a significant improvement in wound area reduction or accelerated wound healing compared to the standard of care or sham therapy as well as improved local perfusion. The limited number of LOE-1 trials for investigating the effects of ES in wound healing make critical evaluation and assessment somewhat difficult. Further, better-designed clinical trials are needed to improve our understanding of the optimal dosing, timing and type of ES to be used. PMID:27429287

  16. Spinal Cord Lesions in Congenital Toxoplasmosis Demonstrated with Neuroimaging, Including Their Successful Treatment in an Adult.

    PubMed

    Burrowes, Delilah; Boyer, Kenneth; Swisher, Charles N; Noble, A Gwendolyn; Sautter, Mari; Heydemann, Peter; Rabiah, Peter; Lee, Daniel; McLeod, Rima

    2012-03-01

    Neuroimaging studies for persons in the National Collaborative Chicago-Based Congenital Toxoplasmosis Study (NCCCTS) with symptoms and signs referable to the spinal cord were reviewed. Three infants had symptomatic spinal cord lesions, another infant a Chiari malformation, and another infant a symptomatic peri-spinal cord lipoma. One patient had an unusual history of prolonged spinal cord symptoms presenting in middle age. Neuroimaging was used to establish her diagnosis and response to treatment. This 43 year-old woman with congenital toxoplasmosis developed progressive leg spasticity, weakness, numbness, difficulty walking, and decreased visual acuity and color vision without documented re-activation of her chorioretinal disease. At 52 years of age, spinal cord lesions in locations correlating with her symptoms and optic atrophy were diagnosed with 3 Tesla MRI scan. Treatment with pyrimethamine and sulfadiazine decreased her neurologic symptoms, improved her neurologic examination, and resolved her enhancing spinal cord lesions seen on MRI.

  17. Anesthetic-Related Neurotoxicity and Neuroimaging in Children: A Call for Conversation.

    PubMed

    Bjur, Kara A; Payne, Eric T; Nemergut, Michael E; Hu, Danqing; Flick, Randall P

    2017-05-01

    Each year millions of young children undergo procedures requiring sedation or general anesthesia. An increasing proportion of the anesthetics used are provided to optimize diagnostic imaging studies such as magnetic resonance imaging. Concern regarding the neurotoxicity of sedatives and anesthetics has prompted the US Food and Drug Administration to change labeling of anesthetics and sedative agents warning against repeated or prolonged exposure in young children. This review aims to summarize the risk of anesthesia in children with an emphasis on anesthetic-related neurotoxicity, acknowledge the value of pediatric neuroimaging, and address this call for conversation.

  18. A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula.

    PubMed

    Ince, Robin A A; Giordano, Bruno L; Kayser, Christoph; Rousselet, Guillaume A; Gross, Joachim; Schyns, Philippe G

    2017-03-01

    We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open-source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541-1573, 2017. © 2016 Wiley Periodicals, Inc. 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  19. Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients.

    PubMed

    Sjoerds, Z; de Wit, S; van den Brink, W; Robbins, T W; Beekman, A T F; Penninx, B W J H; Veltman, D J

    2013-12-17

    Substance dependence is characterized by compulsive drug-taking despite negative consequences. Animal research suggests an underlying imbalance between goal-directed and habitual action control with chronic drug use. However, this imbalance, and its associated neurophysiological mechanisms, has not yet been experimentally investigated in human drug abusers. The aim of the present study therefore was to assess the balance between goal-directed and habit-based learning and its neural correlates in abstinent alcohol-dependent (AD) patients. A total of 31 AD patients and 19 age, gender and education matched healthy controls (HC) underwent functional magnetic resonance imaging (fMRI) during completion of an instrumental learning task designed to study the balance between goal-directed and habit learning. Task performance and task-related blood oxygen level-dependent activations in the brain were compared between AD patients and healthy matched controls. Findings were additionally associated with duration and severity of alcohol dependence. The results of this study provide evidence for an overreliance on stimulus-response habit learning in AD compared with HC, which was accompanied by decreased engagement of brain areas implicated in goal-directed action (ventromedial prefrontal cortex and anterior putamen) and increased recruitment of brain areas implicated in habit learning (posterior putamen) in AD patients. In conclusion, this is the first human study to provide experimental evidence for a disturbed balance between goal-directed and habitual control by use of an instrumental learning task, and to directly implicate cortical dysfunction to overreliance on inflexible habits in AD patients.

  20. Brain white matter changes associated with urological chronic pelvic pain syndrome: multisite neuroimaging from a MAPP case-control study.

    PubMed

    Huang, Lejian; Kutch, Jason J; Ellingson, Benjamin M; Martucci, Katherine T; Harris, Richard E; Clauw, Daniel J; Mackey, Sean; Mayer, Emeran A; Schaeffer, Anthony J; Apkarian, A Vania; Farmer, Melissa A

    2016-12-01

    Clinical phenotyping of urological chronic pelvic pain syndromes (UCPPSs) in men and women have focused on end organ abnormalities to identify putative clinical subtypes. Initial evidence of abnormal brain function and structure in male pelvic pain has necessitated large-scale, multisite investigations into potential UCPPS brain biomarkers. We present the first evidence of regional white matter (axonal) abnormalities in men and women with UCPPS, compared with positive (irritable bowel syndrome, IBS) and healthy controls. Epidemiological and neuroimaging data were collected from participants with UCPPS (n = 52), IBS (n = 39), and healthy sex- and age-matched controls (n = 61). White matter microstructure, measured as fractional anisotropy (FA), was examined by diffusion tensor imaging. Group differences in regional FA positively correlated with pain severity, including segments of the right corticospinal tract and right anterior thalamic radiation. Increased corticospinal FA was specific and sensitive to UCPPS, positively correlated with pain severity, and reflected sensory (not affective) features of pain. Reduced anterior thalamic radiation FA distinguished patients with IBS from those with UCPPS and controls, suggesting greater microstructural divergence from normal tract organization. Findings confirm that regional white matter abnormalities characterize UCPPS and can distinguish between visceral diagnoses, suggesting that regional axonal microstructure is either altered with ongoing pain or predisposes its development.

  1. Neural correlates of the LSD experience revealed by multimodal neuroimaging

    PubMed Central

    Carhart-Harris, Robin L.; Muthukumaraswamy, Suresh; Roseman, Leor; Kaelen, Mendel; Droog, Wouter; Murphy, Kevin; Tagliazucchi, Enzo; Schenberg, Eduardo E.; Nest, Timothy; Orban, Csaba; Leech, Robert; Williams, Luke T.; Williams, Tim M.; Bolstridge, Mark; Sessa, Ben; McGonigle, John; Sereno, Martin I.; Nichols, David; Hobden, Peter; Evans, John; Singh, Krish D.; Wise, Richard G.; Curran, H. Valerie; Feilding, Amanda; Nutt, David J.

    2016-01-01

    Lysergic acid diethylamide (LSD) is the prototypical psychedelic drug, but its effects on the human brain have never been studied before with modern neuroimaging. Here, three complementary neuroimaging techniques: arterial spin labeling (ASL), blood oxygen level-dependent (BOLD) measures, and magnetoencephalography (MEG), implemented during resting state conditions, revealed marked changes in brain activity after LSD that correlated strongly with its characteristic psychological effects. Increased visual cortex cerebral blood flow (CBF), decreased visual cortex alpha power, and a greatly expanded primary visual cortex (V1) functional connectivity profile correlated strongly with ratings of visual hallucinations, implying that intrinsic brain activity exerts greater influence on visual processing in the psychedelic state, thereby defining its hallucinatory quality. LSD’s marked effects on the visual cortex did not significantly correlate with the drug’s other characteristic effects on consciousness, however. Rather, decreased connectivity between the parahippocampus and retrosplenial cortex (RSC) correlated strongly with ratings of “ego-dissolution” and “altered meaning,” implying the importance of this particular circuit for the maintenance of “self” or “ego” and its processing of “meaning.” Strong relationships were also found between the different imaging metrics, enabling firmer inferences to be made about their functional significance. This uniquely comprehensive examination of the LSD state represents an important advance in scientific research with psychedelic drugs at a time of growing interest in their scientific and therapeutic value. The present results contribute important new insights into the characteristic hallucinatory and consciousness-altering properties of psychedelics that inform on how they can model certain pathological states and potentially treat others. PMID:27071089

  2. Neuropsychology 3.0: Evidence-Based Science and Practice

    PubMed Central

    Bilder, Robert M.

    2011-01-01

    Neuropsychology is poised for transformations of its concepts and methods, leveraging advances in neuroimaging, the human genome project, psychometric theory, and information technologies. It is argued that a paradigm shift towards evidence-based science and practice can be enabled by innovations, including: (1) formal definition of neuropsychological concepts and tasks in cognitive ontologies; (2) creation of collaborative neuropsychological knowledgebases; and (3) design of web-based assessment methods that permit free development, large-sample implementation, and dynamic refinement of neuropsychological tests and the constructs these aim to assess. This article considers these opportunities, highlights selected obstacles, and offers suggestions for stepwise progress towards these goals. PMID:21092355

  3. Electrical Stimulation of the Left and Right Human Fusiform Gyrus Causes Different Effects in Conscious Face Perception

    PubMed Central

    Rangarajan, Vinitha; Hermes, Dora; Foster, Brett L.; Weiner, Kevin S.; Jacques, Corentin; Grill-Spector, Kalanit

    2014-01-01

    Neuroimaging and electrophysiological studies across species have confirmed bilateral face-selective responses in the ventral temporal cortex (VTC) and prosopagnosia is reported in patients with lesions in the VTC including the fusiform gyrus (FG). As imaging and electrophysiological studies provide correlative evidence, and brain lesions often comprise both white and gray matter structures beyond the FG, we designed the current study to explore the link between face-related electrophysiological responses in the FG and the causal effects of electrical stimulation of the left or right FG in face perception. We used a combination of electrocorticography (ECoG) and electrical brain stimulation (EBS) in 10 human subjects implanted with intracranial electrodes in either the left (5 participants, 30 FG sites) or right (5 participants, 26 FG sites) hemispheres. We identified FG sites with face-selective ECoG responses, and recorded perceptual reports during EBS of these sites. In line with existing literature, face-selective ECoG responses were present in both left and right FG sites. However, when the same sites were stimulated, we observed a striking difference between hemispheres. Only EBS of the right FG caused changes in the conscious perception of faces, whereas EBS of strongly face-selective regions in the left FG produced non-face-related visual changes, such as phosphenes. This study examines the relationship between correlative versus causal nature of ECoG and EBS, respectively, and provides important insight into the differential roles of the right versus left FG in conscious face perception. PMID:25232118

