Sample records for electrical resistivity behavior

  1. Electron transport in reduced graphene oxides in high electric field

    NASA Astrophysics Data System (ADS)

    Jian, Wen-Bin; Lai, Jian-Jhong; Wang, Sheng-Tsung; Tsao, Rui-Wen; Su, Min-Chia; Tsai, Wei-Yu; Rosenstein, Baruch; Zhou, Xufeng; Liu, Zhaoping

    Due to a honeycomb structure, charge carriers in graphene exhibit quasiparticles of linear energy-momentum dispersion and phenomena of Schwinger pair creation may be explored. Because graphene is easily broken in high electric fields, single-layer reduced graphene oxides (rGO) are used instead. The rGO shows a small band gap while it reveals a graphene like behavior in high electric fields. Electron transport in rGO exhibits two-dimensional Mott's variable range hopping. The temperature behavior of resistance in low electric fields and the electric field behavior of resistance at low temperatures are all well explained by the Mott model. At temperatures higher than 200 K, the electric field behavior does not agree with the model while it shows a power law behavior with an exponent of 3/2, being in agreement with the Schwinger model. Comparing with graphene, the rGO is more sustainable to high electric field thus presenting a complete high-electric field behavior. When the rGO is gated away from the charge neutral point, the turn-on electric field of Schwinger phenomena is increased. A summary figure is given to present electric field behaviors and power law variations of resistances of single-layer rGO, graphene, and MoS2.

  2. Scaling Effect on Unipolar and Bipolar Resistive Switching of Metal Oxides

    PubMed Central

    Yanagida, Takeshi; Nagashima, Kazuki; Oka, Keisuke; Kanai, Masaki; Klamchuen, Annop; Park, Bae Ho; Kawai, Tomoji

    2013-01-01

    Electrically driven resistance change in metal oxides opens up an interdisciplinary research field for next-generation non-volatile memory. Resistive switching exhibits an electrical polarity dependent “bipolar-switching” and a polarity independent “unipolar-switching”, however tailoring the electrical polarity has been a challenging issue. Here we demonstrate a scaling effect on the emergence of the electrical polarity by examining the resistive switching behaviors of Pt/oxide/Pt junctions over 8 orders of magnitudes in the areas. We show that the emergence of two electrical polarities can be categorised as a diagram of an electric field and a cell area. This trend is qualitatively common for various oxides including NiOx, CoOx, and TiO2-x. We reveal the intrinsic difference between unipolar switching and bipolar switching on the area dependence, which causes a diversity of an electrical polarity for various resistive switching devices with different geometries. This will provide a foundation for tailoring resistive switching behaviors of metal oxides. PMID:23584551

  3. Multi-step resistive switching behavior of Li-doped ZnO resistance random access memory device controlled by compliance current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chun-Cheng; Department of Mathematic and Physical Sciences, R.O.C. Air Force Academy, Kaohsiung 820, Taiwan; Tang, Jian-Fu

    2016-06-28

    The multi-step resistive switching (RS) behavior of a unipolar Pt/Li{sub 0.06}Zn{sub 0.94}O/Pt resistive random access memory (RRAM) device is investigated. It is found that the RRAM device exhibits normal, 2-, 3-, and 4-step RESET behaviors under different compliance currents. The transport mechanism within the device is investigated by means of current-voltage curves, in-situ transmission electron microscopy, and electrochemical impedance spectroscopy. It is shown that the ion transport mechanism is dominated by Ohmic behavior under low electric fields and the Poole-Frenkel emission effect (normal RS behavior) or Li{sup +} ion diffusion (2-, 3-, and 4-step RESET behaviors) under high electric fields.

  4. Polarization-coupled tunable resistive behavior in oxide ferroelectric heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruverman, Alexei; Tsymbal, Evgeny Y.; Eom, Chang-Beom

    2017-05-03

    This research focuses on investigation of the physical mechanism of the electrically and mechanically tunable resistive behavior in oxide ferroelectric heterostructures with engineered interfaces realized via a strong coupling of ferroelectric polarization with tunneling electroresistance and metal-insulator (M-I) transitions. This report describes observation of electrically conductive domain walls in semiconducting ferroelectrics, voltage-free control of resistive switching and demonstration of a new mechanism of electrical control of 2D electron gas (2DEG) at oxide interfaces. The research goals are achieved by creating strong synergy between cutting-edge fabrication of epitaxial single-crystalline complex oxides, nanoscale electrical characterization by scanning probe microscopy and theoretical modelingmore » of the observed phenomena. The concept of the ferroelectric devices with electrically and mechanically tunable nonvolatile resistance represents a new paradigm shift in realization of the next-generation of non-volatile memory devices and low-power logic switches.« less

  5. An electrochemical study of the corrosion behavior of primer coated 2219-T87 aluminum

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Higgins, R. H.

    1985-01-01

    The corrosion behavior for 2219-T87 aluminum coated with various primers, including those used for the external tank and solid rocket boosters of the Space Shuttle Transportation System, were investigated using electrochemical techniques. Corrosion potential time, polarization resistance time, electrical resistance time, and corrosion rate time measurements were all investigated. It was found that electrical resistance time and corrosion rate time measurement were most useful for studying the corrosion behavior of painted aluminum. Electrical resistance time determination give useful information concerning the porosity of paint films, while corrosion rate time curves give important information concerning overall corrosion rates and corrosion mechanisms. In general, the corrosion rate time curves all exhibited at least one peak during the 30 day test period, which was attributed, according to the proposed mechanisms, to the onset of the hydrogen evolution reaction and the beginning of destruction of the protective properties of the paint film.

  6. Electrical conduction hysteresis in carbon black-filled butyl rubber compounds

    NASA Astrophysics Data System (ADS)

    Alzamil, M. A.; Alfaramawi, K.; Abboudy, S.; Abulnasr, L.

    2018-04-01

    Temperature and concentration dependence of electrical resistance of butyl rubber filled with GPF carbon black was carried out. Current-voltage (I-V) characteristics at room-temperature were also investigated. The I-V characteristics show that the behavior is linear at small voltages up to approximately 0.15 V and currents up to 0.05 mA indicating that the conduction mechanism was probably due to electron tunneling from the end of conductive path to the other one under the action of the applied electric field. At higher voltages, a nonlinear behavior was noticed. The nonlinearity was attributed to the joule heating effects. Electrical resistance of the butyl/GPF composites was measured as a function of temperature during heating and cooling cycles from 300 K and upward to a specific temperature. When the specimens were heated up, the resistance was observed to increase continuously with the rise of temperature. However, when the samples were cooled down, the resistance was observed to decrease following a different path. The presence of conduction hysteresis behavior in the resistance-temperature curves during the heating and cooling cycles was then verified. The electrical conduction of the composite system is supposed to follow an activation conduction mechanism. Activation energy was calculated at different filler concentrations for both the heating and cooling processes.

  7. Electrical Potential of Leaping Eels

    PubMed Central

    Catania, Kenneth C.

    2017-01-01

    When approached by a large, partially submerged conductor, electric eels (Electrophorus electricus) will often defend themselves by leaping from the water to directly shock the threat. Presumably, the conductor is interpreted as an approaching terrestrial or semiaquatic animal. In the course of this defensive behavior, eels first make direct contact with their lower jaw and then rapidly emerge from the water, ascending the conductor while discharging high-voltage volleys. In this study, the equivalent circuit that develops during this behavior was proposed and investigated. First, the electromotive force and internal resistance of four electric eels were determined. These values were then used to estimate the resistance of the water volume between the eel and the conductor by making direct measurements of current with the eel and water in the circuit. The resistance of the return path from the eel's lower jaw to the main body of water was then determined, based on voltage recordings, for each electric eel at the height of the defensive leap. Finally, the addition of a hypothetical target for the leaping defense was considered as part of the circuit. The results suggest the defensive behavior efficiently directs electrical current through the threat, producing an aversive and deterring experience by activating afferents in potential predators. PMID:28651251

  8. Electrical resistance behavior of oxyfluorinated graphene under oxidizing and reducing gas exposure.

    PubMed

    Im, Ji Sun; Bae, Tae-Sung; Shin, Eunjeong; Lee, Young-Seak

    2014-03-01

    The electrical resistance behavior of graphene was studied under oxidizing and reducing gas exposure. The graphene surface was modified via oxyfluorination to obtain a specific surface area and oxygen functional groups. Fluorine radicals provided improved pore structure and introduction of an oxygen functional group. A high-performance gas sensor was obtained based on enlarged target gas adsorption sites and an enhanced electron charge transfer between the target gas and carbon surface via improved pore structure and the introduction of oxygen functional groups, respectively.

  9. Effect of rare-earth doping on the thermoelectric and electrical transport properties of the transition metal pentatelluride hafnium pentatelluride

    NASA Astrophysics Data System (ADS)

    Lowhorn, Nathan Dane

    The transition metal pentatellurides HfTe5 and ZrTe5 have been observed to possess interesting electrical transport properties. High thermopower and low resistivity values result in high thermoelectric power factors. In addition, they possess anomalous transport behavior. The temperature dependence of the resistivity is semimetallic except for a large resistive peak as a function of temperature at around 75 K for HfTe5 and 145 K for ZrTe5. At a temperature corresponding to this peak, the thermopower crosses zero as it moves from large positive values to large negative values. This behavior has been found to be extremely sensitive to changes in the energetics of the system through influences such as magnetic field, stress, pressure, microwave radiation, and substitutional doping. This behavior has yet to be fully explained. Previous doping studies have shown profound and varied effects on the anomalous transport behavior. In this study we investigate the effect on the electrical resistivity, thermopower, and magnetoresistance of doping HfTe5 with rare-earth elements. We have grown single crystals of nominal Hf0.75RE 0.25Te5 where RE = Ce, Pr, Nd, Sm, Gd, Tb, Dy, and Ho. Electrical resistivity and thermopower data from about 10 K to room temperature are presented and discussed in terms of the thermoelectric properties. Doping with rare-earth elements of increasing atomic number leads to a systematic suppression of the anomalous transport behavior. Rare-earth doping also leads to an enhancement of the thermoelectric power factor over that of previously studied pentatellurides and the commonly used thermoelectric material Bi2Te3. For nominal Hf0.75Nd0.25Te5 and Hf0.75 Sm0.25Te5, values more than a factor of 2 larger than that Bi2Te3 are observed. In addition, suppression of the anomalous transport behavior leads to a suppression of the large magnetoresistive effect observed in the parent compounds. Rare-earth doping of HfTe5 has a profound impact on the anomalous electrical transport properties of the parent pentatellurides and produces enhanced thermoelectric properties.

  10. Electrical Potential of Leaping Eels.

    PubMed

    Catania, Kenneth C

    2017-01-01

    When approached by a large, partially submerged conductor, electric eels (Electrophorus electricus) will often defend themselves by leaping from the water to directly shock the threat. Presumably, the conductor is interpreted as an approaching terrestrial or semiaquatic animal. In the course of this defensive behavior, eels first make direct contact with their lower jaw and then rapidly emerge from the water, ascending the conductor while discharging high-voltage volleys. In this study, the equivalent circuit that develops during this behavior was proposed and investigated. First, the electromotive force and internal resistance of four electric eels were determined. These values were then used to estimate the resistance of the water volume between the eel and the conductor by making direct measurements of current with the eel and water in the circuit. The resistance of the return path from the eel's lower jaw to the main body of water was then determined, based on voltage recordings, for each electric eel at the height of the defensive leap. Finally, the addition of a hypothetical target for the leaping defense was considered as part of the circuit. The results suggest the defensive behavior efficiently directs electrical current through the threat, producing an aversive and deterring experience by activating afferents in potential predators. © 2017 The Author(s) Published by S. Karger AG, Basel.

  11. Electrical resistance of single-crystal magnetite (Fe 3 O 4 ) under quasi-hydrostatic pressures up to 100 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muramatsu, Takaki; Gasparov, Lev V.; Berger, Helmuth

    2016-04-07

    We measured the pressure dependence of electrical resistance of single-crystal magnetite (Fe 3O 4) under quasi-hydrostatic conditions to 100 GPa using low-temperature, megabar diamond-anvil cell techniques in order to gain insight into the anomalous behavior of this material that has been reported over the years in different high-pressure experiments. The measurements under nearly hydrostatic pressure conditions allowed us to detect the clear Verwey transition and the high-pressure structural phase. Furthermore, the appearance of a metallic ground state after the suppression of the Verwey transition around 20 GPa and the concomitant enhancement of electrical resistance caused by the structural transformation tomore » the high-pressure phase form reentrant semiconducting-metallic-semiconducting behavior, though the appearance of the metallic phase is highly sensitive to stress conditions and details of the measurement technique.« less

  12. Low-Energy Electronic Properties of Clean CaRuO3: Elusive Landau Quasiparticles

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Geiger, D.; Esser, S.; Pracht, U. S.; Stingl, C.; Tokiwa, Y.; Moshnyaga, V.; Sheikin, I.; Mravlje, J.; Scheffler, M.; Gegenwart, P.

    2014-05-01

    We have prepared high-quality epitaxial thin films of CaRuO3 with residual resistivity ratios up to 55. Shubnikov-de Haas oscillations in the magnetoresistance and a T2 temperature dependence in the electrical resistivity only below 1.5 K, the coefficient of which is substantially suppressed in large magnetic fields, establish CaRuO3 as a Fermi liquid (FL) with an anomalously low coherence scale. At T >1.5 K non-Fermi-liquid (NFL) behavior is found in the electrical resistivity. The high sample quality allows access to the intrinsic electronic properties via THz spectroscopy. For frequencies below 0.6 THz, the conductivity is Drude-like and can be modeled by FL concepts; for higher frequencies, non-Drude behavior is found, which is inconsistent with FL predictions. This establishes CaRuO3 as a prime example of optical NFL behavior in the THz range.

  13. Differences in Stylet Penetration Behaviors of Glassy-winged Sharpshooters on Xylella-Resistant Vitis candicans vs. Susceptible Vitis vinifera cv. ‘Chardonnay’

    USDA-ARS?s Scientific Manuscript database

    Electrical penetration graph (EPG) monitoring was used to compare stylet penetration behaviors of glassy-winged sharpshooter (GWSS), a vector of Xylella fastidiosa (Xf), on Xf-resistant Vitis candicans grape vs. susceptible V. vinifera cv. ‘Chardonnay.’ Frequency of occurrence of X waves (represent...

  14. Fatigue limits of titanium-bar joints made with the laser and the electric resistance welding techniques: microstructural characterization and hardness properties.

    PubMed

    Degidi, Marco; Nardi, Diego; Morri, Alessandro; Sighinolfi, Gianluca; Tebbel, Florian; Marchetti, Claudio

    2017-09-01

    Fatigue behavior of the titanium bars is of utmost importance for the safe and reliable operation of dental implants and prosthetic constructions based on these implants. To date, however, only few data are available on the fatigue strength of dental prostheses made with electric resistance welding and laser welding techniques. This in-vitro study highlighted that although the joints made with the laser welding approach are credited of a superior tensile strength, joints made with electric resistance welding exhibited double the minimum fatigue strength with respect to the joints made with laser welding (120 vs 60 N).

  15. Electrical resistivity across the tricriticality in itinerant ferromagnet

    NASA Astrophysics Data System (ADS)

    Opletal, P.; Prokleška, J.; Valenta, J.; Sechovský, V.

    2018-05-01

    We investigate the discontinuous ferromagnetic phase diagram near tricritical point in UCo1-xRuxAl compounds by electrical resistivity measurements. Separation of phases in UCo0.995Ru0.005Al at ambient pressure and in UCo0.990Ru0.010Al at pressure of 0.2 GPa and disappearance of ferromagnetism at 0.4 GPa is confirmed. The exponent of temperature dependence of electrical resistivity implies change from Fermi liquid-like behavior to non-Fermi liquid at 0.2 GPa and reaches minimum at 0.4 GPa. Our results are compared to results obtained on the pure UCoAl and explanation for different exponents is given.

  16. Electrical resistivity tomography as monitoring tool for unsaturated zone transport: an example of preferential transport of deicing chemicals.

    PubMed

    Wehrer, Markus; Lissner, Heidi; Bloem, Esther; French, Helen; Totsche, Kai Uwe

    2014-01-01

    Non-invasive spatially resolved monitoring techniques may hold the key to observe heterogeneous flow and transport behavior of contaminants in soils. In this study, time-lapse electrical resistivity tomography (ERT) was employed during an infiltration experiment with deicing chemical in a small field lysimeter. Deicing chemicals like potassium formate, which frequently impact soils on airport sites, were infiltrated during snow melt. Chemical composition of seepage water and the electrical response was recorded over the spring period 2010. Time-lapse electrical resistivity tomographs are able to show the infiltration of the melt water loaded with ionic constituents of deicing chemicals and their degradation product hydrogen carbonate. The tomographs indicate early breakthrough behavior in parts of the profile. Groundtruthing with pore fluid conductivity and water content variations shows disagreement between expected and observed bulk conductivity. This was attributed to the different sampling volume of traditional methods and ERT due to a considerable fraction of immobile water in the soil. The results show that ERT can be used as a soil monitoring tool on airport sites if assisted by common soil monitoring techniques.

  17. Voltage controlled Bi-mode resistive switching effects in MnO2 based devices

    NASA Astrophysics Data System (ADS)

    Hu, P.; Wu, S. X.; Wang, G. L.; Li, H. W.; Li, D.; Li, S. W.

    2018-01-01

    In this paper, the voltage induced bi-mode resistive switching behavior of an MnO2 thin film based device was studied. The device showed prominent bipolar resistive switching behavior with good reproducibility and high endurance. In addition, complementary resistive switching characteristics can be observed by extending the voltage bias during voltage sweep operations. The electrical measurement data and fitting results indicate that the oxygen vacancies act as defects to form a conductive path, which is connective or disrupted to realize a low resistive state or a high resistive state. Changing the sweep voltage can tune the oxygen vacancies distribution, which will achieve complementary resistive switching.

  18. New pathway for the formation of metallic cubic phase Ge-Sb-Te compounds induced by an electric current

    PubMed Central

    Park, Yong-Jin; Cho, Ju-Young; Jeong, Min-Woo; Na, Sekwon; Joo, Young-Chang

    2016-01-01

    The novel discovery of a current-induced transition from insulator to metal in the crystalline phase of Ge2Sb2Te5 and GeSb4Te7 have been studied by means of a model using line-patterned samples. The resistivity of cubic phase Ge-Sb-Te compound was reduced by an electrical current (~1 MA/cm2), and the final resistivity was determined based on the stress current density, regardless of the initial resistivity and temperature, which indicates that the conductivity of Ge-Sb-Te compound can be modulated by an electrical current. The minimum resistivity of Ge-Sb-Te materials can be achieved at high kinetic rates by applying an electrical current, and the material properties change from insulating to metallic behavior without a phase transition. The current-induced metal transition is more effective in GeSb4Te7 than Ge2Sb2Te5, which depends on the intrinsic vacancy of materials. Electromigration, which is the migration of atoms induced by a momentum transfer from charge carriers, can easily promote the rearrangement of vacancies in the cubic phase of Ge-Sb-Te compound. This behavior differs significantly from thermal annealing, which accompanies a phase transition to the hexagonal phase. This result suggests a new pathway for modulating the electrical conductivity and material properties of chalcogenide materials by applying an electrical current. PMID:26902593

  19. Resistance noise spectroscopy across the thermally and electrically driven metal-insulator transitions in VO2 nanobeams

    NASA Astrophysics Data System (ADS)

    Alsaqqa, Ali; Kilcoyne, Colin; Singh, Sujay; Horrocks, Gregory; Marley, Peter; Banerjee, Sarbajit; Sambandamurthy, G.

    Vanadium dioxide (VO2) is a strongly correlated material that exhibits a sharp thermally driven metal-insulator transition at Tc ~ 340 K. The transition can also be triggered by a DC voltage in the insulating phase with a threshold (Vth) behavior. The mechanisms behind these transitions are hotly discussed and resistance noise spectroscopy is a suitable tool to delineate different transport mechanisms in correlated systems. We present results from a systematic study of the low frequency (1 mHz < f < 10 Hz) noise behavior in VO2 nanobeams across the thermally and electrically driven transitions. In the thermal transition, the power spectral density (PSD) of the resistance noise is unchanged as we approach Tc from 300 K and an abrupt drop in the magnitude is seen above Tc and it remains unchanged till 400 K. However, the noise behavior in the electrically driven case is distinctly different: as the voltage is ramped from zero, the PSD gradually increases by an order of magnitude before reaching Vth and an abrupt increase is seen at Vth. The noise magnitude decreases above Vth, approaching the V = 0 value. The individual roles of percolation, Joule heating and signatures of correlated behavior will be discussed. This work is supported by NSF DMR 0847324.

  20. Unusual Electrical Transport Driven by the Competition between Antiferromagnetism and Ferromagnetism in Antiperovskite Mn3Zn1−xCoxN

    PubMed Central

    Chu, Lihua; Wang, Cong; Guo, Yanjiao; Liu, Zhuohai

    2018-01-01

    The magnetic, electrical transport and thermal expansion properties of Mn3Zn1−xCoxN (x = 0.2, 0.4, 0.5, 0.7, 0.9) have been systematically investigated. Co-doping in Mn3ZnN complicates the magnetic interactions, leading to a competition between antiferromagnetism and ferromagnetism. Abrupt resistivity jump phenomenon and negative thermal expansion behavior, both associated with the complex magnetic transition, are revealed in all studied cases. Furthermore, semiconductor-like transport behavior is found in sample x = 0.7, distinct from the metallic behavior in other samples. Below 50 K, resistivity minimum is observed in samples x = 0.4, 0.7, and 0.9, mainly caused by e-e scattering mechanism. We finally discussed the strong correlation among unusual electrical transport, negative thermal expansion and magnetic transition in Mn3Zn1−xCoxN, which allows us to conclude that the observed unusual electrical transport properties are attributed to the shift of the Fermi energy surface entailed by the abrupt lattice contraction. PMID:29439522

  1. Flexible Thick-Film Electrochemical Sensors: Impact of Mechanical Bending and Stress on the Electrochemical Behavior

    PubMed Central

    Cai, Jiaying; Cizek, Karel; Long, Brenton; McAferty, Kenyon; Campbell, Casey G.; Allee, David R.; Vogt, Bryan D.; La Belle, Jeff; Wang, Joseph

    2009-01-01

    The influence of the mechanical bending, rolling and crimping of flexible screen-printed electrodes upon their electrical properties and electrochemical behavior has been elucidated. Three different flexible plastic substrates, Mylar, polyethylene naphthalate (PEN), and Kapton, have been tested in connection to the printing of graphite ink working electrodes. Our data indicate that flexible printed electrodes can be bent to extremely small radii of curvature and still function well, despite a marginal increase the electrical resistance. Below critical radii of curvature of ~8 mm, full recovery of the electrical resistance occurs upon strain release. The electrochemical response is maintained for sub-mm bending radii and a 180° pinch of the electrode does not lead to device failure. The electrodes appear to be resistant to repeated bending. Such capabilities are demonstrated using model compounds, including ferrocyanide, trinitrotoluene (TNT) and nitronaphthalene (NN). These printed electrodes hold great promise for widespread applications requiring flexible, yet robust non-planar sensing devices. PMID:20160861

  2. Electrical-pulse-induced resistivity modulation in Pt/TiO2-δ/Pt multilayer device related to nanoionics-based neuromorphic function

    NASA Astrophysics Data System (ADS)

    Kawamura, Kinya; Tsuchiya, Takashi; Takayanagi, Makoto; Terabe, Kazuya; Higuchi, Tohru

    2017-06-01

    Resistivity modulation behavior in Pt/TiO2-δ/Pt multilayer devices was investigated in terms of nanoionics-based neuromorphic function. The current relaxation behavior, which corresponds to short-term and long-term memorization in neuromorphic function, was analyzed using electrical pulses. In contrast to the huge difference in ionic conductivity for bulk crystal materials of TiO2-δ and WO3, the difference in the relaxation behavior was small. Rutherford backscattering spectrometry and hydrogen forward scattering spectrometry revealed that the TiO2-δ thin film contained 5.6 at. % of protons. This indicates that the neuromorphic function in TiO2-δ-based devices is caused by extrinsic proton transport, presumably through the grain boundary.

  3. Enhanced stress corrosion cracking resistance and electrical conductivity of a T761 treated Al-Zn-Mg-Cu alloy thin plate

    NASA Astrophysics Data System (ADS)

    Chen, Xu; Zhai, Sudan; Gao, Di; Liu, Ye; Xu, Jing; Liu, Yang

    2018-01-01

    The stress corrosion cracking (SCC) behavior, electrical conductivity and mechanical properties of an Al-Zn-Mg-Cu alloy pre-stretched thin plate for wing skin were researched in this paper. The microstructures and SCC fracture surfaces of the alloy treated at different conditions were characterized by transmission electron microscopy, optical microscopy and scanning electron microscopy. Results indicated that with the increasing of aging temperature, the electrical conductivity and the elongation increased greatly, while the strength decreased gradually which were closely associated with the type and morphology of the precipitates. Compared with the T6 treated alloy, the SCC resistance of the T761 treated Al-Zn-Mg-Cu alloy was improved greatly. The SCC behavior of the T6 treated alloy was dominated by anodic dissolution theory, whereas the hydrogen induced cracking controlled the fracture behavior of the T761 treated alloy which was influenced by the morphology of grain boundary precipitates in this investigated alloy.

  4. Light-induced new memory states in electronic resistive switching of NiO/NSTO junction

    NASA Astrophysics Data System (ADS)

    Wei, Ling; Li, G. Q.; Zhang, W. F.

    2016-02-01

    n-type and p-type NiO films were prepared on SrTiO3:Nb (NSTO) by controlling oxygen pressures during the process of pulsed laser deposition. The results of current-voltage (I-V) characteristics and photocurrent investigation indicate that the junction shows a typical electronic bipolar resistive switching (RS) behavior and the optical injection can add new resistance states. Photocurrents can obviously be modulated by different resistance states of NiO/NSTO junction. The linear fitting results of I-V curves reveal that the low resistance state follows Ohmic behavior and the high resistance state follows Schottky-emission mechanism. The depletion widths under forward and reverse bias in the dark and with the illumination were estimated respectively. Combined with the energy band structure, the mechanism of RS and photoresponse in the NiO/NSTO junction can be attributed to the variance of interfacial barrier during electrical and optical injection. These results pave the way for the application of the NiO/NSTO junction in the multilevel storage of optical-electrical devices.

  5. Application of nanomaterials in two-terminal resistive-switching memory devices

    PubMed Central

    Ouyang, Jianyong

    2010-01-01

    Nanometer materials have been attracting strong attention due to their interesting structure and properties. Many important practical applications have been demonstrated for nanometer materials based on their unique properties. This article provides a review on the fabrication, electrical characterization, and memory application of two-terminal resistive-switching devices using nanomaterials as the active components, including metal and semiconductor nanoparticles (NPs), nanotubes, nanowires, and graphenes. There are mainly two types of device architectures for the two-terminal devices with NPs. One has a triple-layer structure with a metal film sandwiched between two organic semiconductor layers, and the other has a single polymer film blended with NPs. These devices can be electrically switched between two states with significant different resistances, i.e. the ‘ON’ and ‘OFF’ states. These render the devices important application as two-terminal non-volatile memory devices. The electrical behavior of these devices can be affected by the materials in the active layer and the electrodes. Though the mechanism for the electrical switches has been in argument, it is generally believed that the resistive switches are related to charge storage on the NPs. Resistive switches were also observed on crossbars formed by nanotubes, nanowires, and graphene ribbons. The resistive switches are due to nanoelectromechanical behavior of the materials. The Coulombic interaction of transient charges on the nanomaterials affects the configurable gap of the crossbars, which results into significant change in current through the crossbars. These nanoelectromechanical devices can be used as fast-response and high-density memory devices as well. PMID:22110862

  6. Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior.

    PubMed

    Gasperikova, Erika; Hubbard, Susan S; Watson, David B; Baker, Gregory S; Peterson, John E; Kowalsky, Michael B; Smith, Meagan; Brooks, Scott

    2012-11-01

    Geophysical measurements, and electrical resistivity tomography (ERT) data in particular, are sensitive to properties that are related (directly or indirectly) to hydrological processes. The challenge is in extracting information from geophysical data at a relevant scale that can be used to gain insight about subsurface behavior and to parameterize or validate flow and transport models. Here, we consider the use of ERT data for examining the impact of recharge on subsurface contamination at the S-3 ponds of the Oak Ridge Integrated Field Research Challenge (IFRC) site in Tennessee. A large dataset of time-lapse cross-well and surface ERT data, collected at the site over a period of 12 months, is used to study time variations in resistivity due to changes in total dissolved solids (primarily nitrate). The electrical resistivity distributions recovered from cross-well and surface ERT data agrees well, and both of these datasets can be used to interpret spatiotemporal variations in subsurface nitrate concentrations due to rainfall, although the sensitivity of the electrical resistivity response to dilution varies with nitrate concentration. Using the time-lapse surface ERT data interpreted in terms of nitrate concentrations, we find that the subsurface nitrate concentration at this site varies as a function of spatial position, episodic heavy rainstorms (versus seasonal and annual fluctuations), and antecedent rainfall history. These results suggest that the surface ERT monitoring approach is potentially useful for examining subsurface plume responses to recharge over field-relevant scales. Published by Elsevier B.V.

  7. Self-diagnosis of structures strengthened with hybrid carbon-fiber-reinforced polymer sheets

    NASA Astrophysics Data System (ADS)

    Wu, Z. S.; Yang, C. Q.; Harada, T.; Ye, L. P.

    2005-06-01

    The correlation of mechanical and electrical properties of concrete beams strengthened with hybrid carbon-fiber-reinforced polymer (HCFRP) sheets is studied in this paper. Two types of concrete beams, with and without reinforcing bars, are strengthened with externally bonded HCFRP sheets, which have a self-structural health monitoring function due to the electrical conduction and piezoresistivity of carbon fibers. Parameters investigated include the volume fractions and types of carbon fibers. According to the investigation, it is found that the hybridization of uniaxial HCFRP sheets with several different types of carbon fibers is a viable method for enhancing the mechanical properties and obtaining a built-in damage detection function for concrete structures. The changes in electrical resistance during low strain ranges before the rupture of carbon fibers are generally smaller than 1%. Nevertheless, after the gradual ruptures of carbon fibers, the electrical resistance increases remarkably with the strain in a step-wise manner. For the specimens without reinforcing bars, the electrical behaviors are not stable, especially during the low strain ranges. However, the electrical behaviors of the specimens with reinforcing bars are relatively stable, and the whole range of self-sensing function of the HCFRP-strengthened RC structures has realized the conceptual design of the HCFRP sensing models and is confirmed by the experimental investigations. The relationships between the strain/load and the change in electrical resistance show the potential self-monitoring capacity of HCFRP reinforcements used for strengthening concrete structures.

  8. Evaluation of resistive switching properties of Si-rich oxide embedded with Ti nanodots by applying constant voltage and current

    NASA Astrophysics Data System (ADS)

    Ohta, Akio; Kato, Yusuke; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2018-06-01

    We have studied the resistive switching behaviors of electron beam (EB) evaporated Si-rich oxide (SiO x ) sandwiched between Ni electrodes by applying a constant voltage and current. Additionally, the impact of Ti nanodots (NDs) embedded into SiO x on resistive switching behaviors was investigated because it is expected that NDs can trigger the formation of a conductive filament path in SiO x . The resistive switching behaviors of SiO x show that the response time during resistance switching was decreased by increasing the applied constant current or constant voltage. It was found that Ti-NDs in SiO x enhance the conductive filament path formation owing to electric field concentration by Ti-NDs.

  9. Electrically insulating films deposited on V-4%Cr-4%Ti by reactive CVD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.H.

    1998-04-01

    In the design of liquid-metal blankets for magnetic fusion reactors, corrosion resistance of structural materials and the magnetohydrodynamic forces and their influence on thermal hydraulics and corrosion are major concerns. Electrically insulating CaO films deposited on V-4%Cr-4%Ti exhibit high-ohmic insulator behavior even though a small amount of vanadium from the alloy become incorporated into the film. However, when vanadium concentration in the film is > 15 wt.%, the film becomes conductive. When the vanadium concentration is high in localized areas, a calcium vanadate phase that exhibits semiconductor behavior can form. The objective of this study is to evaluate electrically insulatingmore » films that were deposited on V-4%Cr-4%Ti by a reactive chemical vapor deposition (CVD) method. To this end, CaO and Ca-V-O coatings were produced on vanadium alloys by CVD and by a metallic-vapor process to investigate the electrical resistance of the coatings. The authors found that the Ca-V-O films exhibited insulator behavior when the ratio of calcium concentration to vanadium concentration R in the film > 0.9, and semiconductor or conductor behavior when R < 0.8. However, in some cases, semiconductor behavior was observed when CaO-coated samples with R > 0.98 were exposed in liquid lithium. Based on these studies, they conclude that semiconductor behavior occurs if a conductive calcium vanadate phase is present in localized regions in the CaO coating.« less

  10. The corrosion behavior of Alloy 52 weld metal in cyclic hydrogenated and oxygenated water chemistry in high temperature aqueous environment

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Shoji, Tetsuo

    2015-06-01

    The corrosion behavior of Alloy 52 weld metal in cyclic hydrogenated and oxygenated water chemistry in high temperature water is studied by in situ monitoring corrosion potential (Ecorr), contact electric resistance (CER) and electrochemical impedance measurements (EIS), and ex situ scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis. The Ecorr and film resistance show large change when the environment is changed from hydrogenated water to oxygenated water and changeable with changing environment while the morphology and composition only show obvious distinction in the first cycle. The main factor controlling the electric/electrochemical properties of the oxide film is Ecorr.

  11. Resistivity behavior of optimized PbTiO3 thin films prepared by spin coating method

    NASA Astrophysics Data System (ADS)

    Nurbaya, Z.; Wahid, M. H.; Rozana, M. D.; Alrokayan, S. A. H.; Khan, H. A.; Rusop, M.

    2018-05-01

    Th is study presents the resistivity behavior of PbTiO3 thin films which were prepared towards metal-insulator-metal capacitor device fabrication. The PbTiO3 thin films were prepared through sol-gel spin coating method that involved various deposition parameters that is (1) different molar concentration of PbTiO3 solutions, (2) various additional PbAc-content in PbTiO3 solutions, and (3) various annealing temperature on PbTiO3 thin films. Hence, an electrical measurement of current versus voltage was done to determine the resistivity behavior of PbTiO3 thin films.

  12. Electrical and structural properties of epitaxially deposited chromium thin films

    NASA Astrophysics Data System (ADS)

    Ohashi, M.; Sawabu, M.; Nakanishi, H.; Ohashi, K.; Maeta, K.

    2018-05-01

    We studied the electrical resistance and crystal structure of epitaxial chromium (Cr) films. The lattice constant of the Cr films was larger than that of the bulk Cr because of MgO substrate on which Cr was epitaxially deposited. A chromium oxide layer having a thickness of 1 nm was found on all films from the result of X-ray reflectivity measurements. The electrical resistivity ρ(T) shows metallic behavior for all epitaxial Cr films in contrast with polycrystalline one. However, the magnitude of ρ tends to increase and the antiferromagnetic interaction is suppressed as decreasing thickness of film.

  13. Modeling pore corrosion in normally open gold- plated copper connectors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaile, Corbett Chandler; Moffat, Harry K.; Sun, Amy Cha-Tien

    2008-09-01

    The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict bothmore » the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.« less

  14. On Ni/Au Alloyed Contacts to Mg-Doped GaN

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplab; Reddy, Pramod; Klump, Andrew; Kaess, Felix; Rounds, Robert; Kirste, Ronny; Mita, Seiji; Kohn, Erhard; Collazo, Ramon; Sitar, Zlatko

    2018-01-01

    Ni/Au contacts to p-GaN were studied as a function of free hole concentration in GaN using planar transmission line measurement structures. All contacts showed a nonlinear behavior, which became stronger for lower doping concentrations. Electrical and structural analysis indicated that the current conduction between the contact and the p-GaN was through localized nano-sized clusters. Thus, the non-linear contact behavior can be well explained using the alloyed contact model. Two contributions to the contact resistance were identified: the spreading resistance in the semiconductor developed by the current crowding around the electrically active clusters, and diode-type behavior at the interface of the electrically active clusters with the semiconductor. Hence, the equivalent Ni/Au contact model consists of a diode and a resistor in series for each active cluster. The reduced barrier height observed in the measurements is thought to be generated by the extraction of Ga from the crystalline surface and localized formation of the Au:Ga phase. The alloyed contact analyses presented in this work are in good agreement with some of the commonly observed behavior of similar contacts described in the literature.

  15. Particle-hole symmetry reveals failed superconductivity in the metallic phase of two-dimensional superconducting films

    DOE PAGES

    Breznay, Nicholas P.; Kapitulnik, Aharon

    2017-09-15

    Electrons confined to two dimensions display an unexpected diversity of behaviors as they are cooled to absolute zero. Noninteracting electrons are predicted to eventually “localize” into an insulating ground state, and it has long been supposed that electron correlations stabilize only one other phase: superconductivity. However, many two-dimensional (2D) superconducting materials have shown surprising evidence for metallic behavior, where the electrical resistivity saturates in the zero-temperature limit; the nature of this unexpected metallic state remains under intense scrutiny. We report electrical transport properties for two disordered 2D superconductors, indium oxide and tantalum nitride, and observe a magnetic field–tuned transition frommore » a true superconductor to a metallic phase with saturated resistivity. Lastly, this metallic phase is characterized by a vanishing Hall resistivity, suggesting that it retains particle-hole symmetry from the disrupted superconducting state.« less

  16. Particle-hole symmetry reveals failed superconductivity in the metallic phase of two-dimensional superconducting films

    PubMed Central

    Breznay, Nicholas P.; Kapitulnik, Aharon

    2017-01-01

    Electrons confined to two dimensions display an unexpected diversity of behaviors as they are cooled to absolute zero. Noninteracting electrons are predicted to eventually “localize” into an insulating ground state, and it has long been supposed that electron correlations stabilize only one other phase: superconductivity. However, many two-dimensional (2D) superconducting materials have shown surprising evidence for metallic behavior, where the electrical resistivity saturates in the zero-temperature limit; the nature of this unexpected metallic state remains under intense scrutiny. We report electrical transport properties for two disordered 2D superconductors, indium oxide and tantalum nitride, and observe a magnetic field–tuned transition from a true superconductor to a metallic phase with saturated resistivity. This metallic phase is characterized by a vanishing Hall resistivity, suggesting that it retains particle-hole symmetry from the disrupted superconducting state. PMID:28929135

  17. Particle-hole symmetry reveals failed superconductivity in the metallic phase of two-dimensional superconducting films.

    PubMed

    Breznay, Nicholas P; Kapitulnik, Aharon

    2017-09-01

    Electrons confined to two dimensions display an unexpected diversity of behaviors as they are cooled to absolute zero. Noninteracting electrons are predicted to eventually "localize" into an insulating ground state, and it has long been supposed that electron correlations stabilize only one other phase: superconductivity. However, many two-dimensional (2D) superconducting materials have shown surprising evidence for metallic behavior, where the electrical resistivity saturates in the zero-temperature limit; the nature of this unexpected metallic state remains under intense scrutiny. We report electrical transport properties for two disordered 2D superconductors, indium oxide and tantalum nitride, and observe a magnetic field-tuned transition from a true superconductor to a metallic phase with saturated resistivity. This metallic phase is characterized by a vanishing Hall resistivity, suggesting that it retains particle-hole symmetry from the disrupted superconducting state.

  18. Dielectric behavior of beef meat in the 1-1500kHz range: Simulation with the Fricke/Cole-Cole model.

    PubMed

    Damez, Jean-Louis; Clerjon, Sylvie; Abouelkaram, Saïd; Lepetit, Jacques

    2007-12-01

    The electrical properties of biological tissues have been researched for many years. Impedance measurements observed with increasing frequencies are mainly attributed to changes in membrane conductivity and ion and charged-molecule mobility (mainly Na(+), K(+), CL(-) ions). Equivalent circuits with passive electrical components are frequently used as a support model for presentation and analyses of the behavior of tissues submitted to electrical fields. Fricke proposed an electrical model where the elements are resistive and capacitive. The model is composed of a resistive element (Rp) representing extracellular fluids (ECF) placed in parallel with a capacitive element (Cs) representing insulating membranes in series and a resistive element (Rs) representing intracellular fluids (ICF). This model is able to describe impedance measurements: at lower frequencies, most of the current flows around the cells without being able to penetrate them, while at higher frequencies the membranes lose their insulating properties and the current flows through both the extracellular and intracellular compartments. Since meat ageing induces structural change, particularly in membrane integrity, the insulating properties of membranes decrease, and intracellular and extracellular electrolytes mix, thus driving changes in their electrical properties. We report a method combining the Fricke and Cole-Cole models that was developed to monitor and explain tissues conductivity changes in preferential directions during beef meat ageing.

  19. Significant improvement in Mn2O3 transition metal oxide electrical conductivity via high pressure

    PubMed Central

    Hong, Fang; Yue, Binbin; Hirao, Naohisa; Liu, Zhenxian; Chen, Bin

    2017-01-01

    Highly efficient energy storage is in high demand for next-generation clean energy applications. As a promising energy storage material, the application of Mn2O3 is limited due to its poor electrical conductivity. Here, high-pressure techniques enhanced the electrical conductivity of Mn2O3 significantly. In situ synchrotron micro X-Ray diffraction, Raman spectroscopy and resistivity measurement revealed that resistivity decreased with pressure and dramatically dropped near the phase transition. At the highest pressure, resistivity reduced by five orders of magnitude and the sample showed metal-like behavior. More importantly, resistivity remained much lower than its original value, even when the pressure was fully released. This work provides a new method to enhance the electronic properties of Mn2O3 using high-pressure treatment, benefiting its applications in energy-related fields. PMID:28276479

  20. The structural and electrical properties of polycrystalline La0.8Ca0.17Ag0.03MnO3 manganites

    NASA Astrophysics Data System (ADS)

    Ruli, F.; Kurniawan, B.; Imaduddin, A.

    2018-04-01

    In this paper, the authors report the electrical properties of polycrystalline La0.8Ca0.17Ag0.03MnO3 manganites synthesized using sol-gel method. The X-ray diffraction (XRD) patterns of polycrystalline La0.8Ca0.17Ag0.03MnO3 samples reveal an orthorhombic perovskite structure with Pnma space group. Analysis using energy dispersive X-ray (EDX) confirms that the sample contains all expected chemical elements without any additional impurity. The measurement of resistivity versus temperature using cryogenic magnetometer was performed to investigate the electrical properties. The results show that the electrical resistivity of polycrystalline La0.8Ca0.17Ag0.03MnO3 exhibits metalic behavior below 244 K. The temperature dependence of electrical resistivity dominantly emanates from electron-electron scattering and the grain/domain boundary play a important role in conduction mechanism in polycrystalline La0.8Ca0.17Ag0.03MnO3.

  1. Parasitic resistive switching uncovered from complementary resistive switching in single active-layer oxide memory device

    NASA Astrophysics Data System (ADS)

    Zhu, Lisha; Hu, Wei; Gao, Chao; Guo, Yongcai

    2017-12-01

    This paper reports the reversible transition processes between the bipolar and complementary resistive switching (CRS) characteristics on the binary metal-oxide resistive memory devices of Pt/HfO x /TiN and Pt/TaO x /TiN by applying the appropriate bias voltages. More interestingly, by controlling the amplitude of the negative bias, the parasitic resistive switching effect exhibiting repeatable switching behavior is uncovered from the CRS behavior. The electrical observation of the parasitic resistive switching effect can be explained by the controlled size of the conductive filament. This work confirms the transformation and interrelationship among the bipolar, parasitic, and CRS effects, and thus provides new insight into the understanding of the physical mechanism of the binary metal-oxide resistive switching memory devices.

  2. Dual percolation behaviors of electrical and thermal conductivity in metal-ceramic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, K.; Zhang, Z. D.; Qian, L.

    2016-02-08

    The thermal and electrical properties including the permittivity spectra in radio frequency region were investigated for copper/yttrium iron garnet (Cu/YIG) composites. Interestingly, the percolation behaviors in electrical and thermal conductivity were obtained due to the formation of copper particles' networks. Beyond the electrical percolation threshold, negative permittivity was observed and plasmon frequency was reduced by several orders of magnitude. With the increase in copper content, the thermal conductivity was gradually increased; meanwhile, the phonon scattering effect and thermal resistance get enhanced, so the rate of increase in thermal conductivity gradually slows down. Hopefully, Cu/YIG composites with tunable electrical and thermalmore » properties have great potentials for electromagnetic interference shielding and electromagnetic wave attenuation.« less

  3. Enhanced Electrical Resistivity after Rapid Cool of the Specimen in Layered Oxide LixCoO2

    NASA Astrophysics Data System (ADS)

    Miyoshi, K.; Manami, K.; Takeuchi, J.; Sasai, R.; Nishigori, S.

    Measurements of electrical resistivity and DC magnetization for LixCoO2 (x=0.71 and 0.64) have been performed using single crystal specimens. It has been found that electrical resistivity measured after rapid cool of the specimen becomes larger compared with that after slow cool below the temperature TS∽155 K at which charge ordering of Co3+/Co4+(=2:1) occurs. The behavior can be understood considering that the charge ordering can be destroyed by Li ions which are in an amorphous state after rapid cool via the interlayer Coulomb interactions, and also that the disordered Co3+/Co4+ state becomes insulating, while the charge ordered state has a metallic electronic structure, as recently revealed by the scanning tunneling microscopy.

  4. Determination of consolidation properties using electrical resistivity

    NASA Astrophysics Data System (ADS)

    Kibria, Golam; Hossain, Sahadat; Khan, Mohammad Sadik

    2018-05-01

    Electrical conductivity is an indirect method used to evaluate pore-structures and their influence on macro and microscale behavior of soils. Although this method can provide useful information about the consolidation properties of soil samples, insufficient studies have been conducted to identify correlations between electrical and consolidation properties. The current study presents electrical resistivity responses of clayey samples at different consolidation stages. The consolidation properties of four soil specimens were measured in conjunction with electrical conductivity. Scanning electron microscope (SEM) analyses were performed on soil samples before and after consolidation to identify the changes in fabric morphology due to the application of loads. It was observed that the electrical conductivity of samples decreased with the increase of pressure, and the trends of variations were similar to e vs. logP curves. Although a linear correlation exists between electrical conductivity and void ratio, the relationship depends on the structural changes in clay particles. Therefore, changes in fabric structures were analyzed using SEM images, and results showed that the aspect ratio of the particles increased as much as 18.3% after consolidation. Based on the investigation, the coefficient of consolidations and one-dimensional strain were determined using electrical resistivity measurements.

  5. Electrical resistivity in Zr48Nb8Cu12Fe8Be24 glassy and crystallized alloys

    NASA Astrophysics Data System (ADS)

    Bai, H. Y.; Tong, C. Z.; Zheng, P.

    2004-02-01

    The electrical resistivity of Zr48Nb8Cu12Fe8Be24 bulk metallic glassy and crystallized alloys in the temperature range of 4.2-293 K is investigated. It is found that the resistivity in glassy and crystallized states shows opposite temperature coefficients. For the metallic glass, the resistivity shows a negative logarithmic dependence at temperatures below 16 K, whereas it has more normal behavior for the crystallized alloy. At higher temperatures, the resistivity in both glassy and crystallized alloys shows dependence upon both T and T2, but the signs of the T and T2 terms are opposite. The results are interpreted in terms of scattering from two-level tunneling states in glasses and the generalized Ziman diffraction model.

  6. Construction and in vitro test of a new electrode for dentin resistance measurement.

    PubMed

    Stein, Steffen; Gente, Michael

    2013-10-01

    It is necessary to reduce the tooth substance before treating a tooth with a dental crown. The preparation often requires reduction of the dentin. This results in a dentin wound and a thinner substance over the pulp, increases the risk of inflammation, and could result in necrosis of the pulp. To give the dentist information about the amount of dentin over the pulp during preparation, the Prepometer was developed. The function of this device is based on the measurement of the electric resistance of the tooth substance. The measuring behavior of the first-generation Prepometer is characterized by smaller values of electric resistance before reaching full contact of the measuring head to the dentin surface and the actual value RT. This measuring behavior can mislead inexperienced therapists with inaccurate values that suggest thinner dentin than the reality. In this study, a new electrode based on the technology of active guard drive was constructed to overcome this issue. The results show that improvement in the measuring behavior of the new electrode could be achieved, eliminating the earlier disadvantage of the Prepometer.

