NASA Astrophysics Data System (ADS)
Skeldon, Mark D.; Okishev, Andrey V.; Letzring, Samuel A.; Donaldson, William R.; Green, Kenton; Seka, Wolf D.; Fuller, Lynn F.
1995-01-01
An electrical pulse-generation system using two optically activated Si photoconductive switches can generate shaped electrical pulses with multigigahertz bandwidth. The Si switches are activated by an optical pulse whose leading edge is steepened by stimulated Brillouin scattering (SBS) in CCl4. With the bandwidth generated by the SBS process, a laser having a 1- to 3-ns pulse width is used to generate electrical pulses with approximately 80-ps rise times (approximately 4-GHz bandwidth). Variable impedance microstrip lines are used to generate complex electrical waveforms that can be transferred to a matched load with minimal loss of bandwidth.
Petawatt pulsed-power accelerator
Stygar, William A.; Cuneo, Michael E.; Headley, Daniel I.; Ives, Harry C.; Ives, legal representative; Berry Cottrell; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, Craig L.; Porter, John L.; Wagoner; Tim C.
2010-03-16
A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.
Prefire identification for pulse-power systems
Longmire, J.L.; Thuot, M.E.; Warren, D.S.
1982-08-23
Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.
Prefire identification for pulse power systems
Longmire, Jerry L.; Thuot, Michael E.; Warren, David S.
1985-01-01
Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.
Photoconductive circuit element pulse generator
Rauscher, Christen
1989-01-01
A pulse generator for characterizing semiconductor devices at millimeter wavelength frequencies where a photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test.
21 CFR 870.3680 - Cardiovascular permanent or temporary pacemaker electrode.
Code of Federal Regulations, 2010 CFR
2010-04-01
... applied to the heart. The device is used to transmit a pacing electrical stimulus from the pulse generator to the heart and/or to transmit the electrical signal of the heart to the pulse generator. (2... end connected to an implantable pacemaker pulse generator and the other end applied to the heart. The...
21 CFR 870.3680 - Cardiovascular permanent or temporary pacemaker electrode.
Code of Federal Regulations, 2013 CFR
2013-04-01
... applied to the heart. The device is used to transmit a pacing electrical stimulus from the pulse generator to the heart and/or to transmit the electrical signal of the heart to the pulse generator. (2... end connected to an implantable pacemaker pulse generator and the other end applied to the heart. The...
21 CFR 870.3680 - Cardiovascular permanent or temporary pacemaker electrode.
Code of Federal Regulations, 2011 CFR
2011-04-01
... applied to the heart. The device is used to transmit a pacing electrical stimulus from the pulse generator to the heart and/or to transmit the electrical signal of the heart to the pulse generator. (2... end connected to an implantable pacemaker pulse generator and the other end applied to the heart. The...
21 CFR 870.3680 - Cardiovascular permanent or temporary pacemaker electrode.
Code of Federal Regulations, 2012 CFR
2012-04-01
... applied to the heart. The device is used to transmit a pacing electrical stimulus from the pulse generator to the heart and/or to transmit the electrical signal of the heart to the pulse generator. (2... end connected to an implantable pacemaker pulse generator and the other end applied to the heart. The...
21 CFR 870.3680 - Cardiovascular permanent or temporary pacemaker electrode.
Code of Federal Regulations, 2014 CFR
2014-04-01
... applied to the heart. The device is used to transmit a pacing electrical stimulus from the pulse generator to the heart and/or to transmit the electrical signal of the heart to the pulse generator. (2... end connected to an implantable pacemaker pulse generator and the other end applied to the heart. The...
NASA Technical Reports Server (NTRS)
Lee, R. D. (Inventor)
1979-01-01
The combination of a "C" mode scan electronics in a portable, battery powered biomedical ultrasonoscope having "A" and "M" mode scan electronics, the latter including a clock generator for generating clock pulses, a cathode ray tube having X, Y and Z axis inputs, a sweep generator connected between the clock generator and the X axis input of the cathode ray tube for generating a cathode ray sweep signal synchronized by the clock pulses, and a receiver adapted to be connected to the Z axis input of the cathode ray tube. The "C" mode scan electronics comprises a plurality of transducer elements arranged in a row and adapted to be positioned on the skin of the patient's body for converting a pulsed electrical signal to a pulsed ultrasonic signal, radiating the ultrasonic signal into the patient's body, picking up the echoes reflected from interfaces in the patient's body and converting the echoes to electrical signals; a plurality of transmitters, each transmitter being coupled to a respective transducer for transmitting a pulsed electrical signal thereto and for transmitting the converted electrical echo signals directly to the receiver, a sequencer connected between the clock generator and the plurality of transmitters and responsive to the clock pulses for firing the transmitters in cyclic order; and a staircase voltage generator connected between the clock generator and the Y axis input of the cathode ray tube for generating a staircase voltage having steps synchronized by the clock pulses.
[Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].
Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui
2015-02-01
This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.
Banaschik, Robert; Burchhardt, Gerhard; Zocher, Katja; Hammerschmidt, Sven; Kolb, Juergen F; Weltmann, Klaus-Dieter
2016-12-01
Pulsed corona plasma and pulsed electric fields were assessed for their capacity to kill Legionella pneumophila in water. Electrical parameters such as in particular dissipated energy were equal for both treatments. This was accomplished by changing the polarity of the applied high voltage pulses in a coaxial electrode geometry resulting in the generation of corona plasma or an electric field. For corona plasma, generated by high voltage pulses with peak voltages of +80kV, Legionella were completely killed, corresponding to a log-reduction of 5.4 (CFU/ml) after a treatment time of 12.5min. For the application of pulsed electric fields from peak voltages of -80kV a survival of log 2.54 (CFU/ml) was still detectable after this treatment time. Scanning electron microscopy images of L. pneumophila showed rupture of cells after plasma treatment. In contrast, the morphology of bacteria seems to be intact after application of pulsed electric fields. The more efficient killing for the same energy input observed for pulsed corona plasma is likely due to induced chemical processes and the generation of reactive species as indicated by the evolution of hydrogen peroxide. This suggests that the higher efficacy and efficiency of pulsed corona plasma is primarily associated with the combined effect of the applied electric fields and the promoted reaction chemistry. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Girdyuk, A. E.; Gorshkov, A. N.; Egorov, V. V.; Kolikov, V. A.; Snetov, V. N.; Shneerson, G. A.
2018-02-01
The aim of this study is to determine the optimal parameters of the electric pulses and shock waves generated by them for the soft destruction of the virus and yeast envelopes with no changes in the structure of antigenic surface albumin and in the cell morphology in order to use them to produce antivirus vaccines and in biotechnology. The pulse electric discharges in water have been studied for different values of amplitude, pulse duration and the rate of the rise in the current. A mathematical model has been developed to estimate the optimal parameters of pulsed electric charges and shock waves for the complete destruction of the yeast cell envelopes and virus particles at a minimum of pulses.
Norris, Neil J.
1979-01-01
A technique for generating high-voltage, wide dynamic range, shaped electrical pulses in the nanosecond range. Two transmission lines are coupled together by resistive elements distributed along the length of the lines. The conductance of each coupling resistive element as a function of its position along the line is selected to produce the desired pulse shape in the output line when an easily produced pulse, such as a step function pulse, is applied to the input line.
Skeldon, Mark D.; Letzring, Samuel A.
1999-03-23
Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses.
Skeldon, M.D.; Letzring, S.A.
1999-03-23
Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses. 8 figs.
Personnel electronic neutron dosimeter
Falk, R.B.; Tyree, W.H.
1982-03-03
A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.
Personnel electronic neutron dosimeter
Falk, Roger B.; Tyree, William H.
1984-12-18
A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.
Neal, Robert E; Kavnoudias, Helen; Thomson, Kenneth R
2015-06-01
Irreversible electroporation (IRE) ablation uses a series of brief electric pulses to create nanoscale defects in cell membranes, killing the cells. It has shown promise in numerous soft-tissue tumor applications. Larger voltages between electrodes will increase ablation volume, but exceeding electrical limits may risk damage to the patient, cause ineffective therapy delivery, or require generator restart. Monitoring electrical current for these conditions in real-time enables managing these risks. This capacity is not presently available in clinical IRE generators. We describe a system using a Tektronix TCP305 AC/DC Current Probe connected to a TCPA300 AC/DC Current Probe Amplifier, which is read on a computer using a Protek DSO-2090 USB computer-interfacing oscilloscope. Accuracy of the system was tested with a resistor circuit and by comparing measured currents with final outputs from the NanoKnife clinical electroporation pulse generator. Accuracy of measured currents was 1.64 ± 2.4 % relative to calculations for the resistor circuit and averaged 0.371 ± 0.977 % deviation from the NanoKnife. During clinical pulse delivery, the system offers real-time evaluation of IRE procedure progress and enables a number of methods for identifying approaching issues from electrical behavior of therapy delivery, facilitating protocol changes before encountering therapy delivery issues. This system can monitor electrical currents in real-time without altering the electric pulses or modifying the pulse generator. This facilitates delivering electric pulse protocols that remain within the optimal range of electrical currents-sufficient strength for clinically relevant ablation volumes, without the risk of exceeding safe electric currents or causing inadequate ablation.
An 8-GW long-pulse generator based on Tesla transformer and pulse forming network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Jiancang; Zhang, Xibo; Li, Rui
A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW andmore » a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.« less
An 8-GW long-pulse generator based on Tesla transformer and pulse forming network.
Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin
2014-06-01
A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.
Chen, Shaoqiang; Sato, Aya; Ito, Takashi; Yoshita, Masahiro; Akiyama, Hidefumi; Yokoyama, Hiroyuki
2012-10-22
This paper reports generation of sub-5-ps Fourier-transform limited optical pulses from a 1.55-µm gain-switched single-mode distributed-feedback laser diode via nanosecond electric excitation and a simple spectral-filtering technique. Typical damped oscillations of the whole lasing spectrum were observed in the time-resolved waveform. Through a spectral-filtering technique, the initial relaxation oscillation pulse and the following components in the output pulse can be well separated, and the initial short pulse can be selectively extracted by filtering out the short-wavelength components in the spectrum. Short pulses generated by this simple method are expected to have wide potential applications comparable to mode-locking lasers.
Grys, Maciej; Madeja, Zbigniew; Korohoda, Włodzimierz
2017-01-01
The harmful side effects of electroporation to cells due to local changes in pH, the appearance of toxic electrode products, temperature increase, and the heterogeneity of the electric field acting on cells in the cuvettes used for electroporation were observed and discussed in several laboratories. If cells are subjected to weak electric fields for prolonged periods, for example in experiments on cell electrophoresis or galvanotaxis the same effects are seen. In these experiments investigators managed to reduce or eliminate the harmful side effects of electric current application. For the experiments, disposable 20 μl cuvettes with two walls made of dialysis membranes were constructed and placed in a locally focused electric field at a considerable distance from the electrodes. Cuvettes were mounted into an apparatus for horizontal electrophoresis and the cells were subjected to direct current electric field (dcEF) pulses from a commercial pulse generator of exponentially declining pulses and from a custom-made generator of double and single rectangular pulses. More than 80% of the electroporated cells survived the dcEF pulses in both systems. Side effects related to electrodes were eliminated in both the flow through the dcEF and in the disposable cuvettes placed in the focused dcEFs. With a disposable cuvette system, we also confirmed the sensitization of cells to a dcEF using procaine by observing the loading of AT2 cells with calceine and using a square pulse generator, applying 50 ms single rectangular pulses. We suggest that the same methods of avoiding the side effects of electric current pulse application as in cell electrophoresis and galvanotaxis should also be used for electroporation. This conclusion was confirmed in our electroporation experiments performed in conditions assuring survival of over 80% of the electroporated cells. If the amplitude, duration, and shape of the dcEF pulse are known, then electroporation does not depend on the type of pulse generator. This knowledge of the characteristics of the pulse assures reproducibility of electroporation experiments using different equipment.
NASA Astrophysics Data System (ADS)
Takashima, Keisuke; Kaneko, Toshiro
2017-06-01
The effects of nanosecond pulse superposition to alternating current voltage (NS + AC) on the generation of an air dielectric barrier discharge (DBD) plasma and reactive species are experimentally studied, along with measurements of ozone (O3) and dinitrogen monoxide (N2O) in the exhausted gas through the air DBD plasma (air plasma effluent). The charge-voltage cycle measurement indicates that the role of nanosecond pulse superposition is to induce electrical charge transport and excess charge accumulation on the dielectric surface following the nanosecond pulses. The densities of O3 and N2O in NS + AC DBD are found to be significantly increased in the plasma effluent, compared to the sum of those densities generated in NS DBD and AC DBD operated individually. The production of O3 and N2O is modulated significantly by the phase in which the nanosecond pulse is superimposed. The density increase and modulation effects by the nanosecond pulse are found to correspond with the electrical charge transport and the excess electrical charge accumulation induced by the nanosecond pulse. It is suggested that the electrical charge transport by the nanosecond pulse might result in the enhancement of the nanosecond pulse current, which may lead to more efficient molecular dissociation, and the excess electrical charge accumulation induced by the nanosecond pulse increases the discharge coupling power which would enhance molecular dissociation.
High resolution time interval counter
Condreva, Kenneth J.
1994-01-01
A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.
High resolution time interval counter
Condreva, K.J.
1994-07-26
A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulaeman, M. Y.; Widita, R.
2014-09-30
Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulsemore » than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.« less
High-speed pulse-shape generator, pulse multiplexer
Burkhart, Scott C.
2002-01-01
The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krastelev, E. G., E-mail: ekrastelev@yandex.ru; Sedin, A. A.; Tugushev, V. I.
2015-12-15
A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80–90 ns, and a pulse repetition rate of up to 16 Hz.
Modified Blumlein pulse-forming networks for bioelectrical applications.
Romeo, Stefania; Sarti, Maurizio; Scarfì, Maria Rosaria; Zeni, Luigi
2010-07-01
Intense nanosecond pulsed electric fields (nsPEFs) have been shown to induce, on intracellular structures, interesting effects dependent on electrical exposure conditions (pulse length and amplitude, repetition frequency and number of pulses), which are known in the literature as "bioelectrical effects" (Schoenbach et al., IEEE Trans Plasma Sci 30:293-300, 2002). In particular, pulses with a shorter width than the plasma membrane charging time constant (about 100 ns for mammalian cells) can penetrate the cell and trigger effects such as permeabilization of intracellular membranes, release of Ca(2+) and apoptosis induction. Moreover, the observed effects have led to exploration of medical applications, like the treatment of melanoma tumors (Nuccitelli et al., Biochem Biophys Res Commun 343:351-360, 2006). Pulsed electric fields allowing such effects usually range from several tens to a few hundred nanoseconds in duration and from a few to several tens of megavolts per meter in amplitude (Schoenbach et al., IEEE Trans Diel Elec Insul 14:1088-1109, 2007); however, the biological effects of subnanosecond pulses have been also investigated (Schoenbach et al., IEEE Trans Plasma Sci 36:414-422, 2008). The use of such a large variety of pulse parameters suggests that highly flexible pulse-generating systems, able to deliver wide ranges of pulse durations and amplitudes, are strongly required in order to explore effects and applications related to different exposure conditions. The Blumlein pulse-forming network is an often-employed circuit topology for the generation of high-voltage electric pulses with fixed pulse duration. An innovative modification to the Blumlein circuit has been recently devised which allows generation of pulses with variable amplitude, duration and polarity. Two different modified Blumlein pulse-generating systems are presented in this article, the first based on a coaxial cable configuration, matching microscopic slides as a pulse-delivery system, and the other based on microstrip transmission lines and designed to match cuvettes for the exposure of cell suspensions.
Pulsed Corona Discharge Generated By Marx Generator
NASA Astrophysics Data System (ADS)
Sretenovic, G. B.; Obradovic, B. M.; Kovacevic, V. V.; Kuraica, M. M.; Puric J.
2010-07-01
The pulsed plasma has a significant role in new environmental protection technologies. As a part of a pulsed corona system for pollution control applications, Marx type repetitive pulse generator was constructed and tested in arrangement with wire-plate corona reactor. We performed electrical measurements, and obtained voltage and current signals, and also power and energy delivered per pulse. Ozone formation by streamer plasma in air was chosen to monitor chemical activity of the pulsed corona discharge.
NASA Technical Reports Server (NTRS)
Woolfson, M. G.
1966-01-01
Electrical pulse generator uses power transistors and silicon controlled rectifiers for producing a high current pulse having fast rise and fall times. At quiescent conditions, the standby power consumption of the circuit is equal to zero.
Acoustic microscope surface inspection system and method
Khuri-Yakub, Butrus T.; Parent, Philippe; Reinholdtsen, Paul A.
1991-01-01
An acoustic microscope surface inspection system and method in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respected to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations.
Low Voltage Electrolytic Capacitor Pulse Forming Inductive Network for Electric Weapons
2006-06-01
reliable high- current, high-energy pulses of many megawatts. Pulsed alternators potentially have the same maintenance issues as other motor ...high-energy pulses of many megawatts. Pulsed alternators potentially have the same maintenance issues as other motor -generator sets, so a solid...Rotating Flywheel) Pulse Forming Network Compensated Pulsed Alternators, or Compulsators as they are called, are essentially large motor -generator
Integrating solids and gases for attosecond pulse generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, T. J.; Monchoce, Sylvain; Zhang, Chunmei
Here, control of the field of few-cycle optical pulses has had an enormous impact on attosecond science. Subcycle pulses open the potential for non-adiabatic phase matching while concentrating the electric field so it can be used most efficiently. However, subcycle field transients have been difficult to generate. We exploit the perturbative response of a sub-100 µm thick monocrystalline quartz plate irradiated by an intense few-cycle 1.8 µm pulse, which creates a phase-controlled supercontinuum spectrum. Within the quartz, the pulse becomes space–time coupled as it generates a parallel second harmonic. Vacuum propagation naturally leads to a subcycle electric-field transient whose envelopemore » is sculpted by the carrier envelope phase of the incident radiation. We show that a second medium (either gas or solid) can generate isolated attosecond pulses in the extreme ultraviolet region. With no optical elements between the components, the process is scalable to very high energy pulses and allows the use of diverse media.« less
Integrating solids and gases for attosecond pulse generation
Hammond, T. J.; Monchoce, Sylvain; Zhang, Chunmei; ...
2017-08-21
Here, control of the field of few-cycle optical pulses has had an enormous impact on attosecond science. Subcycle pulses open the potential for non-adiabatic phase matching while concentrating the electric field so it can be used most efficiently. However, subcycle field transients have been difficult to generate. We exploit the perturbative response of a sub-100 µm thick monocrystalline quartz plate irradiated by an intense few-cycle 1.8 µm pulse, which creates a phase-controlled supercontinuum spectrum. Within the quartz, the pulse becomes space–time coupled as it generates a parallel second harmonic. Vacuum propagation naturally leads to a subcycle electric-field transient whose envelopemore » is sculpted by the carrier envelope phase of the incident radiation. We show that a second medium (either gas or solid) can generate isolated attosecond pulses in the extreme ultraviolet region. With no optical elements between the components, the process is scalable to very high energy pulses and allows the use of diverse media.« less
Spark gaps synchronization using electrical trigger pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Ritu; Saroj, P.C.; Sharma, Archana
In pulse power systems, it is required to have synchronized triggering of two or more high voltage spark gaps capable of switching large currents, using electrical trigger pulses. This paper intends to study the synchronization of spark gaps using electrical trigger. The trigger generator consists of dc supply, IGBT switch and driver circuit which generates 8kV, 400ns (FWHM) pulses. The experiment was carried out using two 0.15uF/50kV energy storage capacitors charged to 12kV and discharged through stainless steel spark gaps of diameter 9 mm across 10 ohm non inductive load. The initial experiment shows that synchronization has been achieved withmore » jitter of 50 to 100ns. Further studies carried out to reduce the jitter time by varying various electrical parameters will be presented. (author)« less
Buntenbach, R.W.
1959-06-01
S>An electro-optical apparatus is described which produces electric pulses in programmed sequences at times and durations controlled with great accuracy. An oscilloscope CRT is supplied with signals to produce a luminous spot moving in a circle. An opaque mask with slots of variable width transmits light from the spot to a photoelectric transducer. For shorter pulse decay times a CRT screen which emits UV can be used with a UVtransmitting filter and a UV- sensitive photoelectric cell. Pulses are varied by changing masks or by using masks with variable slots. This device may be used in multiple arrangements to produce other pulse aT rangements, or it can be used to trigger an electronic pulse generator. (T.R.H.)
The role of nanosecond electric pulse-induced mechanical stress in cellular nanoporation
NASA Astrophysics Data System (ADS)
Roth, Caleb C.
Background: Exposures of cells to very short (less than 1 microsecond) electric pulses in the megavolt/meter range have been shown to cause a multitude of effects, both physical and molecular in nature. Physically, nanosecond electrical pulse exposure can disrupt the plasma membrane, leading to a phenomenon known as nanoporation. Nanoporation is the production of nanometer sized holes (less than 2 nanometers in diameter) that can persist for up to fifteen minutes, allowing the flow of ions into and out of the cell. Nanoporation can lead to secondary physical effects, such as cellular swelling, shrinking and blebbing. Molecularly, nanosecond electrical pulses have been shown to activate signaling pathways, produce oxidative stress, stimulate hormone secretion and induce both apoptotic and necrotic death. The mechanism by which nanosecond electrical pulses cause molecular changes is unknown; however, it is thought the flow of ions, such as calcium, into the cell via nanopores, could be a major cause. The ability of nanosecond electrical pulses to cause membranes to become permeable and to induce apoptosis makes the technology a desirable modality for cancer research; however, the lack of understanding regarding the mechanisms by which nanosecond electrical pulses cause nanoporation impedes further development of this technology. This dissertation documents the genomic and proteomic responses of cells exposed to nanosecond electrical pulses and describes in detail the biophysical effects of these electrical pulses, including the demonstration for the first time of the generation of acoustic pressure transients capable of disrupting plasma membranes and possibly contributing to nanoporation. Methods: Jurkat, clone E6-1 (human lymphocytic cell line), U937 (human lymphocytic cell line), Chinese hamster ovarian cells and adult primary human dermal fibroblasts exposed to nanosecond electrical pulses were subjected to a variety of molecular assays, including flow cytometry, fluorescent confocal microscopy, microarray analysis and or real time polymerase chain reaction. To investigate the physical interaction(s) of the electrical pulse with the aqueous environment, optical techniques such as pump-probe imaging, schlieren imaging, and probe beam deflection were used. Finally, electrochemistry was employed to modify the electrical parameters of the exposures such that different biophysical phenomena could be detected. Results: Approximately 500 genes were selectively up-regulated in each of the assayed cells. Validation of the microarray data indicated genes such as the putative transforming gene of avian sarcoma virus 17, commonly known as jun proto-oncogene, and the Finkel--Biskis--Jinkins murine osteosarcoma viral oncogene homolog were significantly up-regulated in response to the exposure. Many of the genes selectively up-regulated in each cell type are biomarkers of mechanical stress. Proteomic analysis indicated proteins responsible for mitigation of reactive oxygen species were produced in response to nanosecond electrical pulse exposure. Analysis using the Probe Beam Deflection Technique identified the generation of an acoustic pressure transient emanating from the electrodes immediately after the application of the pulse. This acoustic pressure transient traveled at approximately 1500 meters per second, had a frequency bandwidth of 2.5 megahertz and was capable of delivering 13 kilopascals of pressure at 5 millimeters distance from the generating electrodes. Visual confirmation of the acoustic pressure transients was accomplished using pump-probe, schlieren and ultrasonic imaging techniques. Modification of the bathing media in which the cells were exposed indicated that acoustic pressure transient formation was directly dependent on the amount of electrical current induced by the exposure. Confocal microscopy revealed that, in the absence of the acoustic pressure transients, nanoporation, as detected by a green fluorescent carbocyanine nucleic acid stain, was greatly enhanced. Conclusions: We found several genes, some of which are mechanosensitive, were selectively up-regulated due to nanosecond electrical pulse exposure. The source of this apparent mechanical stress was likely the acoustic pressure transients generated by the nanosecond electrical pulse exposure interacting with the plasma membrane of exposed cells. Contrary to our original hypothesis that these acoustic pressure transients enhance nanoporation, it appears that the opposite is true. Acoustic pressure transients generated by nanosecond electrical pulses inhibit nanoporation (or at least are negatively correlated with nanopore formation). This finding is substantiated by other reports in the literature, which indicate shock waves produced by electrical exposures inhibit gene transfection. General Significance: This work provides strong evidence that cells exposed to nanosecond electrical pulses experience a mechanical stress which by some unknown mechanism inhibits nanoporation. The findings in this dissertation are not only poised to cause a paradigm shift in how researchers understand electrical pulses cause electropermeabilization, but also will help fill in a gap in the knowledge concerning this technology, thus enabling its further development as a potential cancer therapy.
Method and apparatus for electrical cable testing by pulse-arrested spark discharge
Barnum, John R.; Warne, Larry K.; Jorgenson, Roy E.; Schneider, Larry X.
2005-02-08
A method for electrical cable testing by Pulse-Arrested Spark Discharge (PASD) uses the cable response to a short-duration high-voltage incident pulse to determine the location of an electrical breakdown that occurs at a defect site in the cable. The apparatus for cable testing by PASD includes a pulser for generating the short-duration high-voltage incident pulse, at least one diagnostic sensor to detect the incident pulse and the breakdown-induced reflected and/or transmitted pulses propagating from the electrical breakdown at the defect site, and a transient recorder to record the cable response. The method and apparatus are particularly useful to determine the location of defect sites in critical but inaccessible electrical cabling systems in aging aircraft, ships, nuclear power plants, and industrial complexes.
Ultra-wideband short-pulse radar with range accuracy for short range detection
Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P
2014-10-07
An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.
[Mechanism of ablation with nanosecond pulsed electric field].
Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen
2015-11-01
Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation.
Acoustic microscope surface inspection system and method
Khuri-Yakub, B.T.; Parent, P.; Reinholdtsen, P.A.
1991-02-26
An acoustic microscope surface inspection system and method are described in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respect to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations. 7 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, D. A., E-mail: david.walsh@stfc.ac.uk; Snedden, E. W.; Jamison, S. P.
The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immunemore » to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.« less
Thompson, D.O.; Hsu, D.K.
1993-12-14
The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses. 25 figures.
Thompson, Donald O.; Hsu, David K.
1993-12-14
The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses.
Romeira, Bruno; Javaloyes, Julien; Ironside, Charles N; Figueiredo, José M L; Balle, Salvador; Piro, Oreste
2013-09-09
We demonstrate, experimentally and theoretically, excitable nanosecond optical pulses in optoelectronic integrated circuits operating at telecommunication wavelengths (1550 nm) comprising a nanoscale double barrier quantum well resonant tunneling diode (RTD) photo-detector driving a laser diode (LD). When perturbed either electrically or optically by an input signal above a certain threshold, the optoelectronic circuit generates short electrical and optical excitable pulses mimicking the spiking behavior of biological neurons. Interestingly, the asymmetric nonlinear characteristic of the RTD-LD allows for two different regimes where one obtain either single pulses or a burst of multiple pulses. The high-speed excitable response capabilities are promising for neurally inspired information applications in photonics.
Highly Efficient Vector-Inversion Pulse Generators
NASA Technical Reports Server (NTRS)
Rose, Franklin
2004-01-01
Improved transmission-line pulse generators of the vector-inversion type are being developed as lightweight sources of pulsed high voltage for diverse applications, including spacecraft thrusters, portable x-ray imaging systems, impulse radar systems, and corona-discharge systems for sterilizing gases. In this development, more than the customary attention is paid to principles of operation and details of construction so as to the maximize the efficiency of the pulse-generation process while minimizing the sizes of components. An important element of this approach is segmenting a pulse generator in such a manner that the electric field in each segment is always below the threshold for electrical breakdown. One design of particular interest, a complete description of which was not available at the time of writing this article, involves two parallel-plate transmission lines that are wound on a mandrel, share a common conductor, and are switched in such a manner that the pulse generator is divided into a "fast" and a "slow" section. A major innovation in this design is the addition of ferrite to the "slow" section to reduce the size of the mandrel needed for a given efficiency.
Five years of full-scale utility demonstration of pulsed energization of electric precipitators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, S.A.; Jacobus, P.L.; Casey, P.J.
1996-11-01
In a conventional electrostatic precipitator (ESP) the applied dc voltage fulfills three functions: (1) generation of negative ions, (2) charging of particles, and (3) transport of the charged particles to the collecting plates. In the case of high resistivity fly-ash (often associated with the burning of low sulfur coal) the dc voltage is limited by repeated electrical discharges and in extreme cases by back-corona. Lowering the applied dc voltage reduces sparking and back-corona, but also reduces the field on the discharge wires and leads to poorly distributed ion generation as well as reduced charging and particle transport forces. Pulsed energization,more » which consists of superimposing high voltage pulses of short duration onto the existing base dc voltage, offers an attractive way to improve the collection efficiency of ESPs suffering from poor energization. The superimposed pulses become responsible for uniform ion generation while the underlying dc field continues to fulfill the function of particle charging and transport. This paper describes the five-year test of the ESP at Madison Gas and Electric`s Blount Station.« less
Wu, Tsu-Hsiu; Wu, Jui-pin; Chiu, Yi-Jen
2010-02-15
We propose and demonstrate, by proof of concept, a novel method of ultra-wide band (UWB) photonic generation using photodetection and cross-absorption modulation (XAM) of multiple quantum wells (MQW) in a single short-terminated electroabsorption modulator (SEAM). As an optical pump pulse excite the MQWs of SEAM waveguide, the probe light pulse with the same polarity can be generated through XAM, simultaneously creating photocurrent pulse propagating along the waveguide. Using the short termination of SEAM accompanied by the delayed microwave line, the photocurrent pulse can be reversed in polarity and re-modulated the waveguide, forming a monocycle UWB optical pulse. An 89 ps cycle of monocycle pulse with 114% fractional bandwidth is obtained, where the electrical power spectrum centered at 4 GHz of frequency ranges from 0.1 GHz to 8 GHz for -10 dB drops. Meanwhile, the generation processing is also confirmed by observing the same cycle of monocycle electrical pulse from the photodetection of SEAM. The whole optical processing is performed inside a compact semiconductor device, suggesting the optoelectronic integration template has a potential for the application of UWB photonic generation.
NASA Astrophysics Data System (ADS)
Shurupov, A. V.; Zavalova, V. E.; Kozlov, A. V.; Shurupov, M. A.; Povareshkin, M. N.; Kozlov, A. A.; Shurupova, N. P.
2018-01-01
Experimental models of microsecond duration powerful generators of current pulses on the basis of explosive magnetic generators and voltage impulse generator have been developed for the electromagnetic pulse effects on energy facilities to verify their stability. Exacerbation of voltage pulse carried out through the use of electro explosive current interrupter made of copper wires with diameters of 80 and 120 μm. Experimental results of these models investigation are represented. Voltage fronts about 100 ns and the electric field strength of 800 kV/m are registered.
Apparatus for millimeter-wave signal generation
Vawter, G. Allen; Hietala, Vincent M.; Zolper, John C.; Mar, Alan; Hohimer, John P.
1999-01-01
An opto-electronic integrated circuit (OEIC) apparatus is disclosed for generating an electrical signal at a frequency .gtoreq.10 GHz. The apparatus, formed on a single substrate, includes a semiconductor ring laser for generating a continuous train of mode-locked lasing pulses and a high-speed photodetector for detecting the train of lasing pulses and generating the electrical signal therefrom. Embodiments of the invention are disclosed with an active waveguide amplifier coupling the semiconductor ring laser and the high-speed photodetector. The invention has applications for use in OEICs and millimeter-wave monolithic integrated circuits (MMICs).
NASA Astrophysics Data System (ADS)
Duan, Zhengchao; He, Feng; Si, Xinlu; Bradley, James W.; Ouyang, Jiting
2018-02-01
Conductive solid material sampling by micro-plasma under ambient atmosphere was studied experimentally. A high-voltage pulse generator was utilized to drive discharge between a tungsten needle and metal samples. The effects of pulse width on discharge, micro-plasma and sampling were investigated. The electrical results show that two discharge current pulses can be formed in one voltage pulse. The duration of the first current pulse is of the order of 100 ns. The duration of the second current pulse depends on the width of the voltage pulse. The electrical results also show that arc micro-plasma was generated during both current pulses. The results of the emission spectra of different sampled materials indicate that the relative emission intensity of elemental metal ions will increase with pulse width. The excitation temperature and electron density of the arc micro-plasmas increase with the voltage pulse width, which contributes to the increase of relative emission intensity of metal ions. The optical images and energy dispersive spectroscopy results of the sampling spots on metal surfaces indicate that discharge with a short voltage pulse can generate a small sputtering crater.
NASA Astrophysics Data System (ADS)
Peterchev, Angel V.; DʼOstilio, Kevin; Rothwell, John C.; Murphy, David L.
2014-10-01
Objective. This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach. We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with a lower voltage rating than prior cTMS devices. Main results. cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (\\lt 10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in ten healthy volunteers. Significance. The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool.
D’Ostilio, Kevin; Rothwell, John C; Murphy, David L
2014-01-01
Objective This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with lower voltage rating than prior cTMS devices. Main results cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (<10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in 10 healthy volunteers. Significance The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool. PMID:25242286
Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator
NASA Astrophysics Data System (ADS)
Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.
2015-09-01
The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.
Pulsed metallic-plasma generators.
NASA Technical Reports Server (NTRS)
Gilmour, A. S., Jr.; Lockwood, D. L.
1972-01-01
A pulsed metallic-plasma generator is described which utilizes a vacuum arc as the plasma source. The arc is initiated on the surface of a consumable cathode which can be any electrically conductive material. Ignition is accomplished by using a current pulse to vaporize a portion of a conductive film on the surface of an insulator separating the cathode from the ignition electrode. The film is regenerated during the ensuing arc. Over 100 million ignition cycles have been accomplished by using four 0.125-in. diameter zinc cathodes operating in parallel and high-density aluminum-oxide insulators. Among the applications being investigated for the generator are metal deposition, vacuum pumping, electric propulsion, and high-power dc arc interruption.
Optimization of Industrial Ozone Generation with Pulsed Power
NASA Astrophysics Data System (ADS)
Lopez, Jose; Guerrero, Daniel; Freilich, Alfred; Ramoino, Luca; Seton Hall University Team; Degremont Technologies-Ozonia Team
2013-09-01
Ozone (O3) is widely used for applications ranging from various industrial chemical synthesis processes to large-scale water treatment. The consequent surge in world-wide demand has brought about the requirement for ozone generation at the rate of several hundreds grams per kilowatt hour (g/kWh). For many years, ozone has been generated by means of dielectric barrier discharges (DBD), where a high-energy electric field between two electrodes separated by a dielectric and gap containing pure oxygen or air produce various microplasmas. The resultant microplasmas provide sufficient energy to dissociate the oxygen molecules while allowing the proper energetics channels for the formation of ozone. This presentation will review the current power schemes used for large-scale ozone generation and explore the use of high-voltage nanosecond pulses with reduced electric fields. The created microplasmas in a high reduced electric field are expected to be more efficient for ozone generation. This is confirmed with the current results of this work which observed that the efficiency of ozone generation increases by over eight time when the rise time and pulse duration are shortened. Department of Physics, South Orange, NJ, USA.
Target charging in short-pulse-laser-plasma experiments.
Dubois, J-L; Lubrano-Lavaderci, F; Raffestin, D; Ribolzi, J; Gazave, J; Compant La Fontaine, A; d'Humières, E; Hulin, S; Nicolaï, Ph; Poyé, A; Tikhonchuk, V T
2014-01-01
Interaction of high-intensity laser pulses with solid targets results in generation of large quantities of energetic electrons that are the origin of various effects such as intense x-ray emission, ion acceleration, and so on. Some of these electrons are escaping the target, leaving behind a significant positive electric charge and creating a strong electromagnetic pulse long after the end of the laser pulse. We propose here a detailed model of the target electric polarization induced by a short and intense laser pulse and an escaping electron bunch. A specially designed experiment provides direct measurements of the target polarization and the discharge current in the function of the laser energy, pulse duration, and target size. Large-scale numerical simulations describe the energetic electron generation and their emission from the target. The model, experiment, and numerical simulations demonstrate that the hot-electron ejection may continue long after the laser pulse ends, enhancing significantly the polarization charge.
Assessment of the electrochemical effects of pulsed electric fields in a biological cell suspension.
Chafai, Djamel Eddine; Mehle, Andraž; Tilmatine, Amar; Maouche, Bachir; Miklavčič, Damijan
2015-12-01
Electroporation of cells is successfully used in biology, biotechnology and medicine. Practical problems still arise in the electroporation of cells in suspension. For example, the determination of cell electroporation is still a demanding and time-consuming task. Electric pulses also cause contamination of the solution by the metal released from the electrodes and create local enhancements of the electric field, leading to the occurrence of electrochemical reactions at the electrode/electrolyte interface. In our study, we investigated the possibility of assessing modifications to the cell environment caused by pulsed electric fields using electrochemical impedance spectroscopy. We designed an experimental protocol to elucidate the mechanism by which a pulsed electric field affects the electrode state in relation to different electrolyte conductivities at the interface. The results show that a pulsed electric field affects electrodes and its degree depends on the electrolyte conductivity. Evolution of the electrochemical reaction rate depends on the initial free charges and those generated by the pulsed electric field. In the presence of biological cells, the initial free charges in the medium are reduced. The electrical current path at low frequency is longer, i.e., conductivity is decreased, even in the presence of increased permeability of the cell membrane created by the pulsed electric field. Copyright © 2015 Elsevier B.V. All rights reserved.
Attosecond electronic recollision as field detector
NASA Astrophysics Data System (ADS)
Carpeggiani, P. A.; Reduzzi, M.; Comby, A.; Ahmadi, H.; Kühn, S.; Frassetto, F.; Poletto, L.; Hoff, D.; Ullrich, J.; Schröter, C. D.; Moshammer, R.; Paulus, G. G.; Sansone, G.
2018-05-01
We demonstrate the complete reconstruction of the electric field of visible–infrared pulses with energy as low as a few tens of nanojoules. The technique allows for the reconstruction of the instantaneous electric field vector direction and magnitude, thus giving access to the characterization of pulses with an arbitrary time-dependent polarization state. The technique combines extreme ultraviolet interferometry with the generation of isolated attosecond pulses.
Sel, Davorka; Lebar, Alenka Macek; Miklavcic, Damijan
2007-05-01
In electrochemotherapy (ECT) electropermeabilization, parameters (pulse amplitude, electrode setup) need to be customized in order to expose the whole tumor to electric field intensities above permeabilizing threshold to achieve effective ECT. In this paper, we present a model-based optimization approach toward determination of optimal electropermeabilization parameters for effective ECT. The optimization is carried out by minimizing the difference between the permeabilization threshold and electric field intensities computed by finite element model in selected points of tumor. We examined the feasibility of model-based optimization of electropermeabilization parameters on a model geometry generated from computer tomography images, representing brain tissue with tumor. Continuous parameter subject to optimization was pulse amplitude. The distance between electrode pairs was optimized as a discrete parameter. Optimization also considered the pulse generator constraints on voltage and current. During optimization the two constraints were reached preventing the exposure of the entire volume of the tumor to electric field intensities above permeabilizing threshold. However, despite the fact that with the particular needle array holder and pulse generator the entire volume of the tumor was not permeabilized, the maximal extent of permeabilization for the particular case (electrodes, tissue) was determined with the proposed approach. Model-based optimization approach could also be used for electro-gene transfer, where electric field intensities should be distributed between permeabilizing threshold and irreversible threshold-the latter causing tissue necrosis. This can be obtained by adding constraints on maximum electric field intensity in optimization procedure.
[Study of emission spectroscopy of OH radicals in pulsed corona discharge].
Wei, Bo; Luo, Zhong-Yang; Xu, Fei; Zhao, Lei; Gao, Xiang; Cen, Ke-Fa
2010-02-01
In the present paper, OH radicals generated by pulsed corona discharge in humidified air, N2 and Ar in a needle-plate reactor were measured by emission spectra. With the analysis of the emission spectra, the influence of pulse peak voltage and frequency on OH radical generation was investigated in the three kinds of background gases. The influence of the gas humidity on the generation and the distribution of OH radicals in the electric field was also discussed in detail. The authors studied the influence of the gas humidity on the generation of OH radicals in the electric field by the control of accurate change in humidity, and we also studied the distribution of OH radicals in the electric field in different background gases including humidified air, N2 and Ar by the accurate change in scales. The experiment shows that the output of OH radicals grows as the pulse peak voltage and frequency grow, but the influence of gas humidity on the process of generating OH radicals by pulsed corona discharge depends on the discharge background. The rules of the generation change when the background gases change. As the humidity in the background gases grows, the amount of OH radicals grows in the air, but it grows at first and decreases at last in N2, while it decreases at first and grows at last in Ar. The distribution of OH radical shows a trend of decreasing from the needle-electrode to its circumambience.
Note: Tesla based pulse generator for electrical breakdown study of liquid dielectrics
NASA Astrophysics Data System (ADS)
Veda Prakash, G.; Kumar, R.; Patel, J.; Saurabh, K.; Shyam, A.
2013-12-01
In the process of studying charge holding capability and delay time for breakdown in liquids under nanosecond (ns) time scales, a Tesla based pulse generator has been developed. Pulse generator is a combination of Tesla transformer, pulse forming line, a fast closing switch, and test chamber. Use of Tesla transformer over conventional Marx generators makes the pulse generator very compact, cost effective, and requires less maintenance. The system has been designed and developed to deliver maximum output voltage of 300 kV and rise time of the order of tens of nanoseconds. The paper deals with the system design parameters, breakdown test procedure, and various experimental results. To validate the pulse generator performance, experimental results have been compared with PSPICE simulation software and are in good agreement with simulation results.
Caiafa, Antonio; Jiang, Yan; Klopman, Steve; Morton, Christine; Torres, Andrew S.; Loveless, Amanda M.; Neculaes, V. Bogdan
2017-01-01
Electric pulses can induce various changes in cell dynamics and properties depending upon pulse parameters; however, pulsed power generators for in vitro and ex vivo applications may have little to no flexibility in changing the pulse duration, rise- and fall-times, or pulse shape. We outline a compact pulsed power architecture that operates from hundreds of nanoseconds (with the potential for modification to tens of nanoseconds) to tens of microseconds by modifying a Marx topology via controlling switch sequences and voltages into each capacitor stage. We demonstrate that this device can deliver pulses to both low conductivity buffers, like standard pulsed power supplies used for electroporation, and higher conductivity solutions, such as blood and platelet rich plasma. We further test the effectiveness of this pulse generator for biomedical applications by successfully activating platelets ex vivo with 400 ns and 600 ns electric pulses. This novel bioelectrics platform may provide researchers with unprecedented flexibility to explore a wide range of pulse parameters that may induce phenomena ranging from intracellular to plasma membrane manipulation. PMID:28746392
Transdermal delivery of therapeutic agent
NASA Technical Reports Server (NTRS)
Kwiatkowski, Krzysztof C. (Inventor); Hayes, Ryan T. (Inventor); Magnuson, James W. (Inventor); Giletto, Anthony (Inventor)
2008-01-01
A device for the transdermal delivery of a therapeutic agent to a biological subject that includes a first electrode comprising a first array of electrically conductive microprojections for providing electrical communication through a skin portion of the subject to a second electrode comprising a second array of electrically conductive microprojections. Additionally, a reservoir for holding the therapeutic agent surrounding the first electrode and a pulse generator for providing an exponential decay pulse between the first and second electrodes may be provided. A method includes the steps of piercing a stratum corneum layer of skin with two arrays of conductive microprojections, encapsulating the therapeutic agent into biocompatible charged carriers, surrounding the conductive microprojections with the therapeutic agent, generating an exponential decay pulse between the two arrays of conductive microprojections to create a non-uniform electrical field and electrokinetically driving the therapeutic agent through the stratum corneum layer of skin.
Ravi, Koustuban; Schimpf, Damian N; Kärtner, Franz X
2016-10-31
The use of laser pulse sequences to drive the cascaded difference frequency generation of high energy, high peak-power and multi-cycle terahertz pulses in cryogenically cooled (100 K) periodically poled Lithium Niobate is proposed and studied. Detailed simulations considering the coupled nonlinear interaction of terahertz and optical waves (or pump depletion), show that unprecedented optical-to-terahertz energy conversion efficiencies > 5%, peak electric fields of hundred(s) of mega volts/meter at terahertz pulse durations of hundred(s) of picoseconds can be achieved. The proposed methods are shown to circumvent laser induced damage limitations at Joule-level pumping by 1µm lasers to enable multi-cycle terahertz sources with pulse energies > 10 milli-joules. Various pulse sequence formats are proposed and analyzed. Numerical calculations for periodically poled structures accounting for cascaded difference frequency generation, self-phase-modulation, cascaded second harmonic generation and laser induced damage are introduced. The physics governing terahertz generation using pulse sequences in this high conversion efficiency regime, limitations and practical considerations are discussed. It is shown that varying the poling period along the crystal length and further reduction of absorption can lead to even higher energy conversion efficiencies >10%. In addition to numerical calculations, an analytic formulation valid for arbitrary pulse formats and closed-form expressions for important cases are presented. Parameters optimizing conversion efficiency in the 0.1-1 THz range, the corresponding peak electric fields, crystal lengths and terahertz pulse properties are furnished.
Method and system for powering and cooling semiconductor lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Telford, Steven J; Ladran, Anthony S
A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.
A Compact 700-KV Erected Pulse Forming Network for HPM Applications (Postprint)
2011-04-28
previously investigated for driving rail guns , electric launchers, or other nonlinear loads albeit for much longer pulse lengths [8]. In this version...The output of the generator was connected to a coaxial CuS04 resistor through 100-ft of coaxial high-voltage cable. The current pulse on the cable was...shown in Figure 6. This pulse was delivered to a 50-ohm cable and measured by a coaxial inline CVR at the generator output. Typical pulse
Digital gate pulse generator for cycloconverter control
Klein, Frederick F.; Mutone, Gioacchino A.
1989-01-01
The present invention provides a digital gate pulse generator which controls the output of a cycloconverter used for electrical power conversion applications by determining the timing and delivery of the firing pulses to the switching devices in the cycloconverter. Previous gate pulse generators have been built with largely analog or discrete digital circuitry which require many precision components and periodic adjustment. The gate pulse generator of the present invention utilizes digital techniques and a predetermined series of values to develop the necessary timing signals for firing the switching device. Each timing signal is compared with a reference signal to determine the exact firing time. The present invention is significantly more compact than previous gate pulse generators, responds quickly to changes in the output demand and requires only one precision component and no adjustments.
Laser-pulse shape effects on magnetic field generation in underdense plasmas
NASA Astrophysics Data System (ADS)
Gopal, Krishna; Raja, Md. Ali; Gupta, Devki Nandan; Avinash, K.; Sharma, Suresh C.
2018-07-01
Laser pulse shape effect has been considered to estimate the self-generated magnetic field in laser-plasma interaction. A ponderomotive force based physical mechanism has been proposed to investigate the self-generated magnetic field for different spatial profiles of the laser pulse in inhomogeneous plasmas. The spatially inhomogeneous electric field of a laser pulse imparts a stronger ponderomotive force on plasma electrons. Thus, the stronger ponderomotive force associated with the asymmetric laser pulse generates a stronger magnetic field in comparison to the case of a symmetric laser pulse. Scaling laws for magnetic field strength with the laser and plasma parameters for different shape of the pulse have been suggested. Present study might be helpful to understand the plasma dynamics relevant to the particle trapping and injection in laser-plasma accelerators.
A coaxial-output capacitor-loaded annular pulse forming line.
Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo
2018-04-01
A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the pulse rise time is about 5 ns.
A coaxial-output capacitor-loaded annular pulse forming line
NASA Astrophysics Data System (ADS)
Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo
2018-04-01
A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the pulse rise time is about 5 ns.
Circuit for monitoring temperature of high-voltage equipment
Jacobs, Martin E.
1976-01-01
This invention relates to an improved circuit for measuring temperature in a region at high electric potential and generating a read-out of the same in a region at lower potential. The circuit is specially designed to combine high sensitivity, stability, and accuracy. A major portion of the circuit situated in the high-potential region can take the form of an integrated circuit. The preferred form of the circuit includes an input section which is situated in the high-potential region and comprises a temperature-compensated thermocouple circuit for sensing temperature, an oscillator circuit for generating a train of ramp voltages whose rise time varies inversely with the thermocouple output, a comparator and switching circuit for converting the oscillator output to pulses whose frequency is proportional to the thermocouple output, and a light-emitting diode which is energized by these pulses. An optical coupling transmits the light pulses generated by the diode to an output section of the circuit, situated in a region at ground. The output section comprises means for converting the transmitted pulses to electrical pulses of corresponding frequency, means for amplifying the electrical pulses, and means for displaying the frequency of the same. The preferred embodiment of the overall circuit is designed so that the frequency of the output signal in hertz and tenths of hertz is equal to the sensed temperature in degrees and tenths of degrees.
Autonomous data transmission apparatus
Kotlyar, Oleg M.
1997-01-01
A autonomous borehole data transmission apparatus for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters.
Zhang, Fangzheng; Pan, Shilong
2013-11-04
A novel scheme for photonic generation of a millimeter-wave ultra-wideband (MMW-UWB) signal is proposed and experimentally demonstrated based on a dual-parallel Mach-Zehnder modulator (DPMZM). In the proposed scheme, a single-frequency radio frequency (RF) signal is applied to one sub-MZM of the DPMZM to achieve optical suppressed-carrier modulation, and an electrical control pulse train is applied to the other sub-MZM biased at the minimum transmission point, to get an on/off switchable optical carrier. By filtering out the optical carrier with one of the first-order sidebands, and properly setting the amplitude of the control pulse, an MMW-UWB pulse train without the residual local oscillation is generated after photo-detection. The generated MMW-UWB signal is background-free, because the low-frequency components in the electrical spectrum are effectively suppressed. In the experiment, an MMW-UWB pulse train centered at 25 GHz with a 10-dB bandwidth of 5.5 GHz is successfully generated. The low frequency components are suppressed by 22 dB.
Synergistic Combination of Electrolysis and Electroporation for Tissue Ablation.
Stehling, Michael K; Guenther, Enric; Mikus, Paul; Klein, Nina; Rubinsky, Liel; Rubinsky, Boris
2016-01-01
Electrolysis, electrochemotherapy with reversible electroporation, nanosecond pulsed electric fields and irreversible electroporation are valuable non-thermal electricity based tissue ablation technologies. This paper reports results from the first large animal study of a new non-thermal tissue ablation technology that employs "Synergistic electrolysis and electroporation" (SEE). The goal of this pre-clinical study is to expand on earlier studies with small animals and use the pig liver to establish SEE treatment parameters of clinical utility. We examined two SEE methods. One of the methods employs multiple electrochemotherapy-type reversible electroporation magnitude pulses, designed in such a way that the charge delivered during the electroporation pulses generates the electrolytic products. The second SEE method combines the delivery of a small number of electrochemotherapy magnitude electroporation pulses with a low voltage electrolysis generating DC current in three different ways. We show that both methods can produce lesion with dimensions of clinical utility, without the need to inject drugs as in electrochemotherapy, faster than with conventional electrolysis and with lower electric fields than irreversible electroporation and nanosecond pulsed ablation.
Synergistic Combination of Electrolysis and Electroporation for Tissue Ablation
Mikus, Paul; Klein, Nina; Rubinsky, Liel; Rubinsky, Boris
2016-01-01
Electrolysis, electrochemotherapy with reversible electroporation, nanosecond pulsed electric fields and irreversible electroporation are valuable non-thermal electricity based tissue ablation technologies. This paper reports results from the first large animal study of a new non-thermal tissue ablation technology that employs “Synergistic electrolysis and electroporation” (SEE). The goal of this pre-clinical study is to expand on earlier studies with small animals and use the pig liver to establish SEE treatment parameters of clinical utility. We examined two SEE methods. One of the methods employs multiple electrochemotherapy-type reversible electroporation magnitude pulses, designed in such a way that the charge delivered during the electroporation pulses generates the electrolytic products. The second SEE method combines the delivery of a small number of electrochemotherapy magnitude electroporation pulses with a low voltage electrolysis generating DC current in three different ways. We show that both methods can produce lesion with dimensions of clinical utility, without the need to inject drugs as in electrochemotherapy, faster than with conventional electrolysis and with lower electric fields than irreversible electroporation and nanosecond pulsed ablation. PMID:26866693
Pulsed Energy Systems for Generating Plasmas
NASA Technical Reports Server (NTRS)
Rose, M. Franklin; Shotts, Z.
2005-01-01
This paper will describe the techniques needed to electrically generate highly ionized dense plasmas for a variety of applications. The components needed in pulsed circuits are described in terms of general performance parameters currently available from commercial vendors. Examples of pulsed systems using these components are described and technical data from laboratory experiments presented. Experimental data are given for point designs, capable of multi-megawatt power levels.