  4. Human Neuroimaging of Oxytocin and Vasopressin in Social Cognition

    PubMed Central

    Zink, Caroline F; Meyer-Lindenberg, Andreas

    2012-01-01

    The neuropeptides oxytocin and vasopressin have increasingly been identified as modulators of human social behaviors and associated with neuropsychiatric disorders characterized by social dysfunction, such as autism. Identifying the human brain regions that are impacted by oxytocin and vasopressin in a social context is essential to fully characterize the role of oxytocin and vasopressin in complex human social cognition. Advances in human non-invasive neuroimaging techniques and genetics have enabled scientists to begin to elucidate the neurobiological basis of the influence of oxytocin and vasopressin on human social behaviors. Here we review the findings to-date from investigations of the acute and chronic effects of oxytocin and vasopressin on neural activity underlying social cognitive processes using “pharmacological fMRI” and “imaging genetics”, respectively. PMID:22326707

  5. Adaptive Signal Recovery on Graphs via Harmonic Analysis for Experimental Design in Neuroimaging.

    PubMed

    Kim, Won Hwa; Hwang, Seong Jae; Adluru, Nagesh; Johnson, Sterling C; Singh, Vikas

    2016-10-01

    Consider an experimental design of a neuroimaging study, where we need to obtain p measurements for each participant in a setting where p ' (< p ) are cheaper and easier to acquire while the remaining ( p - p ') are expensive. For example, the p ' measurements may include demographics, cognitive scores or routinely offered imaging scans while the ( p - p ') measurements may correspond to more expensive types of brain image scans with a higher participant burden. In this scenario, it seems reasonable to seek an "adaptive" design for data acquisition so as to minimize the cost of the study without compromising statistical power. We show how this problem can be solved via harmonic analysis of a band-limited graph whose vertices correspond to participants and our goal is to fully recover a multi-variate signal on the nodes, given the full set of cheaper features and a partial set of more expensive measurements. This is accomplished using an adaptive query strategy derived from probing the properties of the graph in the frequency space. To demonstrate the benefits that this framework can provide, we present experimental evaluations on two independent neuroimaging studies and show that our proposed method can reliably recover the true signal with only partial observations directly yielding substantial financial savings.

  6. CONTRIBUTIONS OF NEUROPSYCHOLOGY AND NEUROIMAGING TO UNDERSTANDING CLINICAL SUBTYPES OF MILD COGNITIVE IMPAIRMENT

    PubMed Central

    Jak, Amy J.; Bangen, Katherine J.; Wierenga, Christina E.; Delano-Wood, Lisa; Corey-Bloom, Jody; Bondi, Mark W.

    2010-01-01

    The original conceptualization of mild cognitive impairment (MCI) was primarily as an amnestic disorder representing an intermediate stage between normal aging and Alzheimer’s dementia (AD). More recently, broader conceptualizations of MCI have emerged that also encompass cognitive domains other than memory. These characterizations delineate clinical subtypes that commonly include amnestic and non-amnestic forms, and that involve single and multiple cognitive domains. With the advent of these broader classifications, more specific information is emerging regarding the neuropsychological presentation of individuals with MCI, risk for dementia associated with different subtypes of MCI, and neuropathologic substrates connected to the clinical subtypes. This review provides an overview of this burgeoning literature specific to clinical subtypes of MCI. Focus is primarily on neuropsychological and structural neuroimaging findings specific to clinical subtypes of MCI as well as the issue of daily functioning. Although investigations of non-amnestic subtypes using advanced neuroimaging techniques and clinical trials are quite limited, we briefly review these topics in MCI because these data provide a framework for future investigations specifically examining additional clinical subtypes of MCI. Finally, the review comments on select methodological issues involved in studying this heterogeneous population, and future directions to continue to improve our understanding of MCI and its clinical subtypes are offered. PMID:19501714

  7. Neuroimaging findings in the at-risk mental state: a review of recent literature.

    PubMed

    Wood, Stephen J; Reniers, Renate L E P; Heinze, Kareen

    2013-01-01

    The at-risk mental state (ARMS) has been the subject of much interest during the past 15 years. A great deal of effort has been expended to identify neuroimaging markers that can inform our understanding of the risk state and to help predict who will transition to frank psychotic illness. Recently, there has been an explosion of neuroimaging literature from people with an ARMS, which has meant that reviews and meta-analyses lack currency. Here we review papers published in the past 2 years, and contrast their findings with previous reports. While it is clear that people in the ARMS do show brain alterations when compared with healthy control subjects, there is an overall lack of consistency as to which of these alterations predict the development of psychosis. This problem arises because of variations in methodology (in patient recruitment, region of interest, method of analysis, and functional task employed), but there has also been too little effort put into replicating previous research. Nonetheless, there are areas of promise, notably that activation of the stress system and increased striatal dopamine synthesis seem to mark out patients in the ARMS most at risk for later transition. Future studies should focus on these areas, and on network-level analysis, incorporating graph theoretical approaches and intrinsic connectivity networks.

  8. Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients

    PubMed Central

    Sjoerds, Z; de Wit, S; van den Brink, W; Robbins, T W; Beekman, A T F; Penninx, B W J H; Veltman, D J

    2013-01-01

    Substance dependence is characterized by compulsive drug-taking despite negative consequences. Animal research suggests an underlying imbalance between goal-directed and habitual action control with chronic drug use. However, this imbalance, and its associated neurophysiological mechanisms, has not yet been experimentally investigated in human drug abusers. The aim of the present study therefore was to assess the balance between goal-directed and habit-based learning and its neural correlates in abstinent alcohol-dependent (AD) patients. A total of 31 AD patients and 19 age, gender and education matched healthy controls (HC) underwent functional magnetic resonance imaging (fMRI) during completion of an instrumental learning task designed to study the balance between goal-directed and habit learning. Task performance and task-related blood oxygen level-dependent activations in the brain were compared between AD patients and healthy matched controls. Findings were additionally associated with duration and severity of alcohol dependence. The results of this study provide evidence for an overreliance on stimulus-response habit learning in AD compared with HC, which was accompanied by decreased engagement of brain areas implicated in goal-directed action (ventromedial prefrontal cortex and anterior putamen) and increased recruitment of brain areas implicated in habit learning (posterior putamen) in AD patients. In conclusion, this is the first human study to provide experimental evidence for a disturbed balance between goal-directed and habitual control by use of an instrumental learning task, and to directly implicate cortical dysfunction to overreliance on inflexible habits in AD patients. PMID:24346135

  9. Does social approval stimulate prosocial behavior? Evidence from a field experiment in the residential electricity market

    NASA Astrophysics Data System (ADS)

    Yoeli, Erez

    At least since Veblen (1899), economists have proposed that people do good because they desire "social approval" and want to look good in front of others. Evidence from the laboratory supports this claim, but is difficult to generalize due to the unrealistic degree of scrutiny in a laboratory environment. I administer a field experiment to test the potency of social approval in a realistic and policy relevant setting. In the experiment I solicit 7893 customers of a large electric utility for a program that helps prevent blackouts. I vary whether their decision to participate in the program is revealed to their neighbors. Customers whose decision is revealed are 1.5% more likely to sign up than those whose decision is anonymous when their decision is framed as a contribution to a public good. Social approval increases participation more than offering subjects a $25 incentive, and its effect is large relative to the mean sign-up rate of 4.1%. I explore whether social approval contributes to crowding out and conditionally cooperative behavior, but the evidence is inconclusive.

  10. Automatic Semantic Facilitation in Anterior Temporal Cortex Revealed through Multimodal Neuroimaging

    PubMed Central

    Gramfort, Alexandre; Hämäläinen, Matti S.; Kuperberg, Gina R.

    2013-01-01

    A core property of human semantic processing is the rapid, facilitatory influence of prior input on extracting the meaning of what comes next, even under conditions of minimal awareness. Previous work has shown a number of neurophysiological indices of this facilitation, but the mapping between time course and localization—critical for separating automatic semantic facilitation from other mechanisms—has thus far been unclear. In the current study, we used a multimodal imaging approach to isolate early, bottom-up effects of context on semantic memory, acquiring a combination of electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) measurements in the same individuals with a masked semantic priming paradigm. Across techniques, the results provide a strikingly convergent picture of early automatic semantic facilitation. Event-related potentials demonstrated early sensitivity to semantic association between 300 and 500 ms; MEG localized the differential neural response within this time window to the left anterior temporal cortex, and fMRI localized the effect more precisely to the left anterior superior temporal gyrus, a region previously implicated in semantic associative processing. However, fMRI diverged from early EEG/MEG measures in revealing semantic enhancement effects within frontal and parietal regions, perhaps reflecting downstream attempts to consciously access the semantic features of the masked prime. Together, these results provide strong evidence that automatic associative semantic facilitation is realized as reduced activity within the left anterior superior temporal cortex between 300 and 500 ms after a word is presented, and emphasize the importance of multimodal neuroimaging approaches in distinguishing the contributions of multiple regions to semantic processing. PMID:24155321

  11. "This is Why you've Been Suffering": Reflections of Providers on Neuroimaging in Mental Health Care.

    PubMed

    Borgelt, Emily; Buchman, Daniel Z; Illes, Judy

    2011-03-01

    Mental health care providers increasingly confront challenges posed by the introduction of new neurotechnology into the clinic, but little is known about the impact of such capabilities on practice patterns and relationships with patients. To address this important gap, we sought providers' perspectives on the potential clinical translation of functional neuroimaging for prediction and diagnosis of mental illness. We conducted 32 semi-structured telephone interviews with mental health care providers representing psychiatry, psychology, family medicine, and allied mental health. Our results suggest that mental health providers have begun to re-conceptualize mental illness with a neuroscience gaze. They report an epistemic commitment to the value of a brain scan to provide a meaningful explanation of mental illness for their clients. If functional neuroimaging continues along its projected trajectory to translation, providers will ultimately have to negotiate its role in mental health. Their perspectives, therefore, enrich bioethical discourse surrounding neurotechnology and inform the translational pathway.