  7. Au/Zn Contacts to rho-InP: Electrical and Metallurgical Characteristics and the Relationship Between Them

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.; Korenyi-Both, Andras L.

    1994-01-01

    The metallurgical and electrical behavior of Au/Zn contacting metallization on p-type InP was investigated as a function of the Zn content in the metallization. It was found that ohmic behavior can be achieved with Zn concentrations as small as 0.05 atomic percent Zn. For Zn concentrations between 0.1 and 36 at. percent, the contact resistivity rho(sub c) was found to be independent of the Zn content. For low Zn concentrations the realization of ohmic behavior was found to require the growth of the compound Au2P3 at the metal-InP interface. The magnitude of rho(sub c) is shown to be very sensitive to the growth rate of the interfacial Au2P3 layer. The possibility of exploiting this sensitivity to provide low resistance contacts while avoiding the semiconductor structural damage that is normally attendant to contact formation is discussed.

  8. USE OF ELECTRICAL RESISTIVITY PROBE FOR DETERMINATION OF HYPORHEIC FLOW

    EPA Science Inventory

    The hyporheic zone can play a significant role in nutrient behavior in watersheds. Conceptual models describe the behavior of nutrients and biota for the hyporheic ecotone, but site characterization is needed to quantiiy effects at the restoration reach scale (hundreds of meters)...

  9. Magnetic and electrical properties of Nd7Pt3 studied on single crystals

    NASA Astrophysics Data System (ADS)

    Tsutaoka, Takanori; Ueda, Koyo; Matsushita, Takuya

    2018-07-01

    Magnetic and electrical properties of Nd7Pt3 with the Th7Fe3 type hexagonal structure have been studied on single crystals by measuring magnetization, magnetic susceptibility and electrical resistivity. Nd7Pt3 possesses a ferromagnetic state below TC = 38 K; a canted antiferromagnetic state takes place at Tt2 = 34 K. Another magnetic phase transition has also been observed at Tt1 = 25 K. The magnetization curve along the a- and b-axes at 2 K shows anomalous first-order irreversible behavior. The direction of the magnetic moment in the canted state can be tilted from the c-plane. Electrical resistivity measurement results show metallic property; three anomalies were observed at Tt1, Tt2 and TC, respectively.

  10. Silicon oxide: a non-innocent surface for molecular electronics and nanoelectronics studies.

    PubMed

    Yao, Jun; Zhong, Lin; Natelson, Douglas; Tour, James M

    2011-02-02

    Silicon oxide (SiO(x)) has been widely used in many electronic systems as a supportive and insulating medium. Here, we demonstrate various electrical phenomena such as resistive switching and related nonlinear conduction, current hysteresis, and negative differential resistance intrinsic to a thin layer of SiO(x). These behaviors can largely mimic numerous electrical phenomena observed in molecules and other nanomaterials, suggesting that substantial caution should be paid when studying conduction in electronic systems with SiO(x) as a component. The actual electrical phenomena can be the result of conduction from SiO(x) at a post soft-breakdown state and not the presumed molecular or nanomaterial component. These electrical properties and the underlying mechanisms are discussed in detail.

  11. Electrical transport properties in Co nanocluster-assembled granular film

    NASA Astrophysics Data System (ADS)

    Zhang, Qin-Fu; Wang, Lai-Sen; Wang, Xiong-Zhi; Zheng, Hong-Fei; Liu, Xiang; Xie, Jia; Qiu, Yu-Long; Chen, Yuanzhi; Peng, Dong-Liang

    2017-03-01

    A Co nanocluster-assembled granular film with three-dimensional cross-connection paralleled conductive paths was fabricated by using the plasma-gas-condensation method in a vacuum environment. The temperature-dependent longitudinal resistivity and anomalous Hall effect of this new type granular film were systematically studied. The longitudinal resistivity of the Co nanocluster-assembled granular film first decreased and then increased with increasing measuring temperature, revealing a minimum value at certain temperature, T min . In a low temperature region ( T < T min ), the barrier between adjacent nanoclusters governed the electrical transport process, and the temperature coefficient of resistance (TCR) showed an insulator-type behavior. The thermal fluctuation-induced tunneling conduction progressively increased with increasing temperature, which led to a decrease in the longitudinal resistivity. In a high temperature region, the TCR showed a metallic-type behavior, which was primarily attributed to the temperature-dependent scattering. Different from the longitudinal resistivity behavior, the saturated anomalous Hall resistivity increased monotonically with increasing measuring temperature. The value of the anomalous Hall coefficient ( R S ) reached 2.3 × 10-9 (Ω cm)/G at 300 K, which was about three orders of magnitude larger than previously reported in blocky single-crystal Co [E. N. Kondorskii, Sov. Phys. JETP 38, 977 (1974)]. Interestingly, the scaling relation ( ρx y A ∝ ρx x γ ) between saturated anomalous Hall resistivity ( ρx y A ) and longitudinal resistivity ( ρ x x ) was divided into two regions by T min . However, after excluding the contribution of tunneling, the scaling relation followed the same rule. The corresponding physical mechanism was also proposed to explain these phenomena.

  12. Resistivity behavior of hydrogen and liquid silane at high shock compression

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Gao; Liu, Fu-Sheng; Liu, Qi-Jun

    2018-07-01

    To study the electrical properties of hydrogen rich compounds under extreme conditions, the electrical resistivity of density hydrogen and silane fluid was measured, respectively. The hydrogen sample was prepared by compressing pure hydrogen gas to 10 MPa in a coolant target system at the temperature of 77 K. The silane sample can be obtained with the same method. High-pressure and high-temperature experiments were performed using a two-stage light-gas gun. The electrical resistivity of the sample decreased with increasing pressure and temperature as expected. A minimum electrical resistivity value of 0.3 × 10-3 Ω cm at 138 GPa and 4100 K was obtained for silane. The minimum resistivity of hydrogen in the state of 102 GPa and 4300 K was 0.35 Ω cm. It showed that the measured electrical resistivity of the shock-compressed hydrogen was an order of magnitude higher than fluid silane at 50-90 GPa. However, beyond 100 GPa, the resistivity difference between silane and hydrogen was very minor. The carriers in the sample were hydrogen, and the concentration of hydrogen atoms in these two substances was close to each other. These results supported the theoretical prediction that silane was interpreted simply in terms of chemical decomposition into silicon nanoparticles and fluid hydrogen, and electrical conduction flows predominately dominated by the fluid hydrogen. In addition, the results also supported the theory of "chemical precompression", the existence of Sisbnd H bond helped to reduce the pressure of hydrogen metallization. These findings could lead the way for further metallic phases of hydrogen-rich materials and experimental studies.

  13. Cu, Ag, Au: Electrical Resistivity Along their Melting Boundaries

    NASA Astrophysics Data System (ADS)

    Secco, R.; Littleton, J. A. H.; Berrada, M.; Ezenwa, I.; Yong, W.

    2017-12-01

    Electrical resistivity of Cu, Ag and Au was measured at pressures up to 5 GPa and temperatures up to 300 K above melting in a 1000-ton cubic anvil press. Two W/Re thermocouples placed at opposite ends of the wire sample served as T probes as well as 4-wire resistance electrodes in a switched circuit. A polarity switch was also used to remove any bias associated with current flow and voltage measurement using thermocouple legs. Examination of the composition of recovered and sectioned samples was carried out using electron microprobe analyses. Melting temperatures at high pressures were determined from the large jump in resistivity on heating at constant pressure and these agree well with previous experimental and theoretical phase diagram studies. With increasing P and T, electrical resistivity behavior in these noble metals is consistent with 1atm data. The resistivity values at the melting temperature of Cu and Ag decrease with increasing high pressure and Au seems to behave similarly. The results are compared to prediction by Stacey and Anderson (PEPI, 2001).

  14. Evaluation on expansive performance of the expansive soil using electrical responses

    NASA Astrophysics Data System (ADS)

    Chu, Ya; Liu, Songyu; Bate, Bate; Xu, Lei

    2018-01-01

    Light structures, such as highways and railroads, built on expansive soils are prone to damages from the swelling of their underlain soil layers. Considerable amount of research has been conducted to characterize the swelling properties of expansive soils. Current swell characterization models, however, are limited by lack of standardized tests. Electrical methods are non-destructive, and are faster and less expensive than the traditional geotechnical methods. Therefore, geo-electrical methods are attractive for defining soil characteristics, including the swelling behavior. In this study, comprehensive laboratory experiments were undertaken to measure the free swelling and electrical resistivity of the mixtures of commercial kaolinite and bentonite. The electrical conductivity of kaolinite-bentonite mixtures was measured by a self-developed four-electrode soil resistivity box. Increasing the free swelling rate of the kaolinite-bentonite mixtures (0.72 to 1 of porosity of soils samples) led to a reduction in the electrical resistivity and an increase in conductivity. A unique relationship between free swelling rate and normalized surface conductivity was constructed for expensive soils by eliminating influences of porosity and m exponent. Therefore, electrical response measurement can be used to characterize the free swelling rate of expensive soils.

  15. Thermocouple-Signal-Conditioning Circuit

    NASA Technical Reports Server (NTRS)

    Simon, Richard A.

    1991-01-01

    Thermocouple-signal-conditioning circuit acting in conjunction with thermocouple, exhibits electrical behavior of voltage in series with resistance. Combination part of input bridge circuit of controller. Circuit configured for either of two specific applications by selection of alternative resistances and supply voltages. Includes alarm circuit detecting open circuit in thermocouple and provides off-scale output to signal malfunctions.

  16. Improvement of Bipolar Switching Properties of Gd:SiOx RRAM Devices on Indium Tin Oxide Electrode by Low-Temperature Supercritical CO2 Treatment.

    PubMed

    Chen, Kai-Huang; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Liang, Shu-Ping; Young, Tai-Fa; Syu, Yong-En; Sze, Simon M

    2016-12-01

    Bipolar switching resistance behaviors of the Gd:SiO2 resistive random access memory (RRAM) devices on indium tin oxide electrode by the low-temperature supercritical CO2-treated technology were investigated. For physical and electrical measurement results obtained, the improvement on oxygen qualities, properties of indium tin oxide electrode, and operation current of the Gd:SiO2 RRAM devices were also observed. In addition, the initial metallic filament-forming model analyses and conduction transferred mechanism in switching resistance properties of the RRAM devices were verified and explained. Finally, the electrical reliability and retention properties of the Gd:SiO2 RRAM devices for low-resistance state (LRS)/high-resistance state (HRS) in different switching cycles were also measured for applications in nonvolatile random memory devices.

  17. Synthesis and electrical properties of (Pb,Co)Sr2(Y,Ca)Cu2Oz

    NASA Astrophysics Data System (ADS)

    Tashiro, T.; Maeda, T.; Abe, R.; Takechi, S.; Takahashi, T.; Haruta, M.; Horii, S.

    One of related materials to high-temperature superconductors (HTSC's) with nominal compositions of (Pb0.5Co0.5)Sr2(Y1xCax)Cu2Oz (x=0∼0.6) is synthesized and characterized. All samples are nearly single-phase, and its crystal structure is likely to be so-called "1-2-1-2" type which is one of typical structures of HTSC's. Electrical resistivity is decreased as x increases. While superconductivity is not observed at temperatures between room-temperature and 20 K for all samples, temperature dependence of the resistivity exhibits metallic behavior down to 150 K for x=0.5. Phase formation and transport behavior are discussed focusing on mixed valence-state of Co2+ and Co3+.

  18. Electrical Resistivity Measurement of Cu and Zn on the Pressure-Dependent Melting Boundary

    NASA Astrophysics Data System (ADS)

    Secco, R. A.; Ezenwa, I.; Yong, W.

    2016-12-01

    Understanding how the core cools through heat conduction and modelling the geodynamo requires knowledge of the thermal and electrical conductivity of solid and liquid Fe and its relevant alloys at high pressures. It has been proposed that electrical resistivity of a pure metal is constant along its P-dependent melting boundary (Stacey and Anderson, PEPI, 2001). If confirmed, this invariant behavior could serve as a practical tool for low P studies to assess electrical resistivity of Earth's core. Since Earth's inner core boundary (ICB) is a melting boundary of mainly Fe, measurements of electrical resistivity of Fe at the melting boundary, under any P, would serve as a proxy for the resistivity at the ICB. A revised treatment (Stacey and Loper, PEPI, 2007) accounted for s-d scattering in transition metals with unfilled d-bands and limited the proposal to metals with electrons of the same type in filled d-band metals. To test this proposal, we made high P, T measurements of electrical resistivity of d-band filled Cu and Zn in solid and liquid states. Experiments were carried out in a 1000 ton cubic anvil press up to 5 GPa and 300K above melting temperatures. Two thermocouples placed at opposite ends of the wire sample served as T probes as well as 4-wire resistance electrodes in a switched circuit. A polarity switch was used to remove any bias voltage measurement using thermocouple legs. Electron microprobe analyses were used to check the compositions of the recovered samples. The expected resistivity decrease with P and increase with T were found and comparisons with 1atm data are in very good agreement. Within the error of measurement, the resistivity values of Cu decrease along the melting boundary while Zn appears to support the hypothesis of constant resistivity along the melting boundary.

  19. Influence of Chromium Doping on Electrical and Magnetic Behavior of Nd0.5Sr0.5MnO3 System

    NASA Astrophysics Data System (ADS)

    Lalitha, G.; Pavan Kumar, N.; Venugopal Reddy, P.

    2018-04-01

    With a view to understand the influence of chromium doping at the Mn site on the electrical and magnetic behavior of the Nd0.5Sr0.5MnO3 manganite system, a series of samples were prepared by the citrate sol-gel route method. The samples were characterized structurally by XRD. A systematic investigation of electrical resistivity over a temperature range 5-300 K was carried out mainly to understand the magneto-transport behavior in these materials. Studies on the variation of magnetization with temperature over a temperature range 80-330 K were undertaken. Investigation of magnetization at different magnetic fields at two different temperatures, viz. 80 and 300 K, was also carried out. The results show that chromium doping gave typical electrical and magnetic properties. It has been concluded that the coexistence of charge ordered and ferromagnetic phases induced by chromium doping plays an important role in the low-temperature behavior of the system.

  20. Constant electrical resistivity of Ni along the melting boundary up to 9 GPa

    NASA Astrophysics Data System (ADS)

    Silber, Reynold E.; Secco, Richard A.; Yong, Wenjun

    2017-07-01

    Characterization of transport properties of liquid Ni at high pressures has important geophysical implications for terrestrial planetary interiors, because Ni is a close electronic analogue of Fe and it is also integral to Earth's core. We report measurements of the electrical resistivity of solid and liquid Ni at pressures 3-9 GPa using a 3000 t multianvil large volume press. A four-wire method, in conjunction with a rapid acquisition meter and polarity switch, was used to overcome experimental challenges such as melt containment and maintaining sample geometry and to mitigate the extreme reactivity/solubility of liquid Ni with most thermocouple and electrode materials. Thermal conductivity is calculated using the Wiedemann-Franz law. Electrical resistivity of solid Ni exhibits the expected P dependence and is consistent with earlier experimental values. Within experimental uncertainties, our results indicate that resistivity of liquid Ni remains invariant along the P-dependent melting boundary, which is in disagreement with earlier prediction for liquid transition metals. The potential reasons for such behavior are examined qualitatively through the impact of P-independent local short-range ordering on electron mean free path and the possibility of constant Fermi surface at the onset of Ni melting. Correlation among metals obeying the Kadowaki-Woods ratio and the group of late transition metals with unfilled d-electron band displaying anomalously shallow melting curves suggests that on the melting boundary, Fe may exhibit the same resistivity behavior as Ni. This could have important implications for the heat flow in the Earth's core.

  1. Electromechanical characterization of individual micron-sized metal coated polymer particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazilchuk, Molly; Kristiansen, Helge; Conpart AS, Skjetten 2013

    Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contactmore » behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.« less

  2. Synchrotron X-ray Diffraction and High-Pressure Electrical Resistivity Studies for High-Tc Candidate Nd3.5Sm0.5Ni3O8

    NASA Astrophysics Data System (ADS)

    Uehara, Masatomo; Kobayashi, Kai; Yamamoto, Hiroki; Nakata, Akitoshi; Wakiya, Kazuhei; Umehara, Izuru; Gouchi, Jun; Uwatoko, Yoshiya

    2017-11-01

    Ln4Ni3O8 (Ln = La, Nd, Sm) has attracted much attention as a candidate for high-Tc superconductor due to its close structural and electrical similarities with high-Tc cuprates. However, Ln4Ni3O8 is not a superconductor and shows semiconducting behavior. Our recent work has revealed that Nd3.5Sm0.5Ni3O8 displays metallic behavior down to 20-40 K upon intercalation and subsequent deintercalation treatments with sulfur, followed by a weak semiconducting tendency at lower temperatures. A synchrotron X-ray diffraction experiment suggests that the structural change induced by sulfur treatment can be explained electrostatically by the removal of additional apical oxygen. High-pressure electrical resistivity measurements up to 8 GPa on a metallic sample show the enhancement of the semiconducting tendency at low temperatures, suggesting that the removal of additional apical oxygen is not totally completed under the present conditions of sulfur treatment.

  3. Dissipation in the superconducting mixed state in the presence of a small oscillatory magnetic-field component

    NASA Astrophysics Data System (ADS)

    Risse, M. P.; Aikele, M. G.; Doettinger, S. G.; Huebener, R. P.; Tsuei, C. C.; Naito, M.

    1997-06-01

    We have studied the electric resistivity in superconducting amorphous Mo3Si films in a perpendicular magnetic field B0+B1 sin ωt with B1<0 we observed perfectly Ohmic behavior at currents I<

  4. Zero temperature coefficient of resistance of the electrical-breakdown path in ultrathin hafnia

    NASA Astrophysics Data System (ADS)

    Zhang, H. Z.; Ang, D. S.

    2017-09-01

    The recent widespread attention on the use of the non-volatile resistance switching property of a microscopic oxide region after electrical breakdown for memory applications has prompted basic interest in the conduction properties of the breakdown region. Here, we report an interesting crossover from a negative to a positive temperature dependence of the resistance of a breakdown region in ultrathin hafnia as the applied voltage is increased. As a consequence, a near-zero temperature coefficient of resistance is obtained at the crossover voltage. The behavior may be modeled by (1) a tunneling-limited transport involving two farthest-spaced defects along the conduction path at low voltage and (2) a subsequent transition to a scattering-limited transport after the barrier is overcome by a larger applied voltage.

  5. Contact resistance change memory using N-doped Cr2Ge2Te6 phase-change material showing non-bulk resistance change

    NASA Astrophysics Data System (ADS)

    Shuang, Y.; Sutou, Y.; Hatayama, S.; Shindo, S.; Song, Y. H.; Ando, D.; Koike, J.

    2018-04-01

    Phase-change random access memory (PCRAM) is enabled by a large resistance contrast between amorphous and crystalline phases upon reversible switching between the two states. Thus, great efforts have been devoted to identifying potential phase-change materials (PCMs) with large electrical contrast to realize a more accurate reading operation. In contrast, although the truly dominant resistance in a scaled PCRAM cell is contact resistance, less attention has been paid toward the investigation of the contact property between PCMs and electrode metals. This study aims to propose a non-bulk-resistance-dominant PCRAM whose resistance is modulated only by contact. The contact-resistance-dominated PCM exploited here is N-doped Cr2Ge2Te6 (NCrGT), which exhibits almost no electrical resistivity difference between the two phases but exhibits a typical switching behavior involving a three-order-of-magnitude SET/RESET resistance ratio owing to its large contact resistance contrast. The conduction mechanism was discussed on the basis of current-voltage characteristics of the interface between the NCrGT and the W electrode.

  6. Study on Resistive Switching Property of Ti Doped Novel NiO Thin Films

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhao, G. Y.; Kou, Z. B.; Liu, J. C.; Zhu, R.

    2018-01-01

    Ti doped nickel oxide thin films have been fabricated by sol-gel dip-coating process using nickel acetate and tetrabutyl titanate as source materials. The effect of the amount of Ti dopant on the surface roughness, optical, chemical state and electrical properties of NiO: Ti thin films was observed by atomic force microscopy (AFM), Uv-vis spectroscopy, X-ray photoelectron spectroscopy(XPS) and I-V measurement, respectively. Results show that the Ti doping is an effective ways to improve the resistive switching behaviors and it is a convenient way to understand the mechanism of the resistive switching behaviors.

  7. Fe, Co, Ni: Electrical Resistivity Along their Melting Boundaries

    NASA Astrophysics Data System (ADS)

    Silber, R. E.; Ezenwa, I.; Secco, R.; Yong, W.

    2017-12-01

    Electrical resistivity of Fe, Co, and Ni was measured at pressures up to 11 GPa and temperatures into their liquid states in multi-anvil and cubic-anvil presses. Two thermocouples placed at opposite ends of the wire sample served as T probes as well as 4-wire resistance electrodes in a switched circuit. A polarity switch was also used to remove any bias associated with current flow and voltage measurement using thermocouple legs. Post experimental examination of recovered and sectioned samples was done using electron microprobe analyses to check for diffusion in our samples. The observed large jumps in resistivity at the high P melting T of each metal is consistent with its known P,T phase diagram and with post-run compositional analyses. The electrical resistivity behavior in these late transition metals as a function of increasing P and T shows expected trends consistent with 1atm data. Within the error of measurement, the resistivity values at the melting T at high P of Co and Ni appear to mimic their 1 atm value suggesting constant resistivity along the melting boundary. For liquid Fe, resistivity decreases along the melting boundary up to the triple point at 5.2 GPa, and then is nearly constant at higher pressures. The results are compared to prediction by Stacey and Loper (PEPI, 2007).

  8. Characterization of Titanium films for low temperature detectors

    NASA Astrophysics Data System (ADS)

    Monticone, E.; Rajteri, M.; Rastello, M. L.; Lacquaniti, V.; Gandini, C.; Pasca, E.; Ventura, G.

    2002-02-01

    In this work we study Ti films, with thickness between 10 nm and 1000 nm, deposited by e-gun on silicon nitride. Critical temperatures and electrical resistivities of these films have been measured and related each other. The behavior of critical temperatures versus the residual resistivities is discussed in the frame of the Testardi and Mattheiss theory .

  9. Effect of UV light on different structural and transport parameters of cellophane membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benavente, J.; Vazquez, M.I.; De Abajo, J.

    1996-01-01

    A comparative study of UV light influence on structural and transport parameters of cellophane membranes was made. Changes in the chemical structure and electrical behavior of cellophane membranes were considered by determining the hydraulic permeability, salt diffusion coefficient, and resistance values, as well as some geometrical parameters, for an untreated membrane and two differently UV-treated cellophane membranes. Differences in the characteristic parameters for the three samples showed that radiation mainly affected the membrane structure, while only small changes in membrane electrical behavior were determined.

  10. Certain applied electrical signals during EPG cause negative effects on stylet probing behaviors by adult Lygus lineolaris (Hemiptera: Miridae).

    PubMed

    Backus, Elaine A; Cervantes, Felix A; Godfrey, Larry; Akbar, Waseem; Clark, Thomas L; Rojas, Maria G

    This study is the first to fully evaluate whether electrical signals applied to large insects during electropenetrography (EPG; also called electrical penetration graph) negatively affect insect behavior. During EPG, electrical signals are applied to plants, and thus to the gold-wire-tethered insects feeding on them. The insect completes an electrical circuit whose changes in voltage reflect the insect's stylet probing/penetration behaviors, recorded as waveform output. For nearly 50 years of EPG science, evidence has supported that there are no or negligible effects on tiny insects from applied electricity during EPG. Recently however, EPG studies of large-bodied hemipterans such as heteropterans and sharpshooter leafhoppers have been published. The wider stylet diameters of such large insects cause them to have lower inherent resistances to applied signals compared with smaller insects, conveying more electrical current. The present study asked whether such increased currents would affect insect stylet probing, by comparing Lygus lineolaris behaviors on pin-head cotton squares using an AC-DC electropenetrograph. Effects of AC or DC applied signals were separately examined in two factorial studies, each comparing four input resistor (Ri) levels (10 6 , 10 7 , 10 8 and 10 9  Ω) and four applied voltage levels (2, 60, 150 and 250 mV). Results showed that changes in both probing and non-probing behaviors were indeed caused by changing signal type, Ri level, or applied voltage. Negative effects on feeding were numerically greater overall for DC than AC applied signals, perhaps due to muscular tetany from DC; however, AC versus DC could not be statistically tested. Results strongly support the need for flexible Ri and applied voltage levels and types, to tailor instrument settings to the size and special needs of each insect subject. Our findings will facilitate further EPG studies of Lygus spp., such as host plant resistance or insecticidal assays/bioassays to assess mode of action and appropriate dosage. It is hoped that this study will also inform EPG studies of similar, large heteropterans in the future. Published by Elsevier Ltd.

  11. Revival of ferromagnetic behavior in charge-ordered Pr0.75Na0.25MnO3 manganite by ruthenium doping at Mn site and its MR effect

    NASA Astrophysics Data System (ADS)

    Elyana, E.; Mohamed, Z.; Kamil, S. A.; Supardan, S. N.; Chen, S. K.; Yahya, A. K.

    2018-02-01

    Ru doping in charge-ordered Pr0.75Na0.25Mn1-xRuxO3 (x = 0-0.1) manganites was studied to investigate its effect on structure, electrical transport, magnetic properties, and magnetotransport properties. DC electrical resistivity (ρ), magnetic susceptibility, and χ' measurements showed that sample x = 0 exhibits insulating behavior within the entire temperature range and antiferromagnetic (AFM) behavior below the charge-ordering (CO) transition temperature TCO of 221 K. Ru4+ substitution (x>0.01) suppressed the CO state, which resulted in the revival of paramagnetic to ferromagnetic (FM) transition at the Curie temperature Tc, increasing from 120 K (x = 0.01) to 193 K (x = 0.1). Deviation from the Curie-Weiss law above Tc in the 1/χ' versus T plot for x = 0.01 doped samples indicated the existence of Griffiths phase with Griffith temperature at 169 K. Electrical resistivity measurements showed that Ru4+ substitution increased the metallic-to-insulating transition temperature TMI from 144 K (x = 0.01) to 192 K (x = 0.05) due to enhanced double-exchange mechanism, but TMI decreased to 176 K (x = 0.1) probably due to the existence of AFM clusters within the FM domain. The present work also discussed the possible theoretical models at the resistivity curve of Pr0.75Na0.25Mn1-xRuxO3 (x = 0-0.1) for the entire temperature range.

  12. Electrical and mechanical properties of Sn-5wt.%Sb alloy with annealing temperature

    NASA Astrophysics Data System (ADS)

    Said Gouda, El; Ahmed, E. M.; Saad Allah, F. A.

    2009-01-01

    A binary Sn-5wt.%Sb solder alloy was chosen as a potential alternative to Sn-Pb solder alloy to be subjected to many studies. It was casted from the liquid state, cold drawn into wires of 1 mm diameters. The study includes the structure, electrical resistivity, tensile strength, hardness and indentation creep behavior using XRD, four probes electrical circuit, conventional tensile testing machine, Vickers microhardness tester, respectively. These properties were carried out for the cold worked alloy and after annealing at 393 and 473 K for 60 min. It was found that annealed samples exhibit more precipitations of the intermetallic compounds SnSb, higher lattice parameters and higher crystallite size, while have lower lattice-strain induced due to the cold working process. These structural changes greatly affect the electrical resistivity and mechanical properties of this alloy.

  13. Confirmation of filament dissolution behavior by analyzing electrical field effect during reset process in oxide-based RRAM

    NASA Astrophysics Data System (ADS)

    Pan, Chih-Hung; Chang, Ting-Chang; Tsai, Tsung-Ming; Chang, Kuan-Chang; Chu, Tian-Jian; Lin, Wen-Yan; Chen, Min-Chen; Sze, Simon M.

    2016-09-01

    In this letter, we demonstrate completely different characteristics with different operating modes and analyze the electrical field effect to confirm the filament dissolution behavior. The device exhibited a larger memory window when using a single voltage sweep method during reset process rather than the traditional double sweep method. The phenomenon was verified by using fast I-V measurement to simulate the two operating methods. A better high resistance state (HRS) will be obtained with a very short rising time pulse, but quite notably, lower power consumption was needed. We proposed the electrical field effect to explain the phenomenon and demonstrate distribution by COMSOL simulation.

  14. Conduction in In 2O 3/YSZ heterostructures: Complex interplay between electrons and ions, mediated by interfaces

    DOE PAGES

    Veal, B. W.; Eastman, J. A.

    2017-03-01

    Thin film In 2O 3/YSZ heterostructures exhibit significant increases in electrical conductance with time when small in-plane electric fields are applied. Contact resistances between the current electrodes and film, and between current electrodes and substrate are responsible for the behavior. With an in-plane electric field, different field profiles are established in the two materials, with the result that oxygen ions can be driven across the heterointerface, altering the doping of the n-type In 2O 3. Furthermore, a low frequency inductive feature observed in AC impedance spectroscopy measurements under DC bias conditions was found to be due to frequency-dependent changes inmore » the contact resistance.« less

  15. Multiple electrical phase transitions in Al substituted barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan

    2017-12-01

    Barium hexaferrite is known to be a very good ferromagnetic material. However, it shows very good dielectric properties, i.e., the dielectric constant is comparable to that of the ferroelectric material. However, its crystal symmetry does not allow it to be a ferroelectric material. Hence, the electrical properties have revived the considerable research interest on these materials, not only for academic interest, but also for technological applications. There are a few reports on temperature dependent dielectric behavior of these materials. However, the exact cause of dielectric as well as electrical conductivity is yet to be established. Hence, Al (very good conducting material) substituted barium hexaferrite (BaFe12-xAlxO19, x = 0.0-4.0) has been prepared by following the modified sol-gel method to understand the ac and DC electrical properties of these materials. The crystal structure and parameters have been studied by employing the XRD and FTIR techniques. There are two transition temperatures, which have been observed in the temperature dependent ac dielectric and DC resistivity measurement. The response of dielectric behaviors to temperature is similar to that of the ferroelectric material; however, the dielectric polarization is due to the polaron hopping, which is evident from the DC resistivity analysis. Hence, the present observations lead to understand the electrical properties of barium hexaferrite. The frequency dependent dielectric dispersion can be understood by the modified Debye model. More interestingly, the dielectric constant decreases and DC resistivity increases with the increase in the Al concentration, which has the correlation between bond length modifications in the crystal due to substitution.

  16. The electrical properties of 60 keV zinc ions implanted into semi-insulating gallium arsenide

    NASA Technical Reports Server (NTRS)

    Littlejohn, M. A.; Anikara, R.

    1972-01-01

    The electrical behavior of zinc ions implanted into chromium-doped semiinsulating gallium arsenide was investigated by measurements of the sheet resistivity and Hall effect. Room temperature implantations were performed using fluence values from 10 to the 12th to 10 to the 15th power/sq cm at 60 keV. The samples were annealed for 30 minutes in a nitrogen atmosphere up to 800 C in steps of 200 C and the effect of this annealing on the Hall effect and sheet resistivity was studied at room temperature using the Van der Pauw technique. The temperature dependence of sheet resistivity and mobility was measured from liquid nitrogen temperature to room temperature. Finally, a measurement of the implanted profile was obtained using a layer removal technique combined with the Hall effect and sheet resistivity measurements.

  17. Electrical resistivity of substitutionally disordered hcp Fe-Si and Fe-Ni alloys: Chemically-induced resistivity saturation in the Earth's core

    NASA Astrophysics Data System (ADS)

    Gomi, Hitoshi; Hirose, Kei; Akai, Hisazumi; Fei, Yingwei

    2016-10-01

    The thermal conductivity of the Earth's core can be estimated from its electrical resistivity via the Wiedemann-Franz law. However, previously reported resistivity values are rather scattered, mainly due to the lack of knowledge with regard to resistivity saturation (violations of the Bloch-Grüneisen law and the Matthiessen's rule). Here we conducted high-pressure experiments and first-principles calculations in order to clarify the relationship between the resistivity saturation and the impurity resistivity of substitutional silicon in hexagonal-close-packed (hcp) iron. We measured the electrical resistivity of Fe-Si alloys (iron with 1, 2, 4, 6.5, and 9 wt.% silicon) using four-terminal method in a diamond-anvil cell up to 90 GPa at 300 K. We also computed the electronic band structure of substitutionally disordered hcp Fe-Si and Fe-Ni alloy systems by means of Korringa-Kohn-Rostoker method with coherent potential approximation (KKR-CPA). The electrical resistivity was then calculated from the Kubo-Greenwood formula. These experimental and theoretical results show excellent agreement with each other, and the first principles results show the saturation behavior at high silicon concentration. We further calculated the resistivity of Fe-Ni-Si ternary alloys and found the violation of the Matthiessen's rule as a consequence of the resistivity saturation. Such resistivity saturation has important implications for core dynamics. The saturation effect places the upper limit of the resistivity, resulting in that the total resistivity value has almost no temperature dependence. As a consequence, the core thermal conductivity has a lower bound and exhibits a linear temperature dependence. We predict the electrical resistivity at the top of the Earth's core to be 1.12 ×10-6 Ωm, which corresponds to the thermal conductivity of 87.1 W/m/K. Such high thermal conductivity suggests high isentropic heat flow, leading to young inner core age (<0.85 Gyr old) and high initial core temperature. It also strongly suppresses thermal convection in the core, which results in no convective motion in inner core and possibly thermally stratified layer in the outer core.

  18. Self-Sensing of Position-Related Loads in Continuous Carbon Fibers-Embedded 3D-Printed Polymer Structures Using Electrical Resistance Measurement

    PubMed Central

    Luan, Congcong; Shen, Hongyao; Fu, Jianzhong

    2018-01-01

    Condition monitoring in polymer composites and structures based on continuous carbon fibers show overwhelming advantages over other potentially competitive sensing technologies in long-gauge measurements due to their great electromechanical behavior and excellent reinforcement property. Although carbon fibers have been developed as strain- or stress-sensing agents in composite structures through electrical resistance measurements, the electromechanical behavior under flexural loads in terms of different loading positions still lacks adequate research, which is the most common situation in practical applications. This study establishes the relationship between the fractional change in electrical resistance of carbon fibers and the external loads at different loading positions along the fibers’ longitudinal direction. An approach for real-time monitoring of flexural loads at different loading positions was presented simultaneously based on this relationship. The effectiveness and feasibility of the approach were verified by experiments on carbon fiber-embedded three-dimensional (3D) printed thermoplastic polymer beam. The error in using the provided approach to monitor the external loads at different loading positions was less than 1.28%. The study fully taps the potential of continuous carbon fibers as long-gauge sensory agents and reinforcement in the 3D-printed polymer structures. PMID:29584665

  19. Structural, transport and thermoelectric properties of Nb-doped CaLaMnO perovskite

    NASA Astrophysics Data System (ADS)

    Villa, J. I.; Rodríguez, J. E.

    2014-12-01

    Poly-crystalline perovskite-type (CaLaMnO) Ca0.95La0.05Mn1-xNbxO3 (0.0 ≤ x ≤ 0.10) was synthesized using the conventional solid-state reaction method. Structural and morphological properties were studied by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM), respectively. Their transport and thermoelectric properties were studied from electrical resistivity ρ(T) and Seebeck coefficient S(T) measurements as a function of temperature and niobium content. The Rietveld analysis revealed a compound with orthorhombic structure, where their lattice parameters increase with the niobium content which is given by a distortion in octahedra MnO6. Electrical resistivity exhibits a semiconducting-like behavior, for low niobium contents (Nb ≤ 0.03) the magnitude of the electrical resistivity decreases, reaching minimum values close to 0.1 Ω - cm. Seebeck coefficient is negative in all studied temperature range. The temperature behavior of S(T) is interpreted in terms of variable range hopping (VRH) and Heikes model. From ρ(T) and S(T) measurements it was possible to calculate the thermoelectric power factor (PF), which reaches maximum values around 0.4 μW /K2 -cm. These values make these ceramics promising electronic thermoelectric materials.

  20. Experimental and numerical analysis of interfilament resistances in NbTi strands

    NASA Astrophysics Data System (ADS)

    Breschi, M.; Massimini, M.; Ribani, P. L.; Spina, T.; Corato, V.

    2014-05-01

    Superconducting strands are composite wires made of fine superconducting filaments embedded in a metallic matrix. The transverse resistivity among superconducting filaments affects the coupling losses during electromagnetic transients and the electro-thermal behavior of the wire in case of a quench. A direct measurement of the transverse interfilament resistance as a function of temperature in NbTi multi-filamentary wires was performed at the ENEA Frascati Superconductivity Division, Italy by means of a four-probe method. The complexity of these measurements is remarkable, due to the current distribution phenomena that occur among superconducting filaments during these tests. A two-dimensional finite element method model of the wire cross section and a three-dimensional electrical circuit model of the wire sample developed at the University of Bologna are applied here to derive qualitative and quantitative information about the transverse electrical resistance matrix. The experiment is aimed at verifying the qualitative behaviors and trends predicted by the numerical calculations, especially concerning the current redistribution length and consequent length effects of the sample under test. A fine tuning of the model parameters at the filament level allowed us to reproduce the experimental results and get quantitative information about the current distribution phenomena between filaments.

  1. Electrical and thermal behavior of unsaturated soils: experimental results

    NASA Astrophysics Data System (ADS)

    Nouveau, Marie; Grandjean, Gilles; Leroy, Philippe; Philippe, Mickael; Hedri, Estelle; Boukcim, Hassan

    2016-05-01

    When soil is affected by a heat source, some of its properties are modified, and in particular, the electrical resistivity due to changes in water content. As a result, these changes affect the thermal properties of soil, i.e., its thermal conductivity and diffusivity. We experimentally examine the changes in electrical resistivity and thermal conductivity for four soils with different grain size distributions and clay content over a wide range of temperatures, from 20 to 100 °C. This temperature range corresponds to the thermal conditions in the vicinity of a buried high voltage cable or a geothermal system. Experiments were conducted at the field scale, at a geothermal test facility, and in the laboratory using geophysical devices and probing systems. The results show that the electrical resistivity decreases and the thermal conductivity increases with temperature up to a critical temperature depending on soil types. At this critical temperature, the air volume in the pore space increases with temperature, and the resulting electrical resistivity also increases. For higher temperatures , the thermal conductivity increases sharply with temperature up to a second temperature limit. Beyond it, the thermal conductivity drops drastically. This limit corresponds to the temperature at which most of the water evaporates from the soil pore space. Once the evaporation is completed, the thermal conductivity stabilizes. To explain these experimental results, we modeled the electrical resistivity variations with temperature and water content in the temperature range 20 - 100°C, showing that two critical temperatures influence the main processes occurring during heating at temperatures below 100 °C.

  2. Observation of decreasing resistivity of amorphous indium gallium zinc oxide thin films with an increasing oxygen partial pressure

    NASA Astrophysics Data System (ADS)

    Singh, Anup K.; Adhikari, Sonachand; Gupta, Rajeev; Deepak

    2017-01-01

    We have investigated the electrical resistivity behavior in amorphous indium gallium zinc oxide (a-IGZO) thin films. It is well known that resistivity increases as the film is deposited at a higher and higher oxygen partial pressure; we also record the same. However, in process we have discovered a remarkable region, in the oxygen deficient condition, that the resistivity shows an inverse behavior. This leads to the possibility that resistive films, suitable for thin film transistors, can also be obtained in oxygen deficient deposition conditions. Optical spectroscopic investigation could discern between a-IGZO films grown in oxygen deficient and oxygen rich conditions. The related resistivity behavior could be correlated to the presence of sub-bandgap states in films deposited in oxygen deficiency. These subgap states appear to be due to defects arising from local variations around the cations or oxygen atoms. The likely cause is an increase in Ga relative to In around O atom and the nature of cation-cation interaction when an oxygen atom is missing.

  3. Processing effects on microstructure, percolation and resistive sensor properties of nickel-zirconium oxide cermet films on silicon substrates

    NASA Astrophysics Data System (ADS)

    Sundeen, John Edward, Jr.

    Thin Ni-ZrO2 cermet films were developed on silicon substrates using solution based, metallo-organic deposition (MOD) technique. The nickel based cermet films on silicon are of interest for heater, temperature and flow sensor devices, particularly in automotive or aerospace applications at UP to 250°C. In this study, precursors for the NiO-ZrO2 composite films were derived from metal carboxylate and nitrate based solutions. Composition and heat treatment conditions were the main process variables for controlling the structure, particle size and morphology, on which the electrical properties depend. Electrical resistance behavior was studied for Ni-ZrO2 films with 25--78 vol.% Ni content. This Ni amount exceeds the percolation threshold for conduction. The dependence of the resistance on individual processing variables, including film thickness, ambient flow rate, sintering temperature and time, and specimen geometry was studied. Electrical characterization included establishing the percolative resistive behavior in the MOD Ni-ZrO2 films. A resistive percolation threshold (pc) at ˜25 vol.% Ni was found for 800°C sintered, 1mum thick Ni-ZrO2 films. Existing models including the general effective media (GEM) percolation equation, and mixture rules were used to develop a predictive expression for Ni-ZrO2 film resistance as a function of composition. Kinetic analysis of particle size in the 55 vol.% Ni cermet films was directly correlated to the sheet resistance (Rs) of the films. The temperature coefficient of resistance (TCR) was also correlated to R s, by the equation: (TCR)alpha = alphao - betaR s. These electrical characteristics make the films suitable for use as gas flow and temperature sensors. Calculated figure of merit (rho-TCR), values for the MOD Ni-ZrO2 films Compared favorably to commercial Pt and Ni based thin and thick film formulations used for heaters and thermal sensors. An added advantage of the MOD Ni-ZrO2, compared to the non-linear behavior of Ni, was that film resistance response to temperature is highly linear over the temperature range of 20--160°C. Select films could be heated to 45--100°C with a low (I2R) power input of 400mW-2W. Then films demonstrated stable hot resistance, high sensitivity and rapid response to gas flow. Significant accomplishments from this work included the development of: (a) MOD derived cermet films of 40--78 vol.% Ni, with high positive TCR of 2600--4250ppm/°C and Rs of 2.5--60%O/□/1mum which are highly suitable for thermal sensing applications, (b) A simple mixture rule rho = rhoo - m·VNi describing the film resistivity with composition; and (c) Expressions correlating film TCR and resistance to sintering time and temperature using particle growth kinetics.

  4. Effect of gadolinium dopant on structural, magneto-transport, magnetic and thermo-power of Pr0.8Sr0.2MnO3

    NASA Astrophysics Data System (ADS)

    Poojary, Thrapthi; Babu, P. D.; Sanil, Tejaswini; Daivajna, Mamatha D.

    2018-07-01

    In the present investigation structural, magneto-transport, magnetic and thermo-power measurements of Gadolinium (Gd) doped Pr0.8-xGdxSr0.2MnO3 (0, 0.2, 0.25 and 0.3) manganites have been done. All the samples are single phased with orthorhombic structure. Temperature variation of resistance exhibits a high temperature transition occurring at 156 K and a low temperature cusp at around 95 K for pristine sample. With Gd doping resistance behavior shows insulating behavior throughout the whole temperature range. Magneto-Resistance (MR%) increases with Gd doping. A huge increase in thermo-electric power is observed with Gd doping.

  5. Opto-electrochemical spectroscopy of metals in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, K., E-mail: khaledhabib@usa.net

    In the present investigation, holographic interferometry was utilized for the first time to determine the rate change of the electrical resistance of aluminium samples during the initial stage of anodisation processes in aqueous solution. In fact, because the resistance values in this investigation were obtained by holographic interferometry, electromagnetic method rather than electronic method, the abrupt rate change of the resistance was called electrical resistance–emission spectroscopy. The anodisation process of the aluminium samples was carried out by electrochemical impedance spectroscopy (EIS) in different sulphuric acid concentrations (1.0%–2.5% H{sub 2}SO{sub 4}) at room temperature. In the meantime, the real time holographicmore » interferometry was used to determine the difference between the electrical resistance of two subsequent values, dR, as a function of the elapsed time of the EIS experiment for the aluminium samples in 1.0%, 1.5%, 2.0%, and 2.5% H{sub 2}SO{sub 4} solutions. The electrical resistance–emission spectra of the present investigation represent a detailed picture of not only the rate change of the electrical resistance throughout the anodisation processes but also the spectra represent the rate change of the growth of the oxide films on the aluminium samples in different solutions. As a result, a new spectrometer was developed based on the combination of the holographic interferometry and electrochemical impedance spectroscopy for studying in situ the electrochemical behavior of metals in aqueous solutions.« less

  6. Low power consumption resistance random access memory with Pt/InOx/TiN structure

    NASA Astrophysics Data System (ADS)

    Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.; Tsai, Ming-Jinn

    2013-09-01

    In this study, the resistance switching characteristics of a resistive random access memory device with Pt/InOx/TiN structure is investigated. Unstable bipolar switching behavior is observed during the initial switching cycle, which then stabilizes after several switching cycles. Analyses indicate that the current conduction mechanism in the resistance state is dominated by Ohmic conduction. The decrease in electrical conductance can be attributed to the reduction of the cross-sectional area of the conduction path. Furthermore, the device exhibits low operation voltage and power consumption.

  7. Low temperature transport anomaly in Cr substituted (La0.67Sr0.33)MnO3 manganites

    NASA Astrophysics Data System (ADS)

    Tank, Tejas M.; Shelke, Vilas; Das, Sarmistha; Rana, D. S.; Thaker, C. M.; Samatham, S. S.; Ganesan, V.; Sanyal, S. P.

    2017-06-01

    The structural, electrical, and magnetic properties of La0.67Sr0.33Mn1-xCrxO3 (0 ≤ x ≤ 0.10) manganites have been studied by substitution of antiferromagnetic trivalent Cr ion at Mn-site. Systematic efforts have been carried out to understand the electrical resistivity behavior in the ferromagnetic metallic and paramagnetic semi-conducting phases of Cr substituted La0.67Sr0.33Mn1-xCrxO3 manganites. Polycrystalline samples show a resistivity minimum at a temperature (Tmin) of <40 K in the ferromagnetic metallic phase. Tmin shifts to higher temperatures on application of magnetic fields. The appearance of this resistivity minimum was analyzed by fittings the data according to the model that considers e-e scattering caused by enhanced Coulombic interactions. The electrical resistivity data has been best fitted in the metallic and semiconducting regime using various models. Present results suggest that intrinsic magnetic inhomogeneity like Cr3+ ions in these strongly electron-correlated manganite systems is originating due to the existence of the ferromagnetic interactions.

  8. Analogy for Drude's free electron model to promote students' understanding of electric circuits in lower secondary school

    NASA Astrophysics Data System (ADS)

    de Almeida, Maria José BM; Salvador, Andreia; Costa, Maria Margarida RR

    2014-12-01

    Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude's free electron model of metals. Using this analogy from the first school contacts with electric phenomena, one can promote students' understanding of concepts such as electric current, the role of generators, potential difference effects, energy transfer, open and closed circuits, resistances, and their combinations in series and parallel. One believes that through this analogy well-known previous misconceptions of young students about electric circuit behaviors can be overcome. Furthermore, students' understanding will enable them to predict, and justify with self-constructed arguments, the behavior of different elementary circuits. The students' predictions can be verified—as a challenge of self-produced understanding schemes—using laboratory experiments. At a preliminary stage, our previsions were confirmed through a pilot study with three classrooms of 9th level Portuguese students.

  9. Rheological behavior and cryogenic properties of cyanate ester/epoxy insulation material for fusion superconducting magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Z. X.; Huang, C. J.; Li, L. F.

    2014-01-27

    In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical propertiesmore » of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 °C.« less

  10. Gas-water two-phase flow characterization with Electrical Resistance Tomography and Multivariate Multiscale Entropy analysis.