Effects of Electromagnetic Pulses on a Multilayered System
2014-07-01
repeatable high - power generators . Repetitive EMP (REMP) is usually wideband with each pulse being composed of a wide range of frequencies. This larger...types of EMPs that are of concern regarding electronics and system infrastructures; they are high -altitude EMP (HEMP) generated from nuclear...ELECTROMAGNETIC PULSES ON A MULTILAYERED SYSTEM A. Upia, K. M. Burke, J. L. Zirnheld Energy Systems Institute, Department of Electrical Engineering
Nanopore formation in neuroblastoma cells following ultrashort electric pulse exposure
NASA Astrophysics Data System (ADS)
Roth, Caleb C.; Payne, Jason A.; Wilmink, Gerald J.; Ibey, Bennett L.
2011-03-01
Ultrashort or nanosecond electrical pulses (USEP) cause repairable damage to the plasma membranes of cells through formation of nanopores. These nanopores are able to pass small ions such as sodium, calcium, and potassium, but remain impermeable to larger molecules like trypan blue and propidium iodide. What remains uncertain is whether generation of nanopores by ultrashort electrical pulses can inhibit action potentials in excitable cells. In this paper, we explored the sensitivity of excitable cells to USEP using Calcium Green AM 1 ester fluorescence to measure calcium uptake indicative of nanopore formation in the plasma membrane. We determined the threshold for nanopore formation in neuroblastoma cells for three pulse parameters (amplitude, pulse width, and pulse number). Measurement of such thresholds will guide future studies to determine if USEP can inhibit action potentials without causing irreversible membrane damage.
Cell Fragmentation and Permeabilization by a 1 ns Pulse Driven Triple-Point Electrode
Li, Joy; Cho, Michael
2018-01-01
Ultrashort electric pulses (ns-ps) are useful in gaining understanding as to how pulsed electric fields act upon biological cells, but the electric field intensity to induce biological responses is typically higher than longer pulses and therefore a high voltage ultrashort pulse generator is required. To deliver 1 ns pulses with sufficient electric field but at a relatively low voltage, we used a glass-encapsulated tungsten wire triple-point electrode (TPE) at the interface among glass, tungsten wire, and water when it is immersed in water. A high electric field (2 MV/cm) can be created when pulses are applied. However, such a high electric field was found to cause bubble emission and temperature rise in the water near the electrode. They can be attributed to Joule heating near the electrode. Adherent cells on a cover slip treated by the combination of these stimuli showed two major effects: (1) cells in a crater (<100 μm from electrode) were fragmented and the debris was blown away. The principal mechanism for the damage is presumed to be shear forces due to bubble collapse; and (2) cells in the periphery of the crater were permeabilized, which was due to the combination of bubble movement and microstreaming as well as pulsed electric fields. These results show that ultrashort electric fields assisted by microbubbles can cause significant cell response and therefore a triple-point electrode is a useful ablation tool for applications that require submillimeter precision. PMID:29744357
Pulsed high voltage electric discharge disinfection of microbially contaminated liquids.
Anpilov, A M; Barkhudarov, E M; Christofi, N; Kop'ev, V A; Kossyi, I A; Taktakishvili, M I; Zadiraka, Y
2002-01-01
To examine the use of a novel multielectrode slipping surface discharge (SSD) treatment system, capable of pulsed plasma discharge directly in water, in killing micro-organisms. Potable water containing Escherichia coli and somatic coliphages was treated with pulsed electric discharges generated by the SSD. The SSD system was highly efficient in the microbial disinfection of water with a low energy utilization (eta approximately 10-4 kW h l-1). The SSD treatment was effective in the destruction of E. coli and its coliphages through the generation of u.v. radiation, ozone and free radicals. The non-thermal treatment method can be used for the eradication of micro-organisms in a range of contaminated liquids, including milk, negating the use of pasteurization. The method utilizes multipoint electric discharges capable of treating large volumes of liquid under static and flowing regimes.
Pulse generator with intermediate inductive storage as a lightning simulator
NASA Astrophysics Data System (ADS)
Kovalchuk, B. M.; Kharlov, A. V.; Zherlytsyn, A. A.; Kumpyak, E. V.; Tsoy, N. V.
2016-06-01
Compact transportable generators are required for simulating a lightning current pulse for electrical apparatus testing. A bi-exponential current pulse has to be formed by such a generator (with a current rise time of about two orders of magnitude faster than the damping time). The objective of this study was to develop and investigate a compact pulse generator with intermediate inductive storage and a fuse opening switch as a simulator of lightning discharge. A Marx generator (six stages) with a capacitance of 1 μF and an output voltage of 240 kV was employed as primary storage. In each of the stages, two IK-50/3 (50 kV, 3 μF) capacitors are connected in parallel. The generator inductance is 2 μH. A test bed for the investigations was assembled with this generator. The generator operates without SF6 and without oil in atmospheric air, which is very important in practice. Straight copper wires with adjustable lengths and diameters were used for the electro-explosive opening switch. Tests were made with active-inductive loads (up to 0.1 Ω and up to 6.3 μH). The current rise time is lower than 1200 ns, and the damping time can be varied from 35 to 125 μs, following the definition of standard lightning current pulse in the IEC standard. Moreover, 1D MHD calculations of the fuse explosion were carried out self-consistently with the electric circuit equations, in order to calculate more accurately the load pulse parameters. The calculations agree fairly well with the tests. On the basis of the obtained results, the design of a transportable generator was developed for a lightning simulator with current of 50 kA and a pulse shape corresponding to the IEEE standard.
Mashiko, Hiroki; Yamaguchi, Tomohiko; Oguri, Katsuya; Suda, Akira; Gotoh, Hideki
2014-01-01
In many atomic, molecular and solid systems, Lorentzian and Fano profiles are commonly observed in a broad research fields throughout a variety of spectroscopies. As the profile structure is related to the phase of the time-dependent dipole moment, it plays an important role in the study of quantum properties. Here we determine the dipole phase in the inner-shell transition using spectral phase interferometry for direct electric-field reconstruction (SPIDER) with isolated attosecond pulses (IAPs). In addition, we propose a scheme for pulse generation and compression by manipulating the inner-shell transition. The electromagnetic radiation generated by the transition is temporally compressed to a few femtoseconds in the extreme ultraviolet (XUV) region. The proposed pulse-compression scheme may provide an alternative route to producing attosecond pulses of light. PMID:25510971
Plasma discharge self-cleaning filtration system
Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong
2014-07-22
The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.
Generating coherent broadband continuum soft-x-ray radiation by attosecond ionization gating.
Pfeifer, Thomas; Jullien, Aurélie; Abel, Mark J; Nagel, Phillip M; Gallmann, Lukas; Neumark, Daniel M; Leone, Stephen R
2007-12-10
The current paradigm of isolated attosecond pulse production requires a few-cycle pulse as the driver for high-harmonic generation that has a cosine-like electric field stabilized with respect to the peak of the pulse envelope. Here, we present simulations and experimental evidence that the production of high-harmonic light can be restricted to one or a few cycles on the leading edge of a laser pulse by a gating mechanism that employs time-dependent ionization of the conversion medium. This scheme enables the generation of broadband and tunable attosecond pulses. Instead of fixing the carrier-envelope phase to produce a cosine driver pulse, the phase becomes a control parameter for the center frequency of the attosecond pulse. A method to assess the multiplicity of attosecond pulses in the pulse train is also presented. The results of our study suggest an avenue towards relaxing the requirement of few-cycle pulses for isolated attosecond pulse generation.
Current-level triggered plasma-opening switch
Mendel, C.W.
1987-06-29
An opening switch for very high power electrical pulses uses a slow magnetic field to confine a plasma across a gap between two electrodes. The plasma conducts the electric pulse across the gap while the switch is closed. A magnetic field generated by the pulse repels the slow magnetic field from the negative electrode to push the plasma from the electrode, opening the switch. A plurality of radial vanes may be used to enhance the slow magnetic field. 5 figs.
Current-level triggered plasma-opening switch
Mendel, Clifford W.
1989-01-01
An opening switch for very high power electrical pulses uses a slow magnetic field to confine a plasma across a gap between two electrodes. The plasma conducts the electric pulse across the gap while the switch is closed. A magnetic field generated by the pulse repels the slow magnetic field from the negative electrode to push the plasma from the electrode, opening the switch. A plurality of radial vanes may be used to enhance the slow magnetic field.
Polarization control of terahertz waves generated by circularly polarized few-cycle laser pulses
NASA Astrophysics Data System (ADS)
Song, Liwei; Bai, Ya; Xu, Rongjie; Li, Chuang; Liu, Peng; Li, Ruxin; Xu, Zhizhan
2013-12-01
We demonstrate the generation and control of elliptically polarized terahertz (THz) waves from air plasma produced by circularly polarized few-cycle laser pulses. Experimental and calculated results reveal that electric field asymmetry in rotating directions of the circularly polarized few-cycle laser pulses produces the enhanced broadband transient currents, and the phase difference of perpendicular laser field components is partially inherited in the generation process of THz emission. The ellipticity of the THz emission and its major axis direction are all-optically controlled by the duration and carrier-envelope phase of the laser pulses.
Electrical method and apparatus for impelling the extruded ejection of high-velocity material jets
Weingart, Richard C.
1989-01-01
A method and apparatus (10, 40) for producing high-velocity material jets provided. An electric current pulse generator (14, 42) is attached to an end of a coaxial two-conductor transmission line (16, 44) having an outer cylindrical conductor (18), an inner cylindrical conductor (20), and a solid plastic or ceramic insulator (21) therebetween. A coxial, thin-walled metal structure (22, 30) is conductively joined to the two conductors (18, 20) of the transmission line (16, 44). An electrical current pulse applies magnetic pressure to and possibly explosively vaporizes metal structure (22), thereby collapsing it and impelling the extruded ejection of a high-velocity material jet therefrom. The jet is comprised of the metal of the structure (22), together with the material that comprises any covering layers (32, 34) disposed on the structure. An electric current pulse generator of the explosively driven magnetic flux compression type or variety (42) may be advantageously used in the practice of this invention.
Time-resolved processes in a pulsed electrical discharge in argon bubbles in water
NASA Astrophysics Data System (ADS)
Gershman, S.; Belkind, A.
2010-12-01
A phenomenological picture of a pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging characterization methods. The discharge is generated by applying 1 μ s pulses of 5 to 20 kV between a needle and a disk electrode submerged in water. An Ar gas bubble surrounds the tip of the needle electrode. Imaging, electrical characteristics, and time-resolved optical emission spectroscopic data suggest a fast streamer propagation mechanism and the formation of a plasma channel in the bubble. Comparing the electrical and imaging data for consecutive pulses applied to the bubble at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from the presence of long-lived chemical species, such as ozone and oxygen. Imaging and electrical data show the presence of two discharge events during each applied voltage pulse, a forward discharge near the beginning of the applied pulse depositing charge on the surface of the bubble and a reverse discharge removing the accumulated charge from the water/gas interface when the applied voltage is turned off. The pd value of ~ 300-500 torr cm, the 1 μs long pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique compared to the traditional corona or dielectric barrier discharges.
Interaction of excitable waves emitted from two defects by pulsed electric fields
NASA Astrophysics Data System (ADS)
Chen, Jiang-Xing; Zhang, Han; Qiao, Li-Yan; Liang, Hong; Sun, Wei-Gang
2018-01-01
In response to a pulsed electric field, spatial distributed heterogeneities in excitable media can serve as nucleation sites for the generation of intramural electrical waves, a phenomenon called as ;wave emission from heterogeneities; (WEH effect). Heterogeneities in cardiac tissue strongly influence each other in the WEH effect. We study the WEH effect in a medium possessing two defects. The role of two defects and their interaction by pulsed DC electric fields (DEF) and rotating electric fields (REF) are investigated. The direction of the applied electric field plays a major role not only in the minimum electrical field necessary to originate wave propagation, but also in the degree of influences of nearby defects. The distance between two defects, i.e. the density of defects, also play an important role in the WEH effect. Generally, the REF is better than the DEF when pulsed electric fields are applied. These results may contribute to the improved application of WEH, especially in older patients with fibrosis and scarring, which are accompanied by a higher incidence of conductivity discontinuities.
Autonomous data transmission apparatus
Kotlyar, O.M.
1997-03-25
A autonomous borehole data transmission apparatus is described for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters. 4 figs.
High precision electric gate for time-of-flight ion mass spectrometers
NASA Technical Reports Server (NTRS)
Sittler, Edward C. (Inventor)
2011-01-01
A time-of-flight mass spectrometer having a chamber with electrodes to generate an electric field in the chamber and electric gating for allowing ions with a predetermined mass and velocity into the electric field. The design uses a row of very thin parallel aligned wires that are pulsed in sequence so the ion can pass through the gap of two parallel plates, which are biased to prevent passage of the ion. This design by itself can provide a high mass resolution capability and a very precise start pulse for an ion mass spectrometer. Furthermore, the ion will only pass through the chamber if it is within a wire diameter of the first wire when it is pulsed and has the right speed so it is near all other wires when they are pulsed.
Pulsed Artificial Electrojet Generation
NASA Astrophysics Data System (ADS)
Papadopoulos, K.
2008-12-01
Traditional techniques for generating low frequency signals in the ULF/ELF range (.1-100 Hz) and rely on ground based Horizontal Electric Dipole (HED) antennas. It is, furthermore, well known that a Vertical Electric Dipole (VED) is by more than 50 dB more efficient than a HED with the same dipole current moment. However, the prohibitively long length of VED antennas in the ELF/ULF range coupled with voltage limitations due to corona discharge in the atmosphere make them totally impracticable. In this paper we discuss a novel concept, inspired by the physics of the equatorial electrojet, that allows for the conversion of a ground based HED to a VED in the E-region of the equatorial ionosphere with current moment comparable to the driving HED. The paper focuses in locations near the dip-equator, where the earth's magnetic is in predominantly in the horizontal direction. The horizontal electric field associated with a pulsed HED drives a large Hall current in the ionospheric E-region, resulting in a vertical current. It is shown that the pulsed vertical current in the altitude range 80-130 km, driven by a horizontal electric field of, approximately, .1 mV/m at 100 km altitude, is of the order of kA. This results in a pulsed VED larger than 106 A-m. Such a pulsed VED will drive ELF/ULF pulses with amplitude in excess of .1 nT at a lateral range larger than few hundred kilometers. This is by three orders of magnitude larger than the one expected by a HED with comparable current moment. The paper will conclude with the description of a sneak-through technique that allows for creating pulsed electric fields in the ionosphere much larger than expected from steady state oscillatory HED antennas.
Repetitive transcranial magnetic stimulator with controllable pulse parameters
NASA Astrophysics Data System (ADS)
Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.
2011-06-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.
Repetitive transcranial magnetic stimulator with controllable pulse parameters.
Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H
2011-06-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.
Electro-Optic Generation and Detection of Femtosecond Electromagnetic Pulses
1991-11-20
electromagnetic pulses from an electro - optic crystal following their generation by electro - optic Cherenkov radiation, and their subsequent propagation and detection...in free space; (4) The measurement of subpicosecond electrical response of a new organic electrooptic material (polymer); (5) The observation of terahertz transition radiation from the surfaces of electro - optic crystals.
Triboelectric-generator-driven pulse electrodeposition for micropatterning.
Zhu, Guang; Pan, Caofeng; Guo, Wenxi; Chen, Chih-Yen; Zhou, Yusheng; Yu, Ruomeng; Wang, Zhong Lin
2012-09-12
By converting ambient energy into electricity, energy harvesting is capable of at least offsetting, or even replacing, the reliance of small portable electronics on traditional power supplies, such as batteries. Here we demonstrate a novel and simple generator with extremely low cost for efficiently harvesting mechanical energy that is typically present in the form of vibrations and random displacements/deformation. Owing to the coupling of contact charging and electrostatic induction, electric generation was achieved with a cycled process of contact and separation between two polymer films. A detailed theory is developed for understanding the proposed mechanism. The instantaneous electric power density reached as high as 31.2 mW/cm(3) at a maximum open circuit voltage of 110 V. Furthermore, the generator was successfully used without electric storage as a direct power source for pulse electrodeposition (PED) of micro/nanocrystalline silver structure. The cathodic current efficiency reached up to 86.6%. Not only does this work present a new type of generator that is featured by simple fabrication, large electric output, excellent robustness, and extremely low cost, but also extends the application of energy-harvesting technology to the field of electrochemistry with further utilizations including, but not limited to, pollutant degradation, corrosion protection, and water splitting.
21 CFR 870.3600 - External pacemaker pulse generator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... power supply and electronic circuits that produce a periodic electrical pulse to stimulate the heart. This device, which is used outside the body, is used as a temporary substitute for the heart's...
21 CFR 870.3600 - External pacemaker pulse generator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... power supply and electronic circuits that produce a periodic electrical pulse to stimulate the heart. This device, which is used outside the body, is used as a temporary substitute for the heart's...
21 CFR 870.3600 - External pacemaker pulse generator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... power supply and electronic circuits that produce a periodic electrical pulse to stimulate the heart. This device, which is used outside the body, is used as a temporary substitute for the heart's...
21 CFR 870.3600 - External pacemaker pulse generator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... power supply and electronic circuits that produce a periodic electrical pulse to stimulate the heart. This device, which is used outside the body, is used as a temporary substitute for the heart's...
21 CFR 870.3600 - External pacemaker pulse generator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... power supply and electronic circuits that produce a periodic electrical pulse to stimulate the heart. This device, which is used outside the body, is used as a temporary substitute for the heart's...
NASA Astrophysics Data System (ADS)
Pacheco, P.; Álvarez, J.; Sarmiento, R.; Bredice, F.; Sánchez-Aké, C.; Villagrán-Muniz, M.; Palleschi, V.
2018-04-01
A Nd:YAG ns-pulsed laser was used to ablate Al, Cd and Zn targets, which were placed between the plates of a planar charged capacitor. The plasma generates a transient redistribution of the electrical charges on the plates that can be measured as a voltage drop across a resistor connected to the ground plate. This signal is proportional to the capacitor applied voltage, the distance between the plates and the total number of ions produced in the ablation process which in turn is related to the laser energy and the ablated mass. After a series of pulses, the targets were weighed on a thermogravimetric balance to measure the ablated mass. Our results show that the electrical signal measured on the resistor is univocally related to the ablated mass from the target. Therefore, after a proper calibration depending on the material and the experimental geometry, the electrical signal can be used for real time quantitative measurement of the ablated mass in pulsed laser generated plasma experiments. The experiments were repeated on an aluminum target, with and without the presence of the external electric field in order to determine the possible influence of the applied electric field on the ablated mass.
Two-color ionization injection using a plasma beatwave accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, C. B.; Benedetti, C.; Esarey, E.
Two-color laser ionization injection is a method to generate ultra-low emittance (sub-100 nm transverse normalized emittance) beams in a laser-driven plasma accelerator. A plasma beatwave accelerator is proposed to drive the plasma wave for ionization injection, where the beating of the lasers effectively produces a train of long-wavelength pulses. The plasma beatwave accelerator excites a large amplitude plasma wave with low peak laser electric fields, leaving atomically-bound electrons with low ionization potential. A short-wavelength, low-amplitude ionization injection laser pulse (with a small ponderomotive force and large peak electric field) is used to ionize the remaining bound electrons at a wakemore » phase suitable for trapping, generating an ultra-low emittance electron beam that is accelerated in the plasma wave. Using a plasma beatwave accelerator for wakefield excitation, compared to short-pulse wakefield excitation, allows for a lower amplitude injection laser pulse and, hence, a lower emittance beam may be generated.« less
Two-color ionization injection using a plasma beatwave accelerator
Schroeder, C. B.; Benedetti, C.; Esarey, E.; ...
2018-01-10
Two-color laser ionization injection is a method to generate ultra-low emittance (sub-100 nm transverse normalized emittance) beams in a laser-driven plasma accelerator. A plasma beatwave accelerator is proposed to drive the plasma wave for ionization injection, where the beating of the lasers effectively produces a train of long-wavelength pulses. The plasma beatwave accelerator excites a large amplitude plasma wave with low peak laser electric fields, leaving atomically-bound electrons with low ionization potential. A short-wavelength, low-amplitude ionization injection laser pulse (with a small ponderomotive force and large peak electric field) is used to ionize the remaining bound electrons at a wakemore » phase suitable for trapping, generating an ultra-low emittance electron beam that is accelerated in the plasma wave. Using a plasma beatwave accelerator for wakefield excitation, compared to short-pulse wakefield excitation, allows for a lower amplitude injection laser pulse and, hence, a lower emittance beam may be generated.« less
Gas-pressure dependence of terahertz-pulse generation in a laser-generated nitrogen plasma
NASA Astrophysics Data System (ADS)
Löffler, T.; Roskos, H. G.
2002-03-01
Far-infrared (terahertz) pulses can be generated by photoionization of electrically biased gases with amplified laser pulses [T. Löffler, F. Jacob, and H. G. Roskos, Appl. Phys. Lett. 77, 453 (2000)]. The efficiency of the generation process can be significantly increased when the absolute gas pressure is raised because it is then possible to apply higher bias fields close to the dielectric breakdown field of the gas which increases with the pressure. The dependence of the THz output on the optical pump power does not show any indication of saturation, making the plasma emitter an interesting source for THz pulses especially in conjunction with terawatt laser systems.
Electrical characterization of a Mapham inverter using pulse testing techniques
NASA Technical Reports Server (NTRS)
Baumann, E. D.; Myers, I. T.; Hammoud, A. N.
1990-01-01
The use of a multiple pulse testing technique to determine the electrical characteristics of large megawatt-level power systems for aerospace missions is proposed. An innovative test method based on the multiple pulse technique is demonstrated on a 2-kW Mapham inverter. The concept of this technique shows that characterization of large power systems under electrical equilibrium at rated power can be accomplished without large costly power supplies. The heat generation that occurs in systems when tested in a continuous mode is eliminated. The results indicate that there is a good agreement between this testing technique and that of steady state testing.
Portable spark-gap arc generator
NASA Technical Reports Server (NTRS)
Ignaczak, L. R.
1978-01-01
Self-contained spark generator that simulates electrical noise caused by discharge of static charge is useful tool when checking sensitive component and equipment. In test set-up, device introduces repeatable noise pulses as behavior of components is monitored. Generator uses only standard commercial parts and weighs only 4 pounds; portable dc power supply is used. Two configurations of generator have been developed: one is free-running arc source, and one delivers spark in response to triggering pulse.
Sadek, Samir H.; Pimenta, Francisco; Pinho, Fernando T.
2017-01-01
In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron‐sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro‐particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time‐scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively. PMID:27990654
High-power pulse repetitive HF(DF) laser with a solid-state pump generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velikanov, S D; Domazhirov, A P; Zaretskiy, N A
2015-11-30
Operation of a repetitively pulsed electric-discharge HF(DF) laser with an all-solid-state pump generator based on FID switches is demonstrated. The energy stored in the pump generator capacitors was 880 J at an open-circuit voltage of 240 kV and a discharge pulse repetition rate of 25 Hz. The specific energy extractions were 3.8 and 3.4 J L{sup -1} for the HF and DF lasers, respectively. The possibilities of improving the output laser characteristics are discussed. (lasers)
A Dielectric Rod Antenna for Picosecond Pulse Stimulation of Neurological Tissue
Petrella, Ross A.; Schoenbach, Karl H.; Xiao, Shu
2016-01-01
A dielectrically loaded wideband rod antenna has been studied as a pulse delivery system to subcutaneous tissues. Simulation results applying 100 ps electrical pulse show that it allows us to generate critical electric field for biological effects, such as brain stimulation, in the range of several centimeters. In order to reach the critical electric field for biological effects, which is approximately 20 kV/cm, at a depth of 2 cm, the input voltage needs to be 175 kV. The electric field spot size in the brain at this position is approximately 1 cm2. Experimental studies in free space with a conical antenna (part of the antenna system) with aluminum nitride as the dielectric have confirmed the accuracy of the simulation. These results set the foundation for high voltage in situ experiments on the complete antenna system and the delivery of pulses to biological tissue. PMID:27563160
Forlim, Caroline G.; Pinto, Reynaldo D.
2014-01-01
Weakly electric fish are unique model systems in neuroethology, that allow experimentalists to non-invasively, access, central nervous system generated spatio-temporal electric patterns of pulses with roles in at least 2 complex and incompletely understood abilities: electrocommunication and electrolocation. Pulse-type electric fish alter their inter pulse intervals (IPIs) according to different behavioral contexts as aggression, hiding and mating. Nevertheless, only a few behavioral studies comparing the influence of different stimuli IPIs in the fish electric response have been conducted. We developed an apparatus that allows real time automatic realistic stimulation and simultaneous recording of electric pulses in freely moving Gymnotus carapo for several days. We detected and recorded pulse timestamps independently of the fish’s position for days. A stimulus fish was mimicked by a dipole electrode that reproduced the voltage time series of real conspecific according to previously recorded timestamp sequences. We characterized fish behavior and the eletrocommunication in 2 conditions: stimulated by IPIs pre-recorded from other fish and random IPI ones. All stimuli pulses had the exact Gymontus carapo waveform. All fish presented a surprisingly long transient exploratory behavior (more than 8 h) when exposed to a new environment in the absence of electrical stimuli. Further, we also show that fish are able to discriminate between real and random stimuli distributions by changing several characteristics of their IPI distribution. PMID:24400122
9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... requirements for electrical stimulating (EST) equipment. (a) General. Electrical stimulating (EST) equipment is... of facilitating blood removal. These provisions do not apply to electrical equipment used to stun and... generate pulsed DC or AC voltage for stimulation and is separate from the equipment used to apply the...
9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... requirements for electrical stimulating (EST) equipment. (a) General. Electrical stimulating (EST) equipment is... of facilitating blood removal. These provisions do not apply to electrical equipment used to stun and... generate pulsed DC or AC voltage for stimulation and is separate from the equipment used to apply the...
Multiplex electric discharge gas laser system
NASA Technical Reports Server (NTRS)
Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)
1987-01-01
A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.
Electron acceleration and kinetic energy tailoring via ultrafast terahertz fields.
Greig, S R; Elezzabi, A Y
2014-11-17
We propose a mechanism for tuning the kinetic energy of surface plasmon generated electron pulses through control of the time delay between a pair of externally applied terahertz pulses. Varying the time delay results in translation, compression, and broadening of the kinetic energy spectrum of the generated electron pulse. We also observe that the electrons' kinetic energy dependence on the carrier envelope phase of the surface plasmon is preserved under the influence of a terahertz electric field.
The detailed characteristics of positive corona current pulses in the line-to-plane electrodes
NASA Astrophysics Data System (ADS)
Xuebao, LI; Dayong, LI; Qian, ZHANG; Yinfei, LI; Xiang, CUI; Tiebing, LU
2018-05-01
The corona current pulses generated by corona discharge are the sources of the radio interference from transmission lines and the detailed characteristics of the corona current pulses from conductor should be investigated in order to reveal their generation mechanism. In this paper, the line-to-plane electrodes are designed to measure and analyze the characteristics of corona current pulses from positive corona discharges. The influences of inter-electrode gap and line diameters on the detail characteristics of corona current pulses, such as pulse amplitude, rise time, duration time and repetition frequency, are carefully analyzed. The obtained results show that the pulse amplitude and the repetition frequency increase with the diameter of line electrode when the electric fields on the surface of line electrodes are same. With the increase of inter-electrode gap, the pulse amplitude and the repetition frequency first decrease and then turn to be stable, while the rise time first increases and finally turns to be stable. The distributions of electric field and space charges under the line electrodes are calculated, and the influences of inter-electrode gap and line electrode diameter on the experimental results are qualitatively explained.
Apparatuses for large area radiation detection and related method
Akers, Douglas W; Drigert, Mark W
2015-04-28
Apparatuses and a related method relating to radiation detection are disclosed. In one embodiment, an apparatus includes a first scintillator and a second scintillator adjacent to the first scintillator, with each of the first scintillator and second scintillator being structured to generate a light pulse responsive to interacting with incident radiation. The first scintillator is further structured to experience full energy deposition of a first low-energy radiation, and permit a second higher-energy radiation to pass therethrough and interact with the second scintillator. The apparatus further includes a plurality of light-to-electrical converters operably coupled to the second scintillator and configured to convert light pulses generated by the first scintillator and the second scintillator into electrical signals. The first scintillator and the second scintillator exhibit at least one mutually different characteristic for an electronic system to determine whether a given light pulse is generated by the first scintillator or the second scintillator.
Method, apparatus and system for low-energy beta particle detection
Akers, Douglas W.; Drigert, Mark W.
2012-09-25
An apparatus, method, and system relating to radiation detection of low-energy beta particles are disclosed. An embodiment includes a radiation detector with a first scintillator and a second scintillator operably coupled to each other. The first scintillator and the second scintillator are each structured to generate a light pulse responsive to interaction with beta particles. The first scintillator is structured to experience full energy deposition of low-energy beta particles, and permit a higher-energy beta particle to pass therethrough and interact with the second scintillator. The radiation detector further includes a light-to-electrical converter operably coupled to the second scintillator and configured to convert light pulses generated by the first scintillator and the second scintillator into electrical signals. The first scintillator and the second scintillator have at least one mutually different characteristic to enable an electronic system to determine whether a given light pulse is generated in the first scintillator or the second scintillator.
NASA Astrophysics Data System (ADS)
Paulin-Fuentes, J. Mauricio; Sánchez-Aké, C.; Bredice, Fausto O.; Villagrán-Muniz, Mayo
2015-07-01
The self-generated electric and magnetic fields in laser induced plasmas (LIPs) in air during the first 40 ns are experimentally investigated using different electric, magnetic and optical techniques. To produce LIPs we used the second and third harmonics (532 and 355 nm) of a Nd:YAG nanosecond pulsed laser with a range of irradiance from {{10}11} to {{10}12} W \\text{c}{{\\text{m}}-2} . The variation in time of the electric field was detected using the tip of a coaxial cable, and the spontaneous magnetic field (SMF) was measured using a \\dot{B} probe. The spatial and temporal evolution of the plasma was studied using shadowgraphy and fast photography. It was observed that produced LIPs using pulses of 532 and 355 nm, generate plasmas of double core over the laser axis, while we observed that produced LIPs by pulses of 1064 nm are composed of a single core plasma. We found that the double-core plasmas have a quadrupole distribution of the charge, consisting of two oppositely directed dipoles which in turn correspond to each plasma core. The magnetic diagnostic showed an oscillating magnetic field azimuthal to the main axis of the double-plasma.
Ultrafast Manipulation of Magnetic Order with Electrical Pulses
NASA Astrophysics Data System (ADS)
Yang, Yang
During the last 30 years spintronics has been a very rapidly expanding field leading to lots of new interesting physics and applications. As with most technology-oriented fields, spintronics strives to control devices with very low energy consumption and high speed. The combination of spin and electronics inherent to spintronics directly tackles energy efficiency, due to the non-volatility of magnetism. However, speed of operation of spintronic devices is still rather limited ( nanoseconds), due to slow magnetization precessional frequencies. Ultrafast magnetism (or opto-magnetism) is a relatively new field that has been very active in the last 20 years. The main idea is that intense femtosecond laser pulses can be used in order to manipulate the magnetization at very fast time-scales ( 100 femtoseconds). However, the use of femtosecond lasers poses great application challenges such as diffraction limited optical spot sizes which hinders device density, and bulky and expensive integration of femtosecond lasers into devices. In this thesis, our efforts to combine ultrafast magnetism and spintronics are presented. First, we show that the magnetization of ferrimagnetic GdFeCo films can be switched by picosecond electronic heat current pulses. This result shows that a non-thermal distribution of electrons directly excited by laser is not necessary for inducing ultrafast magnetic dynamics. Then, we fabricate photoconductive switch devices on a LT-GaAs substrate, to generate picosecond electrical pulses. Intense electrical pulses with 10ps (FWHM) duration and peak current up to 3A can be generated and delivered into magnetic films. Distinct magnetic dynamics in CoPt films are found between direct optical heating and electrical heating. More importantly, by delivering picosecond electrical pulses into GdFeCo films, we are able to deterministically reverse the magnetization of GdFeCo within 10ps. This is more than one order of magnitude faster than any other electrically controlled magnetic switching. Our results present a fundamentally new switching mechanism electrically, without requirement for any spin polarized current or spin transfer/orbit torques. Our discovery that ultrafast magnetization switching can be achieved with electrical pulses will launch a new frontier of spintronics science and herald a new generation of spintronic devices that operate at high speed with low energy consumption. At last, to push ultrafast spintronics to practical use, ultrafast switching of a ferromagnetic film is desired. By exploiting the exchange interaction between GdFeCo and ferromagnetic Co/Pt layer, we achieved ultrafast (sub 10ps) switching of ferromagnetic film with a single laser pulse. This result will open up the possibility to control ferromagnetic materials at ultrafast time scale, critical for practical applications.
NASA Astrophysics Data System (ADS)
Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald
2008-10-01
Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.
Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald
2008-10-01
Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie et al. [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.
Detection of picosecond electrical pulses using the intrinsic Franz{endash}Keldysh effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lampin, J. F.; Desplanque, L.; Mollot, F.
2001-06-25
We report time-resolved measurements of ultrafast electrical pulses propagating on a coplanar transmission line using the intrinsic Franz{endash}Keldysh effect. A low-temperature-grown GaAs layer deposited on a GaAs substrate allows generation and also detection of ps pulses via electroabsorption sampling (EAS). This all-optical method does not require any external sampling probe. A typical rise time of 1.1 ps has been measured. EAS is a good candidate for use in THz characterization of ultrafast devices. {copyright} 2001 American Institute of Physics.
Strategies, Protections and Mitigations for Electric Grid from Electromagnetic Pulse Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, Rita Ann; Frickey, Steven Jay
2016-01-01
The mission of DOE’s Office of Electricity Delivery and Energy Reliability (OE) is to lead national efforts to modernize the electricity delivery system, enhance the security and reliability of America’s energy infrastructure and facilitate recovery from disruptions to the energy supply. One of the threats OE is concerned about is a high-altitude electro-magnetic pulse (HEMP) from a nuclear explosion and eletro-magnetic pulse (EMP) or E1 pulse can be generated by EMP weapons. DOE-OE provides federal leadership and technical guidance in addressing electric grid issues. The Idaho National Laboratory (INL) was chosen to conduct the EMP study for DOE-OE due tomore » its capabilities and experience in setting up EMP experiments on the electric grid and conducting vulnerability assessments and developing innovative technology to increase infrastructure resiliency. This report identifies known impacts to EMP threats, known mitigations and effectiveness of mitigations, potential cost of mitigation, areas for government and private partnerships in protecting the electric grid to EMP, and identifying gaps in our knowledge and protection strategies.« less
Specialized Nerve Tests: EMG, NCV and SSEP
... electromyogram. An electromyogram detects the tiny amount of electricity generated by muscle cells when they are activated ... had made the mark, and begin to send electricity into your arm. The pulses will be quite ...
Blocking and guiding adult sea lamprey with pulsed direct current from vertical electrodes
Johnson, Nicholas S.; Thompson, Henry T.; Holbrook, Christopher M.; Tix, John A.
2014-01-01
Controlling the invasion front of aquatic nuisance species is of high importance to resource managers. We tested the hypothesis that adult sea lamprey (Petromyzon marinus), a destructive invasive species in the Laurentian Great Lakes, would exhibit behavioral avoidance to dual-frequency pulsed direct current generated by vertical electrodes and that the electric field would not injure or kill sea lamprey or non-target fish. Laboratory and in-stream experiments demonstrated that the electric field blocked sea lamprey migration and directed sea lamprey into traps. Rainbow trout (Oncorhynchus mykiss) and white sucker (Catostomus commersoni), species that migrate sympatrically with sea lamprey, avoided the electric field and had minimal injuries when subjected to it. Vertical electrodes are advantageous for fish guidance because (1) the electric field produced varies minimally with depth, (2) the electric field is not grounded, reducing power consumption to where portable and remote deployments powered by solar, wind, hydro, or a small generator are feasible, and (3) vertical electrodes can be quickly deployed without significant stream modification allowing rapid responses to new invasions. Similar dual-frequency pulsed direct current fields produced from vertical electrodes may be advantageous for blocking or trapping other invasive fish or for guiding valued fish around dams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mafi, Elham; Tao, Xin; Zhu, Wenguang
2016-07-08
Using single crystalline In2Se3 nanowires as a platform, we have studied the RESET switching (from low to high electrical resistance) in this phase-change material under electric pulses. Particularly, we correlated the atomic-scale structural evolutions with local electrical resistance variations, by performing transmission electron microscopy and scanning Kelvin probe microscopy on the same nanowires. By coupling the experimental results with density functional theory calculations, we show that the immobile dislocations generated via vacancy condensations are responsible for the RESET switching and that the material maintains the single crystallinity during the process. This new mechanism is fundamentally different from the crystalline-amorphous transition,more » which is commonly understood as the underlying process for the RESET switching in similar phase-change materials.« less
Multiscale modeling and general theory of non-equilibrium plasma-assisted ignition and combustion
NASA Astrophysics Data System (ADS)
Yang, Suo; Nagaraja, Sharath; Sun, Wenting; Yang, Vigor
2017-11-01
A self-consistent framework for modeling and simulations of plasma-assisted ignition and combustion is established. In this framework, a ‘frozen electric field’ modeling approach is applied to take advantage of the quasi-periodic behaviors of the electrical characteristics to avoid the re-calculation of electric field for each pulse. The correlated dynamic adaptive chemistry (CO-DAC) method is employed to accelerate the calculation of large and stiff chemical mechanisms. The time-step is dynamically updated during the simulation through a three-stage multi-time scale modeling strategy, which utilizes the large separation of time scales in nanosecond pulsed plasma discharges. A general theory of plasma-assisted ignition and combustion is then proposed. Nanosecond pulsed plasma discharges for ignition and combustion can be divided into four stages. Stage I is the discharge pulse, with time scales of O (1-10 ns). In this stage, input energy is coupled into electron impact excitation and dissociation reactions to generate charged/excited species and radicals. Stage II is the afterglow during the gap between two adjacent pulses, with time scales of O (1 0 0 ns). In this stage, quenching of excited species dissociates O2 and fuel molecules, and provides fast gas heating. Stage III is the remaining gap between pulses, with time scales of O (1-100 µs). The radicals generated during Stages I and II significantly enhance exothermic reactions in this stage. The cumulative effects of multiple pulses is seen in Stage IV, with time scales of O (1-1000 ms), which include preheated gas temperatures and a large pool of radicals and fuel fragments to trigger ignition. For flames, plasma could significantly enhance the radical generation and gas heating in the pre-heat zone, thereby enhancing the flame establishment.
Repetitive Transcranial Magnetic Stimulator with Controllable Pulse Parameters
Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H
2013-01-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10–310 μs and positive/negative phase amplitude ratio of 1–56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation by up to 82% and 57%, and decreases coil heating by up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3,000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications, and could lead to clinical applications with potentially enhanced potency. PMID:21540487
Chen, Shaoqiang; Diao, Shengxi; Li, Pengtao; Nakamura, Takahiro; Yoshita, Masahiro; Weng, Guoen; Hu, Xiaobo; Shi, Yanling; Liu, Yiqing; Akiyama, Hidefumi
2017-07-31
High power pulsed lasers with tunable pulse widths are highly favored in many applications. When combined with power amplification, gain-switched semiconductor lasers driven by broadband tunable electric pulsers can meet such requirements. For this reason, we designed and produced a low-cost integrated CMOS pulse generator with a minimum pulse width of 80 ps and a wide tuning range of up to 270 ns using a 40-nm microelectronic process technique. We used this pulser to drive a 1.3-µm semiconductor laser diode directly, and thereafter investigated the gain-switching properties of the laser system. The optical pulses consist of a spike followed by a steady state region. Tuning the width of the electrical pulse down to approximately 1.5 ns produces optical pulses consisting only of the spike, which has a minimum pulse-width of 100 ps. Moreover, the duration of the steady state can be tuned continuously by tuning the electrical pulse width, with a peak power of approximately 5 mW. The output voltage of the electric pulser has a tuning range of 0.8-1.5 V that can be used to directly drive semiconductor laser diodes with wavelengths in the near-infrared spectrum, which are suitable for power amplification with rare-earth doped fiber amplifiers.
NASA Astrophysics Data System (ADS)
Moen, E. K.; Ibey, B. L.; Beier, H. T.; Armani, A. M.
2016-09-01
Electric pulses have become an effective tool for transporting cargo (DNA, drugs, etc.) across cell membranes. This enhanced transport is believed to occur through temporary pores formed in the plasma membrane. Traditionally, millisecond duration, monopolar (MP) pulses are used for electroporation, but bipolar (BP) pulses have proven equally effective as MP pulses with the added advantage of less cytotoxicity. With the goal of further reducing cytotoxic effects and inducing non-thermal, intra-cellular effects, researchers began investigating reduced pulse durations, pushing into the nanosecond regime. Cells exposed to these MP, nanosecond pulsed electric fields (nsPEFs) have shown increased repairable membrane permeability and selective channel activation. However, attempts to improve this further by moving to the BP pulse regime has proven unsuccessful. In the present work, we use second harmonic generation imaging to explore the structural effects of bipolar nsPEFs on the plasma membrane. By varying the temporal spacing between the pulse phases over several orders of magnitude and comparing the response to a single MP case, we systematically examine the disparity in cellular response. Our circuit-based model predicts that, as the temporal spacing increases several orders of magnitude, nanoporation increases and eventually exceeds the MP case. On the whole, our experimental data agree with this assertion; however, a detailed analysis of the data sets demonstrates that biological processes may play a larger role in the observed response than previously thought, dominating the effect for temporal spacing up to 5 μs. These findings could ultimately lead to understanding the biophysical mechanism underlying all electroporation.
Kia, Kaveh Kazemi; Bonabi, Fahimeh
2012-12-01
A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kia, Kaveh Kazemi; Bonabi, Fahimeh
A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 {mu}s. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through themore » graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.« less
NASA Astrophysics Data System (ADS)
Kia, Kaveh Kazemi; Bonabi, Fahimeh
2012-12-01
A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.
NASA Astrophysics Data System (ADS)
Pishdast, Masoud; Ghasemi, Seyed Abolfazl; Yazdanpanah, Jamal Aldin
2017-10-01
The role of plasma density scale length on two short and long laser pulse propagation and scattering in under dense plasma have been investigated in relativistic regime using 1 D PIC simulation. In our simulation, different density scale lengths and also two short and long pulse lengths with temporal pulse duration τL = 60 fs and τL = 300 fs , respectively have been used. It is found that laser pulse length and density scale length have considerable effects on the energetic electron generation. The analysis of total radiation spectrum reveals that, for short laser pulses and with reducing density scale length, more unstable electromagnetic modes grow and strong longitudinal electric field generates which leads to the generation of more energetic plasma particles. Meanwhile, the dominant scattering mechanism is Raman scattering and tends to Thomson scattering for longer laser pulse.
All solid-state high power microwave source with high repetition frequency.
Bragg, J-W B; Sullivan, W W; Mauch, D; Neuber, A A; Dickens, J C
2013-05-01
An all solid-state, megawatt-class high power microwave system featuring a silicon carbide (SiC) photoconductive semiconductor switch (PCSS) and a ferrimagnetic-based, coaxial nonlinear transmission line (NLTL) is presented. A 1.62 cm(2), 50 kV 4H-SiC PCSS is hard-switched to produce electrical pulses with 7 ns full width-half max (FWHM) pulse widths at 2 ns risetimes in single shot and burst-mode operation. The PCSS resistance drops to sub-ohm when illuminated with approximately 3 mJ of laser energy at 355 nm (tripled Nd:YAG) in a single pulse. Utilizing a fiber optic based optical delivery system, a laser pulse train of four 7 ns (FWHM) signals was generated at 65 MHz repetition frequency. The resulting electrical pulse train from the PCSS closely follows the optical input and is utilized to feed the NLTL generating microwave pulses with a base microwave-frequency of about 2.1 GHz at 65 MHz pulse repetition frequency (prf). Under typical experimental conditions, the NLTL produces sharpened output risetimes of 120 ps and microwave oscillations at 2-4 GHz that are generated due to damped gyromagnetic precession of the ferrimagnetic material's axially pre-biased magnetic moments. The complete system is discussed in detail with its output matched into 50 Ω, and results covering MHz-prf in burst-mode operation as well as frequency agility in single shot operation are discussed.
Hanna, Hanna; Andre, Franck M; Mir, Lluis M
2017-04-20
Human mesenchymal stem cells are promising tools for regenerative medicine due to their ability to differentiate into many cellular types such as osteocytes, chondrocytes and adipocytes amongst many other cell types. These cells present spontaneous calcium oscillations implicating calcium channels and pumps of the plasma membrane and the endoplasmic reticulum. These oscillations regulate many basic functions in the cell such as proliferation and differentiation. Therefore, the possibility to mimic or regulate these oscillations might be useful to regulate mesenchymal stem cells biological functions. One or several electric pulses of 100 μs were used to induce Ca 2+ spikes caused by the penetration of Ca 2+ from the extracellular medium, through the transiently electropermeabilized plasma membrane, in human adipose mesenchymal stem cells from several donors. Attached cells were preloaded with Fluo-4 AM and exposed to the electric pulse(s) under the fluorescence microscope. Viability was also checked. According to the pulse(s) electric field amplitude, it is possible to generate a supplementary calcium spike with properties close to those of calcium spontaneous oscillations, or, on the contrary, to inhibit the spontaneous calcium oscillations for a very long time compared to the pulse duration. Through that inhibition of the oscillations, Ca 2+ oscillations of desired amplitude and frequency could then be imposed on the cells using subsequent electric pulses. None of the pulses used here, even those with the highest amplitude, caused a loss of cell viability. An easy way to control Ca 2+ oscillations in mesenchymal stem cells, through their cancellation or the addition of supplementary Ca 2+ spikes, is reported here. Indeed, the direct link between the microsecond electric pulse(s) delivery and the occurrence/cancellation of cytosolic Ca 2+ spikes allowed us to mimic and regulate the Ca 2+ oscillations in these cells. Since microsecond electric pulse delivery constitutes a simple technology available in many laboratories, this new tool might be useful to further investigate the role of Ca 2+ in human mesenchymal stem cells biological processes such as proliferation and differentiation.
Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li
2016-01-01
In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663
Idling speed control system of an internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, M.; Ishii, M.; Kako, H.
1986-09-16
This patent describes an idling speed control system of an internal combustion engine comprising: a valve device which controls the amount of intake air for the engine; an actuator which includes an electric motor for variably controlling the opening of the value device; rotation speed detector means for detecting the rotation speed of the engine; idling condition detector means for detecting the idling condition of the engine; feedback control means responsive to the detected output of the idling condition detector means for generating feedback control pulses to intermittently drive the electric motor so that the detected rotation speed of themore » engine under the idling condition may converge into a target idling rotation speed; and control means responsive to the output of detector means that detects an abnormally low rotation speed of the engine detected by the rotation speed detector means for generating control pulses that do not overlap the feedback control pulses to drive the electric motor in a predetermined direction.« less
Na, Kwan Byung; Hwang, Tae Sik; Lee, Sung Hun; Ahn, Dae Hee; Park, Doo Hyun
2007-03-01
The effect of an electrochemically generated oxidation-reduction potential and electric pulse on ethanol production and growth of Saccharomyces cerevisiae ATCC 26603 was experimented and compared with effects of electron mediators (neutral red, benzyl viologen, and thionine), chemical oxidants (hydrogen peroxide and hypochlorite), chemical reductants (sulfite and nitrite), oxygen, and hydrogen. The oxidation (anodic) and reduction (cathodic) potential and electric pulse activated ethanol production and growth, and changed the total soluble protein pattern of the test strain. Neutral red electrochemically reduced activated ethanol production and growth of the test strain, but benzyl viologen and thionine did not. Nitrite inhibited ethanol production but did not influence growth of the test strain. Hydrogen peroxide, hypochlorite, and sulfite did not influence ethanol production and growth of the test strain. Hydrogen and oxygen also did not influence the growth and ethanol production. It shows that the test strain may perceive electrochemically generated oxidation-reduction potential and electric pulse as an environmental factor.
Analysis of the transfer function for layered piezoelectric ultrasonic sensors
NASA Astrophysics Data System (ADS)
Gutiérrrez-Reyes, E.; García-Segundo, C.; García-Valenzuela, A.; Reyes-Ramírez, B.; Gutiérrez-Juárez, G.; Guadarrama-Santana, A.
2017-06-01
We model theoretically the voltage response to an acoustic pulse of a multilayer system forming a low noise capacitive sensor including a Polyvinylidene Fluoride piezoelectric film. First we model a generic piezoelectric detector consisting of a piezoelectric film between two metallic electrodes that are the responsible to convert the acoustic signal into a voltage signal. Then we calculate the pressure-to-voltage transfer function for a N-layer piezo-electric capacitor detector, allowing to study the effects of the electrode and protective layers thickness in typical layered piezoelectric sensors. The derived transfer function, when multiplied by the Fourier transform of the incident acoustic pulse, gives the voltage electric response in the frequency domain. An important concern regarding the transfer function is that it may have zeros at specific frequencies, and thus inverting the voltage Fourier transform of the pulse to recover the pressure signal in the time domain is not always, in principle, possible. Our formulas can be used to predict the existence and locations of such zeroes. We illustrate the use of the transfer function by predicting the electric signal generated at a multilayer piezoelectric sensor to an ultrasonic pulse generated photoacoustically by a laser pulse at a three media system with impedance mismatch. This theoretical calculations are compared with our own experimental measurements.
Pulse Detonation Rocket Magnetohydrodynamic Power Experiment
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Jones, J. E.; Dobson, C. C.; Cole, J. W.; Thompson, B. R.; Plemmons, D. H.; Turner, M. W.
2003-01-01
The production of onboard electrical power by pulse detonation engines is problematic in that they generate no shaft power; however, pulse detonation driven magnetohydrodynamic (MHD) power generation represents one intriguing possibility for attaining self-sustained engine operation and generating large quantities of burst power for onboard electrical systems. To examine this possibility further, a simple heat-sink apparatus was developed for experimentally investigating pulse detonation driven MHD generator concepts. The hydrogen oxygen fired driver was a 90 cm long stainless steel tube having a 4.5 cm square internal cross section and a short Schelkin spiral near the head end to promote rapid formation of a detonation wave. The tube was intermittently filled to atmospheric pressure and seeded with a CsOH/methanol prior to ignition by electrical spark. The driver exhausted through an aluminum nozzle having an area contraction ratio of A*/A(sub zeta) = 1/10 and an area expansion ratio of A(sub zeta)/A* = 3.2 (as limited by available magnet bore size). The nozzle exhausted through a 24-electrode segmented Faraday channel (30.5 cm active length), which was inserted into a 0.6 T permanent magnet assembly. Initial experiments verified proper drive operation with and without the nozzle attachment, and head end pressure and time resolved thrust measurements were acquired. The exhaust jet from the nozzle was interrogated using a polychromatic microwave interferometer yielding an electron number density on the order of 10(exp 12)/cm at the generator entrance. In this case, MHD power generation experiments suffered from severe near-electrode voltage drops and low MHD interaction; i.e., low flow velocity, due to an inherent physical constraint on expansion with the available magnet. Increased scaling, improved seeding techniques, higher magnetic fields, and higher expansion ratios are expected to greatly improve performance.
Lin, Munan; Liu, Ming; Zhu, Guanghui; Wang, Yanpeng; Shi, Peiyun; Sun, Xuan
2017-08-01
A high voltage pulse generator based on a silicon-controlled rectifier has been designed and implemented for a field reversed configuration experiment. A critical damping circuit is used in the generator to produce the desired pulse waveform. Depending on the load, the rise time of the output trigger signal can be less than 1 μs, and the peak amplitudes of trigger voltage and current are up to 8 kV and 85 A in a single output. The output voltage can be easily adjusted by changing the voltage on a capacitor of the generator. In addition, the generator integrates an electrically floating heater circuit so it is capable of triggering either pseudosparks (TDI-type hydrogen thyratron) or ignitrons. Details of the circuits and their implementation are described in the paper. The trigger generator has successfully controlled the discharging sequence of the pulsed power supply for a field reversed configuration experiment.
NASA Astrophysics Data System (ADS)
Lin, Munan; Liu, Ming; Zhu, Guanghui; Wang, Yanpeng; Shi, Peiyun; Sun, Xuan
2017-08-01
A high voltage pulse generator based on a silicon-controlled rectifier has been designed and implemented for a field reversed configuration experiment. A critical damping circuit is used in the generator to produce the desired pulse waveform. Depending on the load, the rise time of the output trigger signal can be less than 1 μs, and the peak amplitudes of trigger voltage and current are up to 8 kV and 85 A in a single output. The output voltage can be easily adjusted by changing the voltage on a capacitor of the generator. In addition, the generator integrates an electrically floating heater circuit so it is capable of triggering either pseudosparks (TDI-type hydrogen thyratron) or ignitrons. Details of the circuits and their implementation are described in the paper. The trigger generator has successfully controlled the discharging sequence of the pulsed power supply for a field reversed configuration experiment.
NASA Technical Reports Server (NTRS)
Frederickson, A. R.
1985-01-01
A model was developed which places radiation induced discharge pulse results into a unified conceptual framework. Only two phenomena are required to interpret all space and laboratory results: (1) radiation produces large electrostatic fields inside insulators via the trapping of a net space charge density; and (2) the electrostatic fields initiate discharge streamer plasmas similar to those investigated in high voltage electrical insulation materials; these streamer plasmas generate the pulsing phenomena. The apparent variability and diversity of results seen is an inherent feature of the plasma streamer mechanism acting in the electric fields which is created by irradiation of the dielectrics. The implications of the model are extensive and lead to constraints over what can be done about spacecraft pulsing.