  12. Brain glucose metabolism during hypoglycemia in type 1 diabetes: insights from functional and metabolic neuroimaging studies.

    PubMed

    Rooijackers, Hanne M M; Wiegers, Evita C; Tack, Cees J; van der Graaf, Marinette; de Galan, Bastiaan E

    2016-02-01

    Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain's handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge.

  13. Testing for association with multiple traits in generalized estimation equations, with application to neuroimaging data.

    PubMed

    Zhang, Yiwei; Xu, Zhiyuan; Shen, Xiaotong; Pan, Wei

    2014-08-01

    There is an increasing need to develop and apply powerful statistical tests to detect multiple traits-single locus associations, as arising from neuroimaging genetics and other studies. For example, in the Alzheimer's Disease Neuroimaging Initiative (ADNI), in addition to genome-wide single nucleotide polymorphisms (SNPs), thousands of neuroimaging and neuropsychological phenotypes as intermediate phenotypes for Alzheimer's disease, have been collected. Although some classic methods like MANOVA and newly proposed methods may be applied, they have their own limitations. For example, MANOVA cannot be applied to binary and other discrete traits. In addition, the relationships among these methods are not well understood. Importantly, since these tests are not data adaptive, depending on the unknown association patterns among multiple traits and between multiple traits and a locus, these tests may or may not be powerful. In this paper we propose a class of data-adaptive weights and the corresponding weighted tests in the general framework of generalized estimation equations (GEE). A highly adaptive test is proposed to select the most powerful one from this class of the weighted tests so that it can maintain high power across a wide range of situations. Our proposed tests are applicable to various types of traits with or without covariates. Importantly, we also analytically show relationships among some existing and our proposed tests, indicating that many existing tests are special cases of our proposed tests. Extensive simulation studies were conducted to compare and contrast the power properties of various existing and our new methods. Finally, we applied the methods to an ADNI dataset to illustrate the performance of the methods. We conclude with the recommendation for the use of the GEE-based Score test and our proposed adaptive test for their high and complementary performance. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Random Forest Algorithm for the Classification of Neuroimaging Data in Alzheimer's Disease: A Systematic Review.

    PubMed

    Sarica, Alessia; Cerasa, Antonio; Quattrone, Aldo

    2017-01-01

    Objective: Machine learning classification has been the most important computational development in the last years to satisfy the primary need of clinicians for automatic early diagnosis and prognosis. Nowadays, Random Forest (RF) algorithm has been successfully applied for reducing high dimensional and multi-source data in many scientific realms. Our aim was to explore the state of the art of the application of RF on single and multi-modal neuroimaging data for the prediction of Alzheimer's disease. Methods: A systematic review following PRISMA guidelines was conducted on this field of study. In particular, we constructed an advanced query using boolean operators as follows: ("random forest" OR "random forests") AND neuroimaging AND ("alzheimer's disease" OR alzheimer's OR alzheimer) AND (prediction OR classification) . The query was then searched in four well-known scientific databases: Pubmed, Scopus, Google Scholar and Web of Science. Results: Twelve articles-published between the 2007 and 2017-have been included in this systematic review after a quantitative and qualitative selection. The lesson learnt from these works suggest that when RF was applied on multi-modal data for prediction of Alzheimer's disease (AD) conversion from the Mild Cognitive Impairment (MCI), it produces one of the best accuracies to date. Moreover, the RF has important advantages in terms of robustness to overfitting, ability to handle highly non-linear data, stability in the presence of outliers and opportunity for efficient parallel processing mainly when applied on multi-modality neuroimaging data, such as, MRI morphometric, diffusion tensor imaging, and PET images. Conclusions: We discussed the strengths of RF, considering also possible limitations and by encouraging further studies on the comparisons of this algorithm with other commonly used classification approaches, particularly in the early prediction of the progression from MCI to AD.

  15. The same analysis approach: Practical protection against the pitfalls of novel neuroimaging analysis methods.

    PubMed

    Görgen, Kai; Hebart, Martin N; Allefeld, Carsten; Haynes, John-Dylan

    2017-12-27

    Standard neuroimaging data analysis based on traditional principles of experimental design, modelling, and statistical inference is increasingly complemented by novel analysis methods, driven e.g. by machine learning methods. While these novel approaches provide new insights into neuroimaging data, they often have unexpected properties, generating a growing literature on possible pitfalls. We propose to meet this challenge by adopting a habit of systematic testing of experimental design, analysis procedures, and statistical inference. Specifically, we suggest to apply the analysis method used for experimental data also to aspects of the experimental design, simulated confounds, simulated null data, and control data. We stress the importance of keeping the analysis method the same in main and test analyses, because only this way possible confounds and unexpected properties can be reliably detected and avoided. We describe and discuss this Same Analysis Approach in detail, and demonstrate it in two worked examples using multivariate decoding. With these examples, we reveal two sources of error: A mismatch between counterbalancing (crossover designs) and cross-validation which leads to systematic below-chance accuracies, and linear decoding of a nonlinear effect, a difference in variance. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Genome-wide association analysis of secondary imaging phenotypes from the Alzheimer's disease neuroimaging initiative study.

    PubMed

    Zhu, Wensheng; Yuan, Ying; Zhang, Jingwen; Zhou, Fan; Knickmeyer, Rebecca C; Zhu, Hongtu

    2017-02-01

    The aim of this paper is to systematically evaluate a biased sampling issue associated with genome-wide association analysis (GWAS) of imaging phenotypes for most imaging genetic studies, including the Alzheimer's Disease Neuroimaging Initiative (ADNI). Specifically, the original sampling scheme of these imaging genetic studies is primarily the retrospective case-control design, whereas most existing statistical analyses of these studies ignore such sampling scheme by directly correlating imaging phenotypes (called the secondary traits) with genotype. Although it has been well documented in genetic epidemiology that ignoring the case-control sampling scheme can produce highly biased estimates, and subsequently lead to misleading results and suspicious associations, such findings are not well documented in imaging genetics. We use extensive simulations and a large-scale imaging genetic data analysis of the Alzheimer's Disease Neuroimaging Initiative (ADNI) data to evaluate the effects of the case-control sampling scheme on GWAS results based on some standard statistical methods, such as linear regression methods, while comparing it with several advanced statistical methods that appropriately adjust for the case-control sampling scheme. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research--past, present, and future.

    PubMed

    Rauch, Scott L; Shin, Lisa M; Phelps, Elizabeth A

    2006-08-15

    The prevailing neurocircuitry models of anxiety disorders have been amygdalocentric in form. The bases for such models have progressed from theoretical considerations, extrapolated from research in animals, to in vivo human imaging data. For example, one current model of posttraumatic stress disorder (PTSD) has been highly influenced by knowledge from rodent fear conditioning research. Given the phenomenological parallels between fear conditioning and the pathogenesis of PTSD, we have proposed that PTSD is characterized by exaggerated amygdala responses (subserving exaggerated acquisition of fear associations and expression of fear responses) and deficient frontal cortical function (mediating deficits in extinction and the capacity to suppress attention/response to trauma-related stimuli), as well as deficient hippocampal function (mediating deficits in appreciation of safe contexts and explicit learning/memory). Neuroimaging studies have yielded convergent findings in support of this model. However, to date, neuroimaging investigations of PTSD have not principally employed conditioning and extinction paradigms per se. The recent development of such imaging probes now sets the stage for directly testing hypotheses regarding the neural substrates of fear conditioning and extinction abnormalities in PTSD.

  18. An unusual neuroimaging finding and response to immunotherapy in a child with genetically confirmed vanishing white matter disease.

    PubMed

    Singh, Rahul Raman; Livingston, John; Lim, Ming; Berry, Ian R; Siddiqui, Ata

    2017-03-01

    We present an unusual neuroimaging finding in a young girl with genetically confirmed vanishing white matter disease and a possible response to immunotherapy. 2.5 yr old girl, presented with acute onset unsteadiness and encephalopathy following a viral illness. MRI showed global symmetric white matter abnormality, with symmetric enhancement of cranial nerves (III and V) and of cervical and lumbar roots. She received immunotherapy for her encephalopathic illness with white matter changes. Follow up neuroimaging showed resolution of white matter edema and resolution of the change in the brainstem. Genetic testing confirmed a diagnosis of vanishing white matter disease (VWMD). Craniospinal nerve enhancement and possible response to immunotherapy has not been described in vanishing white matter disease. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. Neurosyphilis: mighty imitator forays with benign presentation and unique neuroimaging findings.

    PubMed

    Tiwana, Harmanpreet; Ahmed, Aiesha

    2018-04-30

    Background: Common causes of temporal lobe hyper intensities are central nervous system infections like herpes simplex encephalitis, Lyme disease, limbic encephalitis and vascular pathology like Cerebral Autosomal Dominant Arteriopathy with Subcortical infarcts and Leukoencephalopathy. Methods: Personal assessment, laboratory data analysis and neuroimaging for the patient who was admitted to a central Pennsylvania tertiary care referral centre were conducted. Results: A 52-year-old male presented with a 1-year history of diffuse dysesthesia in upper and lower extremities with associated intermittent headaches and neck stiffness. Evaluation with lumbar puncture revealed increased nucleated cells (50ul) with lymphocytic predominance (96%) and an elevated protein level of 109mg/dl. Magnetic resonance imaging (MRI) of the brain showed T2/FLAIR hyper intensity in bilateral subcortical temporal white matter, left-greater-than-right and associated volume loss in cerebral parenchyma. Additional abnormal work up included reactive serum reactive plasma regain and Treponema pallidum antibody particle agglutination. Diagnosis of neurosyphilis was made and the patient was treated with intramuscular (IM) penicillin for 3 weeks. At the time of discharge, his headache and neck stiffness resolved and dysesthesias were decreased in intensity. Conclusions: The diagnosis of neurosyphilis is intricate, and no reference standard exists. Neuroimaging findings of neurosyphilis commonly are cerebral infarctions, leptomeningeal enhancement or non-specific white matter lesions. Less common features on fluid-attenuated inversion recovery (FLAIR) sequences are cortical atrophy and mesial temporal parenchymal signal changes. It is prudent to keep neurosyphilis in differential of mesial temporal lobe white matter changes, as early diagnosis and treatment results in better prognosis.