    PubMed

    Tan, Chao; Zhao, Jia; Dong, Feng

    2015-03-01

    Flow behavior characterization is important to understand gas-liquid two-phase flow mechanics and further establish its description model. An Electrical Resistance Tomography (ERT) provides information regarding flow conditions at different directions where the sensing electrodes implemented. We extracted the multivariate sample entropy (MSampEn) by treating ERT data as a multivariate time series. The dynamic experimental results indicate that the MSampEn is sensitive to complexity change of flow patterns including bubbly flow, stratified flow, plug flow and slug flow. MSampEn can characterize the flow behavior at different direction of two-phase flow, and reveal the transition between flow patterns when flow velocity changes. The proposed method is effective to analyze two-phase flow pattern transition by incorporating information of different scales and different spatial directions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Effect of a PEDOT:PSS modified layer on the electrical characteristics of flexible memristive devices based on graphene oxide:polyvinylpyrrolidone nanocomposites

    NASA Astrophysics Data System (ADS)

    Kim, Woo Kyum; Wu, Chaoxing; Kim, Tae Whan

    2018-06-01

    The electrical characteristics of flexible memristive devices utilizing a graphene oxide (GO):polyvinylpyrrolidone (PVP) nanocomposite charge-trapping layer with a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)-modified layer fabricated on an indium-tin-oxide (ITO)-coated polyethylene glycol naphthalate (PEN) substrate were investigated. Current-voltage (I-V) curves for the Al/GO:PVP/PEDOT:PSS/ITO/PEN devices showed remarkable hysteresis behaviors before and after bending. The maximum memory margins of the devices before and after 100 bending cycles were approximately 7.69 × 103 and 5.16 × 102, respectively. The devices showed nonvolatile memory effect with a retention time of more than 1 × 104 s. The "Reset" voltages were distributed between 2.3 and 3.5 V, and the "Set" voltages were dispersed between -0.7 and -0.2 V, indicative of excellent, uniform electrical performance. The endurance number of ON/OFF-switching and bending cycles for the devices was 1 × 102, respectively. The bipolar resistive switching behavior was explained on the basis of I-V results. In particular, the bipolar resistive switching behaviors of the LRS and the HRS for the devices are dominated by the Ohmic and space charge current mechanisms, respectively.

  12. Dynamic Properties of Electrotonic Coupling between Cells of Early Xenopus Embryos

    PubMed Central

    DiCaprio, R. A.; French, A. S.; Sanders, E. J.

    1974-01-01

    Frequency response functions were measured between the cells of Xenopus laevis embryos during the first two cleavage stages. Linear systems theory was then used to produce electronic models which account for the electrical behavior of the systems. Coupling between the cells may be explained by models which have simple resistive elements joining each cell to its neighbors. The vitelline, or fertilization, membrane which surrounds the embryos has no detectable resistance to the passage of electric current. The electrical properties of the four-cell embryo can only be explained by the existence of individual junctions linking each pair of cells. This arrangement suggests that electrotonic coupling is important in the development of the embryos, at least until the four-cell stage. ImagesFIGURE 5FIGURE 14FIGURE 15 PMID:19431351

  13. Applicability of the lattice Boltzmann method to determine the ohmic resistance in equivalent resistor connections

    NASA Astrophysics Data System (ADS)

    Espinoza-Andaluz, Mayken; Barzola, Julio; Guarochico-Moreira, Víctor H.; Andersson, Martin

    2017-12-01

    Knowing the ohmic resistance in the materials allow to know in advance its electrical behavior when a potential difference is applied, and therefore the prediction of the electrical performance can be achieved in a most certain manner. Although the Lattice Boltzmann method (LBM) has been applied to solve several physical phenomena in complex geometries, it has only been used to describe the fluid phase, but applicability studies of LBM on the solid-electric-conducting material have not been carried out yet. The purpose of this paper is to demonstrate the accuracy of calculating the equivalent resistor connections using LBM. Several series and parallel resistor connections are effected. All the computations are carried out with 3D models, and the domain materials are designed by the authors.

  14. Moderate temperature-dependent surface and volume resistivity and low-frequency dielectric constant measurements of pure and multi-walled carbon nanotube (MWCNT) doped polyvinyl alcohol thin films

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew; Guggilla, Padmaja; Reedy, Angela; Ijaz, Quratulann; Janen, Afef; Uba, Samuel; Curley, Michael

    2017-08-01

    Previously, we have reported measurements of temperature-dependent surface resistivity of pure and multi-walled carbon nanotube (MWNCT) doped amorphous Polyvinyl Alcohol (PVA) thin films. In the temperature range from 22 °C to 40 °C with humidity-controlled environment, we found the surface resistivity to decrease initially, but to rise steadily as the temperature continued to increase. Moreover, electric surface current density (Js) was measured on the surface of pure and MWCNT doped PVA thin films. In this regard, the surface current density and electric field relationship follow Ohm's law at low electric fields. Unlike Ohmic conduction in metals where free electrons exist, selected captive electrons are freed or provided from impurities and dopants to become conduction electrons from increased thermal vibration of constituent atoms in amorphous thin films. Additionally, a mechanism exists that seemingly decreases the surface resistivity at higher temperatures, suggesting a blocking effect for conducting electrons. Volume resistivity measurements also follow Ohm's law at low voltages (low electric fields), and they continue to decrease as temperatures increase in this temperature range, differing from surface resistivity behavior. Moreover, we report measurements of dielectric constant and dielectric loss as a function of temperature and frequency. Both the dielectric constant and dielectric loss were observed to be highest for MWCNT doped PVA compared to pure PVA and commercial paper, and with frequency and temperature for all samples.

  15. Exploring the energy landscape of resistive switching in antiferromagnetic S r3I r2O7

    NASA Astrophysics Data System (ADS)

    Williamson, Morgan; Shen, Shida; Cao, Gang; Zhou, Jianshi; Goodenough, John B.; Tsoi, Maxim

    2018-04-01

    We study the resistive switching triggered by an applied electrical bias in the antiferromagnetic Mott insulator S r3I r2O7 . The switching was previously associated with an electric-field-driven structural transition. Here we use time-resolved measurements to probe the thermal activation behavior of the switching process and acquire information about the energy barrier associated with the transition. We quantify the changes in the energy-barrier height with respect to the applied bias and find a linear decrease of the barrier with increasing bias. Our observations support the potential of antiferromagnetic transition-metal oxides for spintronic applications.

  16. Enhanced thermoelectric performance of amorphous Nb based oxynitrides

    NASA Astrophysics Data System (ADS)

    Music, Denis; Geyer, Richard W.; Hans, Marcus

    2015-12-01

    Using density functional theory, amorphous Nb0.27Ru0.06O0.56N0.10 was designed to facilitate a combination of an enhanced Seebeck coefficient and low electrical resistivity. Based on a positive Cauchy pressure, ductile behavior is expected. To verify these predictions, the transport and mechanical properties of amorphous thin films were evaluated. Metallic electrical resistivity and the Seebeck coefficient of -94 μV K-1 are obtained, which is consistent with our predictions. As there is no crack formation, these samples can be perceived as ductile. We demonstrate that the power factor can be increased by an order of magnitude, while keeping the thermal fatigue low.

  17. Memristive and neuromorphic behavior in a LixCoO2 nanobattery

    NASA Astrophysics Data System (ADS)

    Mai, V. H.; Moradpour, A.; Senzier, P. Auban; Pasquier, C.; Wang, K.; Rozenberg, M. J.; Giapintzakis, J.; Mihailescu, C. N.; Orfanidou, C. M.; Svoukis, E.; Breza, A.; Lioutas, Ch B.; Franger, S.; Revcolevschi, A.; Maroutian, T.; Lecoeur, P.; Aubert, P.; Agnus, G.; Salot, R.; Albouy, P. A.; Weil, R.; Alamarguy, D.; March, K.; Jomard, F.; Chrétien, P.; Schneegans, O.

    2015-01-01

    The phenomenon of resistive switching (RS), which was initially linked to non-volatile resistive memory applications, has recently also been associated with the concept of memristors, whose adjustable multilevel resistance characteristics open up unforeseen perspectives in cognitive computing. Herein, we demonstrate that the resistance states of LixCoO2 thin film-based metal-insulator-metal (MIM) solid-state cells can be tuned by sequential programming voltage pulses, and that these resistance states are dramatically dependent on the pulses input rate, hence emulating biological synapse plasticity. In addition, we identify the underlying electrochemical processes of RS in our MIM cells, which also reveal a nanobattery-like behavior, leading to the generation of electrical signals that bring an unprecedented new dimension to the connection between memristors and neuromorphic systems. Therefore, these LixCoO2-based MIM devices allow for a combination of possibilities, offering new perspectives of usage in nanoelectronics and bio-inspired neuromorphic circuits.

  18. Bistable resistive memory behavior in gelatin-CdTe quantum dot composite film

    NASA Astrophysics Data System (ADS)

    Vallabhapurapu, Sreedevi; Rohom, Ashwini; Chaure, N. B.; Du, Shengzhi; Srinivasan, Ananthakrishnan

    2018-05-01

    Bistable memory behavior has been observed for the first time in gelatin type A thin film dispersed with functionalized CdTe quantum dots. The two terminal device with the polymer nanocomposite layer sandwiched between an indium tin oxide coated glass plate and an aluminium top electrode performs as a bistable resistive random access memory module. Butterfly shaped (O-shaped with a hysteresis in forward and reverse sweeps) current-voltage response is observed in this device. The conduction mechanism leading to the bistable electrical switching has been deduced to be a combination of ohmic and electron hopping.

  19. Formation of Fe2SiO4 thin films on Si substrates and influence of substrate to its thermoelectric transport properties

    NASA Astrophysics Data System (ADS)

    Choi, Jeongyong; Nguyen, Van Quang; Duong, Van Thiet; Shin, Yooleemi; Duong, Anh Tuan; Cho, Sunglae

    2018-03-01

    Fe2SiO4 thin films have been grown on n-type, p-type and semi-insulating Si(100) substrates by molecular beam epitaxy. When Fe-O thin films were deposited on Si(100) substrate at 300 °C, the film reacted with Si, resulting in a Fe2SiO4 film because of the high reactivity between Fe and Si. The electrical resistance and Seebeck coefficient of Fe2SiO4 thin films grown were different in different doping states. On n-type and p-type Si(100), the electrical resistance decreased suddenly and increased again at 350 and 250 K, respectively, while on semi-insulating Si(100), it exhibited typical semiconducting resistance behavior. We observed similar crossovers at 350 and 250 K in temperature dependent Seebeck coefficients on n-type and p-type Si(100), respectively. These results suggest that the measured electrical and thermoelectric properties originate from Si substrate.

  20. Microstructure and Electrical Properties of AZO/Graphene Nanosheets Fabricated by Spark Plasma Sintering

    PubMed Central

    Yang, Shuang; Chen, Fei; Shen, Qiang; Lavernia, Enrique J.; Zhang, Lianmeng

    2016-01-01

    In this study we report on the sintering behavior, microstructure and electrical properties of Al-doped ZnO ceramics containing 0–0.2 wt. % graphene sheets (AZO-GNSs) and processed using spark plasma sintering (SPS). Our results show that the addition of <0.25 wt. % GNSs enhances both the relative density and the electrical resistivity of AZO ceramics. In terms of the microstructure, the GNSs are distributed at grain boundaries. In addition, the GNSs are also present between ZnO and secondary phases (e.g., ZnAl2O4) and likely contribute to the measured enhancement of Hall mobility (up to 105.1 cm2·V−1·s−1) in these AZO ceramics. The minimum resistivity of the AZO-GNS composite ceramics is 3.1 × 10−4 Ω·cm which compares favorably to the value of AZO ceramics which typically have a resistivity of 1.7 × 10−3 Ω·cm. PMID:28773759

  1. Thermally activated hysteresis in high quality graphene/h-BN devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadore, A. R., E-mail: alissoncadore@gmail.com, E-mail: lccampos@fisica.ufmg.br; Mania, E.; Lacerda, R. G.

    2016-06-06

    We report on gate hysteresis of resistance in high quality graphene/hexagonal boron nitride (h-BN) devices. We observe a thermally activated hysteretic behavior in resistance as a function of the applied gate voltage at temperatures above 375 K. In order to investigate the origin of the hysteretic phenomenon, we compare graphene/h-BN heterostructure devices with SiO{sub 2}/Si back gate electrodes to devices with graphite back gate electrodes. The gate hysteretic behavior of the resistance is present only in devices with an h-BN/SiO{sub 2} interface and is dependent on the orientation of the applied gate electric field and sweep rate. We describe a phenomenologicalmore » model which captures all of our findings based on charges trapped at the h-BN/SiO{sub 2} interface. Such hysteretic behavior in graphene resistance must be considered in high temperature applications for graphene devices and may open new routes for applications in digital electronics and memory devices.« less

  2. Concurrent ionic migration and electronic effects at the memristive TiO x /La1/3Ca2/3MnO3-x interface

    NASA Astrophysics Data System (ADS)

    Román Acevedo, W.; Ferreyra, C.; Sánchez, M. J.; Acha, C.; Gay, R.; Rubi, D.

    2018-03-01

    The development of reliable redox-based resistive random-access memory devices requires understanding and disentangling concurrent effects present at memristive interfaces. We report on the fabrication and electrical characterization of TiO x /La1/3Ca2/3MnO3-x microstructured interfaces and on the modeling of their memristive behavior. We show that a careful tuning of the applied external electrical stimuli allows controlling the redox process between both layers, obtaining multilevel non-volatile resistance states. We simulate the oxygen vacancies dynamics at the interface between both oxides, and successfully reproduce the experimental electrical behavior after the inclusion of an electronic effect, related to the presence of an n-p diode at the interface. The formation of the diode is due to the n- and p-character of TiO x and La1/3Ca2/3MnO3-x , respectively. Our analysis indicates that oxygen vacancies migration between both layers is triggered after the diode is polarized either in forward mode or in reverse mode above breakdown. Electrical measurements at different temperatures suggest that the diode can be characterized as Zener-type. The advantages of our junctions for their implementation in RRAM devices are finally discussed.

  3. Evaluating electrically insulating films deposited on V-4% Cr-4% Ti by reactive CVD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.H.; Cho, W.D.

    1997-04-01

    Previous CaO coatings on V-4%Cr-4%Ti exhibited high-ohmic insulator behavior even though a small amount of vanadium from the alloy was incorporated in the coating. However, when the vanadium concentration in the coatings is > 15 wt%, the coating becomes conductive. When the vanadium concentration is high in localized areas, a calcium vanadate phase that exhibits semiconductor behavior can form. To explore this situation, CaO and Ca-V-O coatings were produced on vanadium alloys by chemical vapor deposition (CVD) and by a metallic-vapor process to investigate the electrical resistance of the coatings. Initially, the vanadium alloy specimens were either charged with oxygenmore » in argon that contained trace levels of oxygen, or oxidized for 1.5-3 h in a 1% CO-CO{sub 2} gas mixture or in air to form vanadium oxide at 625-650{degrees}C. Most of the specimens were exposed to calcium vapor at 800-850{degrees}C. Initial and final weights were obtained to monitor each step, and surveillance samples were removed for examination by optical and scanning electron microscopy and electron-energy-dispersive and X-ray diffraction analysis; the electrical resistivity was also measured. The authors found that Ca-V-O films exhibited insulator behavior when the ratio of calcium concentration to vanadium concentration R in the film was > 0.9, and semiconductor or conductor behavior for R < 0.8. However, in some cases, semiconductor behavior was observed when CaO-coated samples with R > 0.98 were exposed in liquid lithium. Based on these studies, the authors conclude that semiconductor behavior occurs if a conductive calcium vanadate phase is present in localized regions in the CaO coating.« less

  4. Growth and Physical Property Study of Single Nanowire (Diameter ~45 nm) of Half Doped Manganite

    DOE PAGES

    Datta, Subarna; Chandra, Sayan; Samanta, Sudeshna; ...

    2013-01-01

    We repormore » t here the growth and characterization of functional oxide nanowire of hole doped manganite of La 0.5 Sr 0.5 MnO 3 (LSMO). We also report four-probe electrical resistance measurement of a single nanowire of LSMO (diameter ~45 nm) using focused ion beam (FIB) fabricated electrodes. The wires are fabricated by hydrothermal method using autoclave at a temperature of 270 °C. The elemental analysis and physical property like electrical resistivity are studied at an individual nanowire level. The quantitative determination of Mn valency and elemental mapping of constituent elements are done by using Electron Energy Loss Spectroscopy (EELS) in the Transmission Electron Microscopy (TEM) mode. We address the important issue of whether as a result of size reduction the nanowires can retain the desired composition, structure, and physical properties. The nanowires used are found to have a ferromagnetic transition ( T C ) at around 325 K which is very close to the bulk value of around 330 K found in single crystal of the same composition. It is confirmed that the functional behavior is likely to be retained even after size reduction of the nanowires to a diameter of 45 nm. The electrical resistivity shows insulating behavior within the measured temperature range which is similar to the bulk system.« less

  5. Effects of nanoscale coatings on reliability of MEMS ohmic contact switches

    NASA Astrophysics Data System (ADS)

    Tremper, Amber Leigh

    This thesis examines how the electrical and mechanical behavior of Au thin films is altered by the presence of ultra-thin metallic coatings. To examine the mechanical behavior, nanoindentation, nano-scratch, and atomic force microscopy (AFM) testing was performed. The electrical behavior was evaluated through Kelvin probe contact resistance measurements. This thesis shows that ultra-thin, hard, ductile coatings on a softer, ductile underlying layer (such as Ru or Pt on Au) had a significant effect on mechanical behavior of the system, and can be tailored to control the deformation resistance of the thin film system. Despite Ru and Pt having a higher hardness and plane strain modulus than Au, the Ru and Pt coatings decreased both the hardness and plane strain modulus of the layered system when the indentation depth was on the order of the coating thickness. Alternately, when the indentation depth was several times the coating thickness, the ductile, plastically hard, elastically stiff layer significantly hardened the contact response. These results correlate well with membrane stress theoretical predictions, and demonstrate that membrane theory can be applied even when the ratio of indentation depth, h, to coating thickness, t, is very large ( h/t<10). The transition from film-substrate models to membrane models occurs when the indent penetration depth to coating thickness ratio is less than ˜0.5. When the electrical behavior of the Ru-coated Au films was examined, it was found that all the measured resistances of the Au-only film and Ru-coated systems were several orders of magnitude larger than those predicted by Holm's law, but were still in good agreement with previously reported values in the literature. Previous studies attributed the high contact resistances to a variety of causes, including the buildup of an insulating contamination layer. This thesis determined the cause of the deviations to be large sheet resistance contributions to the total measured resistance. Further, studies on aged samples (with thicker contamination layers) conclusively showed that, while contamination increases the contact resistance, it also increases the dependence on force. This thesis also details that the relative contribution of contact resistance to the total measured resistance can be maximized by decreasing the probe spacing and tip radius. AFM testing of the layered systems showed that the coated samples had larger predicted plane strain moduli than the Au sample, in contrast to the nanoindentation testing. Thus, when the contact depth was kept sufficiently small, the contact stiffness increased as predicted by substrate models. When the contact depth was on the order of the coating thickness, the contact stiffness actually decreased. Additionally, the forceseparation plots showed that the Ru and Pt surfaces either accumulated large amounts of contamination or were less susceptible to being wiped clean than the Au film. Further, scratch testing of the Au film and Ru and Pt coatings show that the hard surface coatings reduce material removal and contact wear. Ultra-thin Ru and Pt surface coatings on Au films are shown to be improved material systems for ohmic contact switches. The wear is reduced for coated materials, while the resistance and power consumption through the coating are not significantly affected.

  6. Non-Fermi liquid and heavy fermion behavior in CexLa1-xB6 with quadrupolar moments

    NASA Astrophysics Data System (ADS)

    Nakamura, Shintaro; Yamamoto, Harufumi; Endo, Motoki; Aoki, Haruyoshi; Kimura, Noriaki; Nojima, Tsutomu; Kunii, Satoru

    2006-05-01

    The electrical resistivity of the cubic Kondo system CexLa1-xB6 ( x=0.1-0.65) has been measured. Non-Fermi liquid behavior is found in paramagnetic phase I over the wide Ce concentration range. Heavy fermion behavior is found in ordered phases of Ce0.65La0.35B6. The mass enhancement of quasiparticles in this compound is strongly dependent of the magnetic field.

  7. Graphene as a protective coating and superior lubricant for electrical contacts

    NASA Astrophysics Data System (ADS)

    Berman, Diana; Erdemir, Ali; Sumant, Anirudha V.

    2014-12-01

    Potential for graphene to be used as a lubricant for sliding electrical contacts has been evaluated. Graphene, being deposited as a sporadic flakes on the gold substrate sliding against titanium nitride ball shows not only significant improvement in tribological behavior by reducing both friction (by factor of 2-3) and wear (by 2 orders) but also, even more importantly, demonstrates stable and low electrical resistance at the sliding contacts undergoing thousands of sliding passes regardless of the test environment (i.e., both in humid and dry conditions).

  8. Graphene as a lubricant for electrical contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, Diana; Erdemir, Ali; Sumant, Anirudha V.

    2014-12-08

    Potential for graphene to be used as a lubricant for sliding electrical contacts has been evaluated. Graphene, being deposited as a sporadic flakes on the gold substrate sliding against titanium nitride ball shows not only significant improvement in tribological behavior by reducing both friction (by factor of 2-3) and wear (by 2 orders) but also, even more importantly, demonstrates stable and low electrical resistance at the sliding contacts undergoing thousands of sliding passes regardless of the test environment (i.e., both in humid and dry conditions). (C) 2014 AIP Publishing LLC.

  9. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond; Kunz, Karl

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. It is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods. These sheets are characterized by a discontinuity in the tangential magnetic field on either side of the sheet but no discontinuity in tangential electric field. This continuity, or single valued behavior of the electric field, allows the sheet current to be expressed in terms of an impedance multiplying this electric field.

  10. Polaron melting and ordering as key mechanisms for colossal resistance effects in manganites

    PubMed Central

    Jooss, Ch.; Wu, L.; Beetz, T.; Klie, R. F.; Beleggia, M.; Schofield, M. A.; Schramm, S.; Hoffmann, J.; Zhu, Y.

    2007-01-01

    Polarons, the combined motion of electrons in a cloth of their lattice distortions, are a key transport feature in doped manganites. To develop a profound understanding of the colossal resistance effects induced by external fields, the study of polaron correlations and the resulting collective polaron behavior, i.e., polaron ordering and transition from polaronic transport to metallic transport is essential. We show that static long-range ordering of Jahn–Teller polarons forms a polaron solid which represents a new type of charge and orbital ordered state. The related noncentrosymmetric lattice distortions establish a connection between colossal resistance effects and multiferroic properties, i.e., the coexistence of ferroelectric and antiferromagnetic ordering. Colossal resistance effects due to an electrically induced polaron solid–liquid transition are directly observed in a transmission electron microscope with local electric stimulus applied in situ using a piezo-controlled tip. Our results shed light onto the colossal resistance effects in magnetic field and have a strong impact on the development of correlated electron-device applications such as resistive random access memory (RRAM). PMID:17699633

  11. Decreasing electrical resistivity of silver along the melting boundary up to 5 GPa

    NASA Astrophysics Data System (ADS)

    Littleton, Joshua A. H.; Secco, Richard A.; Yong, Wenjun

    2018-04-01

    The electrical resistivity of Ag was experimentally measured at high pressures up to 5 GPa and at temperatures up to ∼300 K above melting. The resistivity decreased as a function of pressure and increased as a function of temperature as expected and is in very good agreement with 1 atm data. Observed melting temperatures at high pressures also agree well with previous experimental and theoretical studies. The main finding of this study is that resistivity of Ag decreases along the pressure- and temperature-dependent melting boundary, in conflict with prediction of resistivity invariance. This result is discussed in terms of the dominant contribution of the increasing energy separation between the Fermi level and 4d-band as a function of pressure. Calculated from the resistivity using the Wiedemann-Franz law, the electronic thermal conductivity increased as a function of pressure and decreased as a function of temperature as expected. The decrease in the high pressure thermal conductivity in the liquid phase as a function of temperature contrasts with the behavior of the 1 atm data.

  12. Effect of charge ordering and phase separation on the electrical and magnetoresistive properties of polycrystalline La0.4Eu0.1Ca0.5MnO3

    NASA Astrophysics Data System (ADS)

    Krichene, A.; Boujelben, W.; Mukherjee, S.; Shah, N. A.; Solanki, P. S.

    2018-03-01

    We have investigated the effect of charge ordering and phase separation on the electrical and magnetotransport properties of La0.4Eu0.1Ca0.5MnO3 polycrystalline sample. Temperature dependence of resistivity shows a metal-insulator transition at transition temperature Tρ. A hysteretic behavior is observed for zero field resistivity curves with Tρ = 128 K on cooling process and Tρ = 136 K on warming process. Zero field resistivity curves follow Zener polynomial law in the metallic phase with unusual n exponent value ∼9. Presence of resistivity minimum at low temperatures has been ascribed to the coulombic electron-electron scattering process. Resistivity modification due to the magnetic field cycling testifies the presence of the training effect. Magnetization and resistivity appear to be highly correlated. Magnetoresistive study reveals colossal values of negative magnetoresistance reaching about 75% at 132 K under only 2T applied field. Colossal values of magnetoresistance suggest the possibility of using this sample for magnetic field sensing and spintronic applications.

  13. Applying the Network Simulation Method for testing chaos in a resistively and capacitively shunted Josephson junction model

    NASA Astrophysics Data System (ADS)

    Bellver, Fernando Gimeno; Garratón, Manuel Caravaca; Soto Meca, Antonio; López, Juan Antonio Vera; Guirao, Juan L. G.; Fernández-Martínez, Manuel

    In this paper, we explore the chaotic behavior of resistively and capacitively shunted Josephson junctions via the so-called Network Simulation Method. Such a numerical approach establishes a formal equivalence among physical transport processes and electrical networks, and hence, it can be applied to efficiently deal with a wide range of differential systems. The generality underlying that electrical equivalence allows to apply the circuit theory to several scientific and technological problems. In this work, the Fast Fourier Transform has been applied for chaos detection purposes and the calculations have been carried out in PSpice, an electrical circuit software. Overall, it holds that such a numerical approach leads to quickly computationally solve Josephson differential models. An empirical application regarding the study of the Josephson model completes the paper.

  14. Local Magnetic Measurements of Trapped Flux Through a Permanent Current Path in Graphite

    NASA Astrophysics Data System (ADS)

    Stiller, Markus; Esquinazi, Pablo D.; Quiquia, José Barzola; Precker, Christian E.

    2018-04-01

    Temperature- and field-dependent measurements of the electrical resistance of different natural graphite samples suggest the existence of superconductivity at room temperature in some regions of the samples. To verify whether dissipationless electrical currents are responsible for the trapped magnetic flux inferred from electrical resistance measurements, we localized them using magnetic force microscopy on a natural graphite sample in remanent state after applying a magnetic field. The obtained evidence indicates that at room temperature a permanent current flows at the border of the trapped flux region. The current path vanishes at the same transition temperature T_c≈ 370 K as the one obtained from electrical resistance measurements on the same sample. This sudden decrease in the phase is different from what is expected for a ferromagnetic material. Time-dependent measurements of the signal show the typical behavior of flux creep of a permanent current flowing in a superconductor. The overall results support the existence of room-temperature superconductivity at certain regions in the graphite structure and indicate that magnetic force microscopy is suitable to localize them. Magnetic coupling is excluded as origin of the observed phase signal.

  15. A clustering approach applied to time-lapse ERT interpretation - Case study of Lascaux cave

    NASA Astrophysics Data System (ADS)

    Xu, Shan; Sirieix, Colette; Riss, Joëlle; Malaurent, Philippe

    2017-09-01

    The Lascaux cave, located in southwest France, is one of the most important prehistoric cave in the world that shows Paleolithic paintings. This study aims to characterize the structure of the weathered epikarst setting located above the cave using Time-Lapse Electrical Resistivity Tomography (ERT) combined with local hydrogeological and climatic environmental data. Twenty ERT profiles were carried out for two years and helped us to record the seasonal and spatial variations of the electrical resistivity of the hydraulic upstream area of the Lascaux cave. The 20 interpreted resistivity models were merged into a single synthetic model using a multidimensional statistical method (Hierarchical Agglomerative Clustering). The individual blocks from the synthetic model associated with a similar resistivity variability were gathered into 7 clusters. We combined the resistivity temporal variations with climatic and hydrogeological data to propose a geo-electrical model that relates to a conceptual geological model. We provide a geological interpretation for each cluster regarding epikarst features. The superficial clusters (no 1 & 2) are linked to effective rainfall and trees, probably a fractured limestone. Another two clusters (no 6 & 7) are linked to detrital formations (sand and clay respectively). The cluster 3 may correspond to a marly limestone that forms a non-permeable horizon. Finally, the electrical behavior of the last two clusters (no 4 & 5) is correlated with the variation of flow rate; they may be a privileged feed zone of the flow in the cave.

  16. Correlative transmission electron microscopy and electrical properties study of switchable phase-change random access memory line cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oosthoek, J. L. M.; Kooi, B. J., E-mail: B.J.Kooi@rug.nl; Voogt, F. C.

    2015-02-14

    Phase-change memory line cells, where the active material has a thickness of 15 nm, were prepared for transmission electron microscopy (TEM) observation such that they still could be switched and characterized electrically after the preparation. The result of these observations in comparison with detailed electrical characterization showed (i) normal behavior for relatively long amorphous marks, resulting in a hyperbolic dependence between SET resistance and SET current, indicating a switching mechanism based on initially long and thin nanoscale crystalline filaments which thicken gradually, and (ii) anomalous behavior, which holds for relatively short amorphous marks, where initially directly a massive crystalline filament ismore » formed that consumes most of the width of the amorphous mark only leaving minor residual amorphous regions at its edges. The present results demonstrate that even in (purposely) thick TEM samples, the TEM sample preparation hampers the probability to observe normal behavior and it can be debated whether it is possible to produce electrically switchable TEM specimen in which the memory cells behave the same as in their original bulk embedded state.« less

  17. Correlative transmission electron microscopy and electrical properties study of switchable phase-change random access memory line cells

    NASA Astrophysics Data System (ADS)

    Oosthoek, J. L. M.; Voogt, F. C.; Attenborough, K.; Verheijen, M. A.; Hurkx, G. A. M.; Gravesteijn, D. J.; Kooi, B. J.

    2015-02-01

    Phase-change memory line cells, where the active material has a thickness of 15 nm, were prepared for transmission electron microscopy (TEM) observation such that they still could be switched and characterized electrically after the preparation. The result of these observations in comparison with detailed electrical characterization showed (i) normal behavior for relatively long amorphous marks, resulting in a hyperbolic dependence between SET resistance and SET current, indicating a switching mechanism based on initially long and thin nanoscale crystalline filaments which thicken gradually, and (ii) anomalous behavior, which holds for relatively short amorphous marks, where initially directly a massive crystalline filament is formed that consumes most of the width of the amorphous mark only leaving minor residual amorphous regions at its edges. The present results demonstrate that even in (purposely) thick TEM samples, the TEM sample preparation hampers the probability to observe normal behavior and it can be debated whether it is possible to produce electrically switchable TEM specimen in which the memory cells behave the same as in their original bulk embedded state.

  18. Phase diagram and electrical behavior of silicon-rich iridium silicide compounds

    NASA Technical Reports Server (NTRS)

    Allevato, C. E.; Vining, Cronin B.

    1992-01-01

    The iridium-silicon phase diagram on the silicon-rich side was investigated by means of X-ray powder diffraction, density, differential thermal analysis, metalography, microprobe analysis, and electrical resistivity. Attempts were made to prepare eight previously reported silicon-rich iridium silicide compounds by arc melting and Bridgman-like growth. However, microprobe analysis identified only four distinct compositions: IrSi, Ir3Si4, Ir3Si5 and IrSi sub about 3. The existence of Ir4Si5 could not be confirmed in this study, even though the crystal structure has been previously reported. Differential thermal analysis (DTA) in conjunction with X-ray powder diffraction confirm polymorphism in IrSi sub about 3, determined to have orthorhombic and monoclinic unit cells in the high and low temperature forms. A eutectic composition alloy of 83 +/- 1 atomic percent silicon was observed between IrSi sub about 3 and silicon. Ir3Si4 exhibits distinct metallic behavior while Ir3Si5 is semiconducting. Both and IrSi and IrSi sub about 3 exhibit nearly temperature independent electrical resistivities on the order of 5-10 x 10 exp -6 ohms-m.

  19. Control of Nanofilament Structure and Observations of Quantum Point Contact Behavior in Ni/NiO Nanowire Junctions

    NASA Astrophysics Data System (ADS)

    Oliver, Sean; Fairfield, Jessamyn; Lee, Sunghun; Bellew, Allen; Stone, Iris; Ruppalt, Laura; Boland, John; Vora, Patrick

    Resistive switching is ideal for use in non-volatile memory where information is stored in a metallic or insulating state. Nanowire junctions formed at the intersection of two Ni/NiO core/shell nanowires have emerged as a leading candidate structure where resistive switching occurs due to the formation and destruction of conducting filaments. However, significant knowledge gaps remain regarding the conduction mechanisms as measurements are typically only performed at room temperature. Here, we combine temperature-dependent current-voltage (IV) measurements from 15 - 300 K with magnetoresistance studies and achieve new insight into the nature of the conducting filaments. We identify a novel semiconducting state that behaves as a quantum point contact and find evidence for a possible electric-field driven phase transition. The insulating state exhibits unexpectedly complex IV characteristics that highlight the disordered nature of the ruptured filament while we find clear signs of anisotropic magnetoresistance in the metallic state. Our results expose previously unobserved behaviors in nanowire resistive switching devices and pave the way for future applications where both electrical and magnetic switching can be achieved in a single device. This work was supported by ONR Grant N-00014-15-1-2357.

  20. Resistance change effect in SrTiO3/Si (001) isotype heterojunction

    NASA Astrophysics Data System (ADS)

    Huang, Xiushi; Gao, Zhaomeng; Li, Pei; Wang, Longfei; Liu, Xiansheng; Zhang, Weifeng; Guo, Haizhong

    2018-02-01

    Resistance switching has been observed in double and multi-layer structures of ferroelectric films. The higher switching ratio opens up a vast path for emerging ferroelectric semiconductor devices. An n-n+ isotype heterojunction has been fabricated by depositing an oxide SrTiO3 layer on a conventional n-type Si (001) substrate (SrTiO3/Si) by pulsed laser disposition. Rectification and resistive switching behaviors in the n-n+ SrTiO3/Si heterojunction were observed by a conductive atomic force microscopy, and the n-n+ SrTiO3/Si heterojunction exhibits excellent endurance and retention characteristics. The possible mechanism was proposed based on the band structure of the n-n+ SrTiO3/Si heterojunction, and the observed electrical behaviors could be attributed to the modulation effect of the electric field reversal on the width of accumulation and the depletion region, as well as the height of potential of the n-n+ junction formed at the STO/Si interface. Moreover, oxygen vacancies are also indicated to play a crucial role in causing insulator to semiconductor transition. These results open the way to potential application in future microelectronic devices based on perovskite oxide layers on conventional semiconductors.

  1. Exploring the coordination change of vanadium and structure transformation of metavanadate MgV2O6 under high pressure

    PubMed Central

    Tang, Ruilian; Li, Yan; Xie, Shengyi; Li, Nana; Chen, Jiuhua; Gao, Chunxiao; Zhu, Pinwen; Wang, Xin

    2016-01-01

    Raman spectroscopy, synchrotron angle-dispersive X-ray diffraction (ADXRD), first-principles calculations, and electrical resistivity measurements were carried out under high pressure to investigate the structural stability and electrical transport properties of metavanadate MgV2O6. The results have revealed the coordination change of vanadium ions (from 5+1 to 6) at around 4 GPa. In addition, a pressure-induced structure transformation from the C2/m phase to the C2 phase in MgV2O6 was detected above 20 GPa, and both phases coexisted up to the highest pressure. This structural phase transition was induced by the enhanced distortions of MgO6 octahedra and VO6 octahedra under high pressure. Furthermore, the electrical resistivity decreased with pressure but exhibited different slope for these two phases, indicating that the pressure-induced structural phase transitions of MgV2O6 was also accompanied by the obvious changes in its electrical transport behavior. PMID:27924843

  2. Multistate storage nonvolatile memory device based on ferroelectricity and resistive switching effects of SrBi2Ta2O9 films

    NASA Astrophysics Data System (ADS)

    Song, Zhiwei; Li, Gang; Xiong, Ying; Cheng, Chuanpin; Zhang, Wanli; Tang, Minghua; Li, Zheng; He, Jiangheng

    2018-05-01

    A memory device with a Pt/SrBi2Ta2O9(SBT)/Pt(111) structure was shown to have excellent combined ferroelectricity and resistive switching properties, leading to higher multistate storage memory capacity in contrast to ferroelectric memory devices. In this device, SBT polycrystalline thin films with significant (115) orientation were fabricated on Pt(111)/Ti/SiO2/Si(100) substrates using CVD (chemical vapor deposition) method. Measurement results of the electric properties exhibit reproducible and reliable ferroelectricity switching behavior and bipolar resistive switching effects (BRS) without an electroforming process. The ON/OFF ratio of the resistive switching was found to be about 103. Switching mechanisms for the low resistance state (LRS) and high resistance state (HRS) currents are likely attributed to the Ohmic and space charge-limited current (SCLC) behavior, respectively. Moreover, the ferroelectricity and resistive switching effects were found to be mutually independent, and the four logic states were obtained by controlling the periodic sweeping voltage. This work holds great promise for nonvolatile multistate memory devices with high capacity and low cost.

  3. Structural, morphological and electrical properties of Sn-substituted Ni-Zn ferrites synthesized by double sintering technique

    NASA Astrophysics Data System (ADS)

    Ali, M. A.; Uddin, M. M.; Khan, M. N. I.; Chowdhury, F.-U.-Z.; Haque, S. M.

    2017-02-01

    The Sn-substituted Ni-Zn ferrites, (0.0≤x≤0.30), have been synthesized by the standard double sintering technique from the oxide nanopowders of Ni, Zn, Fe and Sn. The structural and electrical properties have been investigated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), DC resistivity and dielectric measurements. From XRD data, the single cubic spinel phase has been confirmed for x≤0.1, whereas for x>0.1 an extra intermediate phase has been detected along with the cubic spinel phase of Ni-Zn ferrite. The grain size is increased due to Sn substitution in Ni-Zn ferrites. DC resistivity as a function of temperature has been measured by two probe method. The semiconducting nature has been found operative in the samples. The DC resistivity was found to decrease whilst the dielectric constant increased with increasing Sn content in Ni-Zn ferrites. The unusual behavior of the dielectric loss factor of the ferrites was explained by the Rezlescu model. The electrical relaxation of the ferrites has been studied in terms of electric modulus formalism and the time for dielectric relaxation was calculated. The contribution of grain resistance has been studied from the Cole-Cole plot. The suitability to use the as prepared samples in the miniaturized memory devices based capacitive components or energy storage principles are confirmed from the values of dielectric constant.

  4. Designing across ages: Multi-agent-based models and learning electricity

    NASA Astrophysics Data System (ADS)

    Sengupta, Pratim

    Electricity is regarded as one of the most challenging topics for students at all levels -- middle school -- college (Cohen, Eylon, & Ganiel, 1983; Belcher & Olbert, 2003; Eylon & Ganiel, 1990; Steinberg et al., 1985). Several researchers have suggested that naive misconceptions about electricity stem from a deep incommensurability (Slotta & Chi, 2006; Chi, 2005) or incompatibility (Chi, Slotta & Leauw, 1994; Reiner, Slotta, Chi, & Resnick, 2000) between naive and expert knowledge structures. I first present an alternative theoretical framework that adopts an emergent levels-based perspective as proposed by Wilensky & Resnick (1999). From this perspective, macro-level phenomena such as electric current and resistance, as well as behavior of linear electric circuits, can be conceived of as emergent from simple, body-syntonic interactions between electrons and ions in a circuit. I argue that adopting such a perspective enables us to reconceive commonly noted misconceptions in electricity as behavioral evidences of "slippage between levels" -- i.e., these misconceptions appear when otherwise productive knowledge elements are sometimes inappropriately activated due to certain macro-level phenomenological cues only -- and, that the same knowledge elements when activated due to phenomenological cues at both micro- and macro-levels, can engender a deeper, expert-like understanding. I will then introduce NIELS (NetLogo Investigations In Electromagnetism, Sengupta & Wilensky, 2006, 2008, 2009), a low-threshold high-ceiling (LTHC) learning environment of multi-agent-based computational models that represent phenomena such as electric current and resistance, as well as the behavior of linear electric circuits, as emergent. I also present results from implementations of NIELS in 5th, 7th and 12th grade classrooms that show the following: (a) how leveraging certain "design elements" over others in NIELS models can create new phenomenological cues, which in turn can be appropriated for learners in different grades; (b) how learners' existing knowledge structures can be bootstrapped to generate deep understanding; (c) how these knowledge structures evolve as the learners progress through the implemented curriculum; (d) improvement of learners' understanding in the post-test compared to the pre-test; and (e) how NIELS students compare with a comparison group of 12th grade students who underwent traditional classroom instruction.

  5. Quantum critical fluctuations in the heavy fermion compound Ce(Ni 0.935Pd 0.065) 2Ge 2

    DOE PAGES

    Wang, C. H.; Poudel, L.; Taylor, Alice E.; ...

    2014-12-03

    Electric resistivity, specific heat, magnetic susceptibility, and inelastic neutron scattering experiments were performed on a single crystal of the heavy fermion compound Ce(Ni 0.935Pd 0.065) 2Ge 2 in order to research the spin fluctuations near an antiferromagnetic (AF) quantum critical point (QCP). The resistivity and the specific heat coefficient for T ≤ 1 K exhibit the power law behavior expected for a 3D itinerant AF QCP (ρ(T) ~ T 3/2 and γ(T) ~ γ 0 - bT 1/2). However, for 2 ≤ T ≤ 10 K, the susceptibility and specific heat vary as log T and the resistivity varies linearlymore » with temperature. In addition, despite the fact that the resistivity and specific heat exhibit the non-Fermi liquid behavior expected at a QCP, the correlation length, correlation time, and staggered susceptibility of the spin fluctuations remain finite at low temperature. In conclusion, we suggest that these deviations from the divergent behavior expected for a QCP may result from alloy disorder.« less

  6. Aging effects on vertical graphene nanosheets and their thermal stability

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Polaki, S. R.; Ajikumar, P. K.; Krishna, N. G.; Kamruddin, M.

    2018-03-01

    The present study investigates environmental aging effects and thermal stability of vertical graphene nanosheets (VGN). Self-organized VGN is synthesized by plasma enhanced chemical vapor deposition and exposed to ambient conditions over 6-month period to examine its aging behavior. A systematic inspection is carried out on morphology, chemical structure, wettability and electrical property by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, water contact angle and four-probe resistivity measurements at regular intervals, respectively. Detailed microscopic and spectroscopic analysis substantiated the retention of graphitic quality and surface chemistry of VGN over the test period. An unchanged sheet resistance and hydrophobicity reveals its electrical and wetting stability over the time, respectively. Thermogravimetric analysis ensures an excellent thermal stability of VGN up to 575 °C in ambient atmosphere. These findings of long-term morphological, structural, wetting, electrical and thermal stability of VGN validate their potential utilization for the next-generation device applications.

  7. Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers.

    PubMed

    Yoo, Doo-Yeol; You, Ilhwan; Lee, Seung-Jung

    2017-05-08

    This study was conducted to evaluate the effect of the carbon-based nanomaterial type on the electrical properties of cement paste. Three different nanomaterials, multi-walled carbon nanotubes (MWCNTs), graphite nanofibers (GNFs), and graphene (G), were incorporated into the cement paste at a volume fraction of 1%. The self-sensing capacity of the cement composites was also investigated by comparing the compressive stress/strain behaviors by evaluating the fractional change of resistivity (FCR). The electrical resistivity of the plain cement paste was slightly reduced by adding 1 vol % GNFs and G, whereas a significant decrease of the resistivity was achieved by adding 1 vol % MWCNTs. At an identical volume fraction of 1%, the composites with MWCNTs provided the best self-sensing capacity with insignificant noise, followed by the composites containing GNFs and G. Therefore, the addition of MWCNTs was considered to be the most effective to improve the self-sensing capacity of the cement paste. Finally, the composites with 1 vol % MWCNTs exhibited a gauge factor of 113.2, which is much higher than commercially available strain gauges.

  8. Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers

    PubMed Central

    Yoo, Doo-Yeol; You, Ilhwan; Lee, Seung-Jung

    2017-01-01

    This study was conducted to evaluate the effect of the carbon-based nanomaterial type on the electrical properties of cement paste. Three different nanomaterials, multi-walled carbon nanotubes (MWCNTs), graphite nanofibers (GNFs), and graphene (G), were incorporated into the cement paste at a volume fraction of 1%. The self-sensing capacity of the cement composites was also investigated by comparing the compressive stress/strain behaviors by evaluating the fractional change of resistivity (FCR). The electrical resistivity of the plain cement paste was slightly reduced by adding 1 vol % GNFs and G, whereas a significant decrease of the resistivity was achieved by adding 1 vol % MWCNTs. At an identical volume fraction of 1%, the composites with MWCNTs provided the best self-sensing capacity with insignificant noise, followed by the composites containing GNFs and G. Therefore, the addition of MWCNTs was considered to be the most effective to improve the self-sensing capacity of the cement paste. Finally, the composites with 1 vol % MWCNTs exhibited a gauge factor of 113.2, which is much higher than commercially available strain gauges. PMID:28481296

  9. Evaluation of Non-Chromate Passivations on Electroplated gamma-Phase Zinc Nickel

    NASA Astrophysics Data System (ADS)

    Volz, Steven Michael

    This research focused on the corrosion response and electrochemical behavior of electroplated low hydrogen embrittlement alkaline gamma-phase zinc nickel with passivation layers. The motivation was the need to replace hexavalent chromium conversion coatings in military grade electrical systems with a more environment friendly alternative. The passivation layers were employed for the purpose of mitigating corrosion attack while maintaining low contact resistance. Trivalent chromium-based passivations and cerium-based passivations were compared against the currently used hexavalent chromium conversion coating. The coating systems were compared using electrochemical impedance spectroscopy, cyclic potentiodymanic scans, salt spray exposure testing, electrical resistance measurements, microstructure analysis, and compositional analysis. Coating systems with lower open circuit had a lower corrosion current and performed better during salt spray testing. All of the systems evaluated had corrosion products consistent with oxidized zinc compounds but the morphology of the passivation was dependent on the passivation. The electrical contact resistance ranged from 1 to 108 mO/cm 2, after salt spray testing. Two versions of Trivalent chromium-based passivations, were able to meet military performance specifications after corrosion testing.

  10. Electrical transport property, thermal stability and oxidation resistance of single crystalline β-Zn4Sb3 prepared using the Bi-Sn mixed-flux method

    NASA Astrophysics Data System (ADS)

    Deng, Shuping; Li, Decong; Chen, Zhong; Tang, Yu; Shen, Lanxian; Deng, Shukang

    2017-12-01

    Single crystal samples β-Zn4Sb3 have been prepared by using Bi-Sn mixed-flux method. The obtained crystals exhibit p-type conduction behavior with carrier concentration varying from 4.40 × 1019 to 18.12 × 1019 cm-3 as carrier mobility changes from 25.8 to 61.5 cm2 V-1 s-1 at room temperature. Electrical transport properties of the samples were optimized by Bi-Sn co-doped, which brought by Bi-Sn mixed-flux. And the maximal power factor of 1.45 × 10-3 W m-1 K-2 is achieved at 510 K for the sample with Bi flux content x = 0.5. Consequently, the oxidation resistance of the sample was determined by exploring the effects of heat treatment in air on electrical transport properties and thermal stability, which the single crystalline β-Zn4Sb3 still possess an excellent oxidation resistance and thermal stability after the heat treatment process.