High intensity, plasma-induced electron emission from large area carbon nanotube array cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao Qingliang; Yang Ya; Qi Junjie
2010-02-15
The plasma-induced electron emission properties of large area carbon nanotube (CNT) array cathodes under different pulse electric fields were investigated. The formation and expansion of cathode plasmas were proved; in addition, the cathodes have higher emission current in the double-pulse mode than that in the single-pulse mode due to the expansion of plasma. Under the double-pulse electric field of 8.16 V/mum, the plasma's expansion velocity is about 12.33 cm/mus and the highest emission current density reached 107.72 A/cm{sup 2}. The Cerenkov radiation was used to diagnose the distribution of electron beams, and the electron beams' generating process was plasma-induced emission.
NASA Astrophysics Data System (ADS)
Li, Xuebao; Cui, Xiang; Lu, Tiebing; Ma, Wenzuo; Bian, Xingming; Wang, Donglai; Hiziroglu, Huseyin
2016-03-01
The corona-generated audible noise (AN) has become one of decisive factors in the design of high voltage direct current (HVDC) transmission lines. The AN from transmission lines can be attributed to sound pressure pulses which are generated by the multiple corona sources formed on the conductor, i.e., transmission lines. In this paper, a detailed time-domain characteristics of the sound pressure pulses, which are generated by the DC corona discharges formed over the surfaces of a stranded conductors, are investigated systematically in a laboratory settings using a corona cage structure. The amplitude of sound pressure pulse and its time intervals are extracted by observing a direct correlation between corona current pulses and corona-generated sound pressure pulses. Based on the statistical characteristics, a stochastic model is presented for simulating the sound pressure pulses due to DC corona discharges occurring on conductors. The proposed stochastic model is validated by comparing the calculated and measured A-weighted sound pressure level (SPL). The proposed model is then used to analyze the influence of the pulse amplitudes and pulse rate on the SPL. Furthermore, a mathematical relationship is found between the SPL and conductor diameter, electric field, and radial distance.
Polarization resolved electric field measurements on plasma bullets in N2 using four-wave mixing
NASA Astrophysics Data System (ADS)
van der Schans, Marc; Boehm, Patrick; Nijdam, Sander; Ijzerman, Wilbert; Czarnetzki, Uwe
2016-09-01
Atmospheric pressure plasma jets generated by kHz AC or pulsed DC voltages typically consist of discrete guided ionization waves called plasma bullets. In this work, the electric field of plasma bullets generated in a pulsed DC jet with N2 as feed gas is investigated using the four-wave mixing method. In this diagnostic two laser beams, where one is Stokes shifted from the other, non-linearly interact with the N2 molecules and the bullet's electric field. As a result of the interaction a coherent anti-Stokes Raman scattered (CARS) beam and an infrared beam are generated from which the electric field can be determined. Compared to emission-based methods, this technique has the advantage of being able to also probe the electric field in regions around the plasma bullet where no photons are emitted. The four-wave mixing method and its analysis have been adapted to work with the non-uniform electric field of plasma bullets. In addition, an ex-situ calibration procedure using an electrode geometry different from the discharge geometry has been developed. An experimentally obtained radial profile of the axial electric field component of a plasma bullet in N2 is presented. The position of this profile is related to the location of the propagating bullet from temporally resolved images.
A multi-functional high voltage experiment apparatus for vacuum surface flashover switch research.
Zeng, Bo; Su, Jian-cang; Cheng, Jie; Wu, Xiao-long; Li, Rui; Zhao, Liang; Fang, Jin-peng; Wang, Li-min
2015-04-01
A multifunctional high voltage apparatus for experimental researches on surface flashover switch and high voltage insulation in vacuum has been developed. The apparatus is composed of five parts: pulse generating unit, axial field unit, radial field unit, and two switch units. Microsecond damped ringing pulse with peak-to-peak voltage 800 kV or unipolar pulse with maximum voltage 830 kV is generated, forming transient axial or radial electrical field. Different pulse waveforms and field distributions make up six experimental configurations in all. Based on this apparatus, preliminary experiments on vacuum surface flashover switch with different flashover dielectric materials have been conducted in the axial field unit, and nanosecond pulse is generated in the radial field unit which makes a pulse transmission line in the experiment. Basic work parameters of this kind of switch such as lifetime, breakdown voltage are obtained.
Strong electromagnetic pulses generated in laser-matter interactions with 10TW-class fs laser
NASA Astrophysics Data System (ADS)
Rączka, Piotr; Rosiński, Marcin; Zaraś-Szydłowska, Agnieszka; Wołowski, Jerzy; Badziak, Jan
2018-01-01
The results of an experiment on the generation of electromagnetic pulses (EMP) in the interaction of 10TW fs pulses with thick (mm scale) and thin foil (μm scale) targets are described. Such pulses, with frequencies in the GHz range, may pose a threat to safe and reliable operation of high-power, high-intensity laser facilities. The main point of the experiment is to investigate the fine temporal structure of such pulses using an oscilloscope capable of measurements at very high sampling rate. It is found that the amazing reproducibility of such pulses is confirmed at this high sampling rate. Furthermore, the differences between the EMP signals generated from thick and thin foil targets are clearly seen, which indicates that besides electric polarization of the target and the target neutralization current there may be other factors essential for the EMP emission.
Stochastic modeling of the hypothalamic pulse generator activity.
Camproux, A C; Thalabard, J C; Thomas, G
1994-11-01
Luteinizing hormone (LH) is released by the pituitary in discrete pulses. In the monkey, the appearance of LH pulses in the plasma is invariably associated with sharp increases (i.e, volleys) in the frequency of the hypothalamic pulse generator electrical activity, so that continuous monitoring of this activity by telemetry provides a unique means to study the temporal structure of the mechanism generating the pulses. To assess whether the times of occurrence and durations of previous volleys exert significant influence on the timing of the next volley, we used a class of periodic counting process models that specify the stochastic intensity of the process as the product of two factors: 1) a periodic baseline intensity and 2) a stochastic regression function with covariates representing the influence of the past. This approach allows the characterization of circadian modulation and memory range of the process underlying hypothalamic pulse generator activity, as illustrated by fitting the model to experimental data from two ovariectomized rhesus monkeys.
Masaoka, Satoshi
2007-06-01
A pulsed power supply was used to generate a corona discharge on a polyethylene terephthalate bottle, to conduct plasma sterilization at atmospheric pressure. Before generating such a discharge, minute quantities of water were attached to the inner surface of the bottle and to the surface of a high voltage (HV) electrode inserted into the bottle. Next, high-voltage pulses of electricity were discharged between electrodes for 6.0s, while rotating the bottle. The resulting spore log reduction values of Bacillus subtilis and Aspergillus niger on the inner surface of the bottle were 5.5 and 6 or higher, respectively, and those on the HV electrode surface were each 6 or higher for both strains. The presence of the by-products gaseous ozone, hydrogen peroxide, and nitric ions resulting from the electrical discharge was confirmed.
Preliminary Breakdown: Physical Mechanisms and Potential for Energetic Emissions
NASA Astrophysics Data System (ADS)
Petersen, D.; Beasley, W. H.
2014-12-01
Observations and analysis of the preliminary breakdown phase of virgin negative cloud-to-ground (-CG) lightning strokes will be presented. Of primary interest are the physical processes responsible for the fast electric field "characteristic" pulses that are often observed during this phase. The pulse widths of characteristic pulses are shown to occur as a superposed bimodal distribution, with the short and long modes having characteristic timescales on the order of 1 microsecond and 10 microseconds, respectively. Analysis of these pulses is based on comparison with laboratory observations of long spark discharge processes and with recently acquired high-speed video observations of a single -CG event. It will be argued that the fast electric field bimodal distribution is the result of conventional discharge processes operating in an extensive strong ambient electric field environment. An important related topic will also be discussed, where it will be argued that preliminary breakdown discharges are capable of generating energetic electrons and may therefore seed relativistic electron avalanches that go on to produce pulsed energetic photon emissions.
NASA Astrophysics Data System (ADS)
Ma, Chen-xi; Ding, Guo-qing
2017-10-01
Simple harmonic waves and synthesized simple harmonic waves are widely used in the test of instruments. However, because of the errors caused by clearance of gear and time-delay error of FPGA, it is difficult to control servo electric cylinder in precise simple harmonic motion under high speed, high frequency and large load conditions. To solve the problem, a method of error compensation is proposed in this paper. In the method, a displacement sensor is fitted on the piston rod of the electric cylinder. By using the displacement sensor, the real-time displacement of the piston rod is obtained and fed back to the input of servo motor, then a closed loop control is realized. There is compensation of pulses in the next period of the synthetic waves. This paper uses FPGA as the processing core. The software mainly comprises a waveform generator, an Ethernet module, a memory module, a pulse generator, a pulse selector, a protection module, an error compensation module. A durability of shock absorbers is used as the testing platform. The durability mainly comprises a single electric cylinder, a servo motor for driving the electric cylinder, and the servo motor driver.
Runaway breakdown and hydrometeors in lightning initiation.
Gurevich, A V; Karashtin, A N
2013-05-03
The particular electric pulse discharges are observed in thunderclouds during the initiation stage of negative cloud-to-ground lightning. The discharges are quite different from conventional streamers or leaders. A detailed analysis reveals that the shape of the pulses is determined by the runaway breakdown of air in the thundercloud electric field initiated by extensive atmospheric showers (RB-EAS). The high amplitude of the pulse electric current is due to the multiple microdischarges at hydrometeors stimulated and synchronized by the low-energy electrons generated in the RB-EAS process. The series of specific pulse discharges leads to charge reset from hydrometeors to the free ions and creates numerous stretched ion clusters, both positive and negative. As a result, a wide region in the thundercloud with a sufficiently high fractal ion conductivity is formed. The charge transport by ions plays a decisive role in the lightning leader preconditioning.
Controlled generation of a single Trichel pulse and a series of single Trichel pulses in air
NASA Astrophysics Data System (ADS)
Mizeraczyk, Jerzy; Berendt, Artur; Akishev, Yuri
2018-04-01
In this paper, a simple method for the controlled generation of a single Trichel pulse or a series of single Trichel pulses of a regulated repetition frequency in air is proposed. The concept of triggering a single Trichel pulse or a series of such pulses is based on the precise controlling the voltage inception of the negative corona, which can be accomplished through the use of a ramp voltage pulse or a series of such pulses with properly chosen ramp voltage pulse parameters (rise and fall times, and ramp voltage pulse repetition frequency). The proposal has been tested in experiments using a needle-to-plate electrode arrangement in air, and reproducible Trichel pulses (single or in a series) were obtained by triggering them with an appropriately designed voltage waveform. The proposed method and results obtained have been qualitatively analysed. The analysis provides guidance for designing the voltage ramp pulse in respect of the generation of a single Trichel pulse or a series of single Trichel pulses. The controlled generation of a single Trichel pulse or a series of such pulses would be a helpful research tool for the refined studies of the fundamental processes in a negative corona discharge in a single- (air is an example) and multi-phase gaseous fluids. The controlled generation of a single Trichel pulse or a series of Trichel pulses can also be attractive for those corona treatments which need manipulation of the electric charge and heat portions delivered by the Trichel pulses to the object.
Characteristics of the inductive nitrogen laser generation
NASA Astrophysics Data System (ADS)
Razhev, A. M.; Churkin, D. S.; Kargapoltsev, E. S.
2016-05-01
The results of the experimental study of energy, temporal, spectral and spatial characteristics of UV inductive laser generation are presented. The study has identified a number of characteristics which demonstrate the differences between electron parameters of inductively coupled plasma and the plasma of longitudinal and transverse electrical discharges. The mechanism of simultaneous occurrence of Lewis-Rayleigh afterglow representing transitions between higher vibrational substates of B3Πg and A3∑u+ states; laser generation at C3Πu→B3Πg transition as well as the absence of IR radiation at 1st positive system typical for electrical discharge nitrogen lasers has been thoroughly researched. The major characteristic is ring shaped laser beam which size and width depend on excitation conditions. Inductive UV nitrogen laser is found to operate in ASE regime, but has a low divergence of 0.4±0.1 mrad and high pulse-to-pulse stability (laser pulse deviation amplitude did not exceed 1%).
Plasmon enhanced terahertz emission from single layer graphene.
Bahk, Young-Mi; Ramakrishnan, Gopakumar; Choi, Jongho; Song, Hyelynn; Choi, Geunchang; Kim, Yong Hyup; Ahn, Kwang Jun; Kim, Dai-Sik; Planken, Paul C M
2014-09-23
We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.
NASA Astrophysics Data System (ADS)
Min, Sun-Hong; Kwon, Ohjoon; Sattorov, Matlabjon; Baek, In-Keun; Kim, Seontae; Jeong, Jin-Young; Hong, Dongpyo; Park, Seunghyuk; Park, Gun-Sik
2017-01-01
Non-thermal irreversible electroporation (NTIRE) to avoid thermal damage to cells during intense DC ns pulsed electric fields (nsPEFs) is a recent modality for medical applications. This mechanism, related to bioelectrical dynamics of the cell, is linked to the effect of a DC electric field and a threshold effect with an electrically stimulated membrane for the charge distribution in the cell. To create the NTIRE condition, the pulse width of the nsPEF should be shorter than the charging time constant of the membrane related to the cell radius, membrane capacitance, cytoplasm resistivity, and medium resistivity. It is necessary to design and fabricate a very intense nanosecond DC electric field pulser that is capable of producing voltages up to the level of 100 kV/cm with an artificial pulse width (˜ns) with controllable repetition rates. Many devices to generate intense DC nsPEF using various pulse-forming line technologies have been introduced thus far. However, the previous Blumlein pulse-generating devices are clearly inefficient due to the energy loss between the input voltage and the output voltage. An improved two-stage stacked Blumlein pulse-forming line can overcome this limitation and decrease the energy loss from a DC power supply. A metal oxide silicon field-effect transistor switch with a fast rise and fall time would enable a high repetition rate (max. 100 kHz) and good endurance against very high voltages (DC ˜ 30 kV). The load is designed to match the sample for exposure to cell suspensions consisting of a 200 Ω resistor matched with a Blumlein circuit and two electrodes without the characteristic RC time effect of the circuit (capacitance =0.174 pF).
Kerns, Q.A.
1963-08-01
>An electronlc circuit for synthesizing electrical current pulses having very fast rise times includes several sinewave generators tuned to progressively higher harmonic frequencies with signal amplitudes and phases selectable according to the Fourier series of the waveform that is to be synthesized. Phase control is provided by periodically triggering the generators at precisely controlled times. The outputs of the generators are combined in a coaxial transmission line. Any frequency-dependent delays that occur in the transmission line can be readily compensated for so that the desired signal wave shape is obtained at the output of the line. (AEC)
Pruttivarasin, Thaned; Katori, Hidetoshi
2015-11-01
We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.
High field terahertz pulse generation from plasma wakefield driven by tailored laser pulses
NASA Astrophysics Data System (ADS)
Chen, Zi-Yu
2013-06-01
A scheme to generate high field terahertz (THz) pulses by using tailored laser pulses interaction with a gas target is proposed. The laser wakefield based THz source is emitted from the asymmetric laser shape induced plasma transverse transient net currents. Particle-in-cell simulations show that THz emission with electric filed strength over 1 GV/cm can be obtained with incident laser at 1×1019 W/cm2 level, and the corresponding energy conversion efficiency is more than 10-4. The intensity scaling holds up to high field strengths. Such a source also has a broad tunability range in amplitude, frequency spectra, and temporal shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruttivarasin, Thaned, E-mail: thaned.pruttivarasin@riken.jp; Katori, Hidetoshi; Innovative Space-Time Project, ERATO, JST, Bunkyo-ku, Tokyo 113-8656
We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.
Microwave-triggered laser switch
Piltch, M.S.
1982-05-19
A high-repetition rate switch is described for delivering short duration, high-powered electrical pulses from a pulsed-charged dc power supply. The present invention utilizes a microwave-generating device such as a magnetron that is capable of producing high-power pulses at high-pulse repetition rates and fast-pulse risetimes for long periods with high reliability. The rail-gap electrodes provide a large surface area that reduces induction effects and minimizes electrode erosion. Additionally, breakdown is initiated in a continuous geometric fashion that also increases operating lifetime of the device.
Microwave-triggered laser switch
Piltch, Martin S.
1984-01-01
A high-repetition rate switch for delivering short duration, high-power electrical pulses from a pulsed-charged dc power supply. The present invention utilizes a microwave-generating device such as a magnetron that is capable of producing high-power pulses at high-pulse repetition rates and fast-pulse risetimes for long periods with high reliability. The rail-gap electrodes provide a large surface area that reduces induction effects and minimizes electrode erosion. Additionally, breakdown is initiated in a continuous geometric fashion that also increases operating lifetime of the device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltani Gishini, M. S.; Ganjovi, A., E-mail: Ganjovi@kgut.ac.ir; Saeed, M.
In this work, using a two dimensional particle in cell-Monte Carlo collision simulation scheme, interaction of two-color ultra-short laser pulses with the molecular hydrogen gas (H{sub 2}) is examined. The operational laser parameters, i.e., its pulse shape, duration, and waist, are changed and, their effects on the density and kinetic energy of generated electrons, THz electric field, intensity, and spectrum are studied. It is seen that the best pulse shape generating the THz signal radiation with the highest intensity is a trapezoidal pulse, and the intensity of generated THz radiation is increased at the higher pulse durations and waists. Formore » all the operational laser parameters, the maximum value of emitted THz signal frequency always remains lower than 5 THz. The intensity of applied laser pulses is taken about 10{sup 14} w/cm{sup 2}, and it is observed that while a small portion of the gaseous media gets ionized, the radiated THz signal is significant.« less
The energetics of electric organ discharge generation in gymnotiform weakly electric fish.
Salazar, Vielka L; Krahe, Rüdiger; Lewis, John E
2013-07-01
Gymnotiform weakly electric fish produce an electric signal to sense their environment and communicate with conspecifics. Although the generation of such relatively large electric signals over an entire lifetime is expected to be energetically costly, supporting evidence to date is equivocal. In this article, we first provide a theoretical analysis of the energy budget underlying signal production. Our analysis suggests that wave-type and pulse-type species invest a similar fraction of metabolic resources into electric signal generation, supporting previous evidence of a trade-off between signal amplitude and frequency. We then consider a comparative and evolutionary framework in which to interpret and guide future studies. We suggest that species differences in signal generation and plasticity, when considered in an energetics context, will not only help to evaluate the role of energetic constraints in the evolution of signal diversity but also lead to important general insights into the energetics of bioelectric signal generation.
NASA Technical Reports Server (NTRS)
Trinh, Huu; Early, James W.; Thomas, Matthew E.; Bossard, John A.
2006-01-01
A dual-pulse laser (DPL) technique has been demonstrated for generating laser-induced sparks (LIS) to ignite fuels. The technique was originally intended to be applied to the ignition of rocket propellants, but may also be applicable to ignition in terrestrial settings in which electric igniters may not be suitable.
Design of portable electric and magnetic field generators
NASA Astrophysics Data System (ADS)
Stewart, M. G.; Siew, W. H.; Campbell, L. C.; Stewart, M. G.; Siew, W. H.
2000-11-01
Electric and magnetic field generators capable of producing high-amplitude output are not readily available. This presents difficulties for electromagnetic compatibility testing of new measurement systems where these systems are intended to operate in a particularly hostile electromagnetic environment. A portable electric and a portable magnetic field generator having high pulsed field output are described in this paper. The output of these generators were determined using an electromagnetic-compatible measurement system. These generators allow immunity testing in the laboratory of electronic systems to very high electrical fields, as well as for functional verification of the electronic systems on site. In the longer term, the basic design of the magnetic field generator may be developed as the generator to provide the damped sinusoid magnetic field specified in IEC 61000-4-10, which is adopted in BS EN 61000-4-10.
A Tesla-type repetitive nanosecond pulse generator for solid dielectric breakdown research.
Zhao, Liang; Pan, Ya Feng; Su, Jian Cang; Zhang, Xi Bo; Wang, Li Min; Fang, Jin Peng; Sun, Xu; Lui, Rui
2013-10-01
A Tesla-type repetitive nanosecond pulse generator including a pair of electrode and a matched absorption resistor is established for the application of solid dielectric breakdown research. As major components, a built-in Tesla transformer and a gas-gap switch are designed to boost and shape the output pulse, respectively; the electrode is to form the anticipated electric field; the resistor is parallel to the electrode to absorb the reflected energy from the test sample. The parameters of the generator are a pulse width of 10 ns, a rise and fall time of 3 ns, and a maximum amplitude of 300 kV. By modifying the primary circuit of the Tesla transformer, the generator can produce both positive and negative pulses at a repetition rate of 1-50 Hz. In addition, a real-time measurement and control system is established based on the solid dielectric breakdown requirements for this generator. With this system, experiments on test samples made of common insulation materials in pulsed power systems are conducted. The preliminary experimental results show that the constructed generator is capable to research the solid dielectric breakdown phenomenon on a nanosecond time scale.
Sub-nanosecond resolution electric field measurements during ns pulse breakdown in ambient air
NASA Astrophysics Data System (ADS)
Simeni Simeni, Marien; Goldberg, Ben; Gulko, Ilya; Frederickson, Kraig; Adamovich, Igor V.
2018-01-01
Electric field during ns pulse discharge breakdown in ambient air has been measured by ps four-wave mixing, with temporal resolution of 0.2 ns. The measurements have been performed in a diffuse plasma generated in a dielectric barrier discharge, in plane-to-plane geometry. Absolute calibration of the electric field in the plasma is provided by the Laplacian field measured before breakdown. Sub-nanosecond time resolution is obtained by using a 150 ps duration laser pulse, as well as by monitoring the timing of individual laser shots relative to the voltage pulse, and post-processing four-wave mixing signal waveforms saved for each laser shot, placing them in the appropriate ‘time bins’. The experimental data are compared with the analytic solution for time-resolved electric field in the plasma during pulse breakdown, showing good agreement on ns time scale. Qualitative interpretation of the data illustrates the effects of charge separation, charge accumulation/neutralization on the dielectric surfaces, electron attachment, and secondary breakdown. Comparison of the present data with more advanced kinetic modeling is expected to provide additional quantitative insight into air plasma kinetics on ~ 0.1-100 ns scales.
Inverting polar domains via electrical pulsing in metallic germanium telluride
Nukala, Pavan; Ren, Mingliang; Agarwal, Rahul; Berger, Jacob; Liu, Gerui; Johnson, A. T. Charlie; Agarwal, Ritesh
2017-01-01
Germanium telluride (GeTe) is both polar and metallic, an unusual combination of properties in any material system. The large concentration of free-carriers in GeTe precludes the coupling of external electric field with internal polarization, rendering it ineffective for conventional ferroelectric applications and polarization switching. Here we investigate alternate ways of coupling the polar domains in GeTe to external electrical stimuli through optical second harmonic generation polarimetry and in situ TEM electrical testing on single-crystalline GeTe nanowires. We show that anti-phase boundaries, created from current pulses (heat shocks), invert the polarization of selective domains resulting in reorganization of certain 71o domain boundaries into 109o boundaries. These boundaries subsequently interact and evolve with the partial dislocations, which migrate from domain to domain with the carrier-wind force (electrical current). This work suggests that current pulses and carrier-wind force could be external stimuli for domain engineering in ferroelectrics with significant current leakage. PMID:28401949
NASA Astrophysics Data System (ADS)
Kukhtarev, N.; Kukhtareva, T.; Curley, M.; Jaenisch, H. M.; Edwards, M. E.; Gu, M.; Zhou, Z.; Guo, R.
2007-09-01
We have observed nanosecond electrical and optical pulsations from photorefractive lithium-niobate optical fibers using CW green and blue low-power lasers. Fourier spectra of the pulsations have a maximum at ~900 MHz with peaks separated by ~30MHz. We consider free-space and fiber supported illumination of the fiber crystal. Strong nonlinear enhanced backscattering with phase conjugation was observed from bulk crystals and crystal fibers along the C-axis. Model of transformation of CW laser irradiation of ferroelectric crystals into periodic nanosecond electrical and optical pulsations is suggested. This model includes combinations of photorefractive, pyroelectric, piezoelectric, and photogalvanic mechanisms of the holographic grating formation and crystal electrical charging. Possible applications of these short photo-induced electrical pulses for modulation of holographic beam coupling, pulsed electrolysis, electrophoresis, focused electron beams, X-ray and neutron generation, and hand-held micro X-ray devices for localized oncology imaging and treatment based on our advanced sensor work are discussed.
NASA Astrophysics Data System (ADS)
Hart, Robert James
2011-12-01
The use of composite materials in aerospace, electronics, and wind industries has become increasingly common, and these composite components are required to carry mechanical, electrical, and thermal loads simultaneously. A unique property of carbon fiber composites is that when an electric current is applied to the specimen, the mechanical strength of the specimen increases. Previous studies have shown that the higher the electric current, the greater the increase in impact strength. However, as current passes through the composite, heat is generated through Joule heating. This Joule heating can cause degradation of the composite and thus a loss in strength. In order to minimize the negative effects of heating, it is desired to apply a very high current for a very short duration of time. This thesis investigated the material responses of carbon fiber composite plates subjected to electrical current pulse loads of up to 1700 Amps. For 32 ply unidirectional IM7/977-3 specimens, the peak impact load and absorbed energy increased slightly with the addition of a current pulse at the time of an impact event. In 16 ply cross-ply IM7/977-2 specimens, the addition of the current pulse caused detrimental effects due to electrical arcing at the interface between the composite and electrodes. Further refinement of the experimental setup should minimize the risk of electrical arcing and should better elucidate the effects of a current pulse on the impact strength of the specimens.
Method and apparatus for characterizing reflected ultrasonic pulses
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)
1991-01-01
The invention is a method of and apparatus for characterizing the amplitudes of a sequence of reflected pulses R1, R2, and R3 by converting them into corresponding electric signals E1, E2, and E3 to substantially the same value during each sequence thereby restoring the reflected pulses R1, R2, and R3 to their initial reflection values by timing means, an exponential generator, and a time gain compensator. Envelope and baseline reject circuits permit the display and accurate location of the time spaced sequence of electric signals having substantially the same amplitude on a measurement scale on a suitable video display or oscilloscope.
OH Production Enhancement in Bubbling Pulsed Discharges
NASA Astrophysics Data System (ADS)
Lungu, Cristian P.; Porosnicu, Corneliu; Jepu, Ionut; Chiru, Petrica; Zaroschi, Valentin; Lungu, Ana M.; Saito, Nagahiro; Bratescu, Maria; Takai, Osamu; Velea, Theodor; Predica, Vasile
2010-10-01
The generation of active species, such as H2O2, O*, OH*, HO2*, O3, N2*, etc, produced in aqueous solutions by HV pulsed discharges was studied in order to find the most efficient way in waste water treatment taking into account that these species are almost stronger oxidizers than ozone. Plasma was generated inside gas bubbles formed by the argon, air and oxygen gas flow between the special designed electrodes. The pulse width and pulse frequency influence was studied in order to increase the efficiency of the OH active species formation. The produced active species were investigated by optical emission spectroscopy and correlated with electrical parameters of the discharges (frequency, pulse width, amplitude, and rise and decay time).
Hardness of pulsed electric current sintered and hot isostatically pressed Mo(Si,Al)2
NASA Astrophysics Data System (ADS)
Tanabe, Jun
2005-05-01
We improved the reactivity and mechanical characteristics of Mo(Si,Al)2 by pulsed electric current sintering (PECS) and hot isostatic pressing (HIP), and evaluated its reaction state and mechanical characteristics using energy dispersive spectroscopy (EDS), X-ray diffraction, and a hardness test. Mo(Si,Al)2 was generated by pretreatment using a furnace, and the application of the PECS and HIP treatments further densified the sintered body, resulting in an increase in the hardness.
Franks, L.A.; Nelson, M.A.
1979-12-07
The invention is a method by which an optical pulse of an arbitrary but defined shape may be transformed into a virtual multitude of optical or electrical output pulse shapes. Since the method is not limited to any particular input pulse shape, the output pulse shapes that can be generated thereby are virtually unlimited. Moreover, output pulse widths as narrow as about 0.1 nsec can be readily obtained since optical pulses of less than a few picoseconds are available for use as driving pulses. The range of output pulse widths obtainable is very large, the limiting factors being the driving source energy and the particular shape of the desired output pulse.
NASA Astrophysics Data System (ADS)
Hayashi, Yui; Takada, Noriharu; Wahyudiono, Kanda, Hideki; Goto, Motonobu
2017-05-01
Active chlorine species such as chlorine molecules and hypochlorous acid have been known as high performance sanitizers. They would act more reactive on chemical and biological substances when an electrical discharge was introduced in water containing an electrolyte substance. Here, the reaction of chloride (Cl-) ions were examined by introducing of a pulsed discharge plasma in sodium chloride (NaCl) solution as an electrolyte solution at room temperature. The results show that a large electrical current generated by the pulsed discharge plasma affected the reaction of Cl- ions to result available chlorine. The reaction pathway for available chlorine production was assumed similar with the reaction pathway as electrolysis. A pulsed discharge plasma in NaCl solution in the presence of argon (Ar) fine bubbles exhibited intense emissions and high electron density compared to when no Ar fine bubbles were introduced. At these conditions, the dissociation reaction rate of water increased drastically leads to the formation of 0 atoms. As a result, the reaction of Cl- ions and the available chlorine generation were also increased.
A 7.8 kV nanosecond pulse generator with a 500 Hz repetition rate
NASA Astrophysics Data System (ADS)
Lin, M.; Liao, H.; Liu, M.; Zhu, G.; Yang, Z.; Shi, P.; Lu, Q.; Sun, X.
2018-04-01
Pseudospark switches are widely used in pulsed power applications. In this paper, we present the design and performance of a 500 Hz repetition rate high-voltage pulse generator to drive TDI-series pseudospark switches. A high-voltage pulse is produced by discharging an 8 μF capacitor through a primary windings of a setup isolation transformer using a single metal-oxide-semiconductor field-effect transistor (MOSFET) as a control switch. In addition, a self-break spark gap is used to steepen the pulse front. The pulse generator can deliver a high-voltage pulse with a peak trigger voltage of 7.8 kV, a peak trigger current of 63 A, a full width at half maximum (FWHM) of ~30 ns, and a rise time of 5 ns to the trigger pin of the pseudospark switch. During burst mode operation, the generator achieved up to a 500 Hz repetition rate. Meanwhile, we also provide an AC heater power circuit for heating a H2 reservoir. This pulse generator can be used in circuits with TDI-series pseudospark switches with either a grounded cathode or with a cathode electrically floating operation. The details of the circuits and their implementation are described in the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xuebao, E-mail: lxb08357x@ncepu.edu.cn; Cui, Xiang, E-mail: x.cui@ncepu.edu.cn; Ma, Wenzuo
The corona-generated audible noise (AN) has become one of decisive factors in the design of high voltage direct current (HVDC) transmission lines. The AN from transmission lines can be attributed to sound pressure pulses which are generated by the multiple corona sources formed on the conductor, i.e., transmission lines. In this paper, a detailed time-domain characteristics of the sound pressure pulses, which are generated by the DC corona discharges formed over the surfaces of a stranded conductors, are investigated systematically in a laboratory settings using a corona cage structure. The amplitude of sound pressure pulse and its time intervals aremore » extracted by observing a direct correlation between corona current pulses and corona-generated sound pressure pulses. Based on the statistical characteristics, a stochastic model is presented for simulating the sound pressure pulses due to DC corona discharges occurring on conductors. The proposed stochastic model is validated by comparing the calculated and measured A-weighted sound pressure level (SPL). The proposed model is then used to analyze the influence of the pulse amplitudes and pulse rate on the SPL. Furthermore, a mathematical relationship is found between the SPL and conductor diameter, electric field, and radial distance.« less
NASA Astrophysics Data System (ADS)
Bhattacharjee, N.; Horowitz, L. F.; Folch, A.
2016-10-01
Concerns over biosafety, cost, and carrying capacity of viral vectors have accelerated research into physical techniques for gene delivery such as electroporation and mechanoporation. Advances in microfabrication have made it possible to create high electric fields over microscales, resulting in more efficient DNA delivery and higher cell viability. Continuous-flow microfluidic methods are typically more suitable for cellular therapies where a large number of cells need to be transfected under sterile conditions. However, the existing continuous-flow designs used to generate multiple pulses either require expensive peripherals such as high-voltage (>400 V) sources or function generators, or result in reduced cell viability due to the proximity of the cells to the electrodes. In this paper, we report a continuous-flow microfluidic device whose channel geometry reduces instrumentation demands and minimizes cellular toxicity. Our design can generate multiple pulses of high DC electric field strength using significantly lower voltages (15-60 V) than previous designs. The cells flow along a serpentine channel that repeatedly flips the cells between a cathode and an anode at high throughput. The cells must flow through a constriction each time they pass from an anode to a cathode, exposing them to high electric field strength for short durations of time (the "pulse-width"). A conductive biocompatible poly-aniline hydrogel network formed in situ is used to apply the DC voltage without bringing the metal electrodes close to the cells, further sheltering cells from the already low voltage electrodes. The device was used to electroporate multiple cell lines using electric field strengths between 700 and 800 V/cm with transfection efficiencies superior than previous flow-through designs.
Bhattacharjee, N; Horowitz, L F; Folch, A
2016-10-17
Concerns over biosafety, cost, and carrying capacity of viral vectors have accelerated research into physical techniques for gene delivery such as electroporation and mechanoporation. Advances in microfabrication have made it possible to create high electric fields over microscales, resulting in more efficient DNA delivery and higher cell viability. Continuous-flow microfluidic methods are typically more suitable for cellular therapies where a large number of cells need to be transfected under sterile conditions. However, the existing continuous-flow designs used to generate multiple pulses either require expensive peripherals such as high-voltage (>400 V) sources or function generators, or result in reduced cell viability due to the proximity of the cells to the electrodes. In this paper, we report a continuous-flow microfluidic device whose channel geometry reduces instrumentation demands and minimizes cellular toxicity. Our design can generate multiple pulses of high DC electric field strength using significantly lower voltages (15-60 V) than previous designs. The cells flow along a serpentine channel that repeatedly flips the cells between a cathode and an anode at high throughput. The cells must flow through a constriction each time they pass from an anode to a cathode, exposing them to high electric field strength for short durations of time (the "pulse-width"). A conductive biocompatible poly-aniline hydrogel network formed in situ is used to apply the DC voltage without bringing the metal electrodes close to the cells, further sheltering cells from the already low voltage electrodes. The device was used to electroporate multiple cell lines using electric field strengths between 700 and 800 V/cm with transfection efficiencies superior than previous flow-through designs.
Calorimetric system and method
Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.; Moorman, Jack O.
1998-09-15
Apparatus for measuring heat capacity of a sample where a series of measurements are taken in succession comprises a sample holder in which a sample to be measured is disposed, a temperature sensor and sample heater for providing a heat pulse thermally connected to the sample, and an adiabatic heat shield in which the sample holder is positioned and including an electrical heater. An electrical power supply device provides an electrical power output to the sample heater to generate a heat pulse. The electrical power from a power source to the heat shield heater is adjusted by a control device, if necessary, from one measurement to the next in response to a sample temperature-versus-time change determined before and after a previous heat pulse to provide a subsequent sample temperature-versus-time change that is substantially linear before and after the subsequent heat pulse. A temperature sensor is used and operable over a range of temperatures ranging from approximately 3K to 350K depending upon the refrigerant used. The sample optionally can be subjected to dc magnetic fields such as from 0 to 12 Tesla (0 to 120 kOe).
Pulsed electrical discharge in gas bubbles in water
NASA Astrophysics Data System (ADS)
Gershman, Sophia
A phenomenological picture of pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging methods. The discharge is generated by applying one microsecond long 5 to 20 kilovolt pulses between the needle and disk electrodes submerged in water. A gas bubble is generated at the tip of the needle electrode. The study includes detailed experimental investigation of the discharge in argon bubbles and a brief look at the discharge in oxygen bubbles. Imaging, electrical characteristics, and time-resolved optical emission data point to a fast streamer propagation mechanism and formation of a plasma channel in the bubble. Spectroscopic methods based on line intensity ratios and Boltzmann plots of line intensities of argon, atomic hydrogen, and argon ions and the examination of molecular emission bands from molecular nitrogen and hydroxyl radicals provide evidence of both fast beam-like electrons and slow thermalized ones with temperatures of 0.6 -- 0.8 electron-volts. The collisional nature of plasma at atmospheric pressure affects the decay rates of optical emission. Spectroscopic study of rotational-vibrational bands of hydroxyl radical and molecular nitrogen gives vibrational and rotational excitation temperatures of the discharge of about 0.9 and 0.1 electron-volt, respectively. Imaging and electrical evidence show that discharge charge is deposited on the bubble wall and water serves as a dielectric barrier for the field strength and time scales of this experiment. Comparing the electrical and imaging information for consecutive pulses applied at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from long-lived chemical species, such as ozone and oxygen. Intermediate values for the discharge gap and pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique compared to the traditional corona or dielectric barrier discharges. These conditions make the experimental evidence presented in this work valuable for the advancement of modeling and the theoretical understanding of the discharge in bubbles in water.
High-intensity pulsed beam source with tunable operation mode
NASA Astrophysics Data System (ADS)
Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.
2017-05-01
The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.
Çiftci, Orçun; Yılmaz, Kerem Can; Sezgin, Atilla; Özin, Mehmet Bülent; Müderrisoğlu, İbrahim Haldun; Haberal, Mehmet
2018-03-01
Cardiac implantable electrical devices are widely used for patients with advanced heart failure and are usually explanted during orthotopic heart transplant. However, lead fragments and the pulse generator are sometimes left after the procedure. Given the concerns of infectious and thromboembolic complications, their removal is recommended. Herein, we report our experience with cardiac implantable electrical device explantation after orthotopic heart transplant. We included recipients of heart transplants performed at Başkent University Faculty of Medicine, Department of Cardiovascular Surgery, who underwent lead and pulse generator explantation by manual traction between January 2012 and June 2017. We analyzed patient demographic, clinical, biochemical, and treatment properties. Sixteen patients (11 males, 5 females) with a median age of 45 years (range, 18-52 y) were included. Two patients (12.5%) died during follow-up but not secondary to device explantation. All patients were using immunosuppressives and 50% were receiving antiplatelet/anticoagulant agents. All pulse generators were located at the left prepectoral area, with tips of lead fragments in the superior vena cava or left subclavian vein. No procedural complications were observed. Aspirin was continued uninterrupted perioperatively, warfarin was stopped 2 days before the procedure, and low-molecular-weight heparins were skipped on the morning and evening of the procedure. One patient (6.3%) complained of postoperative pain, and another (6.3%) developed a pocket hematoma, which was treated conservatively. No patient developed fever, clinical infection, or major bleeding. Preoperative and postoperative levels of hemoglobin, white blood cells, and C-reactive protein were similar. No demographic, procedural, or biochemical variable was significantly correlated with postprocedural complications. In our cohort, explantation of lead fragments and pulse generators of cardiac implantable electrical devices was safe after heart transplant. It appears that neither antiplatelet/anticoagulant agents nor immunosuppressives seem to put patients at increased risk of postoperative complications.
Precision measurement of electric organ discharge timing from freely moving weakly electric fish.
Jun, James J; Longtin, André; Maler, Leonard
2012-04-01
Physiological measurements from an unrestrained, untethered, and freely moving animal permit analyses of neural states correlated to naturalistic behaviors of interest. Precise and reliable remote measurements remain technically challenging due to animal movement, which perturbs the relative geometries between the animal and sensors. Pulse-type electric fish generate a train of discrete and stereotyped electric organ discharges (EOD) to sense their surroundings actively, and rapid modulation of the discharge rate occurs while free swimming in Gymnotus sp. The modulation of EOD rates is a useful indicator of the fish's central state such as resting, alertness, and learning associated with exploration. However, the EOD pulse waveforms remotely observed at a pair of dipole electrodes continuously vary as the fish swims relative to the electrodes, which biases the judgment of the actual pulse timing. To measure the EOD pulse timing more accurately, reliably, and noninvasively from a free-swimming fish, we propose a novel method based on the principles of waveform reshaping and spatial averaging. Our method is implemented using envelope extraction and multichannel summation, which is more precise and reliable compared with other widely used threshold- or peak-based methods according to the tests performed under various source-detector geometries. Using the same method, we constructed a real-time electronic pulse detector performing an additional online pulse discrimination routine to enhance further the detection reliability. Our stand-alone pulse detector performed with high temporal precision (<10 μs) and reliability (error <1 per 10(6) pulses) and permits longer recording duration by storing only event time stamps (4 bytes/pulse).
NASA Astrophysics Data System (ADS)
Baranov, M. I.; Rudakov, S. V.
2018-03-01
The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.
NASA Astrophysics Data System (ADS)
Baranov, M. I.; Rudakov, S. V.
2018-05-01
The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.
Latching Solenoid-Operated Ball Valve
NASA Technical Reports Server (NTRS)
Brudnicki, Myron
1994-01-01
Proposed solenoid-operated ball valve latches in open or closed position until energized to change position. Electrical energy consumed only during opening or closing motion. Valve ball contains central channel through which fluid could flow. Made of highly magnetically permeable steel. When appropriate coil(s) energized by brief pulse (or pulses) of electrical current at appropriate polarity, ball rotates clockwise until permanent magnets come to rest against hard stops in housing, and inlet and outlet ports aligned with central channel so fluid flows through valve. Magnets adhere to stops by magnetic attraction, latching valve in open position. To close valve, appropriate coil(s) energized by pulse (or pulses) of appropriate polarity to generate magnetic forces rotating ball counterclockwise until magnets make contact with hard stops, and inlet and outlet ports sealed.
Yu, Binglan; Blaesi, Aron H; Casey, Noel; Raykhtsaum, Grigory; Zazzeron, Luca; Jones, Rosemary; Morrese, Alexander; Dobrynin, Danil; Malhotra, Rajeev; Bloch, Donald B; Goldstein, Lee E; Zapol, Warren M
2016-11-30
Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation without dilating the systemic circulation. However, the current NO/N 2 cylinder delivery system is cumbersome and expensive. We developed a lightweight, portable, and economical device to generate NO from air by pulsed electrical discharge. The objective of this study was to investigate and optimize the purity and safety of NO generated by this device. By using low temperature streamer discharges in the plasma generator, we produced therapeutic levels of NO with very low levels of nitrogen dioxide (NO 2 ) and ozone. Despite the low temperature, spark generation eroded the surface of the electrodes, contaminating the gas stream with metal particles. During prolonged NO generation there was gradual loss of the iridium high-voltage tip (-90 μg/day) and the platinum-nickel ground electrode (-55 μg/day). Metal particles released from the electrodes were trapped by a high-efficiency particulate air (HEPA) filter. Quadrupole mass spectroscopy measurements of effluent gas during plasma NO generation showed that a single HEPA filter removed all of the metal particles. Mice were exposed to breathing 50 parts per million of electrically generated NO in air for 28 days with only a scavenger and no HEPA filter; the mice did not develop pulmonary inflammation or structural changes and iridium and platinum particles were not detected in the lungs of these mice. In conclusion, an electric plasma generator produced therapeutic levels of NO from air; scavenging and filtration effectively eliminated metallic impurities from the effluent gas. Copyright © 2016 Elsevier Inc. All rights reserved.
Yu, Binglan; Blaesi, Aron H.; Casey, Noel; Raykhtsaum, Grigory; Zazzeron, Luca; Jones, Rosemary; Morrese, Alexander; Dobrynin, Danil; Malhotra, Rajeev; Bloch, Donald B.; Goldstein, Lee E.; Zapol, Warren M.
2016-01-01
Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation without dilating the systemic circulation. However, the current NO/N2 cylinder delivery system is cumbersome and expensive. We developed a lightweight, portable, and economical device to generate NO from air by pulsed electrical discharge. The objective of this study was to investigate and optimize the purity and safety of NO generated by this device. By using low temperature streamer discharges in the plasma generator, we produced therapeutic levels of NO with very low levels of nitrogen dioxide (NO2) and ozone. Despite the low temperature, spark generation eroded the surface of the electrodes, contaminating the gas stream with metal particles. During prolonged NO generation there was gradual loss of the iridium high-voltage tip (−90 µg/day) and the platinum-nickel ground electrode (−55 µg/day). Metal particles released from the electrodes were trapped by a high-efficiency particulate air (HEPA) filter. Quadrupole mass spectroscopy measurements of effluent gas during plasma NO generation showed that a single HEPA filter removed all of the metal particles. Mice were exposed to breathing 50 parts per million of electrically generated NO in air for 28 days with only a scavenger and no HEPA filter; the mice did not develop pulmonary inflammation or structural changes and iridium and platinum particles were not detected in the lungs of these mice. In conclusion, an electric plasma generator produced therapeutic levels of NO from air; scavenging and filtration effectively eliminated metallic impurities from the effluent gas. PMID:27592386
OH Production Enhancement in Bubbling Pulsed Discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lungu, Cristian P.; Porosnicu, Corneliu; Jepu, Ionut
2010-10-13
The generation of active species, such as H{sub 2}O{sub 2}, O{sup *}, OH*, HO{sub 2}*, O{sub 3}, N{sub 2}{sup *}, etc, produced in aqueous solutions by HV pulsed discharges was studied in order to find the most efficient way in waste water treatment taking into account that these species are almost stronger oxidizers than ozone. Plasma was generated inside gas bubbles formed by the argon, air and oxygen gas flow between the special designed electrodes. The pulse width and pulse frequency influence was studied in order to increase the efficiency of the OH active species formation. The produced active speciesmore » were investigated by optical emission spectroscopy and correlated with electrical parameters of the discharges (frequency, pulse width, amplitude, and rise and decay time).« less
Maximizing fluid delivered by bubble-free electroosmotic pump with optimum pulse voltage waveform.
Tawfik, Mena E; Diez, Francisco J
2017-03-01
In generating high electroosmotic (EO) flows for use in microfluidic pumps, a limiting factor is faradaic reactions that are more pronounced at high electric fields. These reactions lead to bubble generation at the electrodes and pump efficiency reduction. The onset of gas generation for high current density EO pumping depends on many parameters including applied voltage, working fluid, and pulse duration. The onset of gas generation can be delayed and optimized for maximum volume pumped in the minimum time possible. This has been achieved through the use of a novel numerical model that predicts the onset of gas generation during EO pumping using an optimized pulse voltage waveform. This method allows applying current densities higher than previously reported. Optimal pulse voltage waveforms are calculated based on the previous theories for different current densities and electrolyte molarity. The electroosmotic pump performance is investigated by experimentally measuring the fluid volume displaced and flow rate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rovere, Andrea; Jeong, Young-Gyun; Piccoli, Riccardo; Lee, Seung-Heon; Lee, Seung-Chul; Kwon, O-Pil; Jazbinsek, Mojca; Morandotti, Roberto; Razzari, Luca
2018-02-05
We present the generation of high-peak-electric-field terahertz pulses via collinear optical rectification in a 2-(4-hydroxy-3-methoxystyryl)-1-methilquinolinium-2,4,6-trimethylbenzenesulfonate (HMQ-TMS) organic crystal. The crystal is pumped by an amplified ytterbium laser system, emitting 170-fs-long pulses centered at 1030 nm. A terahertz peak electric field greater than 200 kV/cm is obtained for 420 µJ of optical pump energy, with an energy conversion efficiency of 0.26% - about two orders of magnitude higher than in common inorganic crystals collinearly pumped by amplified femtosecond lasers. An open-aperture Z-scan measurement performed on an n-doped InGaAs thin film using such terahertz source shows a nonlinear increase in the terahertz transmission of about 2.2 times. Our findings demonstrate the potential of this terahertz generation scheme, based on ytterbium laser technology, as a simple and efficient alternative to the existing intense table-top terahertz sources. In particular, we show that it can be readily used to explore nonlinear effects at terahertz frequencies.
NASA Astrophysics Data System (ADS)
Li, Xuebao; Li, Dayong; Chen, Bo; Cui, Xiang; Lu, Tiebing; Li, Yinfei
2018-04-01
The corona-generated electromagnetic interference commonly known as radio interference (RI) has become a limiting factor for the design of high voltage direct current transmission lines. In this paper, a time-domain measurement system is developed to measure the time-domain characteristics of corona-generated RI from a single corona source under a positive corona source. In the experiments, the corona current pulses are synchronously measured through coupling capacitors. The one-to-one relationship between the corona current pulse and measured RI voltage pulse is observed. The statistical characteristics of pulse parameters are analyzed, and the correlations between the corona current pulse and RI voltage pulse in the time-domain and frequency-domain are analyzed. Depending on the measured corona current pulses, the time-domain waveform of corona-generated RI is calculated on the basis of the propagation model of corona current on the conductor, the dipolar model for electric field calculation, and the antenna model for inducing voltage calculation. The well matched results between measured and simulated waveforms of RI voltage can show the validity of the measurement and calculation method presented in this paper, which also further show the close correlation between corona current and corona-generated RI.
Measurements of Electric Field in a Nanosecond Pulse Discharge by 4-WAVE Mixing
NASA Astrophysics Data System (ADS)
Baratte, Edmond; Adamovich, Igor V.; Simeni Simeni, Marien; Frederickson, Kraig
2017-06-01
Picosecond four-wave mixing is used to measure temporally and Picosecond four-wave mixing is used to measure temporally and spatially resolved electric field in a nanosecond pulse dielectric discharge sustained in room air and in an atmospheric pressure hydrogen diffusion flame. Measurements of the electric field, and more precisely the reduced electric field (E/N) in the plasma is critical for determination rate coefficients of electron impact processes in the plasma, as well as for quantifying energy partition in the electric discharge among different molecular energy modes. The four-wave mixing measurements are performed using a collinear phase matching geometry, with nitrogen used as the probe species, at temporal resolution of about 2 ns . Absolute calibration is performed by measurement of a known electrostatic electric field. In the present experiments, the discharge is sustained between two stainless steel plate electrodes, each placed in a quartz sleeve, which greatly improves plasma uniformity. Our previous measurements of electric field in a nanosecond pulse dielectric barrier discharge by picosecond 4-wave mixing have been done in air at room temperature, in a discharge sustained between a razor edge high-voltage electrode and a plane grounded electrode (a quartz plate or a layer of distilled water). Electric field measurements in a flame, which is a high-temperature environment, are more challenging because the four-wave mixing signal is proportional to the to square root of the difference betwen the populations of N2 ground vibrational level (v=0) and first excited vibrational level (v=1). At high temperatures, the total number density is reduced, thus reducing absolute vibrational level populations of N2. Also, the signal is reduced further due to a wider distribution of N2 molecules over multiple rotational levels at higher temperatures, while the present four-wave mixing diagnostics is using spectrally narrow output of a ps laser and a high-pressure Raman cell, providing access only to a few N2 rotational levels. Because of this, the four-wave mixing signal in the flame is lower by more than an order of magnitude compared to the signal generated in room temperature air plasma. Preliminary experiments demonstrated four-wave mixing signal generated by the electric field in the flame, following ns pulse discharge breakdown. The electric field in the flame is estimated using four-wave mixing signal calibration vs. temperature in electrostatic electric field generated in heated air. Further measurements in the flame are underway.
Agricultural and Food Processing Applications of Pulsed Power Technology
NASA Astrophysics Data System (ADS)
Takaki, Koichi; Ihara, Satoshi
Recent progress of agricultural and food processing applications of pulsed power is described in this paper. Repetitively operated compact pulsed power generators with a moderate peak power have been developed for the agricultural and the food processing applications. These applications are mainly based on biological effects and can be categorized as decontamination of air and liquid, germination promotion, inhabitation of saprophytes growth, extraction of juice from fruits and vegetables, and fertilization of liquid medium, etc. Types of pulsed power that have biological effects are caused with gas discharges, water discharges, and electromagnetic fields. The discharges yield free radicals, UV radiation, intense electric field, and shock waves. Biologically based applications of pulsed power are performed by selecting the type that gives the target objects the adequate result from among these agents or byproducts. For instance, intense electric fields form pores on the cell membrane, which is called electroporation, or influence the nuclei.
Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films
NASA Astrophysics Data System (ADS)
Chou, Chia-Man; Lai, Chih-Chang; Chang, Chih-Wei; Wen, Kai-Shin; Hsiao, Vincent K. S.
2017-07-01
We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO)-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD) incorporated with radio-frequency (r.f.)-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD)-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC) structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr). High oxygen vapor pressure (150 mTorr) and low r.f. power (10 W) are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.
NASA Astrophysics Data System (ADS)
Wang, Yang; Song, Hai-Ying; Liu, H. Y.; Liu, Shi-Bing
2017-07-01
We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.
Lasche, G.P.
1983-09-29
The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.
Pulsed magnetic field excitation sensitivity of match-type electric blasting caps
NASA Astrophysics Data System (ADS)
Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A.
2010-10-01
This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED.
Pulsed magnetic field excitation sensitivity of match-type electric blasting caps.
Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A
2010-10-01
This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zutavern, Fred J.; Hjalmarson, Harold P.; Bigman, Verle Howard
This report describes the development of ultra-short pulse laser (USPL) induced terahertz (THz) radiation to image electronic plasmas during electrical breakdown. The technique uses three pulses from two USPLs to (1) trigger the breakdown, (2) create a 2 picosecond (ps, 10 -12 s), THz pulse to illuminate the breakdown, and (3) record the THz image of the breakdown. During this three year internal research program, sub-picosecond jitter timing for the lasers, THz generation, high bandwidth (BW) diagnostics, and THz image acquisition was demonstrated. High intensity THz radiation was optically-induced in a pulse-charged gallium arsenide photoconductive switch. The radiation was collected,more » transported, concentrated, and co-propagated through an electro-optic crystal with an 800 nm USPL pulse whose polarization was rotated due to the spatially varying electric field of the THz image. The polarization modulated USPL pulse was then passed through a polarizer and the resulting spatially varying intensity was detected in a high resolution digital camera. Single shot images had a signal to noise of %7E3:1. Signal to noise was improved to %7E30:1 with several experimental techniques and by averaging the THz images from %7E4000 laser pulses internally and externally with the camera and the acquisition system (40 pulses per readout). THz shadows of metallic films and objects were also recorded with this system to demonstrate free-carrier absorption of the THz radiation and improve image contrast and resolution. These 2 ps THz pulses were created and resolved with 100 femtosecond (fs, 10 -15 s) long USPL pulses. Thus this technology has the capability to time-resolve extremely fast repetitive or single shot phenomena, such as those that occur during the initiation of electrical breakdown. The goal of imaging electrical breakdown was not reached during this three year project. However, plans to achieve this goal as part of a follow-on project are described in this document. Further modifications to improve the THz image contrast and resolution are proposed, and after they are made, images of photo-induced carriers in gallium arsenide and silicon will be acquired to evaluate image sensitivity versus carrier density. Finally electrical breakdown will be induced with the first USPL pulse, illuminated with THz radiation produced with the second USPL pulse and recorded with the third USPL pulse.« less
NASA Technical Reports Server (NTRS)
Mach, D. A.; Blakeslee, R. J.; Bailey, J. C.; Farrell, W. M.; Goldberg, R. A.; Desch, M. D.; Houser, J. G.
2003-01-01
The Altus Cumulus Electrification Study (ACES) was conducted during the month of August, 2002 in an area near Key West, Florida. One of the goals of this uninhabited aerial vehicle (UAV) study was to collect high resolution optical pulse and electric field data from thunderstorms. During the month long campaign, we acquired 5294 lightning generated optical pulses with associated electric field changes. Most of these observations were made while close to the top of the storms. We found filtered mean and median 10-10% optical pulse widths of 875 and 830 microns respectively while the 50-50% mean and median optical pulse widths are 422 and 365 microns respectively. These values are similar to previous results as are the 10-90% mean and median rise times of 327 and 265 microns. The peak electrical to optical pulse delay mean and median were 209 and 145 microns which is longer than one would expect from theoretical results. The results of the pulse analysis will contribute to further validation of the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS) satellites. Pre-launch estimates of the flash detection efficiency were based on a small sample of optical pulse measurements associated with less than 350 lightning discharges collected by NASA U-2 aircraft in the early 1980s. Preliminary analyses of the ACES measurements show that we have greatly increased the number of optical pulses available for validation of the LIS and other orbital lightning optical sensors. Since the Altus was often close to the cloud tops, many of the optical pulses are from low-energy pulses. From these low-energy pulses, we can determine the fraction of optical lightning pulses below the thresholds of LIS, OTD, and any future satellite-based optical sensors such as the geostationary Lightning Mapping Sensor.
Development of Compact Ozonizer with High Ozone Output by Pulsed Power
NASA Astrophysics Data System (ADS)
Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei
Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.
All-optical pulse-echo ultrasound probe for intravascular imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Colchester, Richard J.; Noimark, Sacha; Mosse, Charles A.; Zhang, Edward Z.; Beard, Paul C.; Parkin, Ivan P.; Papakonstantinou, Ioannis; Desjardins, Adrien E.
2016-02-01
High frequency ultrasound probes such as intravascular ultrasound (IVUS) and intracardiac echocardiography (ICE) catheters can be invaluable for guiding minimally invasive medical procedures in cardiology such as coronary stent placement and ablation. With current-generation ultrasound probes, ultrasound is generated and received electrically. The complexities involved with fabricating these electrical probes can result in high costs that limit their clinical applicability. Additionally, it can be challenging to achieve wide transmission bandwidths and adequate wideband reception sensitivity with small piezoelectric elements. Optical methods for transmitting and receiving ultrasound are emerging as alternatives to their electrical counterparts. They offer several distinguishing advantages, including the potential to generate and detect the broadband ultrasound fields (tens of MHz) required for high resolution imaging. In this study, we developed a miniature, side-looking, pulse-echo ultrasound probe for intravascular imaging, with fibre-optic transmission and reception. The axial resolution was better than 70 microns, and the imaging depth in tissue was greater than 1 cm. Ultrasound transmission was performed by photoacoustic excitation of a carbon nanotube/polydimethylsiloxane composite material; ultrasound reception, with a fibre-optic Fabry-Perot cavity. Ex vivo tissue studies, which included healthy swine tissue and diseased human tissue, demonstrated the strong potential of this technique. To our knowledge, this is the first study to achieve an all-optical pulse-echo ultrasound probe for intravascular imaging. The potential for performing all-optical B-mode imaging (2D and 3D) with virtual arrays of transmit/receive elements, and hybrid imaging with pulse-echo ultrasound and photoacoustic sensing are discussed.
Shao, Jing; Sun, Junqiang
2012-08-15
We propose and experimentally demonstrate a simple and flexible photonic scheme for generation and modulation of ultrawideband (UWB) using a phase modulator and a fiber delay interferometer (DI)-based multichannel frequency discrimination. By introducing a Gaussian signal to the phase modulator, the UWB polarity-switchable doublet pulses can be achieved by combining the pair of UWB monocycle pulses with inverted polarities at the DI outputs under proper time delay. Furthermore, the pulse shape modulation, pulse position modulation, and on-off keying can be performed by coding the electrical data patterns and adjusting the time delay between the two monocycle pulses. Only a laser source introduced in the architecture guarantees the excellent dispersion tolerance over 75 km optical fiber link for UWB pulse sequence, which has potential application in future high-speed UWB impulse radio over optical fiber access networks.
Frelinger, Andrew L; Gerrits, Anja J; Garner, Allen L; Torres, Andrew S; Caiafa, Antonio; Morton, Christine A; Berny-Lang, Michelle A; Carmichael, Sabrina L; Neculaes, V Bogdan; Michelson, Alan D
2016-01-01
Activated autologous platelet-rich plasma (PRP) used in therapeutic wound healing applications is poorly characterized and standardized. Using pulsed electric fields (PEF) to activate platelets may reduce variability and eliminate complications associated with the use of bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration, high electric field (SMHEF) pulses generates a greater number of platelet-derived microparticles, increased expression of prothrombotic platelet surfaces, and differential release of growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF pulses induced greater cell proliferation than plasma. To determine whether sub-microsecond duration, low electric field (SMLEF) bipolar pulses results in differential activation of PRP compared to SMHEF, with respect to profiles of activation markers, growth factor release, and cell proliferation capacity. PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dextrose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF pulses was performed using a standard electroporation cuvette preloaded with CaCl2 and a prototype instrument designed to take into account the electrical properties of PRP. Flow cytometry was used to assess platelet surface P-selectin expression, and annexin V binding. Platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), endothelial growth factor (EGF) and platelet factor 4 (PF4), and were measured by ELISA. The ability of supernatants to stimulate proliferation of human epithelial cells in culture was also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM CaCl2 activated with 1 U/mL bovine thrombin. PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, consistent with the presence of platelet-derived microparticles, platelets, and platelet aggregates whereas SMHEF pulses primarily resulted in platelet-derived microparticles. Microparticles and platelets in PRP activated with SMLEF bipolar pulses had significantly lower annexin V-positivity than those following SMHEF activation. In contrast, the % P-selectin positivity and surface P-selectin expression (MFI) for platelets and microparticles in SMLEF bipolar pulse activated PRP was significantly higher than that in SMHEF-activated PRP, but not significantly different from that produced by thrombin activation. Higher levels of EGF were observed following either SMLEF bipolar pulses or SMHEF pulses of PRP than after bovine thrombin activation while VEGF, PDGF, and PF4 levels were similar with all three activating conditions. Cell proliferation was significantly increased by releasates of both SMLEF bipolar pulse and SMHEF pulse activated PRP compared to plasma alone. PEF activation of PRP at bipolar low vs. monopolar high field strength results in differential platelet-derived microparticle production and activation of platelet surface procoagulant markers while inducing similar release of growth factors and similar capacity to induce cell proliferation. Stimulation of PRP with SMLEF bipolar pulses is gentler than SMHEF pulses, resulting in less platelet microparticle generation but with overall activation levels similar to that obtained with thrombin. These results suggest that PEF provides the means to alter, in a controlled fashion, PRP properties thereby enabling evaluation of their effects on wound healing and clinical outcomes.
2011-03-23
prac- tical max impulse to 1mNs. The newly developed Piezo - electric Impact Hammer (PIH) calibration system over- comes geometric limits of ESC...the fins to behave as part of an LRC circuit which results in voltage oscillations. By adding a resistor in series between the pulse generator and...series resistor as well as the effects of no loading on the pulse generator. III. PIEZOELECTRIC IMPACT HAMMER SYSTEM The second calibration method tested
Electro-optically Induced and Manipulated Terahertz Waves from Fe-doped InGaAs Surfaces
NASA Astrophysics Data System (ADS)
Hatem, O.
2018-03-01
We demonstrate the presence of dual simultaneous nonlinear mechanisms: field-induced optical rectification (FIOR) and field-induced surge current (FISC) for the generation of terahertz (THz) pulses from p-type and n-type Fe:In0.53Ga0.47As surfaces upon excitation with femtosecond laser pulses centered at 800 nm wavelength. Experimental investigations of the dependence of the generated THz waves on the incident angular optical polarization, optical irradiance, and the direction and magnitude of applied electric DC fields give confirming results to the proposed THz generation mechanisms. Applying external DC electric fields in the plane of the incident optical field shows efficient capability in manipulating the direction and phase of the generated THz waves, and controlling the refractive index of Fe:In0.53Ga0.47As material in the THz range, in addition to enhancing the emitted THz power up to two orders of magnitude. The fast and reliable response of Fe:In0.53Ga0.47As to the changes in the direction and magnitude of the optical and electrical fields suggests its use in amplitude and phase modulators, and ultrafast optoelectronic systems.
NASA Astrophysics Data System (ADS)
Wong, Derek N.
The US Navy is actively developing all electric fleets, raising serious questions about what is required of onboard power supplies in order to properly power the ship's electrical systems. This is especially relevant when choosing a viable power source to drive high power propulsion and electric weapon systems in addition to the conventional loads deployed aboard these types of vessels. Especially when high pulsed power loads are supplied, the issue of maintaining power quality becomes important and increasingly complex. Conventionally, a vessel's electrical power is generated using gas turbine or diesel driven motor-generator sets that are very inefficient when they are used outside of their most efficient load condition. What this means is that if the generator is not being utilized continuously at its most efficient load capacity, the quality of the output power may also be effected and fall outside of the acceptable power quality limits imposed through military standards. As a solution to this potential problem, the Navy has proposed using electrochemical storage devices since they are able to buffer conventional generators when the load is operating below the generator's most efficient power level or able to efficiently augment a generator when the load is operating in excess of the generator's most efficient power rating. Specifically, the US Navy is interested in using commercial off-the-shelf (COTS) lithium-ion batteries within an intelligently controlled energy storage module that could act as either a prime power supply for on-board pulsed power systems or as a backup generator to other shipboard power systems. Due to the unique load profile of high-rate pulsed power systems, the implementation of lithium-ion batteries within these complex systems requires them to be operated at very high rates and the effects these things have on cell degradation has been an area of focus. There is very little published research into the effects that high power transient or pulsed loading has on the degradation mechanisms of secondary lithium-ion cells. Prior to performing this work, it was unclear if the implementation of lithium-ion batteries in highly transient load conditions at high rate would accelerate cell degradation mechanisms that have been previously considered as minor issues. This work has focused on answering these previously unanswered questions. In early experiments performed here, COTS lithium-iron-phosphate (LFP) cells were studied under high-rate, transient load conditions and it was found that their capacity fade deviated from the traditional linear behavior and exponentially declined until no charge could be accepted when recharge was attempted at high rate. These findings indicated that subjecting LFP chemistries to transient, high rate charge/discharge profiles induced rapid changes in the electrode/electrolyte interface that rendered the cells useless when high rate recharge was required. These findings suggested there was more phenomena to learn about how these cells degraded under high rate pulsed conditions before they are fielded in Naval applications. Therefore, the research presented here has been focused on understanding the degradation mechanisms that are unique to LFP cells when they are cycled under pulsed load profiles at high charge and discharge rates. In particular, the work has been focused on identifying major degradation reactions that occur by studying the surface chemistry of cycled electrode materials. Efforts have been performed to map the impedance evolution of both cathode and anode half cells, respectively, using a novel three electrode technique that was developed for this research. Using this technique, the progression of degradation has been mapped using analysis of differential capacitance spectrums. In both the three electrode EIS mapping and differential capacitance analysis that has been performed, electrical component models have been developed. The results presented will show that there are unique degradation mechanisms induced through high rate pulsed loading conditions that are not normally seen in low rate continuous cycling of LFP cells.
Methods and Apparatus for Pulsed-DC Dielectric Barrier Discharge Plasma Actuator and Circuit
NASA Technical Reports Server (NTRS)
Corke, Thomas C. (Inventor); Gold, Calman (Inventor); Kaszeta, Richard (Inventor)
2017-01-01
A plasma generating device intended to induce a flow in a fluid via plasma generation includes a dielectric separating two electrodes and a power supply. The first electrode is exposed to a fluid flow while the second electrode is positioned under the dielectric. The power supply is electrically coupled to a switch and the first and second electrodes. When the power supply is energized by repeated action of the switch, it causes a pulsed DC current between the electrodes which causes the fluid to ionize generating a plasma. The generation of the plasma induces a force with a velocity component in the fluid.
Optically Driven Q-Switches For Lasers
NASA Technical Reports Server (NTRS)
Hemmati, Hamid
1994-01-01
Optically driven Q-switches for pulsed lasers proposed, taking place of acousto-optical, magneto-optical, and electro-optical switches. Optical switching beams of proposed Q-switching most likely generated in pulsed diode lasers or light-emitting diodes, outputs of which are amplitude-modulated easily by direct modulation of relatively small input currents. Energy efficiencies exceed those of electrically driven Q-switches.
Calorimetric system and method
Gschneidner, K.A. Jr.; Pecharsky, V.K.; Moorman, J.O.
1998-09-15
Apparatus is described for measuring heat capacity of a sample where a series of measurements are taken in succession comprises a sample holder in which a sample to be measured is disposed, a temperature sensor and sample heater for providing a heat pulse thermally connected to the sample, and an adiabatic heat shield in which the sample holder is positioned and including an electrical heater. An electrical power supply device provides an electrical power output to the sample heater to generate a heat pulse. The electrical power from a power source to the heat shield heater is adjusted by a control device, if necessary, from one measurement to the next in response to a sample temperature-versus-time change determined before and after a previous heat pulse to provide a subsequent sample temperature-versus-time change that is substantially linear before and after the subsequent heat pulse. A temperature sensor is used and operable over a range of temperatures ranging from approximately 3K to 350K depending upon the refrigerant used. The sample optionally can be subjected to dc magnetic fields such as from 0 to 12 Tesla (0 to 120 kOe). 18 figs.
Gas Composition Sensing Using Carbon Nanotube Arrays
NASA Technical Reports Server (NTRS)
Li, Jing; Meyyappan, Meyya
2012-01-01
This innovation is a lightweight, small sensor for inert gases that consumes a relatively small amount of power and provides measurements that are as accurate as conventional approaches. The sensing approach is based on generating an electrical discharge and measuring the specific gas breakdown voltage associated with each gas present in a sample. An array of carbon nanotubes (CNTs) in a substrate is connected to a variable-pulse voltage source. The CNT tips are spaced appropriately from the second electrode maintained at a constant voltage. A sequence of voltage pulses is applied and a pulse discharge breakdown threshold voltage is estimated for one or more gas components, from an analysis of the current-voltage characteristics. Each estimated pulse discharge breakdown threshold voltage is compared with known threshold voltages for candidate gas components to estimate whether at least one candidate gas component is present in the gas. The procedure can be repeated at higher pulse voltages to estimate a pulse discharge breakdown threshold voltage for a second component present in the gas. The CNTs in the gas sensor have a sharp (low radius of curvature) tip; they are preferably multi-wall carbon nanotubes (MWCNTs) or carbon nanofibers (CNFs), to generate high-strength electrical fields adjacent to the tips for breakdown of the gas components with lower voltage application and generation of high current. The sensor system can provide a high-sensitivity, low-power-consumption tool that is very specific for identification of one or more gas components. The sensor can be multiplexed to measure current from multiple CNT arrays for simultaneous detection of several gas components.
Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids.
Dey, Indranuj; Jana, Kamalesh; Fedorov, Vladimir Yu; Koulouklidis, Anastasios D; Mondal, Angana; Shaikh, Moniruzzaman; Sarkar, Deep; Lad, Amit D; Tzortzakis, Stelios; Couairon, Arnaud; Kumar, G Ravindra
2017-10-30
Generation and application of energetic, broadband terahertz pulses (bandwidth ~0.1-50 THz) is an active and contemporary area of research. The main thrust is toward the development of efficient sources with minimum complexities-a true table-top setup. In this work, we demonstrate the generation of terahertz radiation via ultrashort pulse induced filamentation in liquids-a counterintuitive observation due to their large absorption coefficient in the terahertz regime. The generated terahertz energy is more than an order of magnitude higher than that obtained from the two-color filamentation of air (the most standard table-top technique). Such high terahertz energies would generate electric fields of the order of MV cm -1 , which opens the doors for various nonlinear terahertz spectroscopic applications. The counterintuitive phenomenon has been explained via the solution of nonlinear pulse propagation equation in the liquid medium.
Ultrafocused Electromagnetic Field Pulses with a Hollow Cylindrical Waveguide
NASA Astrophysics Data System (ADS)
Maurer, P.; Prat-Camps, J.; Cirac, J. I.; Hänsch, T. W.; Romero-Isart, O.
2017-07-01
We theoretically show that a dipole externally driven by a pulse with a lower-bounded temporal width, and placed inside a cylindrical hollow waveguide, can generate a train of arbitrarily short and focused electromagnetic pulses. The waveguide encloses vacuum with perfect electric conducting walls. A dipole driven by a single short pulse, which is properly engineered to exploit the linear spectral filtering of the cylindrical hollow waveguide, excites longitudinal waveguide modes that are coherently refocused at some particular instances of time, thereby producing arbitrarily short and focused electromagnetic pulses. We numerically show that such ultrafocused pulses persist outside the cylindrical waveguide at distances comparable to its radius.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafer, D.; Toker, G. R.; Gurovich, V. Tz.
2013-05-15
Nanosecond timescale underwater electrical wire explosions of ring-shaped Cu wires were investigated using a pulsed generator with a current amplitude up to 50 kA. It was shown that this type of wire explosion results in the generation of a toroidal shock wave (SW). Time- and space-resolved optical diagnostics were used to determine azimuthal uniformity of the shock wave front and its velocity. It was found that the shock wave preserves its circular front shape in the range of radii 50μm
MULTI-CHANNEL ELECTRIC PULSE HEIGHT ANALYZER
Gallagher, J.D. et al.
1960-11-22
An apparatus is given for converting binary information into coded decimal form comprising means, in combination with a binary adder, a live memory and a source of bigit pulses, for synchronizing the bigit pulses and the adder output pulses; a source of digit pulses synchronized with every fourth bigit pulse; means for generating a conversion pulse in response to the time coincidence of the adder output pulse and a digit pulse: means having a delay equal to two bigit pulse periods coupling the adder output with the memory; means for promptly impressing said conversion pulse on the input of said memory: and means having a delay equal to one bigit pulse period for again impressing the conversion pulse on the input of the memory whereby a fourth bigit adder pulse results in the insertion into the memory of second, third and fourth bigits.
Producing nitric oxide by pulsed electrical discharge in air for portable inhalation therapy.
Yu, Binglan; Muenster, Stefan; Blaesi, Aron H; Bloch, Donald B; Zapol, Warren M
2015-07-01
Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation and is an effective therapy for treating pulmonary hypertension in adults and children. In the United States, the average cost of 5 days of inhaled NO for persistent pulmonary hypertension of the newborn is about $14,000. NO therapy involves gas cylinders and distribution, a complex delivery device, gas monitoring and calibration equipment, and a trained respiratory therapy staff. The objective of this study was to develop a lightweight, portable device to serve as a simple and economical method of producing pure NO from air for bedside or portable use. Two NO generators were designed and tested: an offline NO generator and an inline NO generator placed directly within the inspiratory line. Both generators use pulsed electrical discharges to produce therapeutic range NO (5 to 80 parts per million) at gas flow rates of 0.5 to 5 liters/min. NO was produced from air, as well as gas mixtures containing up to 90% O2 and 10% N2. Potentially toxic gases produced in the plasma, including nitrogen dioxide (NO2) and ozone (O3), were removed using a calcium hydroxide scavenger. An iridium spark electrode produced the lowest ratio of NO2/NO. In lambs with acute pulmonary hypertension, breathing electrically generated NO produced pulmonary vasodilation and reduced pulmonary arterial pressure and pulmonary vascular resistance index. In conclusion, electrical plasma NO generation produces therapeutic levels of NO from air. After scavenging to remove NO2 and O3 and filtration to remove particles, electrically produced NO can provide safe and effective treatment of pulmonary hypertension. Copyright © 2015, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erbert, G
2009-09-01
The Amplitude Modulator Chassis (AMC) is the final component in the MOR system and connects directly to the PAM input through a 100-meter fiber. The 48 AMCs temporally shape the 48 outputs of the MOR using an arbitrary waveform generator coupled to an amplitude modulator. The amplitude modulation element is a two stage, Lithium Niobate waveguide device, where the intensity of the light passing through the device is a function of the electrical drive applied. The first stage of the modulator is connected to a programmable high performance Arbitrary Waveform Generator (AWG) consisting of 140 impulse generators space 250 psmore » apart. An arbitrary waveform is generated by independently varying the amplitude of each impulse generator and then summing the impulses together. In addition to the AWG a short pulse generator is also connected to the first stage of the modulator to provide a sub 100-ps pulse used for timing experiments. The second stage of the modulator is connect to a square pulse generator used to further attenuate any pre or post pulse light passing through the first stage of the modulator. The fast rise and fall time of the square pulse generator is also used to produce fast rise and fall times of the AWG by clipping the AWG pulse. For maximum extinction, a pulse bias voltage is applied to each stage of the modulator. A pulse voltage is applied as opposed to a DC voltage to prevent charge buildup on the modulator. Each bias voltage is adjustable to provide a minimum of 50-dB extinction. The AMC is controlled through ICCS to generate the desired temporal pulse shape. This process involves a closed-loop control algorithm, which compares the desired temporal waveform to the produced optical pulse, and iterates the programming of the AWG until the two waveforms agree within an allowable tolerance.« less
NASA Astrophysics Data System (ADS)
Khalil, A. A. I.
2015-12-01
Double-pulse lasers ablation (DPLA) technique was developed to generate gold (Au) ion source and produce high current under applying an electric potential in an argon ambient gas environment. Two Q-switched Nd:YAG lasers operating at 1064 and 266 nm wavelengths are combined in an unconventional orthogonal (crossed-beam) double-pulse configuration with 45° angle to focus on a gold target along with a spectrometer for spectral analysis of gold plasma. The properties of gold plasma produced under double-pulse lasers excitation were studied. The velocity distribution function (VDF) of the emitted plasma was studied using a dedicated Faraday-cup ion probe (FCIP) under argon gas discharge. The experimental parameters were optimized to attain the best signal to noise (S/N) ratio. The results depicted that the VDF and current signals depend on the discharge applied voltage, laser intensity, laser wavelength and ambient argon gas pressure. A seven-fold increases in the current signal by increasing the discharge applied voltage and ion velocity under applying double-pulse lasers field. The plasma parameters (electron temperature and density) were also studied and their dependence on the delay (times between the excitation laser pulse and the opening of camera shutter) was investigated as well. This study could provide significant reference data for the optimization and design of DPLA systems engaged in laser induced plasma deposition thin films and facing components diagnostics.
NASA Astrophysics Data System (ADS)
Jiang, C.; Carter, C.
2014-12-01
Nanosecond-pulsed plasma jets that are generated under ambient air conditions and free from confinement of electrodes have become of great interest in recent years due to their promising applications in medicine and dentistry. Reactive oxygen species that are generated by nanosecond-pulsed, room-temperature non-equilibrium He-O2 plasma jets among others are believed to play an important role during the bactericidal or sterilization processes. We report here absolute measurements of atomic oxygen density in a 1 mm-diameter He/(1%)O2 plasma jet at atmospheric pressure using two-photon absorption laser-induced fluorescence spectroscopy. Oxygen number density on the order of 1013 cm-3 was obtained in a 150 ns, 6 kV single-pulsed plasma jet for an axial distance up to 5 mm above the device nozzle. Temporally resolved O density measurements showed that there are two maxima, separated in time by 60-70 µs, and a total pulse duration of 260-300 µs. Electrostatic modeling indicated that there are high-electric-field regions near the nozzle exit that may be responsible for the observed temporal behavior of the O production. Both the field-distribution-based estimation of the time interval for the O number density profile and a pulse-energy-dependence study confirmed that electric-field-dependent, direct and indirect electron-induced processes play important roles for O production.
NASA Astrophysics Data System (ADS)
Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Tarasenko, V. F.
2015-07-01
The generation of an ultrashort avalanche electron beam (UAEB) in nitrogen in the pulse-periodic regime is investigated. The gas temperature in the discharge gap of the atmospheric-pressure nitrogen is measured from the intensity distribution of unresolved rotational transitions ( C 3Π u , v' = 0) → ( B 3Π g , v″ = 0) in the nitrogen molecule for an excitation pulse repetition rate of 2 kHz. It is shown that an increase in the UAEB current amplitude in the pulse-periodic regime is due to gas heating by a series of previous pulses, which leads to an increase in the reduced electric field strength as a result of a decrease in the gas density in the zone of the discharge formation. It is found that in the pulse-periodic regime and the formation of the diffuse discharge, the number of electrons in the beam increases by several times for a nitrogen pressure of 9 × 103 Pa. The dependences of the number of electrons in the UAEB on the time of operation of the generator are considered.
Claverie, A; Deroy, J; Boustie, M; Avrillaud, G; Chuvatin, A; Mazanchenko, E; Demol, G; Dramane, B
2014-06-01
High power pulsed electrical discharges into liquids are investigated for new industrial applications based on the efficiency of controlled shock waves. We present here new experimental data obtained by combination of detailed high speed imaging equipments. It allows the visualization of the very first instants of plasma discharge formation, and then the pulsations of the gaseous bubble with an accurate timing of events. The time history of the expansion/compression of this bubble leads to an estimation of the energy effectively transferred to water during the discharge. Finally, the consecutive shock generation driven by this pulsating bubble is optically monitored by shadowgraphs and schlieren setup. These data provide essential information about the geometrical pattern and chronometry associated with the shock wave generation and propagation.
Madeira, João; Parreira, Leonor; Amador, Pedro; Soares, Luís
2013-10-14
Riata and Riata ST silicone defibrillation leads are prone to externalization of conductors due to inside-out abrasion in the high-voltage system, causing structural damage which may be accompanied by electrical failure. These situations are easily detected by fluoroscopy or radiology and by inspection of intracardiac electrograms and/or measurement of impedance. However, older pulse generators do not automatically perform all the measurements needed to assess the integrity of the high-voltage electrical system, nor do they have patient notifier alerts in case of dysfunction. The authors describe the case of a patient in whom structural damage was detected on fluoroscopy during pulse generator replacement. They discuss the best strategy in these patients, considering current knowledge of this dysfunction. Copyright © 2012 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.
Leon-Salas, Walter D.; Rizk, Hatem; Mo, Chenglin; Weisleder, Noah; Brotto, Leticia; Abreu, Eduardo; Brotto, Marco
2013-01-01
This paper presents the design and test of a dual-mode electric and magnetic biological stimulator (EM-Stim). The stimulator generates pulsing electric and magnetic fields at programmable rates and intensities. While electric and magnetic stimulators have been reported before, this is the first device that combines both modalities. The ability of the dual stimulation to target bone and muscle tissue simultaneously has the potential to improve the therapeutic treatment of osteoporosis and sarcopenia. The device is fully programmable, portable and easy to use, and can run from a battery or a power supply. The device can generate magnetic fields of up to 1.6 mT and output voltages of +/−40 V. The EM-Stim accelerated myogenic differentiation of myoblasts into myotubes as evidenced by morphometric, gene expression, and protein content analyses. Currently, there are many patents concerned with the application of single electrical or magnetic stimulation, but none that combine both simultaneously. However, we applied for and obtained a provisional patent for new device to fully explore its therapeutic potential in pre-clinical models. PMID:23445453
Leon-Salas, Walter D; Rizk, Hatem; Mo, Chenglin; Weisleder, Noah; Brotto, Leticia; Abreu, Eduardo; Brotto, Marco
2013-04-01
This paper presents the design and test of a dual-mode electric and magnetic biological stimulator (EM-Stim). The stimulator generates pulsing electric and magnetic fields at programmable rates and intensities. While electric and magnetic stimulators have been reported before, this is the first device that combines both modalities. The ability of the dual stimulation to target bone and muscle tissue simultaneously has the potential to improve the therapeutic treatment of osteoporosis and sarcopenia. The device is fully programmable, portable and easy to use, and can run from a battery or a power supply. The device can generate magnetic fields of up to 1.6 mT and output voltages of +/- 40 V. The EM-Stim accelerated myogenic differentiation of myoblasts into myotubes as evidenced by morphometric, gene expression, and protein content analyses. Currently, there are many patents concerned with the application of single electrical or magnetic stimulation, but none that combine both simultaneously. However, we applied for and obtained a provisional patent for new device to fully explore its therapeutic potential in pre-clinical models.
Peterchev, Angel V.; Wagner, Timothy A.; Miranda, Pedro C.; Nitsche, Michael A.; Paulus, Walter; Lisanby, Sarah H.; Pascual-Leone, Alvaro; Bikson, Marom
2011-01-01
The growing use of transcranial electric and magnetic (EM) brain stimulation in basic research and in clinical applications necessitates a clear understanding of what constitutes the dose of EM stimulation and how it should be reported. The biological effects of EM stimulation are mediated through an electromagnetic field injected (via electric stimulation) or induced (via magnetic stimulation) in the body. Therefore, transcranial EM stimulation dose ought to be defined by all parameters of the stimulation device that affect the electromagnetic field generated in the body, including the stimulation electrode or coil configuration parameters: shape, size, position, and electrical properties, as well as the electrode or coil current (or voltage) waveform parameters: pulse shape, amplitude, width, polarity, and repetition frequency; duration of and interval between bursts or trains of pulses; total number of pulses; and interval between stimulation sessions and total number of sessions. Knowledge of the electromagnetic field generated in the body may not be sufficient but is necessary to understand the biological effects of EM stimulation. We believe that reporting of EM stimulation dose should be guided by the principle of reproducibility: sufficient information about the stimulation parameters should be provided so that the dose can be replicated. This paper provides fundamental definition and principles for reporting of dose that encompass any transcranial EM brain stimulation protocol. PMID:22305345
Peterchev, Angel V; Wagner, Timothy A; Miranda, Pedro C; Nitsche, Michael A; Paulus, Walter; Lisanby, Sarah H; Pascual-Leone, Alvaro; Bikson, Marom
2012-10-01
The growing use of transcranial electric and magnetic (EM) brain stimulation in basic research and in clinical applications necessitates a clear understanding of what constitutes the dose of EM stimulation and how it should be reported. This paper provides fundamental definitions and principles for reporting of dose that encompass any transcranial EM brain stimulation protocol. The biologic effects of EM stimulation are mediated through an electromagnetic field injected (via electric stimulation) or induced (via magnetic stimulation) in the body. Therefore, transcranial EM stimulation dose ought to be defined by all parameters of the stimulation device that affect the electromagnetic field generated in the body, including the stimulation electrode or coil configuration parameters: shape, size, position, and electrical properties, as well as the electrode or coil current (or voltage) waveform parameters: pulse shape, amplitude, width, polarity, and repetition frequency; duration of and interval between bursts or trains of pulses; total number of pulses; and interval between stimulation sessions and total number of sessions. Knowledge of the electromagnetic field generated in the body may not be sufficient but is necessary to understand the biologic effects of EM stimulation. We believe that reporting of EM stimulation dose should be guided by the principle of reproducibility: sufficient information about the stimulation parameters should be provided so that the dose can be replicated. Copyright © 2012 Elsevier Inc. All rights reserved.
Tosi, A L; Campana, L G; Dughiero, F; Forzan, M; Rastrelli, M; Sieni, E; Rossi, C R
2017-07-01
Tissue electrical conductivity is correlated with tissue characteristics. In this work, some soft tissue sarcomas (STS) excised from patients have been evaluated in terms of histological characteristics (cell size and density) and electrical resistance. The electrical resistance has been measured using the ex vivo study on soft tissue tumors electrical characteristics (ESTTE) protocol proposed by the authors in order to study electrical resistance of surgical samples excised by patients in a fixed measurement setup. The measurement setup includes a voltage pulse generator (700 V, 100 µs long at 5 kHz, period 200 µs) and an electrode with 7 needles, 20 mm-long, with the same distance arranged in a fixed hexagonal geometry. In the ESTTE protocol, the same voltage pulse sequence is applied to each different tumor mass and the corresponding resistance has been evaluated from voltage and current recorded by the equipment. For each tumor mass, a histological sample of the volume treated by means of voltage pulses has been taken for histological analysis. Each mass has been studied in order to identify the sarcoma type. For each histological sample, an image at 20× or 40× of magnification was acquired. In this work, the electrical resistance measured for each tumor has been correlated with tissue characteristics like the type, size and density of cells. This work presents a preliminary study to explore possible correlations between tissue characteristics and electrical resistance of STS. These results can be helpful to adjust the pulse voltage intensity in order to improve the electrochemotherapy efficacy on some histotype of STS.
Infection Risk From Conducted Electrical Weapon Probes: What Do We Know?
Kroll, Mark W; Ritter, Mollie B; Guilbault, Richard A; Panescu, Dorin
2016-11-01
Concern has been raised over the infection risk of the TASER electrical weapon since the probes penetrate the skin. The manufacturing process produces unsterilized probes with a 5% rate of Staphylococcus aureus contamination. Voluntary recipients (n = 208) of probe exposures were surveyed and there were no self-observations of infection. With over 3.3 million probe landings, there have been 10 case reports of penetrations of sensitive tissue with no reported infections. The electrical field was modeled and found that the electrical pulses generate a field of over 1200 V/mm on the dart portion. This is sufficient to sterilize the dart via electroporation. Electrical weapon probes appear to have a very low (possibly zero) rate of infection. The factors leading to this low infection rate appear to be a manufacturing process producing a low rate of bacterial contamination and the pulses sterilizing the dart via electroporation. © 2016 American Academy of Forensic Sciences.
The CARIBU EBIS control and synchronization system
NASA Astrophysics Data System (ADS)
Dickerson, Clayton; Peters, Christopher
2015-01-01
The Californium Rare Isotope Breeder Upgrade (CARIBU) Electron Beam Ion Source (EBIS) charge breeder has been built and tested. The bases of the CARIBU EBIS electrical system are four voltage platforms on which both DC and pulsed high voltage outputs are controlled. The high voltage output pulses are created with either a combination of a function generator and a high voltage amplifier, or two high voltage DC power supplies and a high voltage solid state switch. Proper synchronization of the pulsed voltages, fundamental to optimizing the charge breeding performance, is achieved with triggering from a digital delay pulse generator. The control system is based on National Instruments realtime controllers and LabVIEW software implementing Functional Global Variables (FGV) to store and access instrument parameters. Fiber optic converters enable network communication and triggering across the platforms.
ELECTRICAL CIRCUITS USING COLD-CATHODE TRIODE VALVES
Goulding, F.S.
1957-11-26
An electrical circuit which may be utilized as a pulse generator or voltage stabilizer is presented. The circuit employs a cold-cathode triode valve arranged to oscillate between its on and off stages by the use of selected resistance-capacitance time constant components in the plate and trigger grid circuits. The magnitude of the d-c voltage applied to the trigger grid circuit effectively controls the repetition rate of the output pulses. In the voltage stabilizer arrangement the d-c control voltage is a portion of the supply voltage and the rectified output voltage is substantially constant.
Kuo, Yu-Zheng; Wu, Jui-Pin; Wu, Tsu-Hsiu; Chiu, Yi-Jen
2012-10-22
We proposed and demonstrated a novel scheme of photonic ultra-wide-band (UWB) doublet pulse based on monolithic integration of tapered optical-direction coupler (TODC) and multiple-quantum-well (MQW) waveguide. TODC is formed by a top tapered MQW waveguide vertically integrating with an underneath passive waveguide. Through simultaneous field-driven optical index- and absorption- change in MQW, the partial optical coupling in TODC can be used to get a valley-shaped of optical transmission against voltage. Therefore, doublet-enveloped optical pulse can be realized by high-speed and high-efficient conversion of input electrical pulse. By just adjusting bias through MQW, 1530 nm photonic UWB doublet optical pulse with 75-ps pulse width, below -41.3 dBm power, 125% fractional bandwidth, and 7.5 GHz of -10 dB bandwidth has been demonstrated, fitted into FCC requirement (3.1 GHz~10.6 GHz). Doublet-pulse data transmission generated in optical fiber is also performed for further characterization, exhibiting a successful 1.25 Gb/s error-free transmission. It suggests such optoelectronic integration template can be applied for photonic UWB generation in fiber-based communications.
Breakover mechanism of GaAs photoconductive switch triggering spark gap for high power applications
NASA Astrophysics Data System (ADS)
Tian, Liqiang; Shi, Wei; Feng, Qingqing
2011-11-01
A spark gap (SG) triggered by a semi-insulating GaAs photoconductive semiconductor switch (PCSS) is presented. Currents as high as 5.6 kA have been generated using the combined switch, which is excited by a laser pulse with energy of 1.8 mJ and under a bias of 4 kV. Based on the transferred-electron effect and gas streamer theory, the breakover characteristics of the combined switch are analyzed. The photoexcited carrier density in the PCSS is calculated. The calculation and analysis indicate that the PCSS breakover is caused by nucleation of the photoactivated avalanching charge domain. It is shown that the high output current is generated by the discharge of a high-energy gas streamer induced by the strong local electric field distortion or by overvoltage of the SG resulting from quenching of the avalanching domain, and periodic oscillation of the current is caused by interaction between the gas streamer and the charge domain. The cycle of the current oscillation is determined by the rise time of the triggering electric pulse generated by the PCSS, the pulse transmission time between the PCSS and the SG, and the streamer transit time in the SG.
A wireless wearable surface functional electrical stimulator
NASA Astrophysics Data System (ADS)
Wang, Hai-Peng; Guo, Ai-Wen; Zhou, Yu-Xuan; Xia, Yang; Huang, Jia; Xu, Chong-Yao; Huang, Zong-Hao; Lü, Xiao-Ying; Wang, Zhi-Gong
2017-09-01
In this paper, a wireless wearable functional electrical stimulator controlled by Android phone with real-time-varying stimulation parameters for multichannel surface functional electrical stimulation application has been developed. It can help post-stroke patients using more conveniently. This study focuses on the prototype design, including the specific wristband concept, circuits and stimulation pulse-generation algorithm. A novel stimulator circuit with a driving stage using a complementary current source technique is proposed to achieve a high-voltage compliance, a large output impedance and an accurate linear voltage-to-current conversion. The size of the prototype has been significantly decreased to 17 × 7.5 × 1 cm3. The performance of the prototype has been tested with a loaded resistor and wrist extension/flexion movement of three hemiplegic patients. According to the experiments, the stimulator can generate four-channel charge-balanced biphasic stimulation with a voltage amplitude up to 60 V, and the pulse frequency and width can be adjusted in real time with a range of 100-600 μs and 20-80 Hz, respectively.
Conductivity affects nanosecond electrical pulse induced pressure transient formation
NASA Astrophysics Data System (ADS)
Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.; Beier, Hope T.; Glickman, Randolph D.
2016-03-01
Nanoporation occurs in cells exposed to high amplitude short duration (< 1μs) electrical pulses. The biophysical mechanism(s) responsible for nanoporation is unknown although several theories exist. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. Our group has shown that mechanical forces of substantial magnitude are also generated during nsEP exposures. We hypothesize that these mechanical forces may contribute to pore formation. In this paper, we report that alteration of the conductivity of the exposure solution also altered the level of mechanical forces generated during a nsEP exposure. By reducing the conductivity of the exposure solutions, we found that we could completely eliminate any pressure transients normally created by nsEP exposure. The data collected for this proceeding does not definitively show that the pressure transients previously identified contribute to nanoporation; however; it indicates that conductivity influences both survival and pressure transient formation.
Adiabatic description of superfocusing of femtosecond plasmon polaritons
NASA Astrophysics Data System (ADS)
Golovinski, P. A.; Manuylovich, E. S.; Astapenko, V. A.
2018-05-01
A surface plasmon polariton is a collective oscillation of free electrons at a metal-dielectric interface. As wave phenomena, surface plasmon polaritons can be focused with the use of an appropriate excitation geometry of metal structures. In the adiabatic approximation, we demonstrate a possibility to control nanoscale short pulse superfocusing based on generation of a radially polarized surface plasmon polariton mode of a conical metal needle in view of wave reflection. The results of numerical simulations of femtosecond pulse propagation along a nanoneedle are discussed. The space-time evolution of a pulse for the near field strongly depends on a linear chirp of an initial laser pulse, which can partially compensate wave dispersion. The field distribution is calculated for different metals, chirp parameters, cone opening angles and propagation distances. The electric field near a sharp tip is described as a field of a fictitious time-dependent electric dipole located at the tip apex.
Evaluation of Motor Neuron Excitability by CMAP Scanning with Electric Modulated Current
Araújo, Tiago; Candeias, Rui; Nunes, Neuza; Gamboa, Hugo
2015-01-01
Introduction. Compound Muscle Action Potential (CMAP) scan is a noninvasive promissory technique for neurodegenerative pathologies diagnosis. In this work new CMAP scan protocols were implemented to study the influence of electrical pulse waveform on peripheral nerve excitability. Methods. A total of 13 healthy subjects were tested. Stimulation was performed with an increasing intensities range from 4 to 30 mA. The procedure was repeated 4 times per subject, using a different single pulse stimulation waveform: monophasic square and triangular and quadratic and biphasic square. Results. Different waveforms elicit different intensity-response amplitude curves. The square pulse needs less current to generate the same response amplitude regarding the other waves and this effect is gradually decreasing for the triangular, quadratic, and biphasic pulse, respectively. Conclusion. The stimulation waveform has a direct influence on the stimulus-response slope and consequently on the motoneurons excitability. This can be a new prognostic parameter for neurodegenerative disorders. PMID:26413499
Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles
NASA Astrophysics Data System (ADS)
Smith, Kandler; Wang, Chao-Yang
A 1D electrochemical, lumped thermal model is used to explore pulse power limitations and thermal behavior of a 6 Ah, 72 cell, 276 V nominal Li-ion hybrid-electric vehicle (HEV) battery pack. Depleted/saturated active material Li surface concentrations in the negative/positive electrodes consistently cause end of high-rate (∼25 C) pulse discharge at the 2.7 V cell -1 minimum limit, indicating solid-state diffusion is the limiting mechanism. The 3.9 V cell -1 maximum limit, meant to protect the negative electrode from lithium deposition side reaction during charge, is overly conservative for high-rate (∼15 C) pulse charges initiated from states-of-charge (SOCs) less than 100%. Two-second maximum pulse charge rate from the 50% SOC initial condition can be increased by as much as 50% without risk of lithium deposition. Controlled to minimum/maximum voltage limits, the pack meets partnership for next generation vehicles (PNGV) power assist mode pulse power goals (at operating temperatures >16 °C), but falls short of the available energy goal. In a vehicle simulation, the pack generates heat at a 320 W rate on a US06 driving cycle at 25 °C, with more heat generated at lower temperatures. Less aggressive FUDS and HWFET cycles generate 6-12 times less heat. Contact resistance ohmic heating dominates all other mechanisms, followed by electrolyte phase ohmic heating. Reaction and electronic phase ohmic heats are negligible. A convective heat transfer coefficient of h = 10.1 W m -2 K -1 maintains cell temperature at or below the 52 °C PNGV operating limit under aggressive US06 driving.
Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.
Boinagrov, David; Lei, Xin; Goetz, Georges; Kamins, Theodore I; Mathieson, Keith; Galambos, Ludwig; Harris, James S; Palanker, Daniel
2016-02-01
Photovoltaic conversion of pulsed light into pulsed electric current enables optically-activated neural stimulation with miniature wireless implants. In photovoltaic retinal prostheses, patterns of near-infrared light projected from video goggles onto subretinal arrays of photovoltaic pixels are converted into patterns of current to stimulate the inner retinal neurons. We describe a model of these devices and evaluate the performance of photovoltaic circuits, including the electrode-electrolyte interface. Characteristics of the electrodes measured in saline with various voltages, pulse durations, and polarities were modeled as voltage-dependent capacitances and Faradaic resistances. The resulting mathematical model of the circuit yielded dynamics of the electric current generated by the photovoltaic pixels illuminated by pulsed light. Voltages measured in saline with a pipette electrode above the pixel closely matched results of the model. Using the circuit model, our pixel design was optimized for maximum charge injection under various lighting conditions and for different stimulation thresholds. To speed discharge of the electrodes between the pulses of light, a shunt resistor was introduced and optimized for high frequency stimulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uchida, K.; Hirori, H., E-mail: hirori@icems.kyoto-u.ac.jp; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012
2015-11-30
By combining a tilted-pulse-intensity-front scheme using a LiNbO{sub 3} crystal and a chirped-pulse-beating method, we generated a narrowband intense terahertz (THz) pulse, which had a maximum electric field of more than 10 kV/cm at around 2 THz, a bandwidth of ∼50 GHz, and frequency tunability from 0.5 to 2 THz. By performing THz-pump and near-infrared-probe experiments on GaAs quantum wells, we observed that the resonant excitation of the intraexcitonic 1s-2p transition induces a clear and large Autler-Townes splitting. Our time-resolved measurements show that the splitting energy observed in the rising edge region of electric field is larger than in the constant region.more » This result implies that the splitting energy depends on the time-averaged THz field over the excitonic dephasing time rather than that at the instant of the exciton creation by a probe pulse.« less
Broadband noise limit in the photodetection of ultralow jitter optical pulses.
Sun, Wenlu; Quinlan, Franklyn; Fortier, Tara M; Deschenes, Jean-Daniel; Fu, Yang; Diddams, Scott A; Campbell, Joe C
2014-11-14
Applications with optical atomic clocks and precision timing often require the transfer of optical frequency references to the electrical domain with extremely high fidelity. Here we examine the impact of photocarrier scattering and distributed absorption on the photocurrent noise of high-speed photodiodes when detecting ultralow jitter optical pulses. Despite its small contribution to the total photocurrent, this excess noise can determine the phase noise and timing jitter of microwave signals generated by detecting ultrashort optical pulses. A Monte Carlo simulation of the photodetection process is used to quantitatively estimate the excess noise. Simulated phase noise on the 10 GHz harmonic of a photodetected pulse train shows good agreement with previous experimental data, leading to the conclusion that the lowest phase noise photonically generated microwave signals are limited by photocarrier scattering well above the quantum limit of the optical pulse train.
Research on multi-switch synchronization based on single trigger generator
NASA Astrophysics Data System (ADS)
Geng, Jiuyuan; Cheng, Xinbing; Yang, Jianhua; Yang, Xiao; Chen, Rong
2018-05-01
Multi-switch synchronous operation is an effective approach to provide high-voltage high-current for a high-power device. In this paper, we present a synchronization system with a corona stabilized triggered switch (CSTS) as main switch and an all-solid modularized quasi-square pulse forming system. In addition, this paper provides explanations of low jitter and accurate triggering of CSTS based on streamer theory. Different switches of the module are triggered by an electrical pulse created by a trigger generator, a quasi-square pulse can be created on the load. The experimental results show that it is able to switch voltages in excess of 40kV with nanosecond system jitter for three-module synchronous operation.
NASA Astrophysics Data System (ADS)
Kozak, J.; Gulbinowicz, D.; Gulbinowicz, Z.
2009-05-01
The need for complex and accurate three dimensional (3-D) microcomponents is increasing rapidly for many industrial and consumer products. Electrochemical machining process (ECM) has the potential of generating desired crack-free and stress-free surfaces of microcomponents. This paper reports a study of pulse electrochemical micromachining (PECMM) using ultrashort (nanoseconds) pulses for generating complex 3-D microstructures of high accuracy. A mathematical model of the microshaping process with taking into consideration unsteady phenomena in electrical double layer has been developed. The software for computer simulation of PECM has been developed and the effects of machining parameters on anodic localization and final shape of machined surface are presented.
NASA Technical Reports Server (NTRS)
Woods, J. M. (Inventor)
1973-01-01
An electrical power distribution system is described for use in providing different dc voltage levels. A circuit is supplied with DC voltage levels and commutates pulses for timed intervals onto a pair of distribution wires. The circuit is driven by a command generator which places pulses on the wires in a timed sequence. The pair of wires extend to voltage strippers connected to the various loads. The voltage strippers each respond to the pulse dc levels on the pair of wires and form different output voltages communicated to each load.
Kletetschka, Gunther; Zila, Vojtech; Klimova, Lucie
2014-04-01
Pulses up to 11 Tesla magnetic fields may generate pockets of currents along the walls of cellular material and may interfere with the overall ability of cell division. We used prokaryotic cells (Escherichia coli) and eukaryotic cells (murine fibroblasts) and exposed them to magnetic pulses of intensities ranging from 1 millitesla (mT) to 11,000 mT. We found prokaryotic cells to be more sensitive to magnetic field pulses than eukaryotic cells.
Timing Actions to Avoid Refractoriness: A Simple Solution for Streaming Sensory Signals
Nogueira, Javier; Caputi, Ángel Ariel
2011-01-01
Segmenting self- from allo-generated signals is crucial for active sensory processing. We report a dynamic filter used by South American pulse electric fish to distinguish active electro-sensory signals carried by their own electric discharges from other concomitant electrical stimuli (i.e. communication signals). The filter has a sensory component, consisting of an onset type central electro-sensory neuron, and a motor component, consisting of a change in the fish's discharge rate when allo-generated electrical events occur in temporal proximity to the fish's own discharge. We investigated the sensory component of the filter by in vitro mimicking synaptic inputs occurring during behavioral responses to allo-generated interfering signals. We found that active control of the discharge enhances self-generated over allo-generated responses by forcing allo-generated signals into a central refractory period. This hypothesis was confirmed by field potential recordings in freely discharging fish. Similar sensory-motor mechanisms may also contribute to signal segmentation in other sensory systems. PMID:21789228
Common approach to solving SGEMP, DEMP, and ESD survivability
NASA Technical Reports Server (NTRS)
Ling, D.
1977-01-01
System Generated Electromagnetic Pulse (SGEMP) and Dispersed Electromagnetic Pulse DEMP) are nuclear generated spacecraft environments. Electrostatic discharge (ESD) is a natural spacecraft environment resulting from differential charging in magnetic substorms. All three phenomena, though differing in origin, result in the same problem to the spacecraft and that is Electromagnetic Interference (EMI). A common design approach utilizing a spacecraft structural Faraday Cage is presented which helps solve the EMI problem. Also, other system design techniques are discussed which minimize the magnitude of these environments through control of materials and electrical grounding configuration.
NASA Technical Reports Server (NTRS)
1980-01-01
Medrad utilized NASA's Apollo technology to develop a new device called the AID implantable automatic pulse generator which monitors the heart continuously, recognizes the onset of ventricular fibrillation and delivers a corrective electrical shock. AID pulse generator is, in effect, a miniaturized version of the defibrillator used by emergency squads and hospitals to restore rhythmic heartbeat after fibrillation, but has the unique advantage of being permanently available to the patient at risk. Once implanted, it needs no specially trained personnel or additional equipment. AID system consists of a microcomputer, a power source and two electrodes which sense heart activity.
Space Derived Health Aids (AID, Heart Monitor)
NASA Technical Reports Server (NTRS)
1981-01-01
CPI's spinoff from miniaturized pace circuitry is the new heart-assist device, the AID implantable automatic pulse generator. AID pulse generator monitors the heart continuously, recognizes onset of fibrillation, then administers a corrective electrical shock. A mini- computer, a power source, and two electrodes which sense heart activity are included in the unit. An associated system was also developed. It includes an external recorder to be worn by AID patients and a physician's console to display the data stored by the recorder. System provides a record of fibrillation occurrences and the ensuing defibrillation.