  20. CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research

    PubMed Central

    Sherif, Tarek; Rioux, Pierre; Rousseau, Marc-Etienne; Kassis, Nicolas; Beck, Natacha; Adalat, Reza; Das, Samir; Glatard, Tristan; Evans, Alan C.

    2014-01-01

    The Canadian Brain Imaging Research Platform (CBRAIN) is a web-based collaborative research platform developed in response to the challenges raised by data-heavy, compute-intensive neuroimaging research. CBRAIN offers transparent access to remote data sources, distributed computing sites, and an array of processing and visualization tools within a controlled, secure environment. Its web interface is accessible through any modern browser and uses graphical interface idioms to reduce the technical expertise required to perform large-scale computational analyses. CBRAIN's flexible meta-scheduling has allowed the incorporation of a wide range of heterogeneous computing sites, currently including nine national research High Performance Computing (HPC) centers in Canada, one in Korea, one in Germany, and several local research servers. CBRAIN leverages remote computing cycles and facilitates resource-interoperability in a transparent manner for the end-user. Compared with typical grid solutions available, our architecture was designed to be easily extendable and deployed on existing remote computing sites with no tool modification, administrative intervention, or special software/hardware configuration. As October 2013, CBRAIN serves over 200 users spread across 53 cities in 17 countries. The platform is built as a generic framework that can accept data and analysis tools from any discipline. However, its current focus is primarily on neuroimaging research and studies of neurological diseases such as Autism, Parkinson's and Alzheimer's diseases, Multiple Sclerosis as well as on normal brain structure and development. This technical report presents the CBRAIN Platform, its current deployment and usage and future direction. PMID:24904400

  1. Biotin-responsive basal ganglia disease: neuroimaging features before and after treatment.

    PubMed

    Kassem, H; Wafaie, A; Alsuhibani, S; Farid, T

    2014-10-01

    Biotin-responsive basal ganglia disease is an autosomal recessive neurometabolic disorder presenting with subacute encephalopathy that can cause death if left untreated. The purpose of this study is to assess the neuroimaging and clinical features of the disease before and after treatment with biotin. We retrospectively reviewed the clinical, laboratory, and neuroimaging features of 15 genetically-proved Middle Eastern cases of biotin-responsive basal ganglia disease. Brain MR imaging was done at the onset of symptoms in all cases and within 2-8 weeks after biotin and thiamine therapy in 14 patients. The MR imaging datasets were analyzed according to lesion location, extent, and distribution. Brain MR imaging showed bilateral lesions in the caudate nuclei with complete or partial involvement of the putamen and sparing of the globus pallidus in all cases. In 80%, discrete abnormal signals were observed in the mesencephalon, cerebral cortical-subcortical regions, and thalami. In 53%, when the disease was advanced, patchy deep white matter affection was found. The cerebellum was involved in 13.3%. The signal abnormality of the mesencephalon, cortex, and white matter disappeared after treatment whereas the caudate and putamen necrosis persisted in all patients, including those who became asymptomatic. Biotin-responsive basal ganglia disease is a treatable underdiagnosed disease. It should be suspected in pediatric patients with unexplained encephalopathy whose brain MR imaging shows bilateral and symmetric lesions in the caudate heads and putamen, with or without involvement of mesencephalon, thalami, and cortical-subcortical regions, as the therapeutic trial of biotin and thiamine can be lifesaving. © 2014 by American Journal of Neuroradiology.

  2. A method for integrating neuroimaging into genetic models of learning performance.

    PubMed

    Mehta, Chintan M; Gruen, Jeffrey R; Zhang, Heping

    2017-01-01

    Specific learning disorders (SLD) are an archetypal example of how clinical neuropsychological (NP) traits can differ from underlying genetic and neurobiological risk factors. Disparate environmental influences and pathologies impact learning performance assessed through cognitive examinations and clinical evaluations, the primary diagnostic tools for SLD. We propose a neurobiological risk for SLD with neuroimaging biomarkers, which is integrated into a genome-wide association study (GWAS) of learning performance in a cohort of 479 European individuals between 8 and 21 years of age. We first identified six regions of interest (ROIs) in temporal and anterior cingulate regions where the group diagnosed with learning disability has the least overall variation, relative to the other group, in thickness, area, and volume measurements. Although we used the three imaging measures, the thickness was the leading contributor. Hence, we calculated the Euclidean distances between any two individuals based on their thickness measures in the six ROIs. Then, we defined the relative similarity of one individual according to the averaged ranking of pairwise distances from the individuals to those in the SLD group. The inverse of this relative similarity is called the neurobiological risk for the individual. Single nucleotide polymorphisms in the AGBL1 gene on chromosome 15 had a significant association with learning performance at a genome-wide level. This finding was supported in an independent cohort of 2,327 individuals of the same demographic profile. Our statistical approach for integrating genetic and neuroimaging biomarkers can be extended into studying the biological basis of other NP traits. © 2016 WILEY PERIODICALS, INC.

  3. Federated web-accessible clinical data management within an extensible neuroimaging database.

    PubMed

    Ozyurt, I Burak; Keator, David B; Wei, Dingying; Fennema-Notestine, Christine; Pease, Karen R; Bockholt, Jeremy; Grethe, Jeffrey S

    2010-12-01

    Managing vast datasets collected throughout multiple clinical imaging communities has become critical with the ever increasing and diverse nature of datasets. Development of data management infrastructure is further complicated by technical and experimental advances that drive modifications to existing protocols and acquisition of new types of research data to be incorporated into existing data management systems. In this paper, an extensible data management system for clinical neuroimaging studies is introduced: The Human Clinical Imaging Database (HID) and Toolkit. The database schema is constructed to support the storage of new data types without changes to the underlying schema. The complex infrastructure allows management of experiment data, such as image protocol and behavioral task parameters, as well as subject-specific data, including demographics, clinical assessments, and behavioral task performance metrics. Of significant interest, embedded clinical data entry and management tools enhance both consistency of data reporting and automatic entry of data into the database. The Clinical Assessment Layout Manager (CALM) allows users to create on-line data entry forms for use within and across sites, through which data is pulled into the underlying database via the generic clinical assessment management engine (GAME). Importantly, the system is designed to operate in a distributed environment, serving both human users and client applications in a service-oriented manner. Querying capabilities use a built-in multi-database parallel query builder/result combiner, allowing web-accessible queries within and across multiple federated databases. The system along with its documentation is open-source and available from the Neuroimaging Informatics Tools and Resource Clearinghouse (NITRC) site.

  4. Evidence that dirty electricity is causing the worldwide epidemics of obesity and diabetes.

    PubMed

    Milham, Samuel

    2014-01-01

    The epidemics of obesity and diabetes most apparent in recent years had their origins with Thomas Edison's development of distributed electricity in New York City in 1882. His original direct current (DC) generators suffered serious commutator brush arcing which is a major source of high-frequency voltage transients (dirty electricity). From the onset of the electrical grid, electrified populations have been exposed to dirty electricity. Diesel generator sets are a major source of dirty electricity today and are used almost universally to electrify small islands and places unreachable by the conventional electric grid. This accounts for the fact that diabetes prevalence, fasting plasma glucose and obesity are highest on small islands and other places electrified by generator sets and lowest in places with low levels of electrification like sub-Saharan Africa and east and Southeast Asia.

  5. A developmental neuroimaging investigation of the change paradigm.

    PubMed

    Thomas, Laura A; Hall, Julie M; Skup, Martha; Jenkins, Sarah E; Pine, Daniel S; Leibenluft, Ellen

    2011-01-01

    This neuroimaging study examines the development of cognitive flexibility using the Change task in a sample of youths and adults. The Change task requires subjects to inhibit a prepotent response and substitute an alternative response, and the task incorporates an algorithm that adjusts task difficulty in response to subject performance. Data from both groups combined show a network of prefrontal and parietal areas that are active during the task. For adults vs. youths, a distributed network was more active for successful change trials versus go, baseline, or unsuccessful change trials. This network included areas involved in rule representation, retrieval (lateral PFC), and switching (medial PFC and parietal regions). These results are consistent with data from previous task-switching experiments and inform developmental understandings of cognitive flexibility. Published 2010. This article is a US Government work and is in the public domain in the USA.

  6. The neuropsychiatry of hyperkinetic movement disorders: insights from neuroimaging into the neural circuit bases of dysfunction.

    PubMed

    Hayhow, Bradleigh D; Hassan, Islam; Looi, Jeffrey C L; Gaillard, Francesco; Velakoulis, Dennis; Walterfang, Mark

    2013-01-01

    Movement disorders, particularly those associated with basal ganglia disease, have a high rate of comorbid neuropsychiatric illness. We consider the pathophysiological basis of the comorbidity between movement disorders and neuropsychiatric illness by 1) reviewing the epidemiology of neuropsychiatric illness in a range of hyperkinetic movement disorders, and 2) correlating findings to evidence from studies that have utilized modern neuroimaging techniques to investigate these disorders. In addition to diseases classically associated with basal ganglia pathology, such as Huntington disease, Wilson disease, the neuroacanthocytoses, and diseases of brain iron accumulation, we include diseases associated with pathology of subcortical white matter tracts, brain stem nuclei, and the cerebellum, such as metachromatic leukodystrophy, dentatorubropallidoluysian atrophy, and the spinocerebellar ataxias. Neuropsychiatric symptoms are integral to a thorough phenomenological account of hyperkinetic movement disorders. Drawing on modern theories of cortico-subcortical circuits, we argue that these disorders can be conceptualized as disorders of complex subcortical networks with distinct functional architectures. Damage to any component of these complex information-processing networks can have variable and often profound consequences for the function of more remote neural structures, creating a diverse but nonetheless rational pattern of clinical symptomatology.

  7. PENN Biomarker Core of the Alzheimer’s Disease Neuroimaging Initiative

    PubMed Central

    Shaw, Leslie M.