  11. Modulation of resistive switching characteristics for individual BaTiO3 microfiber by surface oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Miao, Zhilei; Chen, Lei; Zhou, Fang; Wang, Qiang

    2018-01-01

    Different from traditional thin-film BaTiO3 (BTO) RRAM device with planar structure, individual microfiber-shaped RRAM device, showing promising application potentials in the micro-sized non-volatile memory system, has not been investigated so far to demonstrate resistive switching behavior. In this work, individual sol-gel BTO microfiber has been formed using the draw-bench method, followed by annealing in different atmospheres of air and argon, respectively. The resistive switching characteristics of the individual BTO microfiber have been investigated by employing double-probe SEM measurement system, which shows great convenience to test local electrical properties by modulating the contact sites between the W probes and the BTO microfiber. For the sample annealed in air, the average resistive ON/OFF ratio is as high as 108, enhanced about four orders in comparison with the counterpart that annealed in Argon. For the sample annealed in argon ambience, the weakened resistive ON/OFF ratio can be attributed to the increased presence of oxygen vacancies in the surface of BTO fibers, and the underlying electrical conduction mechanisms are also discussed.

  12. Anomalous magnetotransport behavior in Fe-doped MnNiGe alloys

    NASA Astrophysics Data System (ADS)

    Dutta, P.; Pramanick, S.; Singh, Vijay; Major, Dan Thomas; Das, D.; Chatterjee, S.

    2016-04-01

    The electrical dc transport properties of hexagonal magnetic equiatomic alloys of nominal composition Mn1 -xFexNiGe (x =0.2 and0.25 ) have been investigated experimentally as well as theoretically using first-principles electronic structure calculations. Thermal hysteresis in the magnetization data indicates that the alloys undergo a first-order martensitic transition. Both the alloys show unusual nonmetallic resistivity behavior and a noticeable amount of training effect in resistivity when thermally cycled through the first-order martensitic transition. We observe moderate negative magnetoresistance (˜-11.5 % for 150 kOe) at 5 K (well below the martensitic transition temperature) associated with clear virgin line effect for both the alloys. We have adapted different flavors of density functional theory approach to understand the experimentally observed nonmetallic transport behavior.

  13. A study of electron and thermal transport in layered titanium disulphide single crystals

    NASA Astrophysics Data System (ADS)

    Suri, Dhavala; Siva, Vantari; Joshi, Shalikram; Senapati, Kartik; Sahoo, P. K.; Varma, Shikha; Patel, R. S.

    2017-12-01

    We present a detailed study of thermal and electrical transport behavior of single crystal titanium disulphide flakes, which belong to the two dimensional, transition metal dichalcogenide class of materials. In-plane Seebeck effect measurements revealed a typical metal-like linear temperature dependence in the range of 85-285 K. Electrical transport measurements with in-plane current geometry exhibited a nearly T 2 dependence of resistivity in the range of 42-300 K. However, transport measurements along the out-of-plane current geometry showed a transition in temperature dependence of resistivity from T 2 to T 5 beyond 200 K. Interestingly, Au ion-irradiated TiS2 samples showed a similar T 5 dependence of resistivity beyond 200 K, even in the current-in-plane geometry. Micro-Raman measurements were performed to study the phonon modes in both pristine and ion-irradiated TiS2 crystals.

  14. Resistive switching characteristics and mechanisms in silicon oxide memory devices

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Wu, Xiaohan; Chen, Yen-Ting; Wang, Yanzhen; Xue, Fei; Lee, Jack C.

    2016-05-01

    Intrinsic unipolar SiOx-based resistance random access memories (ReRAM) characterization, switching mechanisms, and applications have been investigated. Device structures, material compositions, and electrical characteristics are identified that enable ReRAM cells with high ON/OFF ratio, low static power consumption, low switching power, and high readout-margin using complementary metal-oxide semiconductor transistor (CMOS)-compatible SiOx-based materials. These ideas are combined with the use of horizontal and vertical device structure designs, composition optimization, electrical control, and external factors to help understand resistive switching (RS) mechanisms. Measured temperature effects, pulse response, and carrier transport behaviors lead to compact models of RS mechanisms and energy band diagrams in order to aid the development of computer-aided design for ultralarge-v scale integration. This chapter presents a comprehensive investigation of SiOx-based RS characteristics and mechanisms for the post-CMOS device era.

  15. Multi-functional properties of CaCu3Ti4O12 thin films

    NASA Astrophysics Data System (ADS)

    Felix, A. A.; Rupp, J. L. M.; Varela, J. A.; Orlandi, M. O.

    2012-09-01

    In this work, electric transport properties of CaCu3Ti4O12 (CCTO) thin films were investigated for resistive switching, rectifying and gas sensor applications. Single phase CCTO thin films were produced by polymeric precursor method (PPM) on different substrates and their electrical properties were studied. Films produced on LNO/Si substrates have symmetrical non-ohmic current-voltage characteristics, while films deposited on Pt/Si substrates have a highly asymmetrical non-ohmic behavior which is related to a metal-semiconductor junction formed at the CCTO/Pt interface. In addition, results confirm that CCTO has a resistive switching response which is enhanced by Schottky contacts. Sensor response tests revealed that CCTO films are sensitive to oxygen gas and exhibit n-type conductivity. These results demonstrate the versatility of CCTO thin film prepared by the PPM method for gas atmosphere or bias dependent resistance applications.

  16. Electrical properties of multilayer (DLC-TiC) films produced by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Alawajji, Raad A.; Kannarpady, Ganesh K.; Nima, Zeid A.; Kelly, Nigel; Watanabe, Fumiya; Biris, Alexandru S.

    2018-04-01

    In this work, pulsed laser deposition was used to produce a multilayer diamond like carbon (ML (DLC-TiC)) thin film. The ML (DLC-TiC) films were deposited on Si (100) and glass substrates at various substrate temperatures in the range of 20-450 °C. Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and atomic force microscopy were utilized to characterize the prepared films. Raman analysis revealed that as the substrate temperature increased, the G-peak position shifted to a higher raman shift and the full width at half maximum of the G and D bands decreased. XPS analysis indicated a decrease in sp3/sp2 ratio and an increase in Ti-C bond intensity when the substrate temperature was increased. Additionally, the surface roughness of ML (DLC-TiC) filmswas affected by the type and temperature of the substrate. The electrical measurement results indicated that the electrical resistivity of the ML (DLC-TiC) film deposited on Si and glass substrates showed the same behavior-the resistivity decreased when substrate temperature increased. Furthermore, the ML (DLC-TiC) films deposited on silicon showed lower electrical resistivity, dropping from 8.39E-4 Ω-cm to 5.00E-4 Ω-cm, and, similarly, the films on the glass substrate displayed a drop in electrical resistivity from 1.8E-2 Ω-cm to 1.2E-3 Ω-cm. These enhanced electrical properties indicate that the ML (DLC-TiC) films have widespread potential as transducers for biosensors in biological research; electrochemical electrodes, because these films can be chemically modified; biocompatible coatings for medicals tools; and more.

  17. Quantitative Observation of Threshold Defect Behavior in Memristive Devices with Operando X-ray Microscopy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Huajun; Dong, Yongqi; Cherukara, Matthew J.

    Memristive devices are an emerging technology that enables both rich interdisciplinary science and novel device functionalities, such as nonvolatile memories and nanoionics-based synaptic electronics. Recent work has shown that the reproducibility and variability of the devices depend sensitively on the defect structures created during electroforming as well as their continued evolution under dynamic electric fields. However, a fundamental principle guiding the material design of defect structures is still lacking due to the difficulty in understanding dynamic defect behavior under different resistance states. Here, we unravel the existence of threshold behavior by studying model, single-crystal devices: resistive switching requires that themore » pristine oxygen vacancy concentration reside near a critical value. Theoretical calculations show that the threshold oxygen vacancy concentration lies at the boundary for both electronic and atomic phase transitions. Through operando, multimodal X-ray imaging, we show that field tuning of the local oxygen vacancy concentration below or above the threshold value is responsible for switching between different electrical states. These results provide a general strategy for designing functional defect structures around threshold concentrations to create dynamic, field-controlled phases for memristive devices.« less

  18. Ternary Synaptic Plasticity Arising from Memdiode Behavior of TiOx Single Nanowire

    NASA Astrophysics Data System (ADS)

    Hong, Deshun; Chen, Yuansha; Sun, Jirong; Shen, Baogen; Group 3 of Magnetism Laboratory, Beijing National LaboratoryCondensed Matter Physics Team

    Electric field-induced resistive switching (RS) effect has been widely explored as a novel nonvolatile memory over the past few years. Recently, the RS behavior with continuous transition has received considerable attention for its promising prospect in neuromorphic simulation. Here, the switching characteristics of a planar-structured TiOx single nanowire device were systematically investigated. It exhibited a strong electrical history-dependent rectifying behavior that was defined as a ''memdiode''. We further demonstrated that a ternary synaptic plasticity could be realized in such a TiOx nanowire device, characterized by the resistance and photocurrent responses. For a given state of the memdiode, a conjugated memristive characteristic and a distinct photocurrent can be simulaneously obtained, resulting in a synchronous implementation of various Hebbian plasticities with the same temporal order of spikes. These intriguing properties of TiOx memdiode provide a feasible way toward the designing of multifunctional electronic synapses as well as programmable artificial neural network This work has been partially supported by the National Basic Research of China (2013CB921700), the ``Strategic Priority Research Program (B)'' of the Chinese Academy of Sciences (XDB07030200) and the National Natural Science Foundation of China (11374339).

  19. USE OF ELECTRICAL RESISTIVITY PROBE WITH MODFLOW FOR SCREENING LEVEL DETERMINATION OF PARAFLUVIAL HYPORHEIC FLOW

    EPA Science Inventory

    The hyporheic zone can provide significant nutrient attenuation in watersheds. Conceptual models describe the behavior of nutrients and biota for the hyporheic ecotone, but site characterization is needed to quantify these effects at the restoration reach scale (hundreds of meter...

  20. Investigation of electron beam lithography effects on metal-insulator transition behavior of vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Yuce, H.; Alaboz, H.; Demirhan, Y.; Ozdemir, M.; Ozyuzer, L.; Aygun, G.

    2017-11-01

    Vanadium dioxide (VO2) shows metal-insulator phase transition at nearly 68 °C. This metal-insulator transition (MIT) in VO2 leads to a significant change in near-infrared transmittance and an abrupt change in the resistivity of VO2. Due to these characteristics, VO2 plays an important role on optic and electronic devices, such as thermochromic windows, meta-materials with tunable frequency, uncooled bolometers and switching devices. In this work, VO2 thin films were fabricated by reactive direct current magnetron sputtering in O2/Ar atmosphere on sapphire substrates without any further post annealing processes. The effect of sputtering parameters on optical characteristics and structural properties of grown thin films was investigated by SEM, XRD, Raman and UV/VIS spectrophotometer measurements. Patterning process of VO2 thin films was realized by e-beam lithography technique to monitor the temperature dependent electrical characterization. Electrical properties of VO2 samples were characterized using microprobe station in a vacuum system. MIT with hysteresis behavior was observed for the unpatterned square samples at around 68 °C. By four orders of magnitude of resistivity change was measured for the deposited VO2 thin films at transition temperature. After e-beam lithography process, substantial results in patterned VO2 thin films were observed. In this stage, for patterned VO2 thin films as stripes, the change in resistivity of VO2 was reduced by a factor of 10. As a consequence of electrical resistivity measurements, MIT temperature was shifted from 68 °C to 50 °C. The influence of e-beam process on the properties of VO2 thin films and the mechanism of the effects are discussed. The presented results contribute to the achievement of VO2 based thermochromic windows and bolometer applications.

  1. Oxidation behavior and area specific resistance of La, Cu and B alloyed Fe-22Cr ferritic steels for solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Swaminathan, Srinivasan; Ko, Yoon Seok; Lee, Young-Su; Kim, Dong-Ik

    2017-11-01

    Two Fe-22 wt% Cr ferritic stainless steels containing varying concentrations of La (0.14 or 0.52 wt%), Cu (0.17 or 1.74 wt%) and B (48 or 109 ppm) are investigated with respect to oxidation behavior and high temperature area specific resistance (ASR) of the surface oxide scales. To determine the oxidation resistance of developed steels, continuous isothermal oxidation is carried out at 800 °C in air, for 2000 h, and their thermally grown oxide scale is characterized using dynamic SIMS, SEM/EDX, XRD and GI-XRD techniques. To assess their electrical performance, the ASR measurement by four-point probe method is conducted at 800 °C in air, for 400 h. In higher La content steel, the La-oxides at the scale/alloy interface promotes the oxygen transport which resulted in sub-surface oxidation of Mn, Cr, Ti and Al. Moreover, the inward growth of oxides contributes to increase of Fe-Cr alloy protrusions within the scale, which reduced the ASR. In contrast, sub-surface oxidation is reduced in high Cu-alloyed steel by segregated Cu at the scale/alloy interface. Thus, addition of Cu is effective to oxidation resistance and also to better electrical performance. However, no obvious impact of B on the scale sequence and/or ASR is observed.

  2. Comparison and ranking of superelasticity of different austenite active nickel-titanium orthodontic archwires using mechanical tensile testing and correlating with its electrical resistivity

    PubMed Central

    Nagarajan, D.; Baskaranarayanan, Balashanmugam; Usha, K.; Jayanthi, M. S.; Vijjaykanth, M.

    2016-01-01

    Introduction: The application of light and continuous forces for optimum physiological response and the least damage to the tooth supporting structures should be the primary aim of an orthodontist. Nickel-titanium (NiTi) alloys with their desirable properties are one of the natural choices of the clinicians. Aim: This study was aimed to compare and rank them based on its tensile strength and electrical resistivity. Materials and Methods: The sample consisted of eight groups of 0.017 inch × 0.025 inch rectangular archwires from eight different manufacturers, and five samples from each group for tensile testing and nine samples for electrical resistivity tests were used. Data for stress at 10% strain and the initial slope were statistically analyzed with an analysis of variance and Scheffe tests with P < 0.05. The stress/strain plots of each product were ranked for superelastic behavior. The rankings of the wires tested were based primarily on the unloading curve's slope which is indicative of the magnitude of the deactivation force and secondarily on the length of the horizontal segment which is indicative of continuous forces during deactivation. For calculating the electric resistivity, the change in resistance after inducing strain in the wires was taken into account for the calculation of degree of martensite transformation and for ranking. Results: In tensile testing Ortho Organizers wires ranked first and GAC Lowland NiTi wires ranked last. For resistivity tests Ormco A wires were found superior and Morelli remained last. Conclusion: these rankings should be correlated clinically and need further studies. PMID:27829751

  3. Investigation on strain sensing properties of carbon-based nanocomposites for structural aircraft applications

    NASA Astrophysics Data System (ADS)

    Lamberti, Patrizia; Spinelli, Giovanni; Tucci, Vincenzo; Guadagno, Liberata; Vertuccio, Luigi; Russo, Salvatore

    2016-05-01

    The mechanical and electrical properties of a thermosetting epoxy resin particularly indicated for the realization of structural aeronautic components and reinforced with multiwalled carbon nanotubes (MWCNTs, at 0.3 wt%) are investigated for specimens subjected to cycles and different levels of applied strain (i.e. ɛ) loaded both in axial tension and flexural mode. It is found that the piezoresistive behavior of the resulting nanocomposite evaluated in terms of variation of the electrical resistance is strongly affected by the applied mechanical stress mainly due to the high sensibility and consequent rearrangement of the electrical percolating network formed by MWCNTs in the composite at rest or even under a small strain. In fact, the variations in electrical resistance that occur during the mechanical stress are correlated to the deformation exhibited by the nanocomposites. In particular, the overall response of electrical resistance of the composite is characterized by a linear increase with the strain at least in the region of elastic deformation of the material in which the gauge factor (i.e. G.F.) of the sensor is usually evaluated. Therefore, the present study aims at investigating the possible use of the nanotechnology for application of embedded sensor systems in composite structures thus having capability of self-sensing and of responding to the surrounding environmental changes, which are some fundamental requirements especially for structural aircraft monitoring applications.

  4. Carbon fiber epoxy composites for both strengthening and health monitoring of structures.

    PubMed

    Salvado, Rita; Lopes, Catarina; Szojda, Leszek; Araújo, Pedro; Gorski, Marcin; Velez, Fernando José; Castro-Gomes, João; Krzywon, Rafal

    2015-05-06

    This paper presents a study of the electrical and mechanical behavior of several continuous carbon fibers epoxy composites for both strengthening and monitoring of structures. In these composites, the arrangement of fibers was deliberately diversified to test and understand the ability of the composites for self-sensing low strains. Composites with different arrangements of fibers and textile weaves, mainly unidirectional continuous carbon reinforced composites, were tested at the dynamometer. A two-probe method was considered to measure the relative electrical resistance of these composites during loading. The measured relative electrical resistance includes volume and contact electrical resistances. For all tested specimens, it increases with an increase in tensile strain, at low strain values. This is explained by the improved alignment of fibers and resulting reduction of the number of possible contacts between fibers during loading, increasing as a consequence the contact electrical resistance of the composite. Laboratory tests on strengthening of structural elements were also performed, making hand-made composites by the "wet process", which is commonly used in civil engineering for the strengthening of all types of structures in-situ. Results show that the woven epoxy composite, used for strengthening of concrete elements is also able to sense low deformations, below 1%. Moreover, results clearly show that this textile sensor also improves the mechanical work of the strengthened structural elements, increasing their bearing capacity. Finally, the set of obtained results supports the concept of a textile fabric capable of both structural upgrade and self-monitoring of structures, especially large structures of difficult access and needing constant, sometimes very expensive, health monitoring.

  5. Carbon Fiber Epoxy Composites for Both Strengthening and Health Monitoring of Structures

    PubMed Central

    Salvado, Rita; Lopes, Catarina; Szojda, Leszek; Araújo, Pedro; Gorski, Marcin; Velez, Fernando José; Castro-Gomes, João; Krzywon, Rafal

    2015-01-01

    This paper presents a study of the electrical and mechanical behavior of several continuous carbon fibers epoxy composites for both strengthening and monitoring of structures. In these composites, the arrangement of fibers was deliberately diversified to test and understand the ability of the composites for self-sensing low strains. Composites with different arrangements of fibers and textile weaves, mainly unidirectional continuous carbon reinforced composites, were tested at the dynamometer. A two-probe method was considered to measure the relative electrical resistance of these composites during loading. The measured relative electrical resistance includes volume and contact electrical resistances. For all tested specimens, it increases with an increase in tensile strain, at low strain values. This is explained by the improved alignment of fibers and resulting reduction of the number of possible contacts between fibers during loading, increasing as a consequence the contact electrical resistance of the composite. Laboratory tests on strengthening of structural elements were also performed, making hand-made composites by the “wet process”, which is commonly used in civil engineering for the strengthening of all types of structures in-situ. Results show that the woven epoxy composite, used for strengthening of concrete elements is also able to sense low deformations, below 1%. Moreover, results clearly show that this textile sensor also improves the mechanical work of the strengthened structural elements, increasing their bearing capacity. Finally, the set of obtained results supports the concept of a textile fabric capable of both structural upgrade and self-monitoring of structures, especially large structures of difficult access and needing constant, sometimes very expensive, health monitoring. PMID:25954955

  6. The effect of different surfactants/plastisizers on the electrical behavior of CNT nano-modified cement mortars

    NASA Astrophysics Data System (ADS)

    Dalla, P. T.; Alafogianni, P.; Tragazikis, I. K.; Exarchos, D. A.; Dassios, K.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    Cement-based materials have in general low electrical conductivity. Electrical conductivity is the measure of the ability of the material to resist the passage of electrical current. The addition of a conductive admixture such as Multi-Walled Carbon Nanotubes (MWCNTs) in a cement-based material increases the conductivity of the structure. This research aims to characterize nano-modified cement mortars with MWCNT reinforcements. Such nano-composites would possess smartness and multi-functionality. Multifunctional properties include electrical, thermal and piezo-electric characteristics. One of these properties, the electrical conductivity, was measured using a custom made apparatus that allows application of known D.C. voltage on the nano-composite. In this study, the influence of different surfactants/plasticizers on CNT nano-modified cement mortar specimens with various concentrations of CNTs (0.2% wt. cement CNTs - 0.8% wt. cement CNTs) on the electrical conductivity is assessed.

  7. Could binary mixture of Nd-Ni ions control the electrical behavior of strontium-barium M-type hexaferrite nanoparticles?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com; Farooq, Saima

    2011-05-15

    Research highlights: {yields} Strontium-barium hexaferrites (Sr{sub 0.5}Ba{sub 0.5}Fe{sub 12}O{sub 19}) in single magnetoplumbite phase solid structure are synthesized by the co-precipitation method. {yields} Structural and electrical properties of Nd-Ni substituted ferrites are investigated. {yields} These ferrite materials possess high electrical resistivity (108 {Omega} cm) that is essential to curb the eddy current loss, which is pre-requisite for surface mount devices. -- Abstract: Cationic substitution in M-type hexaferrites is considered to be an important tool for modification of their electrical properties. This work is part of our comprehensive study on the synthesis and characterization of Nd-Ni doped strontium-barium hexaferrite nanomaterials ofmore » nominal composition Sr{sub 0.5}Ba{sub 0.5-x}Nd{sub x}Fe{sub 12-y}Ni{sub y}O{sub 19} (x = 0.00-0.10; y = 0.00-1.00). Doping with this binary mixture modulates the physical and electrical properties of strontium-barium hexaferrite nanoparticles. Structural and electrical properties of the co-precipitated ferrites are investigated using state-of-the-art techniques. The results of X-ray diffraction analysis reveal that the lattice parameters and cell volume are inversely related to the dopant content. Temperature dependent DC-electrical resistivity measurements infer that resistivity of strontium-barium hexaferrites decreases from 1.8 x 10{sup 10} to 2.0 x 10{sup 8} {Omega} cm whereas the drift mobility, dielectric constant and dielectric loss tangent are directly related to the Nd-Ni content. The results of the study demonstrate a relationship between the modulation of electrical properties of substituted ferrites and nature of cations and their lattice site occupancy.« less

  8. Tuning the resistive switching properties of TiO2-x films

    NASA Astrophysics Data System (ADS)

    Ghenzi, N.; Rozenberg, M. J.; Llopis, R.; Levy, P.; Hueso, L. E.; Stoliar, P.

    2015-03-01

    We study the electrical characteristics of TiO2-x-based resistive switching devices fabricated with different oxygen/argon flow ratio during the oxide thin film sputtering deposition. Upon minute changes in this fabrication parameter, three qualitatively different device characteristics were accessed in the same system, namely, standard bipolar resistive switching, electroforming-free devices, and devices with multi-step breakdown. We propose that small variations in the oxygen/ argon flow ratio result in relevant changes of the oxygen vacancy concentration, which is the key parameter determining the resistive switching behavior. The coexistence of percolative or non-percolative conductive filaments is also discussed. Finally, the hypothesis is verified by means of the temperature dependence of the devices in low resistance state.

  9. Correlation between the oxide impedance and corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys

    NASA Astrophysics Data System (ADS)

    Park, Sang-Yoon; Lee, Myung-Ho; Jeong, Yong-Hwan; Jung, Youn-Ho

    2004-12-01

    The correlation between the oxide impedance and corrosion behavior of two series of Zr-Nb-Sn-Fe-Cu alloys was evaluated. Corrosion tests were performed in a 70 ppm LiOH aqueous solution at 360°C for 300 days. The results of the corrosion tests revealed that the corrosion behavior of the alloys depended on the Nb and Sn content. The impedance characteristics for the pre- and post-transition oxide layers formed on the surface of the alloys were investigated in sulfuric acid at room temperature. From the results, a pertinent equivalent circuit model was preferably established, explaining the properties of double oxide layers. The impedance of the oxide layers correlated with the corrosion behavior; better corrosion resistance always showed higher electric resistance for the inner layers. It is thus concluded that a pertinent equivalent circuit model would be useful for evaluating the long-term corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys.

  10. Magnetic and electrical transport properties of the pyrochlore iridate Bi2-xCoxIr2O7

    NASA Astrophysics Data System (ADS)

    Feng, Yuan; Zhu, Shoujin; Bian, Jian; Chen, Feng; Chen, Shiyun; Ma, Cuiling; Liu, Hui; Fang, Baolong

    2018-04-01

    In the present paper, we have studied the magnetic order and electrical transport properties of frustrated magnet Bi2-xCoxIr2O7 (x = 0, 0.2, 0.4, 0.6) polycrystalline. The behavior of the electrical resistivity above 50 K in the composites emanate from the electron-electron scattering processes. Grain boundary effects play a dominant role in the conduction process. It is also found from M-T data that the antiferromagnetic interaction and frustration enhances with increasing content of Co. Effective magnetic moments show a possibility of mixed valence state of Co (Co3+ and Co4+). The M-H data of doped samples taken at 2 K show hysteresis loops, which suggests the existence of ferromagnetic interaction originated from canted antiferromagnetic state. The magnetic behavior results from the competition between ferromagnetic and antiferromagnetic interaction at each magnetic site.

  11. Electrical resistance tomography from measurements inside a steel cased borehole

    DOEpatents

    Daily, William D.; Schenkel, Clifford; Ramirez, Abelardo L.

    2000-01-01

    Electrical resistance tomography (ERT) produced from measurements taken inside a steel cased borehole. A tomographic inversion of electrical resistance measurements made within a steel casing was then made for the purpose of imaging the electrical resistivity distribution in the formation remotely from the borehole. The ERT method involves combining electrical resistance measurements made inside a steel casing of a borehole to determine the electrical resistivity in the formation adjacent to the borehole; and the inversion of electrical resistance measurements made from a borehole not cased with an electrically conducting casing to determine the electrical resistivity distribution remotely from a borehole. It has been demonstrated that by using these combined techniques, highly accurate current injection and voltage measurements, made at appropriate points within the casing, can be tomographically inverted to yield useful information outside the borehole casing.

  12. Effect of Mn2+ doping on structural, electrical transport and dielectric properties of CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ansari, Mohd Mohsin Nizam; Khan, Shakeel; Bhargava, Richa; Ahmad, Naseem

    2018-05-01

    Manganese substituted cobalt ferrites, Co1-xMnxFe2O4 (0.0, 0.1, 0.2, 0.3 and 0.4) were successfully synthesized by sol-gel method. XRD analysis confirmed the formation of a single-phase cubic spinel structures having Fd-3m space group and crystallite size is found to be in the range of 12.9 - 15.5 nm. The lattice parameter increased from 8.4109 Å to 8.4531 Å with increasing Mn2+ ion doping. Dielectric constant (ɛ'), dielectric loss (tanδ) and ac conductivity (σac) were analyzed at room temperature as a function of frequency (42 Hz to 5 MHz) and the behavior is explained on the basis of Maxwell-Wagner interfacial polarization. DC electrical resistivity measurements were carried out by two-probe method. DC electrical resistivity decreases with increase in temperature confirms the semiconducting nature of the samples. Impedance spectroscopy method has been used to understand the conduction mechanism and the effect of grains and grain boundary on the electrical properties of the materials.

  13. Secondary emission conductivity of high purity silica fabric

    NASA Technical Reports Server (NTRS)

    Belanger, V. J.; Eagles, A. E.

    1977-01-01

    High purity silica fabrics were proposed for use as a material to control the effects of electrostatic charging of satellites at synchronous altitudes. These materials exhibited very quiet behavior when placed in simulated charging environments as opposed to other dielectrics used for passive thermal control which exhibit varying degrees of electrical arcing. Secondary emission conductivity is proposed as a mechanism for this superior behavior. Design of experiments to measure this phenomena and data taken on silica fabrics are discussed as they relate to electrostatic discharge (ESD) control on geosynchronous orbit spacecraft. Studies include the apparent change in resistivity of the material as a function of the electron beam energy, flux intensity, and the effect of varying electric fields impressed across the material under test.

  14. Study of electrical and magneto-transport properties in La0.5Sr0.5CoO3

    NASA Astrophysics Data System (ADS)

    Sharma, Gaurav; Tyagi, Shekhar; Rawat, R.; Sathe, V. G.

    2018-04-01

    Electric and Magneto-Transport properties of La0.5Sr0.5CoO3 have been investigated in the temperature range of 5-300K and under the magnetic field up to 8T. The para- to ferromagnetic transition is reflected in zero field R-T measurements in the form of change in slope. La0.5Sr0.5CoO3 is a well-known cluster glass compound with Tc˜250K. The compound show metallic behavior throughout the whole temperature range of measurement. The compound exhibits negative magneto-resistance around the magnetic ordering temperature due to suppression of spin disorder resistivity. The Seebeck coefficient as a function of temperature is also measured and the results are discussed.

  15. Resistivity changes of some amorphous alloys undergoing nanocrystallization

    NASA Astrophysics Data System (ADS)

    Barandiarán, J. M.; Fernández Barquín, L.; Sal, J. C. Gómez; Gorría, P.; Hernando, A.

    1993-10-01

    The electrical resistivity of amorphous alloys with compositions: Fe 73.5Nb 3Cu 1Si 13.5B 9, Fe 86Zr 7Cu 1B 6 and Co 80Nb 8B 12 has been studied in the temperature range from 300 to 1100 K, where crystallization occurs. The products of crystallization and the grain size have been studied by X-ray diffraction. In a first step, all the alloys crystallize with small grains of a few nanometers in diameter (nanocrystalline state), and the resistivity behavior at this process accounts for the difference between the amorphous and nanocrystalline phases. The nanocrystalline phases are: α-Fe-Si, α-Fe and fcc Co for the three compounds studied respectively. A second process, at which grain growth and precipitation of intermetallic compounds and borides takes place, has been found for all the alloys. The resistivity is sensitive, not only to the total transformed sample amount, but to the topological distribution of the crystalline phases, and therefore shows a more complex behavior than other well established techniques, as differential scanning calorimetry. This supplementary information given by the resistivity is also discussed.

  16. On the origin of residual strain in shape memory alloys: experimental investigation on evolutions in the microstructure of CuAlBe during complex thermomechanical loadings

    NASA Astrophysics Data System (ADS)

    Barati, M.; Arbab Chirani, S.; Kadkhodaei, M.; Saint-Sulpice, L.; Calloch, S.

    2017-02-01

    The behaviors of shape memory alloys (SMAs) strongly depend on the presence of different phases: austenite, thermally-induced martensite and stress-induced martensite. Consequently, it is important to know the phase volume fraction of each phases and their evolution during thermomechanical loadings. In this work, a three-phase proportioning method based on electric resistivity variation of a CuAlBe SMA is proposed. Simple thermomechanical loadings (i. e. pseudoplasticity and pseudoelasticity), one-way shape memory effect, recovery stress, assisted two-way memory effect at different level of stress and cyclic pseudoelasticity tests are investigated. Based on the electric resistivity results, during each loading path, evolution of the microstructure is determined. The origin of residual strain observed during the considered thermomechanical loadings is discussed. A special attention is paid to two-way shape memory effect generated after considered cyclic loadings and its relation with the developed residual strain. These results permit to identify and to validate the macroscopic models of SMAs behaviors.

  17. Food restriction promotes signaling effort in response to social challenge in a short-lived electric fish.

    PubMed

    Gavassa, Sat; Stoddard, Philip K

    2012-09-01

    Vertebrates exposed to stressful conditions release glucocorticoids to sustain energy expenditure. In most species elevated glucocorticoids inhibit reproduction. However individuals with limited remaining reproductive opportunities cannot afford to forgo reproduction and should resist glucocorticoid-mediated inhibition of reproductive behavior. The electric fish Brachyhypopomus gauderio has a single breeding season in its lifetime, thus we expect males to resist glucocorticoid-mediated inhibition of their sexual advertisement signals. We studied stress resistance in male B. gauderio (i) by examining the effect of exogenous cortisol administration on the signal waveform and (ii) by investigating the effect of food limitation on androgen and cortisol levels, the amplitude of the electric signal waveform, the responsiveness of the electric signal waveform to social challenge, and the amount of feeding activity. Exogenous cortisol administration did reduce signal amplitude and pulse duration, but endogenous cortisol levels did not rise with food limitation or social challenge. Despite food limitation, males responded to social challenges by further increasing androgen levels and enhancing the amplitude and duration of their electric signal waveforms. Food-restricted males increased androgen levels and signal pulse duration more than males fed ad libitum. Socially challenged fish increased food consumption, probably to compensate for their elevated energy expenditure. Previous studies showed that socially challenged males of this species simultaneously elevate testosterone and cortisol in proportion to signal amplitude. Thus, B. gauderio appears to protect its cortisol-sensitive electric advertisement signal by increasing food intake, limiting cortisol release, and offsetting signal reduction from cortisol with signal-enhancing androgens. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Electrical resistivity of liquid iron with high concentration of light element impurities

    NASA Astrophysics Data System (ADS)

    Wagle, F.; Steinle-Neumann, G.

    2017-12-01

    The Earth's outer core mainly consists of liquid iron, enriched with several weight percent of lighter elements, such as silicon, oxygen, sulfur or carbon. Electrical resistivities of alloys of this type determine the stability of the geodynamo. Both computational and experimental results show that resistivites of Fe-based alloys deviate significantly from values of pure Fe. Using optical conductivity values computed with the Kubo-Greenwood formalism for DFT-based molecular dynamics results, we analyze the high-P and T behavior of resitivities for Fe-alloys containing various concentrations of sulfur, oxygen and silicon. As the electron mean free path length in amorphous and liquid material becomes comparable to interatomic distances at high P and T, electron scattering is expected to be dominated by the short-range order, rather than T-dependent vibrational contributions, and we describe such correlations in our results. In analogy to macroscopic porous media, we further show that resistivity of a liquid metal-nonmetal alloy is determined to first order by the resistivity of the metallic matrix and the volume fraction of non-metallic impurities.

  19. Electrically tunable transport and high-frequency dynamics in antiferromagnetic S r3I r2O7

    NASA Astrophysics Data System (ADS)

    Seinige, Heidi; Williamson, Morgan; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John B.; Tsoi, Maxim

    2016-12-01

    We report dc and high-frequency transport properties of antiferromagnetic S r3I r2O7 . Temperature-dependent resistivity measurements show that the activation energy of this material can be tuned by an applied dc electrical bias. The latter allows for continuous variations in the sample resistivity of as much as 50% followed by a reversible resistive switching at higher biases. Such a switching is of high interest for antiferromagnetic applications in high-speed memory devices. Interestingly, we found the switching behavior to be strongly affected by a high-frequency (microwave) current applied to the sample. The microwaves at 3-7 GHz suppress the dc switching and produce resonancelike features that we tentatively associated with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. We have characterized the effects of microwave irradiation on electronic transport in S r3I r2O7 as a function of microwave frequency and power, strength and direction of external magnetic field, strength and polarity of applied dc bias, and temperature. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications.

  20. Magnetically induced electrical transport and dielectric properties of 3d transition elemental substitution at the Mn-site in Nd0.67Ba0.33MnO3 manganites

    NASA Astrophysics Data System (ADS)

    Sudakshina, B.; Arun, B.; Chandrasekhar, K. Devi; Yang, H. D.; Vasundhara, M.

    2018-05-01

    We have investigated the temperature dependence of electrical transport and dielectric properties along with magnetoresistance and magneto dielectric behavior in Nd0.67Ba0.33Mn0.9TR0.1O3 (TR= Cr, Fe, Co, Ni, Cu) manganites. All the compounds crystallized into an orthorhombic structure with Imma space group. Nd0.67Ba0.33MnO3 shows insulating to metallic behavior at intermediate temperatures, but, with the substitution of transitional elements it shows insulating in nature, down to lowest temperature measured for all the compounds. Dielectric measurement shows the intrinsic behavior of these lossy materials. A large value of magneto resistance is obtained for all the compounds and considerable amount of magneto-dielectric effect is shown for all the substituted compounds at lower temperatures.

  1. High performance nonvolatile memory devices based on Cu2-xSe nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Yan; Wu, Yi-Liang; Wang, Wen-Jian; Mao, Dun; Yu, Yong-Qiang; Wang, Li; Xu, Jun; Hu, Ji-Gang; Luo, Lin-Bao

    2013-11-01

    We report on the rational synthesis of one-dimensional Cu2-xSe nanowires (NWs) via a solution method. Electrical analysis of Cu2-xSe NWs based memory device exhibits a stable and reproducible bipolar resistive switching behavior with a low set voltage (0.3-0.6 V), which can enable the device to write and erase data efficiently. Remarkably, the memory device has a record conductance switching ratio of 108, much higher than other devices ever reported. At last, a conducting filaments model is introduced to account for the resistive switching behavior. The totality of this study suggests that the Cu2-xSe NWs are promising building blocks for fabricating high-performance and low-consumption nonvolatile memory devices.

  2. Thermal and Electrical Investigation of Conductive Polylactic Acid Based Filaments

    NASA Astrophysics Data System (ADS)

    Dobre, R. A.; Marcu, A. E.; Drumea, A.; Vlădescu, M.

    2018-06-01

    Printed electronics gain momentum as the involved technologies become affordable. The ability to shape electrostatic dissipative materials in almost any form is useful. The idea to use a general-purpose 3D printer to manufacture the electrical interconnections for a circuit is very attractive. The advantage of using a 3D printed structure over other technologies are mainly the lower price, less requirements concerning storage and use conditions, and the capability to build thicker traces while maintaining flexibility. The main element allowing this to happen is a printing filament with conductive properties. The paper shows the experiments that were performed to determine the thermal and electrical properties of polylactic acid (PLA) based ESD dissipative filament. Quantitative results regarding the thermal behavior of the DC resistance and the variation of the equivalent parallel impedance model parameters (losses resistance, capacitance, impedance magnitude and phase angle) with frequency are shown.. Using these results, new applications like printed temperature sensors can be imagined.

  3. Theoretical investigation of dielectric corona pre-ionization TEA nitrogen laser based on transmission line method

    NASA Astrophysics Data System (ADS)

    Bahrampour, Alireza; Fallah, Robabeh; Ganjovi, Alireza A.; Bahrampour, Abolfazl

    2007-07-01

    This paper models the dielectric corona pre-ionization, capacitor transfer type of flat-plane transmission line traveling wave transverse excited atmospheric pressure nitrogen laser by a non-linear lumped RLC electric circuit. The flat-plane transmission line and the pre-ionizer dielectric are modeled by a lumped linear RLC and time-dependent non-linear RC circuit, respectively. The main discharge region is considered as a time-dependent non-linear RLC circuit where its resistance value is also depends on the radiated pre-ionization ultra violet (UV) intensity. The UV radiation is radiated by the resistance due to the surface plasma on the pre-ionizer dielectric. The theoretical predictions are in a very good agreement with the experimental observations. The electric circuit equations (including the ionization rate equations), the equations of laser levels population densities and propagation equation of laser intensities, are solved numerically. As a result, the effects of pre-ionizer dielectric parameters on the electrical behavior and output laser intensity are obtained.

  4. Required Accuracy of Structural Constraints in the Inversion of Electrical Resistivity Data for Improved Water Content Estimation

    NASA Astrophysics Data System (ADS)

    Heinze, T.; Budler, J.; Weigand, M.; Kemna, A.

    2017-12-01

    Water content distribution in the ground is essential for hazard analysis during monitoring of landslide prone hills. Geophysical methods like electrical resistivity tomography (ERT) can be utilized to determine the spatial distribution of water content using established soil physical relationships between bulk electrical resistivity and water content. However, often more dominant electrical contrasts due to lithological structures outplay these hydraulic signatures and blur the results in the inversion process. Additionally, the inversion of ERT data requires further constraints. In the standard Occam inversion method, a smoothness constraint is used, assuming that soil properties change softly in space. While this applies in many scenarios, sharp lithological layers with strongly divergent hydrological parameters, as often found in landslide prone hillslopes, are typically badly resolved by standard ERT. We use a structurally constrained ERT inversion approach for improving water content estimation in landslide prone hills by including a-priori information about lithological layers. The smoothness constraint is reduced along layer boundaries identified using seismic data. This approach significantly improves water content estimations, because in landslide prone hills often a layer of rather high hydraulic conductivity is followed by a hydraulic barrier like clay-rich soil, causing higher pore pressures. One saturated layer and one almost drained layer typically result also in a sharp contrast in electrical resistivity, assuming that surface conductivity of the soil does not change in similar order. Using synthetic data, we study the influence of uncertainties in the a-priori information on the inverted resistivity and estimated water content distribution. We find a similar behavior over a broad range of models and depths. Based on our simulation results, we provide best-practice recommendations for field applications and suggest important tests to obtain reliable, reproducible and trustworthy results. We finally apply our findings to field data, compare conventional and improved analysis results, and discuss limitations of the structurally-constrained inversion approach.

  5. Oxygen-ion-migration-modulated bipolar resistive switching and complementary resistive switching in tungsten/indium tin oxide/gold memory device

    NASA Astrophysics Data System (ADS)

    Wu, Xinghui; Zhang, Qiuhui; Cui, Nana; Xu, Weiwei; Wang, Kefu; Jiang, Wei; Xu, Qixing

    2018-06-01

    In this paper, we report our investigation of room-temperature-fabricated tungsten/indium tin oxide/gold (W/ITO/Au) resistive random access memory (RRAM), which exhibits asymmetric bipolar resistive switching (BRS) behavior. The device displays good write/erase endurance and data retention properties. The device shows complementary resistive switching (CRS) characteristics after controlling the compliance current. A WO x layer electrically formed at the W/ITO in the forming process. Mobile oxygen ions within ITO migrate toward the electrode/ITO interface and produce a semiconductor-like layer that acts as a free-carrier barrier. The CRS characteristic here can be elucidated in light of the evolution of an asymmetric free-carrier blocking layer at the electrode/ITO interface.

  6. High temperature oxidation behavior of interconnect coated with LSCF and LSM for solid oxide fuel cell by screen printing

    NASA Astrophysics Data System (ADS)

    Lee, Shyong; Chu, Chun-Lin; Tsai, Ming-Jui; Lee, Jye

    2010-01-01

    The current study examined the effect of La 0.6Sr 0.4Co 0.2Fe 0.8O 3 (LSCF) and La 0.7Sr 0.3MnO 3 (LSM) coatings on the electrical properties and oxidation resistance of Crofer22 APU at 800 °C hot air. LSCF and LSM were coated on Crofer22 APU by screen printing and sintered over temperatures ranging from 1000 to 1100 °C in N 2. The coated alloy was first checked for compositions, morphology and interface conditions and then treated in a simulated oxidizing environment at 800 °C for 200 h. After measuring the long-term electrical resistance, the area specific resistance (ASR) at 800 °C for the alloy coated with LSCF was less than its counterpart coated with LSM. This work used LSCF coating as a metallic interconnect to reduce working temperature for the solid oxide fuel cell.

  7. The JPL space photovoltaic program. [energy efficient so1 silicon solar cells for space applications

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.

    1979-01-01

    The development of energy efficient solar cells for space applications is discussed. The electrical performance of solar cells as a function of temperature and solar intensity and the influence of radiation and subsequent thermal annealing on the electrical behavior of cells are among the factors studied. Progress in GaAs solar cell development is reported with emphasis on improvement of output power and radiation resistance to demonstrate a solar cell array to meet the specific power and stability requirements of solar power satellites.

  8. Analysis and experiment on a self-sensing ionic polymer-metal composite actuator

    NASA Astrophysics Data System (ADS)

    Nam, Doan Ngoc Chi; Ahn, Kyoung Kwan

    2014-07-01

    An ionic polymer-metal composite (IPMC) actuator is an electro-active polymer (EAP) that bends in response to a small applied electrical field as a result of the mobility of cations in the polymer network. This paper aims to develop a self-sensing actuator for practical use, since current sensing methods generally face limitations due to the compact size and mobility of the IPMC actuator. Firstly, the variation of surface resistance during bending operations is investigated. Then, the behavior of IPMC corresponding to the variation of surface resistance is mathematically analyzed. Based on the analysis results, a simple configuration to realize the self-sensing behavior is introduced. In this technique, the bending curvature of an IPMC can be obtained accurately by employing several feedback voltage signals along with the IPMC length. Finally, experimental evaluations proved the ability of the proposed scheme to estimate the bending behavior of IPMC actuators.

  9. Coupling of Mechanical Behavior of Lithium Ion Cells to Electrochemical-Thermal (ECT) Models for Battery Crush

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad

    Vehicle crashes can lead to crushing of the battery, damaging lithium ion battery cells and causing local shorts, heat generation, and thermal runaway. Simulating all the physics and geometries at the same time is challenging and takes a lot of effort; thus, simplifications are needed. We developed a material model for simultaneously modeling the mechanical-electrochemical-thermal behavior, which predicted the electrical short, voltage drop, and thermal runaway behaviors followed by a mechanical abuse-induced short. The effect of short resistance on the battery cell performance was studied.

  10. Hot Corrosion Resistance and Mechanical Behavior of Atmospheric Plasma Sprayed Conventional and Nanostructured Zirconia Coatings

    NASA Astrophysics Data System (ADS)

    Saremi, Mohsen; Keyvani, Ahmad; Heydarzadeh Sohi, Mahmoud

    Conventional and nanostructured zirconia coatings were deposited on In-738 Ni super alloy by atmospheric plasma spray technique. The hot corrosion resistance of the coatings was measured at 1050°C using an atmospheric electrical furnace and a fused mixture of vanadium pent oxide and sodium sulfate respectively. According to the experimental results nanostructured coatings showed a better hot corrosion resistance than conventional ones. The improved hot corrosion resistance could be explained by the change of structure to a dense and more packed structure in the nanocoating. The evaluation of mechanical properties by nano indentation method showed the hardness (H) and elastic modulus (E) of the YSZ coating increased substantially after hot corrosion.

  11. Characterization of micro-contact resistance between a gold nanocrystalline line and a tungsten electrode probe in interconnect fatigue testing.

    PubMed

    Ling, Xue; Wang, Yusheng; Li, Xide

    2014-10-01

    An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects of the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li-Etsion-Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.

  12. Characterization of micro-contact resistance between a gold nanocrystalline line and a tungsten electrode probe in interconnect fatigue testing

    NASA Astrophysics Data System (ADS)

    Ling, Xue; Wang, Yusheng; Li, Xide

    2014-10-01

    An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects of the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li-Etsion-Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.

  13. The Influence of Interstitial Ga and Interfacial Au (sub 2)P (sub 3) on the Electrical and Metallurgical Behavior of Au-Contacted III-V Semiconductors

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1991-01-01

    The introduction of a very small amount of Ga into Au contact metallization on InP is shown to have a significant effect on both the metallurgical and electrical behavior of that contact system. Ga atoms in the interstices of the Au lattice are shown to be effective in preventing the solid state reactions that normally take place between Au and InP during contact sintering. In addition to suppressing the metallurgical interaction, the presence of small amounts of Ga is shown to cause an order of magnitude reduction in the specific contact resistivity. Evidence is presented that the reactions of GaP and GaAs with Au contacts are also drastically affected by the presence of Ga. The sintering behavior of the Au-GaP and the Au-GaAs systems (as contrasted with that of the Au-InP system) is explained as due to the presence of interstitial Ga in the contact metallization. Finally the large, two-to-three order of magnitude drop in the contact resistance that occurs in the Au-InP system upon sintering at 400 degrees Centigrade is shown to be a result of the formation of an Au (sub 2) P (sub 3) layer at the metal-semiconductor interface. Contact resistivities in the 10 (sup -6) ohm square centimeter range are obtained for as-deposited Au on InP when a thin (20 Angstrom) layer of Au (sub 2) P (sub 3) is introduced between the InP and the Au contacts.

  14. Electrical Resistivity Measurement of Petroleum Coke Powder by Means of Four-Probe Method

    NASA Astrophysics Data System (ADS)

    Rouget, G.; Majidi, B.; Picard, D.; Gauvin, G.; Ziegler, D.; Mashreghi, J.; Alamdari, H.

    2017-10-01

    Carbon anodes used in Hall-Héroult electrolysis cells are involved in both electrical and chemical processes of the cell. Electrical resistivity of anodes depends on electrical properties of its constituents, of which carbon coke aggregates are the most prevalent. Electrical resistivity of coke aggregates is usually characterized according to the ISO 10143 standardized test method, which consists of measuring the voltage drop in the bed of particles between two electrically conducing plungers through which the current is also applied. Estimation of the electrical resistivity of coke particles from the resistivity of particle bed is a challenging task and needs consideration of the contribution of the interparticle void fraction and the particle/particle contact resistances. In this work, the bed resistivity was normalized by subtracting the interparticle void fraction. Then, the contact size was obtained from discrete element method simulation and the contact resistance was calculated using Holm's theory. Finally, the resistivity of the coke particles was obtained from the bed resistivity.