Computational Simulation of Explosively Generated Pulsed Power Devices
2013-03-21
to practical applications. These are the magnetic flux compression generators (FCG), ferromagnetic generators (FMG) and ferroelectric generators (FEG...The first device works on the concept of field interaction between a conducting medium and a magnetic field. The last two devices make use of either... magnetic or electric fields stored in a prepared material (4). This research will focus on the ferroelectric generator as a high voltage source for
Yang, Yongji; Moser, Michael A J; Zhang, Edwin; Zhang, Wenjun; Zhang, Bing
2018-01-01
The aim of this study was to develop a statistical model for cell death by irreversible electroporation (IRE) and to show that the statistic model is more accurate than the electric field threshold model in the literature using cervical cancer cells in vitro. HeLa cell line was cultured and treated with different IRE protocols in order to obtain data for modeling the statistical relationship between the cell death and pulse-setting parameters. In total, 340 in vitro experiments were performed with a commercial IRE pulse system, including a pulse generator and an electric cuvette. Trypan blue staining technique was used to evaluate cell death after 4 hours of incubation following IRE treatment. Peleg-Fermi model was used in the study to build the statistical relationship using the cell viability data obtained from the in vitro experiments. A finite element model of IRE for the electric field distribution was also built. Comparison of ablation zones between the statistical model and electric threshold model (drawn from the finite element model) was used to show the accuracy of the proposed statistical model in the description of the ablation zone and its applicability in different pulse-setting parameters. The statistical models describing the relationships between HeLa cell death and pulse length and the number of pulses, respectively, were built. The values of the curve fitting parameters were obtained using the Peleg-Fermi model for the treatment of cervical cancer with IRE. The difference in the ablation zone between the statistical model and the electric threshold model was also illustrated to show the accuracy of the proposed statistical model in the representation of ablation zone in IRE. This study concluded that: (1) the proposed statistical model accurately described the ablation zone of IRE with cervical cancer cells, and was more accurate compared with the electric field model; (2) the proposed statistical model was able to estimate the value of electric field threshold for the computer simulation of IRE in the treatment of cervical cancer; and (3) the proposed statistical model was able to express the change in ablation zone with the change in pulse-setting parameters.
Interaction of ultrashort laser pulses and silicon solar cells under short circuit conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mundus, M., E-mail: markus.mundus@ise.fraunhofer.de; Giesecke, J. A.; Fischer, P.
Ultrashort pulse lasers are promising tools for numerous measurement purposes. Among other benefits their high peak powers allow for efficient generation of wavelengths in broad spectral ranges and at spectral powers that are orders of magnitude higher than in conventional light sources. Very recently this has been exploited for the establishment of sophisticated measurement facilities for electrical characterization of photovoltaic (PV) devices. As the high peak powers of ultrashort pulses promote nonlinear optical effects they might also give rise to nonlinear interactions with the devices under test that possibly manipulate the measurement outcome. In this paper, we present a comprehensivemore » theoretical and experimental study of the nonlinearities affecting short circuit current (I{sub SC}) measurements of silicon (Si) solar cells. We derive a set of coupled differential equations describing the radiation-device interaction and discuss the nonlinearities incorporated in those. By a semi-analytical approach introducing a quasi-steady-state approximation and integrating a Green's function we solve the system of equations and obtain simulated I{sub SC} values. We validate the theoretical model by I{sub SC} ratios obtained from a double ring resonator setup capable for reproducible generation of various ultrashort pulse trains. Finally, we apply the model to conduct the most prominent comparison of I{sub SC} generated by ultrashort pulses versus continuous illumination. We conclude by the important finding that the nonlinearities induced by ultrashort pulses are negligible for the most common I{sub SC} measurements. However, we also find that more specialized measurements (e.g., of concentrating PV or Si-multijunction devices as well as highly localized electrical characterizations) will be biased by two-photon-absorption distorting the I{sub SC} measurement.« less
NASA Astrophysics Data System (ADS)
Kar, S.; Ahmed, H.; Nersisyan, G.; Brauckmann, S.; Hanton, F.; Giesecke, A. L.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.
2016-05-01
As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ˜20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from a laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Nersisyan, G.
As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ∼20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from amore » laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.« less
Method for generating a plasma wave to accelerate electrons
Umstadter, D.; Esarey, E.; Kim, J.K.
1997-06-10
The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention. 21 figs.
Method for generating a plasma wave to accelerate electrons
Umstadter, Donald; Esarey, Eric; Kim, Joon K.
1997-01-01
The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention.
NASA Astrophysics Data System (ADS)
Luque, A.; Dubrovin, D.; Gordillo-Vázquez, F. J.; Ebert, U.; Parra-Rojas, F. C.; Yair, Y.; Price, C.
2014-10-01
Atmospheric electricity has been detected in all gaseous giants of our solar system and is therefore likely present also in extrasolar planets. Building upon measurements from Saturn and Jupiter, we investigate how the electromagnetic pulse emitted by a lightning stroke affects upper layers of a gaseous giant. This effect is probably significantly stronger than that on Earth. We find that electrically active storms may create a localized but long-lasting layer of enhanced ionization of up to 103 cm-3 free electrons below the ionosphere, thus extending the ionosphere downward. We also estimate that the electromagnetic pulse transports 107 J to 1010 J toward the ionosphere. There emissions of light of up to 108 J would create a transient luminous event analogous to a terrestrial "elve."
Linear electric field time-of-flight ion mass spectrometer
Funsten, Herbert O [Los Alamos, NM; Feldman, William C [Los Alamos, NM
2008-06-10
A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, John L.
1998-11-09
Leaks are detected in a multi-layered geomembrane liner by a two-dimensional time domain reflectometry (TDR) technique. The TDR geomembrane liner is constructed with an electrically conductive detection layer positioned between two electrically non-conductive dielectric layers, which are each positioned between the detection layer and an electrically conductive reference layer. The integrity of the TDR geomembrane liner is determined by generating electrical pulses within the detection layer and measuring the time delay for any reflected electrical energy caused by absorption of moisture by a dielectric layer.
Morrison, John L [Idaho Falls, ID
2001-04-24
Leaks are detected in a multi-layered geomembrane liner by a two-dimensional time domain reflectometry (TDR) technique. The TDR geomembrane liner is constructed with an electrically conductive detection layer positioned between two electrically non-conductive dielectric layers, which are each positioned between the detection layer and an electrically conductive reference layer. The integrity of the TDR geomembrane liner is determined by generating electrical pulses within the detection layer and measuring the time delay for any reflected electrical energy caused by absorption of moisture by a dielectric layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizondo-Decanini, Juan M.
Short pulse neutron generators are described herein. In a general embodiment, the short pulse neutron generator includes a Blumlein structure. The Blumlein structure includes a first conductive plate, a second conductive plate, a third conductive plate, at least one of an inductor or a resistor, a switch, and a dielectric material. The first conductive plate is positioned relative to the second conductive plate such that a gap separates these plates. A vacuum chamber is positioned in the gap, and an ion source is positioned to emit ions in the vacuum chamber. The third conductive plate is electrically grounded, and themore » switch is operable to electrically connect and disconnect the second conductive plate and the third conductive plate. The at least one of the resistor or the inductor is coupled to the first conductive plate and the second conductive plate.« less
Removal of phenol by activated alumina bed in pulsed high-voltage electric field.
Zhu, Li-nan; Ma, Jun; Yang, Shi-dong
2007-01-01
A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results indicated the increase in removal rate with increasing applied voltage, increasing pH value of the solution, aeration, and adding Fe2+. The removal rate of phenol could reach 72.1% when air aeration flow rate was 1200 ml/min, and 88.2% when 0.05 mmol/L Fe2+ was added into the solution under the conditions of applied voltage 25 kV, initial phenol concentration of 5 mg/L, and initial pH value 5.5. The addition of sodium carbonate reduced the phenol removal rate. In the pulsed high-voltage electric field, local discharge occurred at the surface of activated alumina, which promoted phenol degradation in the thin water film. At the same time, the space-time distribution of gas-liquid phases was more uniform and the contact areas of the activated species generated from the discharge and the pollutant molecules were much wider due to the effect of the activated alumina bed. The synthetical effects of the pulsed high-voltage electric field and the activated alumina particles accelerated phenol degradation.
Shigeto, Hiroshi; Boongird, Atthaporn; Baker, Kenneth; Kellinghaus, Christoph; Najm, Imad; Lüders, Hans
2013-03-01
Electrical brain stimulation is used in a variety of clinical situations, including cortical mapping for epilepsy surgery, cortical stimulation therapy to terminate seizure activity in the cortex, and in deep brain stimulation therapy. However, the effects of stimulus parameters are not fully understood. In this study, we systematically tested the impact of various stimulation parameters on the generation of motor symptoms and afterdischarges (ADs). Focal electrical stimulation was delivered at subdural cortical, intracortical, and hippocampal sites in a rat model. The effects of stimulus parameter on the generation of motor symptoms and on the occurrence of ADs were examined. The effect of stimulus irregularity was tested using random or regular 50Hz stimulation through subdural electrodes. Hippocampal stimulation produced ADs at lower thresholds than neocortical stimulation. Hippocampal stimulation also produced significantly longer ADs. Both in hippocampal and cortical stimulation, when the total current was kept constant with changing pulse width, the threshold for motor symptom or AD was lowest between 50 and 100Hz and higher at both low and high frequencies. However, if the pulse width was fixed, the threshold did not increase above 100Hz and it apparently continued to decrease through 800Hz even if the difference did not reach statistical significance. There was no significant difference between random and regular stimulation. Overall, these results indicate that electrode location and several stimulus parameters including frequency, pulse width, and total electricity are important in electrical stimulation to produce motor symptoms and ADs. Copyright © 2012 Elsevier B.V. All rights reserved.
Shaped cathodes for the production of ultra-short multi-electron pulses
Petruk, Ariel Alcides; Pichugin, Kostyantyn; Sciaini, Germán
2017-01-01
An electrostatic electron source design capable of producing sub-20 femtoseconds (rms) multi-electron pulses is presented. The photoelectron gun concept builds upon geometrical electric field enhancement at the cathode surface. Particle tracer simulations indicate the generation of extremely short bunches even beyond 40 cm of propagation. Comparisons with compact electron sources commonly used for femtosecond electron diffraction are made. PMID:28191483
Thermal emf generated by laser emission along thin metal films
NASA Astrophysics Data System (ADS)
Konov, V. I.; Nikitin, P. I.; Satiukov, D. G.; Uglov, S. A.
1991-07-01
Substantial pulse thermal emf values (about 1.5 V) have been detected along the substrate during the interaction of laser emission with thin metal films (Ni, Ti, and Bi) sprayed on corrugated substrates. Relationships are established between the irradiation conditions and parameters of the generated electrical signals. Possible mechanisms of thermal emf generation and promising applications are discussed.
Xue, Hongyan; Deng, Guoliang; Feng, Guoying; Chen, Lin; Li, Jiaqi; Yang, Chao; Zhou, Shouhuan
2017-09-01
An initial roughness is assumed in the most accepted Sipe-Drude model to analyze laser-induced periodic surface structures (LIPSS). However, the direct experimental observation for the crucial parameters is still lacking. The generation of nanoparticles and low-spatial frequency LIPSS (LSFL) (LIPSS with a periodicity close to laser wavelength) on a silicon surface upon a single pulse and subsequent pulses irradiation, respectively, is observed experimentally. Finite-difference time-domain (FDTD) simulation indicates that the nanoparticles generated with the first pulse enhance the local electric field greatly. Based on the experimental extrapolated parameters, FDTD-η maps have been calculated. The results show that the inhomogeneous energy deposition, which leads to the formation of LSFL, is mainly from the modulation of the nanoparticles with a radius of around 100 nm.
Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.
Vinokurov, Nikolay A; Jeong, Young Uk
2013-02-08
We describe a multifoil cone radiator capable of generating high-field short terahertz pulses using short electron bunches. Round flat conducting foil plates with successively decreasing radii are stacked, forming a truncated cone with the z axis. The gaps between the foil plates are equal and filled with some dielectric (or vacuum). A short relativistic electron bunch propagates along the z axis. At sufficiently high particle energy, the energy losses and multiple scattering do not change the bunch shape significantly. When passing by each gap between the foil plates, the electron bunch emits some energy into the gap. Then, the radiation pulses propagate radially outward. For transverse electromagnetic waves with a longitudinal (along the z axis) electric field and an azimuthal magnetic field, there is no dispersion in these radial lines; therefore, the radiation pulses conserve their shapes (time dependence). At the outer surface of the cone, we have synchronous circular radiators. Their radiation field forms a conical wave. Ultrashort terahertz pulses with gigawatt-level peak power can be generated with this device.
NASA Astrophysics Data System (ADS)
Lee, Kern; Chung, Kyoung-Jae; Hwang, Y. S.
2018-03-01
This paper presents a method for enhancement of shock waves generated from underwater pulsed spark discharges with negative (anode-directed) subsonic streamers, for which the pre-breakdown process is accelerated by preconditioning a gap with water electrolysis. Hydrogen microbubbles are produced at the cathode by the electrolysis and move towards the anode during the preconditioning phase. The numbers and spatial distributions of the microbubbles vary with the amplitude and duration of each preconditioning pulse. Under our experimental conditions, the optimum pulse duration is determined to be ˜250 ms at a pulse voltage of 400 V, where the buoyancy force overwhelms the electric force and causes the microbubbles to be swept out from the water gap. When a high-voltage pulse is applied to the gap just after the preconditioning pulse, the pre-breakdown process is significantly accelerated in the presence of the microbubbles. At the optimum preconditioning pulse duration, the average breakdown delay is reduced by 87% and, more importantly, the energy consumed during the pre-breakdown period decreases by 83%. This reduced energy consumption during the pre-breakdown period, when combined with the morphological advantages of negative streamers, such as thicker and longer stalks, leads to a significant improvement in the measured peak pressure (˜40%) generated by the underwater pulsed spark discharge. This acceleration of pre-breakdown using electrolysis overcomes the biggest drawback of negative subsonic discharges, which is slow vapor bubble formation due to screening effects, and thus enhances the efficiency of the shock wave generation process using pulsed spark discharges in water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Cheng; Hong, Kyung -Han; Lin, C. D.
2016-12-08
Here, we numerically demonstrate the generation of intense, low-divergence soft X-ray isolated attosecond pulses in a gas-filled hollow waveguide using synthesized few-cycle two-color laser waveforms. The waveform is a superposition of a fundamental and its second harmonic optimized such that highest harmonic yields are emitted from each atom. We then optimize the gas pressure and the length and radius of the waveguide such that bright coherent high-order harmonics with angular divergence smaller than 1 mrad are generated, for photon energy from the extreme ultraviolet to soft X-rays. By selecting a proper spectral range enhanced isolated attosecond pulses are generated. Wemore » study how dynamic phase matching caused by the interplay among waveguide mode, neutral atomic dispersion, and plasma effect is achieved at the optimal macroscopic conditions, by performing time-frequency analysis and by analyzing the evolution of the driving laser’s electric field during the propagation. Our results, when combined with the on-going push of high-repetition-rate lasers (sub- to few MHz’s) may eventually lead to the generation of high-flux, low-divergence soft X-ray tabletop isolated attosecond pulses for applications.« less
NASA Astrophysics Data System (ADS)
Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim
2017-10-01
Ultra-low emittance beams can be generated using ionization injection of electrons into a wakefield excited by a plasma beatwave accelerator. This all-optical method of electron beam generation uses three laser pulses of different colors. Two long-wavelength laser pulses, with frequency difference equal to the plasma frequency, resonantly drive a plasma wave without fully ionizing a gas. A short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the beating long-wavelength lasers, ionizes a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wakefield. Using the beating of long-wavelength pulses to generate the wakefield enables atomically-bound electrons to remain at low ionization potentials, reducing the required amplitude of the ionization pulse, and, hence, the initial transverse momentum and emittance of the injected electrons. An example is presented using two lines of a CO2 laser to form a plasma beatwave accelerator to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection. Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The CARIBU EBIS control and synchronization system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerson, Clayton, E-mail: cdickerson@anl.gov; Peters, Christopher, E-mail: cdickerson@anl.gov
2015-01-09
The Californium Rare Isotope Breeder Upgrade (CARIBU) Electron Beam Ion Source (EBIS) charge breeder has been built and tested. The bases of the CARIBU EBIS electrical system are four voltage platforms on which both DC and pulsed high voltage outputs are controlled. The high voltage output pulses are created with either a combination of a function generator and a high voltage amplifier, or two high voltage DC power supplies and a high voltage solid state switch. Proper synchronization of the pulsed voltages, fundamental to optimizing the charge breeding performance, is achieved with triggering from a digital delay pulse generator. Themore » control system is based on National Instruments realtime controllers and LabVIEW software implementing Functional Global Variables (FGV) to store and access instrument parameters. Fiber optic converters enable network communication and triggering across the platforms.« less
Zhang, Zhelin; Chen, Yanping; Chen, Min; Zhang, Zhen; Yu, Jin; Sheng, Zhengming; Zhang, Jie
2016-12-09
We demonstrate effective control on the carrier-envelope phase and angular distribution as well as the peak intensity of a nearly single-cycle terahertz pulse emitted from a laser filament formed by two-color, the fundamental and the corresponding second harmonics, femtosecond laser pulses propagating in air. Experimentally, such control has been performed by varying the filament length and the initial phase difference between the two-color laser components. A linear-dipole-array model, including the descriptions of both the generation (via laser field ionization) and propagation of the emitted terahertz pulse, is proposed to present a quantitative interpretation of the observations. Our results contribute to the understanding of terahertz generation in a femtosecond laser filament and suggest a practical way to control the electric field of a terahertz pulse for potential applications.
Ki, Dongwon; Parameswaran, Prathap; Popat, Sudeep C; Rittmann, Bruce E; Torres, César I
2015-11-01
The aim of this study was to investigate the combination of two technologies - pulsed electric field (PEF) pre-treatment and semi-continuous pre-fermentation of primary sludge (PS) - to produce volatile fatty acids (VFAs) as the electron donor for microbial electrolysis cells (MECs). Pre-fermentation with a 3-day solids retention time (SRT) led to the maximum generation of VFAs, with or without pretreatment of the PS through pulsed-electric-fields (PEF). PEF treatment before fermentation enhanced the accumulation of the preferred VFA, acetate, by 2.6-fold. Correspondingly, MEC anodes fed with centrate from 3-day pre-fermentation of PEF-treated PS had a maximum current density ∼3.1 A/m(2), which was 2.4-fold greater than the control pre-fermented centrate. Over the full duration of batch MEC experiments, using pre-fermented centrate led to successful performance in terms of Coulombic efficiency (95%), Coulombic recovery (80%), and COD-removal efficiency (85%). Copyright © 2015 Elsevier Ltd. All rights reserved.
Salamon, David; Eriksson, Mirva; Nygren, Mats; Shen, Zhijian
2012-01-01
The spark plasma sintering (SPS) process is known for its rapid densification of metals and ceramics. The mechanism behind this rapid densification has been discussed during the last few decades and is yet uncertain. During our SPS experiments we noticed oscillations in the applied pressure, related to a change in electric current. In this study, we investigated the effect of pulsed electrical current on the applied mechanical pressure and related changes in temperature. We eliminated the effect of sample shrinkage in the SPS setup and used a transparent quartz die allowing direct observation of the sample. We found that the use of pulsed direct electric current in our apparatus induces pressure oscillations with the amplitude depending on the current density. While sintering Ti samples we observed temperature oscillations resulting from pressure oscillations, which we attribute to magnetic forces generated within the SPS apparatus. The described current–pressure–temperature relations might increase understanding of the SPS process. PMID:27877472
Parallel phase-sensitive three-dimensional imaging camera
Smithpeter, Colin L.; Hoover, Eddie R.; Pain, Bedabrata; Hancock, Bruce R.; Nellums, Robert O.
2007-09-25
An apparatus is disclosed for generating a three-dimensional (3-D) image of a scene illuminated by a pulsed light source (e.g. a laser or light-emitting diode). The apparatus, referred to as a phase-sensitive 3-D imaging camera utilizes a two-dimensional (2-D) array of photodetectors to receive light that is reflected or scattered from the scene and processes an electrical output signal from each photodetector in the 2-D array in parallel using multiple modulators, each having inputs of the photodetector output signal and a reference signal, with the reference signal provided to each modulator having a different phase delay. The output from each modulator is provided to a computational unit which can be used to generate intensity and range information for use in generating a 3-D image of the scene. The 3-D camera is capable of generating a 3-D image using a single pulse of light, or alternately can be used to generate subsequent 3-D images with each additional pulse of light.
PIC simulations of post-pulse field reversal and secondary ionization in nanosecond argon discharges
NASA Astrophysics Data System (ADS)
Kim, H. Y.; Gołkowski, M.; Gołkowski, C.; Stoltz, P.; Cohen, M. B.; Walker, M.
2018-05-01
Post-pulse electric field reversal and secondary ionization are investigated with a full kinetic treatment in argon discharges between planar electrodes on nanosecond time scales. The secondary ionization, which occurs at the falling edge of the voltage pulse, is induced by charge separation in the bulk plasma region. This process is driven by a reverse in the electric field from the cathode sheath to the formerly driven anode. Under the influence of the reverse electric field, electrons in the bulk plasma and sheath regions are accelerated toward the cathode. The electron movement manifests itself as a strong electron current generating high electron energies with significant electron dissipated power. Accelerated electrons collide with Ar molecules and an increased ionization rate is achieved even though the driving voltage is no longer applied. With this secondary ionization, in a single pulse (SP), the maximum electron density achieved is 1.5 times higher and takes a shorter time to reach using 1 kV 2 ns pulse as compared to a 1 kV direct current voltage at 1 Torr. A bipolar dual pulse excitation can increase maximum density another 50%–70% above a SP excitation and in half the time of RF sinusoidal excitation of the same period. The first field reversal is most prominent but subsequent field reversals also occur and correspond to electron temperature increases. Targeted pulse designs can be used to condition plasma density as required for fast discharge applications.
Ma, Qingyu; He, Bin
2007-08-21
A theoretical study on the magnetoacoustic signal generation with magnetic induction and its applications to electrical conductivity reconstruction is conducted. An object with a concentric cylindrical geometry is located in a static magnetic field and a pulsed magnetic field. Driven by Lorentz force generated by the static magnetic field, the magnetically induced eddy current produces acoustic vibration and the propagated sound wave is received by a transducer around the object to reconstruct the corresponding electrical conductivity distribution of the object. A theory on the magnetoacoustic waveform generation for a circular symmetric model is provided as a forward problem. The explicit formulae and quantitative algorithm for the electrical conductivity reconstruction are then presented as an inverse problem. Computer simulations were conducted to test the proposed theory and assess the performance of the inverse algorithms for a multi-layer cylindrical model. The present simulation results confirm the validity of the proposed theory and suggest the feasibility of reconstructing electrical conductivity distribution based on the proposed theory on the magnetoacoustic signal generation with magnetic induction.
Electrically-Generated Spin Polarization in Non-Magnetic Semiconductors
2016-03-31
resolved Faraday rotation data due to electron spin polarization from previous pump pulses was characterized, and an analytic solution for this phase...electron spin polarization was shown to produce nuclear hyperpolarization through dynamic nuclear polarization. Time-resolved Faraday rotation...Distribution approved for public release. 3 Figure 3. Total magnetic field measured using time-resolved Faraday rotation with the electrically
Visualizing spatiotemporal pulse propagation: first-order spatiotemporal couplings in laser pulses.
Rhodes, Michelle; Guang, Zhe; Pease, Jerrold; Trebino, Rick
2017-04-10
Even though a general theory of first-order spatiotemporal couplings exists in the literature, it is often difficult to visualize how these distortions affect laser pulses. In particular, it is difficult to show the spatiotemporal phase of pulses in a meaningful way. Here, we propose a general solution to plotting the electric fields of pulses in three-dimensional space that intuitively shows the effects of spatiotemporal phases. The temporal phase information is color-coded using spectrograms and color response functions, and the beam is propagated to show the spatial phase evolution. Using this plotting technique, we generate two- and three-dimensional images and movies that show the effects of spatiotemporal couplings.
Visualizing spatiotemporal pulse propagation: first-order spatiotemporal couplings in laser pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhodes, Michelle; Guang, Zhe; Pease, Jerrold
2017-04-06
Even though a general theory of first-order spatiotemporal couplings exists in the literature, it is often difficult to visualize how these distortions affect laser pulses. In particular, it is difficult to show the spatiotemporal phase of pulses in a meaningful way. We propose a general solution to plotting the electric fields of pulses in three-dimensional space that intuitively shows the effects of spatiotemporal phases. The temporal phase information is color-coded using spectrograms and color response functions, and the beam is propagated to show the spatial phase evolution. In using this plotting technique, we generate two- and three-dimensional images and moviesmore » that show the effects of spatiotemporal couplings.« less
Sze, Robert C.; Bigio, Irving J.
2003-07-15
A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.
Development of a Miniaturized Hadamard Transform Time-of-Flight Mass Spectrometer
2007-02-01
technique’s name. These pulses are generated using a Bradbury- Nielson gate (BNG), which is a set of two interleaved, electrically isolated and...interleaved sets of wire electrodes that are electrically isolated from one another and that lie in a plane perpendicular to the trajectory of the ion beam...electrical isolation of the two wire sets that are interleaved. In .the• im-ethod develioped in -th-is ab,-both- challengesar-e- overcome by-weaving wires
NASA Astrophysics Data System (ADS)
Baksht, E. Kh; Panchenko, Aleksei N.; Tarasenko, Viktor F.
2000-06-01
An efficient electric-discharge XeCl laser is developed, which is pumped by a self-sustained discharge with a prepulse formed by a generator with an inductive energy storage device and a semiconductor current interrupter on a basis of semiconductor opening switch (SOS) diodes. An output energy up to 800 mJ, a pulse length up to 450 ns, and a total laser efficiency of 2.2% were attained by using spark UV preionisation.
Quantum interference of electrically generated single photons from a quantum dot.
Patel, Raj B; Bennett, Anthony J; Cooper, Ken; Atkinson, Paola; Nicoll, Christine A; Ritchie, David A; Shields, Andrew J
2010-07-09
Quantum interference lies at the foundation of many protocols for scalable quantum computing and communication with linear optics. To observe these effects the light source must emit photons that are indistinguishable. From a technological standpoint, it would be beneficial to have electrical control over the emission. Here we report of an electrically driven single-photon source emitting indistinguishable photons. The device consists of a layer of InAs quantum dots embedded in the intrinsic region of a p-i-n diode. Indistinguishability of consecutive photons is tested in a two-photon interference experiment under two modes of operation, continuous and pulsed current injection. We also present a complete theory based on the interference of photons with a Lorentzian spectrum which we compare to both our continuous wave and pulsed experiments. In the former case, a visibility was measured limited only by the timing resolution of our detection system. In the case of pulsed injection, we employ a two-pulse voltage sequence which suppresses multi-photon emission and allows us to carry out temporal filtering of photons which have undergone dephasing. The characteristic Hong-Ou-Mandel 'dip' is measured, resulting in a visibility of 64 +/- 4%.
NASA Astrophysics Data System (ADS)
Khanna, Rajesh; Kumar, Anish; Garg, Mohinder Pal; Singh, Ajit; Sharma, Neeraj
2015-12-01
Electric discharge drill machine (EDDM) is a spark erosion process to produce micro-holes in conductive materials. This process is widely used in aerospace, medical, dental and automobile industries. As for the performance evaluation of the electric discharge drilling machine, it is very necessary to study the process parameters of machine tool. In this research paper, a brass rod 2 mm diameter was selected as a tool electrode. The experiments generate output responses such as tool wear rate (TWR). The best parameters such as pulse on-time, pulse off-time and water pressure were studied for best machining characteristics. This investigation presents the use of Taguchi approach for better TWR in drilling of Al-7075. A plan of experiments, based on L27 Taguchi design method, was selected for drilling of material. Analysis of variance (ANOVA) shows the percentage contribution of the control factor in the machining of Al-7075 in EDDM. The optimal combination levels and the significant drilling parameters on TWR were obtained. The optimization results showed that the combination of maximum pulse on-time and minimum pulse off-time gives maximum MRR.
Monitoring Pulsed Power on Ship Electrical Systems
2013-04-01
on April 22- 24 , 2013. U.S. Government or Federal Purpose Rights License. 14. ABSTRACT In this paper, forthcoming distributed generation and energy...t t BINVBxx xSINVSx xxINV W U ** ** 00 00 001 1 2 (12) The square root of the nth diagonal of this...5493 4713 5689 3892 3721 11334 4405 -19460 -5637 5697 10102 -9358 During the pulse 1.50000 5190 3874 5475 3482 4969 6901 5542 -17412
OSA Trends in Optics and Photonics Series. Volume 13: Ultrafast Electronics and Optoelectronics
1997-01-01
David DiGiovanni, Uziel Koren, and Kevin Dreyer Multiwavelength , 10 GHz Picosecond Pulse Generation from a Single-Stripe Semiconductor Traveling...community. The change in slope in the experimental results that led to more rapid progress was due to the invention of an experimental trick which...feed-forward channel equalization for chirped pulse wavelength division multiplexing," Electr. Lett., vol. 33, p. 10-11,(1997). Multiwavelength
The role of membrane dynamics in electrical and infrared neural stimulation
NASA Astrophysics Data System (ADS)
Moen, Erick K.; Beier, Hope T.; Ibey, Bennett L.; Armani, Andrea M.
2016-03-01
We recently developed a nonlinear optical imaging technique based on second harmonic generation (SHG) to identify membrane disruption events in live cells. This technique was used to detect nanoporation in the plasma membrane following nanosecond pulsed electric field (nsPEF) exposure. It has been hypothesized that similar poration events could be induced by the thermal gradients generated by infrared (IR) laser energy. Optical pulses are a highly desirable stimulus for the nervous system, as they are capable of inhibiting and producing action potentials in a highly localized but non-contact fashion. However, the underlying mechanisms involved with infrared neural stimulation (INS) are not well understood. The ability of our method to non-invasively measure membrane structure and transmembrane potential via Two Photon Fluorescence (TPF) make it uniquely suited to neurological research. In this work, we leverage our technique to understand what role membrane structure plays during INS and contrast it with nsPEF stimulation. We begin by examining the effect of IR pulses on CHO-K1 cells before progressing to primary hippocampal neurons. The use of these two cell lines allows us to directly compare poration as a result of IR pulses to nsPEF exposure in both a neuron-derived cell line, and one likely lacking native channels sensitive to thermal stimuli.
Quantum control of coherent π -electron ring currents in polycyclic aromatic hydrocarbons
NASA Astrophysics Data System (ADS)
Mineo, Hirobumi; Fujimura, Yuichi
2017-12-01
We present results for quantum optimal control (QOC) of the coherent π electron ring currents in polycyclic aromatic hydrocarbons (PAHs). Since PAHs consist of a number of condensed benzene rings, in principle, there exist various coherent ring patterns. These include the ring current localized to a designated benzene ring, the perimeter ring current that flows along the edge of the PAH, and the middle ring current of PAHs having an odd number of benzene rings such as anthracene. In the present QOC treatment, the best target wavefunction for generation of the ring current through a designated path is determined by a Lagrange multiplier method. The target function is integrated into the ordinary QOC theory. To demonstrate the applicability of the QOC procedure, we took naphthalene and anthracene as the simplest examples of linear PAHs. The mechanisms of ring current generation were clarified by analyzing the temporal evolutions of the electronic excited states after coherent excitation by UV pulses or (UV+IR) pulses as well as those of electric fields of the optimal laser pulses. Time-dependent simulations of the perimeter ring current and middle ring current of anthracene, which are induced by analytical electric fields of UV pulsed lasers, were performed to reproduce the QOC results.
The effect of pulsed electric fields on carotenoids bioaccessibility: The role of tomato matrix.
Bot, Francesca; Verkerk, Ruud; Mastwijk, Hennie; Anese, Monica; Fogliano, Vincenzo; Capuano, Edoardo
2018-02-01
Tomato fractions were subjected to pulsed electric fields treatment combined or not with heating. Results showed that pulsed electric fields and heating applied in combination or individually induced permeabilization of cell membranes in the tomato fractions. However, no changes in β-carotene and lycopene bioaccessibility were found upon combined and individual pulsed electric fields and heating, except in the following cases: (i) in tissue, a significant decrease in lycopene bioaccessibility upon combined pulsed electric fields and heating and heating only was observed; (ii) in chromoplasts, both β-carotene and lycopene bioaccessibility significantly decreased upon combined pulsed electric fields and heating and pulsed electric fields only. The reduction in carotenoids bioaccessibility was attributed to modification in chromoplasts membrane and carotenoids-protein complexes. Differences in the effects of pulsed electric fields on bioaccessibility among different tomato fractions were related to tomato structure complexity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sanguinetti-Scheck, Juan Ignacio; Pedraja, Eduardo Federico; Cilleruelo, Esteban; Migliaro, Adriana; Aguilera, Pedro; Caputi, Angel Ariel; Budelli, Ruben
2011-01-01
Active electroreception in Gymnotus omarorum is a sensory modality that perceives the changes that nearby objects cause in a self generated electric field. The field is emitted as repetitive stereotyped pulses that stimulate skin electroreceptors. Differently from mormyriformes electric fish, gymnotiformes have an electric organ distributed along a large portion of the body, which fires sequentially. As a consequence shape and amplitude of both, the electric field generated and the image of objects, change during the electric pulse. To study how G. omarorum constructs a perceptual representation, we developed a computational model that allows the determination of the self-generated field and the electric image. We verify and use the model as a tool to explore image formation in diverse experimental circumstances. We show how the electric images of objects change in shape as a function of time and position, relative to the fish's body. We propose a theoretical framework about the organization of the different perceptive tasks made by electroreception: 1) At the head region, where the electrosensory mosaic presents an electric fovea, the field polarizing nearby objects is coherent and collimated. This favors the high resolution sampling of images of small objects and perception of electric color. Besides, the high sensitivity of the fovea allows the detection and tracking of large faraway objects in rostral regions. 2) In the trunk and tail region a multiplicity of sources illuminate different regions of the object, allowing the characterization of the shape and position of a large object. In this region, electroreceptors are of a unique type and capacitive detection should be based in the pattern of the afferents response. 3) Far from the fish, active electroreception is not possible but the collimated field is suitable to be used for electrocommunication and detection of large objects at the sides and caudally. PMID:22096578
NASA Astrophysics Data System (ADS)
Akiyama, Hidenori; Katsuki, Sunao; Namihira, Takao; Ishibashi, Kazuo; Kiyosaki, Noriaki
Pulsed power has been used to produce non-thermal plasmas in atmospheric pressure gases that generate a high electric field at the tips of streamer discharges, where high energy electrons, free radicals, ultraviolet rays, and ozone are produced. These manifestations of streamer discharges have been used in the treatment of exhaust gases, removal of volatile and toxic compounds such as dioxin, and the sterilization of microorganisms. Here, large volume streamer discharges in water are described. These streamer discharges in liquids are able to produce a high electric field, high energy electrons, ozone, chemically active species, ultraviolet rays, and shock waves, which readily sterilize microorganisms and decompose molecules and materials. An application of this phenomenon to the cleaning of lakes and marshes is also described.
Unusual lightning electric field waveforms observed in Kathmandu, Nepal, and Uppsala, Sweden
NASA Astrophysics Data System (ADS)
Adhikari, Pitri Bhakta; Sharma, Shriram; Baral, Kedarnath; Rakov, Vladimir A.
2017-11-01
Unusual lightning events have been observed in Uppsala, Sweden, and Kathmandu, Nepal, using essentially the same electric field measuring system developed at Uppsala University. They occurred in the storms that also generated ;normal; lightning events. The unusual events recorded in Uppsala occurred on one thunderstorm day. Similar events were observed in Kathmandu on multiple thunderstorm days. The unusual events were analyzed in this study assuming them to be positive ground flashes (+CGs), although we cannot rule out the possibility that some or most of them were actually cloud discharges (ICs). The unusual events were each characterized by a relatively slow, negative (atmospheric electricity sign convention) electric field waveform preceded by a pronounced opposite-polarity pulse whose duration was some tens of microseconds. To the best of our knowledge, such unusual events have not been reported in the literature. The average amplitudes of the opposite-polarity pulses with respect to those of the following main waveform were found to be about 33% in Uppsala (N = 31) and about 38% in Kathmandu (N = 327). The average durations of the main waveform and the preceding opposite-polarity pulse in Uppsala were 8.24 ms and 57.1 μs, respectively, and their counterparts in Kathmandu were 421 μs and 39.7 μs. Electric field waveforms characteristic of negative ground flashes (-CGs) were also observed, and none of them exhibited an opposite-polarity pulse prior to the main waveform. Possible origins of the unusual field waveforms are discussed.
ELECTRIC CURRENT FILAMENTATION AT A NON-POTENTIAL MAGNETIC NULL-POINT DUE TO PRESSURE PERTURBATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jelínek, P.; Karlický, M.; Murawski, K., E-mail: pjelinek@prf.jcu.cz
2015-10-20
An increase of electric current densities due to filamentation is an important process in any flare. We show that the pressure perturbation, followed by an entropy wave, triggers such a filamentation in the non-potential magnetic null-point. In the two-dimensional (2D), non-potential magnetic null-point, we generate the entropy wave by a negative or positive pressure pulse that is launched initially. Then, we study its evolution under the influence of the gravity field. We solve the full set of 2D time dependent, ideal magnetohydrodynamic equations numerically, making use of the FLASH code. The negative pulse leads to an entropy wave with amore » plasma density greater than in the ambient atmosphere and thus this wave falls down in the solar atmosphere, attracted by the gravity force. In the case of the positive pressure pulse, the plasma becomes evacuated and the entropy wave propagates upward. However, in both cases, owing to the Rayleigh–Taylor instability, the electric current in a non-potential magnetic null-point is rapidly filamented and at some locations the electric current density is strongly enhanced in comparison to its initial value. Using numerical simulations, we find that entropy waves initiated either by positive or negative pulses result in an increase of electric current densities close to the magnetic null-point and thus the energy accumulated here can be released as nanoflares or even flares.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stelmashuk, V., E-mail: vitalij@ipp.cas.cz
2014-01-15
When a high voltage pulse with an amplitude of 30 kV is applied to a pair of disk electrodes at a time when a shock wave is passing between them, an electrical spark is generated. The dynamic changes in the spark morphology are studied here using a high-speed framing camera. The primary result of this work is the provision of experimental evidence of plasma instability that was observed in the channel of the electric spark.
Electrical motor/generator drive apparatus and method
Su, Gui Jia
2013-02-12
The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.
Theoretical analysis of ozone generation by pulsed dielectric barrier discharge in oxygen
NASA Astrophysics Data System (ADS)
Wei, L. S.; Zhou, J. H.; Wang, Z. H.; Cen, K. F.
2007-08-01
The use of very short high-voltage pulses combined with a dielectric layer results in high-energy electrons that dissociate oxygen molecules into atoms, which are a prerequisite for the subsequent production of ozone by collisions with oxygen molecules and third particles. The production of ozone depends on both the electrical and the physical parameters. For ozone generation by pulsed dielectric barrier discharge in oxygen, a mathematical model, which describes the relation between ozone concentration and these parameters that are of importance in its design, is developed according to dimensional analysis theory. A formula considering the ozone destruction factor is derived for predicting the characteristics of the ozone generation, within the range of the corona inception voltage to the gap breakdown voltage. The trend showing the dependence of the concentration of ozone in oxygen on these parameters generally agrees with the experimental results, thus confirming the validity of the mathematical model.
Pulse generation scheme for flying electromagnetic doughnuts
NASA Astrophysics Data System (ADS)
Papasimakis, Nikitas; Raybould, Tim; Fedotov, Vassili A.; Tsai, Din Ping; Youngs, Ian; Zheludev, Nikolay I.
2018-05-01
Transverse electromagnetic plane waves are fundamental solutions of Maxwells equations. It is less known that a radically different type of solutions has been described theoretically, but has never been realized experimentally, that exist only in the form of short bursts of electromagnetic energy propagating in free space at the speed of light. They are distinguished from transverse waves by a doughnutlike configuration of electric and magnetic fields with a strong field component along the propagation direction. Here, we demonstrate numerically that such flying doughnuts can be generated from conventional pulses using a singular metamaterial converter designed to manipulate both the spatial and spectral structure of the input pulse. The ability to generate flying doughnuts is of fundamental interest, as they shall interact with matter in unique ways, including nontrivial field transformations upon reflection from interfaces and the excitation of toroidal response and anapole modes in matter, hence offering opportunities for telecommunications, sensing, and spectroscopy.
Palacio, M M; Van Aalst, V C; Perez Abadia, G A; Stremel, R W; Werker, P M; Ren, X; Petty, G D; Heilman, S J; Van Savage, J G; Garcia Fernandez, A; Kon, M; Tobin, G R; Barker, J H
1998-11-01
To reconstruct an electrically stimulated muscular urinary sphincter (MUS) using a tailored gracilis muscle free flap with intact nerve. Unilateral surgically tailored gracilis muscle free flaps were transferred into the pelvis in eight dogs, leaving the obturator nerve intact. The muscle's pedicle vessels were anastomosed to the inferior epigastric artery and vein in the pelvis and the muscle was wrapped around the bladder neck. Electrodes were inserted into the MUS and connected to a programmable pulse generator. After 8 weeks of training the MUS, the pulse generator was programmed to be "on" for 4 hours and "off' for 15 minutes in a continuous cycle. Urodynamic studies were performed periodically, and at the end of the experiment the MUS and proximal urethra were harvested for histology. Three control dogs had sham operations. All MUS's functioned well following the procedure. Histology of the MUS/urethra complex showed no evidence of stricture. Except for one dog, all urethras were easily catheterized. This electrically stimulated innervated free-flap MUS technique effectively increases bladder outlet resistance without producing urethral obstruction.
Hart, D J; Taylor, P N; Chappell, P H; Wood, D E
2006-06-01
Correction of drop foot in hemiplegic gait is achieved by electrical stimulation of the common peroneal nerve with a series of pulses at a fixed frequency. However, during normal gait, the electromyographic signals from the tibialis anterior muscle indicate that muscle force is not constant but varies during the swing phase. The application of double pulses for the correction of drop foot may enhance the gait by generating greater torque at the ankle and thereby increase the efficiency of the stimulation with reduced fatigue. A flexible controller has been designed around the Odstock Drop Foot Stimulator to deliver different profiles of pulses implementing doublets and optimum series. A peripheral interface controller (PIC) microcontroller with some external circuits has been designed and tested to accommodate six profiles. Preliminary results of the measurements from a normal subject seated in a multi-moment chair (an isometric torque measurement device) indicate that profiles containing doublets and optimum spaced pulses look favourable for clinical use.
Optimizing the electrical excitation of an atmospheric pressure plasma advanced oxidation process.
Olszewski, P; Li, J F; Liu, D X; Walsh, J L
2014-08-30
The impact of pulse-modulated generation of atmospheric pressure plasma on the efficiency of organic dye degradation has been investigated. Aqueous samples of methyl orange were exposed to low temperature air plasma and the degradation efficiency was determined by absorbance spectroscopy. The plasma was driven at a constant frequency of 35kHz with a duty cycle of 25%, 50%, 75% and 100%. Relative concentrations of dissolved nitrogen oxides, pH, conductivity and the time evolution of gas phase ozone were measured to identify key parameters responsible for the changes observed in degradation efficiency. The results indicate that pulse modulation significantly improved dye degradation efficiency, with a plasma pulsed at 25% duty showing a two-fold enhancement. Additionally, pulse modulation led to a reduction in the amount of nitrate contamination added to the solution by the plasma. The results clearly demonstrate that optimization of the electrical excitation of the plasma can enhance both degradation efficiency and the final water quality. Copyright © 2014 Elsevier B.V. All rights reserved.
Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses
Tokita, Shigeki; Sakabe, Shuji; Nagashima, Takeshi; Hashida, Masaki; Inoue, Shunsuke
2015-01-01
Terahertz pulses trapped as surface waves on a wire waveguide can be flexibly transmitted and focused to sub-wavelength dimensions by using, for example, a tapered tip. This is particularly useful for applications that require high-field pulses. However, the generation of strong terahertz surface waves on a wire waveguide remains a challenge. Here, ultrafast field propagation along a metal wire driven by a femtosecond laser pulse with an intensity of 1018 W/cm2 is characterized by femtosecond electron deflectometry. From experimental and numerical results, we conclude that the field propagating at the speed of light is a half-cycle transverse-magnetic surface wave excited on the wire and a considerable portion of the kinetic energy of laser-produced fast electrons can be transferred to the sub-surface wave. The peak electric field strength of the surface wave and the pulse duration are estimated to be 200 MV/m and 7 ps, respectively. PMID:25652694
Multiple excitation regenerative amplifier inertial confinement system
George, V.E.; Haas, R.A.; Krupke, W.F.; Schlitt, L.G.
1980-05-27
The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation. 11 figs.
Multiple excitation regenerative amplifier inertial confinement system
George, Victor E. [Livermore, CA; Haas, Roger A. [Pleasanton, CA; Krupke, William F. [Pleasanton, CA; Schlitt, Leland G. [Livermore, CA
1980-05-27
The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation.
Linear transformer driver for pulse generation
Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A
2015-04-07
A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.
Agricultural and Food Processing Applications of Pulsed Power and Plasma Technologies
NASA Astrophysics Data System (ADS)
Takaki, Koichi
Agricultural and food processing applications of pulsed power and plasma technologies are described in this paper. Repetitively operated compact pulsed power generators with a moderate peak power are developed for the agricultural and the food processing applications. These applications are mainly based on biological effects and can be categorized as germination control of plants such as Basidiomycota and arabidopsis inactivation of bacteria in soil and liquid medium of hydroponics; extraction of juice from fruits and vegetables; decontamination of air and liquid, etc. Types of pulsed power that have biological effects are caused with gas discharges, water discharges, and electromagnetic fields. The discharges yield free radicals, UV radiation, intense electric field, and shock waves. Biologically based applications of pulsed power and plasma are performed by selecting the type that gives the target objects the adequate result from among these agents or byproducts. For instance, intense electric fields form pores on the cell membrane, which is called electroporation, or influence the nuclei. This paper mainly describes the application of the pulsed power for the germination control of Basidiomycota i.e. mushroom, inactivation of fungi in the soil and the liquid medium in hydroponics, and extraction of polyphenol from skins of grape.
Ab initio design of laser pulses to control molecular motion
NASA Astrophysics Data System (ADS)
Balint-Kurti, Gabriel; Ren, Qinghua; Manby, Frederick; Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel; Zou, Shiyang; Singh, Harjinder
2007-03-01
Our recent attempts to design laser pulses entirely theoretically, in a quantitative and accurate manner, so as to fully understand the underlying mechanisms active in the control process will be outlined. We have developed a new Born-Oppenheimer like separation called the electric-nuclear Born-Oppenheimer (ENBO) approximation. In this approximation variations of both the nuclear geometry and of the external electric field are assumed to be slow compared with the speed at which the electronic degrees of freedom respond to these changes. This assumption permits the generation of a potential energy surface that depends not only on the relative geometry of the nuclei, but also on the electric field strength and on the orientation of the molecule with respect to the electric field. The range of validity of the ENBO approximation is discussed. Optimal control theory is used along with the ENBO approximation to design laser pulses for exciting vibrational and rotational motion in H2 and CO molecules. Progress on other applications, including controlling photodissociation processes, isotope separation, stabilization of molecular Bose-Einstein condensates as well as applications to biological molecules also be presented. *Support acknowledged from EPSRC.
Generation of strong pulsed magnetic fields using a compact, short pulse generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanuka, D.; Efimov, S.; Nitishinskiy, M.
2016-04-14
The generation of strong magnetic fields (∼50 T) using single- or multi-turn coils immersed in water was studied. A pulse generator with stored energy of ∼3.6 kJ, discharge current amplitude of ∼220 kA, and rise time of ∼1.5 μs was used in these experiments. Using the advantage of water that it has a large Verdet constant, the magnetic field was measured using the non-disturbing method of Faraday rotation of a polarized collimated laser beam. This approach does not require the use of magnetic probes, which are sensitive to electromagnetic noise and damaged in each shot. It also avoids the possible formation of plasma bymore » either a flashover along the conductor or gas breakdown inside the coil caused by an induced electric field. In addition, it was shown that this approach can be used successfully to investigate the interesting phenomenon of magnetic field enhanced diffusion into a conductor.« less
Next Generation Driver for Attosecond and Laser-plasma Physics.
Rivas, D E; Borot, A; Cardenas, D E; Marcus, G; Gu, X; Herrmann, D; Xu, J; Tan, J; Kormin, D; Ma, G; Dallari, W; Tsakiris, G D; Földes, I B; Chou, S-W; Weidman, M; Bergues, B; Wittmann, T; Schröder, H; Tzallas, P; Charalambidis, D; Razskazovskaya, O; Pervak, V; Krausz, F; Veisz, L
2017-07-12
The observation and manipulation of electron dynamics in matter call for attosecond light pulses, routinely available from high-order harmonic generation driven by few-femtosecond lasers. However, the energy limitation of these lasers supports only weak sources and correspondingly linear attosecond studies. Here we report on an optical parametric synthesizer designed for nonlinear attosecond optics and relativistic laser-plasma physics. This synthesizer uniquely combines ultra-relativistic focused intensities of about 10 20 W/cm 2 with a pulse duration of sub-two carrier-wave cycles. The coherent combination of two sequentially amplified and complementary spectral ranges yields sub-5-fs pulses with multi-TW peak power. The application of this source allows the generation of a broad spectral continuum at 100-eV photon energy in gases as well as high-order harmonics in relativistic plasmas. Unprecedented spatio-temporal confinement of light now permits the investigation of electric-field-driven electron phenomena in the relativistic regime and ultimately the rise of next-generation intense isolated attosecond sources.
Generation of strong pulsed magnetic fields using a compact, short pulse generator
NASA Astrophysics Data System (ADS)
Yanuka, D.; Efimov, S.; Nitishinskiy, M.; Rososhek, A.; Krasik, Ya. E.
2016-04-01
The generation of strong magnetic fields (˜50 T) using single- or multi-turn coils immersed in water was studied. A pulse generator with stored energy of ˜3.6 kJ, discharge current amplitude of ˜220 kA, and rise time of ˜1.5 μs was used in these experiments. Using the advantage of water that it has a large Verdet constant, the magnetic field was measured using the non-disturbing method of Faraday rotation of a polarized collimated laser beam. This approach does not require the use of magnetic probes, which are sensitive to electromagnetic noise and damaged in each shot. It also avoids the possible formation of plasma by either a flashover along the conductor or gas breakdown inside the coil caused by an induced electric field. In addition, it was shown that this approach can be used successfully to investigate the interesting phenomenon of magnetic field enhanced diffusion into a conductor.
NASA Astrophysics Data System (ADS)
Barnes, Ronald; Roth, Caleb C.; Shadaram, Mehdi; Beier, Hope; Ibey, Bennett L.
2015-03-01
The underlying mechanism(s) responsible for nanoporation of phospholipid membranes by nanosecond pulsed electric fields (nsEP) remains unknown. The passage of a high electric field through a conductive medium creates two primary contributing factors that may induce poration: the electric field interaction at the membrane and the shockwave produced from electrostriction of a polar submersion medium exposed to an electric field. Previous work has focused on the electric field interaction at the cell membrane, through such models as the transport lattice method. Our objective is to model the shock wave cell membrane interaction induced from the density perturbation formed at the rising edge of a high voltage pulse in a polar liquid resulting in a shock wave propagating away from the electrode toward the cell membrane. Utilizing previous data from cell membrane mechanical parameters, and nsEP generated shockwave parameters, an acoustic shock wave model based on the Helmholtz equation for sound pressure was developed and coupled to a cell membrane model with finite-element modeling in COMSOL. The acoustic structure interaction model was developed to illustrate the harmonic membrane displacements and stresses resulting from shockwave and membrane interaction based on Hooke's law. Poration is predicted by utilizing membrane mechanical breakdown parameters including cortical stress limits and hydrostatic pressure gradients.
NASA Astrophysics Data System (ADS)
Duggirala, Rajesh; Li, Hui; Lal, Amit
2008-04-01
We demonstrate a 5.1% energy conversion efficiency Ni63 radioisotope power generator by integrating silicon betavoltaic converters with radioisotope actuated reciprocating piezoelectric unimorph cantilever converters. The electromechanical energy converter efficiently utilizes both the kinetic energy and the electrical charge of the 0.94μW β radiation from a 9mCi Ni63 thin film source to generate maximum (1) continuous betavoltaic electrical power output of 22nW and (2) pulsed piezoelectric electrical power output of 750μW at 0.07% duty cycle. The electromechanical converters can be potentially used to realize 100year lifetime power sources for powering periodic sampling remote wireless sensor microsystems.
NASA Astrophysics Data System (ADS)
Cvecek, Kristian; Gröschel, Benjamin; Schmidt, Michael
Remote processing of metallic workpieces by techniques based on electric arc discharge or laser irradiation for joining or cutting has a long tradition and is still being intensively investigated in present-day research. In applications that require high power processing, both approaches exhibit certain advantages and disadvantages that make them specific for a given task. While several hybrid approaches exist that try to combine the benefits of both techniques, none were as successful in providing a fixed electric discharge direction as discharges triggered by plasma filaments generated by ultra-short pulsed lasers. In this work we investigate spatial and temporal aspects of laser filament guided discharges and give an upper time delay between the filament creation and the electrical build-up of a dischargeable voltage for a successful filament triggered discharge.
Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure.