    2009-01-01

    There is a pressing need to develop effective prevention and disease-modifying treatments for Alzheimer’s disease (AD), a dreaded affliction whose incidence increases almost logarithmically with age starting at about 65 years. A key need in the field of AD research is the validation of imaging and biochemical biomarkers. Biomarker tests that are shown to reliably predict the disease before it is clinically expressed would permit testing of new therapeutics at the earliest time point possible in order to give the best chance for delaying the onset of dementia in these patients. In this review the current state of AD biochemical biomarker research is discussed. A new set of guidelines for the diagnosis of AD in the research setting places emphasis on the inclusion of selected imaging and biochemical biomarkers, in addition to neuropsychological behavioral testing. Importantly, the revised guidelines were developed to identify patients at the earliest stages prior to full-blown dementia as well as patients with the full spectrum of the disease. The Alzheimer’s Disease Neuroimaging Initiative is a multicenter consortium study that includes as one of its primary goals the development of standardized neuroimaging and biochemical biomarker methods for AD clinical trials, as well as using these to measure changes over time in mildly cognitively impaired patients who convert to AD as compared to the natural variability of these in control subjects and their further change over time in AD patients. Validation of the biomarker results by correlation analyses with neuropsychological and neurobehavioral test data is one of the primary outcomes of this study. This validation data will hopefully provide biomarker test performance needed for effective measurement of the efficacy of new treatment and prevention therapeutic agents. PMID:18097156

  8. Integration of Network Topological and Connectivity Properties for Neuroimaging Classification

    PubMed Central

    Jie, Biao; Gao, Wei; Wang, Qian; Wee, Chong-Yaw

    2014-01-01

    Rapid advances in neuroimaging techniques have provided an efficient and noninvasive way for exploring the structural and functional connectivity of the human brain. Quantitative measurement of abnormality of brain connectivity in patients with neurodegenerative diseases, such as mild cognitive impairment (MCI) and Alzheimer’s disease (AD), have also been widely reported, especially at a group level. Recently, machine learning techniques have been applied to the study of AD and MCI, i.e., to identify the individuals with AD/MCI from the healthy controls (HCs). However, most existing methods focus on using only a single property of a connectivity network, although multiple network properties, such as local connectivity and global topological properties, can potentially be used. In this paper, by employing multikernel based approach, we propose a novel connectivity based framework to integrate multiple properties of connectivity network for improving the classification performance. Specifically, two different types of kernels (i.e., vector-based kernel and graph kernel) are used to quantify two different yet complementary properties of the network, i.e., local connectivity and global topological properties. Then, multikernel learning (MKL) technique is adopted to fuse these heterogeneous kernels for neuroimaging classification. We test the performance of our proposed method on two different data sets. First, we test it on the functional connectivity networks of 12 MCI and 25 HC subjects. The results show that our method achieves significant performance improvement over those using only one type of network property. Specifically, our method achieves a classification accuracy of 91.9%, which is 10.8% better than those by single network-property-based methods. Then, we test our method for gender classification on a large set of functional connectivity networks with 133 infants scanned at birth, 1 year, and 2 years, also demonstrating very promising results. PMID

  9. Brain white matter changes associated with urological chronic pelvic pain syndrome: Multi-site neuroimaging from a MAPP case-control study

    PubMed Central

    Huang, Lejian; Kutch, Jason J.; Ellingson, Benjamin M.; Martucci, Katherine T.; Harris, Richard E.; Clauw, Daniel J.; Mackey, Sean; Mayer, Emeran A.; Schaeffer, Anthony J.; Apkarian, A. Vania; Farmer, Melissa A.

    2016-01-01

    Clinical phenotyping of urological chronic pelvic pain syndromes (UCPPS) in men and women has focused on end-organ abnormalities to identify putative clinical subtypes. Initial evidence of abnormal brain function and structure in male pelvic pain has necessitated large-scale, multi-site investigations into potential UCPPS brain biomarkers. We present the first evidence of regional white matter (axonal) abnormalities in men and women with UCPPS, compared to positive (irritable bowel syndrome, IBS) and healthy controls. Epidemiological and neuroimaging data was collected from participants with UCPPS (n=52), IBS (n=39), and healthy, sex- and age-matched controls (n=61). White matter microstructure, measured as fractional anisotropy (FA), was examined with diffusion tensor imaging (DTI). Group differences in regional FA positively correlated with pain severity, including segments of the right corticospinal tract and right anterior thalamic radiation. Increased corticospinal FA was specific and sensitive to UCPPS, positively correlated with pain severity, and reflected sensory (not affective) features of pain. Reduced anterior thalamic radiation FA distinguished IBS from UCPPS patients and controls, suggesting greater microstructural divergence from normal tract organization. Findings confirm that regional white matter abnormalities characterize UCPPS and can distinguish between visceral diagnoses, suggesting that regional axonal microstructure is either altered with ongoing pain or predisposes its development. PMID:27842046

  10. Functional Neuroimaging Insights into the Physiology of Human Sleep

    PubMed Central

    Dang-Vu, Thien Thanh; Schabus, Manuel; Desseilles, Martin; Sterpenich, Virginie; Bonjean, Maxime; Maquet, Pierre

    2010-01-01

    Functional brain imaging has been used in humans to noninvasively investigate the neural mechanisms underlying the generation of sleep stages. On the one hand, REM sleep has been associated with the activation of the pons, thalamus, limbic areas, and temporo-occipital cortices, and the deactivation of prefrontal areas, in line with theories of REM sleep generation and dreaming properties. On the other hand, during non-REM (NREM) sleep, decreases in brain activity have been consistently found in the brainstem, thalamus, and in several cortical areas including the medial prefrontal cortex (MPFC), in agreement with a homeostatic need for brain energy recovery. Benefiting from a better temporal resolution, more recent studies have characterized the brain activations related to phasic events within specific sleep stages. In particular, they have demonstrated that NREM sleep oscillations (spindles and slow waves) are indeed associated with increases in brain activity in specific subcortical and cortical areas involved in the generation or modulation of these waves. These data highlight that, even during NREM sleep, brain activity is increased, yet regionally specific and transient. Besides refining the understanding of sleep mechanisms, functional brain imaging has also advanced the description of the functional properties of sleep. For instance, it has been shown that the sleeping brain is still able to process external information and even detect the pertinence of its content. The relationship between sleep and memory has also been refined using neuroimaging, demonstrating post-learning reactivation during sleep, as well as the reorganization of memory representation on the systems level, sometimes with long-lasting effects on subsequent memory performance. Further imaging studies should focus on clarifying the role of specific sleep patterns for the processing of external stimuli, as well as the consolidation of freshly encoded information during sleep. Citation: Dang

  11. Neuroimaging studies in people with gender incongruence.

    PubMed

    Kreukels, Baudewijntje P C; Guillamon, Antonio

    2016-01-01

    The current review gives an overview of brain studies in transgender people. First, we describe studies into the aetiology of feelings of gender incongruence, primarily addressing the sexual differentiation hypothesis: does the brain of transgender individuals resemble that of their natal sex, or that of their experienced gender? Findings from neuroimaging studies focusing on brain structure suggest that the brain phenotypes of trans women (MtF) and trans men (FtM) differ in various ways from control men and women with feminine, masculine, demasculinized and defeminized features. The brain phenotypes of people with feelings of gender incongruence may help us to figure out whether sex differentiation of the brain is atypical in these individuals, and shed light on gender identity development. Task-related imaging studies may show whether brain activation and task performance in transgender people is sex-atypical. Second, we review studies that evaluate the effects of cross-sex hormone treatment on the brain. This type of research provides knowledge on how changes in sex hormone levels may affect brain structure and function.

  12. The brain disease model of addiction: is it supported by the evidence and has it delivered on its promises?

    PubMed

    Hall, Wayne; Carter, Adrian; Forlini, Cynthia

    2015-01-01

    Since 1997 the US National Institute on Drug Abuse has advocated a brain disease model of addiction (BDMA). We assess the strength of evidence for the BDMA in animals, neuroimaging studies of people with addiction, and current research on the role of genetics in addiction. We critically assess claims about the medical and social benefits of use of the BDMA because the social implications are often implied as a reason to accept this model. Furthermore, we argue that the BDMA is not supported by animal and neuroimaging evidence to the extent its advocates suggest; it has not helped to deliver more effective treatments for addiction; and its effect on public policies toward drugs and people with addiction has been modest. The focus of the BDMA is on disordered neurobiology in a minority of severely addicted individuals, which undermines the implementation of effective and cost-effective policies at the population level to discourage people from smoking tobacco and drinking heavily. The pursuit of high technology direct brain interventions to cure addiction when most individuals with addiction do not have access to effective psychosocial and drug treatments is questionable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Neuroimaging of psychopathy and antisocial behavior: a targeted review.

    PubMed

    Blair, R J R

    2010-02-01

    The goal of this article is to provide a selective and targeted review of the neuroimaging literature on psychopathic tendencies and antisocial behavior and to explore the extent to which this literature supports recent cognitive neuroscientific models of psychopathy and antisocial behavior. The literature reveals that individuals who present with an increased risk for reactive, but not instrumental, aggression show increased amygdala responses to emotionally evocative stimuli. This is consistent with suggestions that such individuals are primed to respond strongly to an inappropriate extent to threatening or frustrating events. In contrast, individuals with psychopathic tendencies show decreased amygdala and orbitofrontal cortex responses to emotionally provocative stimuli or during emotional learning paradigms. This is consistent with suggestions that such individuals face difficulties with basic forms of emotional learning and decision making.