  15. Heat capacity and transport measurements in sputtered niobium-zirconium multilayers

    NASA Astrophysics Data System (ADS)

    Broussard, P. R.; Mael, D.

    1989-08-01

    We have studied the electrical resistivity and heat capacity for multilayers of niobium and zirconium prepared by magnetron sputtering for values of the bilayer period Λ varying from 4 to 950 Å. We find a transition in the thermal part of the resistivity that correlates with the coherent-to-incoherent transition seen in earlier work. The heat capacity data for the normal state show anomalous behavior for both the electronic coefficient γ and the Debye temperature. We also study the variation in Tc and the jump in the specific heat.

  16. Pressure-induced changes of the structure and properties of monoclinic α -chalcocite Cu2S

    NASA Astrophysics Data System (ADS)

    Zimmer, D.; Ruiz-Fuertes, J.; Morgenroth, W.; Friedrich, A.; Bayarjargal, L.; Haussühl, E.; Santamaría-Pérez, D.; Frischkorn, S.; Milman, V.; Winkler, B.

    2018-04-01

    The high-pressure behavior of monoclinic (P 21/c ) α -chalcocite, Cu2S , was investigated at ambient temperature by single-crystal x-ray diffraction, electrical resistance measurements, and optical absorption spectroscopy up to 16 GPa. The experiments were complemented by density-functional-theory-based calculations. Single-crystal x-ray diffraction data show that monoclinic α -chalcocite undergoes two pressure-induced first-order phase transitions at ˜3.1 and ˜7.1 GPa. The crystal structure of the first high-pressure polymorph, HP1, was solved and refined in space group P 21/c with a =10.312 (4 )Å , b =6.737 (3 )Å , c =7.305 (1 )Å , and β =100.17 (2) ∘ at 6.2(3) GPa. The crystal structure of the second high-pressure polymorph, HP2, was solved and refined in space group P 21/c with a =6.731 (4 )Å , b =6.689 (2 )Å , c =6.967 (8 )Å , and β =93.18 (3) ∘ at 7.9(4) GPa. Electrical resistance measurements upon compression and optical absorption experiments upon decompression show that the structural changes in α -chalcocite are accompanied by changes of the electrical and optical properties. Upon pressure release, the band gap Eg of α -chalcocite (1.24 eV at ambient conditions) widens across the first structural phase transition, going from 1.24 eV at 2.2 GPa (α -chalcocite) to 1.35 eV at 2.6 GPa (HP1), and closes significantly across the second phase transition, going from 1.32 eV at 4.4 GPa (HP1) to 0.87 eV at 4.9 GPa (HP2). The electrical resistance shows similar behavior: its highest value is for the first high-pressure polymorph (HP1), and its lowest value is for the second high-pressure polymorph (HP2) of α -chalcocite. These results are interpreted on the basis of calculated electronic band structures.

  17. Electrically conductive, optically transparent polymer/carbon nanotube composites

    NASA Technical Reports Server (NTRS)

    Smith, Jr., Joseph G. (Inventor); Connell, John W. (Inventor); Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Watson, Kent A. (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  18. Controlling interface oxygen for forming Ag ohmic contact to semi-polar (1 1 -2 2) plane p-type GaN

    NASA Astrophysics Data System (ADS)

    Park, Jae-Seong; Han, Jaecheon; Seong, Tae-Yeon

    2014-11-01

    Low-resistance Ag ohmic contacts to semi-polar (1 1 -2 2) p-GaN were developed by controlling interfacial oxide using a Zn layer. The 300 °C-annealed Zn/Ag samples showed ohmic behavior with a contact resistivity of 6.0 × 10-4 Ω cm2 better than that of Ag-only contacts (1.0 × 10-3 Ω cm2). The X-ray photoemission spectroscopy (XPS) results showed that annealing caused the indiffusion of oxygen at the contact/GaN interface, resulting in the formation of different types of interfacial oxides, viz. Ga-oxide and Ga-doped ZnO. Based on the XPS and electrical results, the possible mechanisms underlying the improved electrical properties of the Zn/Ag samples are discussed.

  19. Coupling behaviors of graphene/SiO2/Si structure with external electric field

    NASA Astrophysics Data System (ADS)

    Onishi, Koichi; Kirimoto, Kenta; Sun, Yong

    2017-02-01

    A traveling electric field in surface acoustic wave was introduced into the graphene/SiO2/Si sample in the temperature range of 15 K to 300 K. The coupling behaviors between the sample and the electric field were analyzed using two parameters, the intensity attenuation and time delay of the traveling-wave. The attenuation originates from Joule heat of the moving carriers, and the delay of the traveling-wave was due to electrical resistances of the fixed charge and the moving carriers with low mobility in the sample. The attenuation of the external electric field was observed in both Si crystal and graphene films in the temperature range. A large attenuation around 190 K, which depends on the strength of external electric field, was confirmed for the Si crystal. But, no significant temperature and field dependences of the attenuation in the graphene films were detected. On the other hand, the delay of the traveling-wave due to ionic scattering at low temperature side was observed in the Si crystal, but cannot be detected in the films of the mono-, bi- and penta-layer graphene with high conductivities. Also, it was indicated in this study that skin depth of the graphene film was less than thickness of two graphene atomic layers in the temperature range.

  20. Ferromagnetic and multiferroic interfaces in granular perovskite composite xLa{sub 0.5}Sr{sub 0.5}CoO{sub 3}-(1−x)BiFeO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohr, Javier H.; Saleta, Martín E.; Sánchez, Rodolfo D., E-mail: rodo@cab.cnea.gov.ar

    Nanopowder of ferromagnetic La{sub 0.5}Sr{sub 0.5}CoO{sub 3} (LSCO) and multiferroic BiFeO{sub 3} (BFO) were synthesized by spray pyrolysis method. Different compositions of multiferroic xLSCO-(1−x)BFO composites were synthesized at 800 °C for 2 h. Scanning electron microscopy and energy dispersive spectroscopy elemental mapping were performed to study the morphology of composites. Ferri/ferromagnetic responses above T{sub C} (LSCO) are observed, which are associated with the interfaces LSCO/BFO. This interface presents a different behavior compared to the original perovskites, and the magnitude of the magnetization depends on x. Electrical DC conductivity as a function of temperature for LSCO nanopowder (x = 1) presents a different behaviormore » than that reported in bulk material. For x = 1 and 0.9, the model by Glazman and Matveev [Zh. Eksp. Teor. Fiz. 94, 332 (1988)] is proposed to describe the electrical conductivity. On the other hand, x = 0, 0.1, and 0.5 present a variable range hopping behavior. Complex impedance spectroscopy as a function of frequency indicates a pure resistive behavior for x ≥ 0.5 compositions, while a complex resistive-capacitive behavior is observed for low x values (0, 0.1). In these samples, low values of magnetoelectric coupling were measured with an AC lock-in technique.« less

  1. Electrical Methods: Resistivity Methods

    EPA Pesticide Factsheets

    Surface electrical resistivity surveying is based on the principle that the distribution of electrical potential in the ground around a current-carrying electrode depends on the electrical resistivities and distribution of the surrounding soils and rocks.

  2. Thermoelectric Properties of Dy-Doped SrTiO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, C. L.; Peng, H.; Su, W. B.; Wang, H. C.; Li, J. C.; Zhang, J. L.; Mei, L. M.

    2012-11-01

    Sr1- x Dy x TiO3 ( x = 0.02, 0.05, 0.10) ceramics were prepared by the reduced solid-state reaction method, and their thermoelectric properties were investigated from room temperature to 973 K. The resistivity increases with temperature, showing metallic behavior. The Seebeck coefficients tend to saturate at high temperatures, presenting narrow-band behavior, as proved by ab initio calculations of the electronic structure. The magnitudes of the Seebeck coefficient and the electrical resistivity decrease with increasing Dy content. At the same time, the thermal conductivity decreases because the lattice thermal conductivity is reduced by Dy substitution. The maximum value of the figure of merit reaches 0.25 at 973 K for the Sr0.9Dy0.1TiO3 sample.

  3. Electrical and galvanomagnetic properties of biocarbon preforms of white pine wood

    NASA Astrophysics Data System (ADS)

    Popov, V. V.; Orlova, T. S.; Ramirez-Rico, J.

    2009-11-01

    The electrical and galvanomagnetic properties of high-porosity biocarbon preforms prepared from white pine wood by pyrolysis at carbonization temperatures T carb = 1000 and 2400°C have been studied. Measurements have been made of the behavior with temperature of the electrical resistivity, as well as of magnetoresistance and the Hall coefficient in the 1.8-300-K temperature interval and magnetic fields of up to 28 kOe. It has been shown that samples of both types (with T carb = 1000 and 2400°C) are characterized by high carrier (hole) concentrations of 6.3 × 1020 and 3.6 × 1020 cm-3, respectively. While these figures approach the metallic concentration, the electrical resistivity of the biocarbon materials studied, unlike that of normal metals, grows with decreasing temperature. Increasing T carb brings about a decrease in electrical resistivity by a factor 1.5-2 within the 1.8-300-K temperature range. The magnetoresistance also follows a qualitatively different pattern at low (1.8-4.2 K) temperatures: it is negative for T carb = 2400°C and positive for T carb = 1000°C. An analysis of experimental data has revealed that the specific features in the conductivity and magnetoresistance of these samples are described by quantum corrections associated inherently with structural characteristics of the biocarbon samples studied, more specifically with the difference between the fractions of the quasi-amorphous and nanocrystalline phases, as well as with the fine structure of the latter phase forming at the two different T carb.

  4. Saline tracer visualized with three-dimensional electrical resistivity tomography: Field-scale spatial moment analysis

    USGS Publications Warehouse

    Singha, Kamini; Gorelick, Steven M.

    2005-01-01

    Cross-well electrical resistivity tomography (ERT) was used to monitor the migration of a saline tracer in a two-well pumping-injection experiment conducted at the Massachusetts Military Reservation in Cape Cod, Massachusetts. After injecting 2200 mg/L of sodium chloride for 9 hours, ERT data sets were collected from four wells every 6 hours for 20 days. More than 180,000 resistance measurements were collected during the tracer test. Each ERT data set was inverted to produce a sequence of 3-D snapshot maps that track the plume. In addition to the ERT experiment a pumping test and an infiltration test were conducted to estimate horizontal and vertical hydraulic conductivity values. Using modified moment analysis of the electrical conductivity tomograms, the mass, center of mass, and spatial variance of the imaged tracer plume were estimated. Although the tomograms provide valuable insights into field-scale tracer migration behavior and aquifer heterogeneity, standard tomographic inversion and application of Archie's law to convert electrical conductivities to solute concentration results in underestimation of tracer mass. Such underestimation is attributed to (1) reduced measurement sensitivity to electrical conductivity values with distance from the electrodes and (2) spatial smoothing (regularization) from tomographic inversion. The center of mass estimated from the ERT inversions coincided with that given by migration of the tracer plume using 3-D advective-dispersion simulation. The 3-D plumes seen using ERT exhibit greater apparent dispersion than the simulated plumes and greater temporal spreading than observed in field data of concentration breakthrough at the pumping well.

  5. Behavior of oxide film at the interface between particles in sintered Al powders by pulse electric-current sintering

    NASA Astrophysics Data System (ADS)

    Xie, Guoqiang; Ohashi, Osamu; Song, Minghui; Furuya, Kazuo; Noda, Tetsuji

    2003-03-01

    The microstructure of the bonding interfaces between particles in aluminum (Al) powder sintered specimens by the pulse electric-current sintering (PECS) process was observed, using conventional transmission electron microscopy (CTEM) and high-resolution transmission electron microscopy (HRTEM). The behavior of oxide film at the interface between Al particles and its effect on properties of the sintered specimens were investigated. The results showed there were two kinds of bonding interfaces in the sintered specimens, namely, the direct metal/metal bonding and the metal/oxide film layer/metal bonding interface. By increasing the fraction of the direct metal/metal bonding interfaces, the tensile strength of the sintered specimens increased, and the electrical resistivity decreased. By increasing the loading pressure at higher sintering temperatures or increasing the sintering temperature under loading pressure, the breakdown of oxide film was promoted. The broken oxide film debris was dispersed in aluminum metal near the bonding interfaces between particles.

  6. Effect of 100 MeV Si7+ ions' irradiation on Pd/n-GaAs Schottky diodes

    NASA Astrophysics Data System (ADS)

    Sinha, O. P.

    2017-12-01

    Pd/n-GaAs realized devices (junction made on a virgin substrate prior to irradiation) and Pd/n-GaAs fabricated devices (junction realized after the virgin substrate irradiation) have been irradiated with 100 MeV Si7+ ions for the varying fluence of 1012-1013 ions/cm2. The devices have been characterized by I-V and C-V techniques for an electrical response. The electrical characterization of these devices shows the presence of interfacial layer. Moreover, the C-V characteristics show strong frequency dependence behavior, which indicates the involvement of interfacial charge layer with deep electron states. The hydrogenation of these devices has not caused any significant change in the electrical (I-V and C-V) characteristics. The observed results have been discussed in the realm of radiation-induced defects, which cause the carrier removal and compensation phenomena to cause the observed high resistivity and filling and unfilling of these traps' level to cause strong frequency dependence behavior.

  7. Behavioral Implications of Piezoelectric Stack Actuators for Control of Micromanipulation

    NASA Technical Reports Server (NTRS)

    Goldfarb, Michael; Celanovic, Nikola

    1996-01-01

    A lumped-parameter model of a piezoelectric stack actuator has been developed to describe actuator behavior for purposes of control system analysis and design, and in particular for microrobotic applications requiring accurate position and/or force control. In addition to describing the input-output dynamic behavior, the proposed model explains aspects of non-intuitive behavioral phenomena evinced by piezoelectric actuators, such as the input-output rate-independent hysteresis and the change in mechanical stiffness that results from altering electrical load. The authors incorporate a generalized Maxwell resistive capacitor as a lumped-parameter causal representation of rate-independent hysteresis. Model formulation is validated by comparing results of numerical simulations to experimental data.

  8. Anisotropic magnetoresistance and tunneling magnetoresistance of conducting filaments in NiO with different resistance states

    NASA Astrophysics Data System (ADS)

    Zhao, Diyang; Qiao, Shuang; Luo, Yuxiang; Chen, Aitian; Zhang, Pengfei; Zheng, Ping; Sun, Zhong; Guo, Minghua; Chiang, F.-K.; Wu, Jian; Luo, Jianlin; Li, Jianqi; Wang, Yayu; Zhao, Yonggang; Tsinghua University Team; Chinese Academy of Sciences Collaboration

    Resistive switching (RS) effect in conductor/insulator/conductor thin-film stacks has attracted much attention due to its interesting physics and potentials for applications. NiO is one of the most representative systems and its RS effect has been generally explained by the formation and rupture of Ni related conducting filaments, which are very unique since they are formed by electric forming process. We study the MR behaviors in NiO RS films with different resistance states. Rich and interesting MR behaviors were observed, including the normal and anomalous anisotropic magnetoresistance (AMR) and tunneling magnetoresistance (TMR), etc., which provide new insights into the nature of the filaments and their evolution in the resistive switching process. First-principles calculation reveals the essential role of oxygen migration into the filaments during the RESET process and can account for the experimental results. Our work provides a new avenue for the exploration of the conducting filaments in RS materials, and is significant for understanding the RS mechanism as well as multifunctional device design.

  9. Influence of Ta doping in resistive switching behavior of TiO2

    NASA Astrophysics Data System (ADS)

    Barman, Arabinda; Saini, Chetan P.; Deshmukh, Sujit; Dhar, Sankar; Kanjilal, Aloke

    An approach has been made to understand the resistive switching behavior in Ta-doped TiO2 films on Pt substrates. Prior to thin film deposition, Ta-doped TiO2 powder has been synthesized chemically using Ta and Ti precursor solutions. However, the Ta doping has seriously been affected by increasing Ta concentration above 1 at% due to the segregation of Ta2O5 phase. The Ta-doped TiO2 targets have been prepared for pulsed laser deposition of the films on Pt substrates using an excitation wavelength of 248 nm. The structural and chemical properties of the Ta-doped TiO2 films have been investigated in details with the help of XRD, SIMS, XAS and XPS. The stoichiometry of the Ta-doped TiO2 films with increasing depth has been verified initially by SIMS. The electrical study of the corresponding device structures further suggests that the optimized resistive switching effect can be accomplished up to a threshold Ta-doping of 1 at%. Nevertheless, a highly conducting behavior has been shown when the TiO2 films are doped with 2 at% Ta. These results will be discussed in details in the light of defect induced resistive switching phenomenon.

  10. Electrical Resistivity of Wire Arc Sprayed Zn and Cu Coatings for In-Mold-Metal-Spraying

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch; Ochotta, P.

    2018-06-01

    Electrical functionalities can be integrated into plastic parts by integrating thermally sprayed metal coatings into the non-conductive base material. Thermally sprayed conducting tracks for power and signal transmission are one example. In this case, the electrical resistance or resistivity of the coatings should be investigated. Therefore, the electrical resistivity of wire arc sprayed Zn and Cu coatings has been investigated. In case of Zn coatings, spray distance, gas pressure and wire diameter could be identified as significant influencing parameters on the electrical resistivity. In contrast, process gas, gas pressure and voltage do have a significant influence on the electrical resistivity of Cu coatings. Through the use of the In-Mold-Metal-Spraying method (IMMS), thermal degradation can be avoided by transferring thermally sprayed coating from a mold insert onto the plastic part. Therefore, the influence of the transfer process on the electrical resistance of the coatings has also been investigated.

  11. Origin of negative resistance in anion migration controlled resistive memory

    NASA Astrophysics Data System (ADS)

    Banerjee, Writam; Wu, Facai; Hu, Yuan; Wu, Quantan; Wu, Zuheng; Liu, Qi; Liu, Ming

    2018-03-01

    Resistive random access memory (RRAM) is one of the most promising emerging nonvolatile technologies for the futuristic memory devices. Resistive switching behavior often shows negative resistance (NR), either voltage controlled or current controlled. In this work, the origin of a current compliance dependent voltage controlled NR effect during the resetting of anion migration based RRAM devices is discussed. The N-type voltage controlled NR is a high field driven phenomena. The current conduction within the range of a certain negative voltage is mostly dominated by space charge limited current. But with the higher negative voltage, a field induced tunneling effect is generated in the NR region. The voltage controlled NR is strongly dependent on the compliance current. The area independent behavior indicates the filamentary switching. The peak to valley ratio (PVR) is > 5. The variation of PVR as a function of the conduction band offset is achieved. Compared to other reported works, based on the PVR, it is possible to distinguish the RRAM types. Generally, due to the higher electric field effect on the metallic bridge during RESET, the electrochemical metallization type RRAM shows much higher PVR than the valance change type RRAM.

  12. A vacancy-modulated self-selective resistive switching memory with pronounced nonlinear behavior

    NASA Astrophysics Data System (ADS)

    Ma, Haili; Feng, Jie; Gao, Tian; Zhu, Xi

    2017-12-01

    In this study, we report a self-selective (nonlinear) resistive switching memory cell, with high on-state half-bias nonlinearity of 650, sub-μA operating current, and high On/Off ratios above 100×. Regarding the cell structure, a thermal oxidized HfO x layer in combination with a sputtered Ta2O5 layer was configured as an active stack, with Pt and Hf as top and bottom electrodes, respectively. The Ta2O5 acts as a selective layer as well as a series resistor, which could make the resistive switching happened in HfO x layer. Through the analysis of the physicochemical properties and electrical conduction mechanisms at each state, a vacancy-modulated resistance switching model was proposed to explain the switching behavior. The conductivity of HfO x layer was changed by polarity-dependent drift of the oxygen vacancy ( V o), resulting in an electron hopping distance change during switching. With the help of Ta2O5 selective layer, high nonlinearity observed in low resistance state. The proposed material stack shows a promising prospect to act as a self-selective cell for 3D vertical RRAM application.

  13. Resistive switching phenomena: A review of statistical physics approaches

    DOE PAGES

    Lee, Jae Sung; Lee, Shinbuhm; Noh, Tae Won

    2015-08-31

    Here we report that resistive switching (RS) phenomena are reversible changes in the metastable resistance state induced by external electric fields. After discovery ~50 years ago, RS phenomena have attracted great attention due to their potential application in next-generation electrical devices. Considerable research has been performed to understand the physical mechanisms of RS and explore the feasibility and limits of such devices. There have also been several reviews on RS that attempt to explain the microscopic origins of how regions that were originally insulators can change into conductors. However, little attention has been paid to the most important factor inmore » determining resistance: how conducting local regions are interconnected. Here, we provide an overview of the underlying physics behind connectivity changes in highly conductive regions under an electric field. We first classify RS phenomena according to their characteristic current–voltage curves: unipolar, bipolar, and threshold switchings. Second, we outline the microscopic origins of RS in oxides, focusing on the roles of oxygen vacancies: the effect of concentration, the mechanisms of channel formation and rupture, and the driving forces of oxygen vacancies. Third, we review RS studies from the perspective of statistical physics to understand connectivity change in RS phenomena. We discuss percolation model approaches and the theory for the scaling behaviors of numerous transport properties observed in RS. Fourth, we review various switching-type conversion phenomena in RS: bipolar-unipolar, memory-threshold, figure-of-eight, and counter-figure-of-eight conversions. Finally, we review several related technological issues, such as improvement in high resistance fluctuations, sneak-path problems, and multilevel switching problems.« less

  14. Exploration of the Chaotic Behaviour in a Buck-Boost Converter Depending on the Converter and Load Elements

    NASA Astrophysics Data System (ADS)

    Demirbaş, Şevki; Fidanboy, Hikmet; Kurt, Erol

    2016-08-01

    In this paper, detailed analyses of the chaotic behavior observed in a buck-boost converter are presented. Although this basic converter system is already known world-wide for the purpose of dc-dc conversion of the output of renewable energy systems, it indicates certain chaotic regimes where both the output amplitude and frequency change randomly. This chaotic regime can yield an unstable output over the resistive or resistive/inductive electrical loads. This study presents a detailed map for the regular and chaotic regions in terms of material parameters, such as converter capacitance C, resistive load R, and inductive load L. Thus, the stable area of operation for efficient and renewable electricity production will be ascertained for the studied converter system. We emphasize that the material parameters C, R, and L play important roles in generating energy from the solar cell; indeed, the stability increases with higher values of the converter capacitor and load inductance, whereas it decreases according to the resistive load. A number of periodic windows have been observed and the output frequency gives a broad-band spectrum of up to 50 kHz.

  15. Effect of Co doping on the magnetic and DC electrical properties of Mn-Zn nanoferrites

    NASA Astrophysics Data System (ADS)

    Khandan Fadafan, H.; Lotfi Orimi, R.; Nezhadeini, S.

    2018-06-01

    In this study, Cobalt-Manganese-Zinc nanoferrites with the formula CoxMn0.5-xZn0.5Fe2O4 with x = 0.0, 0.1, 0.3, and 0.5 prepared by chemical Co-precipitation method. Then the structure and morphology of the synthesized nanoparticles were characterized by X-ray diffraction (XRD) and transmitting electron microscopy (TEM), respectively. The XRD patterns indicated the formation of single-phased cubic structure of spinel ferrite in nanometer size with no minor phase. The TEM image showed the formation of nanoparticles with average size of about 40 nm and normal size distribution. The magnetic measurements of the nanoparticles were done at room temperature using a vibrating sample magnetometer (VSM). Results exhibited a super-paramagnetic like behavior for some of the samples. DC electrical resistivity measurements were carried out by two-probe technique from 25 to 250 °C and showed decreasing of the resistivity with temperature meanwhile passing a transition to form of a peak. The peaks values observed near the Curie temperatures of samples suggest that anomaly behavior can attributed to spin canting associated with the phase transition from para to ferromagnetic state at TC.

  16. Electrophysiological Recordings from Lobula Plate Tangential Cells in Drosophila.

    PubMed

    Mauss, Alex S; Borst, Alexander

    2016-01-01

    Drosophila has emerged as an important model organism for the study of the neural basis of behavior. Its main asset is the experimental accessibility of identified neurons by genetic manipulation and physiological recordings. Drosophila therefore offers the opportunity to reach an integrative understanding of the development and neural underpinnings of behavior at all processing stages, from sensing to motor control, in a single species. Here, we will provide an account of the procedures involved in recording the electrical potential of individual neurons in the visual system of adult Drosophila using the whole-cell patch-clamp method. To this end, animals are fixed to a holder and mounted below a recording chamber. The head capsule is cut open and the glial sheath covering the brain is ruptured by a combination of shearing and enzymatic digest. Neuronal somata are thus exposed and targeted by low-resistance patch electrodes. After formation of a high resistance seal, electrical access to the cell is gained by small current pulses and suction. Stable recordings of large neurons are feasible for >1 h and can be combined with controlled visual stimulation as well as genetic and pharmacological manipulation of upstream circuit elements to infer circuit function in great detail.

  17. Conductive fabric seal

    DOEpatents

    Livesay, Ronald Jason; Mason, Brandon William; Kuhn, Michael Joseph; Rowe, Nathan Carl

    2017-04-04

    Disclosed are several examples of a system and method for detecting if an article is being tampered with. Included is a covering made of a substrate that is coated with a layer of an electrically conductive material that forms an electrically conductive surface having an electrical resistance. The covering is configured to at least partially encapsulate the article such that the article cannot be tampered with, without modifying the electrical resistance of the electrically conductive surface of the covering. A sensing device is affixed to the electrically conductive surface of the covering and the sensing device monitors the condition of the covering by producing a signal that is indicative of the electrical resistance of the electrically conductive surface of the covering. A measured electrical resistance that differs from a nominal electrical resistance is indicative of a covering that is being tampered with and an alert is communicated to an observer.

  18. Conductive fabric seal

    DOEpatents

    Livesay, Ronald Jason; Mason, Brandon William; Kuhn, Michael Joseph; Rowe, Nathan Carl

    2015-10-13

    Disclosed are several examples of a system and method for detecting if an article is being tampered with. Included is a covering made of a substrate that is coated with a layer of an electrically conductive material that forms an electrically conductive surface having an electrical resistance. The covering is configured to at least partially encapsulate the article such that the article cannot be tampered with, without modifying the electrical resistance of the electrically conductive surface of the covering. A sensing device is affixed to the electrically conductive surface of the covering and the sensing device monitors the condition of the covering by producing a signal that is indicative of the electrical resistance of the electrically conductive surface of the covering. A measured electrical resistance that differs from a nominal electrical resistance is indicative of a covering that is being tampered with and an alert is communicated to an observer.

  19. Characterization of micro-contact resistance between a gold nanocrystalline line and a tungsten electrode probe in interconnect fatigue testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Xue; Wang, Yusheng; Li, Xide, E-mail: lixide@tsinghua.edu.cn

    An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects ofmore » the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li–Etsion–Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.« less

  20. Unusual superconducting behavior in HfV2Ga4

    NASA Astrophysics Data System (ADS)

    Santos, F. B.; Correa, L. E.; de Lima, B. S.; Cigarroa, O. V.; da Luz, M. S.; Grant, T.; Fisk, Z.; Machado, A. J. S.

    2018-04-01

    Bulk superconductivity in HfV2Ga4 with critical temperature close to 4.1 K was determined via magnetic susceptibility, electrical resistivity and specific heat measurements. Both the upper and lower critical field dependence with reduced temperature (T /Tc) exhibit non-conventional behavior. The electronic component of specific heat shows a double-jump, the first close to Tc and the other close to 0.75Tc. We speculate about the nature of the douple jump observed in specific heat considering two plausable scenarios: bulk inhomogeneities and the existence of a second gap.

  1. Electronic Transport Behaviors due to Charge Density Waves in Ni-Nb-Zr-H Glassy Alloys

    NASA Astrophysics Data System (ADS)

    Fukuhara, Mikio; Umemori, Yoshimasa

    2013-11-01

    The amorphous Ni-Nb-Zr-H glassy alloy containing subnanometer-sized icosahedral Zr5 Nb5Ni3 clusters exhibited four types of electronic phenomena: a metal/insulator transition, an electric current-induced voltage oscillation (Coulomb oscillation), giant capacitor behavior and an electron avalanche with superior resistivity. These findings could be excluded by charge density waves that the low-dimensional component of clusters, in which the atoms are lined up in chains along the [130] direction, plays important roles in various electron transport phenomena.

  2. Breakdown of the coherence effects and Fermi liquid behavior in YbAl3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Echevarria-Bonet, C.; Rojas, D. P.; Espeso, J. I.; Rodríguez Fernández, J.; Rodríguez Fernández, L.; Bauer, E.; Burdin, S.; Magalhães, S. G.; Fernández Barquín, L.

    2018-04-01

    A change in the Kondo lattice behavior of bulk YbAl3 has been observed when the alloy is shaped into nanoparticles (≈12 nm). Measurements of the electrical resistivity show inhibited coherence effects and deviation from the standard Fermi liquid behavior (T 2-dependence). These results are interpreted as being due to the effect of the disruption of the periodicity of the array of Kondo ions provoked by the size reduction process. Additionally, the ensemble of randomly placed nanoparticles also triggers an extra source of electronic scattering at very low temperatures (≈15 K) due to quantum interference effects.

  3. Underlying Physics of Conductive Polymer Composites and Force Sensing Resistors (FSRs) under Static Loading Conditions

    PubMed Central

    2017-01-01

    Conductive polymer composites are manufactured by randomly dispersing conductive particles along an insulating polymer matrix. Several authors have attempted to model the piezoresistive response of conductive polymer composites. However, all the proposed models rely upon experimental measurements of the electrical resistance at rest state. Similarly, the models available in literature assume a voltage-independent resistance and a stress-independent area for tunneling conduction. With the aim of developing and validating a more comprehensive model, a test bench capable of exerting controlled forces has been developed. Commercially available sensors—which are manufactured from conductive polymer composites—have been tested at different voltages and stresses, and a model has been derived on the basis of equations for the quantum tunneling conduction through thin insulating film layers. The resistance contribution from the contact resistance has been included in the model together with the resistance contribution from the conductive particles. The proposed model embraces a voltage-dependent behavior for the composite resistance, and a stress-dependent behavior for the tunneling conduction area. The proposed model is capable of predicting sensor current based upon information from the sourcing voltage and the applied stress. This study uses a physical (non-phenomenological) approach for all the phenomena discussed here. PMID:28906467

  4. Glassy selenium at high pressure: Le Chatelier's principle still works

    NASA Astrophysics Data System (ADS)

    Brazhkin, V. V.; Tsiok, O. B.

    2017-10-01

    Selenium is the only easily vitrified elementary substance. Numerous experimental studies of glassy Se (g -Se) at high pressures show a large spread in the data on the compressibility and electrical resistivity of g -Se. Furthermore, H. Liu et al. [Proc. Natl. Acad. Sci. USA 105, 13229 (2008), 10.1073/pnas.0806857105] have arrived at the surprising conclusion that the volume of glass increases during pressure-induced crystallization. We have performed high-precision measurements of the specific volume and electrical resistivity of glassy selenium (g -Se) at high hydrostatic pressures up to 9 GPa. The measured bulk modulus at normal pressure is B =(9.0 5 ±0.15 ) GPa and its pressure derivative is BP'=6.4 ±0.2 . In the pressure range P <3 GPa, glassy selenium has an anomalously large negative second derivative of the bulk modulus. The electrical resistivity of g -Se decreases almost exponentially with increasing pressure and reaches 20 Ω cm at a pressure of 8.75 GPa. The inelastic behavior and weak relaxation of the volume for g -Se begin at pressures above 3.5 GPa; the volume and logarithm of the electrical resistivity relax significantly (logarithmically with the time) at pressures above 8 GPa. Bulk measurements certainly indicate that the volume of g -Se glass in the crystallization pressure range is larger than the volumes of both appearing crystalline phases (by 2% and 4%). Therefore, the "volume expansion phenomenon" suggested in [H. Liu et al., Proc. Natl. Acad. Sci. USA 105, 13229 (2008), 10.1073/pnas.0806857105] is not observed, and the pressure-induced crystallization of glassy selenium is consistent with the laws of thermodynamics.

  5. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    PubMed

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge machining ZnO/Al2O3 ceramic.

  6. Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes

    USGS Publications Warehouse

    Johnson, Timothy C.; Slater, Lee D.; Ntarlagiannis, Dimitris; Day-Lewis, Frederick D.; Elwaseif, Mehrez

    2012-01-01

    Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides superior spatial coverage in two or three dimensions, potentially high-resolution information in time, and information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever-increasing size and complexity of long-term, three-dimensional (3-D) time series conductivity data sets. Here we use 3-D surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater-surface water interactions along a stretch of the Columbia River adjacent to the Hanford 300 near Richland, Washington, USA. We reduce the resulting 3-D conductivity time series using both time-series and time-frequency analyses to isolate a paleochannel causing enhanced groundwater-surface water interactions. Correlation analysis on the time-lapse imaging results concisely represents enhanced groundwater-surface water interactions within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) transform provides additional information by identifying the stage periodicities driving groundwater-surface water interactions due to upstream dam operations, and identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 Area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.

  7. Static Behavior of Chalcogenide Based Programmable Metallization Cells

    NASA Astrophysics Data System (ADS)

    Rajabi, Saba

    Nonvolatile memory (NVM) technologies have been an integral part of electronic systems for the past 30 years. The ideal non-volatile memory have minimal physical size, energy usage, and cost while having maximal speed, capacity, retention time, and radiation hardness. A promising candidate for next-generation memory is ion-conducting bridging RAM which is referred to as programmable metallization cell (PMC), conductive bridge RAM (CBRAM), or electrochemical metallization memory (ECM), which is likely to surpass flash memory in all the ideal memory characteristics. A comprehensive physics-based model is needed to completely understand PMC operation and assist in design optimization. To advance the PMC modeling effort, this thesis presents a precise physical model parameterizing materials associated with both ion-rich and ion-poor layers of the PMC's solid electrolyte, so that captures the static electrical behavior of the PMC in both its low-resistance on-state (LRS) and high resistance off-state (HRS). The experimental data is measured from a chalcogenide glass PMC designed and manufactured at ASU. The static on- and off-state resistance of a PMC device composed of a layered (Ag-rich/Ag-poor) Ge30Se70 ChG film is characterized and modeled using three dimensional simulation code written in Silvaco Atlas finite element analysis software. Calibrating the model to experimental data enables the extraction of device parameters such as material bandgaps, workfunctions, density of states, carrier mobilities, dielectric constants, and affinities. The sensitivity of our modeled PMC to the variation of its prominent achieved material parameters is examined on the HRS and LRS impedance behavior. The obtained accurate set of material parameters for both Ag-rich and Ag-poor ChG systems and process variation verification on electrical characteristics enables greater fidelity in PMC device simulation, which significantly enhances our ability to understand the underlying physics of ChG-based resistive switching memory.

  8. Determination of Electrical Resistivity of Dry Coke Beds

    NASA Astrophysics Data System (ADS)

    Eidem, P. A.; Tangstad, M.; Bakken, J. A.

    2008-02-01

    The electrical resistivity of the coke bed is of great importance when producing FeMn, SiMn, and FeCr in a submerged arc furnace. In these processes, a coke bed is situated below and around the electrode tip and consists of metallurgical coke, slag, gas, and metal droplets. Since the basic mechanisms determining the electrical resistivity of a coke bed is not yet fully understood, this investigation is focused on the resistivity of dry coke beds consisting of different carbonaceous materials, i.e., coke beds containing no slag or metal. A method that reliably compares the electrical bulk resistivity of different metallurgical cokes at 1500 °C to 1600 °C is developed. The apparatus is dimensioned for industrial sized materials, and the electrical resistivity of anthracite, charcoal, petroleum coke, and metallurgical coke has been measured. The resistivity at high temperatures of the Magnitogorsk coke, which has the highest resistivity of the metallurgical cokes investigated, is twice the resistivity of the Corus coke, which has the lowest electrical resistivity. Zdzieszowice and SSAB coke sort in between with decreasing resistivities in the respective order. The electrical resistivity of anthracite, charcoal, and petroleum coke is generally higher than the resistivity of the metallurgical cokes, ranging from about two to about eight times the resistivity of the Corus coke at 1450 °C. The general trend is that the bulk resistivity of carbon materials decreases with increasing temperature and increasing particle size.

  9. Intrinsic high electrical conductivity of stoichiometric SrNb O3 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Oka, Daichi; Hirose, Yasushi; Nakao, Shoichiro; Fukumura, Tomoteru; Hasegawa, Tetsuya

    2015-11-01

    SrV O3 and SrNb O3 are perovskite-type transition-metal oxides with the same d1 electronic configuration. Although SrNb O3 (4 d1 ) has a larger d orbital than SrV O3 (3 d1 ), the reported electrical resistivity of SrNb O3 is much higher than that of SrV O3 , probably owing to nonstoichiometry. In this paper, we grew epitaxial, high-conductivity stoichiometric SrNb O3 using pulsed laser deposition. The growth temperature strongly affected the Sr/Nb ratio and the oxygen content of the films, and we obtained stoichiometric SrNb O3 at a very narrow temperature window around 630 °C. The stoichiometric SrNb O3 epitaxial thin films grew coherently on KTa O3 (001) substrates with high crystallinity. The room-temperature resistivity of the stoichiometric film was 2.82 ×10-5Ω cm , one order of magnitude lower than the lowest reported value of SrNb O3 and comparable with that of SrV O3 . We observed a T -square dependence of resistivity below T*=180 K and non-Drude behavior in near-infrared absorption spectroscopy, attributable to the Fermi-liquid nature caused by electron correlation. Analysis of the T -square coefficient A of resistivity experimentally revealed that the 4 d orbital of Nb that is larger than the 3 d ones certainly contributes to the high electrical conduction of SrNb O3 .

  10. Influence of Al3+ substitution on the electrical resistivity and dielectric behavior of Ni0.25Cu0.20Zn0.55AlxFe2-xO4 ferrites synthesized by solid state reaction technique

    NASA Astrophysics Data System (ADS)

    Rahman, K. R.; Chowdhury, F.-U.-Z.; Khan, M. N. I.

    2017-12-01

    In this paper, the effect of Al3+ substitution on the electrical and dielectric properties of Ni0.25Cu0.20Zn0.55AlxFe2-xO4 ferrites with x = 0.0, 0.05. 0.10, 0.15 and 0.20, synthesized by solid state reaction has been reported. Using two probe method, the DC resistivity has been investigated in the temperature range from 30 °C to 300 °C. Activation energy was calculated from the Arrhenius plot. The electrical conduction is explained on the basis of the hopping mechanism. The frequency dependent dielectric properties of these spinel ferrites have been studied at room temperature by measuring AC resistivity, conductivity (σac), dielectric constant and dielectric loss tangent (tan δ) in the frequency range between 1 kHz and 120 MHz. The study of dielectric properties showed that the dielectric constant and dielectric loss increased with increasing non-magnetic Al ions. The dependence of dielectric constant with frequency has been explained by Maxwell-Wagner interfacial polarization. Cole-Cole plots show semicircular arc(s) for the samples, and equivalent RC circuits have been proposed to clarify the phenomena involved therein. The analysis of complex impedance spectroscopy has been used to distinguish between the grain and grain boundary contribution to the total resistance.

  11. Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof

    NASA Technical Reports Server (NTRS)

    Watson, Kent A. (Inventor); Connell, John W. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Ounaies, Zoubeida (Inventor); Smith, Joseph G. (Inventor)

    2009-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400 800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  12. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  13. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Watson, A. (Inventor); Ounales, Zoubeida (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor)

    2009-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T(sub g)) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted hy selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barone, C., E-mail: cbarone@unisa.it; Mauro, C.; Pagano, S.

    Carbon nanotubes added to polymer and epoxy matrices are compounds of interest for applications in electronics and aerospace. The realization of high-performance devices based on these materials can profit from the investigation of their electric noise properties, as this gives a more detailed insight of the basic charge carriers transport mechanisms at work. The dc and electrical noise characteristics of different polymer/carbon nanotubes composites have been analyzed from 10 to 300 K. The results suggest that all these systems can be regarded as random resistive networks of tunnel junctions formed by adjacent carbon nanotubes. However, in the high-temperature regime, contributions derivingmore » from other possible mechanisms cannot be separated using dc information alone. A transition from a fluctuation-induced tunneling process to a thermally activated regime is instead revealed by electric noise spectroscopy. In particular, a crossover is found from a two-level tunneling mechanism, operating at low temperatures, to resistance fluctuations of a percolative network, in the high-temperature region. The observed behavior of 1/f noise seems to be a general feature for highly conductive samples, independent on the type of polymer matrix and on the nanotube density.« less

  15. Magnetic and transport properties of Pr2Pt3Si5

    NASA Astrophysics Data System (ADS)

    Anand, V. K.; Anupam; Hossain, Z.; Ramakrishnan, S.; Thamizhavel, A.; Adroja, D. T.

    2012-08-01

    We have investigated the magnetic and transport properties of a polycrystalline Pr2Pt3Si5 sample through the dc and ac magnetic susceptibilities, electrical resistivity, and specific heat measurements. The Rietveld refinement of the powder X-ray diffraction data reveals that Pr2Pt3Si5 crystallizes in the U2Co3Si5-type orthorhombic structure (space group Ibam). Both the dc and ac magnetic susceptibility data measured at low fields exhibit sharp anomaly near 15 K. In contrast, the specific heat data exhibit only a broad anomaly implying no long range magnetic order down to 2 K. The broad Schottky-type anomaly in low temperature specific heat data is interpreted in terms of crystal electric field (CEF) effect, and a CEF-split singlet ground state is inferred. The absence of the long range order is attributed to the presence of nonmagnetic singlet ground state of the Pr3+ ion. The electrical resistivity data exhibit metallic behavior and are well described by the Bloch-Grüniesen-Mott relation.

  16. Method for nondestructive testing of the film coating behavior of surface acoustic wave (SAW) sensors

    NASA Astrophysics Data System (ADS)

    Taslakov, M. A.; Avramov, I. D.

    2010-04-01

    This paper presents a practical non-destructive method for studying the film coating behavior of SAW devices by using a water soluble dielectric film (manitol) deposited on the SAW device surface by resistive evaporation. After measuring the electrical parameters of the film coated SAW device, the film can easily be removed from its surface by water rinsing without causing any damage to it. The SAW device can then be used over and over again in a large number of film depositions. The method was tested on a 1 GHz surface transverse wave (STW) resonator coated with manitol of varying thickness. After each coating and evaluation, the STW device was successfully recovered without significant performance degradation. Data is presented on the electrical changes of the STW device as a result of depositing manitol coatings of various thicknesses.

  17. Emotions induced by intracerebral electrical stimulation of the temporal lobe.

    PubMed

    Meletti, Stefano; Tassi, Laura; Mai, Roberto; Fini, Nicola; Tassinari, Carlo Alberto; Russo, Giorgio Lo

    2006-01-01

    To assess the quality and frequency of emotions induced by intracerebral electrical stimulation of the temporal lobe. Behavioral responses were obtained by electrical stimulation in 74 patients undergoing presurgical video-stereo-EEG monitoring for drug-resistant epilepsy. Intracerebral electrical stimulation was performed by delivering trains of electrical stimuli of alternating polarity; the intensity could vary from 0.2 to 3 mA. Stimulation frequency was 1 Hz or 50 Hz. Nine hundred thirty-eight stimulation procedures were performed. Seventy-nine emotional responses (ERs) were obtained (8.4%). Of these, 67 were "fear responses." Sad feelings were evoked 3 times, happy-pleasant feelings 9 times. Anger and disgust were never observed. The following variables affected the incidence of ER: (a) Anatomical site of stimulation. ERs (always fear) were maximal at the amygdala (12%) and minimal for lateral neocortical stimulation (3%, p < 0.01). (b) Pathology. Stimulation of a temporal lobe with hippocampal sclerosis was associated with a lower frequency of ERs compared with stimulation of a temporal lobe with no evidence of atrophy in the medial temporal structures. (c) Stimulation frequency. ERs were 12% at 50 Hz versus 6.0% at 1 Hz (p < 0.01). (d) Gender. In women fear responses were 16% compared with 3% in men (p < 0.01). There were no gender differences when analyzing nonemotional responses. These data confirm the role of the medial temporal lobe region in the expression of emotions, especially fear-related behaviors. Fear was observed more frequently in the absence of medial temporal sclerosis, supporting the hypothesis that emotional behaviors induced by stimulation are positive phenomena, strictly related to the physiological function of these regions. Further investigations should address why women express fear behaviors more frequently than men.

  18. Theoretical relationship between elastic wave velocity and electrical resistivity

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Sub; Yoon, Hyung-Koo

    2015-05-01

    Elastic wave velocity and electrical resistivity have been commonly applied to estimate stratum structures and obtain subsurface soil design parameters. Both elastic wave velocity and electrical resistivity are related to the void ratio; the objective of this study is therefore to suggest a theoretical relationship between the two physical parameters. Gassmann theory and Archie's equation are applied to propose a new theoretical equation, which relates the compressional wave velocity to shear wave velocity and electrical resistivity. The piezo disk element (PDE) and bender element (BE) are used to measure the compressional and shear wave velocities, respectively. In addition, the electrical resistivity is obtained by using the electrical resistivity probe (ERP). The elastic wave velocity and electrical resistivity are recorded in several types of soils including sand, silty sand, silty clay, silt, and clay-sand mixture. The appropriate input parameters are determined based on the error norm in order to increase the reliability of the proposed relationship. The predicted compressional wave velocities from the shear wave velocity and electrical resistivity are similar to the measured compressional velocities. This study demonstrates that the new theoretical relationship may be effectively used to predict the unknown geophysical property from the measured values.

  19. Magnetocaloric effects and electrical resistivity of Ni2Mn0.55CoxCr0.45-xGa - A Heusler alloy system exhibiting a partially-decoupled first-order phase transition

    NASA Astrophysics Data System (ADS)

    Brock, Jeffrey; Khan, Mahmud

    2018-05-01

    The phase transitions and associated magnetocaloric properties of the Ni2Mn0.55CoxCr0.45-xGa (0 ≤ x ≤ 0.25) Heusler alloy system have been investigated. All samples exhibit a first-order martensitic phase transition, evidenced by a sharp drop in the resistivity versus temperature data and a thermomagnetic irreversibility in the dc magnetization data of the respective samples. Large magnetic entropy changes have also been observed near the phase transitions. The martensitic transformation temperature increases as Cr is partially replaced with Co. Additionally, this substitution leads to a partial decoupling of the magnetic and structural phase transitions, dramatically suppressing any magnetic hysteresis losses. Furthermore, the change in electrical resistivity during the phase transition remains relatively constant across the system, despite major changes in the degree of structural disorder and magnetostructural phase transition coupling. Detailed experimental results and conjectures as to the origin of these behaviors have been provided.

  20. Effect of praseodymium on the electrical resistance of YВа2Сu3О7-δ single crystals

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Vovk, N. R.; Khadzhai, G. Ya.; Goulatis, I. L.; Chroneos, A.

    2014-07-01

    The electrical resistivity in the ab-plane of the Y1-yPryВа2Сu3О7-δ single crystals with high degree of perfection in the interval of Тc - 300 K was investigated. The increasing of praseodymium content leads to the reduction of the critical temperature (Tc) from 92 to 30 K. The experimental results can be approximated by the expression, taking into account the scattering of electrons by phonons, defects, the fluctuation conductivity in the 3D Aslamazov-Larkin model, as well as the transition to a "semiconductor" type behavior of the resistivity at the high praseodymium concentrations. The concentration dependences of all fitting parameters indicate a structural transition in the region 0.35≤у≤0.43. In particular, the Debye temperature changes in this range from 350 to 550 K, and the transverse coherence length passes through a maximum ξС(0)≈5 Å. The concentration dependence of the critical temperature testifies the d-pairing of the BCS model.

  1. Thermoelectric properties of Bi 2Sr 2Co 2O y thin films and single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diao, Zhenyu; Lee, Ho Nyung; Chisholm, Matthew F.