Roth, Caleb C; Barnes, Ronald A; Ibey, Bennett L; Beier, Hope T; Christopher Mimun, L; Maswadi, Saher M; Shadaram, Mehdi; Glickman, Randolph D
2015-10-09
The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane.
Diamondoid synthesis by nanosecond pulsed microplasmas generated in He at atmospheric pressure
NASA Astrophysics Data System (ADS)
Stauss, Sven; Shizuno, Tomoki; Oshima, Fumito; Pai, David Z.; Terashima, Kazuo
2012-10-01
Diamondoids are sp^3 hybridized carbon nanomaterials that possess interesting properties making them attractive for biotechnology, medicine, and opto- and nanoelectronics. So far, larger diamondoids have been synthesized using the smallest diamondoid (adamantane) as a precursor. For this electric discharges and pulsed laser plasmas generated in supercritical fluids, and hot filament chemical vapor deposition have been used, but these methods are difficult to realize or very time-consuming. We have developed a more convenient approach where diamondoids are synthesized by high-voltage nanosecond pulsed microplasmas (voltage 15 kVp-p, frequency 1 Hz, pulse width 10 ns) generated in He at atmospheric pressure using point-to-plane tungsten electrodes. Adamantane was used as a precursor, and synthesis was conducted for 10^5 pulses at gas temperatures of 297, 373 and 473 K. Energy dispersive X-ray and micro-Raman spectroscopy were conducted to determine the composition of the products, and gas chromatography - mass spectra indicated the formation of diamantane. It was found that synthesis is more efficient at room temperature than at higher temperatures, and time-resolved optical emission spectroscopy suggest that the chemical reactions take place in the afterglow.
Molecular electron recollision dynamics in intense circularly polarized laser pulses
NASA Astrophysics Data System (ADS)
Bandrauk, André D.; Yuan, Kai-Jun
2018-04-01
Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.
Electro-optic sampling of near-infrared waveforms
NASA Astrophysics Data System (ADS)
Keiber, Sabine; Sederberg, Shawn; Schwarz, Alexander; Trubetskov, Michael; Pervak, Volodymyr; Krausz, Ferenc; Karpowicz, Nicholas
2016-03-01
Access to the complete electric field evolution of a laser pulse is essential for attosecond science in general, and for the scrutiny and control of electron phenomena in solid-state physics specifically. Time-resolved field measurements are routine in the terahertz spectral range, using electro-optic sampling (EOS), photoconductive switches and field-induced second harmonic generation. EOS in particular features outstanding sensitivity and ease of use, making it the basis of time-resolved spectroscopic measurements for studying charge carrier dynamics and active optical devices. In this Letter, we show that careful optical filtering allows the bandwidth of this technique to be extended to wavelengths as short as 1.2 μm (230 THz) with half-cycle durations 2.3 times shorter than the sampling pulse. In a proof-of-principle application, we measure the influence of optical parametric amplification (OPA) on the electric field dynamics of a few-cycle near-infrared (NIR) pulse.
Attosecond control of electron beams at dielectric and absorbing membranes
NASA Astrophysics Data System (ADS)
Morimoto, Yuya; Baum, Peter
2018-03-01
Ultrashort electron pulses are crucial for time-resolved electron diffraction and microscopy of the fundamental light-matter interaction. In this work, we study experimentally and theoretically the generation and characterization of attosecond electron pulses by optical-field-driven compression and streaking at dielectric or absorbing interaction elements. The achievable acceleration and deflection gradient depends on the laser-electron angle, the laser's electric and magnetic field directions, and the foil orientation. Electric and magnetic fields have similar contributions to the final effect and both need to be considered. Experiments and theory agree well and reveal the optimum conditions for highly efficient, velocity-matched electron-field interactions in the longitudinal or transverse direction. We find that metallic membranes are optimum for light-electron control at mid-infrared or terahertz wavelengths, but dielectric membranes are excellent in the visible and near-infrared regimes and are therefore ideal for the formation of attosecond electron pulses.
Polycrystalline silicon thin-film transistors fabricated by Joule-heating-induced crystallization
NASA Astrophysics Data System (ADS)
Hong, Won-Eui; Ro, Jae-Sang
2015-01-01
Joule-heating-induced crystallization (JIC) of amorphous silicon (a-Si) films is carried out by applying an electric pulse to a conductive layer located beneath or above the films. Crystallization occurs across the whole substrate surface within few tens of microseconds. Arc instability, however, is observed during crystallization, and is attributed to dielectric breakdown in the conductor/insulator/transformed polycrystalline silicon (poly-Si) sandwich structures at high temperatures during electrical pulsing for crystallization. In this study, we devised a method for the crystallization of a-Si films while preventing arc generation; this method consisted of pre-patterning an a-Si active layer into islands and then depositing a gate oxide and gate electrode. Electric pulsing was then applied to the gate electrode formed using a Mo layer. The Mo layer was used as a Joule-heat source for the crystallization of pre-patterned active islands of a-Si films. JIC-processed poly-Si thin-film transistors (TFTs) were fabricated successfully, and the proposed method was found to be compatible with the standard processing of coplanar top-gate poly-Si TFTs.
Energy harvesting from mastication forces via a smart tooth
NASA Astrophysics Data System (ADS)
Bani-Hani, Muath; Karami, M. Amin
2016-04-01
The batteries of the current pacing devices are relatively large and occupy over 60 percent of the size of pulse generators. Therefore, they cannot be placed in the subtle areas of human body. In this paper, the mastication force and the resulting tooth pressure are converted to electricity. The pressure energy can be converted to electricity by using the piezoelectric effect. The tooth crown is used as a power autonomous pulse generator. We refer to this envisioned pulse generator as the smart tooth. The smart tooth is in the form of a dental implant. A piezoelectric vibration energy harvester is designed and modeled for this purpose. The Piezoelectric based energy harvesters investigated and analyzed in this paper initially includes a single degree of freedom piezoelectric based stack energy harvester which utilizes a harvesting circuit employing the case of a purely resistive circuit. The next step is utilizing and investigating a bimorph piezoelectric beam which is integrated/embedded in the smart tooth implant. Mastication process causes the bimorph beam to buckle or return to unbuckled condition. The transitions results in vibration of the piezoelectric beam and thus generate energy. The power estimated by the two mechanisms is in the order of hundreds of microwatts. Both scenarios of the energy harvesters are analytically modeled. The exact analytical solution of the piezoelectric beam energy harvester with Euler-Bernoulli beam assumptions is presented. The electro-mechanical coupling and the geometric nonlinearities have been included in the model for the piezoelectric beam.
Exploring Membrane Dynamics during Electric Pulse Exposure with Second Harmonic Generation
NASA Astrophysics Data System (ADS)
Moen, Erick; Ibey, Bennett; Beier, Hope; Armani, Andrea
Optical second harmonic generation (SHG) is a powerful tool for investigating the nanostructure of symmetry-breaking materials and interfacial layers. Recently, we developed an imaging technique based on SHG for quantifying and localizing nanoporation in the plasma membrane of living cells. Nanosecond pulsed electric fields (nsPEF) were used to controllably disrupt the membrane, and the observed changes were validated against an extensible cell circuit model. In this talk, I will discuss the development of this method and its application to various cell types and stimuli, with a specific focus on bipolar (BP) nsPEF. BP nsPEF hold special interest as a cellular insult because they allow for a unique exposition of transmembrane potential and membrane charging/relaxation. Using this approach, we examine the structural response of the membrane as the temporal spacing between pulse phases was varied over several orders of magnitude and compare these results to the response when the cell is exposed to a monopolar (MP) nsPEF. Disagreement of the experimental results with the model demonstrates that biological processes may play a larger role than previously thought. These findings could lead to a greater understanding of the fundamental processes essential to all electroporation.
Grünewald, Volker; Höfner, Klaus; Thon, Walter F.; Kuczyk, Markus A.; Jonas, Udo
1999-01-01
Temporary electrical stimulation using anal or vaginal electrodes and an external pulse generator has been a treatment modality for urinary urge incontinence for nearly three decades. In 1981 Tanagho and Schmidt introduced chronic electrical stimulation of the sacral spinal nerves using a permanently implanted sacral foramen electrode and a battery powered pulse generator for treatment of different kinds of lower urinary tract dysfunction, refractory to conservative treatment. At our department chronic unilateral electrical stimulation of the S3 sacral spinal nerve has been used for treatment of vesi-courethral dysfunction in 43 patients with a mean postoperative follow up of 43,6 months. Lasting symptomatic improvement by more than 50 % could be achieved in 13 of 18 patients with motor urge incontinence (72,2 %) and in 18 of the 21 patients with urinary retention (85,7 %). Implants offer a sustained therapeutic effect to treatment responders, which is not achieved by temporary neuromodulation. Chronic neuromodulation should be predominantly considered in patients with urinary retention. Furthermore in patients with motor urge incontinence, refusing temporary techniques or in those requiring too much effort to achieve a sustained clinical effect. Despite high initial costs chronic sacral neuromodulation is an economically reasonable treatment option in the long run, when comparing it to the more invasive remaining therapeutic alternatives.
RF synchronized short pulse laser ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuwa, Yasuhiro, E-mail: fuwa@kyticr.kuicr.kyoto-u.ac.jp; Iwashita, Yoshihisa; Tongu, Hiromu
A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H{sub 2} gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at themore » exit of RF resonator by a probe.« less
A two-stage series diode for intense large-area moderate pulsed X rays production.
Lai, Dingguo; Qiu, Mengtong; Xu, Qifu; Su, Zhaofeng; Li, Mo; Ren, Shuqing; Huang, Zhongliang
2017-01-01
This paper presents a method for moderate pulsed X rays produced by a series diode, which can be driven by high voltage pulse to generate intense large-area uniform sub-100-keV X rays. A two stage series diode was designed for Flash-II accelerator and experimentally investigated. A compact support system of floating converter/cathode was invented, the extra cathode is floating electrically and mechanically, by withdrawing three support pins several milliseconds before a diode electrical pulse. A double ring cathode was developed to improve the surface electric field and emission stability. The cathode radii and diode separation gap were optimized to enhance the uniformity of X rays and coincidence of the two diode voltages based on the simulation and theoretical calculation. The experimental results show that the two stage series diode can work stably under 700 kV and 300 kA, the average energy of X rays is 86 keV, and the dose is about 296 rad(Si) over 615 cm 2 area with uniformity 2:1 at 5 cm from the last converter. Compared with the single diode, the average X rays' energy reduces from 132 keV to 88 keV, and the proportion of sub-100-keV photons increases from 39% to 69%.
Studies of nonlinear femtosecond pulse propagation in bulk materials
NASA Astrophysics Data System (ADS)
Eaton, Hilary Kaye
2000-10-01
Femtosecond pulse lasers are finding widespread application in a variety of fields including medical research, optical switching and communications, plasma formation, high harmonic generation, and wavepacket formation and control. As the number of applications for femtosecond pulses increases, so does the need to fully understand the linear and nonlinear processes involved in propagating these pulses through materials under various conditions. Recent advances in pulse measurement techniques, such as frequency-resolved optical gating (FROG), allow measurement of the full electric field of the pulse and have made detailed investigations of short- pulse propagation effects feasible. In this thesis, I present detailed experimental studies of my work involving nonlinear propagation of femtosecond pulses in bulk media. Studies of plane-wave propagation in fused silica extend the SHG form of FROG from a simple pulse diagnostic to a useful method of interrogating the nonlinear response of a material. Studies of nonlinear propagation are also performed in a regime where temporal pulse splitting occurs. Experimental results are compared with a three- dimensional nonlinear Schrödinger equation. This comparison fuels the development of a more complete model for pulse splitting. Experiments are also performed at peak input powers above those at which pulse splitting is observed. At these higher intensities, a broadband continuum is generated. This work presents a detailed study of continuum behavior and power loss as well as the first near-field spatial- spectral measurements of the generated continuum light. Nonlinear plane-wave propagation of short pulses in liquids is also investigated, and a non-instantaneous nonlinearity with a surprisingly short response time of 10 fs is observed in methanol. Experiments in water confirm that this effect in methanol is indeed real. Possible explanations for the observed effect are discussed and several are experimentally rejected. This thesis applies FROG as a powerful tool for science and not just a useful pulse diagnostic technique. Studies of three-dimensional propagation provide an in-depth understanding of the processes involved in femtosecond pulse splitting. In addition, the experimental investigations of continuum generation and pulse propagation in liquids provide new insights into the possible processes involved and should provide a useful comparison for developing theories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuneda, H.; Matsukawa, S.; Takayanagi, S.
The healing mechanism of bone fractures by low intensity pulse ultrasound is yet to be fully understood. There have been many discussions regarding how the high frequency dynamic stress can stimulate numerous cell types through various pathways. As one possible initial process of this mechanism, we focus on the piezoelectricity of bone and demonstrate that bone can generate electrical potentials by ultrasound irradiation in the MHz range. We have fabricated ultrasonic bone transducers using bovine cortical bone as the piezoelectric device. The ultrasonically induced electrical potentials in the transducers change as a function of time during immersed ultrasonic pulse measurementsmore » and become stable when the bone is fully wet. In addition, the magnitude of the induced electrical potentials changes owing to the microstructure in the cortical bone. The potentials of transducers with haversian structure bone are higher than those of plexiform structure bone, which informs about the effects of bone microstructure on the piezoelectricity.« less
NASA Astrophysics Data System (ADS)
Tsuneda, H.; Matsukawa, S.; Takayanagi, S.; Mizuno, K.; Yanagitani, T.; Matsukawa, M.
2015-02-01
The healing mechanism of bone fractures by low intensity pulse ultrasound is yet to be fully understood. There have been many discussions regarding how the high frequency dynamic stress can stimulate numerous cell types through various pathways. As one possible initial process of this mechanism, we focus on the piezoelectricity of bone and demonstrate that bone can generate electrical potentials by ultrasound irradiation in the MHz range. We have fabricated ultrasonic bone transducers using bovine cortical bone as the piezoelectric device. The ultrasonically induced electrical potentials in the transducers change as a function of time during immersed ultrasonic pulse measurements and become stable when the bone is fully wet. In addition, the magnitude of the induced electrical potentials changes owing to the microstructure in the cortical bone. The potentials of transducers with haversian structure bone are higher than those of plexiform structure bone, which informs about the effects of bone microstructure on the piezoelectricity.
Characterization of pulsed flow attenuation on a regulated montane river
NASA Astrophysics Data System (ADS)
Fong, C. S.; Yarnell, S. M.; Fleenor, W. E.; Viers, J. H.
2013-12-01
A major benefit of hydropower is its ability to respond quickly to fluctuating electrical loads. However, the sharp changes in discharge caused by this practice have detrimental environmental effects downstream. This study investigated the effects of hydrograph shape on attenuation of regulated pulsed flow events by first categorizing, then modeling the downstream movement of representative pulses on the upper Tuolumne River below Holm Powerhouse in the Sierra Nevada mountains of California. This system was managed by a public utility and produced flow pulses primarily for hydroelectricity generation and/or whitewater recreation. Operations were highly influenced by a system-wide "Water First" policy, which prioritized drinking water supply and quality over other beneficial uses. Pulses were therefore associated with a spectrum of time scales, from predetermined schedules decided far in advance to hydropeaking operations responding to real-time demands. We extracted underlying hydrograph shape patterns using principal component analysis on individual pulsed flow events released from 1988-2012 (n=4439). From principal component loadings, six shape categories were determined: rectangular, front-step, back-step, goalpost, centered tower, and other. The rectangular and stepped shapes were the most frequent, composing 62% and 24% of total events, respectively. The rectangular shape was often produced by 'standard' hydropeaking or recreational releases, while the stepped shapes were often used for water conservation or were recreational flows bordered by periods of electricity generation. The stepped shape increased in occurrence after the "Water First" policy took effect in 1993 and dominated two drier years (2007 and 2009). After categorization by shape, magnitude and durational indices were used to fabricate representative pulsed flow events. Attenuation of these representative pulses was then modeled using a 1D hydraulic model of 42 river km prepared in HEC-RAS. As no operational measures or physical structures existed within the system to counter the adverse effects of pulsed flow events, natural attenuation was the only potential major mitigation agent. However, model results demonstrated a clear durational threshold for representative pulses (~ 3-5 hrs) over which the degree of attenuation of ramping rates and peak discharge approached a limit. These thresholds were unique to the study reach and were dependent upon river morphology, bed characteristics, and flow rates. Increasing baseflows did not necessarily increase attenuation of pulses, most likely due to minimal increases in bed friction forces in this fairly steep and confined channel. Simulations of front and back-step representative pulses showed trade-offs between attenuation of peak magnitudes and steepness of ramping rates. Finally, a range of rising ramping rates were shown to steepen downstream above initial rates due to the study reach's channel morphology. Reshaping pulses to be more ecologically benign at all points downstream was infeasible if the system was required to maintain current electricity production and recreational service levels.
Attosecond time-energy structure of X-ray free-electron laser pulses
NASA Astrophysics Data System (ADS)
Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.
2018-04-01
The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.
Techniques for the characterization of sub-10-fs optical pulses: a comparison
NASA Astrophysics Data System (ADS)
Gallmann, L.; Sutter, D. H.; Matuschek, N.; Steinmeyer, G.; Keller, U.
Several methods have been proposed for the phase and amplitude characterization of sub-10-fs pulses with nJ energies. An overview of these techniques is presented, with a focus on the comparison of second-harmonic generation frequency-resolved optical gating (SHG-FROG) and spectral phase interferometry for direct electric-field reconstruction (SPIDER). We describe a collinear FROG variant based on type-II phase-matching that completely avoids the geometrical blurring artifact and use both this and SPIDER for the characterization of sub-10-fs Ti:sapphire laser pulses. The results of both methods are compared in an extensive statistical analysis. From this first direct experimental comparison of FROG and SPIDER, guidelines for accurate measurements of sub-10-fs pulses are derived. We point out limitations of both methods for pulses in this ultrashort pulse regime.
Large co-axial pulse tube preliminary results
NASA Astrophysics Data System (ADS)
Emery, N.; Caughley, A.; Meier, J.; Nation, M.; Tanchon, J.; Trollier, T.; Ravex, A.
2014-01-01
We report that Callaghan Innovation, formally known as Industrial Research Ltd (IRL), has designed and built its largest of three high frequency single-stage co-axial pulse tubes, closely coupled to a metal diaphragm pressure wave generator (PWG). The previous pulse tube achieved 110 W of cooling power @ 77 K, with an electrical input power of 3.1 kW from a 90 cc swept volume PWG. The pulse tubes have all been tuned to operate at 50 Hz, with a mean helium working pressure of 2.5 MPa. Sage pulse tube simulation software was used to model the latest pulse tube and predicted 280 W of cooling power @ 77 K. The nominal 250 W cryocooler was designed to be an intermediate step to up-scale pulse tube technology for our 1000 cc swept-volume PWG, to provide liquefaction of gases and cooling for HTS applications. Details of the modeling, design, development and preliminary experimental results are discussed.
Jalinous, Reza; Lisanby, Sarah H.
2013-01-01
A novel transcranial magnetic stimulation (TMS) device with controllable pulse width (PW) and near rectangular pulse shape (cTMS) is described. The cTMS device uses an insulated gate bipolar transistor (IGBT) with appropriate snubbers to switch coil currents up to 7 kA, enabling PW control from 5 μs to over 100 μs. The near-rectangular induced electric field pulses use 22–34% less energy and generate 67–72% less coil heating compared to matched conventional cosine pulses. CTMS is used to stimulate rhesus monkey motor cortex in vivo with PWs of 20 to 100 μs, demonstrating the expected decrease of threshold pulse amplitude with increasing PW. The technological solutions used in the cTMS prototype can expand functionality, and reduce power consumption and coil heating in TMS, enhancing its research and therapeutic applications. PMID:18232369
[Research advances of anti-tumor immune response induced by pulse electric field ablation].
Cui, Guang-ying; Diao, Hong-yan
2015-11-01
As a novel tumor therapy, pulse electric field has shown a clinical perspective. This paper reviews the characteristics of tumor ablation by microsecond pulse and nanosecond pulse electric field, and the research advances of anti-tumor immune response induced by pulse electric field ablation. Recent researches indicate that the pulse electric field not only leads to a complete ablation of local tumor, but also stimulates a protective immune response, thereby inhibiting tumor recurrence and metastasis. These unique advantages will show an extensive clinical application in the future. However, the mechanism of anti-tumor immune response and the development of related tumor vaccine need further studies.
Chopdekar, Rajesh Vilas; Buzzi, Michele; Jenkins, Catherine; Arenholz, Elke; Nolting, Frithjof; Takamura, Yayoi
2016-06-08
In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O3 substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO3 film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier lowering by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to 'set' and 'reset' the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature.
Various aspects of ultrasound assisted emulsion polymerization process.
Korkut, Ibrahim; Bayramoglu, Mahmut
2014-07-01
In this paper, the effects of ultrasonic (US) power, pulse ratio, probe area and recipe composition were investigated on two process responses namely, monomer (methyl methacrylate, MMA) conversion and electrical energy consumption per mass of product polymer (PMMA). Pulsed mode US is more suitable than continuous mode US for emulsion polymerization. The probe (tip) area has little effect on the yield of polymerization when comparing 19 and 13 mm probes, 13 mm probe performing slightly better for high conversion levels. Meanwhile, large probe area is beneficial for high conversion efficiency of electric energy to US energy as well as for high radical generation yield per energy consumed. The conversion increased slightly and electrical energy consumption decreased substantially by using a recipe with high SDS and monomer concentrations. Conclusions presented in this paper may be useful for scale-up of US assisted emulsion polymerization. Copyright © 2014 Elsevier B.V. All rights reserved.
Dependence of streamer density on electric field strength on positive electrode
NASA Astrophysics Data System (ADS)
Koki, Nakamura; Takahumi, Okuyama; Wang, Douyan; Takao, N.; Hidenori, Akiyama; Kumamoto University Collaboration
2015-09-01
Pulsed streamer discharge plasma, a type of non-thermal plasma, is known as generation method of reactive radicals and ozone and treatment of exhausted gas. From our previous research, the distance between electrodes has been considered a very important parameter for applications using pulsed streamer discharge. However, how the distance between electrodes affects the pulsed discharge hasn't been clarified. In this research, the propagation process of pulsed streamer discharge in a wire-plate electrode was observed using an ICCD camera for 4 electrodes having different distance between electrodes. The distance between electrodes was changeable at 45 mm, 40 mm, 35 mm, and 30 mm. The results show that, when the distance between electrodes was shortened, applied voltage with a pulse duration of 100 ns decreased from 80 to 60.3 kV. Conversely, discharge current increased from 149 to 190 A. Streamer head velocity became faster. On the other hand, Streamer head density at onset time of streamer head propagation didn't change. This is considered due to the electric field strength of streamer head at that time, in result, it was about 14 kV/mm under each distance between electrodes.
An Investigation of Ionic Flows in a Sphere-Plate Electrode Gap
NASA Astrophysics Data System (ADS)
Z. Alisoy, H.; Alagoz, S.; T. Alisoy, G.; B. Alagoz, B.
2013-10-01
This paper presents analyses of ion flow characteristics and ion discharge pulses in a sphere-ground plate electrode system. As a result of variation in electric field intensity in the electrode gap, the ion flows towards electrodes generate non-uniform discharging pulses. Inspection of these pulses provides useful information on ionic stream kinetics, the effective thickness of ion cover around electrodes, and the timing of ion clouds discharge pulse sequences. A finite difference time domain (FDTD) based space-charge motion simulation is used for the numerical analysis of the spatio-temporal development of ionic flows following the first Townsend avalanche, and the simulation results demonstrate expansion of the positive ion flow and compression of the negative ion flow, which results in non-uniform discharge pulse characteristics.
NASA Astrophysics Data System (ADS)
Adamovich, Igor
2006-10-01
The paper presents results of three experiments using high voltage, short pulse duration, high repetition rate discharge plasmas. High electric field during the pulse (E/N˜500-1000 Td) allows efficient ionization and molecular dissociation. Between the pulses, additional energy can be coupled to the decaying plasma using a DC field set below the breakdown threshold. While the DC sustainer discharge adds 90-95% of all the power to the flow, it does not produce any additional ionization. The pulser and the sustainer discharges are fully overlapped in space. Low duty cycle of the pulsed ionizer, ˜1/1000, allows sustaining diffuse and uniform pulser-sustainer plasmas at high pressures and power loadings. The first experiment using the pulsed discharge is ignition of premixed hydrocarbon-air flows, which occurs at low pulsed discharge powers, ˜100 W, and very low plasma temperatures, 100-200^0 C. The second experiment is Lorentz force acceleration of low-temperature supersonic flows. The pulsed discharge was used to generate electrical conductivity in M=3 nitrogen and air flows, while the sustainer discharge produced transverse current in the presence of magnetic field of B=1.5 T. Retarding Lorentz force applied to the flow produced a static pressure increase of up to 15-20%, while accelerating force of the same magnitude resulted in static pressure rise of up to 7-8%, i.e. a factor of two smaller. The third experiment is singlet delta oxygen (SDO) generation in a high-pressure pulser-sustainer discharge. SDO yield was inferred from the integrated intensity of SDO infrared emission spectra calibrated using a blackbody source. The measured yield exceeds the laser threshold yield by about a factor of three, which makes possible achieving positive gain in the laser cavity. The highest gain measured so far is 0.03%/cm.
NASA Astrophysics Data System (ADS)
Goldberg, Benjamin M.; Chng, Tat Loon; Dogariu, Arthur; Miles, Richard B.
2018-02-01
We present an optical electric field measurement method for use in high pressure plasma discharges. The method is based upon the field induced second harmonic generation technique and can be used for localized electric field measurements with sub-nanosecond resolution in any gaseous species. When an external electric field is present, a dipole is induced in the typically centrosymmetric medium, allowing for second harmonic generation with signal intensities which scale by the square of the electric field. Calibrations have been carried out in 100 Torr room air, and a minimum sensitivity of 450 V/cm is demonstrated. Measurements were performed with nanosecond or faster temporal resolution in a 100 Torr room air environment both with and without a plasma present. It was shown that with no plasma present, the field follows the applied voltage to gap ratio, as measured using the back current shunt method. When the electric field is strong enough to exceed the breakdown threshold, the measured field was shown to exceed the anticipated voltage to gap ratio which is taken as an indication of the ionization wave front as it sweeps through the plasma volume.
NASA Astrophysics Data System (ADS)
Lee, Jinwoo; Kim, Se-Jong; Lee, Myoung-Gyu; Song, Jung Han; Choi, Seogou; Han, Heung Nam; Kim, Daeyong
2016-06-01
The uniaxial tensile and compressive stress-strain responses of AZ31B magnesium alloy sheet under pulsed electric current are reported. Tension and compression tests with pulsed electric current showed that flow stresses dropped instantaneously when the electric pulses were applied. Thermo-mechanical-electrical finite element analyses were also performed to investigate the effects of Joule heating and electro-plasticity on the flow responses of AZ31B sheets under electric-pulsed tension and compression tests. The proposed finite element simulations could reproduce the measured uniaxial tensile and compressive stress-strain curves under pulsed electric currents, when the temperature-dependent flow stress hardening model and thermal properties of AZ31B sheet were properly described in the simulations. In particular, the simulation results that fit best with experimental results showed that almost 100 pct of the electric current was subject to transform into Joule heating during electrically assisted tensile and compressive tests.
NASA Technical Reports Server (NTRS)
Mcalister, K. W.
1981-01-01
A procedure is described for visualizing nonsteady fluid flow patterns over a wide velocity range using discrete nonluminous particles. The paramount element responsible for this capability is a pulse-forming network with variable inductance that is used to modulate the discharge of a fixed amount of electrical energy through a xenon flashtube. The selectable duration of the resultant light emission functions as a variable shutter so that particle path images of constant length can be recorded. The particles employed as flow markers are hydrogen bubbles that are generated by electrolysis in a water tunnel. Data are presented which document the characteristics of the electrical circuit and establish the relation of particle velocity to both section inductance and film exposure.
Dielectric Barrier Discharges: Pulsed Breakdown, Electrical Characterization and Chemistry
2013-06-01
DIELECTRIC BARRIER DISCHARGES : PULSED BREAKDOWN, ELECTRICAL CHARACTERIZATION AND CHEMISTRY R. Brandenburg, H. Höft, T. Hoder, A. Pipa, R...for pulsed driven Dielectric Barrier Discharges (DBDs) in particular. Fast electrical, optical and spectroscopic methods enable the study of...2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Dielectric Barrier Discharges : Pulsed Breakdown, Electrical Characterization
Fragmentation of neutral amino acids and small peptides by intense, femtosecond laser pulses.
Duffy, Martin J; Kelly, Orla; Calvert, Christopher R; King, Raymond B; Belshaw, Louise; Kelly, Thomas J; Costello, John T; Timson, David J; Bryan, William A; Kierspel, Thomas; Turcu, I C Edmond; Cacho, Cephise M; Springate, Emma; Williams, Ian D; Greenwood, Jason B
2013-09-01
High power femtosecond laser pulses have unique properties that could lead to their application as ionization or activation sources in mass spectrometry. By concentrating many photons into pulse lengths approaching the timescales associated with atomic motion, very strong electric field strengths are generated, which can efficiently ionize and fragment molecules without the need for resonant absorption. However, the complex interaction between these pulses and biomolecular species is not well understood. To address this issue, we have studied the interaction of intense, femtosecond pulses with a number of amino acids and small peptides. Unlike previous studies, we have used neutral forms of these molecular targets, which allowed us to investigate dissociation of radical cations without the spectra being complicated by the action of mobile protons. We found fragmentation was dominated by fast, radical-initiated dissociation close to the charge site generated by the initial ionization or from subsequent ultrafast migration of this charge. Fragments with lower yields, which are useful for structural determinations, were also observed and attributed to radical migration caused by hydrogen atom transfer within the molecule.
Evaluation of the shock-wave pattern for endoscopic electrohydraulic lithotripsy.
Vorreuther, R; Engelmann, Y
1995-01-01
We evaluated the electrical events and the resulting shock waves of the spark discharge for electrohydraulic lithotripsy at the tip of a 3.3F probe. Spark generation was achieved by variable combinations of voltage and capacity. The effective electrical output was determined by means of a high-voltage probe, a current coil, and a digital oscilloscope. Peak pressures, rise times, and pulse width of the pressure profiles were recorded using a polyvinylidene difluoride needle hydrophone in 0.9% NaCl solution at a distance of 10 mm. The peak pressure and the slope of the shock front depend solely on the voltage, while the pulse width was correlated with the capacity. Pulses of less than 1-microsecond duration can be obtained when low capacity is applied and the inductivity of the cables and plugs is kept at a low level. Using chalk as a stone model it was proven that short pulses of high peak pressure provided by a low capacity and a high voltage have a greater impact on fragmentation than the corresponding broader shock waves of lower peak pressure carrying the same energy.
Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges
NASA Astrophysics Data System (ADS)
Sobral, H.; Robledo-Martinez, A.
2016-10-01
A fast, high voltage square-shaped electrical pulse initiated by laser ablation was investigated as a means to enhance the analytical capabilities of laser Induced breakdown spectroscopy (LIBS). The electrical pulse is generated by the discharge of a charged coaxial cable into a matching impedance. The pulse duration and the stored charge are determined by the length of the cable. The ablation plasma was produced by hitting an aluminum target with a nanosecond 532-nm Nd:YAG laser beam under variable fluence 1.8-900 J cm- 2. An enhancement of up to one order of magnitude on the emission signal-to-noise ratio can be achieved with the spark discharge assisted laser ablation. Besides, this increment is larger for ionized species than for neutrals. LIBS signal is also increased with the discharge voltage with a tendency to saturate for high laser fluences. Electron density and temperature evolutions were determined from time delays of 100 ns after laser ablation plasma onset. Results suggest that the spark discharge mainly re-excites the laser produced plume.
Streamers and their applications
NASA Astrophysics Data System (ADS)
Pemen, A. J. M.
2011-10-01
In this invited lecture we give an overview of our 15 years of experience on streamer plasma research. Efforts are directed to integrating the competence areas of plasma physics, pulsed power technology and chemical processing. The current status is the development of a large scale pulsed corona system for gas treatment. Applications on biogas conditioning, VOC removal, odor abatement and control of traffic emissions have been demonstrated. Detailed research on electrical and chemical processes resulted in a boost of efficiencies. Energy transfer efficiency to the plasma was raised to above 90%. Simultaneous improvement of the plasma chemistry resulted in a highly efficient radical generation: O-radical production up to 50% of the theoretical maximum has been achieved. A major challenge in pulsed power driven streamers is to unravel, understand and ultimately control the complex interactions between the transient plasma, electrical circuits, and process. Even more a challenge is to yield electron energies that fit activation energies of the process. We will discuss our ideas on adjusting pulsed power waveforms and plasma reactor settings to obtain more controlled catalytic processing: the ``Chemical Transistor'' concept.
Concealed wire tracing apparatus
Kronberg, J.W.
1994-05-31
An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface is disclosed. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest. 4 figs.
NASA Astrophysics Data System (ADS)
Liu, Peng; Zhang, He; Ma, Shaojie; Shi, Yunlei
2018-05-01
A compact explosively driven ferromagnetic generator (FMG) is developed for seed power source of helical magnetic flux compression generator (HMFCG). The mechanism of FMG is studied by establishing a magnetoelectric conversion model. Analytical calculations and numerical simulations are conducted on the magnetostatic field of open-circuit magnet in FMG. The calculation method for the magnet's cross-sectional magnetic flux is obtained. The pulse sources made of different materials and equipped with different initiation modes are experimentally explored. Besides, the dynamic coupling experiments of FMG and HMFCG are carried out. The results show that, N35 single-ended and double-ended initiating FMGs have an energy conversion efficiency ηt not less than 14.6% and 24.4%, respectively; FMG has an output pulse current not less than 4kA and an energy of about 3J on 320nH inductive load; HMFCG experiences energy gains of about 2-3 times. FMG and HMFCG can be coupled to form a full-blast electrical driving pulse source.
Pulsed thermionic converter study
NASA Technical Reports Server (NTRS)
1976-01-01
A nuclear electric propulsion concept using a thermionic reactor inductively coupled to a magnetoplasmadynamic accelerator (MPD arc jet) is described, and the results of preliminary analyses are presented. In this system, the MPD thruster operates intermittently at higher voltages and power levels than the thermionic generating unit. A typical thrust pulse from the MPD arc jet is characterized by power levels of 1 to 4 MWe, a duration of 1 msec, and a duty cycle of approximately 20%. The thermionic generating unit operates continuously but with a lower power level of approximately 0.4 MWe. Energy storage between thrust pulses is provided by building up a large current in an inductor using the output of the thermionic converter array. Periodically, the charging current is interrupted, and the energy stored in the magnetic field of the inductor is utilized for a short duration thrust pulse. The results of the preliminary analysis show that a coupling effectiveness of approximately 85 to 90% is feasible for a nominal 400 KWe system with an inductive unit suitable for a flight vehicle.
Origin, Emission, and Propagation of P-H Pulses
NASA Astrophysics Data System (ADS)
Kikuchi, H.
2007-05-01
Origin, Emission, and Propagation of P-H Pulses H. Kikuchi Institute for Environmental Electromagnetics 3-8-18, Komagome, Toshima-ku, Tokyo 170, Japan e-mail: hkikuchi@mars.dti.ne.jp Abstract According to Pulinets, characters of P-H pulses is following. The registered emission has not continuous but pulsed character and has very wide frequency spectrum from kHz to more than hundred MHz. These two facts imply that should be the electric discharge-like emission similar to thunderstorm flashes emission. The emission is connected in some way with seismic activity and the emission intensity increases 12-24 hour before the seismic shock. Another intriguing factor is that emission is registered at large distances up to 500 km (some witness claim up to 1500 km). Taking into account that emission is registered at VHF band also, the source of emission cannot be situated on the ground. This paper puts forwards a model of P-H pulses generation based on "dust dynamics". Rotating ions ascending, for instance erupped metalic ions in the earth's crust into the atmosphere incorporating aerosols might be captured by diffuse dust layers which may exist below or beyond the electric mirror point produced by quadrupole-like thunder- cloud configurations or even form a portion of dust layers and could be a source-origin of P-H pulses that might be emitted by local electric discharges within diffuse dust layers somewhat similar to thundercloud discharges, though emission frequencies and characters are quite different, namely P-H pulses are over a wide range of frequencies, say from kHz to more than hundred MHz with pulsed character in contrast to lightning emission with more continuous character whose frequencies are 1 to 10 kHz. Such diffuse dust layers could be formed over a wide range of height in the troposphere, stratosphere, mesosphere and the thermosphere. Propagation distance of P-H pulses are very large up to 500-1500 km.
Development of an All Solid State 6 kHz Pulse Generator for Driving Free Electron Laser Amplifiers
1990-07-16
programs. 1-6 SCIENCE RESEARCH LABORATORY In these efforts, Science Research Laboratory is exploiting recent progress in Silicon Con- trolled Rectifier...electrons in silicon as opposed to the low pressure gas in the thyratron. In addition these all-solid-state SCR-switched drivers can be engineered to...nsec PFN 2-5 C Li Figure 2.3: Electrical schematic and cross-sectional view of SNOMAD-11 SCR corn - mutated pulse compression driver. 2-5 SCIENCE
NASA Technical Reports Server (NTRS)
Kelley, M. C.; Kintner, P. M.; Kudeki, E.; Holmgren, G.; Bostrom, R.; Fahleson, U. V.
1980-01-01
Instruments onboard the Trigger payload detected a large-amplitude, low-frequency, electric field pulse which was observed with a time delay consistent only with an electromagnetic wave. A model for this perturbation is constructed, and the associated field-aligned current is calculated as a function of altitude. This experiment may simulate the acceleration mechanism which results in the formation of auroral arcs, and possibly even other events in cosmic plasmas.
Microshell-tipped optical fibers as sensors of high-pressure pulses in adverse environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benjamin, R.F.; Mayer, F.J.; Maynard, R.L.
1984-01-01
An optical-fiber sensor for detecting the arrival of strong pressure pulses was developed. The sensor consists of an optical fiber, tipped with a gas-filled microballoon. They have been used successfully in adverse environments including explosives, ballistics and electromagnetic pulses (EMP). The sensor produces a bright optical pulse caused by the rapid shock-heating of a gas, typically argon or xenon, which is confined in the spherical glass or plastic microballoon. The light pulse is transmitted via the optical fiber to a photo detector, usually a streak camera or photomultiplier tube. The microballoon optical sensor (called an optical pin by analogy tomore » standard electrical pins), was originally developed for diagnosing an explosive, pulsed-power generator. Optical pins are required due to the EMP. The optical pins are economical arrival-time indicators because many channels can be recorded by one streak camera. The generator tests and related experiments, involving projectile velocities and detonation velocities of several kilometers per sec have demonstrated the usefulness of the sensors in explosives and ballistics applications. The technical and cost advantages of this optical pin make it potentially useful for many electromagnetic, explosive, and ballistics applications.« less
Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression
NASA Astrophysics Data System (ADS)
Varshnay, N. K.; Singh, A.; Benerji, N. S.
2017-02-01
Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression suitable for material processing applications are presented here. The laser incorporates in-built compact gas circulation and gas cooling to ensure fresh gas mixture between the electrodes for repetitive operation. A magnetically coupled tangential blower is used for gas circulation inside the laser chamber for repetitive operation. The exciter consists of C-C energy transfer circuit and thyratron is used as a high-voltage main switch with single-stage magnetic pulse compression (MPC) between thyratron and the laser electrodes. Low inductance of the laser head and uniform and intense pre-ionization are the main features of the electric circuit used in the laser. A 250 ns rise time voltage pulse was compressed to 100 ns duration with a single-stage magnetic pulse compressor using Ni-Zn ferrite cores. The laser can generate about 150 mJ at ˜100 Hz rep-rate reliably from a discharge volume of 100 cm 3. 2D spatial laser beam profile generated is presented here. The profile shows that the laser beam is completely filled with flat-top which is suitable for material processing applications. The SEM image of the microhole generated on copper target is presented here.
A comparison between spectra of runaway electron beams in SF6 and air
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Tarasenko, Victor; Gu, Jianwei; Baksht, Evgenii; Wang, Ruexue; Yan, Ping; Shao, Tao
2015-12-01
Runaway electron (RAE) with extremely high-energy plays important role on the avalanche propagation, streamer formation, and ionization waves in nanosecond-pulse discharges. In this paper, the generation of a supershort avalanche electron beam (SAEB) in SF6 and air in an inhomogeneous electric field is investigated. A VPG-30-200 generator with a pulse rise time of ˜1.6 ns and a full width at half maximum of 3-5 ns is used to produce RAE beams. The SAEBs in SF6 and air are measured by using aluminum foils with different thicknesses. Furthermore, the SAEB spectra in SF6 and air at pressures of 7.5 Torr, 75 Torr, and 750 Torr are compared. The results showed that amplitude of RAE beam current generated at the breakdown in SF6 was approximately an order of magnitude less than that in air. The energy of SAEB in air was not smaller than that in SF6 in nanosecond-pulse discharges under otherwise equal conditions. Moreover, the difference between the maximum energy of the electron distributions in air and SF6 decreased when the rise time of the voltage pulse increased. It was because the difference between the breakdown voltages in air and SF6 decreased when the rise time of the voltage pulse increased.
Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure
Roth, Caleb C.; Barnes Jr., Ronald A.; Ibey, Bennett L.; Beier, Hope T.; Christopher Mimun, L.; Maswadi, Saher M.; Shadaram, Mehdi; Glickman, Randolph D.
2015-01-01
The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane. PMID:26450165
Multiharmonic Frequency-Chirped Transducers for Surface-Acoustic-Wave Optomechanics
NASA Astrophysics Data System (ADS)
Weiß, Matthias; Hörner, Andreas L.; Zallo, Eugenio; Atkinson, Paola; Rastelli, Armando; Schmidt, Oliver G.; Wixforth, Achim; Krenner, Hubert J.
2018-01-01
Wide-passband interdigital transducers are employed to establish a stable phase lock between a train of laser pulses emitted by a mode-locked laser and a surface acoustic wave generated electrically by the transducer. The transducer design is based on a multiharmonic split-finger architecture for the excitation of a fundamental surface acoustic wave and a discrete number of its overtones. Simply by introducing a variation of the transducer's periodicity p , a frequency chirp is added. This combination results in wide frequency bands for each harmonic. The transducer's conversion efficiency from the electrical to the acoustic domain is characterized optomechanically using single quantum dots acting as nanoscale pressure sensors. The ability to generate surface acoustic waves over a wide band of frequencies enables advanced acousto-optic spectroscopy using mode-locked lasers with fixed repetition rate. Stable phase locking between the electrically generated acoustic wave and the train of laser pulses is confirmed by performing stroboscopic spectroscopy on a single quantum dot at a frequency of 320 MHz. Finally, the dynamic spectral modulation of the quantum dot is directly monitored in the time domain combining stable phase-locked optical excitation and time-correlated single-photon counting. The demonstrated scheme will be particularly useful for the experimental implementation of surface-acoustic-wave-driven quantum gates of optically addressable qubits or collective quantum states or for multicomponent Fourier synthesis of tailored nanomechanical waveforms.
Theory and simulations of radiation friction induced enhancement of laser-driven longitudinal fields
NASA Astrophysics Data System (ADS)
Gelfer, E. G.; Fedotov, A. M.; Weber, S.
2018-06-01
We consider the generation of a quasistatic longitudinal electric field by intense laser pulses propagating in a transparent plasma with radiation friction (RF) taken into account. For both circular and linear polarization of the driving pulse we develop a 1D analytical model of the process, which is valid in a wide range of laser and plasma parameters. We define the parameter region where RF results in an essential enhancement of the longitudinal field. The amplitude and the period of the generated longitudinal wave are estimated and optimized. Our theoretical predictions are confirmed by 1D and 2D PIC simulations. We also demonstrate numerically that RF should substantially enhance the longitudinal field generated in a plasma by a 10 PW laser such as ELI Beamlines.
NASA Astrophysics Data System (ADS)
Vikharev, A. L.; Gorbachev, A. M.; Ivanov, O. A.; Kolisko, A. L.; Litvak, A. G.
1993-08-01
The plasma chemical processes in the corona discharge formed in air by a series of high voltage pulses of nanosecond duration are investigated experimentally. The experimental conditions (reduced electric field, duration and repetition frequency of the pulses, gas pressure in the chamber) modeled the regime of creation of the artificial ionized layer (AIL) in the upper atmosphere by a nanosecond microwave discharge. It was found that in a nanosecond microwave discharge predominantly generation of ozone occurs, and that the production of nitrogen dioxide is not large. The energy expenditures for the generation of one O 3 molecule were about 15 eV. On the basis of the experimental results the prognosis of the efficiency of ozone generation in AIL was made.
USDA-ARS?s Scientific Manuscript database
Whole fresh blueberries were treated using a parallel pulsed electric field (PEF) treatment chamber and a sanitizer solution (60 ppm peracetic acid [PAA]) as PEF treatment medium with square wave bipolar pulses at 2 kV/cm electric field strength, 1us pulse width, and 100 pulses per second for 2, 4, ...
Zhang, Shuo
2015-09-01
The spectral, electrical and atomic fluorescence characteristics of As, Se, Sb and Pb hollow cathode lamps (HCLs) powered by a laboratory-built high current microsecond pulse (HCMP) power supply were studied, and the feasibility of using HCMP-HCLs as the excitation source of hydride generation atomic fluorescence spectrometry (HG-AFS) was evaluated. Under the HCMP power supply mode, the As, Se, Sb, Pb HCLs can maintain stable glow discharge at frequency of 100~1000 Hz, pulse width of 4.0~20 μs and pulse current up to 4.0 A. Relationship between the intensity of characteristic emission lines and HCMP power supply parameters, such as pulse current, power supply voltage, pulse width and frequency, was studied in detail. Compared with the conventional pulsed (CP) HCLs used in commercial AFS instruments, HCMP-HCLs have a narrower pulse width and much stronger pulse current. Under the optimized HCMP power supply parameters, the intensity of atomic emission lines of As, Se, Sb HCLs had sharp enhancement and that indicated their capacity of being a novel HG-AFS excitation source. However, the attenuation of atomic lines and enhancement of ionic lines negated such feasibility of HCMP-Pb HCL. Then the HG-AFS analytical capability of using the HCMP-As/Se/Sb HCLs excitation source was established and results showed that the HCMP-HCL is a promising excitation source for HG-AFS.
NASA Astrophysics Data System (ADS)
Surzhikov, V. P.; Demikhova, A. A.
2017-01-01
Results of research of influence of the excitation pulse duration on the parameters of the electromagnetic response of epoxy samples with filler the quartz sand presented in the paper. The electric component of a response was registered by the capacitive sensors using a differential amplifier. Measurements were carried out at two frequencies of the master generator of 65 kHz and 74 kHz. The pulse duration was changing from 10 to 100 microseconds. The stepped sort of dependence of the integrated oscillations energy in the response from duration of the excitation pulse was discovered. The conclusion was made about the determining role of the normal oscillations in formation of such dependence.
Tritium monitor with improved gamma-ray discrimination
Cox, S.A.; Bennett, E.F.; Yule, T.J.
1982-10-21
Apparatus and method are presented for selective measurement of tritium oxide in an environment which may include other radioactive components and gamma radiation, the measurement including the selective separation of tritium oxide from a sample gas through a membrane into a counting gas, the generation of electrical pulses individually representative by rise times of tritium oxide and other radioactivity in the counting gas, separation of the pulses by rise times, and counting of those pulses representative of tritium oxide. The invention further includes the separate measurement of any tritium in the sample gas by oxidizing the tritium to tritium oxide and carrying out a second separation and analysis procedure as described above.
Tritium monitor with improved gamma-ray discrimination
Cox, Samson A.; Bennett, Edgar F.; Yule, Thomas J.
1985-01-01
Apparatus and method for selective measurement of tritium oxide in an environment which may include other radioactive components and gamma radiation, the measurement including the selective separation of tritium oxide from a sample gas through a membrane into a counting gas, the generation of electrical pulses individually representative by rise times of tritium oxide and other radioactivity in the counting gas, separation of the pulses by rise times, and counting of those pulses representative of tritium oxide. The invention further includes the separate measurement of any tritium in the sample gas by oxidizing the tritium to tritium oxide and carrying out a second separation and analysis procedure as described above.
Aerodynamic stability analysis of NASA J85-13/planar pressure pulse generator installation
NASA Technical Reports Server (NTRS)
Chung, K.; Hosny, W. M.; Steenken, W. G.
1980-01-01
A digital computer simulation model for the J85-13/Planar Pressure Pulse Generator (P3 G) test installation was developed by modifying an existing General Electric compression system model. This modification included the incorporation of a novel method for describing the unsteady blade lift force. This approach significantly enhanced the capability of the model to handle unsteady flows. In addition, the frequency response characteristics of the J85-13/P3G test installation were analyzed in support of selecting instrumentation locations to avoid standing wave nodes within the test apparatus and thus, low signal levels. The feasibility of employing explicit analytical expression for surge prediction was also studied.
Mushrooming vulnerability to EMP
NASA Astrophysics Data System (ADS)
Lerner, E. J.
1984-08-01
The electromagnetic pulse (EMP) generated by a single thermonuclear bomb detonated above the continental U.S. could set up electrical fields of 50 kV/m over nearly all of North America. Since the progressively microminiaturized integrated circuits of current military and civilian electronics become more vulnerable with decreasing circuit element size, even shield-protected chips can now be destroyed by the substantially shield-dampened EMP pulses. It is noted as a source of special concern that, as nuclear weapons have evolved, the EMP characteristically generated by them has shifted to increasingly shorter wavelengths, requiring significant redesign of EMP shields devised a decade or more ago. The surge arresters currently employed may not react sufficiently rapidly for existing weapons.
Ciniciato, Gustavo P. M. K.; Ng, Fong-Lee; Phang, Siew-Moi; Jaafar, Muhammad Musoddiq; Fisher, Adrian C.; Yunus, Kamran; Periasamy, Vengadesh
2016-01-01
Microbial fuel cells operating with autotrophic microorganisms are known as biophotovoltaic devices. It represents a great opportunity for environmentally-friendly power generation using the energy of the sunlight. The efficiency of electricity generation in this novel system is however low. This is partially reflected by the poor understanding of the bioelectrochemical mechanisms behind the electron transfer from these microorganisms to the electrode surface. In this work, we propose a combination of electrochemical and fluorescence techniques, giving emphasis to the pulse amplitude modulation fluorescence. The combination of these two techniques allow us to obtain information that can assist in understanding the electrical response obtained from the generation of electricity through the intrinsic properties related to the photosynthetic efficiency that can be obtained from the fluorescence emitted. These were achieved quantitatively by means of observed changes in four photosynthetic parameters with the bioanode generating electricity. These are the maximum quantum yield (Fv/Fm), alpha (α), light saturation coefficient (Ek) and maximum rate of electron transfer (rETRm). The relationship between the increases in the current density collected by the bioanode to the decrease of the rETRm values in the photosynthetic pathway for the two microorganisms was also discussed. PMID:27502051
NASA Astrophysics Data System (ADS)
Ciniciato, Gustavo P. M. K.; Ng, Fong-Lee; Phang, Siew-Moi; Jaafar, Muhammad Musoddiq; Fisher, Adrian C.; Yunus, Kamran; Periasamy, Vengadesh
2016-08-01
Microbial fuel cells operating with autotrophic microorganisms are known as biophotovoltaic devices. It represents a great opportunity for environmentally-friendly power generation using the energy of the sunlight. The efficiency of electricity generation in this novel system is however low. This is partially reflected by the poor understanding of the bioelectrochemical mechanisms behind the electron transfer from these microorganisms to the electrode surface. In this work, we propose a combination of electrochemical and fluorescence techniques, giving emphasis to the pulse amplitude modulation fluorescence. The combination of these two techniques allow us to obtain information that can assist in understanding the electrical response obtained from the generation of electricity through the intrinsic properties related to the photosynthetic efficiency that can be obtained from the fluorescence emitted. These were achieved quantitatively by means of observed changes in four photosynthetic parameters with the bioanode generating electricity. These are the maximum quantum yield (Fv/Fm), alpha (α), light saturation coefficient (Ek) and maximum rate of electron transfer (rETRm). The relationship between the increases in the current density collected by the bioanode to the decrease of the rETRm values in the photosynthetic pathway for the two microorganisms was also discussed.
Baker, W.R.
1961-08-22
A device is described for establishing and maintaining a high-energy, rotational plasma for use as a fast discharge capacitor. A disc-shaped, current- conducting plasma is formed in an axinl magnetic field and a crossed electric field, thereby creating rotational kinetic enengy in the plasma. Such energy stored in the rotation of the plasma disc is substantial and is convertible tc electrical energy by generator action in an output line electrically coupled to the plasma volume. Means are then provided for discharging the electrical energy into an external circuit coupled to the output line to produce a very large pulse having an extremely rapid rise time in the waveform thereof. (AE C)
Homodyne impulse radar hidden object locator
McEwan, T.E.
1996-04-30
An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules. 15 figs.
Homodyne impulse radar hidden object locator
McEwan, Thomas E.
1996-01-01
An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules.
NASA Astrophysics Data System (ADS)
Hmood, Jassim K.; Harun, Sulaiman W.