  14. Dopamine Transporter Neuroimaging as an Enrichment Biomarker in Early Parkinson's Disease Clinical Trials: A Disease Progression Modeling Analysis

    PubMed Central

    Nicholas, Timothy; Tsai, Kuenhi; Macha, Sreeraj; Sinha, Vikram; Stone, Julie; Corrigan, Brian; Bani, Massimo; Muglia, Pierandrea; Watson, Ian A.; Kern, Volker D.; Sheveleva, Elena; Marek, Kenneth; Stephenson, Diane T.; Romero, Klaus

    2017-01-01

    Abstract Given the recognition that disease‐modifying therapies should focus on earlier Parkinson's disease stages, trial enrollment based purely on clinical criteria poses significant challenges. The goal herein was to determine the utility of dopamine transporter neuroimaging as an enrichment biomarker in early motor Parkinson's disease clinical trials. Patient‐level longitudinal data of 672 subjects with early‐stage Parkinson's disease in the Parkinson's Progression Markers Initiative (PPMI) observational study and the Parkinson Research Examination of CEP‐1347 Trial (PRECEPT) clinical trial were utilized in a linear mixed‐effects model analysis. The rate of worsening in the motor scores between subjects with or without a scan without evidence of dopamine transporter deficit was different both statistically and clinically. The average difference in the change from baseline of motor scores at 24 months between biomarker statuses was –3.16 (90% confidence interval [CI] = –0.96 to –5.42) points. Dopamine transporter imaging could identify subjects with a steeper worsening of the motor scores, allowing trial enrichment and 24% reduction of sample size. PMID:28749580

  15. Does employee safety influence customer satisfaction? Evidence from the electric utility industry.

    PubMed

    Willis, P Geoffrey; Brown, Karen A; Prussia, Gregory E

    2012-12-01

    Research on workplace safety has not examined implications for business performance outcomes such as customer satisfaction. In a U.S. electric utility company, we surveyed 821 employees in 20 work groups, and also had access to archival safety data and the results of a customer satisfaction survey (n=341). In geographically-based work units where there were more employee injuries (based on archival records), customers were less satisfied with the service they received. Safety climate, mediated by safety citizenship behaviors (SCBs), added to the predictive power of the group-level model, but these two constructs exerted their influence independently from actual injuries. In combination, two safety-related predictor paths (injuries and climate/SCB) explained 53% of the variance in customer satisfaction. Results offer preliminary evidence that workplace safety influences customer satisfaction, suggesting that there are likely spillover effects between the safety environment and the service environment. Additional research will be needed to assess the specific mechanisms that convert employee injuries into palpable results for customers. Better safety climate and reductions in employee injuries have the potential to offer payoffs in terms of what customers experience. Copyright © 2012 National Safety Council and Elsevier Ltd. All rights reserved.

  16. The earliest evidence of true lambdoid craniosynostosis: the case of "Benjamina", a Homo heidelbergensis child.

    PubMed

    Gracia, Ana; Martínez-Lage, Juan F; Arsuaga, Juan-Luis; Martínez, Ignacio; Lorenzo, Carlos; Pérez-Espejo, Miguel-Angel

    2010-06-01

    The authors report the morphological and neuroimaging findings of an immature human fossil (Cranium 14) diagnosed with left lambdoid synostosis. The skull was recovered at the Sima de los Huesos site in Atapuerca (Burgos, Spain). Since the human fossil remains from this site have been dated to a minimum age of 530,000 years, this skull represents the earliest evidence of craniosynostosis occurring in a hominid. A brief historical review of craniosynostosis and cranial deformation is provided.

  17. [Functional neuroimaging of the brain structures associated with language in healthy individuals and patients with post-stroke aphasia].

    PubMed

    Alferova, V V; Mayorova, L A; Ivanova, E G; Guekht, A B; Shklovskij, V M

    2017-01-01

    The introduction of non-invasive functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI), in the practice of scientific and clinical research can increase our knowledge about the organization of cognitive processes, including language, in normal and reorganization of these cognitive functions in post-stroke aphasia. The article discusses the results of fMRI studies of functional organization of the cortex of a healthy adult's brain in the processing of various voice information as well as the main types of speech reorganization after post-stroke aphasia in different stroke periods. The concepts of 'effective' and 'ineffective' brain plasticity in post-stroke aphasia were considered. It was concluded that there was an urgent need for further comprehensive studies, including neuropsychological testing and several complementary methods of functional neuroimaging, to develop a phased treatment plan and neurorehabilitation of patients with post-stroke aphasia.

  18. Neuroimaging of Reading Intervention: A Systematic Review and Activation Likelihood Estimate Meta-Analysis

    PubMed Central

    Barquero, Laura A.; Davis, Nicole; Cutting, Laurie E.

    2014-01-01

    A growing number of studies examine instructional training and brain activity. The purpose of this paper is to review the literature regarding neuroimaging of reading intervention, with a particular focus on reading difficulties (RD). To locate relevant studies, searches of peer-reviewed literature were conducted using electronic databases to search for studies from the imaging modalities of fMRI and MEG (including MSI) that explored reading intervention. Of the 96 identified studies, 22 met the inclusion criteria for descriptive analysis. A subset of these (8 fMRI experiments with post-intervention data) was subjected to activation likelihood estimate (ALE) meta-analysis to investigate differences in functional activation following reading intervention. Findings from the literature review suggest differences in functional activation of numerous brain regions associated with reading intervention, including bilateral inferior frontal, superior temporal, middle temporal, middle frontal, superior frontal, and postcentral gyri, as well as bilateral occipital cortex, inferior parietal lobules, thalami, and insulae. Findings from the meta-analysis indicate change in functional activation following reading intervention in the left thalamus, right insula/inferior frontal, left inferior frontal, right posterior cingulate, and left middle occipital gyri. Though these findings should be interpreted with caution due to the small number of studies and the disparate methodologies used, this paper is an effort to synthesize across studies and to guide future exploration of neuroimaging and reading intervention. PMID:24427278

  19. Ethics Analysis of Neuroimaging in Alzheimer’s Disease

    PubMed Central

    Illes, J.; Rosen, A.; Greicius, M.; Racine, E.

    2009-01-01

    This article focuses on the prospects and ethics of using neuroimaging to predict Alzheimer’s disease (AD). It is motivated by consideration of the historical roles of science in medicine and society, and considerations specifically contemporary of capabilities in imaging and aging, and the benefits and hope they bring. A general consensus is that combinations of imaging methods will ultimately be most fruitful in predicting disease. Their roll-out into translational practice will not be free of complexity, however, as culture and values differ in terms of what defines benefit and risk, who will benefit and who is at risk, what methods must be in place to assure the maximum safety, comfort, and protection of subjects and patients, and educational and policy needs. Proactive planning for the ethical and societal implications of predicting diseases of the aging brain is critical and will benefit all stakeholders— researchers, patients and families, health care providers, and policy makers. PMID:17413029

  20. [Neuroimaging and the neurobiology of obsessive-compulsive disorder].

    PubMed

    Schiepek, Günter; Tominschek, Igor; Karch, Susanne; Mulert, Christoph; Pogarell, Oliver

    2007-01-01

    The following review is focusing on results of functional neuroimaging. After some introductory remarks on the phenomenology, epidemiology, and psychotherapy approaches of obsessive-compulsive disorders (OCD) the most important OCD-related brain regions are presented. Obviously, not only the prominent cortico-striato-thalamo-cortical feedback loops are involved, as functional brain imaging studies tell us, but also other regions as the inferior parietal lobe, the anterior and posterior cingulate gyrus, insula, amygdala, cerebellum, and others. Subclassifications using factor-analysis methods support the hypothesis, that most important subtypes ("washing/contamination fear", "obsessions/checking", "symmetry/ordering", "hoarding") involve different, but partially overlapping brain areas. Stimulation paradigms in fMRI-research are commonly based on symptom provocation by visual or tactile stimuli, or on action-monitoring and error-monitoring tasks. Deficits in action-monitoring and planning are discussed to be one of the basic dysfunctions of OCD. Finally, results of psychotherapeutic induced variations of brain activations in OCD are presented.

  1. “This is Why you've Been Suffering”: Reflections of Providers on Neuroimaging in Mental Health Care

    PubMed Central

    Borgelt, Emily; Buchman, Daniel Z.; Illes, Judy

    2011-01-01

    Mental health care providers increasingly confront challenges posed by the introduction of new neurotechnology into the clinic, but little is known about the impact of such capabilities on practice patterns and relationships with patients. To address this important gap, we sought providers' perspectives on the potential clinical translation of functional neuroimaging for prediction and diagnosis of mental illness. We conducted 32 semi-structured telephone interviews with mental health care providers representing psychiatry, psychology, family medicine, and allied mental health. Our results suggest that mental health providers have begun to re-conceptualize mental illness with a neuroscience gaze. They report an epistemic commitment to the value of a brain scan to provide a meaningful explanation of mental illness for their clients. If functional neuroimaging continues along its projected trajectory to translation, providers will ultimately have to negotiate its role in mental health. Their perspectives, therefore, enrich bioethical discourse surrounding neurotechnology and inform the translational pathway. PMID:21572566

  2. Second-opinion interpretations of neuroimaging studies by oncologic neuroradiologists can help reduce errors in cancer care.

    PubMed

    Hatzoglou, Vaios; Omuro, Antonio M; Haque, Sofia; Khakoo, Yasmin; Ganly, Ian; Oh, Jung Hun; Shukla-Dave, Amita; Fatovic, Robin; Gaal, Joshua; Holodny, Andrei I

    2016-09-01

    The purpose of this study was to investigate the utility and clinical impact of second-opinion interpretations of outside neuroimaging studies by oncologic neuroradiologists at a National Cancer Institute-designated cancer center. We performed a retrospective analysis of initial outside and second-opinion radiology reports from 300 computed tomography and magnetic resonance imaging studies and identified cases with discrepancies between the two reports. An adult neuro-oncologist, pediatric neuro-oncologist, and head and neck surgeon reviewed each pair of discrepant reports based on their area of expertise, patient age, and the type of study performed. The clinicians were blinded to the origin of each report and recorded whether the differences in the reports would have led to a change in patient management and/or disease staging. Histopathologic analysis, clinical assessment, and/or minimum 3-month imaging follow-up served as the reference standards to establish which of the 2 reports was correct. Among the 283 cases that met our study criteria, there were 55 neuroimaging studies with disagreements (19%) between the initial outside report and second-opinion interpretation. Patient management and/or disease stage would have been altered in 42 of 283 cases (15%) based on report differences as determined by the 2 neuro-oncologists and the surgeon participating in the study. Sufficient follow-up was available in 35 of 42 cases (83%). The second-opinion interpretation was correct 100% of the time (35/35). Second-opinion interpretations of neuroimaging studies by subspecialized oncologic neuroradiologists provide added value by reducing error and optimizing the care of cancer patients. Cancer 2016. © 2016 American Cancer Society. Cancer 2016;122:2708-2714. © 2016 American Cancer Society. © 2016 American Cancer Society.

  3. Neuroimaging, a new tool for investigating the effects of early diet on cognitive and brain development

    PubMed Central

    Isaacs, Elizabeth B.