    Bi 2Sr 2Co 2O 9 exhibits a misfit-layered structure with good thermoelectric properties. We have investigated the thermoelectric properties of Bi 2Sr 2Co 2O y in both thin-film and single-crystal forms. Among thin films grown at different temperatures, we find that both the in-plane thermoelectric power (Sab) and electrical resistivity (ρab) vary in an opposite trend, i.e., Sab is high when ρab is small. This results in large power factor (S ab 2/ρab~5.5 μW/K 2 cm for the film grown at 700 °C), comparable to that for whiskers. For single crystals, the electrical resistivity shows metallic behavior in a largemore » temperature range, but has higher magnitude than that of films grown at 675 °C and 700 °C. The annealing of single crystals under Ar atmosphere leads to even higher resistivity while S ab is improved. Lastly, we discuss the thermoelectric performance of this material considering both oxygen concentration and phase purity.« less

  2. Thermoelectric properties of Bi 2Sr 2Co 2O y thin films and single crystals

    DOE PAGES

    Diao, Zhenyu; Lee, Ho Nyung; Chisholm, Matthew F.; ...

    2017-02-02

    Bi 2Sr 2Co 2O 9 exhibits a misfit-layered structure with good thermoelectric properties. We have investigated the thermoelectric properties of Bi 2Sr 2Co 2O y in both thin-film and single-crystal forms. Among thin films grown at different temperatures, we find that both the in-plane thermoelectric power (Sab) and electrical resistivity (ρab) vary in an opposite trend, i.e., Sab is high when ρab is small. This results in large power factor (S ab 2/ρab~5.5 μW/K 2 cm for the film grown at 700 °C), comparable to that for whiskers. For single crystals, the electrical resistivity shows metallic behavior in a largemore » temperature range, but has higher magnitude than that of films grown at 675 °C and 700 °C. The annealing of single crystals under Ar atmosphere leads to even higher resistivity while S ab is improved. Lastly, we discuss the thermoelectric performance of this material considering both oxygen concentration and phase purity.« less

  3. Synthesis and electrical behavior of Ni-Ti substituted Y-type hexaferrites for high frequency application

    NASA Astrophysics Data System (ADS)

    Ahmad, Bashir; Ashiq, Muhammad Naeem; Mumtaz, Saleem; Ali, Irshad; Najam-Ul-Haq, Muhmmad; Sadiq, Imran

    2018-04-01

    This article reports the fabrication of Ni-Ti doped derivatives of Sr2Co2Fe12-2xO22 by economical Sol-gel method. At room temperature X-ray diffraction (XRD) pattern of powder was obtained after sintering at 1050 °C. The XRD analysis revealed the formation of pure Sr-Y hexaferrite phase. It was found that the observed values of dielectric parameters decreased with increasing Ni-Ti substitution. The higher values of dielectric constants and dielectric loss factor at lower frequency were owing to surface charge polarization. In all the samples the resonance peaks were also observed. The observed room temperature DC electrical resistivity found to increase from 1.8x106 to 4.9x109 ohm cm. The observed activation energies values of the fabricated materials are found in 0.52-0.82 eV range. The decrease in dielectric parameters and increase in resistivity of the fabricated samples with substituents suggest these materials have worth application in micro-wave devices as such devices required highly resistive materials.

  4. State Waste Discharge Permit Application: Electric resistance tomography testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the arealmore » extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks.« less

  5. Voltage- and current-activated metal-insulator transition in VO2-based electrical switches: a lifetime operation analysis.

    PubMed

    Crunteanu, Aurelian; Givernaud, Julien; Leroy, Jonathan; Mardivirin, David; Champeaux, Corinne; Orlianges, Jean-Christophe; Catherinot, Alain; Blondy, Pierre

    2010-12-01

    Vanadium dioxide is an intensively studied material that undergoes a temperature-induced metal-insulator phase transition accompanied by a large change in electrical resistivity. Electrical switches based on this material show promising properties in terms of speed and broadband operation. The exploration of the failure behavior and reliability of such devices is very important in view of their integration in practical electronic circuits. We performed systematic lifetime investigations of two-terminal switches based on the electrical activation of the metal-insulator transition in VO 2 thin films. The devices were integrated in coplanar microwave waveguides (CPWs) in series configuration. We detected the evolution of a 10 GHz microwave signal transmitted through the CPW, modulated by the activation of the VO 2 switches in both voltage- and current-controlled modes. We demonstrated enhanced lifetime operation of current-controlled VO 2 -based switching (more than 260 million cycles without failure) compared with the voltage-activated mode (breakdown at around 16 million activation cycles). The evolution of the electrical self-oscillations of a VO 2 -based switch induced in the current-operated mode is a subtle indicator of the material properties modification and can be used to monitor its behavior under various external stresses in sensor applications.

  6. 2D Heterostructure coatings of hBN-MoS2 layers for corrosion resistance

    NASA Astrophysics Data System (ADS)

    Vandana, Sajith; Kochat, Vidya; Lee, Jonghoon; Varshney, Vikas; Yazdi, Sadegh; Shen, Jianfeng; Kosolwattana, Suppanat; Vinod, Soumya; Vajtai, Robert; Roy, Ajit K.; Sekhar Tiwary, Chandra; Ajayan, P. M.

    2017-02-01

    Heterostructures of atomically thin 2D materials could have improved physical, mechanical and chemical properties as compared to its individual components. Here we report, the effect of heterostructure coatings of hBN and MoS2 on the corrosion behavior as compared to coatings employing the individual 2D layer compositions. The poor corrosion resistance of MoS2 (widely used as wear resistant coating) can be improved by incorporating hBN sheets. Depending on the atomic stacking of the 2D sheets, we can further engineer the corrosion resistance properties of these coatings. A detailed spectroscopy and microscopy analysis has been used to characterize the different combinations of layered coatings. Detailed DFT based calculation reveals that the effect on the electrical properties due to atomic stacking is one of the major reasons for the improvement seen in corrosion resistance.

  7. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    NASA Astrophysics Data System (ADS)

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    2018-04-01

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three-dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb2 Pt2 Pb , a metal where itinerant electrons coexist with localized moments of Yb ions which can be described in terms of effective S =1 /2 spins with a dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasilinear temperature dependence.

  8. Magnetotelluric studies of the Caldas Novas geothermal reservoir, Brazil

    NASA Astrophysics Data System (ADS)

    de Lugão, Patricia Pastana; LaTerra, Emanuele Francesco; Kriegshäuser, Berthold; Fontes, Sergio L.

    2002-01-01

    A magnetotelluric (MT) survey was conducted on the Caldas Novas geothermal reservoir located in the state of Goiás, Central Brazil. The region of Caldas Novas is a popular tourist spot because of the occurrence of hot water springs. The purpose of the first MT survey in this area is to provide more information on the geoelectrical structure of this important geothermal reservoir. The MT method is a frequency domain technique that utilizes naturally occurring magnetic and electric signals as source to obtain a resistivity map of the subsurface. Since temperature and permeability are some of the factors controlling electrical resistivity, MT is widely utilized for surveying geothermal areas such as Caldas Novas. Data were acquired along two profiles crossing the Serra de Caldas (Caldas Mountains) with a total of 25 MT stations. Frequencies of acquisition were in the range from 0.008 to 176 Hz. Spacing between stations were usually around 5 km. Apparent resistivity and phase data from the transverse electric (TE) and transverse magnetic (TM) modes were computed for both profiles. Very high (100,000 Ω m) apparent resistivity values in the TM mode indicate distortion, possibly caused by 3-D resistive structures. In this work, we focus on Profile 2, which was acquired aligned at N40°E, approximately following the direction of weakness N50°E. Two-dimensional (2-D) inversion suggests a basin-like model with very high-resistivity block structures associated with concentric faulting below the Caldas Mountains inside a resistive basin that extends to depths of approximately 25-30 km. This model is in good agreement with gravity data and the available geological information in the area and can help delineate areas of new geothermal reservoirs. The high resistivity associated with the depression in the MT model can be interpreted as caused by the low-permeability quartzites that form the Caldas Mountains. Although the survey configuration does not allow for a full three-dimensional (3-D) interpretation, a 3-D resistivity model was constructed and the MT responses computed. The 3-D synthetic data explains the behavior of both the TE and TM modes in this faulted resistive environment.

  9. Real-time 4D electrical resistivity imaging of tracer transport within an energically stimulated fracture zone

    NASA Astrophysics Data System (ADS)

    Johnson, T. C.

    2016-12-01

    Hydraulic fracture stimulation is used extensively in the subsurface energy sector to improve access between energy bearing formations and production boreholes. However, large uncertainties exist concerning the location and extent of stimulated fractures, and concerning the behavior of flow within those fractures. This uncertainty often results in significant risks, including induced seismicity and contamination of potable groundwater aquifers. Time-lapse electrical resistivity tomography (ERT) is a proven method of imaging fluid flow within fracture networks, by imaging the change in bulk conductivity induced by the presence of an electrically anomalous tracer within the fracture. In this work we demonstrate characterization and flow monitoring of a stimulated fracture using real-time four-dimensional ERT imaging within an unsaturated rhyolite formation. After stimulation, a conductive tracer was injected into the fracture zone. ERT survey data were continuously and autonomously collected, pre-processed on site, submitted to an off-site high performance computing system for inversion, and returned to the field for inspection. Surveys were collected at approximately 12 minute intervals. Data transmission and inversion required approximately 2 minutes per survey. The time-lapse imaging results show the dominant flow-paths within the stimulated fracture zone, thereby revealing the location and extent of the fracture, and the behavior of tracer flow within the fracture. Ultimately real-time imaging will enable site operators to better understand stimulation operations, and control post-stimulation reservoir operations for optimal performance and environmental protection.

  10. The Cyclic Mechanical and Fatigue Properties of Ferroanelastic Beta Prime Gold Cadmium. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Karz, R. S.

    1973-01-01

    The fatigue behavior of beta prime Au1.05Cd0.95 alloy was investigated and found to be exceptional for certain orientations with lives of 10,000 to 1,000,000 cycles at total strain amplitudes above 0.05 not uncommon. Fatigue lives were influenced principally by the stress level which controlled the amount of plastic deformation, and stress fatigue resistance was low compared with most metals. Failure always exhibited brittle characteristics. An algorithm was devised to predict mechanical behavior from the twin system orientations and was found in good agreement with experiment for longitudinal strains above 0.04. The cyclic mechanical properties were examined, and a model for the behavior was proposed utilizing previous theories of the restoring force and the Peierls-Nabarro stress for twinning and new concepts. Gold-cadmium was found to have certain strain fatigue resistant applications, particularly in electronics where the alloy's high electrical conductivity is utilized.

  11. Swelling kinetics and electrical charge transport in PEDOT:PSS thin films exposed to water vapor.

    PubMed

    Sarkar, Biporjoy; Jaiswal, Manu; Satapathy, Dillip K

    2018-06-06

    We report the swelling kinetics and evolution of the electrical charge transport in poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) thin films subjected to water vapor. Polymer films swell by the diffusion of water vapor and are found to undergo structural relaxations. Upon exposure to water vapor, primarily the hygroscopic PSS shell, which surrounds the conducting PEDOT-rich cores, takes up water vapor and subsequently swells. We found that the degree of swelling largely depends on the PEDOT to PSS ratio. Swelling driven microscopic rearrangement of the conducting PEDOT-rich cores in the PSS matrix strongly influences the electrical charge transport of the polymer film. Swelling induced increase as well as decrease of electrical resistance are observed in polymer films having different PEDOT to PSS ratio. This anomalous charge transport behavior in PEDOT:PSS films is reconciled by taking into account the contrasting swelling behavior of the PSS and the conducting PEDOT-rich cores leading to spatial segregation of PSS in films with PSS as a minority phase and by a net increase in mean separation between conducting PEDOT-rich cores for films having abundance of PSS.

  12. Swelling kinetics and electrical charge transport in PEDOT:PSS thin films exposed to water vapor

    NASA Astrophysics Data System (ADS)

    Sarkar, Biporjoy; Jaiswal, Manu; Satapathy, Dillip K.

    2018-06-01

    We report the swelling kinetics and evolution of the electrical charge transport in poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) thin films subjected to water vapor. Polymer films swell by the diffusion of water vapor and are found to undergo structural relaxations. Upon exposure to water vapor, primarily the hygroscopic PSS shell, which surrounds the conducting PEDOT-rich cores, takes up water vapor and subsequently swells. We found that the degree of swelling largely depends on the PEDOT to PSS ratio. Swelling driven microscopic rearrangement of the conducting PEDOT-rich cores in the PSS matrix strongly influences the electrical charge transport of the polymer film. Swelling induced increase as well as decrease of electrical resistance are observed in polymer films having different PEDOT to PSS ratio. This anomalous charge transport behavior in PEDOT:PSS films is reconciled by taking into account the contrasting swelling behavior of the PSS and the conducting PEDOT-rich cores leading to spatial segregation of PSS in films with PSS as a minority phase and by a net increase in mean separation between conducting PEDOT-rich cores for films having abundance of PSS.

  13. Frequency- and doping-level influence on electric and dielectric properties of PolySi/SiO2/cSi (MOS) structures

    NASA Astrophysics Data System (ADS)

    Doukhane, N.; Birouk, B.

    2018-03-01

    The electric and dielectric characteristics of PolySi/SiO2/cSi (MOS) structure, such as series resistance ( R s), dielectric constants ( ɛ') and ( ɛ″), dielectric losses (tan δ), and the ac electric conductivity ( σ ac), were studied in the frequency range 100 kHz-1 MHz for various doping levels and two thicknesses for the polysilicon layer (100 and 175 nm). The experimental results show that the C and G/ ω characteristics are very sensitive to the frequency due to the presence of interface states. Series resistance R s is deduced from C and G/ ω measurements and is plotted as a function of the frequency for various doping levels. It is found to decrease with frequency and doping level. To determine {ɛ ^' }, ɛ″, tan δ, and {σ _{{ac}}}, the admittance technique was used. An interesting behavior of the constants, {ɛ ^' } and ɛ″, was noticed. The {ɛ ^' } values fit led to relations between {ɛ ^' } and the frequency, on one hand, and between {ɛ ^' } and the electric conductivity of the polysilicon layers on the other. These relations make it possible to interpolate directly between two experimental points for a given frequency. The analysis of the results shows that the values of {ɛ ^' }, ɛ″, and tan δ decrease with increasing frequency. This is due to the fact that in the region of low frequencies, interfacial polarization occurs easily, and the interface states between Si and SiO2 contribute to the improvement of the dielectric properties of the PolySi/SiO2/cSi structures. The study also emphasizes that the ac electric conductivity increases with the increase in frequency and doping level; this causes to the reduction in series resistance.

  14. Migration of interfacial oxygen ions modulated resistive switching in oxide-based memory devices

    NASA Astrophysics Data System (ADS)

    Chen, C.; Gao, S.; Zeng, F.; Tang, G. S.; Li, S. Z.; Song, C.; Fu, H. D.; Pan, F.

    2013-07-01

    Oxides-based resistive switching memory induced by oxygen ions migration is attractive for future nonvolatile memories. Numerous works had focused their attentions on the sandwiched oxide materials for depressing the characteristic variations, but the comprehensive studies of the dependence of electrodes on the migration behavior of oxygen ions are overshadowed. Here, we investigated the interaction of various metals (Ni, Co, Al, Ti, Zr, and Hf) with oxygen atoms at the metal/Ta2O5 interface under electric stress and explored the effect of top electrode on the characteristic variations of Ta2O5-based memory device. It is demonstrated that chemically inert electrodes (Ni and Co) lead to the scattering switching characteristics and destructive gas bubbles, while the highly chemically active metals (Hf and Zr) formed a thick and dense interfacial intermediate oxide layer at the metal/Ta2O5 interface, which also degraded the resistive switching behavior. The relatively chemically active metals (Al and Ti) can absorb oxygen ions from the Ta2O5 film and avoid forming the problematic interfacial layer, which is benefit to the formation of oxygen vacancies composed conduction filaments in Ta2O5 film thus exhibit the minimum variations of switching characteristics. The clarification of oxygen ions migration behavior at the interface can lead further optimization of resistive switching performance in Ta2O5-based memory device and guide the rule of electrode selection for other oxide-based resistive switching memories.

  15. Influence of Electrical Resistivity and Machining Parameters on Electrical Discharge Machining Performance of Engineering Ceramics

    PubMed Central

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge machining ZnO/Al2O3 ceramic. PMID:25364912

  16. Advances in the theory and application of BSF cells. [including electrical resistivity and photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Lamneck, J. H.

    1975-01-01

    The characteristics and behavior of p(+), p solar cells were investigated. The p(+), p cells were made by the removal of the n(+) surface layers from n(+), p p(+), BSF cells followed by application of a suitable contact to the resultant p(+), p structures. The open circuit voltage of p(+), p cells was found to increase with increasing 'p' bulk resistivity. The measured open circuit velocity-temperature coefficients were positive and increased with increasing resistivity. An outline of prior limitations in solar cell design is presented, and the removal of these limitations through use of BSF effects is pointed out. The study of BSF effects made feasible production of very thin high efficiency silicon cells as well as high resistivity-high efficiency cells, two desirable types of silicon cells which were previously impossible to make.

  17. Static impedance behavior of programmable metallization cells

    NASA Astrophysics Data System (ADS)

    Rajabi, S.; Saremi, M.; Barnaby, H. J.; Edwards, A.; Kozicki, M. N.; Mitkova, M.; Mahalanabis, D.; Gonzalez-Velo, Y.; Mahmud, A.

    2015-04-01

    Programmable metallization cell (PMC) devices work by growing and dissolving a conducting metallic bridge across a chalcogenide glass (ChG) solid electrolyte, which changes the resistance of the cell. PMC operation relies on the incorporation of metal ions in the ChG films via photo-doping to lower the off-state resistance and stabilize resistive switching, and subsequent transport of these ions by electric fields induced from an externally applied bias. In this paper, the static on- and off-state resistance of a PMC device composed of a layered (Ag-rich/Ag-poor) Ge30Se70 ChG film with active Ag and inert Ni electrodes is characterized and modeled using three dimensional simulation code. Calibrating the model to experimental data enables the extraction of device parameters such as material bandgaps, workfunctions, density of states, carrier mobilities, dielectric constants, and affinities.

  18. Electrical Resistance Based Damage Modeling of Multifunctional Carbon Fiber Reinforced Polymer Matrix Composites

    NASA Astrophysics Data System (ADS)

    Hart, Robert James

    In the current thesis, the 4-probe electrical resistance of carbon fiber-reinforced polymer (CFRP) composites is utilized as a metric for sensing low-velocity impact damage. A robust method has been developed for recovering the directionally dependent electrical resistivities using an experimental line-type 4-probe resistance method. Next, the concept of effective conducting thickness was uniquely applied in the development of a brand new point-type 4-probe method for applications with electrically anisotropic materials. An extensive experimental study was completed to characterize the 4-probe electrical resistance of CFRP specimens using both the traditional line-type and new point-type methods. Leveraging the concept of effective conducting thickness, a novel method was developed for building 4-probe electrical finite element (FE) models in COMSOL. The electrical models were validated against experimental resistance measurements and the FE models demonstrated predictive capabilities when applied to CFRP specimens with varying thickness and layup. These new models demonstrated a significant improvement in accuracy compared to previous literature and could provide a framework for future advancements in FE modeling of electrically anisotropic materials. FE models were then developed in ABAQUS for evaluating the influence of prescribed localized damage on the 4-probe resistance. Experimental data was compiled on the impact response of various CFRP laminates, and was used in the development of quasi- static FE models for predicting presence of impact-induced delamination. The simulation-based delamination predictions were then integrated into the electrical FE models for the purpose of studying the influence of realistic damage patterns on electrical resistance. When the size of the delamination damage was moderate compared to the electrode spacing, the electrical resistance increased by less than 1% due to the delamination damage. However, for a specimen with large delamination extending beyond the electrode locations, the oblique resistance increased by 30%. This result suggests that for damage sensing applications, the spacing of electrodes relative to the size of the delamination is important. Finally CT image data was used to model 3-D void distributions and the electrical response of such specimens were compared to models with no voids. As the void content increased, the electrical resistance increased non-linearly. The relationship between void content and electrical resistance was attributed to a combination of three factors: (i) size and shape, (ii) orientation, and (iii) distribution of voids. As a whole, the current thesis provides a comprehensive framework for developing predictive, resistance-based damage sensing models for CFRP laminates of various layup and thickness.

  19. Electrical condition monitoring method for polymers

    DOEpatents

    Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA; Masakowski, Daniel D [Worcester, MA; Wong, Ching Ping [Duluth, GA; Luo, Shijian [Boise, ID

    2008-08-19

    An electrical condition monitoring method utilizes measurement of electrical resistivity of an age sensor made of a conductive matrix or composite disposed in a polymeric structure such as an electrical cable. The conductive matrix comprises a base polymer and conductive filler. The method includes communicating the resistivity to a measuring instrument and correlating resistivity of the conductive matrix of the polymeric structure with resistivity of an accelerated-aged conductive composite.

  20. A one-dimensional model of solid-earth electrical resistivity beneath Florida

    USGS Publications Warehouse

    Blum, Cletus; Love, Jeffrey J.; Pedrie, Kolby; Bedrosian, Paul A.; Rigler, E. Joshua

    2015-11-19

    An estimated one-dimensional layered model of electrical resistivity beneath Florida was developed from published geological and geophysical information. The resistivity of each layer is represented by plausible upper and lower bounds as well as a geometric mean resistivity. Corresponding impedance transfer functions, Schmucker-Weidelt transfer functions, apparent resistivity, and phase responses are calculated for inducing geomagnetic frequencies ranging from 10−5 to 100 hertz. The resulting one-dimensional model and response functions can be used to make general estimates of time-varying electric fields associated with geomagnetic storms such as might represent induction hazards for electric-power grid operation. The plausible upper- and lower-bound resistivity structures show the uncertainty, giving a wide range of plausible time-varying electric fields.

  1. Electrical resistance tomography using steel cased boreholes as electrodes

    DOEpatents

    Daily, W.D.; Ramirez, A.L.

    1999-06-22

    An electrical resistance tomography method is described which uses steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constrain the models. 2 figs.

  2. Electrical resistance tomography using steel cased boreholes as electrodes

    DOEpatents

    Daily, William D.; Ramirez, Abelardo L.

    1999-01-01

    An electrical resistance tomography method using steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constain the models.

  3. Electrical behavior of natural manganese dioxide (NMD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorgulho, H.F.; Fernandes, R.Z.D.; Pernaut, J.M.

    NMD samples from Brazil have been submitted to magnetic and particle size separations and characterized by X-ray diffraction and fluorescence and thermogravimetric analyses. Results showed that simple physical treatments can lead to more than 60% enriched MnO{sub 2} materials which could satisfy some electrochemical applications. The electrical properties of the samples conditioned as pressed pellets have been investigated by four-points direct current probe and impedance spectroscopy, varying the conditions of preparation and measurement. It is proposed that the higher frequency impedance is equivalent to the intrinsic electronic resistance of the MnO{sub 2} phases while at lower frequencies occurs an interphasemore » charge separation coupled with a possible ionic transport. The corresponding contact resistance depends on the particle size distribution of the material, the compactation pressure of pellets and the iron content of the materials. The interphase dielectric relaxation does not behave ideally; the depression of the impedance semicircles as shown in the Nyquist plane is assumed to be related to the roughness of the bulk interfaces. Recent developments have shown the possibility of using manganese oxides as reversible electrodes for battery or supercapacitor applications for electrical vehicle. In these perspectives it is important to study the electrical and electrochemical properties of NMD in order to estimate its suitability for this kind of applications.« less

  4. Use of electrical resistivity to detect underground mine voids in Ohio

    USGS Publications Warehouse

    Sheets, Rodney A.

    2002-01-01

    Electrical resistivity surveys were completed at two sites along State Route 32 in Jackson and Vinton Counties, Ohio. The surveys were done to determine whether the electrical resistivity method could identify areas where coal was mined, leaving air- or water-filled voids. These voids can be local sources of potable water or acid mine drainage. They could also result in potentially dangerous collapse of roads or buildings that overlie the voids. The resistivity response of air- or water-filled voids compared to the surrounding bedrock may allow electrical resistivity surveys to delineate areas underlain by such voids. Surface deformation along State Route 32 in Jackson County led to a site investigation, which included electrical resistivity surveys. Several highly resistive areas were identified using axial dipole-dipole and Wenner resistivity surveys. Subsequent drilling and excavation led to the discovery of several air-filled abandoned underground mine tunnels. A site along State Route 32 in Vinton County, Ohio, was drilled as part of a mining permit application process. A mine void under the highway was instrumented with a pressure transducer to monitor water levels. During a period of high water level, electrical resistivity surveys were completed. The electrical response was dominated by a thin, low-resistivity layer of iron ore above where the coal was mined out. Nearby overhead powerlines also affected the results.

  5. Unique Pressure versus Temperature Phase Diagram for Antiferromagnets Eu2Ni3Ge5 and EuRhSi3

    NASA Astrophysics Data System (ADS)

    Nakashima, Miho; Amako, Yasushi; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Nada, Masato; Sugiyama, Kiyohiro; Hagiwara, Masayuki; Haga, Yoshinori; Takeuchi, Tetsuya; Nakamura, Ai; Akamine, Hiromu; Tomori, Keisuke; Yara, Tomoyuki; Ashitomi, Yosuke; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika

    2017-03-01

    We studied the magnetic properties of the antiferromagnets Eu2Ni3Ge5 and EuRhSi3 by measuring their electrical resistivity, specific heat, magnetic susceptibility, magnetization, and thermoelectric power, together with the electrical resistivities at high pressures of up to 15 GPa. These compounds have almost divalent Eu ions at ambient pressure and order antiferromagnetically with a successive change in the antiferromagnetic structure at TN = 19 K and T'N = 17 K in Eu2Ni3Ge5, and at TN = 49 K and T'N = 45 K in EuRhSi3. Magnetic field versus temperature (H-T) phase diagrams were constructed for both compounds from the magnetization measurements. The Néel temperature in Eu2Ni3Ge5 was found to increase up to 7 GPa but to decrease continuously with further increasing pressure, without the so-called valence transition. Under a high pressure of 15 GPa, Kondo-like behavior of the electrical resistivity was observed, suggesting the existence of the heavy-fermion state at low temperatures. A similar trend is likely to occur in EuRhSi3. The present P-T phase diagrams for both compounds are the first cases that are reminiscent of the phase diagram of EuCu2(SixGe1-x)2.

  6. Electrical Transport Signature of the Magnetic Fluctuation-Structure Relation in α-RuCl3 Nanoflakes.

    PubMed

    Mashhadi, Soudabeh; Weber, Daniel; Schoop, Leslie M; Schulz, Armin; Lotsch, Bettina V; Burghard, Marko; Kern, Klaus

    2018-05-09

    The small gap semiconductor α-RuCl 3 has emerged as a promising candidate for quantum spin liquid materials. Thus far, Raman spectroscopy, neutron scattering, and magnetization measurements have provided valuable hints for collective spin behavior in α-RuCl 3 bulk crystals. However, the goal of implementing α-RuCl 3 into spintronic devices would strongly benefit from the possibility of electrically probing these phenomena. To address this, we first investigated nanoflakes of α-RuCl 3 by Raman spectroscopy and observed similar behavior as in the case of the bulk material, including the signatures of possible fractionalized excitations. In complementary experiments, we investigated the electrical charge transport properties of individual α-RuCl 3 nanoflakes in the temperature range between 120 and 290 K. The observed temperature-dependent electrical resistivity is consistent with variable range hopping behavior and exhibits a transition at about 180 K, close to the onset temperature observed in our Raman measurements. In conjunction with the established relation between structure and magnetism in the bulk, we interpret this transition to coincide with the emergence of fractionalized excitations due to the Kitaev interactions in the nanoflakes. Compared to the bulk samples, the transition temperature of the underlying structural change is larger in the nanoflakes. This difference is tentatively attributed to the dimensionality of the nanoflakes as well as the formation of stacking faults during mechanical exfoliation. The demonstrated devices open up novel perspectives toward manipulating the Kitaev-phase in α-RuCl 3 via electrical means.

  7. Mechanical-magnetic-electric coupled behaviors for stress-driven Terfenol-D energy harvester

    NASA Astrophysics Data System (ADS)

    Cao, Shuying; Zheng, Jiaju; Wang, Bowen; Pan, Ruzheng; Zhao, Ran; Weng, Ling; Sun, Ying; Liu, Chengcheng

    2017-05-01

    The stress-driven Terfernol-D energy harvester exhibits the nonlinear mechanical-magnetic-electric coupled (MMEC) behaviors and the eddy current effects. To analyze and design the device, it is necessary to establish an accurate model of the device. Based on the effective magnetic field expression, the constitutive equations with eddy currents and variable coefficients, and the dynamic equations, a nonlinear dynamic MMEC model for the device is founded. Comparisons between the measured and calculated results show that the model can describe the nonlinear coupled curves of magnetization versus stress and strain versus stress under different bias fields, and can provide the reasonable data trends of piezomagnetic coefficients, Young's modulus and relative permeability for Terfenol-D. Moreover, the calculated power results show that the model can determine the optimal bias conditions, optimal resistance, suitable proof mass, suitable slices for the maximum energy extraction of the device under broad stress amplitude and broad frequency.

  8. Dynamic piezoresistive response of hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey; Anees, Muhammad; Namilae, Sirish; Kim, Daewon

    2017-04-01

    Hybrid nanocomposites with carbon nanotubes and graphitic platelets as fillers are known to exhibit remarkable electrical and mechanical properties with many potential strain and damage sensing applications. In this work, we fabricate hybrid nanocomposites with carbon nanotube sheet and coarse graphite platelets as fillers with epoxy matrix. We then examine the electromechanical behavior of these nanocomposites under dynamic loading. The electrical resistivity responses of the nanocomposites are measured in frequency range of 1 Hz to 50 Hz with different levels of induced strains. Axial cycling loading is applied using a uniaxial electrodynamic shaker, and transverse loading is applied on end-clamped specimen using modified speakers. In addition, a dynamic mechanical analysis of nanocomposite specimen is performed to characterize the thermal and dynamic behavior of the nanocomposite. Our results indicate that these hybrid nanocomposites exhibit a distinct piezoresistive response under a wide range of dynamic loading conditions, which can be beneficial for potential sensing applications.

  9. Metal — Insulator Transition-like in Nano-Crystallized Ni-Fe-Zr Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Hamed, F.; Obaidat, I. M.; Benkraouda, M.

    2007-08-01

    Ni-Fe-Zr based Metallic glassy ribbons were prepared by melt spinning technique. The compositional and structural integrity of the melt spun ribbons were verified by means of X-ray diffraction, SEM, EDX and DSC. 5 to 7 cm long ribbons of Ni-Fe-Zr based metallic glasses with different compositions were sealed inside quartz ampoules under vacuum. The sealed metallic glassy ribbons were nano-crystallized at 973 K for varying periods of time. The temperature dependence of the electrical resistivity of the nano-crystallized samples had been investigated over the temperature range 25-280 K. The crystallized ribbons at 973 K for periods for less than 4 hours displayed insulating electrical behavior like at low temperatures, while those annealed for more than 4 hours showed metallic behavior like. Nonlinear I-V characteristics were also observed at low temperatures for samples annealed for less than four hours.

  10. Leakage current behavior in lead-free ferroelectric (K,Na)NbO3-LiTaO3-LiSbO3 thin films

    NASA Astrophysics Data System (ADS)

    Abazari, M.; Safari, A.

    2010-12-01

    Conduction mechanisms in epitaxial (001)-oriented pure and 1 mol % Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.1,Sb0.06)O3 (KNN-LT-LS) thin films on SrTiO3 substrate were investigated. Temperature dependence of leakage current density was measured as a function of applied electric field in the range of 200-380 K. It was shown that the different transport mechanisms dominate in pure and Mn-doped thin films. In pure (KNN-LT-LS) thin films, Poole-Frenkel emission was found to be responsible for the leakage, while Schottky emission was the dominant mechanism in Mn-doped thin films at higher electric fields. This is a remarkable yet clear indication of effect of 1 mol % Mn on the resistive behavior of such thin films.

  11. AC and DC electrical properties of graphene nanoplatelets reinforced epoxy syntactic foam

    NASA Astrophysics Data System (ADS)

    Zegeye, Ephraim; Wicker, Scott; Woldesenbet, Eyassu

    2018-04-01

    Benefits of employing graphene nanopletlates (GNPLs) in composite structures include mechanical as well as multifunctional properties. Understanding the impedance behavior of GNPLs reinforced syntactic foams may open new applications for syntactic foam composites. In this work, GNPLs reinforced syntactic foams were fabricated and tested for DC and AC electrical properties. Four sets of syntactic foam samples containing 0, 0.1, 0.3, and 0.5 vol% of GNPLs were fabricated and tested. Significant increase in conductivity of syntactic foams due to the addition of GNPLs was noted. AC impedance measurements indicated that the GNPLs syntactic foams become frequency dependent as the volume fraction of GNPLs increases. With addition of GNPLs, the characteristic of the syntactic foams are also observed to transition from dominant capacitive to dominant resistive behavior. This work was carried out at Southern University, Mechanical Engineering Department, Baton Rouge, LA 70802, United States of America.

  12. Effects of thermal and electrical stressing on the breakdown behavior of space wiring

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad; Stavnes, Mark; Suthar, Jayant; Laghari, Javaid

    1995-01-01

    Several failures in the electrical wiring systems of many aircraft and space vehicles have been attributed to arc tracking and damaged insulation. In some instances, these failures proved to be very costly as they have led to the loss of many aircraft and imperilment of space missions. Efforts are currently underway to develop lightweight, reliable, and arc track resistant wiring for aerospace applications. In this work, six wiring constructions were evaluated in terms of their breakdown behavior as a function of temperature. These hybrid constructions employed insulation consisting of Kapton, Teflon, and cross-linked Tefzel. The properties investigated included the 400 Hz AC dielectric strength at ambient and 200 C, and the lifetime at high temperature with an applied bias of 40, 60, and 80% of breakdown voltage level. The results obtained are discussed, and conclusions are made concerning the suitability of the wiring constructions investigated for aerospace applications.

  13. Effects of thermal and electrical stressing on the breakdown behavior of space wiring

    NASA Astrophysics Data System (ADS)

    Hammoud, Ahmad; Stavnes, Mark; Suthar, Jayant; Laghari, Javaid

    1995-06-01

    Several failures in the electrical wiring systems of many aircraft and space vehicles have been attributed to arc tracking and damaged insulation. In some instances, these failures proved to be very costly as they have led to the loss of many aircraft and imperilment of space missions. Efforts are currently underway to develop lightweight, reliable, and arc track resistant wiring for aerospace applications. In this work, six wiring constructions were evaluated in terms of their breakdown behavior as a function of temperature. These hybrid constructions employed insulation consisting of Kapton, Teflon, and cross-linked Tefzel. The properties investigated included the 400 Hz AC dielectric strength at ambient and 200 C, and the lifetime at high temperature with an applied bias of 40, 60, and 80% of breakdown voltage level. The results obtained are discussed, and conclusions are made concerning the suitability of the wiring constructions investigated for aerospace applications.

  14. Growth of Two-Dimensional Carbon Nanostructures and Their Electrical Transport Properties at Low Tempertaure

    NASA Astrophysics Data System (ADS)

    Wu, Yihong; Wang, Haomin; Choong, Catherine

    2011-01-01

    We report on a systematic electrical transport study of carbon nanowalls using both the normal metal and superconducting electrodes. The nonlinear transport and corresponding anomalous dI/dV versus bias curves below ˜2 K observed in samples with both Ti and Nb electrodes is accounted for by the formation of charge density waves due to enhanced density of states at the Fermi level at edges or extended defects. This phase competes with superconducting instability at very low temperature, as manifested by distinctive resistance-temperature behaviors and associated dV/dI characteristics observed in different samples.

  15. Nonlinear transport behavior of low dimensional electron systems

    NASA Astrophysics Data System (ADS)

    Zhang, Jingqiao

    The nonlinear behavior of low-dimensional electron systems attracts a great deal of attention for its fundamental interest as well as for potentially important applications in nanoelectronics. In response to microwave radiation and dc bias, strongly nonlinear electron transport that gives rise to unusual electron states has been reported in two-dimensional systems of electrons in high magnetic fields. There has also been great interest in the nonlinear response of quantum ballistic constrictions, where the effects of quantum interference, spatial dispersion and electron-electron interactions play crucial roles. In this thesis, experimental results of the research of low dimensional electron gas systems are presented. The first nonlinear phenomena were observed in samples of highly mobile two dimensional electrons in GaAs heavily doped quantum wells at different magnitudes of DC and AC (10 KHz to 20 GHz) excitations. We found that in the DC excitation regime the differential resistance oscillates with the DC current and external magnetic field, similar behavior was observed earlier in AlGaAs/GaAs heterostructures [C.L. Yang et al. ]. At external AC excitations the resistance is found to be also oscillating as a function of the magnetic field. However the form of the oscillations is considerably different from the DC case. We show that at frequencies below 100 KHz the difference is a result of a specific average of the DC differential resistance during the period of the external AC excitations. Secondly, in similar samples, strong suppression of the resistance by the electric field is observed in magnetic fields at which the Landau quantization of electron motion occurs. The phenomenon survives at high temperatures at which the Shubnikov de Haas oscillations are absent. The scale of the electric fields essential for the effect, is found to be proportional to temperature in the low temperature limit. We suggest that the strong reduction of the longitudinal resistance is a result of a nontrivial distribution function of the electrons induced by the DC electric field. We compare our results with a theory proposed recently. The comparison allows us to find the quantum scattering time of 2D electron gas at high temperatures, in a regime, where previous methods were not successful. In addition, we observed a zero differential resistance state (ZDRS) in response to a direct current above a threshold value I > Ith applied to a two-dimensional system of electrons at low temperatures in a strong magnetic field. Entry into the ZDRS, which is not observable above several Kelvins, is accompanied by a sharp dip in the differential resistance. Additional analysis reveals instability of the electrons for I > Ith and an inhomogeneous, non-stationary pattern of the electric current. We suggest that the dominant mechanism leading to the new electron state is the redistribution of electrons in energy space induced by the direct current. Finally, we present the results of rectification of microwave radiation generated by an asymmetric, ballistic dot at different frequencies (1-40GHz), temperatures (0.3K-6K) and magnetic fields. A strong reduction of the microwave rectification is found in magnetic fields at which the cyclotron radius of electron orbits at the Fermi level is smaller than the size of the dot. With respect to the magnetic field, both symmetric and anti-symmetric contributions to the directed transport are presented in this thesis. The symmetric part of the rectified voltage changes significantly with microwave frequency o at otauf ≥ 1, where tau f is the time of a ballistic electron flight across the dot. The results lead consistently toward the ballistic origin of the effect, and can be explained by the strong nonlocal electron response to the microwave electric field, which affects both the speed and the direction of the electron motion inside the dot.

  16. Evolution of the electrical resistivity anisotropy during saline tracer tests: insights from geoelectrical milli-fluidic experiments

    NASA Astrophysics Data System (ADS)

    Jougnot, D.; Jimenez-Martinez, J.; Legendre, R.; Le Borgne, T.; Meheust, Y.; Linde, N.

    2017-12-01

    The use of time-lapse electrical resistivity tomography has been largely developed in environmental studies to remotely monitor water saturation and contaminant plumes migration. However, subsurface heterogeneities, and corresponding preferential transport paths, yield a potentially large anisotropy in the electrical properties of the subsurface. In order to study this effect, we have used a newly developed geoelectrical milli-fluidic experimental set-up with a flow cell that contains a 2D porous medium consisting of a single layer of cylindrical solid grains. We performed saline tracer tests under full and partial water saturations in that cell by jointly injecting air and aqueous solutions with different salinities. The flow cell is equipped with four electrodes to measure the bulk electrical resistivity at the cell's scale. The spatial distribution of the water/air phases and the saline solute concentration field in the water phase are captured simultaneously with a high-resolution camera by combining a fluorescent tracer with the saline solute. These data are used to compute the longitudinal and transverse effective electrical resistivity numerically from the measured spatial distributions of the fluid phases and the salinity field. This approach is validated as the computed longitudinal effective resistivities are in good agreement with the laboratory measurements. The anisotropy in electrical resistivity is then inferred from the computed longitudinal and transverse effective resistivities. We find that the spatial distribution of saline tracer, and potentially air phase, drive temporal changes in the effective resistivity through preferential paths or barriers for electrical current at the pore scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical resistivity, especially for partially saturated conditions. Therefore, considering the electrical resistivity as a tensor could improve our understanding of transport properties from field-scale time-lapse ERT.

  17. Enhancement of Electrical Conductivity in Multicomponent Nanocomposites.

    NASA Astrophysics Data System (ADS)

    Ni, Xiaojuan; Hui, Chao; Su, Ninghai; Liu, Feng

    To date, very limited theoretical or numerical analyses have been carried out to understand the electrical percolation properties in multicomponent nanocomposite systems. In this work, a disk-stick percolation model was developed to investigate the electrical percolation behavior of an electrically insulating matrix reinforced with one-dimensional (1D) and two-dimensional (2D) conductors via Monte Carlo simulation. The effective electrical conductivity was evaluated through Kirchhoff's current law by transforming it into an equivalent resistor network. The percolation threshold, equivalent resistance and conductivity were obtained from the distribution of nodal voltages by solving a system of linear equations with Gaussian elimination method. The effects of size, aspect ratio, relative concentration and contact patterns of 1D/2D inclusions on conductivity performance were examined. Our model is able to predict the electrical percolation threshold and evaluate the conductivity for hybrid systems with multiple components. The results suggest that carbon-based nanocomposites can have a high potential for applications where favorable electrical properties and low specific weight are required. We acknowledge the financial support from DOE-BES (No. DE-FG02-04ER46148).

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eidem, P.A.; Tangstad, M.; Bakken, J.A.

    The electrical resistivity of the coke bed is of great importance when producing FeMn, SiMn, and FeCr in a submerged arc furnace. In these processes, a coke bed is situated below and around the electrode tip and consists of metallurgical coke, slag, gas, and metal droplets. Since the basic mechanisms determining the electrical resistivity of a coke bed is not yet fully understood, this investigation is focused on the resistivity of dry coke beds consisting of different carbonaceous materials, i.e., coke beds containing no slag or metal. A method that reliably compares the electrical bulk resistivity of different metallurgical cokesmore » at 1500{sup o} C to 1600{sup o}C is developed. The apparatus is dimensioned for industrial sized materials, and the electrical resistivity of anthracite, charcoal, petroleum coke, and metallurgical coke has been measured. The resistivity at high temperatures of the Magnitogorsk coke, which has the highest resistivity of the metallurgical cokes investigated, is twice the resistivity of the Corus coke, which has the lowest electrical resistivity. Zdzieszowice and SSAB coke sort in between with decreasing resistivities in the respective order. The electrical resistivity of anthracite, charcoal, and petroleum coke is generally higher than the resistivity of the metallurgical cokes, ranging from about two to about eight times the resistivity of the Corus coke at 1450{sup o}C. The general trend is that the bulk resistivity of carbon materials decreases with increasing temperature and increasing particle size.« less

  19. Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder.

    PubMed

    Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong

    2016-12-22

    The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service.

  20. Characterisation of electrical resistance for CMC Materials up to 1200 °C

    NASA Astrophysics Data System (ADS)

    Stäbler, T.; Böhrk, H.; Voggenreiter, H.

    2017-12-01

    Damage to thermal protection systems (TPS) during atmospheric re-entry is a severe safety issue, especially when considering re-usability of space transportation systems. There is a need for structural health monitoring systems and non-destructive inspection methods. However, damages are hard to detect. When ceramic matrix composites, in this case carbon fibre reinforced silicon carbide (C/C-SiC), are used as a TPS, the electrical properties of the present semiconductor material can be used for health monitoring, since the resistivity changes with damage, strain and temperature. In this work the electrical resistivity as a function of the material temperature is analysed eliminating effects of thermal electricity and the thermal coefficient of electrical resistance is determined. A sensor network is applied for locally and time resolved monitoring of the 300 mm x 120 mm x 3 mm panel shaped samples. Since the material is used for atmospheric re-entry it needs to be characterised for a wide range of temperatures, in this case as high as 1200 °C. Therefore, experiments in an inductively heated test bench were conducted. Firstly, a reference sample was used with thermocouples for characterising the temperature distribution across the sample surface. Secondly, electrical resistance under heat load was measured, time and spatially resolved. Results will be shown and discussed in terms of resistance dependence on temperature, thermal coefficient of electrical resistance, thermal electricity and electrical path orientation including an analysis on effective conducting cross section. Conversely, the thermal coefficient can also be used to determine the material temperature as a function of electrical resistance.

  1. Forming-free bipolar resistive switching in nonstoichiometric ceria films

    NASA Astrophysics Data System (ADS)

    Ismail, Muhammad; Huang, Chun-Yang; Panda, Debashis; Hung, Chung-Jung; Tsai, Tsung-Ling; Jieng, Jheng-Hong; Lin, Chun-An; Chand, Umesh; Rana, Anwar Manzoor; Ahmed, Ejaz; Talib, Ijaz; Nadeem, Muhammad Younus; Tseng, Tseung-Yuen

    2014-01-01

    The mechanism of forming-free bipolar resistive switching in a Zr/CeO x /Pt device was investigated. High-resolution transmission electron microscopy and energy-dispersive spectroscopy analysis indicated the formation of a ZrO y layer at the Zr/CeO x interface. X-ray diffraction studies of CeO x films revealed that they consist of nano-polycrystals embedded in a disordered lattice. The observed resistive switching was suggested to be linked with the formation and rupture of conductive filaments constituted by oxygen vacancies in the CeO x film and in the nonstoichiometric ZrO y interfacial layer. X-ray photoelectron spectroscopy study confirmed the presence of oxygen vacancies in both of the said regions. In the low-resistance ON state, the electrical conduction was found to be of ohmic nature, while the high-resistance OFF state was governed by trap-controlled space charge-limited mechanism. The stable resistive switching behavior and long retention times with an acceptable resistance ratio enable the device for its application in future nonvolatile resistive random access memory (RRAM).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae Sung; Lee, Shinbuhm; Noh, Tae Won

    Here we report that resistive switching (RS) phenomena are reversible changes in the metastable resistance state induced by external electric fields. After discovery ~50 years ago, RS phenomena have attracted great attention due to their potential application in next-generation electrical devices. Considerable research has been performed to understand the physical mechanisms of RS and explore the feasibility and limits of such devices. There have also been several reviews on RS that attempt to explain the microscopic origins of how regions that were originally insulators can change into conductors. However, little attention has been paid to the most important factor inmore » determining resistance: how conducting local regions are interconnected. Here, we provide an overview of the underlying physics behind connectivity changes in highly conductive regions under an electric field. We first classify RS phenomena according to their characteristic current–voltage curves: unipolar, bipolar, and threshold switchings. Second, we outline the microscopic origins of RS in oxides, focusing on the roles of oxygen vacancies: the effect of concentration, the mechanisms of channel formation and rupture, and the driving forces of oxygen vacancies. Third, we review RS studies from the perspective of statistical physics to understand connectivity change in RS phenomena. We discuss percolation model approaches and the theory for the scaling behaviors of numerous transport properties observed in RS. Fourth, we review various switching-type conversion phenomena in RS: bipolar-unipolar, memory-threshold, figure-of-eight, and counter-figure-of-eight conversions. Finally, we review several related technological issues, such as improvement in high resistance fluctuations, sneak-path problems, and multilevel switching problems.« less

  3. In-situ measurement system

    DOEpatents

    Lord, David E.

    1983-01-01

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop "hairpin" configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. The electrical resistance of each element and the difference in electrical resistance of the paired elements are obtained, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  4. Thermophysical Properties of 60-NITINOL for Mechanical Component Applications

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2012-01-01

    The linear thermal expansion coefficient, specific heat capacity, electrical resistivity and thermal conductivity of 60- NITINOL were studied over a range of temperatures representing the operating environment of an oil-lubricated bearing. The behavior of this material appears to follow wellestablished theories applicable to either metal alloys, in general, or to intermetallic compounds, more specifically and the measured data were found to be comparable to those for conventional bearing alloys.