2018-05-01
A new approach for realizing a wideband optical frequency comb (OFC) generator based on driving cascaded modulators by a Gaussian-shaped waveform, is proposed and numerically demonstrated. The setup includes N-cascaded MZMs, a single Gaussian-shaped waveform generator, and N-1 electrical time delayer. The first MZM is driven directly by a Gaussian-shaped waveform, while delayed replicas of the Gaussian-shaped waveform drive the other MZMs. An analytical model that describes the proposed OFC generator is provided to study the effect of number and chirp factor of cascaded MZM as well as pulse width on output spectrum. Optical frequency combs at frequency spacing of 1 GHz are generated by applying Gaussian-shaped waveform at pulse widths ranging from 200 to 400 ps. Our results reveal that, the number of comb lines is inversely proportional to the pulse width and directly proportional to both number and chirp factor of cascaded MZMs. At pulse width of 200 ps and chirp factor of 4, 67 frequency lines can be measured at output spectrum of two-cascaded MZMs setup. Whereas, increasing the number of cascaded stages to 3, 4, and 5, the optical spectra counts 89, 109 and 123 frequency lines; respectively. When the delay time is optimized, 61 comb lines can be achieved with power fluctuations of less than 1 dB for five-cascaded MZMs setup.
Stygar, William A.; Reisman, David B.; Stoltzfus, Brian S.; ...
2016-07-07
In this study, we have developed a conceptual design of a next-generation pulsed-power accelerator that is optmized for driving megajoule-class dynamic-material-physics experiments at pressures as high as 1 TPa. The design is based on an accelerator architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. Since much of the accelerator is water insulated, we refer to this machine as Neptune. The prime power source of Neptune consists of 600 independent impedance-matched Marx generators. As much as 0.8 MJ and 20 MA can be delivered in a 300-ns pulse to a 16-mΩ physics load;more » hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic equation-of-state, phase-transition, mechanical-property, and other material-physics experiments with a wide variety of well-defined drive-pressure time histories. Because Neptune can deliver on the order of a megajoule to a load, such experiments can be conducted on centimeter-scale samples at terapascal pressures with time histories as long as 1 μs.« less
Magnetically switched power supply system for lasers
NASA Technical Reports Server (NTRS)
Pacala, Thomas J. (Inventor)
1987-01-01
A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.
Intense terahertz pulses from SLAC electron beams using coherent transition radiation.
Wu, Ziran; Fisher, Alan S; Goodfellow, John; Fuchs, Matthias; Daranciang, Dan; Hogan, Mark; Loos, Henrik; Lindenberg, Aaron
2013-02-01
SLAC has two electron accelerators, the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET), providing high-charge, high-peak-current, femtosecond electron bunches. These characteristics are ideal for generating intense broadband terahertz (THz) pulses via coherent transition radiation. For LCLS and FACET respectively, the THz pulse duration is typically 20 and 80 fs RMS and can be tuned via the electron bunch duration; emission spectra span 3-30 THz and 0.5 THz-5 THz; and the energy in a quasi-half-cycle THz pulse is 0.2 and 0.6 mJ. The peak electric field at a THz focus has reached 4.4 GV/m (0.44 V/Å) at LCLS. This paper presents measurements of the terahertz pulses and preliminary observations of nonlinear materials response.
Odd harmonics-enhanced supercontinuum in bulk solid-state dielectric medium.
Garejev, N; Jukna, V; Tamošauskas, G; Veličkė, M; Šuminas, R; Couairon, A; Dubietis, A
2016-07-25
We report on generation of ultrabroadband, more than 4 octave spanning supercontinuum in thin CaF2 crystal, as pumped by intense mid-infrared laser pulses with central wavelength of 2.4 μm. The supercontinuum spectrum covers wavelength range from the ultraviolet to the mid-infrared and its short wavelength side is strongly enhanced by cascaded generation of third, fifth and seventh harmonics. Our results capture the transition from Kerr-dominated to plasma-dominated filamentation regime and uncover that in the latter the spectral superbroadening originates from dramatic plasma-induced compression of the driving pulse, which in turn induces broadening of the harmonics spectra due to cross-phase modulation effects. The experimental measurements are backed up by the numerical simulations based on a nonparaxial unidirectional propagation equation for the electric field of the pulse, which accounts for the cubic nonlinearity-induced effects, and which reproduce the experimental data in great detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, J. D.
1985-06-25
A simplified, relatively inexpensive laser device, wherein the laser elements are fixed in a body exoskeleton of electrical insulating material having a low coefficient of thermal expansion. The preferred embodiment includes a shotgun type laser filter having parallel bores which receive the laser flashlamp and laser rod in fixed relation in a body chamber. The reflector surrounds the laser filter and retains the filter within the body chamber. In the preferred method of this invention, several controlled lasing pulses are generated with each illumination pulse of the flashlamp, substantially increasing the efficiency of the laser device. The number of pulsesmore » is generally controlled by increasing the voltage to the flashlamp. The rapid multiple lasing pulses generate an elongated plasma in a fluid medium, such as the vitreous fluid body of an eye which makes the laser device extemely efficient for treating glaucoma and other medical treatments.« less
Thermoacoustic and photoacoustic characterizations of few-layer graphene by pulsed excitations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiong; Department of Medical Imaging, The University of Arizona, Tucson, Arizona 85724; School of Information Science and Technology, ShanghaiTech University, Shanghai 200031
2016-04-04
We characterized the thermoacoustic and photoacoustic properties of large-area, few-layer graphene by pulsed microwave and optical excitations. Due to its high electric conductivity and low heat capacity per unit area, graphene lends itself to excellent microwave and optical energy absorption and acoustic signal emanation due to the thermoacoustic effect. When exposed to pulsed microwave or optical radiation, distinct thermoacoustic and photoacoustic signals generated by the few-layer graphene are obtained due to microwave and laser absorption of the graphene, respectively. Clear thermoacoustic and photoacoustic images of large-area graphene sample are achieved. A numerical model is developed and the simulated results aremore » in good accordance with the measured ones. This characterization work may find applications in ultrasound generator and detectors for microwave and optical radiation. It may also become an alternative characterization approach for graphene and other types of two-dimensional materials.« less
Seismic intrusion detector system
Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.
1976-01-01
A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.
Generation of ionizing radiation from lithium niobate crystals
NASA Astrophysics Data System (ADS)
Orlikov, L. N.; Orlikov, N. L.; Arestov, S. I.; Mambetova, K. M.; Shandarov, S. M.
2017-01-01
The work done experimentally explores generation of electron and x-ray radiation in the process of heating and cooling monolithic and iron-doped crystals of lithium niobate. Iron doping to the concentrations in the range of 1023 m3 was carried out by adding ferric oxide into the melt during the process of crystal growth. The research into radiation generation was performed at 1-10 Pa. The speed of heating from -10 to 1070 C was 10-20 degrees a minute. Current pulses appeared at 17, 38, 56, 94, 98, 100, 105, 106, 1070 C with the interval of 1-3 minutes. The obtained electron current increased in direct proportion to the crystal surface area. The maximum current was 3mA at the design voltage 11 kV on the crystal with 14,5x10,5x10 mm3 surface area. The article describes the possibility to control the start of generation by introducing priming pulse. The results achieved are explained by the domain repolarization while heating the crystal and the appearance of electric field local strength. Bias and overcharge currents contribute to the appearance of electric strength, which stimulates breakdown and plasma formation. X-ray radiation appears both at the stage of discharge formation and during electron deceleration on gas and target material.
Gap solitons in a nonlinear quadratic negative-index cavity.
Scalora, Michael; de Ceglia, Domenico; D'Aguanno, Giuseppe; Mattiucci, Nadia; Akozbek, Neset; Centini, Marco; Bloemer, Mark J
2007-06-01
We predict the existence of gap solitons in a nonlinear, quadratic Fabry-Pérot negative index cavity. A peculiarity of a single negative index layer is that if magnetic and electric plasma frequencies are different it forms a photonic band structure similar to that of a multilayer stack composed of ordinary, positive index materials. This similarity also results in comparable field localization and enhancement properties that under appropriate conditions may be used to either dynamically shift the band edge, or for efficient energy conversion. We thus report that an intense, fundamental pump pulse is able to shift the band edge of a negative index cavity, and make it possible for a weak second harmonic pulse initially tuned inside the gap to be transmitted, giving rise to a gap soliton. The process is due to cascading, a well-known phenomenon that occurs far from phase matching conditions that limits energy conversion rates, it resembles a nonlinear third-order process, and causes pulse compression due to self-phase modulation. The symmetry of the equations of motion under the action of either an electric or a magnetic nonlinearity suggests that both nonlinear polarization and magnetization, or a combination of both, can lead to solitonlike pulses. More specifically, the antisymmetric localization properties of the electric and magnetic fields cause a nonlinear polarization to generate a dark soliton, while a nonlinear magnetization spawns a bright soliton.
Arc plasma generator of atomic driver for steady-state negative ion source.
Ivanov, A A; Belchenko, Yu I; Davydenko, V I; Ivanov, I A; Kolmogorov, V V; Listopad, A A; Mishagin, V V; Putvinsky, S V; Shulzhenko, G I; Smirnov, A
2014-02-01
The paper reviews the results of development of steady-state arc-discharge plasma generator with directly heated LaB6 cathode. This arc-discharge plasma generator produces a plasma jet which is to be converted into an atomic one after recombination on a metallic plate. The plate is electrically biased relative to the plasma in order to control the atom energies. Such an intensive jet of hydrogen atoms can be used in negative ion sources for effective production of negative ions on a cesiated surface of plasma grid. All elements of the plasma generator have an augmented water cooling to operate in long pulse mode or in steady state. The thermo-mechanical stresses and deformations of the most critical elements of the plasma generator were determined by simulations. Magnetic field inside the discharge chamber was optimized to reduce the local power loads. The first tests of the steady-state arc plasma generator prototype have performed in long-pulse mode.
The efficacy of pulsed ultrahigh current for the stunning of cattle prior to slaughter.
Robins, A; Pleiter, H; Latter, M; Phillips, C J C
2014-03-01
We present results from the development of a new system of reversible electrical stunning of cattle. A single-pulse ultra-high current (SPUC) was generated from a capacitance discharge current spike of at least 5000 V at 70 A, for approximately 50 ms. Ninety-seven cattle were stunned in three experimental protocols. With improvements made to the design of the stun box and charge delivered, 38 cattle were either stunned and immediately jugulated or monitored for signs of reappearance of brain stem reflexes at which point a concussion stun was administered. This use of the SPUC charge, provided as a biphasic-pulse waveform, resulted in a high level of stunning efficacy, with unconsciousness lasting for up to 4 min. These results were supported by EEG data taken from a subsequent cohort of stunned cattle. The SPUC stun also apparently eliminated post-stun grand mal seizures that can occur following short-acting conventional electrical stun, with its associated negative consequences on operator safety and meat quality. © 2013.
NASA Astrophysics Data System (ADS)
Shao, Tao; Yang, Wenjin; Zhang, Cheng; Fang, Zhi; Zhou, Yixiao; Schamiloglu, Edl
2014-09-01
Current-voltage characteristics, discharge images, and optical spectra of atmospheric pressure plasma jets (APPJs) are studied using a microsecond pulse length generator producing repetitive output pulses with different polarities. The experimental results show that the APPJs excited by the pulses with positive polarity have longer plume, faster propagation speed, higher power, and more excited species, such as \\text{N}2 , O, He, \\text{N}2+ , than that with the negatively excited APPJs. The images taken using an intensified charge-coupled device show that the APPJs excited by pulses with positive polarity are characterized by a bullet-like structure, while the APPJs excited by pulses with negative polarity are continuous. The propagation speed of the APPJs driven by a microsecond pulse length generator is about tens of km/s, which is similar to the APPJs driven by a kHz frequency sinusoidal voltage source. The analysis shows that the space charge accumulation effect plays an important role during the discharge. The transient enhanced electric field induced by the accumulated ions between the needle-like electrode and the nozzle in the APPJs excited by pulses with negative polarity enhances electron field emission from the cathode, which is illustrated by the bright line on the time-integrated images. This makes the shape of the APPJ excited using pulses with negative polarity different from the bullet-like shape of the APPJs excited by pulses with positive polarity.
NASA Astrophysics Data System (ADS)
Tawfik, Walid
2015-06-01
In this work, we could experimentally achieved the generation of white-light laser pulses of few-cycle fs pulses using a neon-filled hollow-core fiber. The observed pulses reached 6-fs at at repetition rate of 1 kHz using 2.5 mJ of 31 fs femtosecond pulses. The pulse compressing achieved by the supercontinuum produced in static neon-filled hollow fibers while the dispersion compensation is achieved by five pairs of chirped mirrors. We showed that gas pressure can be used to continuously vary the bandwidth from 350 nm to 900 nm. Furthermore, the applied technique allows for a straightforward tuning of the pulse duration via the gas pressure whilst maintaining near-transform-limited pulses with constant output energy, thereby reducing the complications introduced by chirped pulses. Through measurements of the transmission through the fiber as a function of gas pressure, a high throughput exceeding 60% was achieved. Adaptive pulse compression is achieved by using the spectral phase obtained from a spectral phase interferometry for direct electric field reconstruction (SPIDER) measurement as feedback for a liquid crystal spatial light modulator (SLM). The spectral phase of these supercontinua is found to be extremely stable over several hours. This allowed us to demonstrate successful compression to pulses as short as 5.2 fs with controlled wide spectral bandwidth, which could be used to excite different states in complicated molecules at once.
A review of ultrabrief pulse width electroconvulsive therapy
Katalinic, Natalie; Martin, Donel; Schweitzer, Isaac
2012-01-01
The effect of shortening the pulse width of the electrical stimulus when administering electroconvulsive therapy (ECT) has recently been systematically studied with promising results. This review examines reported outcomes from three randomized controlled trials which compared ultrabrief (≤0.3 ms) with brief (0.5–1.5 ms) pulse width ECT, and other recent clinical trials of ultrabrief pulse width ECT. The emerging evidence for ultrabrief pulse right unilateral (RUL) ECT suggests clinically meaningful efficacy and substantially reduced neuropsychological side effects compared with standard (brief) pulse ECT; this may represent a generational advance in the ECT technique. However, it is unclear if patients receiving ultrabrief pulse RUL ECT may have a slower speed of response and require additional treatments compared with brief pulse ECT. Therefore, until further data are available, clinicians may be well advised to use brief pulse ECT in situations requiring an urgent clinical response. The evidence base for ultrabrief bilateral ECT is limited, with findings that efficacy may be reduced compared with brief pulse width ECT. Thus ultrabrief bilateral ECT should not be used outside the research setting. PMID:23251770
NASA Astrophysics Data System (ADS)
Chang Chien, Jia-Ren; Lin, Guo-Hong; Hsu, Ar-Tyan
2011-10-01
In this study, a portable electromyogram (EMG) system and a stimulator are developed for patellofemoral pain syndrome patients, with the objective of reducing the pain experienced by these patients; the patellar pain is caused by an imbalance between the vastus medialis obliquus (VMO) and the vastus lateralis (VL). The EMG measurement circuit and the electrical stimulation device proposed in this study are specifically designed for the VMO and the VL; they are capable of real-time waveform recording, possess analyzing functions, and can upload their measurement data to a computer for storage and analysis. The system can calculate and record the time difference between the EMGs of the VMO and the VL, as well as the signal strengths of both the EMGs. As soon as the system detects the generation of the EMG of the VL, it quickly calculates and processes the event and stimulates the VMO as feedback through electrical stimulation units, in order to induce its contraction. The system can adjust the signal strength, time length, and the sequence of the electrical stimulation, both manually and automatically. The output waveform of the electrical stimulation circuit is a dual-phase asymmetrical pulse waveform. The primary function of the electrical simulation circuit is to ensure that the muscles contract effectively. The performance of the device can be seen that the width of each pulse is 20-1000 μs, the frequency of each pulse is 10-100 Hz, and current strength is 10-60 mA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, Zhikai; Zhou, Peiqi; Huang, Xu
A greatly enhanced lateral photovoltage (LPV) triggered by electric pulse has been observed in nano-carbon oxide semiconductor (COS) structures. The original maximal output signal of lateral photovoltage achieved in these structures is 9.8 mV. However, by combining the application of a 60 V voltage pulse with laser illumination, the LPV can reach a very high value of 183 mV and the change ratio after 60 V pulse is nearly 1800%. In addition, the states of these light and electric-pulse triggered COSs are permanently changed, showing a non-volatile characteristic. We attribute this phenomenon to the trapping effect of stimulated electrons in COSs. The work suggestsmore » an approach for tailoring LPV-based devices by electric pulse and will be useful for the development of electric pulse modulated photodetectors.« less
Investigation of electric erosion of silicon electrodes in aerosol nanoparticles synthesis
NASA Astrophysics Data System (ADS)
Mylnikov, D. A.; Urazov, M. N.; Efimov, A. A.; Lizunova, A. A.; Ivanov, V. V.
2017-07-01
The electric erosion of silicon electrodes in the production of aerosol nanoparticles in a spark discharge generator was studied. A microscopic investigation of electrodes subjected to a different number of pulses, from 103 to 107, showed that a layer of silicon oxide nanoparticles settled back onto the electrode is formed on the surface of the end of the electrodes. This layer reduces the conductivity of the electrode and the productivity of nanoparticle synthesis. An estimation of the mass of the settled particles shows that up to half of the synthesized particles are returned to the electrode as a result of recycling. In the process of this work, we used quasi-unipolar pulses, which allowed us to determine the greater electroerosion wear of the cathodes compared to the anodes.
Serša, Igor; Kranjc, Matej; Miklavčič, Damijan
2015-01-01
Electroporation is gaining its importance in everyday clinical practice of cancer treatment. For its success it is extremely important that coverage of the target tissue, i.e. treated tumor, with electric field is within the specified range. Therefore, an efficient tool for the electric field monitoring in the tumor during delivery of electroporation pulses is needed. The electric field can be reconstructed by the magnetic resonance electric impedance tomography method from current density distribution data. In this study, the use of current density imaging with MRI for monitoring current density distribution during delivery of irreversible electroporation pulses was demonstrated. Using a modified single-shot RARE sequence, where four 3000 V and 100 μs long pulses were included at the start, current distribution between a pair of electrodes inserted in a liver tissue sample was imaged. Two repetitions of the sequence with phases of refocusing radiofrequency pulses 90° apart were needed to acquire one current density image. For each sample in total 45 current density images were acquired to follow a standard protocol for irreversible electroporation where 90 electric pulses are delivered at 1 Hz. Acquired current density images showed that the current density in the middle of the sample increased from first to last electric pulses by 60%, i.e. from 8 kA/m2 to 13 kA/m2 and that direction of the current path did not change with repeated electric pulses significantly. The presented single-shot RARE-based current density imaging sequence was used successfully to image current distribution during delivery of short high-voltage electric pulses. The method has a potential to enable monitoring of tumor coverage by electric field during irreversible electroporation tissue ablation.
Ultrafast Plasmonic Control of Second Harmonic Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Roderick B.; Yanchenko, Anna; Ziegler, Jed I.
Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic conversion efficiencies per unit volume than those attainable in bulk materials. Here we demonstrate efficient second-harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients on a dielectric metasurface. An ultrafast control pulse is used to control plasmon-induced electric fields in a thin-film material with inversion symmetry that, without plasmonic enhancement, does not exhibit an even-order nonlinear optical response. The temporal evolution of the plasmonic near-fieldmore » is characterized with ~100 as resolution using a novel nonlinear interferometric technique. The serrated nanogap is a unique platform in which to investigate optically controlled, plasmonically enhanced harmonic generation in dielectric materials on an ultrafast time scale. Lastly, this metamaterial geometry can also be readily extended to all-optical control of other nonlinear phenomena, such as four-wave mixing and sum- and difference-frequency generation, in a wide variety of dielectric materials.« less
Ultrafast Plasmonic Control of Second Harmonic Generation
Davidson, Roderick B.; Yanchenko, Anna; Ziegler, Jed I.; ...
2016-06-01
Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic conversion efficiencies per unit volume than those attainable in bulk materials. Here we demonstrate efficient second-harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients on a dielectric metasurface. An ultrafast control pulse is used to control plasmon-induced electric fields in a thin-film material with inversion symmetry that, without plasmonic enhancement, does not exhibit an even-order nonlinear optical response. The temporal evolution of the plasmonic near-fieldmore » is characterized with ~100 as resolution using a novel nonlinear interferometric technique. The serrated nanogap is a unique platform in which to investigate optically controlled, plasmonically enhanced harmonic generation in dielectric materials on an ultrafast time scale. Lastly, this metamaterial geometry can also be readily extended to all-optical control of other nonlinear phenomena, such as four-wave mixing and sum- and difference-frequency generation, in a wide variety of dielectric materials.« less
Nourski, Kirill V; Abbas, Paul J; Miller, Charles A; Robinson, Barbara K; Jeng, Fuh-Cherng
2005-04-01
This study investigated the effects of acoustic noise on the auditory nerve compound action potentials in response to electric pulse trains. Subjects were adult guinea pigs, implanted with a minimally invasive electrode to preserve acoustic sensitivity. Electrically evoked compound action potentials (ECAP) were recorded from the auditory nerve trunk in response to electric pulse trains both during and after the presentation of acoustic white noise. Simultaneously presented acoustic noise produced a decrease in ECAP amplitude. The effect of the acoustic masker on the electric probe was greatest at the onset of the acoustic stimulus and it was followed by a partial recovery of the ECAP amplitude. Following cessation of the acoustic noise, ECAP amplitude recovered over a period of approximately 100-200 ms. The effects of the acoustic noise were more prominent at lower electric pulse rates (interpulse intervals of 3 ms and higher). At higher pulse rates, the ECAP adaptation to the electric pulse train alone was larger and the acoustic noise, when presented, produced little additional effect. The observed effects of noise on ECAP were the greatest at high electric stimulus levels and, for a particular electric stimulus level, at high acoustic noise levels.
Impedance-matched Marx generators
NASA Astrophysics Data System (ADS)
Stygar, W. A.; LeChien, K. R.; Mazarakis, M. G.; Savage, M. E.; Stoltzfus, B. S.; Austin, K. N.; Breden, E. W.; Cuneo, M. E.; Hutsel, B. T.; Lewis, S. A.; McKee, G. R.; Moore, J. K.; Mulville, T. D.; Muron, D. J.; Reisman, D. B.; Sceiford, M. E.; Wisher, M. L.
2017-04-01
We have conceived a new class of prime-power sources for pulsed-power accelerators: impedance-matched Marx generators (IMGs). The fundamental building block of an IMG is a brick, which consists of two capacitors connected electrically in series with a single switch. An IMG comprises a single stage or several stages distributed axially and connected in series. Each stage is powered by a single brick or several bricks distributed azimuthally within the stage and connected in parallel. The stages of a multistage IMG drive an impedance-matched coaxial transmission line with a conical center conductor. When the stages are triggered sequentially to launch a coherent traveling wave along the coaxial line, the IMG achieves electromagnetic-power amplification by triggered emission of radiation. Hence a multistage IMG is a pulsed-power analogue of a laser. To illustrate the IMG approach to prime power, we have developed conceptual designs of two ten-stage IMGs with L C time constants on the order of 100 ns. One design includes 20 bricks per stage, and delivers a peak electrical power of 1.05 TW to a matched-impedance 1.22 -Ω load. The design generates 113 kV per stage and has a maximum energy efficiency of 89%. The other design includes a single brick per stage, delivers 68 GW to a matched-impedance 19 -Ω load, generates 113 kV per stage, and has a maximum energy efficiency of 90%. For a given electrical-power-output time history, an IMG is less expensive and slightly more efficient than a linear transformer driver, since an IMG does not use ferromagnetic cores.
Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors
NASA Astrophysics Data System (ADS)
Martín, S.; Quintana, B.; Barrientos, D.
2016-07-01
The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).
Closing a Venus Flytrap with electrical and mid-IR photon stimulations
NASA Astrophysics Data System (ADS)
Eisen, David; Janssen, Douglas; Chen, Xing; Choa, Fow-Sen; Kostov, Dan; Fan, Jenyu
2013-03-01
Plants have mechanisms to perceive and transmit information between its organs and tissues. These signals had long been considered as hormonal or hydraulic in nature, but recent studies have shown that electrical signals are also produced causing physiological responses. In this work we show that Venus Flytrap, Dionaea muscipula, can respond to both electrical and optical signals beside mechanical stimulations. While the Venus Flytrap does not have any neurons, it does contain transport cells with very similar characteristics to neurotransmitters and uses ionic mechanisms, as human neurons do, to generate action potentials. In our electrical stimulation study, electrodes made out of soft cloth were soaked in salt water before being placed to the midrib (+) and lobe (-). The flytrap's surface resistance was determined by subtracting out the average electrode resistance from the measured electrode to plant surface resistance, yielding an average contact resistance of around 0.98MΩ. A logarithmic amplifier was used to monitor mechanically generated electrical signals. Two electrical pulses were generated by mechanically touching the trigger hairs in the lobe twice within 20 seconds. By discharging around 600μC charge stored in a capacitor we demonstrated electrically closing of the flytrap. For optical excitation we found in our FTIR study it's tissue contains very similar protein absorption peaks to that of insects. A 7.35μm laser with 50mw power was then used for the stimulation study. Electrical action potential was generated twice by mid-infrared photons before closure of the flytrap.
Chopdekar, Rajesh Vilas; Buzzi, Michele; Jenkins, Catherine; Arenholz, Elke; Nolting, Frithjof; Takamura, Yayoi
2016-01-01
In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O3 substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO3 film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier lowering by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to ‘set’ and ‘reset’ the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature. PMID:27271984
Chopdekar, Rajesh Vilas; Buzzi, Michele; Jenkins, Catherine; ...
2016-06-08
In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O 3 substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO 3 film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier loweringmore » by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to 'set' and 'reset' the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature.« less
NASA Technical Reports Server (NTRS)
Hale, Leslie C.
1994-01-01
In an attempt to explain numerous atmospheric electrical phenomena, the elements of the global electrical circuit are reexamined. In addition to being a 'quasi-static 'DC' generator' and source of radiated energy at VLF and higher, the thunderstorm is found to be a pulse generator, with most of the external energy contained in ELF and ULF pulse currents to the ionosphere (and Earth). The pulse energy is found to deposit largely in the middle atmosphere above the thunderstorm. The VLF and above components are well understood, as are the ULF components due to the conductivity gradient. However, a previously poorly understood ELF component on the millsecond timescale, or 'slow tail,' contains a large fraction of the electrical energy. This component couples strongly to the ionosphere and also launches a unipolar transverse electromagnetic (TEM) wavelet in the radial Earth-ionosphere transmission line. The increase in charge with distance associated with such wavelets, and their ensemble sum at a point, may explain some large mesospheric 'DC' fields but there are still difficulties explaining other than rare occurrences, except for antipodal reconvergence. These millisecond duration unipolar wavelets also coupled to the ionosphere and may trigger other lightning at a distance. A schema is elucidated by which the charge of MeV particles deposited in the middle atmosphere persists for much longer than the local relaxation time. This also gives rise to unipolar waves of global extent which may explain lower-latitude field perturbations associated with solar/geomagnetic events.
Nonclassical Properties of Pulsed Second-Subharmonic Generation in Photonic-Band-Gap Structures
2007-04-01
organized as follows. In Sec. II, a quan- tum model of the nonlinear interaction including both Heisenberg equations for operator electric-field ampli...can then be derived from the Heisenberg equations (for details, see [45, 46]; dX̂ dz = − i h̄ [ Ĝ, X̂ ] ; (13) considering the following momentum...disper- sion, we decompose the electric-field operator amplitudes Êa (a = p, s) using mode operator amplitudes âa in the Heisenberg picture [5, 8
Acoustic and electric signals from lightning
NASA Technical Reports Server (NTRS)
Balachandran, N. K.
1983-01-01
Observations of infrasound apparently generated by the collapse of the electrostatic field in the thundercloud, are presented along with electric field measurements and high-frequency thunder signals. The frequency of the infrasound pulse is about 1 Hz and amplitude a few microbars. The observations seem to confirm some of the theoretical predictions of Wilson (1920) and Dessler (1973). The signal is predominated by a compressional phase and seems to be beamed vertically. Calculation of the parameters of the charged region using the infrasound signal give reasonable values.
The Study for Shortening the Process Time at Soy Food Production by using the Pulsed Electric Field
NASA Astrophysics Data System (ADS)
Saito, Tsukasa; Jinushi, Makoto; Minamitani, Yasushi
We investigated method to osmose water and seasoner to dried soybeans fast by pulsed electric field, in order to make soybeans a processed food fast. By applying the pulsed electric field to the dried soybeans in water, osmosis time of water to the soybean became approximately half. Then the emission of the discharge was observed on dried soybean. The color of coffee permeated more into the soybean treated than no-treated by the pulsed electric field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, Jason; Dobrzynski, Daniel S.
A smart charging system for charging a plug-in electric vehicle (PEV) includes an electric vehicle supply equipment (EVSE) configured to supply electrical power to the PEV through a smart charging module coupled to the EVSE. The smart charging module comprises an electronic circuitry which includes a processor. The electronic circuitry includes electronic components structured to receive electrical power from the EVSE, and supply the electrical power to the PEV. The electronic circuitry is configured to measure a charging parameter of the PEV. The electronic circuitry is further structured to emulate a pulse width modulated signal generated by the EVSE. Themore » smart charging module can also include a first coupler structured to be removably couple to the EVSE and a second coupler structured to be removably coupled to the PEV.« less
Timing noise measurement of 320 GHz optical pulses using an improved optoelectronic harmonic mixer.
Tsuchida, Hidemi
2006-03-01
An improved optoelectronic harmonic mixer (OEHM) has been employed for measuring the timing noise of 320 GHz optical pulses that are generated from a 160 GHz mode-locked laser diode by the temporal Talbot effect. The OEHM makes use of a low-drive voltage LiNbO3 modulator and a W-band unitraveling carrier photodiode for converting the 320 GHz pulse intensity into a low-frequency electrical signal. The time domain demodulation technique has been used for the precise evaluation of phase noise power spectral density. The rms timing jitter has been estimated to be 311 fs for the 10 Hz-18.6 MHz bandwidth.
Design of a pulse oximeter for price sensitive emerging markets.
Jones, Z; Woods, E; Nielson, D; Mahadevan, S V
2010-01-01
While the global market for medical devices is located primarily in developed countries, price sensitive emerging markets comprise an attractive, underserved segment in which products need a unique set of value propositions to be competitive. A pulse oximeter was designed expressly for emerging markets, and a novel feature set was implemented to reduce the cost of ownership and improve the usability of the device. Innovations included the ability of the device to generate its own electricity, a built in sensor which cuts down on operating costs, and a graphical, symbolic user interface. These features yield an average reduction of over 75% in the device cost of ownership versus comparable pulse oximeters already on the market.
Tang, W W; Shu, C
2005-02-21
We demonstrate a regeneratively mode-locked optical pulse source at about 10 GHz using an optoelectronic oscillator constructed with an electro-absorption modulator integrated distributed feedback laser diode. The 10 GHz RF component is derived from the interaction between the pump wave and the backscattered, frequency-downshifted Stokes wave resulted from stimulated Brillouin scattering in an optical fiber. The component serves as a modulation source for the 1556 nm laser diode without the need for any electrical or optical RF filter to perform the frequency extraction. Dispersion-compensated fiber, dispersion-shifted fiber, and standard single-mode fiber have been used respectively to generate optical pulses at variable repetition rates.
Passive, active, and hybrid mode-locking in a self-optimized ultrafast diode laser
NASA Astrophysics Data System (ADS)
Alloush, M. Ali; Pilny, Rouven H.; Brenner, Carsten; Klehr, Andreas; Knigge, Andrea; Tränkle, Günther; Hofmann, Martin R.
2018-02-01
Semiconductor lasers are promising sources for generating ultrashort pulses. They are directly electrically pumped, allow for a compact design, and therefore they are cost-effective alternatives to established solid-state systems. Additionally, their emission wavelength depends on the bandgap which can be tuned by changing the semiconductor materials. Theoretically, the obtained pulse width can be few tens of femtoseconds. However, the generated pulses are typically in the range of several hundred femtoseconds only. Recently, it was shown that by implementing a spatial light modulator (SLM) for phase and amplitude control inside the resonator the optical bandwidth can be optimized. Consequently, by using an external pulse compressor shorter pulses can be obtained. We present a Fourier-Transform-External-Cavity setup which utilizes an ultrafast edge-emitting diode laser. The used InGaAsP diode is 1 mm long and emits at a center wavelength of 850 nm. We investigate the best conditions for passive, active and hybrid mode-locking operation using the method of self-adaptive pulse shaping. For passive mode-locking, the bandwidth is increased from 2.34 nm to 7.2 nm and ultrashort pulses with a pulse width of 216 fs are achieved after external pulse compression. For active and hybrid mode-locking, we also increased the bandwidth. It is increased from 0.26 nm to 5.06 nm for active mode-locking and from 3.21 nm to 8.7 nm for hybrid mode-locking. As the pulse width is strongly correlated with the bandwidth of the laser, we expect further reduction in the pulse duration by increasing the bandwidth.
Multi-Megawatt Space Nuclear Power Generation
1993-06-28
electric generation, both for open- and closed-cycle opera- tion. These reactors use the particulate fuel of the type developed for HTGR reactors. What...commercial HTGR power reactors, the particles are held in place and directly cooled. Figure 2.7 shows the two types of fuel particles developed for...of MW(e), for pulsed energy devices. The FBR would use HTGR -type particle fuel , contained in a annular bed be- tween two porous frits. Helium would
Critical Infrastructure Protection: EMP Impacts on the U.S. Electric Grid
NASA Astrophysics Data System (ADS)
Boston, Edwin J., Jr.
The purpose of this research is to identify the United States electric grid infrastructure systems vulnerabilities to electromagnetic pulse attacks and the cyber-based impacts of those vulnerabilities to the electric grid. Additionally, the research identifies multiple defensive strategies designed to harden the electric grid against electromagnetic pulse attack that include prevention, mitigation and recovery postures. Research results confirm the importance of the electric grid to the United States critical infrastructures system and that an electromagnetic pulse attack against the electric grid could result in electric grid degradation, critical infrastructure(s) damage and the potential for societal collapse. The conclusions of this research indicate that while an electromagnetic pulse attack against the United States electric grid could have catastrophic impacts on American society, there are currently many defensive strategies under consideration designed to prevent, mitigate and or recover from an electromagnetic pulse attack. However, additional research is essential to further identify future target hardening opportunities, efficient implementation strategies and funding resources.
EMP/GMD Phase 0 Report, A Review of EMP Hazard Environments and Impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera, Michael Kelly; Backhaus, Scott N.; Woodroffe, Jesse Richard
The purpose of this study is to determine methods to analyze the hazard environments, impacts, and consequences of different sources of electromagnetic pulse (EMP), including nuclear electromagnetic pulse (NEMP) and geomagnetic disturbance (GMD) on the U.S. electric power infrastructures and to use those methods to determine EMP and GMD events of concern. The study will be carried out in four phases, each of which will provide higher levels of analytic fidelity that focuses on those EMP/GMD sources and events that create significant consequences, or whose consequences are sufficiently uncertain, to require more in-depth study. This study will leverage the bestmore » experimental data; device, equipment and system models; and simulation tools currently available. This study focuses primarily on the bulk electric system (BES) including large generating stations, large power transformers, the transmission network, and transmission system protection. Electrical distribution systems may potentially be included, if warranted, after consideration of the consequences for the bulk power system.« less
Electromagnetic pulses bone healing booster
NASA Astrophysics Data System (ADS)
Sintea, S. R.; Pomazan, V. M.; Bica, D.; Grebenisan, D.; Bordea, N.
2015-11-01
Posttraumatic bone restoration triggered by the need to assist and stimulate compensatory bone growth in periodontal condition. Recent studies state that specific electromagnetic stimulation can boost the bone restoration, reaching up to 30% decrease in recovery time. Based on the existing data on the electromagnetic parameters, a digital electronic device is proposed for intra oral mounting and bone restoration stimulation in periodontal condition. The electrical signal is applied to an inductive mark that will create and impregnate magnetic field in diseased tissue. The device also monitors the status of the electromagnetic field. Controlled wave forms and pulse frequency signal at programmable intervals are obtained with optimized number of components and miniaturized using surface mounting devices (SMD) circuits and surface mounting technology (SMT), with enhanced protection against abnormal current growth, given the intra-oral environment. The system is powered by an autonomous power supply (battery), to limit the problems caused by powering medical equipment from the main power supply. Currently the device is used in clinical testing, in cycles of six up to twelve months. Basic principles for the electrical scheme and algorithms for pulse generation, pulse control, electromagnetic field control and automation of current monitoring are presented, together with the friendly user interface, suitable for medical data and patient monitoring.
Scott, Timothy C.; Wham, Robert M.
1988-01-01
A method and system for solvent extraction where droplets are shattered by a high intensity electric field. These shattered droplets form a plurality of smaller droplets which have a greater combined surface area than the original droplet. Dispersion, coalescence and phase separation are accomplished in one vessel through the use of the single pulsing high intensity electric field. Electric field conditions are chosen so that simultaneous dispersion and coalescence are taking place in the emulsion formed in the electric field. The electric field creates a large amount of interfacial surface area for solvent extraction when the droplet is disintegrated and is capable of controlling droplet size and thus droplet stability. These operations take place in the presence of a counter current flow of the continuous phase.
Perturbing laser field dependent high harmonic phase modulations
NASA Astrophysics Data System (ADS)
Li, Zhengyan; Kong, Fanqi; Brown, Graham; Hammond, TJ; Ko, Dong-Hyuk; Zhang, Chunmei; Corkum, P. B.
2018-06-01
A perturbing laser pulse modulates and controls the phase of the high harmonic radiation driven by an intense fundamental pulse. Thus, a structured wave front can impress a specific spatial phase onto the generated high harmonic wave front. This modulation procedure leads to all-optical spatial light modulators for VUV or XUV radiation created by high harmonic generation. Here, through theoretical analysis and experiment, we study the correlation between the high harmonic phase modulations and the perturbing laser field amplitude and phase, providing guidelines for practical high harmonic spatial light modulators. In addition, we show that the petahertz optical oscilloscope for measuring electric fields of a perturbing beam is most robust using low order harmonics, far from the cut-off.
Hayashi, Hisamitsu; Edin, Fredrik; Li, Hao; Liu, Wei; Rask-Andersen, Helge
2016-12-01
Endogenous electric fields (EFs) are required for the physiological control of the central nervous system development. Application of the direct current EFs to neural stem cells has been studied for the possibility of stem cell transplantation as one of the therapies for brain injury. EFs generated within the nervous system are often associated with action potentials and synaptic activity, apparently resulting in a pulsed current in nature. The aim of this study is to investigate the effect of pulsed EF, which can reduce the cytotoxicity, on the migration of human neural progenitor cells (hNPCs). We applied the mono-directional pulsed EF with a strength of 250mV/mm to hNPCs for 6h. The migration distance of the hNPCs exposed to pulsed EF was significantly greater compared with the control not exposed to the EF. Pulsed EFs, however, had less of an effect on the migration of the differentiated hNPCs. There was no significant change in the survival of hNPCs after exposure to the pulsed EF. To investigate the role of Ca 2+ signaling in electrotactic migration of hNPCs, pharmacological inhibition of Ca 2+ channels in the EF-exposed cells revealed that the electrotactic migration of hNPCs exposed to Ca 2+ channel blockers was significantly lower compared to the control group. The findings suggest that the pulsed EF induced migration of hNPCs is partly influenced by intracellular Ca 2+ signaling. Copyright © 2016 Elsevier B.V. All rights reserved.
Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates
NASA Technical Reports Server (NTRS)
Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.
2006-01-01
Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell-lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a-Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two "control plates" are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (gladwater) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.
Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates
NASA Astrophysics Data System (ADS)
Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.
2006-04-01
Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a- Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two ''control plates'' are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (glass/water) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.
Time-diagnostics for improved dynamics experiments at XUV FELs
NASA Astrophysics Data System (ADS)
Drescher, Markus; Frühling, Ulrike; Krikunova, Maria; Maltezopoulos, Theophilos; Wieland, Marek
2010-10-01
Significantly structured and fluctuating temporal profiles of pulses from self-amplified spontaneous emission free electron lasers as well as their unstable timing require time diagnostics on a single-shot basis. The duration and structure of extreme-ultraviolet (XUV) pulses from the Free Electron Laser (FEL) in Hamburg (FLASH) are becoming accessible using a variation of the streak camera principle, where photoemitted electrons are energetically streaked in the electric field component of a terahertz electromagnetic wave. The timing with respect to an independently generated laser pulse can be measured in an XUV/laser cross-correlator, based on a non-collinear superposition of both pulses on a solid state surface and detection of XUV-induced modulations of its reflectivity for visible light. Sorting of data according to the measured timing dramatically improves the temporal resolution of an experiment sampling the relaxation of transient electronic states in xenon after linear- as well as nonlinear excitation with intense XUV pulses from FLASH.
NASA Astrophysics Data System (ADS)
Lin, Yung-Hsu
The goal of this dissertation is to study high pressure streamers in air and apply it to diesel engine technologies. Nanosecond scale pulsed high voltage discharges in air/fuel mixtures can generate radicals which in turn have been shown to improve combustion efficiency in gasoline fueled internal combustion engines. We are exploring the possibility to extend such transient plasma generation and expected radical species generation to the range of pressures encountered in compression-ignition (diesel) engines having compression ratios of ˜20:1, thereby improving lean burning efficiency and extending the range of lean combustion. At the beginning of this dissertation, research into streamer discharges is reviewed. Then, we conducted experiments of streamer propagation at high pressures, calculated the streamer velocity based on both optical and electrical measurements, and the similarity law was checked by analyzing the streamer velocity as a function of the reduced electric field, E/P. Our results showed that the similarity law is invalid, and an empirical scaling factor, E/√P, is obtained and verified by dimensional analysis. The equation derived from the dimensional analysis will be beneficial to proper electrode and pulse generator design for transient plasma assisted internal engine experiments. Along with the high pressure study, we applied such technique on diesel engine to improve the fuel efficiency and exhaust treatment. We observed a small effect of transient plasma on peak pressure, which implied that transient plasma has the capability to improve the fuel consumption. In addition, the NO can be reduced effectively by the same technique and the energy cost is 30 eV per NO molecule.
NASA Astrophysics Data System (ADS)
Takashima, Keisuke; Kaneko, Toshiro
2016-09-01
The control of hydroxyl radical and the other gas phase species generation in the ejected gas through air plasma (air plasma effluent) has been experimentally studied, which is a key to extend the range of plasma treatment. Nanosecond pulse discharge is known to produce high reduced electric field (E/N) discharge that leads to efficient generation of the reactive species than conventional low frequency discharge, while the charge-voltage cycle in the low frequency discharge is known to be well-controlled. In this study, the nanosecond pulse discharge biased with AC low frequency high voltage is used to take advantages of these discharges, which allows us to modulate the reactive species composition in the air plasma effluent. The utilization of the gas-liquid interface and the liquid phase chemical reactions between the modulated long-lived reactive species delivered from the air plasma effluent could realize efficient liquid phase chemical reactions leading to short-lived reactive species production far from the air plasma, which is crucial for some plasma agricultural applications.
Neal, Robert E; Garcia, Paulo A; Robertson, John L; Davalos, Rafael V
2012-04-01
Irreversible electroporation is a new technique to kill cells in targeted tissue, such as tumors, through a nonthermal mechanism using electric pulses to irrecoverably disrupt the cell membrane. Treatment effects relate to the tissue electric field distribution, which can be predicted with numerical modeling for therapy planning. Pulse effects will change the cell and tissue properties through thermal and electroporation (EP)-based processes. This investigation characterizes these changes by measuring the electrical conductivity and temperature of ex vivo renal porcine tissue within a single pulse and for a 200 pulse protocol. These changes are incorporated into an equivalent circuit model for cells and tissue with a variable EP-based resistance, providing a potential method to estimate conductivity as a function of electric field and pulse length for other tissues. Finally, a numerical model using a human kidney volumetric mesh evaluated how treatment predictions vary when EP- and temperature-based electrical conductivity changes are incorporated. We conclude that significant changes in predicted outcomes will occur when the experimental results are applied to the numerical model, where the direction and degree of change varies with the electric field considered.
Carbon Nanotube Underwater Acoustic Thermophone
2016-09-23
Attorney Docket No. 300009 1 of 8 A CARBON NANOTUBE UNDERWATER ACOUSTIC THERMOPHONE STATEMENT OF GOVERNMENT INTEREST [0001] The...the Invention [0003] The present invention is an acoustically transparent carbon nanotube thermophone. (2) Description of the Prior Art [0004...Traditional acoustic transduction typically begins with the generation of electrical excitation pulsed through an amplifier into an electro- acoustic
Modeling and Simulation of a DG-Integrated Intelligent Microgrid
2010-02-01
17. The I-V curve from the manufacturer for BP-4175 175W PV module...........................32 Fig. 18. Wind turbine model...33 Fig. 19. Electrical outputs of wind turbine... PMSG : Permanent Magnet Synchronous Generator PLL : Phase Lock Loop PV : Photovoltaic PWM : Pulse Width Modulation TOU : Time of Use VTES
Electrical model of cold atmospheric plasma gun
NASA Astrophysics Data System (ADS)
Slutsker, Ya. Z.; Semenov, V. E.; Krasik, Ya. E.; Ryzhkov, M. A.; Felsteiner, J.; Binenbaum, Y.; Gil, Z.; Shtrichman, R.; Cohen, J. T.
2017-10-01
We present an analytical model of cold atmospheric plasma formed by a dielectric barrier discharge (DBD), which is based on the lumped and distributed elements of an equivalent electric circuit of this plasma. This model is applicable for a wide range of frequencies and amplitudes of the applied voltage pulses, no matter whether or not the generated plasma plume interacts with a target. The model allows quantitative estimation of the plasma plume length and the energy delivered to the plasma. Also, the results of this model can be used for the design of DBD guns which efficiently generate cold atmospheric plasma. A comparison of the results of the model with those obtained in experiments shows a fairly good agreement.
NASA Astrophysics Data System (ADS)
Weisheng, CUI; Wenzheng, LIU; Jia, TIAN; Xiuyang, CHEN
2018-02-01
At present, spark plugs are used to trigger discharge in pulsed plasma thrusters (PPT), which are known to be life-limiting components due to plasma corrosion and carbon deposition. A strong electric field could be formed in a cathode triple junction (CTJ) to achieve a trigger function under vacuum conditions. We propose an induction-triggered electrode structure on the basis of the CTJ trigger principle. The induction-triggered electrode structure could increase the electric field strength of the CTJ without changing the voltage between electrodes, contributing to a reduction in the electrode breakdown voltage. Additionally, it can maintain the plasma generation effect when the breakdown voltage is reduced in the discharge experiments. The induction-triggered electrode structure could ensure an effective trigger when the ablation distance of Teflon increases, and the magnetic field produced by the discharge current could further improve the plasma density and propagation velocity. The induction-triggered coaxial PPT we propose has a simplified trigger structure, and it is an effective attempt to optimize the micro-satellite thruster.
Electric converters of electromagnetic strike machine with battery power
NASA Astrophysics Data System (ADS)
Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.
2018-03-01
At present, the application of pulse linear electromagnetic engines to drive strike machines for immersion of rod elements into the soil, strike drilling of shallow wells, dynamic probing of soils is recognized as quite effective. The pulse linear electromagnetic engine performs discrete consumption and conversion of electrical energy into mechanical work. Pulse dosing of a stream transmitted by the battery source to the pulse linear electromagnetic engine of the energy is provided by the electrical converter. The electric converters with the control of an electromagnetic strike machine as functions of time and armature movement, which form the unipolar supply pulses of voltage and current necessary for the normal operation of a pulse linear electromagnetic engine, are proposed. Electric converters are stable in operation, implement the necessary range of output parameters control determined by the technological process conditions, have noise immunity and automatic disconnection of power supply in emergency modes.
Beebe, Stephen J; Chen, Yeong-Jer; Sain, Nova M; Schoenbach, Karl H; Xiao, Shu
2012-01-01
It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0-80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE) to determine mitochondria membrane potentials (ΔΨm). Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death.
Electromechanical properties of biomembranes and nerves
NASA Astrophysics Data System (ADS)
Heimburg, T.; Blicher, A.; Mosgaard, L. D.; Zecchi, K.
2014-12-01
Lipid membranes are insulators and capacitors, which can be charged by an external electric field. This phenomenon plays an important role in the field of electrophysiology, for instance when describing nerve pulse conduction. Membranes are also made of polar molecules meaning that they contain molecules with permanent electrical dipole moments. Therefore, the properties of membranes are subject to changes in trans-membrane voltage. Vice versa, mechanical forces on membranes lead to changes in the membrane potential. Associated effects are flexoelectricity, piezoelectricity, and electrostriction. Lipid membranes can melt from an ordered to a disordered state. Due to the change of membrane dimensions associated with lipid membrane melting, electrical properties are linked to the melting transition. Melting of the membrane can induce changes in trans-membrane potential, and application of voltage can lead to a shift of the melting transition. Further, close to transitions membranes are very susceptible to piezoelectric phenomena. We discuss these phenomena in relation with the occurrence of lipid ion channels. Close to melting transitions, lipid membranes display step-wise ion conduction events, which are indistinguishable from protein ion channels. These channels display a voltage-dependent open probability. One finds asymmetric current-voltage relations of the pure membrane very similar to those found for various protein channels. This asymmetry falsely has been considered a criterion to distinguish lipid channels from protein channels. However, we show that the asymmetry can arise from the electromechanical properties of the lipid membrane itself. Finally, we discuss electromechanical behavior in connection with the electromechanical theory of nerve pulse transduction. It has been found experimentally that nerve pulses are related to changes in nerve thickness. Thus, during the nerve pulse a solitary mechanical pulse travels along the nerve. Due to electromechanical coupling it is unavoidable that this pulse generates a trans-membrane voltage. In the past, we have proposed that this electromechanical pulse is the origin of the action potential in nerves.
The Role of Additional Pulses in Electropermeabilization Protocols
Suárez, Cecilia; Soba, Alejandro; Maglietti, Felipe; Olaiz, Nahuel; Marshall, Guillermo
2014-01-01
Electropermeabilization (EP) based protocols such as those applied in medicine, food processing or environmental management, are well established and widely used. The applied voltage, as well as tissue electric conductivity, are of utmost importance for assessing final electropermeabilized area and thus EP effectiveness. Experimental results from literature report that, under certain EP protocols, consecutive pulses increase tissue electric conductivity and even the permeabilization amount. Here we introduce a theoretical model that takes into account this effect in the application of an EP-based protocol, and its validation with experimental measurements. The theoretical model describes the electric field distribution by a nonlinear Laplace equation with a variable conductivity coefficient depending on the electric field, the temperature and the quantity of pulses, and the Penne's Bioheat equation for temperature variations. In the experiments, a vegetable tissue model (potato slice) is used for measuring electric currents and tissue electropermeabilized area in different EP protocols. Experimental measurements show that, during sequential pulses and keeping constant the applied voltage, the electric current density and the blackened (electropermeabilized) area increase. This behavior can only be attributed to a rise in the electric conductivity due to a higher number of pulses. Accordingly, we present a theoretical modeling of an EP protocol that predicts correctly the increment in the electric current density observed experimentally during the addition of pulses. The model also demonstrates that the electric current increase is due to a rise in the electric conductivity, in turn induced by temperature and pulse number, with no significant changes in the electric field distribution. The EP model introduced, based on a novel formulation of the electric conductivity, leads to a more realistic description of the EP phenomenon, hopefully providing more accurate predictions of treatment outcomes. PMID:25437512
Elserty, Noha; Kattabei, Omaima; Elhafez, Hytham
2016-07-01
This study aimed to investigate the effect of adjusting pulse amplitude of transcutaneous electrical nerve stimulation versus fixed pulse amplitude in treatment of chronic mechanical low back pain. Randomized clinical trial. El-sahel Teaching Hospital, Egypt. Forty-five patients with chronic low back pain assigned to three equal groups. Their ages ranged from 20 to 50 years. The three groups received the same exercise program. Group A received transcutaneous electrical nerve stimulation with fixed pulse amplitude for 40 minutes. Group B received transcutaneous electrical nerve stimulation with adjusted pulse amplitude for 40 minutes, with the pulse amplitude adjusted every 5 minutes. Group C received exercises only. Treatment sessions were applied three times per week for 4 weeks for the three groups. A visual analogue scale was used to assess pain severity, the Oswestry Disability Index was used to assess functional level, and a dual inclinometer was used to measure lumbar range of motion. Evaluations were performed before and after treatment. Visual analogue scale, Oswestry Disability Index, and back range of motion significantly differed between the two groups that received transcutaneous electrical nerve stimulation and the control group and did not significantly differ between fixed and adjusted pulse amplitude of transcutaneous electrical nerve stimulation. Adjusting pulse amplitude of transcutaneous electrical nerve stimulation does not produce a difference in the effect of transcutaneous electrical nerve stimulation used to treat chronic low back pain.
[Which colours can we hear?: light stimulation of the hearing system].