    2013-01-01

    Nutrition is crucial to the initial development of the central nervous system (CNS), and then to its maintenance, because both depend on dietary intake to supply the elements required to develop and fuel the system. Diet in early life is often seen in the context of “programming” where a stimulus occurring during a vulnerable period can have long-lasting or even lifetime effects on some aspect of the organism's structure or function. Nutrition was first shown to be a programming stimulus for growth, and then for cognitive behavior, in animal studies that were able to employ methods that allowed the demonstration of neural effects of early nutrition. Such research raised the question of whether nutrition could also programme cognition/brain structure in humans. Initial studies of cognitive effects were observational, usually conducted in developing countries where the presence of confounding factors made it difficult to interpret the role of nutrition in the cognitive deficits that were seen. Attributing causality to nutrition required randomized controlled trials (RCTs) and these, often in developed countries, started to appear around 30 years ago. Most demonstrated convincingly that early nutrition could affect subsequent cognition. Until the advent of neuroimaging techniques that allowed in vivo examination of the brain, however, we could determine very little about the neural effects of early diet in humans. The combination of well-designed trials with neuroimaging tools means that we are now able to pose and answer questions that would have seemed impossible only recently. This review discusses various neuroimaging methods that are suitable for use in nutrition studies, while pointing out some of the limitations that they may have. The existing literature is small, but examples of studies that have used these methods are presented. Finally, some considerations that have arisen from previous studies, as well as suggestions for future research, are discussed

  4. Prediction of Driving Safety in Individuals with Homonymous Hemianopia and Quadrantanopia from Clinical Neuroimaging

    PubMed Central

    Vaphiades, Michael S.; Kline, Lanning B.; McGwin, Gerald; Owsley, Cynthia; Shah, Ritu; Wood, Joanne M.

    2014-01-01

    Background. This study aimed to determine whether it is possible to predict driving safety of individuals with homonymous hemianopia or quadrantanopia based upon a clinical review of neuroimages that are routinely available in clinical practice. Methods. Two experienced neuroophthalmologists viewed a summary report of the CT/MRI scans of 16 participants with homonymous hemianopic or quadrantanopic field defects which indicated the site and extent of the lesion and they made predictions regarding whether participants would be safe/unsafe to drive. Driving safety was independently defined at the time of the study using state-recorded motor vehicle crashes (all crashes and at-fault) for the previous 5 years and ratings of driving safety determined through a standardized on-road driving assessment by a certified driving rehabilitation specialist. Results. The ability to predict driving safety was highly variable regardless of the driving safety measure, ranging from 31% to 63% (kappa levels ranged from −0.29 to 0.04). The level of agreement between the neuroophthalmologists was only fair (kappa = 0.28). Conclusions. Clinical evaluation of summary reports of currently available neuroimages by neuroophthalmologists is not predictive of driving safety. Future research should be directed at identifying and/or developing alternative tests or strategies to better enable clinicians to make these predictions. PMID:24683493

  5. Prediction of driving safety in individuals with homonymous hemianopia and quadrantanopia from clinical neuroimaging.

    PubMed

    Vaphiades, Michael S; Kline, Lanning B; McGwin, Gerald; Owsley, Cynthia; Shah, Ritu; Wood, Joanne M

    2014-01-01

    Background. This study aimed to determine whether it is possible to predict driving safety of individuals with homonymous hemianopia or quadrantanopia based upon a clinical review of neuroimages that are routinely available in clinical practice. Methods. Two experienced neuroophthalmologists viewed a summary report of the CT/MRI scans of 16 participants with homonymous hemianopic or quadrantanopic field defects which indicated the site and extent of the lesion and they made predictions regarding whether participants would be safe/unsafe to drive. Driving safety was independently defined at the time of the study using state-recorded motor vehicle crashes (all crashes and at-fault) for the previous 5 years and ratings of driving safety determined through a standardized on-road driving assessment by a certified driving rehabilitation specialist. Results. The ability to predict driving safety was highly variable regardless of the driving safety measure, ranging from 31% to 63% (kappa levels ranged from -0.29 to 0.04). The level of agreement between the neuroophthalmologists was only fair (kappa = 0.28). Conclusions. Clinical evaluation of summary reports of currently available neuroimages by neuroophthalmologists is not predictive of driving safety. Future research should be directed at identifying and/or developing alternative tests or strategies to better enable clinicians to make these predictions.

  6. A systemic literature review of neuroimaging studies in women with breast cancer treated with adjuvant chemotherapy

    PubMed Central

    Wiłkość, Monika; Izdebski, Paweł; Żurawski, Bogdan

    2017-01-01

    Chemotherapy-induced cognitive deficits in patients with breast cancer, predominantly in attention and verbal memory, have been observed in numerous studies. These neuropsychological findings are corroborated by the results of neuroimaging studies. The aim of this paper was to survey the reports on cerebral structural and functional alterations in women with breast cancer treated with chemotherapy (CTx). First, we discuss the host-related and disease-related mechanisms underlying cognitive impairment after CTx. We point out the direct and indirect neurotoxic effect of cytostatics, which may cause: a damage to neurons or glial cells, changes in neurotransmitter levels, deregulation of the immune system and/or cytokine release. Second, we focus on the results of neuroimaging studies on brain structure and function that revealed decreased: density of grey matter, integrity of white matter and volume of multiple brain regions, as well as their lower activation during cognitive task performance. Finally, we concentrate on compensatory mechanisms, which activate additional brain areas or neural connection to reach the premorbid cognitive efficiency. PMID:28435392

  7. Current state of the use of neuroimaging techniques to understand and alter appetite control in humans.

    PubMed

    Spetter, Maartje S

    2018-06-20

    It is in the brain where the decision is made what and how much to eat. In the last decades neuroimaging research has contributed extensively to new knowledge about appetite control by revealing the underlying brain processes. Interestingly, there is the fast growing idea of using these methods to develop new treatments for obesity and eating disorders. In this review, we summarize the findings of the importance of the use of neuropharmacology and neuroimaging techniques in understanding and modifying appetite control. Appetite control is a complex interplay between homeostatic, hedonic, and cognitive processes. Administration of the neuropeptides insulin and oxytocin curb food intake and alter brain responses in reward and cognitive control areas. Additionally, these areas can be targeted for neuromodulation or neurofeedback to reduce food cravings and increase self-control to alter food intake. The recent findings reveal the potential of intranasal administration of hormones or modifying appetite control brain networks to reduce food consumption in volunteers with overweight and obesity or individuals with an eating disorder. Although long-term clinical studies are still needed.

  8. Advances in neuroimaging of traumatic brain injury and posttraumatic stress disorder

    PubMed Central

    Van Boven, Robert W.; Harrington, Greg S.; Hackney, David B.; Ebel, Andreas; Gauger, Grant; Bremner, J. Douglas; D’Esposito, Mark; Detre, John A.; Haacke, E. Mark; Jack, Clifford R.; Jagust, William J.; Le Bihan, Denis; Mathis, Chester A.; Mueller, Susanne; Mukherjee, Pratik; Schuff, Norbert; Chen, Anthony; Weiner, Michael W.

    2011-01-01

    Improved diagnosis and treatment of traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are needed for our military and veterans, their families, and society at large. Advances in brain imaging offer important biomarkers of structural, functional, and metabolic information concerning the brain. This article reviews the application of various imaging techniques to the clinical problems of TBI and PTSD. For TBI, we focus on findings and advances in neuroimaging that hold promise for better detection, characterization, and monitoring of objective brain changes in symptomatic patients with combat-related, closed-head brain injuries not readily apparent by standard computed tomography or conventional magnetic resonance imaging techniques. PMID:20104401

  9. The clinical value of large neuroimaging data sets in Alzheimer's disease.

    PubMed

    Toga, Arthur W

    2012-02-01

    Rapid advances in neuroimaging and cyberinfrastructure technologies have brought explosive growth in the Web-based warehousing, availability, and accessibility of imaging data on a variety of neurodegenerative and neuropsychiatric disorders and conditions. There has been a prolific development and emergence of complex computational infrastructures that serve as repositories of databases and provide critical functionalities such as sophisticated image analysis algorithm pipelines and powerful three-dimensional visualization and statistical tools. The statistical and operational advantages of collaborative, distributed team science in the form of multisite consortia push this approach in a diverse range of population-based investigations. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Static electricity: A literature review

    NASA Astrophysics Data System (ADS)

    Crow, Rita M.

    1991-11-01

    The major concern with static electricity is its discharging in a flammable atmosphere which can explode and cause a fire. Textile materials can have their electrical resistivity decreased by the addition of antistatic finishes, imbedding conductive particles into the fibres or by adding metal fibers to the yarns. The test methods used in the studies of static electricity include measuring the static properties of materials, of clothed persons, and of the ignition energy of flammable gases. Surveys have shown that there is sparse evidence for fires definitively being caused by static electricity. However, the 'worst-case' philosophy has been adopted and a static electricity safety code is described, including correct grounding procedures and the wearing of anti-static clothing and footwear.

  11. Electrical Stimulation for Pressure Injuries: A Health Technology Assessment.

    PubMed

    2017-01-01

    Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non-randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Nine randomized controlled trials and two non-randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care.The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5 years.Patients and caregivers

  12. Electrical Stimulation for Pressure Injuries: A Health Technology Assessment

    PubMed Central

    Lambrinos, Anna; Falk, Lindsey; Ali, Arshia; Holubowich, Corinne; Walter, Melissa

    2017-01-01

    Background Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. Methods We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non–randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Results Nine randomized controlled trials and two non–randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care. The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5

  13. Antecedents and neuroimaging patterns in cerebral palsy with epilepsy and cognitive impairment: a population-based study in children born at term.