  5. Non-volatile, solid state bistable electrical switch

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor)

    1994-01-01

    A bistable switching element is made of a material whose electrical resistance reversibly decreases in response to intercalation by positive ions. Flow of positive ions between the bistable switching element and a positive ion source is controlled by means of an electrical potential applied across a thermal switching element. The material of the thermal switching element generates heat in response to electrical current flow therethrough, which in turn causes the material to undergo a thermal phase transition from a high electrical resistance state to a low electrical resistance state as the temperature increases above a predetermined value. Application of the electrical potential in one direction renders the thermal switching element conductive to pass electron current out of the ion source. This causes positive ions to flow from the source into the bistable switching element and intercalate the same to produce a non-volatile, low resistance logic state. Application of the electrical potential in the opposite direction causes reverse current flow which de-intercalates the bistable logic switching element and produces a high resistance logic state.

  6. The impact of nanocontact on nanowire based nanoelectronics.

    PubMed

    Lin, Yen-Fu; Jian, Wen-Bin

    2008-10-01

    Nanowire-based nanoelectronic devices will be innovative electronic building blocks from bottom up. The reduced nanocontact area of nanowire devices magnifies the contribution of contact electrical properties. Although a lot of two-contact-based ZnO nanoelectronics have been demonstrated, the electrical properties bringing either from the nanocontacts or from the nanowires have not been considered yet. High quality ZnO nanowires with a small deviation and an average diameter of 38 nm were synthesized to fabricate more than thirty nanowire devices. According to temperature behaviors of current-voltage curves and resistances, the devices could be grouped into three types. Type I devices expose thermally activated transport in ZnO nanowires and they could be considered as two Ohmic nanocontacts of the Ti electrode contacting directly on the nanowire. For those nanowire devices having a high resistance at room temperatures, they can be fitted accurately with the thermionic-emission theory and classified into type II and III devices according to their rectifying and symmetrical current-voltage behaviors. The type II device has only one deteriorated nanocontact and the other one Ohmic contact on single ZnO nanowire. An insulating oxide layer with thickness less than 20 nm should be introduced to describe electron hopping in the nanocontacts, so as to signalize one- and high-dimensional hopping conduction in type II and III devices.

  7. Use of electrical resistivity to detect underground mine voids in Ohio.

    DOT National Transportation Integrated Search

    2002-01-01

    Electrical resistivity surveys were completed at : two sites along State Route 32 in Jackson and Vinton : Counties, Ohio. The surveys were done to : determine whether the electrical resistivity method : could identify areas where coal was mined, leav...

  8. Electronic and magnetic properties in Sr{sub 1-x}La{sub x}RuO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Renu; Pramanik, A. K., E-mail: akpramanik@mail.jnu.ac.in

    2016-05-23

    Here we report the structural, magnetic and transport properties in La doped SrRuO{sub 3}. The doping of La{sup 3+} modifies the ionic state of Ru by converting Ru{sup 4+} to Ru{sup +3}. However, there is modification in lattice parameters as La{sup 3+} has smaller ionic radii than that of Sr{sup 2+}. We find La doping weakens the ferromagnetic state in SrRuO{sub 3} in terms of lowering T{sub c} and decreasing the magnetic moment. The electrical resistivity shows metallic behavior in whole temperature range, however, resistivity increases with doping of La.

  9. Electronic Griffiths phase and quantum interference in disordered heavy-fermion systems

    NASA Astrophysics Data System (ADS)

    Gnida, Daniel

    2018-02-01

    We investigated the specific heat and electrical resistivity of disordered heavy-fermion systems Ce2Co0.8Si3.2 and Ce2Co0.4Rh0.4Si3.2 . Results show that pronounced non-Fermi-liquid behavior in these Kondo disordered compounds originates from approaching metal-insulator transition rather than from proximity to magnetic instability. Power-law divergence of the local Kondo temperature distribution, P (TK) , in the limit of TK→0 , and clear signature of the quantum interference corrections in the resistivity detected deep below the onset of Kondo coherent state, point to electronic Griffiths phase formation in the studied compounds.

  10. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    DOE PAGES

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    2018-04-10

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less

  11. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less

  12. Memristive behavior of the SnO2/TiO2 interface deposited by sol-gel

    NASA Astrophysics Data System (ADS)

    Boratto, Miguel H.; Ramos, Roberto A.; Congiu, Mirko; Graeff, Carlos F. O.; Scalvi, Luis V. A.

    2017-07-01

    A novel and cheap Resistive Random Access Memory (RRAM) device is proposed within this work, based on the interface between antimony doped Tin Oxide (4%at Sb:SnO2) and Titanium Oxide (TiO2) thin films, entirely prepared through a low-temperature sol-gel process. The device was fabricated on glass slides using evaporated aluminum electrodes. Typical bipolar memristive behavior under cyclic voltage sweeping and square wave voltages, with well-defined high and low resistance states (HRS and LRS), and set and reset voltages are shown in our samples. The switching mechanism, explained by charges trapping/de-trapping by defects in the SnO2/TiO2 interface, is mainly driven by the external electric field. The calculated on/off ratio was about 8 × 102 in best conditions with good reproducibility over repeated measurement cycles under cyclic voltammetry and about 102 under applied square wave voltage.

  13. Stokes paradox in electronic Fermi liquids

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew

    2017-03-01

    The Stokes paradox is the statement that in a viscous two-dimensional fluid, the "linear response" problem of fluid flow around an obstacle is ill posed. We present a simple consequence of this paradox in the hydrodynamic regime of a Fermi liquid of electrons in two-dimensional metals. Using hydrodynamics and kinetic theory, we estimate the contribution of a single cylindrical obstacle to the global electrical resistance of a material, within linear response. Momentum relaxation, present in any realistic electron liquid, resolves the classical paradox. Nonetheless, this paradox imprints itself in the resistance, which can be parametrically larger than predicted by Ohmic transport theory. We find a remarkably rich set of behaviors, depending on whether or not the quasiparticle dynamics in the Fermi liquid should be treated as diffusive, hydrodynamic, or ballistic on the length scale of the obstacle. We argue that all three types of behavior are observable in present day experiments.

  14. Electrical properties of epitaxial yttrium iron garnet ultrathin films at high temperatures

    NASA Astrophysics Data System (ADS)

    Thiery, N.; Naletov, V. V.; Vila, L.; Marty, A.; Brenac, A.; Jacquot, J.-F.; de Loubens, G.; Viret, M.; Anane, A.; Cros, V.; Ben Youssef, J.; Beaulieu, N.; Demidov, V. E.; Divinskiy, B.; Demokritov, S. O.; Klein, O.

    2018-02-01

    We report a study on the electrical properties of 19-nm-thick yttrium iron garnet (YIG) films grown by liquid phase epitaxy on gadolinium gallium garnet single crystal. The electrical conductivity and Hall coefficient are measured in the high-temperature range [300,400] K using a Van der Pauw four-point probe technique. We find that the electrical resistivity decreases exponentially with increasing temperature following an activated behavior corresponding to a band gap of Eg≈2 eV. It drops to values about 5 ×103Ω cm at T =400 K, thus indicating that epitaxial YIG ultrathin films behave as large gap semiconductors. We also infer the Hall mobility, which is found to be positive (p type) at 5 cm2V-1sec-1 and almost independent of temperature. We discuss the consequence for nonlocal spin transport experiments performed on YIG at room temperature and demonstrate the existence of electrical offset voltages to be disentangled from pure spin effects.

  15. Thermal and electrical contact conductance studies

    NASA Technical Reports Server (NTRS)

    Vansciver, S. W.; Nilles, M.

    1985-01-01

    Prediction of electrical and thermal contact resistance for pressed, nominally flat contacts is complicated by the large number of variables which influence contact formation. This is reflected in experimental results as a wide variation in contact resistances, spanning up to six orders of magnitude. A series of experiments were performed to observe the effects of oxidation and surface roughness on contact resistance. Electrical contact resistance and thermal contact conductance from 4 to 290 K on OFHC Cu contacts are reported. Electrical contact resistance was measured with a 4-wire DC technique. Thermal contact conductance was determined by steady-state longitudinal heat flow. Corrections for the bulk contribution ot the overall measured resistance were made, with the remaining resistance due solely to the presence of the contact.

  16. Study of electrical resistivity on the location and identification of contamination

    NASA Astrophysics Data System (ADS)

    McCarty, B. D.

    1985-12-01

    Electrical resistance studies were conducted in two laboratory models to determine electrical resistivity relationships and to use those defined relationships to identify contamination spikes. A good correlation was established between resistance data and the composition of leachate and copper spiked leachate gelatin blocks under study. The major variable that could not be eliminated from this study which had the greatest effect on data was moisture content. This thesis contains a review of the theory and field application of electrical resistivity, a description of the experimental approach used, and a summary of the data collected.

  17. Determination of the electrical resistivity of vertically aligned carbon nanotubes by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Ageev, O. A.; Il'in, O. I.; Rubashkina, M. V.; Smirnov, V. A.; Fedotov, A. A.; Tsukanova, O. G.

    2015-07-01

    Techniques are developed to determine the resistance per unit length and the electrical resistivity of vertically aligned carbon nanotubes (VA CNTs) using atomic force microscopy (AFM) and scanning tunneling microscopy (STM). These techniques are used to study the resistance of VA CNTs. The resistance of an individual VA CNT calculated with the AFM-based technique is shown to be higher than the resistance of VA CNTs determined by the STM-based technique by a factor of 200, which is related to the influence of the resistance of the contact of an AFM probe to VA CNTs. The resistance per unit length and the electrical resistivity of an individual VA CNT 118 ± 39 nm in diameter and 2.23 ± 0.37 μm in height that are determined by the STM-based technique are 19.28 ± 3.08 kΩ/μm and 8.32 ± 3.18 × 10-4 Ω m, respectively. The STM-based technique developed to determine the resistance per unit length and the electrical resistivity of VA CNTs can be used to diagnose the electrical parameters of VA CNTs and to create VA CNT-based nanoelectronic elements.

  18. Use of electrical resistivity to detect underground mine voids in Ohio : executive summary.

    DOT National Transportation Integrated Search

    2002-01-01

    Electrical resistivity surveys were completed at two sites along State Route 32 in Jackson and Vinton Counties, Ohio. : The surveys were done to determine whether the electrical resistivity method could identify areas where coal was : mined, leaving ...

  19. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

    1997-04-15

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {<=}1% Cr and either {>=}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {>=}0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, {<=}2% Ti, {<=}2% Mo, {<=}1% Zr, {<=}1% C, {<=}0.1% B, {<=}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1% rare earth metal, {<=}1% oxygen, {<=}3% Cu, balance Fe. 64 figs.

  20. The influence of Zr substitution for Nb on the corrosion behaviors of the Ni-Nb-Zr bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Li, DengKe; Zhu, ZhengWang; Zhang, HaiFeng; Wang, AiMin; Hu, ZhuangQi

    2012-12-01

    The influence of Zr content on corrosion behaviors of the Ni61.5Nb38.5- x Zr x ( x=1, 3, 5, 7, 9 at.%) bulk metallic glasses (BMGs) in 1 M HCl aqueous solution was investigated by potentiodynamic polarization measurements and X-ray photo-electron spectroscopy (XPS). It was found that these BMG alloys possess superior corrosion resistance, that is, with large passive region of about 1.5 V and low passive current density (as low as 0.05 Am-2 for Ni61.5Nb31.5Zr7). XPS analysis indicates that the high corrosion resistance is attributed to the formation of Nb- and Zr-enriched surface films formed in the aggressive acid solution. The Zr substitution for Nb effectively reduces the Ni content, particularly the metallic state Ni content in the surface films, which depresses the electrical conduction of the surface films and reduces the passive current density, thus leading to the enhancement of the corrosion resistance of these Ni-Nb-Zr BMGs. These alloys may potentially be useful for engineering applications.

  1. Resistivity bound for hydrodynamic bad metals

    PubMed Central

    Lucas, Andrew; Hartnoll, Sean A.

    2017-01-01

    We obtain a rigorous upper bound on the resistivity ρ of an electron fluid whose electronic mean free path is short compared with the scale of spatial inhomogeneities. When such a hydrodynamic electron fluid supports a nonthermal diffusion process—such as an imbalance mode between different bands—we show that the resistivity bound becomes ρ≲AΓ. The coefficient A is independent of temperature and inhomogeneity lengthscale, and Γ is a microscopic momentum-preserving scattering rate. In this way, we obtain a unified mechanism—without umklapp—for ρ∼T2 in a Fermi liquid and the crossover to ρ∼T in quantum critical regimes. This behavior is widely observed in transition metal oxides, organic metals, pnictides, and heavy fermion compounds and has presented a long-standing challenge to transport theory. Our hydrodynamic bound allows phonon contributions to diffusion constants, including thermal diffusion, to directly affect the electrical resistivity. PMID:29073054

  2. Observation of indium ion migration-induced resistive switching in Al/Mg{sub 0.5}Ca{sub 0.5}TiO{sub 3}/ITO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zong-Han; Wang, Yeong-Her, E-mail: yhw@ee.ncku.edu.tw

    2016-08-01

    Understanding switching mechanisms is very important for resistive random access memory (RRAM) applications. This letter reports an investigation of Al/Mg{sub 0.5}Ca{sub 0.5}TiO{sub 3} (MCTO)/ITO RRAM, which exhibits bipolar resistive switching behavior. The filaments that connect Al electrodes with indium tin oxide electrodes across the MCTO layer at a low-resistance state are identified. The filaments composed of In{sub 2}O{sub 3} crystals are observed through energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, nanobeam diffraction, and comparisons of Joint Committee on Powder Diffraction Standards (JCPDS) cards. Finally, a switching mechanism resulting from an electrical field induced by In{sup 3+} ion migration is proposed.more » In{sup 3+} ion migration forms/ruptures the conductive filaments and sets/resets the RRAM device.« less

  3. Electrical resistivity characteristics of diesel oil-contaminated kaolin clay and a resistivity-based detection method.

    PubMed

    Liu, Zhibin; Liu, Songyu; Cai, Yi; Fang, Wei

    2015-06-01

    As the dielectric constant and conductivity of petroleum products are different from those of the pore water in soil, the electrical resistivity characteristics of oil-contaminated soil will be changed by the corresponding oil type and content. The contaminated soil specimens were manually prepared by static compaction method in the laboratory with commercial kaolin clay and diesel oil. The water content and dry density of the first group of soil specimens were controlled at 10 % and 1.58 g/cm(3). Corresponding electrical resistivities of the contaminated specimens were measured at the curing periods of 7, 14, and 28 and 90, 120, and 210 days on a modified oedometer cell with an LCR meter. Then, the electrical resistivity characteristics of diesel oil-contaminated kaolin clay were discussed. In order to realize a resistivity-based oil detection method, the other group of oil-contaminated kaolin clay specimens was also made and tested, but the initial water content, oil content, and dry density were controlled at 0~18 %, 0~18 %, 1.30~1.95 g/cm(3), respectively. Based on the test data, a resistivity-based artificial neural network (ANN) was developed. It was found that the electrical resistivity of kaolin clay decreased with the increase of oil content. Moreover, there was a good nonlinear relationship between electrical resistivity and corresponding oil content when the water content and dry density were kept constant. The decreasing velocity of the electrical resistivity of oil-contaminated kaolin clay was higher before the oil content of 12 % than after 12 %, which indicated a transition of the soil from pore water-controlled into oil-controlled electrical resistivity characteristics. Through microstructural analysis, the decrease of electrical resistivity could be explained by the increase of saturation degree together with the collapse of the electrical double layer. Environmental scanning electron microscopy (ESEM) photos indicated that the diesel oil in kaolin clay normally had three kinds of effects including oil filling, coating, and bridging. Finally, a resistivity-based ANN model was established based on the database collected from the experiment data. The performance of the model was proved to be reasonably accepted, which puts forward a possible simple, economic, and effective tool to detect the oil content in contaminated clayey soils just with four basic parameters: wet density, dry density, measured moisture content, and electrical resistivity.

  4. Etching-free patterning method for electrical characterization of atomically thin MoSe2 films grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Utama, M. Iqbal Bakti; Lu, Xin; Zhan, Da; Ha, Son Tung; Yuan, Yanwen; Shen, Zexiang; Xiong, Qihua

    2014-10-01

    Patterning two-dimensional materials into specific spatial arrangements and geometries is essential for both fundamental studies of materials and practical applications in electronics. However, the currently available patterning methods generally require etching steps that rely on complicated and expensive procedures. We report here a facile patterning method for atomically thin MoSe2 films using stripping with an SU-8 negative resist layer exposed to electron beam lithography. Additional steps of chemical and physical etching were not necessary in this SU-8 patterning method. The SU-8 patterning was used to define a ribbon channel from a field effect transistor of MoSe2 film, which was grown by chemical vapor deposition. The narrowing of the conduction channel area with SU-8 patterning was crucial in suppressing the leakage current within the device, thereby allowing a more accurate interpretation of the electrical characterization results from the sample. An electrical transport study, enabled by the SU-8 patterning, showed a variable range hopping behavior at high temperatures.Patterning two-dimensional materials into specific spatial arrangements and geometries is essential for both fundamental studies of materials and practical applications in electronics. However, the currently available patterning methods generally require etching steps that rely on complicated and expensive procedures. We report here a facile patterning method for atomically thin MoSe2 films using stripping with an SU-8 negative resist layer exposed to electron beam lithography. Additional steps of chemical and physical etching were not necessary in this SU-8 patterning method. The SU-8 patterning was used to define a ribbon channel from a field effect transistor of MoSe2 film, which was grown by chemical vapor deposition. The narrowing of the conduction channel area with SU-8 patterning was crucial in suppressing the leakage current within the device, thereby allowing a more accurate interpretation of the electrical characterization results from the sample. An electrical transport study, enabled by the SU-8 patterning, showed a variable range hopping behavior at high temperatures. Electronic supplementary information (ESI) available: Further experiments on patterning and additional electrical characterizations data. See DOI: 10.1039/c4nr03817g

  5. An experimental study on the thermal characteristics and heating effect of arc-fault from Cu core in residential electrical wiring fires

    PubMed Central

    Du, Jian-Hua; Zeng, Yi; Pan, Leng; Zhang, Ren-Cheng

    2017-01-01

    The characteristics of a series direct current (DC) arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc. PMID:28797055

  6. Electrical behavior of aluminosilicate glass-ceramic sealants and their interaction with metallic solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Goel, Ashutosh; Tulyaganov, Dilshat U.; Kharton, Vladislav V.; Yaremchenko, Aleksey A.; Ferreira, José M. F.

    A series of alkaline-earth aluminosilicate glass-ceramics (GCs) were appraised with respect to their suitability as sealants for solid oxide fuel cells (SOFCs). The parent composition with general formula Ca 0.9MgAl 0.1La 0.1Si 1.9O 6 was modified with Cr 2O 3 and BaO. The addition of BaO led to a substantial decrease in the total electrical conductivity of the GCs, thus improving their insulating properties. BaO-containing GCs exhibited higher coefficient of thermal expansion (CTE) in comparison to BaO-free GCs. An extensive segregation of oxides of Ti and Mn, components of the Crofer22 APU interconnect alloy, along with negligible formation of BaCrO 4 was observed at the interface between GC/interconnects diffusion couples. Thermal shock resistance and gas-tightness of GC sealants in contact with yttria-stabilized zirconia electrolyte (8YSZ) was evaluated in air and water. Good matching of CTE and strong, but not reactive, adhesion to the solid electrolyte and interconnect, in conjunction with a high level of electrical resistivity, are all advantageous for potential SOFC applications.

  7. Effect of Pr3+doping on key properties of CdO thin films deposited by spray pyrolysis using perfume atomizer

    NASA Astrophysics Data System (ADS)

    Ravikumar, M.; Chandramohan, R.; Kumar, K. Deva Arun; Valanarasu, S.; Kathalingam, A.; Ganesh, V.; Shkir, Mohd.; AlFaify, S.; Algarni, H.

    2018-07-01

    High quality Cadmium oxide thin films doped with Praseodymium (Pr) were prepared using perfume atomizer based spray pyrolysis technique at substrate temperature near 350 °C. Structural analysis of films was examined by XRD and confirmed that the films are cubic in structure. All un-doped and doped films were good crystalline in nature with smooth and flat surface without significant modifications owed to doping. Optical transmittances of doped films was decrease in the visible and IR range with increasing Pr doping concentration. Band gap widened from 2.42 to 2.20 eV when doped with Pr from 0 to 5 at. %. In addition, the photoluminescence property of the films was also observed. Further, the electrical studies were performed on pure and doped samples Viz., the electrical resistivity, carrier concentration (ρ) and Hall mobility (μ). It confirmed that the deposited films has good structural environments in terms of grain size, absolute stress correspond and low resistivity. Current-voltage measurements on the nanostructured Al/Pr-nCdO/p-Si/Al device showed a non-linear electric characteristics indicating diode like behavior.

  8. An experimental study on the thermal characteristics and heating effect of arc-fault from Cu core in residential electrical wiring fires.

    PubMed

    Du, Jian-Hua; Tu, Ran; Zeng, Yi; Pan, Leng; Zhang, Ren-Cheng

    2017-01-01

    The characteristics of a series direct current (DC) arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc.

  9. In situ measurement system

    DOEpatents

    Lord, D.E.

    1980-11-24

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop hairpin configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. Measurement means are provided for obtaining for each pair the electrical resistance of each element and the difference in electrical resistance of the paired elements, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner means sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  10. Experimental investigation into the coupling effects of magnetic field, temperature and pressure on electrical resistivity of non-oriented silicon steel sheet

    NASA Astrophysics Data System (ADS)

    Xiao, Lijun; Yu, Guodong; Zou, Jibin; Xu, Yongxiang

    2018-05-01

    In order to analyze the performance of magnetic device which operate at high temperature and high pressure, such as submersible motor, oil well transformer, the electrical resistivity of non-oriented silicon steel sheets is necessary for precise analysis. But the reports of the examination of the measuring method suitable for high temperature up to 180 °C and high pressure up to 140 MPa are few. In this paper, a measurement system based on four-probe method and Archimedes spiral shape measurement specimens is proposed. The measurement system is suitable for measuring the electrical resistivity of unconventional specimens under high temperature and high pressure and can simultaneously consider the influence of the magnetic field on the electrical resistivity. It can be seen that the electrical resistivity of the non-oriented silicon steel sheets will fluctuate instantaneously when the magnetic field perpendicular to the conductive path of the specimens is loaded or removed. The amplitude and direction of the fluctuation are not constant. Without considering the effects of fluctuations, the electrical resistivity of the non-oriented silicon steel sheets is the same when the magnetic field is loaded or removed. And the influence of temperature on the electrical resistivity of the non-oriented silicon steel sheet is still the greatest even though the temperature and the pressure are coupled together. The measurement results also show that the electrical resistivity varies linearly with temperature, so the temperature coefficient of resistivity is given in the paper.

  11. Electrochemistry and the Earth's Core-Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Walker, D.

    2001-12-01

    The Earth's core-mantle boundary consists of a highly heterogeneous metal-oxide interface subjected to high temperatures, pressures, and additionally, to the presence of a temporally- and spatially-varying electrical field generated by the outer core dynamo. An understanding of the core-mantle boundary should include the nature of its electrical behavior, its electrically induced chemical partitioning, and any resultant core-mantle dynamic coupling. To this end, we have developed a method to measure the electrical behavior of metal-silicate interfaces at high pressures (15-25 kbar) and temperatures (1300-1400° C) in a piston-cylinder apparatus. Platinum electrical leads are placed at each end of the sample, which consists of a layer of iron and/or iron alloy below a layer of silicate. The sample is enclosed in a sintered MgO chamber which is then surrounded by a metal Faraday cage, allowing the sample to be electrically insulated from the AC field of the graphite heater. The platinum electric leads are threaded through the thermocouple tube and connected with an HP4284A LCR meter to measure AC impedance, or to a DC power supply to apply a field such that either the silicate or the metal end is the anode (+). AC impedance measurements performed in-situ on samples consisting of Fe, Fe-Ni-S, and a basalt-olivine mixture in series show that conductivity is strongly dependent on the electrical polarization of the silicate relative to the sulfide. When the silicate is positively charged (silicate is the anode) and when there is no applied charge, the probe-to-probe resistance displays semiconductor behavior, with conductivity ( ~10-2 S/cm) strongly thermally activated. However, when the electrical polarity is reversed, and the sulfide is the anode, the electrical conductivity between the two probes increases dramatically (to ~1 S/cm) over timescales of minutes. If the polarity is removed or reversed, the conductivity returns to its original values over similar timescales. A second set of experiments examined the behavior of iron-silicate interfaces subjected to electric fields of 1-10 V, applied for times ranging from several minutes to several days. The samples were quenched from high temperatures, mounted, and examined using both light and electron microscopy. When the iron/iron-sulfide end is charged positively (+1-2 V) with respect to the silicate, oxides form around the platinum electrode embedded within the iron metal, suggesting the reaction Fe->Fe+2+2e- occurs in the metal. When the electric field is reversed, the silicate and MgO surrounding the + electrode turns red, implying the reaction Fe+2\\rightarrowFe^{+3}+e^{-}$ occurs at the silicate (anode end) of the sample. The richness of electrical and electrically activated chemical behavior observed at metal-silicate interfaces may be relevant to the Earth's core mantle boundary.

  12. Tracing the pH dependent activation of autophagy in cancer cells by silicon nanowire-based impedance biosensor.

    PubMed

    Alikhani, Alireza; Gharooni, Milad; Abiri, Hamed; Farokhmanesh, Fatemeh; Abdolahad, Mohammad

    2018-05-30

    Monitoring the pH dependent behavior of normal and cancer cells by impedimetric biosensor based on Silicon Nanowires (SiNWs) was introduced to diagnose the invasive cancer cells. Autophagy as a biologically activated process in invasive cancer cells during acidosis, protect them from apoptosis in lower pH which presented in our work. As the autophagy is the only activated pathways which can maintain cellular proliferation in acidic media, responses of SiNW-ECIS in acidified cells could be correlated to the probability of autophagy activation in normal or cancer cells. In contrast, cell survival pathway wasn't activated in low-grade cancer cells which resulted in their acidosis. The measured electrical resistance of MCF10, MCF7, and MDA-MB468 cell lines, by SiNW sensor, in normal and acidic media were matched by the biological analyses of their vital functions. Invasive cancer cells exhibited increased electrical resistance in pH 6.5 meanwhile the two other types of the breast cells exhibited sharp (MCF10) and moderate (MCF7) decrease in their resistance. This procedure would be a new trend in microenvironment based cancer investigation. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Preparation and physical properties of polycrystalline (Bi1-xPbx)2Sr2Ca2Cu3Oy high T c superconductors

    NASA Astrophysics Data System (ADS)

    Awan, M. S.; Maqsood, M.; Mirza, S. A.; Yousaf, M.; Maqsood, A.

    1995-02-01

    (Bi1-xPbx:)2Sr2Ca2Cu3Oy ( x = 0.3) high critical transition temperature ( T c) superconductors are synthesized by the solid-state reaction method in polycrystalline form. X-ray diffraction (XRD) studies, direct current (dc) electrical resistivity measurements, scanning electron microscopic (SEM) studies, critical current density measurements, and zero-field alternating current (ac) susceptibility measurements are performed to investigate the physical changes, structural changes, and magnetic behavior of the superconducting samples. X-ray diffraction studies show that a high T c phase exists with orthorhombic symmetry in the specimen. According to the XRD data, the lattice parameters of the high T c phase were determined as a = 0.537(1) nm, b = 0.539(1) nm, and c = 3.70(1) nm. The compound exhibits a superconducting transition at 106 ±1 K for zero resistance. The ac susceptibility measurements in zero field confirm the dc electrical resistivity results; hence both support the XRD results. The particle size and structural changes as a function of the cold-pressing and aging effect are also reported.

  14. Corrosion resistant PEM fuel cell

    DOEpatents

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2011-06-07

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  15. Corrosion resistant PEM fuel cell

    DOEpatents

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  16. Electronic transport properties of intermediately coupled superconductors: PdTe2 and Cu0.04PdTe2

    NASA Astrophysics Data System (ADS)

    Hooda, M. K.; Yadav, C. S.

    2018-01-01

    We have investigated the electrical resistivity (1.8-480 K), Seebeck coefficient (2.5-300 K) and thermal conductivity (2.5-300 K) of PdTe2 and 4% Cu intercalated PdTe2 compounds. The electrical resistivity for the compounds shows a Bloch-Gruneisen-type linear temperature (T) dependence for 100 \\text{K}, and Fermi liquid behavior (ρ (T) \\propto T2) for T<50 \\text{K} . Seebeck coefficient data exhibit a strong competition between Normal (N) and Umklapp (U) scattering processes at low T. The low-T, thermal conductivity (κ) of the compounds is strongly dominated by the electronic contribution, and exhibits a rare linear T-dependence below 10 K. However, high-T, κ (T) shows the usual 1/T -dependence, dominated by the U-scattering process. The electron-phonon coupling parameters, estimated from the low-T, specific-heat data and first-principle electronic structure calculations suggest that PdTe2 and Cu0.04PdTe2 are intermediately coupled superconductors.

  17. Aging behavior of Au-based ohmic contacts to GaAs

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.

    1989-01-01

    Gold based alloys, commonly used as ohmic contacts for solar cells, are known to react readily with GaAs. It is shown that the contact interaction with the underlying GaAs can continue even at room temperature upon aging, altering both the electrical characteristics of the contacts and the nearby pn junction. Au-Ge-Ni as-deposited (no heat-treatment) contacts made to thin emitter (0.15 microns) GaAs diodes have shown severe shunting of the pn junction upon aging for several months at room temperature. The heat-treated contacts, despite showing degradation in contact resistance, did not affect the underlying pn junction. Au-Zn-Au contacts to p-GaAs emitter (0.2 microns) diodes, however, showed slight improvement in contact resistance upon 200 C isothermal annealing for several months, without degrading the pn junction. The effect of aging on electrical characteristics of the as-deposited and heat-treated contacts and the nearby pn junction, as well as on the surface morphology of the contacts are presented.

  18. Aging behavior of Au-based ohmic contacts to GaAs

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.

    1988-01-01

    Gold based alloys, commonly used as ohmic contacts for solar cells, are known to react readily with GaAs. It is shown that the contact interaction with the underlying GaAs can continue even at room temperature upon aging, altering both the electrical characteristics of the contacts and the nearby pn junction. Au-Ge-Ni as-deposited (no heat treatment) contacts made to thin emitter (0.15 micrometer) GaAs diodes have shown severe shunting of the pn junction upon aging for several months at room temperature. The heat-treated contacts, despite showing degradation in contact resistance did not affect the underlying pn junction. Au-Zn-Au contacts to p-GaAs emitter (0.2 micrometer) diodes, however, showed slight improvement in contact resistance upon 200 C isothermal annealing for several months, without degrading the pn junction. The effect of aging on electrical characteristics of the as-deposited and heat-treated contacts and the nearby pn junction, as well as on the surface morphology of the contacts are presented.

  19. Characterization of an Electroanalytical Instrument Suite Searching for Water and Life on Mars

    NASA Technical Reports Server (NTRS)

    Bostic, Heidi E.

    2005-01-01

    Seeking the existence of life on other planets is an essential part of NASA's research. Our terrestrial experience suggests that water is a mandatory resource for life to exist and thrive. However, instruments capable of detecting water at the levels likely to be present on Mars are lacking. This project tests the possibility of using electrical measurements of soils, at variable frequencies, as a water detector. Generally, the electrical resistance of soils can be described as a combination of resistance and capacitance, which can be described by a vector including a magnitude and (phase) angle. By specifically studying the impedance measurements and phase angles of different types of soil, spiked with varying concentrations of dissolved ions, measurements can be taken to provide an idea of the behavior of dry Martian soils. The presentation will describe the experimental technique, apparatus and procedures, as well as results conducted to calibrate the instrument and to establish sample preparation protocols.

  20. Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder

    PubMed Central

    Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong

    2016-01-01

    The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service. PMID:28004839

  1. Designing and Implementation a Lab Testing Method for Power Cables Insulation Resistance According with STAS 10411-89, SR EN ISO/CEI/17025/2005

    NASA Astrophysics Data System (ADS)

    Dobra, R.; Pasculescu, D.; Marc, G.; Risteiu, M.; Antonov, A.

    2017-06-01

    Insulation resistance measurement is one of the most important tests required by standards and regulations in terms of electrical safety. Why these tests are is to prevent possible accidents caused by electric shock, damage to equipment or outbreak of fire in normal operating conditions of electrical cables. The insulation resistance experiment refers to the testing of electrical cable insulation, which has a measured resistance that must be below the imposed regulations. Using a microcontroller system data regarding the insulation resistance of the power cables is acquired and with SCADA software the test results are displayed.

  2. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1997-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  3. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1999-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  4. Iron aluminide useful as electrical resistance heating elements

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2001-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  5. Restrictive loads powered by separate or by common electrical sources

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.

    1989-01-01

    In designing a multiple load electrical system, the designer may wish to compare the performance of two setups: a common electrical source powering all loads, or separate electrical sources powering individual loads. Three types of electrical sources: an ideal voltage source, an ideal current source, and solar cell source powering resistive loads were analyzed for their performances in separate and common source systems. A mathematical proof is given, for each case, indicating the merit of the separate or common source system. The main conclusions are: (1) identical resistive loads powered by ideal voltage sources perform the same in both system setups, (2) nonidentical resistive loads powered by ideal voltage sources perform the same in both system setups, (3) nonidentical resistive loads powered by ideal current sources have higher performance in separate source systems, and (4) nonidentical resistive loads powered by solar cells have higher performance in a common source system for a wide range of load resistances.

  6. Atomic Layer Deposited Oxide-Based Nanocomposite Structures with Embedded CoPtx Nanocrystals for Resistive Random Access Memory Applications.

    PubMed

    Wang, Lai-Guo; Cao, Zheng-Yi; Qian, Xu; Zhu, Lin; Cui, Da-Peng; Li, Ai-Dong; Wu, Di

    2017-02-22

    Al 2 O 3 - or HfO 2 -based nanocomposite structures with embedded CoPt x nanocrystals (NCs) on TiN-coated Si substrates have been prepared by combination of thermal atomic layer deposition (ALD) and plasma-enhanced ALD for resistive random access memory (RRAM) applications. The impact of CoPt x NCs and their average size/density on the resistive switching properties has been explored. Compared to the control sample without CoPt x NCs, ALD-derived Pt/oxide/100 cycle-CoPt x NCs/TiN/SiO 2 /Si exhibits a typical bipolar, reliable, and reproducible resistive switching behavior, such as sharp distribution of RRAM parameters, smaller set/reset voltages, stable resistance ratio (≥10 2 ) of OFF/ON states, better switching endurance up to 10 4 cycles, and longer data retention over 10 5 s. The possible resistive switching mechanism based on nanocomposite structures of oxide/CoPt x NCs has been proposed. The dominant conduction mechanisms in low- and high-resistance states of oxide-based device units with embedded CoPt x NCs are Ohmic behavior and space-charge-limited current, respectively. The insertion of CoPt x NCs can effectively improve the formation of conducting filaments due to the CoPt x NC-enhanced electric field intensity. Besides excellent resistive switching performances, the nanocomposite structures also simultaneously present ferromagnetic property. This work provides a flexible pathway by combining PEALD and TALD compatible with state-of-the-art Si-based technology for multifunctional electronic devices applications containing RRAM.

  7. Resistive switching in TiO2 nanocolumn arrays electrochemically grown

    NASA Astrophysics Data System (ADS)

    Marik, M.; Mozalev, A.; Hubalek, J.; Bendova, M.

    2017-04-01

    Resistive switching in metal oxides, especially in TiO2, has been intensively investigated for potential application in non-volatile memory microdevices. As one of the working mechanisms, a conducting filament consisting of a substoichiometric oxide phase is created within the oxide layer. With the aim of investigating the filament formation in spatially confined elements, we fabricate arrays of self-ordered TiO2 nanocolumns by porous-anodic-alumina (PAA)-assisted anodizing, incorporate them into solid-state microdevices, study their electron transport properties, and reveal that this anodizing approach is suitable for growing TiO2 nanostructures exhibiting resistive switching. The electrical properties and resistive switching behavior are both dependent on the electrolytic formation conditions, influencing the concentration and distribution of oxygen vacancies in the nanocolumn material during the film growth. Therefore, the PAA-assisted TiO2 nanocolumn arrays can be considered as a platform for investigating various phenomena related to resistive switching in valve metal oxides at the nanoscale.

  8. 46 CFR 111.01-11 - Corrosion-resistant parts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric...

  9. 46 CFR 111.01-11 - Corrosion-resistant parts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric...

  10. 46 CFR 111.01-11 - Corrosion-resistant parts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric...

  11. 46 CFR 111.01-11 - Corrosion-resistant parts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric...

  12. Imaging of Ground Ice with Surface-Based Geophysics

    DTIC Science & Technology

    2015-10-01

    terrains. Electrical Resistivity Tomography (ERT), in particular, has been effective for imaging ground ice. ERT measures the ability of materials to...13 2.2.1 Electrical resistivity tomography (ERT...Engineer Research and Development Center ERT Electrical Resistivity Tomography GPS Global Positioning System LiDAR Light Detection and Ranging SIPRE

  13. 46 CFR 111.01-11 - Corrosion-resistant parts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric...

  14. Thermal-electrical properties and resistance stability of silver coated yarns

    NASA Astrophysics Data System (ADS)

    Li, Yafang; Liu, Hao; Li, Xiaojiu

    2017-03-01

    Thermal-electrical properties and resistance stability of silver yarns was researched to evaluate the performance be a heating element. Three samples of silver coated yarns with different linear density and electrical resistivity, which obtained by market. Silver coated yarns were placed at the high temperature condition for ageing. The electrical resistances of yarns were increased with the ageing process. The infrared photography instrument was used to measurement the temperature variation of silver coated yarns by applied different current on. The result shows that the temperature rise with the power increases.

  15. Electrical Resistivity Measurements: a Review

    NASA Astrophysics Data System (ADS)

    Singh, Yadunath

    World-wide interest on the use of ceramic materials for aerospace and other advanced engineering applications, has led to the need for inspection techniques capable of detecting unusually electrical and thermal anomalies in these compounds. Modern ceramic materials offer many attractive physical, electrical and mechanical properties for a wide and rapidly growing range of industrial applications; moreover specific use may be made of their electrical resistance, chemical resistance, and thermal barrier properties. In this review, we report the development and various techniques for the resistivity measurement of solid kind of samples.

  16. Understanding magnetotransport signatures in networks of connected permalloy nanowires

    NASA Astrophysics Data System (ADS)

    Le, B. L.; Park, J.; Sklenar, J.; Chern, G.-W.; Nisoli, C.; Watts, J. D.; Manno, M.; Rench, D. W.; Samarth, N.; Leighton, C.; Schiffer, P.

    2017-02-01

    The change in electrical resistance associated with the application of an external magnetic field is known as the magnetoresistance (MR). The measured MR is quite complex in the class of connected networks of single-domain ferromagnetic nanowires, known as "artificial spin ice," due to the geometrically induced collective behavior of the nanowire moments. We have conducted a thorough experimental study of the MR of a connected honeycomb artificial spin ice, and we present a simulation methodology for understanding the detailed behavior of this complex correlated magnetic system. Our results demonstrate that the behavior, even at low magnetic fields, can be well described only by including significant contributions from the vertices at which the legs meet, opening the door to new geometrically induced MR phenomena.

  17. Study of percolation behavior depending on molecular structure design

    NASA Astrophysics Data System (ADS)

    Yu, Ji Woong; Lee, Won Bo

    Each differently designed anisotropic nano-crystals(ANCs) are studied using Langevin dynamic simulation and their percolation behaviors are presented. Popular molecular dynamics software LAMMPS was used to design the system and perform the simulation. We calculated the minimum number density at which percolation occurs(i.e. percolation threshold), radial distribution function, and the average number of ANCs for a cluster. Electrical conductivity is improved when the number of transfers of electrons between ANCs, so called ''inter-hopping process'', which has the considerable contribution to resistance decreases and the number of inter-hopping process is directly related with the concentration of ANCs. Therefore, with the investigation of relationship between molecular architecture and percolation behavior, optimal design of ANC can be achieved.

  18. Cooper Pair-Like Systems at High Temperature and their Role on Fluctuations Near the Critical Temperature

    NASA Astrophysics Data System (ADS)

    Ausloos, M.; Dorbolo, S.

    A logarithmic behavior is hidden in the linear temperature regime of the electrical resistivity R(T) of some YBCO sample below 2Tc where "pairs" break apart, fluctuations occur and "a gap is opening". An anomalous effect also occurs near 200 K in the normal state Hall coefficient. In a simulation of oxygen diffusion in planar 123 YBCO, an anomalous behavior is found in the oxygen-vacancy motion near such a temperature. We claim that the behavior of the specific heat above and near the critical temperature should be reexamined in order to show the influence and implications of fluctuations and dimensionality on the nature of the phase transition and on the true onset temperature.

  19. Sensitive photo-thermal response of graphene oxide for mid-infrared detection

    NASA Astrophysics Data System (ADS)

    Bae, Jung Jun; Yoon, Jung Hyun; Jeong, Sooyeon; Moon, Byoung Hee; Han, Joong Tark; Jeong, Hee Jin; Lee, Geon-Woong; Hwang, Ha Ryong; Lee, Young Hee; Jeong, Seung Yol; Lim, Seong Chu

    2015-09-01

    This study characterizes the effects of incident infrared (IR) radiation on the electrical conductivity of graphene oxide (GO) and examines its potential for mid-IR detection. Analysis of the mildly reduced GO (m-GO) transport mechanism near room temperature reveals variable range hopping (VRH) for the conduction of electrons. This VRH behavior causes the m-GO resistance to exhibit a strong temperature dependence, with a large negative temperature coefficient of resistance of approximately -2 to -4% K-1. In addition to this hopping transport, the presence of various oxygen-related functional groups within GO enhances the absorption of IR radiation significantly. These two GO material properties are synergically coupled and provoke a remarkable photothermal effect within this material; specifically, a large resistance drop is exhibited by m-GO in response to the increase in temperature caused by the IR absorption. The m-GO bolometer effect identified in this study is different from that exhibited in vanadium oxides, which require added gold-black films that function as IR absorbers owing to their limited IR absorption capability.This study characterizes the effects of incident infrared (IR) radiation on the electrical conductivity of graphene oxide (GO) and examines its potential for mid-IR detection. Analysis of the mildly reduced GO (m-GO) transport mechanism near room temperature reveals variable range hopping (VRH) for the conduction of electrons. This VRH behavior causes the m-GO resistance to exhibit a strong temperature dependence, with a large negative temperature coefficient of resistance of approximately -2 to -4% K-1. In addition to this hopping transport, the presence of various oxygen-related functional groups within GO enhances the absorption of IR radiation significantly. These two GO material properties are synergically coupled and provoke a remarkable photothermal effect within this material; specifically, a large resistance drop is exhibited by m-GO in response to the increase in temperature caused by the IR absorption. The m-GO bolometer effect identified in this study is different from that exhibited in vanadium oxides, which require added gold-black films that function as IR absorbers owing to their limited IR absorption capability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04039f

  20. The enhancement in electrical analysis of the nitrogen doped amorphous carbon thin films (a-C:N) prepared by aerosol-assisted CVD

    NASA Astrophysics Data System (ADS)

    Fadzilah, A. N.; Dayana, K.; Rusop, M.

    2018-05-01

    This paper reports on the deposition of Nitrogen doped amorphous carbon (a-C:N) by Aerosol-assisted Chemical Vapor Deposition (AACVD) using natural source of camphor oil as the precursor material. 5 samples were deposited at 5 different deposition times from 15 min to 90 min, with 15 min interval for each sample. The highest slope of linear graph was noted at the sample with 45 min deposition time, showing the lowest electrical resistance of the sample. From I-V characteristic, the sample deposited at 45 min has the highest electrical conductivity due to high sp2 carbon bonding ratio. Nanostructured behavior of N doped a-C:N was also investigated by FESEM micrograph resulting with the particle size less than 100nm.

  1. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of electric... a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and a relative humidity of 55 ±10...

  2. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of electric... a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and a relative humidity of 55 ±10...

  3. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of electric... a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and a relative humidity of 55 ±10...

  4. Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory

    NASA Astrophysics Data System (ADS)

    Hwang, Bohee; Gu, Chungwan; Lee, Donghwa; Lee, Jang-Sik

    2017-03-01

    Mixed halide perovskite materials are actively researched for solar cells with high efficiency. Their hysteresis which originates from the movement of defects make perovskite a candidate for resistive switching memory devices. We demonstrate the resistive switching device based on mixed-halide organic-inorganic hybrid perovskite CH3NH3PbI3-xBrx (x = 0, 1, 2, 3). Solvent engineering is used to deposit the homogeneous CH3NH3PbI3-xBrx layer on the indium-tin oxide-coated glass substrates. The memory device based on CH3NH3PbI3-xBrx exhibits write endurance and long retention, which indicate reproducible and reliable memory properties. According to the increase in Br contents in CH3NH3PbI3-xBrx the set electric field required to make the device from low resistance state to high resistance state decreases. This result is in accord with the theoretical calculation of migration barriers, that is the barrier to ionic migration in perovskites is found to be lower for Br- (0.23 eV) than for I- (0.29-0.30 eV). The resistive switching may be the result of halide vacancy defects and formation of conductive filaments under electric field in the mixed perovskite layer. It is observed that enhancement in operating voltage can be achieved by controlling the halide contents in the film.

  5. Histamine and thrombin modulate endothelial focal adhesion through centripetal and centrifugal forces.

    PubMed Central

    Moy, A B; Van Engelenhoven, J; Bodmer, J; Kamath, J; Keese, C; Giaever, I; Shasby, S; Shasby, D M

    1996-01-01

    We examined the contribution of actin-myosin contraction to the modulation of human umbilical vein endothelial cell focal adhesion caused by histamine and thrombin. Focal adhesion was measured as the electrical resistance across a cultured monolayer grown on a microelectrode. Actin-myosin contraction was measured as isometric tension of cultured monolayers grown on a collagen gel. Histamine immediately decreased electrical resistance but returned to basal levels within 3-5 min. Histamine did not increase isometric tension. Thrombin also immediately decreased electrical resistance, but, however, resistance did not return to basal levels for 40-60 min. Thrombin also increased isometric tension, ML-7, an inhibitor of myosin light chain kinase, prevented increases in myosin light chain phosphorylation and increases in tension development in cells exposed to thrombin. ML-7 did not prevent a decline in electrical resistance in cells exposed to thrombin. Instead, ML-7 restored the electrical resistance to basal levels in a shorter period of time (20 min) than cells exposed to thrombin alone. Also, histamine subsequently increased electrical resistance to above basal levels, and thrombin initiated an increase in resistance during the time of peak tension development. Hence, histamine and thrombin modulate endothelial cell focal adhesion through centripetal and centrifugal forces. PMID:8613524

  6. Back-gated Nb-doped MoS2 junctionless field-effect-transistors

    NASA Astrophysics Data System (ADS)

    Mirabelli, Gioele; Schmidt, Michael; Sheehan, Brendan; Cherkaoui, Karim; Monaghan, Scott; Povey, Ian; McCarthy, Melissa; Bell, Alan P.; Nagle, Roger; Crupi, Felice; Hurley, Paul K.; Duffy, Ray

    2016-02-01

    Electrical measurements were carried out to measure the performance and evaluate the characteristics of MoS2 flakes doped with Niobium (Nb). The flakes were obtained by mechanical exfoliation and transferred onto 85 nm thick SiO2 oxide and a highly doped Si handle wafer. Ti/Au (5/45 nm) deposited on top of the flake allowed the realization of a back-gate structure, which was analyzed structurally through Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). To best of our knowledge this is the first cross-sectional TEM study of exfoliated Nb-doped MoS2 flakes. In fact to date TEM of transition-metal-dichalcogenide flakes is extremely rare in the literature, considering the recent body of work. The devices were then electrically characterized by temperature dependent Ids versus Vds and Ids versus Vbg curves. The temperature dependency of the device shows a semiconductor behavior and, the doping effect by Nb atoms introduces acceptors in the structure, with a p-type concentration 4.3 × 1019 cm-3 measured by Hall effect. The p-type doping is confirmed by all the electrical measurements, making the structure a junctionless transistor. In addition, other parameters regarding the contact resistance between the top metal and MoS2 are extracted thanks to a simple Transfer Length Method (TLM) structure, showing a promising contact resistivity of 1.05 × 10-7 Ω/cm2 and a sheet resistance of 2.36 × 102 Ω/sq.