Wenzel, G I; Lenarz, T; Schick, B
2014-02-01
The success of conventional hearing aids and electrical auditory prostheses for hearing impaired patients is still limited in noisy environments and for sounds more complex than speech (e. g. music). This is partially due to the difficulty of frequency-specific activation of the auditory system using these devices. Stimulation of the auditory system using light pulses represents an alternative to mechanical and electrical stimulation. Light is a source of energy that can be very exactly focused and applied with little scattering, thus offering perspectives for optimal activation of the auditory system. Studies investigating light stimulation of sectors along the auditory pathway have shown stimulation of the auditory system is possible using light pulses. However, further studies and developments are needed before a new generation of light stimulation-based auditory prostheses can be made available for clinical application.
NASA Astrophysics Data System (ADS)
Piggott, Alfred J., III
With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..
Walckiers, Grégoire; Fuchs, Benjamin; Thiran, Jean-Philippe; Mosig, Juan R; Pollo, Claudio
2010-01-30
Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%). (c) 2009 Elsevier B.V. All rights reserved.
Magnetic Flux Compression Concept for Aerospace Propulsion and Power
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Robertson, Tony; Hawk, Clark W.; Turner, Matt; Koelfgen, Syri
2000-01-01
The objective of this research is to investigate system level performance and design issues associated with magnetic flux compression devices for aerospace power generation and propulsion. The proposed concept incorporates the principles of magnetic flux compression for direct conversion of nuclear/chemical detonation energy into electrical power. Specifically a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stator structure formed from a high temperature superconductor (HTSC). The expanding plasma cloud is entirely confined by the compressed magnetic field at the expense of internal kinetic energy. Electrical power is inductively extracted, and the detonation products are collimated and expelled through a magnetic nozzle. The long-term development of this highly integrated generator/propulsion system opens up revolutionary NASA Mission scenarios for future interplanetary and interstellar spacecraft. The unique features of this concept with respect to future space travel opportunities are as follows: ability to implement high energy density chemical detonations or ICF microfusion bursts as the impulsive diamagnetic plasma source; high power density system characteristics constrain the size, weight, and cost of the vehicle architecture; provides inductive storage pulse power with a very short pulse rise time; multimegajoule energy bursts/terawatt power bursts; compact pulse power driver for low-impedance dense plasma devices; utilization of low cost HTSC material and casting technology to increase magnetic flux conservation and inductive energy storage; improvement in chemical/nuclear-to-electric energy conversion efficiency and the ability to generate significant levels of thrust with very high specific impulse; potential for developing a small, lightweight, low cost, self-excited integrated propulsion and power system suitable for space stations, planetary bases, and interplanetary and interstellar space travel; potential for attaining specific impulses approaching 10 (exp 6) seconds, which would enable missions to the outer planets within ten years and missions at interstellar distances within fifty years.
C2 subcutaneous stimulation for failed back surgery syndrome: a case report.
De Ridder, Dirk; Plazier, Mark; Menovsky, Tomas; Kamerling, Niels; Vanneste, Sven
2013-01-01
Failed back surgery syndrome (FBSS) is a term embracing a constellation of conditions that describes persistent or recurring low back pain, with or without sciatica following one or more spine surgeries. It has been shown in animals that electrical stimulation of the high cervical C2 area can suppress pain stimuli derived from the L5-S1 dermatome. It is unknown whether C2 electrical stimulation in humans can be used to treat pain derived from the L5-S1 area, and a case is reported in which subcutaneous C2 is applied to treat FBSS. A patient presents to the neuromodulation clinic because of FBSS (after three lumbar diskectomies) and noninvasive neuromodulation is performed consisting of transcutaneous electrical nerve stimulation (TENS) at C2. The C2 TENS stimulation is successful in improving pain. It induces paresthesias in the C2 dermatome above a certain amplitude threshold, but does not generate paresthesias in the pain area. However, the patient becomes allergic to the skin-applied TENS electrodes and therefore a new treatment strategy is discussed with the patient. A subcutaneous C2 electrode is inserted under local anesthesia, and attached to an external pulse generator. Three stimulation designs are tested: a classical tonic stimulation, consisting of 40 Hz stimulation, a placebo, and a burst stimulation, consisting of 40 Hz burst mode, with five spikes delivered at 500 Hz at 1000 μsec pulse width and 1000 μsec interspike interval. The patient's stimulation results demonstrate that burst mode is superior to placebo and tonic mode, and she receives a fully implanted C2 electrode connected to an internal pulse generator via an extension wire. The burst design is capable of both suppressing the least and worst pain effectively, and she has remained almost pain-free for over three years. © 2012 International Neuromodulation Society.
Pre-earthquake Magnetic Pulses
NASA Astrophysics Data System (ADS)
Scoville, J.; Heraud, J. A.; Freund, F. T.
2015-12-01
A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are suspected to be generated deep in the Earth's crust, in and around the hypocentral volume, days or even weeks before earth quakes. Their extremely long wavelength allows them to pass through kilometers of rock. Interestingly, when the sources of these pulses are triangulated, the locations coincide with the epicenters of future earthquakes. We couple a drift-diffusion semiconductor model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.
Pre-earthquake magnetic pulses
NASA Astrophysics Data System (ADS)
Scoville, J.; Heraud, J.; Freund, F.
2015-08-01
A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are suspected to be generated deep in the Earth's crust, in and around the hypocentral volume, days or even weeks before earthquakes. Their extremely long wavelength allows them to pass through kilometers of rock. Interestingly, when the sources of these pulses are triangulated, the locations coincide with the epicenters of future earthquakes. We couple a drift-diffusion semiconductor model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.
Shock-wave proton acceleration from a hydrogen gas jet
NASA Astrophysics Data System (ADS)
Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly
2013-04-01
Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.
Nie, Kaibao; Ling, Leo; Bierer, Steven M; Kaneko, Chris R S; Fuchs, Albert F; Oxford, Trey; Rubinstein, Jay T; Phillips, James O
2013-06-01
A vestibular neural prosthesis was designed on the basis of a cochlear implant for treatment of Meniere's disease and other vestibular disorders. Computer control software was developed to generate patterned pulse stimuli for exploring optimal parameters to activate the vestibular nerve. Two rhesus monkeys were implanted with the prototype vestibular prosthesis and they were behaviorally evaluated post implantation surgery. Horizontal and vertical eye movement responses to patterned electrical pulse stimulations were collected on both monkeys. Pulse amplitude modulated (PAM) and pulse rate modulated (PRM) trains were applied to the lateral canal of each implanted animal. Robust slow-phase nystagmus responses following the PAM or PRM modulation pattern were observed in both implanted monkeys in the direction consistent with the activation of the implanted canal. Both PAM and PRM pulse trains can elicit a significant amount of in-phase modulated eye velocity changes and they could potentially be used for efficiently coding head rotational signals in future vestibular neural prostheses.
Validation of neoclassical bootstrap current models in the edge of an H-mode plasma.
Wade, M R; Murakami, M; Politzer, P A
2004-06-11
Analysis of the parallel electric field E(parallel) evolution following an L-H transition in the DIII-D tokamak indicates the generation of a large negative pulse near the edge which propagates inward, indicative of the generation of a noninductive edge current. Modeling indicates that the observed E(parallel) evolution is consistent with a narrow current density peak generated in the plasma edge. Very good quantitative agreement is found between the measured E(parallel) evolution and that expected from neoclassical theory predictions of the bootstrap current.
Electrochemical system and method for electropolishing superconductive radio frequency cavities
Taylor, E. Jennings; Inman, Maria E.; Hall, Timothy
2015-04-14
An electrochemical finishing system for super conducting radio frequency (SCRF) cavities including a low viscosity electrolyte solution that is free of hydrofluoric acid, an electrode in contact with the electrolyte solution, the SCRF cavity being spaced apart from the electrode and in contact with the electrolyte solution and a power source including a first electrical lead electrically coupled to the electrode and a second electrical lead electrically coupled to the cavity, the power source being configured to pass an electric current between the electrode and the workpiece, wherein the electric current includes anodic pulses and cathodic pulses, and wherein the cathodic pulses are interposed between at least some of the anodic pulses. The SCRF cavity may be vertically oriented during the finishing process.
NASA Astrophysics Data System (ADS)
Ito, Mikio; Kawahara, Kenta; Araki, Keita
2014-04-01
Sintering of Cu and thermoelectric Ca3Co4O9 was tried using a modified pulsed electric current sintering (PECS) process, where an electrically nonconductive die was used instead of a conventional graphite die. The pulsed electric current flowed through graphite punches and sample powder, which caused the Joule heating of the powder compact itself, resulting in sintering under smaller power consumption. Especially for the Ca3Co4O9 powder, densification during sintering was also accelerated by this modified PECS process.
Terahertz radiation from accelerating charge carriers in graphene under ultrafast photoexcitation
NASA Astrophysics Data System (ADS)
Rustagi, Avinash; Stanton, C. J.
2016-11-01
We study the generation of terahertz (THz) radiation from the acceleration of ultrafast photoexcited charge carriers in graphene in the presence of a dc electric field. Our model is based on calculating the transient current density from the time-dependent distribution function which is determined using the Boltzmann transport equation (BTE) within a relaxation time approximation. We include the time-dependent generation of carriers by the pump pulse by solving for the carrier generation rate using the optical Bloch equations in the rotating wave approximation (RWA). The linearly polarized pump pulse generates an anisotropic distribution of photoexcited carriers in the kx-ky plane. The collision integral in the Boltzmann equation includes a term that leads to the thermalization of carriers via carrier-carrier scattering to an effective temperature above the lattice temperature, as well as a cooling term, which leads to energy relaxation via inelastic carrier-phonon scattering. The radiated signal is proportional to the time derivative of the transient current density. In spite of the fact that the magnitude of the velocity is the same for all the carriers in graphene, there is still emitted radiation from the photoexcited charge carriers with frequency components in the THz range due to a change in the direction of velocity of the photoexcited carriers in the external electric field as well as cooling of the photoexcited carriers on a subpicosecond time scale.
Miniature Ion-Mobility Spectrometer
NASA Technical Reports Server (NTRS)
Hartley, Frank T.
2006-01-01
The figure depicts a proposed miniature ion-mobility spectrometer that would be fabricated by micromachining. Unlike prior ion-mobility spectrometers, the proposed instrument would not be based on a time-of-flight principle and, consequently, would not have some of the disadvantageous characteristics of prior time-of-flight ion-mobility spectrometers. For example, one of these characteristics is the need for a bulky carrier-gas-feeding subsystem that includes a shutter gate to provide short pulses of gas in order to generate short pulses of ions. For another example, there is need for a complex device to generate pulses of ions from the pulses of gas and the device is capable of ionizing only a fraction of the incoming gas molecules; these characteristics preclude miniaturization. In contrast, the proposed instrument would not require a carrier-gas-feeding subsystem and would include a simple, highly compact device that would ionize all the molecules passing through it. The ionization device in the proposed instrument would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several megavolts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. Ionization (but not avalanche arcing) would occur because the distance between the ionizing electrodes would be less than the mean free path of gas molecules at the operating pressure of instrument. An accelerating grid would be located inside the instrument, downstream from the ionizing membrane. The electric potential applied to this grid would be negative relative to the potential on the inside electrode of the ionizing membrane and would be of a magnitude sufficient to generate a moderate electric field. Positive ions leaving the membrane holes would be accelerated in this electric field. The resulting flux of ions away from the ionization membrane would create a partial vacuum that would draw more of the gas medium through the membrane. The figure depicts a filter electrode and detector electrodes located along the sides of a drift tube downstream from the accelerator electrode. These electrodes would apply a transverse AC electric field superimposed on a ramped DC electric field. The AC field would effect differential transverse dispersal of ions. At a given instant of time, the trajectories of most of the ions would be bent toward the electrodes, causing most of the ions to collide with the electrodes and thereby become neutralized. The DC field would partly counteract the dispersive effect of the AC field, straightening the trajectories of a selected species of ions; the selection would vary with the magnitude of the applied DC field. The straightening of the trajectories of the selected ions would enable them to pass into the region between the detector electrodes. Depending on the polarity of the voltage applied to the detector electrodes, the electric field between the detector electrodes would draw the selected ions to one of these electrodes. Hence, the current collected by one of the detector electrodes would be a measure of the abundance of ions of the selected species. The ramping of the filter- electrode DC voltage would sweep the selection of ions through the spectrum of ionic species.
NASA Astrophysics Data System (ADS)
Xia, Bing
Ultrafast optical signal processing, which shares the same fundamental principles of electrical signal processing, can realize numerous important functionalities required in both academic research and industry. Due to the extremely fast processing speed, all-optical signal processing and pulse shaping have been widely used in ultrafast telecommunication networks, photonically-assisted RFlmicro-meter waveform generation, microscopy, biophotonics, and studies on transient and nonlinear properties of atoms and molecules. In this thesis, we investigate two types of optical spectrally-periodic (SP) filters that can be fabricated on planar lightwave circuits (PLC) to perform pulse repetition rate multiplication (PRRM) and arbitrary optical waveform generation (AOWG). First, we present a direct temporal domain approach for PRRM using SP filters. We show that the repetition rate of an input pulse train can be multiplied by a factor N using an optical filter with a free spectral range that does not need to be constrained to an integer multiple of N. Furthermore, the amplitude of each individual output pulse can be manipulated separately to form an arbitrary envelope at the output by optimizing the impulse response of the filter. Next, we use lattice-form Mach-Zehnder interferometers (LF-MZI) to implement the temporal domain approach for PRRM. The simulation results show that PRRM with uniform profiles, binary-code profiles and triangular profiles can be achieved. Three silica based LF-MZIs are designed and fabricated, which incorporate multi-mode interference (MMI) couplers and phase shifters. The experimental results show that 40 GHz pulse trains with a uniform envelope pattern, a binary code pattern "1011" and a binary code pattern "1101" are generated from a 10 GHz input pulse train. Finally, we investigate 2D ring resonator arrays (RRA) for ultraf ast optical signal processing. We design 2D RRAs to generate a pair of pulse trains with different binary-code patterns simultaneously from a single pulse train at a low repetition rate. We also design 2D RRAs for AOWG using the modified direct temporal domain approach. To demonstrate the approach, we provide numerical examples to illustrate the generation of two very different waveforms (square waveform and triangular waveform) from the same hyperbolic secant input pulse train. This powerful technique based on SP filters can be very useful for ultrafast optical signal processing and pulse shaping.
Guariento, Rafael T; Mosqueiro, Thiago S; Matias, Paulo; Cesarino, Vinicius B; Almeida, Lirio O B; Slaets, Jan F W; Maia, Leonardo P; Pinto, Reynaldo D
2016-10-01
Electric fishes modulate their electric organ discharges with a remarkable variability. Some patterns can be easily identified, such as pulse rate changes, offs and chirps, which are often associated with important behavioral contexts, including aggression, hiding and mating. However, these behaviors are only observed when at least two fish are freely interacting. Although their electrical pulses can be easily recorded by non-invasive techniques, discriminating the emitter of each pulse is challenging when physically similar fish are allowed to freely move and interact. Here we optimized a custom-made software recently designed to identify the emitter of pulses by using automated chirp detection, adaptive threshold for pulse detection and slightly changing how the recorded signals are integrated. With these optimizations, we performed a quantitative analysis of the statistical changes throughout the dominance contest with respect to Inter Pulse Intervals, Chirps and Offs dyads of freely moving Gymnotus carapo. In all dyads, chirps were signatures of subsequent submission, even when they occurred early in the contest. Although offs were observed in both dominant and submissive fish, they were substantially more frequent in submissive individuals, in agreement with the idea from previous studies that offs are electric cues of submission. In general, after the dominance is established the submissive fish significantly changes its average pulse rate, while the pulse rate of the dominant remained unchanged. Additionally, no chirps or offs were observed when two fish were manually kept in direct physical contact, suggesting that these electric behaviors are not automatic responses to physical contact. Copyright © 2017 Elsevier Ltd. All rights reserved.
Developing Si(Li) nuclear radiation detectors by pulsed electric field treatment
NASA Astrophysics Data System (ADS)
Muminov, R. A.; Radzhapov, S. A.; Saimbetov, A. K.
2009-08-01
Fabrication of Si(Li) nuclear radiation detectors using lithium ion drift under the action of a pulsed electric field is considered. Optimum treatment regime parameters are determined, including the pulse amplitude, duration, and repetition rate. Experimental data are presented, which show that the ion drift in a pulsed electric field decreases the semiconductor bulk compensation time by a factor of two to four and significantly increases the efficiency of detectors.
Apparatus for monitoring X-ray beam alignment
Steinmeyer, Peter A.
1991-10-08
A self-contained, hand-held apparatus is provided for minitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency.
Apparatus for monitoring X-ray beam alignment
Steinmeyer, P.A.
1991-10-08
A self-contained, hand-held apparatus is provided for monitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency. 2 figures.
Zhao, Wenzhu; Yu, Zhipeng; Liu, Jingbo; Yu, Yiding; Yin, Yongguang; Lin, Songyi; Chen, Feng
2011-09-01
Corn silk is a traditional Chinese herbal medicine, which has been widely used for treatment of some diseases. In this study the effects of pulsed electric field on the extraction of polysaccharides from corn silk were investigated. Polysaccharides in corn silk were extracted by pulsed electric field and optimized by response surface methodology (RSM), based on a Box-Behnken design (BBD). Three independent variables, including electric field intensity (kV cm(-1) ), ratio of liquid to raw material and pulse duration (µs), were investigated. The experimental data were fitted to a second-order polynomial equation and also profiled into the corresponding 3-D contour plots. Optimal extraction conditions were as follows: electric field intensity 30 kV cm(-1) , ratio of liquid to raw material 50, and pulse duration 6 µs. Under these condition, the experimental yield of extracted polysaccharides was 7.31% ± 0.15%, matching well with the predicted value. The results showed that a pulsed electric field could be applied to extract value-added products from foods and/or agricultural matrix. Copyright © 2011 Society of Chemical Industry.
Bandwidth tunable THz wave generation in large-area periodically poled lithium niobate.
Zhang, Caihong; Avetisyan, Yuri; Glosser, Andreas; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi
2012-04-09
A new scheme of optical rectification (OR) of femtosecond laser pulses in a periodically poled lithium niobate (PPLN) crystal, which generates high energy and bandwidth tunable multicycle THz pulses, is proposed and demonstrated. We show that the number of the oscillation cycles of the THz electric field and therefore bandwidth of generated THz spectrum can easily and smoothly be tuned from a few tens of GHz to a few THz by changing the pump optical spot size on PPLN crystal. The minimal bandwidth is 17 GHz that is smallest ever of reported in scheme of THz generation by OR at room temperature. Similar to the case of Cherenkov-type OR in single-domain LiNbO₃, the spectrum of THz generation extends from 0.1 THz to 3 THz when laser beam is focused to a size close to half-period of PPLN structure. The energy spectral density of narrowband THz generation is almost independent of the bandwidth and is typically 220 nJ/THz for ~1 W pump power at 1 kHz repetition rate.
The study of laser pulse width on efficiency of Ho:YAG laser lithotripsy
NASA Astrophysics Data System (ADS)
Zhang, Jian J.; Rutherford, Jonathan; Solomon, Metasebya; Cheng, Brian; Xuan, Jason R.; Gong, Jason; Yu, Honggang; Xia, Michael; Yang, Xirong; Hasenberg, Thomas; Curran, Sean
2017-02-01
When treating ureteral calculi, retropulsion can be reduced by using a longer pulse width without compromising fragmentation efficiency (from the studies by David S. Finley et al. and Hyun Wook Kang et al.). In this study, a lab build Ho:YAG laser was used as the laser pulse source, with pulse energy from 0.2J up to 3.0 J, and electrical pump pulse width from 150 us up to 1000 us. The fiber used in the investigation is a 365 μm core diameter fiber, SureFlexTM, Model S-LLF365. Plaster of Paris calculus phantoms were ablated at different energy levels (0.2, 0.5, 1, 2, 3J) and with different number of pulses (1, 3, 10) using different electrical pump pulse width (333, 667, 1000 μs). The dynamics of the recoil action of a calculus phantom was monitored using a high-speed camera with frame rate up to 1 million frame per second (Photron Fastcam SA5); and the laser-induced craters were evaluated with a 3-D digital microscope (Keyence VHX-900F). A design of experiment software (DesignExpert-10, Minneapolis, MN, USA) is used in this study for the best fit of surface response on volume of dusting and retropulsion amplitude. The numerical formulas for the response surfaces of dusting speed and retropulsion amplitude are generated. More detailed investigation on the optimal conditions for dusting of other kinds of stone samples and the fiber size effect will be conducted as a future study.
Yoon, Jihwan; Leblanc, Normand; Zaklit, Josette; Vernier, P Thomas; Chatterjee, Indira; Craviso, Gale L
2016-10-01
Patch clamp electrophysiology serves as a powerful method for studying changes in plasma membrane ion conductance induced by externally applied high-intensity nanosecond electric pulses (NEPs). This paper describes an enhanced monitoring technique that minimizes the length of time between pulse exposure and data recording in a patch-clamped excitable cell. Whole-cell membrane currents were continuously recorded up to 11 ms before and resumed 8 ms after delivery of a 5-ns, 6 MV/m pulse by a pair of tungsten rod electrodes to a patched adrenal chromaffin cell maintained at a holding potential of -70 mV. This timing was achieved by two sets of relay switches. One set was used to disconnect the patch pipette electrode from the pre-amplifier and connect it to a battery to maintain membrane potential at -70 mV, and also to disconnect the reference electrode from the amplifier. The other set was used to disconnect the electrodes from the pulse generator until the time of NEP/sham exposure. The sequence and timing of both sets of relays were computer-controlled. Using this procedure, we observed that a 5-ns pulse induced an instantaneous inward current that decayed exponentially over the course of several minutes, that a second pulse induced a similar response, and that the current was carried, at least in part, by Na + . This approach for characterizing ion conductance changes in an excitable cell in response to NEPs will yield information essential for assessing the potential use of NEP stimulation for therapeutic applications.
Status of Pulsed Inductive Thruster Research
NASA Technical Reports Server (NTRS)
Hrbud, Ivana; LaPointe, Michael; Vondra, Robert; Lovberg, Ralph; Dailey, C. Lee; Schafer, Charles (Technical Monitor)
2002-01-01
The TRW Pulsed Inductive Thruster (PIT) is an electromagnetic propulsion system that can provide high thrust efficiency over a wide range of specific impulse values. In its basic form, the PIT consists of a flat spiral coil covered by a thin dielectric plate. A pulsed gas injection nozzle distributes a thin layer of gas propellant across the plate surface at the same time that a pulsed high current discharge is sent through the coil. The rising current creates a time varying magnetic field, which in turn induces a strong azimuthal electric field above the coil. The electric field ionizes the gas propellant and generates an azimuthal current flow in the resulting plasma. The current in the plasma and the current in the coil flow in opposite directions, providing a mutual repulsion that rapidly blows the ionized propellant away from the plate to provide thrust. The thrust and specific impulse can be tailored by adjusting the discharge power, pulse repetition rate, and propellant mass flow, and there is minimal if any erosion due to the electrodeless nature of the discharge. Prior single-shot experiment,; performed with a Diameter diameter version of the PIT at TRW demonstrated specific impulse values between 2,000 seconds and 8,000 seconds, with thruster efficiencies of about 52% for ammonia. This paper outlines current and planned activities to transition the single shot device into a multiple repetition rate thruster capable of supporting NASA strategic enterprise missions.
Weldon, William F.; Driga, Mircea D.; Woodson, Herbert H.
1980-01-01
This invention relates to an electromechanical energy converter with inertial energy storage. The device, a single phase, two or multi-pole alternator with stationary field coils, and a rotating armature is provided. The rotor itself may be of laminated steel for slower pulses or for faster pulses should be nonmagnetic and electrically nonconductive in order to allow rapid penetration of the field as the armature coil rotates. The armature coil comprises a plurality of power generating conductors mounted on the rotor. The alternator may also include a stationary or counterrotating compensating coil to increase the output voltage thereof and to reduce the internal impedance of the alternator at the moment of peak outout. As the machine voltage rises sinusoidally, an external trigger switch is adapted to be closed at the appropriate time to create the desired output current from said alternator to an external load circuit, and as the output current passes through zero a self-commutating effect is provided to allow the switch to disconnect the generator from the external circuit.
Portable battery-free charger for radiation dosimeters
Manning, Frank W.
1984-01-01
This invention is a novel portable charger for dosimeters of the electrometer type. The charger does not require batteries or piezoelectric crystals and is of rugged construction. In a preferred embodiment, the charge includes a housing which carries means for mounting a dosimeter to be charged. The housing also includes contact means for impressing a charging voltage across the mounted dosimeter. Also, the housing carries a trigger for operating a charging system mounted in the housing. The charging system includes a magnetic loop including a permanent magnet for establishing a magnetic field through the loop. A segment of the loop is coupled to the trigger for movement thereby to positions opening and closing the loop. A coil inductively coupled with the loop generates coil-generated voltage pulses when the trigger is operated to open and close the loop. The charging system includes an electrical circuit for impressing voltage pulses from the coil across a capacitor for integrating the pulses and applying the resulting integrated voltage across the above-mentioned contact means for charging the dosimeter.
NASA Astrophysics Data System (ADS)
Lukes, Petr; Clupek, Martin; Babicky, Vaclav; Janda, Vaclav; Sunka, Pavel
2005-02-01
Ozone formation by a pulse positive corona discharge generated in the gas phase between a planar high voltage electrode made from reticulated vitreous carbon and a water surface with an immersed ground stainless steel plate electrode was investigated under various operating conditions. The effects of gas flow rate (0.5-3 litre min-1), discharge gap spacing (2.5-10 mm), applied input power (2-45 W) and gas composition (oxygen containing argon or nitrogen) on ozone production were determined. Ozone concentration increased with increasing power input and with increasing discharge gap. The production of ozone was significantly affected by the presence of water vapour formed through vaporization of water at the gas-liquid interface by the action of the gas phase discharge. The highest energy efficiency for ozone production was obtained using high voltage pulses of approximately 150 ns duration in Ar/O2 mixtures with the maximum efficiency (energy yield) of 23 g kW h-1 for 40% argon content.
NASA Astrophysics Data System (ADS)
Redondo, L. M.; Silva, J. Fernando; Canacsinh, H.; Ferrão, N.; Mendes, C.; Soares, R.; Schipper, J.; Fowler, A.
2010-07-01
A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.
Compact biomedical pulsed signal generator for bone tissue stimulation
Kronberg, J.W.
1993-06-08
An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.
Transient Plasma Photonic Crystals for High-Power Lasers.
Lehmann, G; Spatschek, K H
2016-06-03
A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.
Compact biomedical pulsed signal generator for bone tissue stimulation
Kronberg, James W.
1993-01-01
An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.
Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study
NASA Astrophysics Data System (ADS)
Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan
2016-09-01
Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100-250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.
Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study
Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan
2016-01-01
Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2–3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100–250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation. PMID:27634482
Guionet, Alexis; David, Fabienne; Zaepffel, Clément; Coustets, Mathilde; Helmi, Karim; Cheype, Cyril; Packan, Denis; Garnier, Jean-Pierre; Blanckaert, Vincent; Teissié, Justin
2015-06-01
One of the different ways to eradicate microorganisms, and particularly bacteria that might have an impact on health consists in the delivery of pulsed electric fields (PEFs). The technologies of millisecond (ms) or microsecond (μs) PEF are still well known and used for instance in the process of fruit juice sterilization. However, this concept is costly in terms of delivered energy which might be too expensive for some other industrial processes. Nanosecond pulsed electric fields (nsPEFs) might be an alternative at least for lower energetic cost. However, only few insights were available and stipulate a gain in cost and in efficiency as well. Using Escherichia coli, the impact of frequency and low rate on eradication and energy consumption by msPEF, μsPEF and nsPEF have been studied and compared. While a 1 log10 was reached with an energy cost of 100 and 158 kJ/L with micro- and millisecond PEFs respectively, nsPEF reached the reduction for similar energy consumption. The best condition was obtained for a 1 log10 deactivation in 0.5h, for energy consumption of 143 kJ/L corresponding to 0.04 W · h when the field was around 100 kV/cm. Improvement can also be expected by producing a generator capable to increase the electric field. Copyright © 2014 Elsevier B.V. All rights reserved.
An all-solid-state CO2 laser driver
NASA Astrophysics Data System (ADS)
Birx, Daniel
1991-03-01
New, all-solid-state pulse generators are described which meet military requirements for an efficient, reliable pulsed power source to drive a space based CO2 laser. These SCR-commutated, nonlinear magnetic pulse compressors are fully-compatible with the present Spectra Technologies laser head design planned for use on LOWKATER. By employing SCRs rather than thyratron commutators, these pulsers should provide a significant increase in reliability over the current generation of pulsed power drivers. The first pulser which was designed and constructed was denoted COLD-I. COLD-I was designed to meet the original LOWKATER specifications and delivered at 150 joule, 20 kV pulse into a laser load at 10 to 20 Hz repetition rate. The second pulser, denoted COLD-II, was designed to provide a 45 joule, 500 nsec duration pulse at a voltage of 20 kV and a repetition rate of 1 kHz peak and 50 to 100 Hz average. The electrical efficiency was measured to be 80 percent with an input drive of 500 VDC. This pulse served as a design verification testbed for a third pulser, presently designed but not constructed and denoted COLD-III. COLD-III would be capable of producing 36 joules at the same pulse length and repetition rate at voltages of 20 kV. The Phase-II effort was a high risk, high payoff effort aimed at developing a light weight, high reliability RF power source for advanced RF CO2 laser heads under development. COLD-IV a Branched Magnetic RF Nonlinear Magnetic Pulse Compressor was built as a bread
Electrical Switching of Perovskite Thin-Film Resistors
NASA Technical Reports Server (NTRS)
Liu, Shangqing; Wu, Juan; Ignatiev, Alex
2010-01-01
Electronic devices that exploit electrical switching of physical properties of thin films of perovskite materials (especially colossal magnetoresistive materials) have been invented. Unlike some related prior devices, these devices function at room temperature and do not depend on externally applied magnetic fields. Devices of this type can be designed to function as sensors (exhibiting varying electrical resistance in response to varying temperature, magnetic field, electric field, and/or mechanical pressure) and as elements of electronic memories. The underlying principle is that the application of one or more short electrical pulse(s) can induce a reversible, irreversible, or partly reversible change in the electrical, thermal, mechanical, and magnetic properties of a thin perovskite film. The energy in the pulse must be large enough to induce the desired change but not so large as to destroy the film. Depending on the requirements of a specific application, the pulse(s) can have any of a large variety of waveforms (e.g., square, triangular, or sine) and be of positive, negative, or alternating polarity. In some applications, it could be necessary to use multiple pulses to induce successive incremental physical changes. In one class of applications, electrical pulses of suitable shapes, sizes, and polarities are applied to vary the detection sensitivities of sensors. Another class of applications arises in electronic circuits in which certain resistance values are required to be variable: Incorporating the affected resistors into devices of the present type makes it possible to control their resistances electrically over wide ranges, and the lifetimes of electrically variable resistors exceed those of conventional mechanically variable resistors. Another and potentially the most important class of applications is that of resistance-based nonvolatile-memory devices, such as a resistance random access memory (RRAM) described in the immediately following article, Electrically Variable Resistive Memory Devices (MFS-32511-1).
NASA Astrophysics Data System (ADS)
Gamaly, Eugene G.; Rode, Andrei V.
2016-08-01
Powerful short laser pulse focused on a surface swiftly transforms the solid into the thermally and electrically inhomogeneous conductive plasma with the large temperature and dielectric permeability gradients across the focal spot. The laser-affected spot becomes thermally inhomogeneous with where temperature has maximum in the centre and gradually decreasing to the boundaries of the spot in accord to the spatial intensity distribution of the Gaussian pulse. Here we study the influence of laser polarisation on ionization and absorption of laser radiation in the focal spot. In this paper we would like to discuss new effect in thermally inhomogeneous plasma under the action of imposed high frequency electric field. We demonstrate that high-frequency (HF) electric field is coupled with the temperature gradient generating the additional contribution to the conventional electronic heat flow. The additional heat flow strongly depends on the polarisation of the external field. It appears that effect has maximum when the imposed electric field is collinear to the thermal gradient directed along the radius of a circular focal spot. Therefore, the linear polarised field converts the circular laser affected spot into an oval with the larger oval's axis parallel to the field direction. We compare the developed theory to the available experiments, discuss the results and future directions.
Cryosurgery with pulsed electric fields.
Daniels, Charlotte S; Rubinsky, Boris
2011-01-01
This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to ablate cells in the high subzero freezing region of a cryosurgical lesion.
Evaluating the electrical discharge machining (EDM) parameters with using carbon nanotubes
NASA Astrophysics Data System (ADS)
Sari, M. M.; Noordin, M. Y.; Brusa, E.
2012-09-01
Electrical discharge machining (EDM) is one of the most accurate non traditional manufacturing processes available for creating tiny apertures, complex or simple shapes and geometries within parts and assemblies. Performance of the EDM process is usually evaluated in terms of surface roughness, existence of cracks, voids and recast layer on the surface of product, after machining. Unfortunately, the high heat generated on the electrically discharged material during the EDM process decreases the quality of products. Carbon nanotubes display unexpected strength and unique electrical and thermal properties. Multi-wall carbon nanotubes are therefore on purpose added to the dielectric used in the EDM process to improve its performance when machining the AISI H13 tool steel, by means of copper electrodes. Some EDM parameters such as material removal rate, electrode wear rate, surface roughness and recast layer are here first evaluated, then compared to the outcome of EDM performed without using nanotubes mixed to the dielectric. Independent variables investigated are pulse on time, peak current and interval time. Experimental evidences show that EDM process operated by mixing multi-wall carbon nanotubes within the dielectric looks more efficient, particularly if machining parameters are set at low pulse of energy.
Hartemann, Frederick; Bekefi, George
1989-05-30
A system which couples Cerenkov emission with a gated electrooptic effect to allow viewing of Cerenkov radiation in sub nanosecond time-scales is disclosed. Cerenkov radiation is generated by transmitting an electron beam through a transparent medium with a high index of refraction. The Cerenkov radiation is then gated into a sample pulse of subanosecond duration by an electrooptic crystal which has an index of refraction controlled by an electric field. the electrooptic crystal is opaque to the Cerenkov radiation until receiving a 6.0 kV voltage for about 750 picoseconds, upon which a pulsed sample of Cerenkov radiation is transmitted to a display system.
NASA Technical Reports Server (NTRS)
Weldon, W. F.
1980-01-01
The applicability/compatibility of inertial energy storage systems like the homopolar generator (HPG) and the compensated pulsed alternator (CPA) to future space missions is explored. Areas of CPA and HPG design requiring development for space applications are identified. The manner in which acceptance parameters of the CPA and HPG scale with operating parameters of the machines are explored and the types of electrical loads which are compatible with the CPA and HPG are examined. Potential applications including the magnetoplasmadynamic (MPD) thruster, pulsed data transmission, laser ranging, welding and electromagnetic space launch are discussed.
Monolithic carrier-envelope phase-stabilization scheme.
Fuji, Takao; Rauschenberger, Jens; Apolonski, Alexander; Yakovlev, Vladislav S; Tempea, Gabriel; Udem, Thomas; Gohle, Christoph; Hänsch, Theodor W; Lehnert, Walter; Scherer, Michael; Krausz, Ferenc
2005-02-01
A new scheme for stabilizing the carrier-envelope (CE) phase of a few-cycle laser pulse train is demonstrated. Self-phase modulation and difference-frequency generation in a single periodically poled lithium niobate crystal that transmits the main laser beam allows CE phase locking directly in the usable output. The monolithic scheme obviates the need for splitting off a fraction of the laser output for CE phase control, coupling into microstructured fiber, and separation and recombination of spectral components. As a consequence, the output yields 6-fs, 800-nm pulses with an unprecedented degree of short- and long-term reproducibility of the electric field waveform.
Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation
NASA Astrophysics Data System (ADS)
Yin, Yudan; Niu, Lin; Zhu, Xiaocui; Zhao, Meiping; Zhang, Zexin; Mann, Stephen; Liang, Dehai
2016-02-01
Although numerous strategies are now available to generate rudimentary forms of synthetic cell-like entities, minimal progress has been made in the sustained excitation of artificial protocells under non-equilibrium conditions. Here we demonstrate that the electric field energization of coacervate microdroplets comprising polylysine and short single strands of DNA generates membrane-free protocells with complex, dynamical behaviours. By confining the droplets within a microfluidic channel and applying a range of electric field strengths, we produce protocells that exhibit repetitive cycles of vacuolarization, dynamical fluctuations in size and shape, chaotic growth and fusion, spontaneous ejection and sequestration of matter, directional capture of solute molecules, and pulsed enhancement of enzyme cascade reactions. Our results highlight new opportunities for the study of non-equilibrium phenomena in synthetic protocells, provide a strategy for inducing complex behaviour in electrostatically assembled soft matter microsystems and illustrate how dynamical properties can be activated and sustained in microcompartmentalized media.
Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation
Yin, Yudan; Niu, Lin; Zhu, Xiaocui; Zhao, Meiping; Zhang, Zexin; Mann, Stephen; Liang, Dehai
2016-01-01
Although numerous strategies are now available to generate rudimentary forms of synthetic cell-like entities, minimal progress has been made in the sustained excitation of artificial protocells under non-equilibrium conditions. Here we demonstrate that the electric field energization of coacervate microdroplets comprising polylysine and short single strands of DNA generates membrane-free protocells with complex, dynamical behaviours. By confining the droplets within a microfluidic channel and applying a range of electric field strengths, we produce protocells that exhibit repetitive cycles of vacuolarization, dynamical fluctuations in size and shape, chaotic growth and fusion, spontaneous ejection and sequestration of matter, directional capture of solute molecules, and pulsed enhancement of enzyme cascade reactions. Our results highlight new opportunities for the study of non-equilibrium phenomena in synthetic protocells, provide a strategy for inducing complex behaviour in electrostatically assembled soft matter microsystems and illustrate how dynamical properties can be activated and sustained in microcompartmentalized media. PMID:26876162
NASA Astrophysics Data System (ADS)
Li, Liuxia; Qian, Dun; Zou, Xiaobing; Wang, Xinxin
2018-05-01
The shock waves generated by an underwater electrical wire explosion were investigated. A microsecond time-scale pulsed current source was used to trigger the electrical explosion of copper wires with a length of 5 cm and a diameter of 200 μm. The energy-storage capacitor was charged to a relatively low energy so that the energy deposited onto the wire was not large enough to fully vaporize the whole wire. Two shock waves were recorded with a piezoelectric gauge that was located at a position of 100 mm from the exploding wire. The first and weak shock wave was confirmed to be the contribution from wire melting, while the second and stronger shock wave was the contribution from wire vaporization. The phenomenon whereby the first shock wave generated by melting being overtaken by the shock wave due to vaporization was observed.
NASA Astrophysics Data System (ADS)
Xie, Qijie; Zheng, Bofang; Shu, Chester
2017-05-01
We demonstrate a simple approach for adjustable multiplication of optical pulses in a fiber using the temporal Talbot effect. Binary electrical patterns are used to control the multiplication factor in our approach. The input 10 GHz picosecond pulses are pedestal-free and are shaped directly from a CW laser. The pulses are then intensity modulated by different sets of binary patterns prior to entering a fiber of fixed dispersion. Tunable repetition-rate multiplication by different factors of 2, 4, and 8 have been achieved and up to 80 GHz pulse train has been experimentally generated. We also evaluate numerically the influence of the extinction ratio of the intensity modulator on the performance of the multiplied pulse train. In addition, the impact of the modulator bias on the uniformity of the output pulses has also been analyzed through simulation and experiment and a good agreement is reached. Last, we perform numerical simulation on the RF spectral characteristics of the output pulses. The insensitivity of the signal-to-subharmonic noise ratio (SSNR) to the laser linewidth shows that our multiplication scheme is highly tolerant to the incoherence of the input optical pulses.
NASA Astrophysics Data System (ADS)
Hua, Rui; Sio, Hong; Wilks, Scott; McGuffey, Christopher; Bailly-Grandvaux, Mathieu; Heeter, Bob; Beg, Farhat; Collins, Gilbert; Ping, Yuan; MIT Collaboration; LLNL Collaboration; UCSD Collaboration
2017-10-01
Self-generated electric fields arise from gradients in the electron pressure at shock fronts. We report observations of such E-fields from experiments conducted on OMEGA EP. In the experiments, strong shock waves were generated in low density gas under a quasi-planar geometry and diagnosed by broadband proton radiography. The broad proton spectrum allows energy-dependent measurements of deflection from which one can quantitatively constrain the electrical potential and field thickness. Three UV beams delivering up to 6.4 kJ energy in 2ns were used for shock generation and a short laser pulse of energy up to 850 J, 10 ps duration, was used to accelerate the broadband proton beam for point-projection radiography. Observations show the existence of electric fields with potential 300 V at the front of a Mach 9 shock in helium gas. A Mach 16 shock is also studied, from which both the field thickness and electric potential are reproduced. Simultaneous spatially resolved soft-x-ray spectroscopy provided additional measurements of shock velocity, particle velocity and thermal emission. This work was performed under DOE contract DE-AC52-07NA27 344 with support from OFES Early Career program and LLNL LDRD program. This work has been partially supported by the University of California Office of the President Lab Fee Grant Number LFR-17-449059.
A comparison between spectra of runaway electron beams in SF{sub 6} and air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Cheng; Wang, Ruexue; Yan, Ping
2015-12-15
Runaway electron (RAE) with extremely high-energy plays important role on the avalanche propagation, streamer formation, and ionization waves in nanosecond-pulse discharges. In this paper, the generation of a supershort avalanche electron beam (SAEB) in SF{sub 6} and air in an inhomogeneous electric field is investigated. A VPG-30-200 generator with a pulse rise time of ∼1.6 ns and a full width at half maximum of 3–5 ns is used to produce RAE beams. The SAEBs in SF{sub 6} and air are measured by using aluminum foils with different thicknesses. Furthermore, the SAEB spectra in SF{sub 6} and air at pressures of 7.5 Torr, 75 Torr,more » and 750 Torr are compared. The results showed that amplitude of RAE beam current generated at the breakdown in SF{sub 6} was approximately an order of magnitude less than that in air. The energy of SAEB in air was not smaller than that in SF{sub 6} in nanosecond-pulse discharges under otherwise equal conditions. Moreover, the difference between the maximum energy of the electron distributions in air and SF{sub 6} decreased when the rise time of the voltage pulse increased. It was because the difference between the breakdown voltages in air and SF{sub 6} decreased when the rise time of the voltage pulse increased.« less
Ultrafast Nonlinear Response of Atomic and Molecular Gases in Near-IR and Mid-IR Regions
NASA Astrophysics Data System (ADS)
Zahedpour Anaraki, Sina
There is a dynamical interaction between an ultrashort laser pulse and the medium it propagates through. At the shortest timescales, the near-instantaneous electronic response of the medium contributes to an induced polarization nonlinearity. On a longer timescale, the vibrational response can contribute, followed on even longer timescales by the rotational response. One of the major consequences of these nonlinearities is that they can induce the collapse and filamentation of the laser pulse, leading to ionization and plasma generation. In this dissertation, measurements and theory are presented for both the fundamental atomic and molecular nonlinearities themselves (electronic, rovibrational, and ionization rates) in the range lambda=400nm-2600nm, and their applications. The media investigated are air constituents (Ar, N 2, O2), H2, D2, and common transparent optical materials. In particular, in one application it is shown that in molecular gases like N2 and O2, the propagating laser electric field can pump a rotational wavepacket, producing molecular ensembles with both transient and long-lived ("permanent") alignment components. This alignment, which generates quantum echoes (rotational revivals), can interact with the pulse that generated it (rotational nonlinearity) and with any pulses that may follow. We show that a properly timed train of ultrashort laser pulses can resonate with the rotational revivals, causing a "permanent" alignment in the gas which thermalizes and then drives a strong hydrodynamic response which can exceed that from the plasma heating by a filament.
Enhancement and inhibition of second-harmonic generation and absorption in a negative index cavity.
de Ceglia, Domenico; D'Orazio, Antonella; De Sario, Marco; Petruzzelli, Vincenzo; Prudenzano, Francesco; Centini, Marco; Cappeddu, Mirko G; Bloemer, Mark J; Scalora, Michael
2007-02-01
We study second-harmonic generation in a negative-index material cavity. The transmission spectrum shows a bandgap between the electric and magnetic plasma frequencies. The nonlinear process is made efficient by local phase-matching conditions between a forward-propagating pump and a backward-propagating second-harmonic signal. By simultaneously exciting the cavity with counterpropagating pulses, and by varying their relative phase difference, one is able to enhance or inhibit linear absorption and the second-harmonic conversion efficiency.
Demonstration of the role of turbulence-driven poloidal flow generation in the L-H transition
NASA Astrophysics Data System (ADS)
Yu, C. X.; Xu, Y. H.; Luo, J. R.; Mao, J. S.; Liu, B. H.; Li, J. G.; Wan, B. N.; Wan, Y. X.
2000-05-01
This paper presents the evidence for the role of turbulence-driven poloidal flow generation in the L-H transition induced by a turbulent heating pulse on the HT-6M tokamak. It is found that the poloidal flow υθ plays a key role in developing the electric field Er and triggering the transition. The acceleration of υθ across the transition is clearly correlated with the enhancement of the Reynolds stress gradient.
A tail of two voltages: Proteomic comparison of the three electric organs of the electric eel
Traeger, Lindsay L.; Sabat, Grzegorz; Barrett-Wilt, Gregory A.; Wells, Gregg B.; Sussman, Michael R.
2017-01-01
The electric eel (Electrophorus electricus) is unusual among electric fishes because it has three pairs of electric organs that serve multiple biological functions: For navigation and communication, it emits continuous pulses of weak electric discharge (<1 V), but for predation and defense, it intermittently emits lethal strong electric discharges (10 to 600 V). We hypothesized that these two electrogenic outputs have different energetic demands reflected by differences in their proteome and phosphoproteome. We report the use of isotope-assisted quantitative mass spectrometry to test this hypothesis. We observed novel phosphorylation sites in sodium transporters and identified a potassium channel with unique differences in protein concentration among the electric organs. In addition, we found transcription factors and protein kinases that show differential abundance in the strong versus weak electric organs. Our findings support the hypothesis that proteomic differences among electric organs underlie differences in energetic needs, reflecting a trade-off between generating weak voltages continuously and strong voltages intermittently. PMID:28695212
Cable Discharge System for fundamental detonator studies
NASA Technical Reports Server (NTRS)
Peevy, Gregg R.; Barnhart, Steven G.; Brigham, William P.
1994-01-01
Sandia National Laboratories has recently completed the modification and installation of a cable discharge system (CDS) which will be used to study the physics of exploding bridgewire (EBW) detonators and exploding foil initiators (EFI or slapper). Of primary interest are the burst characteristics of these devices when subjected to the constant current pulse delivered by this system. The burst process involves the heating of the bridge material to a conductive plasma and is essential in describing the electrical properties of the bridgewire foil for use in diagnostics or computer models. The CDS described herein is capable of delivering up to an 8000 A pulse of 3 micron duration. Experiments conducted with the CDS to characterize the EBW and EFI burst behavior are also described. In addition, the CDS simultaneous VISAR capability permits updating the EFI electrical Gurney analysis parameters used in our computer simulation codes. Examples of CDS generated data for a typical EFI and EBW detonator are provided.
Optical properties of polyimides films treated by nanosecond pulsed electrical discharges in water
NASA Astrophysics Data System (ADS)
Sava, Ion; Kruth, Angela; Kolb, Juergen F.; Miron, Camelia
2018-01-01
Fluorinated polyimide films containing cobalt chloride based on hexafluoroisopropylidenediphthalic dianhydride and 4,4‧-diamino-3,3‧-dimethyl diphenylmethane were treated by nanosecond pulsed electrical discharges generated in distilled water. The polyimide films have been characterized by Fourier transform infrared (FTIR) spectra and contact angle measurements, optical transmission spectroscopy, and fluorescence spectroscopy. Significant changes in some intrinsic fluorescence features, such as the intensity and position of the emission peak, have been observed during exposure to water plasma. These effects have been considered to correlate with the development of specific chemical interactions between the liquid and the macromolecules, including the formation of hydrogen bridges. A slight increase in surface hydrophobicity was observed after plasma treatment. FTIR spectra showed a decrease in the intensity of the absorption band and an opening of the imide ring, depending on the treatment time.
Microshell-tipped optical fibers as sensors of high-pressure pulses in adverse environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benjamin, R.F.; Mayer, F.J.; Maynard, R.L.
1984-01-01
We have developed and used an optical-fiber sensor for detecting the arrival of strong pressure pulses. The sensor consists of an optical fiber, tipped with a gas-filled microballoon. They have been used successfully in adverse environments including explosives, ballistics and electromagnetic pulses (EMP). The sensor produces a bright optical pulse caused by the rapid shock-heating of a gas, typically argon or xenon, which is confined in the spherical glass or plastic microballoon. The light pulse is transmitted via the optical fiber to a photo detector, usually a streak camera or photomultiplier tube. The microballoon optical sensor (called an optical pinmore » by analogy to standard electrical pins), was originally developed for diagnosing an explosive, pulsed-power generator. Optical pins are required due to the EMP. The optical pins are economical arrival-time indicators because many channels can be recorded by one streak camera. The generator tests and related experiments, involving projectile velocities and detonation velocities of several kilometers per/sec have demonstrated the usefulness of the sensors in explosives and ballistics applications. We have also measured the sensitivity of the optical pins to slowly-moving projectiles and found that a 200 m/sec projectile impacting the microballoon sensor produces a flash having a risetime less than 100 ns and a pulse duration (FWHM) of less than 300 ns. The technical and cost advantages of this optical pin make it potentially useful for many electromagnetic, explosive, and ballistics applications.« less
Plasma Membrane Permeabilization by Trains of Ultrashort Electric Pulses
Ibey, Bennett L.; Mixon, Dustin G.; Payne, Jason A.; Bowman, Angela; Sickendick, Karl; Wilmink, Gerald J.; Roach, W. Patrick; Pakhomov, Andrei G.
2010-01-01
Ultrashort electric pulses (USEP) cause long-lasting increase of cell membrane electrical conductance, and that a single USEP increased cell membrane electrical conductance proportionally to the absorbed dose (AD) with a threshold of about 10 mJ/g. The present study extends quantification of the membrane permeabilization effect to multiple USEP and employed a more accurate protocol that identified USEP effect as the difference between post- and pre-exposure conductance values (Δg) in individual cells. We showed that Δg can be increased by either increasing the number of pulses at a constant E-field, or by increasing the E-field at a constant number of pulses. For 60-ns pulses, an E-field threshold of 6 kV/cm for a single pulse was lowered to less than 1.7 kV/cm by applying 100-pulse or longer trains. However, the reduction of the E-field threshold was only achieved at the expense of a higher AD compared to a single pulse exposure. Furthermore, the effect of multiple pulses was not fully determined by AD, suggesting that cells permeabilized by the first pulse(s) in the train become less vulnerable to subsequent pulses. This explanation was corroborated by a model that treated multiple-pulse exposures as a series of single-pulse exposures and assumed an exponential decline of cell susceptibility to USEP as Δg increased after each pulse during the course of the train. PMID:20171148
Unitary scintillation detector and system
McElhaney, Stephanie A.; Chiles, Marion M.
1994-01-01
The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations.
High power solid state laser modulator
Birx, Daniel L.; Ball, Don G.; Cook, Edward G.
2004-04-27
A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.
Unitary scintillation detector and system
McElhaney, S.A.; Chiles, M.M.
1994-05-31
The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations. 10 figs.
Single-mode, All-Solid-State Nd:YAG Laser Pumped UV Converter
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Armstrong, Darrell, J.; Edwards, William C.; Singh, Upendra N.
2008-01-01
In this paper, the status of a high-energy, all solid-state Nd:YAG laser pumped nonlinear optics based UV converter development is discussed. The high-energy UV transmitter technology is being developed for ozone sensing applications from space based platforms using differential lidar technique. The goal is to generate greater than 200 mJ/pulse with 10-50 Hz PRF at wavelengths of 308 nm and 320 nm. A diode-pumped, all-solid-state and single longitudinal mode Nd:YAG laser designed to provide conductively cooled operation at 1064 nm has been built and tested. Currently, this pump laser provides an output pulse energy of >1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of <2. The single frequency UV converter arrangement basically consists of an IR Optical Parametric Oscillator (OPO) and a Sum Frequency Generator (SFG) setups that are pumped by 532 nm wavelength obtained via Second Harmonic Generation (SHG). In this paper, the operation of an inter cavity SFG with CW laser seeding scheme generating 320 nm wavelength is presented. Efforts are underway to improve conversion efficiency of this mJ class UV converter by modifying the spatial beam profile of the pump laser.
Ultra-bright pulsed electron beam with low longitudinal emittance
Zolotorev, Max
2010-07-13
A high-brightness pulsed electron source, which has the potential for many useful applications in electron microscopy, inverse photo-emission, low energy electron scattering experiments, and electron holography has been described. The source makes use of Cs atoms in an atomic beam. The source is cycled beginning with a laser pulse that excites a single Cs atom on average to a band of high-lying Rydberg nP states. The resulting valence electron Rydberg wave packet evolves in a nearly classical Kepler orbit. When the electron reaches apogee, an electric field pulse is applied that ionizes the atom and accelerates the electron away from its parent ion. The collection of electron wave packets thus generated in a series of cycles can occupy a phase volume near the quantum limit and it can possess very high brightness. Each wave packet can exhibit a considerable degree of coherence.