    PubMed

    Ahlin, Kristina; Jacobsson, Bo; Nilsson, Staffan; Himmelmann, Kate

    2017-07-01

    Antecedents of accompanying impairments in cerebral palsy and their relation to neuroimaging patterns need to be explored. A population-based study of 309 children with cerebral palsy born at term between 1983 and 1994. Prepartum, intrapartum, and postpartum variables previously studied as antecedents of cerebral palsy type and motor severity were analyzed in children with cerebral palsy and cognitive impairment and/or epilepsy, and in children with cerebral palsy without these accompanying impairments. Neuroimaging patterns and their relation to identified antecedents were analyzed. Data were retrieved from the cerebral palsy register of western Sweden, and from obstetric and neonatal records. Children with cerebral palsy and accompanying impairments more often had low birthweight (kg) (odds ratio 0.5, 95% confidence interval 0.3-0.8), brain maldevelopment known at birth (p = 0.007, odds ratio ∞) and neonatal infection (odds ratio 5.4, 95% confidence interval 1.04-28.4). Moreover, neuroimaging patterns of maldevelopment (odds ratio 7.2, 95% confidence interval 2.9-17.2), cortical/subcortical lesions (odds ratio 5.3, 95% confidence interval 2.3-12.2) and basal ganglia lesions (odds ratio 7.6, 95% confidence interval 1.4-41.3) were more common, wheras white matter injury was found significantly less often (odds ratio 0.2, 95% confidence interval 0.1-0.5). In most children with maldevelopment, the intrapartum and postpartum periods were uneventful (p < 0.05). Cerebral maldevelopment was associated with prepartum antecedents, whereas subcortical/cortical and basal ganglia lesions were associated with intrapartum and postpartum antecedents. No additional factor other than those related to motor impairment was associated with epilepsy and cognitive impairment in cerebral palsy. Timing of antecedents deemed important for the development of cerebral palsy with accompanying impairments were supported by neuroimaging patterns. © 2017 Nordic Federation of Societies of

  14. Emotion and cognition interactions in PTSD: a review of neurocognitive and neuroimaging studies

    PubMed Central

    Hayes, Jasmeet P.; VanElzakker, Michael B.; Shin, Lisa M.

    2012-01-01

    Posttraumatic stress disorder (PTSD) is a psychiatric syndrome that develops after exposure to terrifying and life-threatening events including warfare, motor-vehicle accidents, and physical and sexual assault. The emotional experience of psychological trauma can have long-term cognitive effects. The hallmark symptoms of PTSD involve alterations to cognitive processes such as memory, attention, planning, and problem solving, underscoring the detrimental impact that negative emotionality has on cognitive functioning. As such, an important challenge for PTSD researchers and treatment providers is to understand the dynamic interplay between emotion and cognition. Contemporary cognitive models of PTSD theorize that a preponderance of information processing resources are allocated toward threat detection and interpretation of innocuous stimuli as threatening, narrowing one's attentional focus at the expense of other cognitive operations. Decades of research have shown support for these cognitive models of PTSD using a variety of tasks and methodological approaches. The primary goal of this review is to summarize the latest neurocognitive and neuroimaging research of emotion-cognition interactions in PTSD. To directly assess the influence of emotion on cognition and vice versa, the studies reviewed employed challenge tasks that included both cognitive and emotional components. The findings provide evidence for memory and attention deficits in PTSD that are often associated with changes in functional brain activity. The results are reviewed to provide future directions for research that may direct better and more effective treatments for PTSD. PMID:23087624

  15. Neuroimaging Findings of Zika Virus-Associated Neurologic Complications in Adults.

    PubMed

    Hygino da Cruz, L C; Nascimento, O J M; Lopes, F P P L; da Silva, I R F

    2018-05-17

    When the first suspected cases of neurologic disorders associated with the Zika virus were noticed in Brazil in late 2015, several studies had been conducted to understand the pathophysiology of the disease and its associated complications. In addition to its well-established association with microcephaly in neonates, the Zika virus infection has also been suggested to trigger other severe neurologic complications in adults, such as Guillain-Barré syndrome, radiculomyelitis, and meningoencephalitis. Hence, the Zika virus should be deemed a global threat that can cause devastating neurologic complications among individuals in all age ranges. The aim of this review was to further describe neuroimaging findings of Zika virus infection and associated neurologic complications found in adults. © 2018 by American Journal of Neuroradiology.

  16. Atypical Neuroimaging Manifestations of Linear Scleroderma "en coup de sabre".

    PubMed

    M Allmendinger, Andrew; A Ricci, Joseph; S Desai, Naman; Viswanadhan, Narayan; Rodriguez, Diana

    2015-01-01

    Linear scleroderma "en coup de sabre" is a subset of localized scleroderma with band-like sclerotic lesions typically involving the fronto-parietal regions of the scalp. Patients often present with neurologic symptoms. On imaging, patients may have lesions in the cerebrum ipsilateral to the scalp abnormality. Infratentorial lesions and other lesions not closely associated with the overlying scalp abnormality, such as those found in the cerebellum, have been reported, but are extremely uncommon. We present a case of an 8-year-old boy with a left fronto-parietal "en coup de sabre" scalp lesion and describe the neuroimaging findings of a progressively enlarging left cerebellar lesion discovered incidentally on routine magnetic resonance imaging. Interestingly, the patient had no neurologic symptoms given the size of the mass identified.

  17. Sustained effects of ecstasy on the human brain: a prospective neuroimaging study in novel users.

    PubMed

    de Win, Maartje M L; Jager, Gerry; Booij, Jan; Reneman, Liesbeth; Schilt, Thelma; Lavini, Cristina; Olabarriaga, Sílvia D; den Heeten, Gerard J; van den Brink, Wim

    2008-11-01

    Previous studies have suggested toxic effects of recreational ecstasy use on the serotonin system of the brain. However, it cannot be excluded that observed differences between users and non-users are the cause rather than the consequence of ecstasy use. As part of the Netherlands XTC Toxicity (NeXT) study, we prospectively assessed sustained effects of ecstasy use on the brain in novel ecstasy users using repeated measurements with a combination of different neuroimaging parameters of neurotoxicity. At baseline, 188 ecstasy-naive volunteers with high probability of first ecstasy use were examined. After a mean period of 17 months follow-up, neuroimaging was repeated in 59 incident ecstasy users and 56 matched persistent ecstasy-naives and their outcomes were compared. Neuroimaging included [(123)I]beta-carbomethoxy-3beta-(4-iodophenyl)tropane (CIT) SPECT to measure serotonin transporter densities as indicators of serotonergic function; (1)H-MR spectroscopy ((1)H-MRS) to measure brain metabolites as indicators of neuronal damage; diffusion tensor imaging (DTI) to measure the apparent diffusion coefficient and fractional anisotropy (FA) of the diffusional motion of water molecules in the brain as indicators of axonal integrity; and perfusion weighted imaging (PWI) to measure regional relative cerebral blood volume (rrCBV) which indicates brain perfusion. With this approach, both structural ((1)H-MRS and DTI) and functional ([(123)I]beta-CIT SPECT and PWI) aspects of neurotoxicity were combined. Compared to persistent ecstasy-naives, novel low-dose ecstasy users (mean 6.0, median 2.0 tablets) showed decreased rrCBV in the globus pallidus and putamen; decreased FA in thalamus and frontoparietal white matter; increased FA in globus pallidus; and increased apparent diffusion coefficient in the thalamus. No changes in serotonin transporter densities and brain metabolites were observed. These findings suggest sustained effects of ecstasy on brain microvasculature, white

  18. Disclosing neuroimaging incidental findings: a qualitative thematic analysis of health literacy challenges.

    PubMed

    Rancher, Caitlin E; Shoemaker, Jody M; Petree, Linda E; Holdsworth, Mark; Phillips, John P; Helitzer, Deborah L

    2016-10-11

    Returning neuroimaging incidental findings (IF) may create a challenge to research participants' health literacy skills as they must interpret and make appropriate healthcare decisions based on complex radiology jargon. Disclosing IF can therefore present difficulties for participants, research institutions and the healthcare system. The purpose of this study was to identify the extent of the health literacy challenges encountered when returning neuroimaging IF. We report on findings from a retrospective survey and focus group sessions with major stakeholders involved in disclosing IF. We surveyed participants who had received a radiology report from a research study and conducted focus groups with participants, parents of child participants, Institutional Review Board (IRB) members, investigators and physicians. Qualitative thematic analyses were conducted using standard group-coding procedures and descriptive summaries of health literacy scores and radiology report outcomes are examined. Although participants reported high health literacy skills (m = 87.3 on a scale of 1-100), 67 % did not seek medical care when recommended to do so; and many participants in the focus groups disclosed they could not understand the findings described in their report. Despite their lack of understanding, participants desire to have information about their radiology results, and the investigators feel ethically inclined to return findings. The language in clinically useful radiology reports can create a challenge for participants' health literacy skills and has the potential to negatively impact the healthcare system and investigators conducting imaging research. Radiology reports need accompanying resources that explain findings in lay language, which can help reduce the challenge caused by the need to communicate incidental findings.

  19. Federated Web-accessible Clinical Data Management within an Extensible NeuroImaging Database

    PubMed Central

    Keator, David B.; Wei, Dingying; Fennema-Notestine, Christine; Pease, Karen R.; Bockholt, Jeremy; Grethe, Jeffrey S.

    2010-01-01

    Managing vast datasets collected throughout multiple clinical imaging communities has become critical with the ever increasing and diverse nature of datasets. Development of data management infrastructure is further complicated by technical and experimental advances that drive modifications to existing protocols and acquisition of new types of research data to be incorporated into existing data management systems. In this paper, an extensible data management system for clinical neuroimaging studies is introduced: The Human Clinical Imaging Database (HID) and Toolkit. The database schema is constructed to support the storage of new data types without changes to the underlying schema. The complex infrastructure allows management of experiment data, such as image protocol and behavioral task parameters, as well as subject-specific data, including demographics, clinical assessments, and behavioral task performance metrics. Of significant interest, embedded clinical data entry and management tools enhance both consistency of data reporting and automatic entry of data into the database. The Clinical Assessment Layout Manager (CALM) allows users to create on-line data entry forms for use within and across sites, through which data is pulled into the underlying database via the generic clinical assessment management engine (GAME). Importantly, the system is designed to operate in a distributed environment, serving both human users and client applications in a service-oriented manner. Querying capabilities use a built-in multi-database parallel query builder/result combiner, allowing web-accessible queries within and across multiple federated databases. The system along with its documentation is open-source and available from the Neuroimaging Informatics Tools and Resource Clearinghouse (NITRC) site. PMID:20567938

  20. The Effects of Unitization on Familiarity-Based Source Memory: Testing a Behavioral Prediction Derived From Neuroimaging Data

    ERIC Educational Resources Information Center

    Diana, Rachel A.; Yonelinas, Andrew P.; Ranganath, Charan

    2008-01-01

    Performance on tests of source memory is typically based on recollection of contextual information associated with an item. However, recent neuroimaging results have suggested that the perirhinal cortex, a region thought to support familiarity-based item recognition, may support source attributions if source information is encoded as a feature of…