  7. Controlling charge current through a DNA based molecular transistor

    NASA Astrophysics Data System (ADS)

    Behnia, S.; Fathizadeh, S.; Ziaei, J.

    2017-01-01

    Molecular electronics is complementary to silicon-based electronics and may induce electronic functions which are difficult to obtain with conventional technology. We have considered a DNA based molecular transistor and study its transport properties. The appropriate DNA sequence as a central chain in molecular transistor and the functional interval for applied voltages is obtained. I-V characteristic diagram shows the rectifier behavior as well as the negative differential resistance phenomenon of DNA transistor. We have observed the nearly periodic behavior in the current flowing through DNA. It is reported that there is a critical gate voltage for each applied bias which above it, the electrical current is always positive.

  8. Pressure-Induced Valence Crossover and Novel Metamagnetic Behavior near the Antiferromagnetic Quantum Phase Transition of YbNi3Ga9

    NASA Astrophysics Data System (ADS)

    Matsubayashi, K.; Hirayama, T.; Yamashita, T.; Ohara, S.; Kawamura, N.; Mizumaki, M.; Ishimatsu, N.; Watanabe, S.; Kitagawa, K.; Uwatoko, Y.

    2015-02-01

    We report electrical resistivity, ac magnetic susceptibility, and x-ray absorption spectroscopy measurements of intermediate valence YbNi3Ga9 under pressure and magnetic field. We have revealed a characteristic pressure-induced Yb valence crossover within the temperature-pressure phase diagram, and a first-order metamagnetic transition is found below Pc˜9 GPa where the system undergoes a pressure-induced antiferromagnetic transition. As a possible origin of the metamagnetic behavior, a critical valence fluctuation emerging near the critical point of the first-order valence transition is discussed on the basis of the temperature-field-pressure phase diagram.

  9. Smart bricks for strain sensing and crack detection in masonry structures

    NASA Astrophysics Data System (ADS)

    Downey, Austin; D'Alessandro, Antonella; Laflamme, Simon; Ubertini, Filippo

    2018-01-01

    The paper proposes the novel concept of smart bricks as a durable sensing solution for structural health monitoring of masonry structures. The term smart bricks denotes piezoresistive clay bricks with suitable electronics capable of outputting measurable changes in their electrical properties under changes in their state of strain. This feature can be exploited to evaluate stress at critical locations inside a masonry wall and to detect changes in loading paths associated with structural damage, for instance following an earthquake. Results from an experimental campaign show that normal clay bricks, fabricated in the laboratory with embedded electrodes made of a special steel for resisting the high baking temperature, exhibit a quite linear and repeatable piezoresistive behavior. That is a change in electrical resistance proportional to a change in axial strain. In order to be able to exploit this feature for strain sensing, high-resolution electronics are used with a biphasic DC measurement approach to eliminate any resistance drift due to material polarization. Then, an enhanced nanocomposite smart brick is proposed, where titania is mixed with clay before baking, in order to enhance the brick’s mechanical properties, improve its noise rejection, and increase its electrical conductivity. Titania was selected among other possible conductive nanofillers due to its resistance to high temperatures and its ability to improve the durability of construction materials while maintaining the aesthetic appearance of clay bricks. An application of smart bricks for crack detection in masonry walls is demonstrated by laboratory testing of a small-scale wall specimen under different loading conditions and controlled damage. Overall, it is demonstrated that a few strategically placed smart bricks enable monitoring of the state of strain within the wall and provide information that is capable of crack detection.

  10. Hole-to-surface resistivity measurements.

    USGS Publications Warehouse

    Daniels, J.J.

    1983-01-01

    Hole-to-surface resistivity measurements over a layered volcanic tuff sequence illustrate procedures for gathering, reducing, and interpreting hole-to-surface resistivity data. The magnitude and direction of the total surface electric field resulting from a buried current source is calculated from orthogonal potential difference measurements for a grid of closely spaced stations. A contour map of these data provides a detailed map of the distribution of the electric field away from the drill hole. Resistivity anomalies can be enhanced by calculating the difference between apparent resistivities calculated from the total surface electric field and apparent resistivities for a layered earth model.-from Author

  11. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  12. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  13. Superconducting thermoelectric generator

    DOEpatents

    Metzger, John D.; El-Genk, Mohamed S.

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  14. Anomalous Hall effect in two-dimensional non-collinear antiferromagnetic semiconductor Cr0.68Se

    NASA Astrophysics Data System (ADS)

    Yan, J.; Luo, X.; Chen, F. C.; Pei, Q. L.; Lin, G. T.; Han, Y. Y.; Hu, L.; Tong, P.; Song, W. H.; Zhu, X. B.; Sun, Y. P.

    2017-07-01

    Cr0.68Se single crystals with two-dimensional (2D) character have been grown, and the detailed magnetization M(T), electrical transport properties (including longitudinal resistivity ρxx and Hall resistivity ρxy), and thermal transport properties [including heat capacity Cp(T) and thermoelectric power S(T)] have been measured. There are some interesting phenomena: (i) Cr0.68Se presents a non-collinear antiferromagnetic (AFM) semiconducting behavior at the Néel temperature of TN = 42 K and with the activated energy of Eg = 3.9 meV; (ii) it exhibits the anomalous Hall effect (AHE) below TN and large negative magnetoresistance about 83.7% (2 K, 8.5 T). The AHE coefficient RS is 0.385 cm-3/C at T = 2 K, and the AHE conductivity σH is about 1 Ω-1 cm-1 at T = 40 K; (iii) the scaling behavior between the anomalous Hall resistivity ρxy A and the longitudinal resistivity ρxx is linear, and further analysis implies that the origin of the AHE in Cr0.68Se is dominated by the skew-scattering mechanism. Our results may be helpful for exploring the potential application of these kinds of 2D AFM semiconductors.

  15. Systematic study of electronic and magnetic properties for Cu{sub 12–x}TM{sub x}Sb{sub 4}S{sub 13} (TM = Mn, Fe, Co, Ni, and Zn) tetrahedrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suekuni, K., E-mail: ksuekuni@hiroshima-u.ac.jp; Tomizawa, Y.; Ozaki, T.

    2014-04-14

    Substitution effects of 3d transition metal (TM) impurities on electronic and magnetic properties for Cu{sub 12}Sb{sub 4}S{sub 13} tetrahedrite are investigated by the combination of low-temperature experiments and first-principles electronic-structure calculations. The electrical resistivity for the cubic phase of Cu{sub 12}Sb{sub 4}S{sub 13} exhibits metallic behavior due to an electron-deficient character of the compound. Whereas that for 0.5 ≤ x ≤ 2.0 of Cu{sub 12−x}Ni{sub x}Sb{sub 4}S{sub 13} exhibits semiconducting behavior. The substituted Ni for Cu is in the divalent ionic state with a spin magnetic moment and creates impurity bands just above the Fermi level at the top of the valence band. Therefore,more » the semiconducting behavior of the electrical resistivity is attributed to the thermal excitation of electrons from the valence band to the impurity band. The substitution effect of TM on the electronic structure and the valency of TM for Cu{sub 11.0}TM{sub 1.0}Sb{sub 4}S{sub 13} are systematically studied by the calculation. The substituted Mn, Fe, and Co for Cu are found to be in the ionic states with the spin magnetic moments due to the large exchange splitting of the 3d bands between the minority- and majority-spin states.« less

  16. Ti-Doped GaOx Resistive Switching Memory with Self-Rectifying Behavior by Using NbOx/Pt Bilayers.

    PubMed

    Park, Ju Hyun; Jeon, Dong Su; Kim, Tae Geun

    2017-12-13

    Crossbar arrays (CBAs) with resistive random access memory (ReRAM) constitute an established architecture for high-density memory. However, sneak paths via unselected cells increase the total power consumption of these devices and limit the array size. To eliminate such sneak-path problems, we propose a Ti/GaO x /NbO x /Pt structure with a self-rectifying resistive-switching (RS) behavior. In this structure, to reduce the operating voltage, we used a Ti/GaO x stack to increase the number of trap sites in the RS GaO x layer through interfacial reactions between the Ti and GaO x layers. This increase enables easier carrier transport with reduced electric fields. We then adopted a NbO x /Pt stack to add rectifying behavior to the RS GaO x layer. This behavior is a result of the large Schottky barrier height between the NbO x and Pt layers. Finally, both the Ti/GaO x and NbO x /Pt stacks were combined to realize a self-rectifying ReRAM device, which exhibited excellent performance. Characteristics of the device include a low operating voltage range (-2.8 to 2.5 V), high on/off ratios (∼20), high selectivity (∼10 4 ), high operating speeds (200-500 ns), a very low forming voltage (∼3 V), stable operation, and excellent uniformity for high-density CBA-based ReRAM applications.

  17. On the Mechanisms of Formation of Memory Channels and Development of Negative Differential Resistance in Solid Solutions of the TlInTe2-TlYbTe2 System

    NASA Astrophysics Data System (ADS)

    Akhmedova, A. M.

    2018-04-01

    The behavior of an electronic subsystem is investigated in the course of formation and development of a memory channel in solid solutions of the TlInTe2-TlYbTe2 system. An analysis of the current-voltage characteristics allows getting an insight into the reason for a sharp change in electrical conductance of the specimens under study during their transition from the high-resistance to high-conductance state and the reasons for the well known instability of threshold converters, which makes it possible to design devices with high threshold voltage stability.

  18. Influences of semiconductor morphology on the mechanical fatigue behavior of flexible organic electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young-Joo; Yeon, Han-Wool; Shin, Hae-A-Seul

    2013-12-09

    The influence of crystalline morphology on the mechanical fatigue of organic semiconductors (OSCs) was investigated using 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) as a crystalline OSC and poly(triarylamine) (PTAA) as an amorphous OSC. During cyclic bending, resistances of the OSCs were monitored using the transmission-line method on a metal-semiconductor-metal structure. The resistance of the TIPS-pentacene increased under fatigue damage in tensile-stress mode, but no such degradation was observed in the PTAA. Both OSCs were stable under compressive bending fatigue. The formation of intergranular cracks at the domain boundaries of the TIPS-pentacene was responsible for the degradation of its electrical properties under tensile bending fatigue.

  19. Relating the Electrical Resistance of Fresh Concrete to Mixture Proportions.

    PubMed

    Obla, K; Hong, R; Sherman, S; Bentz, D P; Jones, S Z

    2018-01-01

    Characterization of fresh concrete is critical for assuring the quality of our nation's constructed infrastructure. While fresh concrete arriving at a job site in a ready-mixed concrete truck is typically characterized by measuring temperature, slump, unit weight, and air content, here the measurement of the electrical resistance of a freshly cast cylinder of concrete is investigated as a means of assessing mixture proportions, specifically cement and water contents. Both cement and water contents influence the measured electrical resistance of a sample of fresh concrete: the cement by producing ions (chiefly K + , Na + , and OH - ) that are the main source of electrical conduction; and the water by providing the main conductive pathways through which the current travels. Relating the measured electrical resistance to attributes of the mixture proportions, such as water-cement ratio by mass ( w/c ), is explored for a set of eleven different concrete mixtures prepared in the laboratory. In these mixtures, w/c , paste content, air content, fly ash content, high range water reducer dosage, and cement alkali content are all varied. Additionally, concrete electrical resistance data is supplemented by measuring the resistivity of its component pore solution obtained from 5 laboratory-prepared cement pastes with the same proportions as their corresponding concrete mixtures. Only measuring the concrete electrical resistance can provide a prediction of the mixture's paste content or the product w*c ; conversely, when pore solution resistivity is also available, w/c and water content of the concrete mixture can be reasonably assessed.

  20. Relating the Electrical Resistance of Fresh Concrete to Mixture Proportions

    PubMed Central

    Obla, K.; Hong, R.; Sherman, S.; Bentz, D.P.; Jones, S.Z.

    2018-01-01

    Characterization of fresh concrete is critical for assuring the quality of our nation’s constructed infrastructure. While fresh concrete arriving at a job site in a ready-mixed concrete truck is typically characterized by measuring temperature, slump, unit weight, and air content, here the measurement of the electrical resistance of a freshly cast cylinder of concrete is investigated as a means of assessing mixture proportions, specifically cement and water contents. Both cement and water contents influence the measured electrical resistance of a sample of fresh concrete: the cement by producing ions (chiefly K+, Na+, and OH-) that are the main source of electrical conduction; and the water by providing the main conductive pathways through which the current travels. Relating the measured electrical resistance to attributes of the mixture proportions, such as water-cement ratio by mass (w/c), is explored for a set of eleven different concrete mixtures prepared in the laboratory. In these mixtures, w/c, paste content, air content, fly ash content, high range water reducer dosage, and cement alkali content are all varied. Additionally, concrete electrical resistance data is supplemented by measuring the resistivity of its component pore solution obtained from 5 laboratory-prepared cement pastes with the same proportions as their corresponding concrete mixtures. Only measuring the concrete electrical resistance can provide a prediction of the mixture’s paste content or the product w*c; conversely, when pore solution resistivity is also available, w/c and water content of the concrete mixture can be reasonably assessed. PMID:29882546

  1. Ab-initio study of liquid systems: Concentration dependence of electrical resistivity of binary liquid alloy Rb1-xCsx

    NASA Astrophysics Data System (ADS)

    Thakur, Anil; Sharma, Nalini; Chandel, Surjeet; Ahluwalia, P. K.

    2013-02-01

    The electrical resistivity (ρL) of Rb1-XCsX binary alloys has been made calculated using Troullier Martins ab-initio pseudopotentials. The present results of the electrical resistivity (ρL) of Rb1-XCsX binary alloys have been found in good agreement with the experimental results. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys. Hence ab-initio pseudopotentials can be used instead of model pseudopotentials having problem of transferability.

  2. A method to investigate the electron scattering characteristics of ultrathin metallic films by in situ electrical resistance measurements.

    PubMed

    Trindade, I G; Fermento, R; Leitão, D; Sousa, J B

    2009-07-01

    In this article, a method to measure the electrical resistivity/conductivity of metallic thin films during layer growth on specific underlayers is described. The in situ monitoring of an underlayer electrical resistance, its change upon the incoming of new material atoms/molecules, and the growth of a new layer are presented. The method is easy to implement and allows obtaining in situ experimental curves of electrical resistivity dependence upon film thickness with a subatomic resolution, providing insight in film growth microstructure characteristics, specular/diffuse electron scattering surfaces, and optimum film thicknesses.

  3. Electrical resistivity of liquid lanthanides using charge hard sphere system

    NASA Astrophysics Data System (ADS)

    Sonvane, Y. A.; Thakor, P. B.; Jani, A. R.

    2013-06-01

    In the present paper, we have studied electrical resistivity (ρ) of liquid lanthanides. To describe the structural information, the structure factor S(q) due to the charged hard sphere (CHS) reference systems is used along with our newly constructed model potential. To see the influence of exchange and correlation effect on the electrical resistivity (ρ) have used different local field correction functions like Hartree (H), Sarkar et al (S) and Taylor (T). Lastly we conclude that the proper choice of the model potential along with local field correction function plays a vital role to the study of the electrical resistivity (ρ).

  4. Complementary resistive switching in BaTiO3/NiO bilayer with opposite switching polarities

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Wei, Xianhua; Lei, Yao; Yuan, Xincai; Zeng, Huizhong

    2016-12-01

    Resistive switching behaviors have been investigated in the Au/BaTiO3/NiO/Pt structure by stacking the two elements with different switching types. The conducting atomic force microscope measurements on BaTiO3 thin films and NiO thin films suggest that with the same active resistive switching region, the switching polarities in the two semiconductors are opposite to each other. It is in agreement with the bipolar hysteresis I-V curves with opposite switching polarities for single-layer devices. The bilayer devices show complementary resistive switching (CRS) without electroforming and unipolar resistive switching (URS) after electroforming. The coexistence of CRS and URS is mainly ascribed to the co-effect of electric field and Joule heating mechanisms, indicating that changeable of resistance in this device is dominated by the redistribution of oxygen vacancies in BaTiO3 and the formation, disruption, restoration of conducting filaments in NiO. CRS in bilayer with opposite switching polarities is effective to solve the sneak current without the introduction of any selector elements or an additional metal electrode.

  5. Magnetotail particle dynamics and transport

    NASA Technical Reports Server (NTRS)

    Speiser, Theodore W.

    1995-01-01

    The main thrust of our research is to study the consequences of particle dynamics in the current sheet region of the magnetotail. The importance of understanding particle dynamics, in and near current sheets, cannot be over estimated, especially in light of NASA's recent interest in developing global circulation models to predict space weather. We have embarked on a long-term study to investigate the electrical resistance due to chaotic behavior, compare this resistance to inertial effects, and relate it to that resistance required in MHD modeling for reconnection to proceed. Using a single-particle model and observations, we have also found that a neutral line region can be remotely sensed. We plan to evaluate other cases of satellite observations near times of substorm onset to elucidate the relationship between the temporal development of a near-Earth neutral line and onset.

  6. Vibration properties of a rotating piezoelectric energy harvesting device that experiences gyroscopic effects

    NASA Astrophysics Data System (ADS)

    Lu, Haohui; Chai, Tan; Cooley, Christopher G.

    2018-03-01

    This study investigates the vibration of a rotating piezoelectric device that consists of a proof mass that is supported by elastic structures with piezoelectric layers. Vibration of the proof mass causes deformation in the piezoelectric structures and voltages to power the electrical loads. The coupled electromechanical equations of motion are derived using Newtonian mechanics and Kirchhoff's circuit laws. The free vibration behavior is investigated for devices with identical (tuned) and nonidentical (mistuned) piezoelectric support structures and electrical loads. These devices have complex-valued, speed-dependent eigenvalues and eigenvectors as a result of gyroscopic effects caused by their constant rotation. The characteristics of the complex-valued eigensolutions are related to physical behavior of the device's vibration. The free vibration behaviors differ significantly for tuned and mistuned devices. Due to gyroscopic effects, the proof mass in the tuned device vibrates in either forward or backward decaying circular orbits in single-mode free response. This is proven analytically for all tuned devices, regardless of the device's specific parameters or operating speed. For mistuned devices, the proof mass has decaying elliptical forward and backward orbits. The eigenvalues are shown to be sensitive to changes in the electrical load resistances. Closed-form solutions for the eigenvalues are derived for open and close circuits. At high rotation speeds these devices experience critical speeds and instability.

  7. Resistive foil edge grading for accelerator and other high voltage structures

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen F.; Sanders, David M.

    2014-06-10

    In a structure or device having a pair of electrical conductors separated by an insulator across which a voltage is placed, resistive layers are formed around the conductors to force the electric potential within the insulator to distribute more uniformly so as to decrease or eliminate electric field enhancement at the conductor edges. This is done by utilizing the properties of resistive layers to allow the voltage on the electrode to diffuse outwards, reducing the field stress at the conductor edge. Preferably, the resistive layer has a tapered resistivity, with a lower resistivity adjacent to the conductor and a higher resistivity away from the conductor. Generally, a resistive path across the insulator is provided, preferably by providing a resistive region in the bulk of the insulator, with the resistive layer extending over the resistive region.

  8. Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head.

    PubMed

    Haueisen, J; Ramon, C; Eiselt, M; Brauer, H; Nowak, H

    1997-08-01

    Modeling in magnetoencephalography (MEG) and electroencephalography (EEG) requires knowledge of the in vivo tissue resistivities of the head. The aim of this paper is to examine the influence of tissue resistivity changes on the neuromagnetic field and the electric scalp potential. A high-resolution finite element method (FEM) model (452,162 elements, 2-mm resolution) of the human head with 13 different tissue types is employed for this purpose. Our main finding was that the magnetic fields are sensitive to changes in the tissue resistivity in the vicinity of the source. In comparison, the electric surface potentials are sensitive to changes in the tissue resistivity in the vicinity of the source and in the vicinity of the position of the electrodes. The magnitude (strength) of magnetic fields and electric surface potentials is strongly influenced by tissue resistivity changes, while the topography is not as strongly influenced. Therefore, an accurate modeling of magnetic field and electric potential strength requires accurate knowledge of tissue resistivities, while for source localization procedures this knowledge might not be a necessity.

  9. The effect of the geometry and material properties of a carbon joint produced by electron beam induced deposition on the electrical resistance of a multiwalled carbon nanotube-to-metal contact interface

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Konrad; Henry, Matthew R.; Kim, Song-Kil; Fedorov, Andrei G.; Kulkarni, Dhaval; Singamaneni, Srikanth; Tsukruk, Vladimir V.

    2010-01-01

    Multiwall carbon nanotubes (MWNTs) are promising candidates for yielding next generation electrical and electronic devices such as interconnects and tips for conductive force microscopy. One of the main challenges in MWNT implementation in such devices is the high contact resistance of the MWNT-metal electrode interface. Electron beam induced deposition (EBID) of an amorphous carbon interface has previously been demonstrated to simultaneously lower the electrical contact resistance and improve the mechanical characteristics of the MWNT-electrode connection. In this work, we investigate the influence of process parameters, such as the electron beam energy, current, geometry, and deposition time, on the EBID-made carbon joint geometry and electrical contact resistance. The influence of the composition of the deposited material on its resistivity is also investigated. The relative importance of each component of the contact resistance and the limiting factor of the overall electrical resistance of a MWNT-based interconnect is determined through a combination of a model analysis and comprehensive experiments.

  10. Induction heating apparatus and methods for selectively energizing an inductor in response to a measured electrical characteristic that is at least partially a function of a temperature of a material being heated

    DOEpatents

    Richardson, John G.; Morrison, John L.; Hawkes, Grant L.

    2006-07-04

    An induction heating apparatus includes a measurement device for indicating an electrical resistance of a material to be heated. A controller is configured for energizing an inductor in response to the indicated resistance. An inductor may be energized with an alternating current, a characteristic of which may be selected in response to an indicated electrical resistance. Alternatively, a temperature of the material may be indicated via measuring the electrical resistance thereof and a characteristic of an alternating current for energizing the inductor may be selected in response to the temperature. Energizing the inductor may minimize the difference between a desired and indicated resistance or the difference between a desired and indicated temperature. A method of determining a temperature of at least one region of at least one material to be induction heated includes correlating a measured electrical resistance thereof to an average temperature thereof.

  11. Risk analysis and detection of thrombosis by measurement of electrical resistivity of blood.

    PubMed

    Sapkota, Achyut; Asakura, Yuta; Maruyama, Osamu; Kosaka, Ryo; Yamane, Takashi; Takei, Masahiro

    2013-01-01

    Monitoring of thrombogenic process is very important in ventricular assistance devices (VADs) used as temporary or permanent measures in patients with advanced heart failure. Currently, there is a lack of a system which can perform a real-time monitoring of thrombogenic activity. Electrical signals vary according to the change in concentration of coagulation factors as well as the distribution of blood cells, and thus have potential to detect the thrombogenic process in an early stage. In the present work, we have made an assessment of an instrumentation system exploiting the electrical properties of blood. The experiments were conducted using bovine blood. Electrical resistance tomography with eight-electrode sensor was used to monitor the spatio-temporal change in electrical resistivity of blood in thrombogenic and non-thrombogenic condition. Under non-thrombogenic condition, the resistivity was uniform across the cross-section and average resistivity monotonically decreased with time before remaining almost flat. In contrary, under thrombogenic condition, there was non-uniform distribution across the cross-section, and average resistivity fluctuated with time.

  12. A numerical study on electrochemical transport of ions in calcium fluoride slag

    NASA Astrophysics Data System (ADS)

    Karimi-Sibaki, E.; Kharicha, A.; Wu, M.; Ludwig, A.

    2016-07-01

    Electrically resistive CaF 2-based slags are widely used in electroslag remelting (ESR) process to generate Joule heat for the melting of electrode. The electric current is conducted by ions (electrolyte) such as Ca +2 or F -, thus it is necessary to establish electrochemical models to study electrical behavior of slag. This paper presents a numerical model on electrochemical transport of ions in an arbitrary symmetrical (ZZ) and non-symmetrical (CaF2) stagnant electrolytes blocked by two parallel, planar electrodes. The dimensionless Poisson-Nernst-Planck (PNP) equations are solved to model electro-migration and diffusion of ions. The ions are considered to be inert that no Faradic reactions occur. Spatial variations of concentrations of ions, charge density and electric potential across the electrolyte are analyzed. It is shown that the applied potential has significant influence on the system response. At high applied voltage, the anodic potential drop near the electrode is significantly larger than cathodic potential drop in fully dissociated CaF2 electrolyte.

  13. Wiedemann-Franz law and nonvanishing temperature scale across the field-tuned quantum critical point of YbRh2Si2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, J.-Ph.; Tanatar, Makariy; Daou, R.

    2014-01-23

    The in-plane thermal conductivity kappa and electrical resistivity rho of the heavy-fermion metal YbRh2Si2 were measured down to 50 mK for magnetic fields H parallel and perpendicular to the tetragonal c axis, through the field-tuned quantum critical point H-c, at which antiferromagnetic order ends. The thermal and electrical resistivities, w L0T/kappa and rho, show a linear temperature dependence below 1 K, typical of the non-Fermi-liquid behavior found near antiferromagnetic quantum critical points, but this dependence does not persist down to T = 0. Below a characteristic temperature T-star similar or equal to 0.35 K, which depends weakly on H, w(T)more » and rho(T) both deviate downward and converge as T -> 0. We propose that T-star marks the onset of short-range magnetic correlations, persisting beyond H-c. By comparing samples of different purity, we conclude that the Wiedemann-Franz law holds in YbRh2Si2, even at H-c, implying that no fundamental breakdown of quasiparticle behavior occurs in this material. The overall phenomenology of heat and charge transport in YbRh2Si2 is similar to that observed in the heavy-fermion metal CeCoIn5, near its own field-tuned quantum critical point.« less

  14. Effect of Li doping on the electric and pyroelectric properties of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Trinca, L. M.; Galca, A. C.; Boni, A. G.; Botea, M.; Pintilie, L.

    2018-01-01

    Un-doped ZnO (UDZO) and Li-doped ZnO (LZO) polycrystalline thin films were grown on platinized silicon by pulsed laser deposition (PLD). The electrical properties were investigated on as-grown and annealed UDZO and LZO films with capacitor configuration, using top and bottom platinum electrodes. In the case of the as-grown films it was found that the introduction of Li increases the resistivity of ZnO and induces butterfly shape in the C-V characteristic, suggesting ferroelectric-like behavior in LZO films. The properties of LZO samples does not significantly changes after thermal annealing while the properties of UDZO samples show significant changes upon annealing, manifested in a butterfly shape of the C-V characteristic and resistive-like switching. However, the butterfly shape disappears if long delay time is used in the C-V measurement, the characteristic remaining non-linear. Pyroelectric signal could be measured only on annealed films. Comparing the UDZO results with those obtained in the case of Li:ZnO, it was found that the pyroelectric properties are considerably enhanced by Li doping, leading to pyroelectric signal with about one order of magnitude larger at low modulation frequencies than for un-doped samples. Although the results of this study hint towards a ferroelectric-like behavior of Li doped ZnO, the presence of real ferroelectricity in this material remains controversial.

  15. Kondo temperature and Heavy Fermion behavior in Yb1-xYxCuAl series of alloys

    NASA Astrophysics Data System (ADS)

    Rojas, D. P.; Gandra, F. G.; Medina, A. N.; Fernández Barquín, L.; Gómez Sal, J. C.

    2018-05-01

    Results on x-ray diffraction, electrical resistivity, specific heat and magnetization on the Yb1-xYxCuAl series of compounds are reported. The analysis of the x-ray data shows the increase of the unit cell volume with the Y dilution. The electrical resistivity shows an evolution from Kondo lattice regime for x ≤ 0.6 to single impurity behavior for x = 0.8 and 0.94. The electronic coefficient γ shows values of Heavy Fermion systems along the series for 0 ≤ x < 1 . On the other hand, dc magnetic susceptibility measurements show typical curves of intermediate valence systems with a maximum around 25 K. Below this maximum, the values of low temperature susceptibility (χ (0)) decrease with the increase of Y content. From the dependence of χ (0) and γ upon Y substitution, an increase of 12% of the Kondo temperature (TK) for x = 0.8 alloy respect to the reference YbCuAl (x = 0) is estimated. This is further supported by the evolution of the temperature of the maximum in the magnetic contribution of the specific heat. The overall results can be explained by the increase of the hybridization as consequence of negative pressure effects obtained by the chemical substitution of Yb by Y, thus leading to the increase of TK, in agreement with the Doniach's diagram.

  16. Physical properties of pressurized sediment from hydrate ridge

    USGS Publications Warehouse

    Winters, William J.; Waite, William F.; Mason, David H.; Gilbert, Lauren

    2006-01-01

    As part of an ongoing laboratory study, preliminary acoustic, triaxial strength, and electrical resistivity results are presented from a test performed on a clayey silt sediment sample recovered from Site 1249 at the summit of southern Hydrate Ridge during Ocean Drilling Program Leg 204. The test specimen was stored and transported in two different methane-charged pressure vessels until it was tested using the Gas Hydrate and Sediment Test Laboratory Instrument (GHASTLI). Although gas hydrate may have existed in the core section immediately after recovery, little (if any) hydrate was present in the specimen during testing. We therefore present background physical property results for sediment that may have hosted gas hydrate in situ. Because we consolidated the test specimen in increments beyond its in situ stress state, we are able to present properties representative of similar but deeper subbottom sediment. The increased consolidation stress also helped to mitigate some, but not all, types of disturbance caused by the recovery process. P-wave velocities from 1.54 to 1.74 km/s varied linearly with consolidation stress, σ′c, up to 970 kPa (equivalent to ~160 meters below seafloor). Electrical resistivity was periodically measured by a Wenner array and varied between 1.0 and 2.8 Ωm. These values reflect both the pore water salinity and soft, fine-grained texture of the sediment. Shear behavior is consistent with the induced normally consolidated behavior of clayey silt.

  17. The effect of temperature and moisture on electrical resistance, strain sensitivity and crack sensitivity of steel fiber reinforced smart cement composite

    NASA Astrophysics Data System (ADS)

    Teomete, Egemen

    2016-07-01

    Earthquakes, material degradations and other environmental factors necessitate structural health monitoring (SHM). Metal foil strain gages used for SHM have low durability and low sensitivity. These factors motivated researchers to work on cement based strain sensors. In this study, the effects of temperature and moisture on electrical resistance, compressive and tensile strain gage factors (strain sensitivity) and crack sensitivity were determined for steel fiber reinforced cement based composite. A rapid increase of electrical resistance at 200 °C was observed due to damage occurring between cement paste, aggregates and steel fibers. The moisture—electrical resistance relationship was investigated. The specimens taken out of the cure were saturated with water and had a moisture content of 9.49%. The minimum electrical resistance was obtained at 9% moisture at which fiber-fiber and fiber-matrix contact was maximum and the water in micro voids was acting as an electrolyte, conducting electrons. The variation of compressive and tensile strain gage factors (strain sensitivities) and crack sensitivity were investigated by conducting compression, split tensile and notched bending tests with different moisture contents. The highest gage factor for the compression test was obtained at optimal moisture content, at which electrical resistance was minimum. The tensile strain gage factor for split tensile test and crack sensitivity increased by decreasing moisture content. The mechanisms between moisture content, electrical resistance, gage factors and crack sensitivity were elucidated. The relations of moisture content with electrical resistance, gage factors and crack sensitivities have been presented for the first time in this study for steel fiber reinforced cement based composites. The results are important for the development of self sensing cement based smart materials.

  18. Coatings for graphite fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Graphite fibers released from composites during burning or an explosion caused shorting of electrical and electronic equipment. Silicon carbide, silica, silicon nitride and boron nitride were coated on graphite fibers to increase their electrical resistances. Resistances as high as three orders of magnitude higher than uncoated fiber were attained without any significant degradation of the substrate fiber. An organo-silicone approach to produce coated fibers with high electrical resistance was also used. Celion 6000 graphite fibers were coated with an organo-silicone compound, followed by hydrolysis and pyrolysis of the coating to a silica-like material. The shear and flexural strengths of composites made from high electrically resistant fibers were considerably lower than the shear and flexural strengths of composites made from the lower electrically resistant fibers. The lower shear strengths of the composites indicated that the coatings on these fibers were weaker than the coating on the fibers which were pyrolyzed at higher temperature.

  19. On the use of statistical methods to interpret electrical resistivity data from the Eumsung basin (Cretaceous), Korea

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Soo; Han, Soo-Hyung; Ryang, Woo-Hun

    2001-12-01

    Electrical resistivity mapping was conducted to delineate boundaries and architecture of the Eumsung Basin Cretaceous. Basin boundaries are effectively clarified in electrical dipole-dipole resistivity sections as high-resistivity contrast bands. High resistivities most likely originate from the basement of Jurassic granite and Precambrian gneiss, contrasting with the lower resistivities from infilled sedimentary rocks. The electrical properties of basin-margin boundaries are compatible with the results of vertical electrical soundings and very-low-frequency electromagnetic surveys. A statistical analysis of the resistivity sections is tested in terms of standard deviation and is found to be an effective scheme for the subsurface reconstruction of basin architecture as well as the surface demarcation of basin-margin faults and brittle fracture zones, characterized by much higher standard deviation. Pseudo three-dimensional architecture of the basin is delineated by integrating the composite resistivity structure information from two cross-basin E-W magnetotelluric lines and dipole-dipole resistivity lines. Based on statistical analysis, the maximum depth of the basin varies from about 1 km in the northern part to 3 km or more in the middle part. This strong variation supports the view that the basin experienced pull-apart opening with rapid subsidence of the central blocks and asymmetric cross-basinal extension.

  20. Electrical characterization of gold-DNA-gold structures in presence of an external magnetic field by means of I-V curve analysis.

    PubMed

    Khatir, Nadia Mahmoudi; Banihashemian, Seyedeh Maryam; Periasamy, Vengadesh; Ritikos, Richard; Abd Majid, Wan Haliza; Abdul Rahman, Saadah

    2012-01-01

    This work presents an experimental study of gold-DNA-gold structures in the presence and absence of external magnetic fields with strengths less than 1,200.00 mT. The DNA strands, extracted by standard method were used to fabricate a Metal-DNA-Metal (MDM) structure. Its electric behavior when subjected to a magnetic field was studied through its current-voltage (I-V) curve. Acquisition of the I-V curve demonstrated that DNA as a semiconductor exhibits diode behavior in the MDM structure. The current versus magnetic field strength followed a decreasing trend because of a diminished mobility in the presence of a low magnetic field. This made clear that an externally imposed magnetic field would boost resistance of the MDM structure up to 1,000.00 mT and for higher magnetic field strengths we can observe an increase in potential barrier in MDM junction. The magnetic sensitivity indicates the promise of using MDM structures as potential magnetic sensors.

  1. Electrical and mechanical behavior of PMN-PT/CNT based polymer composite film for energy harvesting

    NASA Astrophysics Data System (ADS)

    Das, Satyabati; Biswal, Asutya Kumar; Parida, Kalpana; Choudhary, R. N. P.; Roy, Amritendu

    2018-01-01

    The pyrochlore-free 30-PMN-PT/CNT/PVDF based piezoelectric flexible composite film has been synthesized for potential application in piezoelectric energy harvesting. Electrical characterization reveals that the maximum output voltage and current generated by the 30 vol.% PMN-PT/CNT/PVDF composite is ∼4 V and 30 nA respectively, comparable with the available literature. Further, impedance analysis has revealed a significant improvement in permittivity at low frequency and high temperature with a minimal dielectric loss. AC conductivity behavior fits well with Johnscher's universal power law that predicts the motion of the charge carriers is translational with sudden hopping. The Nyquist plots indicate the contributions of both grain and grain boundaries at lower temperature (25-100 °C) and additional electrode effect of higher temperature (100-150 °C) on the capacitive and resistive properties of the composite. Mechanical characterization of the composite shows an increase in Young's modulus of 705 MPa compared to 597 MPa in pure PVDF.

  2. Electrical Characterization of Gold-DNA-Gold Structures in Presence of an External Magnetic Field by Means of I–V Curve Analysis

    PubMed Central

    Khatir, Nadia Mahmoudi; Banihashemian, Seyedeh Maryam; Periasamy, Vengadesh; Ritikos, Richard; Majid, Wan Haliza Abd; Rahman, Saadah Abdul

    2012-01-01

    This work presents an experimental study of gold-DNA-gold structures in the presence and absence of external magnetic fields with strengths less than 1,200.00 mT. The DNA strands, extracted by standard method were used to fabricate a Metal-DNA-Metal (MDM) structure. Its electric behavior when subjected to a magnetic field was studied through its current-voltage (I–V) curve. Acquisition of the I–V curve demonstrated that DNA as a semiconductor exhibits diode behavior in the MDM structure. The current versus magnetic field strength followed a decreasing trend because of a diminished mobility in the presence of a low magnetic field. This made clear that an externally imposed magnetic field would boost resistance of the MDM structure up to 1,000.00 mT and for higher magnetic field strengths we can observe an increase in potential barrier in MDM junction. The magnetic sensitivity indicates the promise of using MDM structures as potential magnetic sensors. PMID:22737025

  3. A comparison of thermoelectric phenomena in diverse alloy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Bruce

    1999-01-01

    The study of thermoelectric phenomena in solids provides a wealth of opportunity for exploration of the complex interrelationships between structure, processing, and properties of materials. As thermoelectricity implies some type of coupled thermal and electrical behavior, it is expected that a basic understanding of transport behavior in materials is the goal of such a study. However, transport properties such as electrical resistivity and thermal diffusivity cannot be fully understood and interpreted without first developing an understanding of the material's preparation and its underlying structure. It is the objective of this dissertation to critically examine a number of diverse systems inmore » order to develop a broad perspective on how structure-processing-property relationships differ from system to system, and to discover the common parameters upon which any good thermoelectric material is based. The alloy systems examined in this work include silicon-germanium, zinc oxide, complex intermetallic compounds such as the half-Heusler MNiSn, where M = Ti, Zr, or Hf, and rare earth chalcogenides.« less

  4. Online identification algorithms for integrated dielectric electroactive polymer sensors and self-sensing concepts

    NASA Astrophysics Data System (ADS)

    Hoffstadt, Thorben; Griese, Martin; Maas, Jürgen

    2014-10-01

    Transducers based on dielectric electroactive polymers (DEAP) use electrostatic pressure to convert electric energy into strain energy or vice versa. Besides this, they are also designed for sensor applications in monitoring the actual stretch state on the basis of the deformation dependent capacitive-resistive behavior of the DEAP. In order to enable an efficient and proper closed loop control operation of these transducers, e.g. in positioning or energy harvesting applications, on the one hand, sensors based on DEAP material can be integrated into the transducers and evaluated externally, and on the other hand, the transducer itself can be used as a sensor, also in terms of self-sensing. For this purpose the characteristic electrical behavior of the transducer has to be evaluated in order to determine the mechanical state. Also, adequate online identification algorithms with sufficient accuracy and dynamics are required, independent from the sensor concept utilized, in order to determine the electrical DEAP parameters in real time. Therefore, in this contribution, algorithms are developed in the frequency domain for identifications of the capacitance as well as the electrode and polymer resistance of a DEAP, which are validated by measurements. These algorithms are designed for self-sensing applications, especially if the power electronics utilized is operated at a constant switching frequency, and parasitic harmonic oscillations are induced besides the desired DC value. These oscillations can be used for the online identification, so an additional superimposed excitation is no longer necessary. For this purpose a dual active bridge (DAB) is introduced to drive the DEAP transducer. The capabilities of the real-time identification algorithm in combination with the DAB are presented in detail and discussed, finally.

  5. Electric moisture meters for wood

    Treesearch

    William L. James

    1988-01-01

    Electric moisture meters for wood measure electric conductance (resistance) or dielectric properties, which vary fairly consistently with moisture content when it is less than 30 percent. The two major classes of electric moisture meters are the conductance (resistance) type and the dielectric type. Conductance-t ype meters use penetrating electrodes that measure in a...

  6. van der Pauw's Theorem on Sheet Resistance

    ERIC Educational Resources Information Center

    Bolt, Michael

    2017-01-01

    The sheet resistance of a conducting material of uniform thickness is analogous to the resistivity of a solid material and provides a measure of electrical resistance. In 1958, L. J. van der Pauw found an effective method for computing sheet resistance that requires taking two electrical measurements from four points on the edge of a simply…

  7. Microscopic histological characteristics of soft tissue sarcomas: analysis of tissue features and electrical resistance.

    PubMed

    Tosi, A L; Campana, L G; Dughiero, F; Forzan, M; Rastrelli, M; Sieni, E; Rossi, C R

    2017-07-01

    Tissue electrical conductivity is correlated with tissue characteristics. In this work, some soft tissue sarcomas (STS) excised from patients have been evaluated in terms of histological characteristics (cell size and density) and electrical resistance. The electrical resistance has been measured using the ex vivo study on soft tissue tumors electrical characteristics (ESTTE) protocol proposed by the authors in order to study electrical resistance of surgical samples excised by patients in a fixed measurement setup. The measurement setup includes a voltage pulse generator (700 V, 100 µs long at 5 kHz, period 200 µs) and an electrode with 7 needles, 20 mm-long, with the same distance arranged in a fixed hexagonal geometry. In the ESTTE protocol, the same voltage pulse sequence is applied to each different tumor mass and the corresponding resistance has been evaluated from voltage and current recorded by the equipment. For each tumor mass, a histological sample of the volume treated by means of voltage pulses has been taken for histological analysis. Each mass has been studied in order to identify the sarcoma type. For each histological sample, an image at 20× or 40× of magnification was acquired. In this work, the electrical resistance measured for each tumor has been correlated with tissue characteristics like the type, size and density of cells. This work presents a preliminary study to explore possible correlations between tissue characteristics and electrical resistance of STS. These results can be helpful to adjust the pulse voltage intensity in order to improve the electrochemotherapy efficacy on some histotype of STS.

  8. Temperature and volumetric water content petrophysical relationships in municipal solid waste for the interpretation of bulk electrical resistivity data

    NASA Astrophysics Data System (ADS)

    Pilawski, Tamara; Dumont, Gaël; Nguyen, Frédéric

    2015-04-01

    Landfills pose major environmental issues including long-term methane emissions, and local pollution of soil and aquifers but can also be seen as potential energy resources and mining opportunities. Water content in landfills determine whether solid fractions can be separated and recycled, and controls the existence and efficiency of natural or enhanced biodegradation. Geophysical techniques, such as electrical and electromagnetic methods have proven successful in the detection and qualitative investigation of sanitary landfills. However, their interpretation in terms of quantitative water content estimates makes it more challenging due to the influence of parameters such as temperature, compaction, waste composition or pore fluid. To improve the confidence given to bulk electrical resistivity data and to their interpretation, we established temperature and volumetric water content petrophysical relationships that we tested on field and laboratory electrical resistivity measurements. We carried out two laboratory experiments on leachates and waste samples from a landfill located in Mont-Saint-Guibert, Belgium. We determined a first relationship between temperature and electrical resistivity with pure and diluted leachates by progressively increasing the temperature from 5°C to 65°C, and then cooling down to 5°C. The second relationship was obtained by measuring electrical resistivity on waste samples of different volumetric water contents. First, we used the correlations obtained from the experiments to compare electrical resistivity measurements performed in a landfill borehole and on reworked waste samples excavated at different depths. Electrical resistivities were measured every 20cm with an electromagnetic logging device (EM39) while a temperature profile was acquired with optic fibres. Waste samples were excavated every 2m in the same borehole. We filled experimental columns with these samples and measured electrical resistivities at laboratory temperature. We made corrections according to the temperature profile and to volumetric water contents obtained previously on undisturbed samples. Corrected values tended to be superimposed on those obtained in the field. Then, we calculated the water content of the different reworked waste samples using the correlation between volumetric water content correlation and electrical resistivity and we compared this value to the one measured at the laboratory. Both values were correlated satisfactorily. In conclusion, we show that bulk electrical resistivity measurements are very promising to quantify water content in landfills if temperature can be estimated independently. In future applications, electrical resistivity tomography coupled with distributed temperature sensing could give important estimates of water content of the waste and thus helping in dealing with problematics such as boosting biodegradation and stabilization of the waste, reducing risks of soil and aquifers pollution, landfill mining, and controlled production of methane.

  9. Vibration energy harvesting based on stress-induced polarization switching: a phase field approach

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Wang, Linxiang; Melnik, Roderick

    2017-06-01

    Different from the traditional piezoelectric vibration energy harvesting, a new strategy based on stress-induced polarization switching has been proposed in the current paper. Two related prototypes are presented and the associated advantages and drawbacks have been discussed in detail. It has been demonstrated that, with the assistance of a bias electric field, the robustness of the energy harvesters is improved. Furthermore, the real-space phase-field model has been employed to study the nonlinear hysteretic behavior involved in the proposed energy harvesting process. A substantially larger electric current associated with the stress-induced polarization switching has been demonstrated when compared with that with piezoelectric effect. In addition, the effects of bias electric potential, bias resistance, mechanical boundary conditions, charge leakage and electrodes arrangements have also been investigated by the phase-field simulation, which provides a guidance for future real implementations.

  10. Accelerated reliability testing of highly aligned single-walled carbon nanotube networks subjected to DC electrical stressing.

    PubMed

    Strus, Mark C; Chiaramonti, Ann N; Kim, Young Lae; Jung, Yung Joon; Keller, Robert R

    2011-07-01

    We investigate the electrical reliability of nanoscale lines of highly aligned, networked, metallic/semiconducting single-walled carbon nanotubes (SWCNTs) fabricated through a template-based fluidic assembly process. We find that these SWCNT networks can withstand DC current densities larger than 10 MA cm(-2) for several hours and, in some cases, several days. We develop test methods that show that the degradation rate, failure predictability and total device lifetime can be linked to the initial resistance. Scanning electron and transmission electron microscopy suggest that fabrication variability plays a critical role in the rate of degradation, and we offer an empirical method of quickly determining the long-term performance of a network. We find that well-fabricated lines subject to constant electrical stress show a linear accumulation of damage reminiscent of electromigration in metallic interconnects, and we explore the underlying physical mechanisms that could cause such behavior.

  11. Structure, Raman, dielectric behavior and electrical conduction mechanism of strontium titanate

    NASA Astrophysics Data System (ADS)

    Trabelsi, H.; Bejar, M.; Dhahri, E.; Graça, M. P. F.; Valente, M. A.; Khirouni, K.

    2018-05-01

    Strontium titanate was prepared by solid-state reaction method. According to the XRD, it was single phase and has a cubic perovskite structure. The Raman spectroscopic investigation was carried out at room-temperature, and the second-order Raman modes were observed. By employing impedance spectroscopy, the dielectric relaxation and electrical properties were investigated over the temperature range of 500-700 K at various frequencies. The activation energies evaluated from dielectric and modulus studies are in good agreement and these values are attributed to the bulk relaxation. The impedance data were well fitted to an (R1//C1)-(R2//CPE1) equivalent electrical circuit. It could be concluded that the grain boundaries are more resistive and capacitive than the grains. The ac conductivity was found to follow the Jonscher's universal dynamic law ωS and the correlated barrier hopping model (CBH) has been proposed to describe the conduction mechanism.

  12. Stretchable Conductive Elastomers for Soldier Biosensing Applications: Final Report

    DTIC Science & Technology

    2016-03-01

    public release; distribution is unlimited. 7 the electrical impedance tunability that we required. Representative data for resistance versus volume...Technology Directorate’s (VTD) electric field mediated morphing wing research effort. Fig. 5 Resistance values of EEG electrodes as a function of...extend the resistance range of the developed polymer EEG electrodes to potentially provide insight into defining an optimum electrical performance for

  13. Indications of vigor loss after fire in Caribbean pine (Pinus caribaea) from electrical resistance measurements

    Treesearch

    T.E. Paysen; A.L. Koonce; E. Taylor; M.O. Rodriquez

    2006-01-01

    In May 1993, electrical resistance measurements were performed on trees in burned and unburned stands of Caribbean pine (Pinus caribaea Mor.) in north-eastern Nicaragua to determine whether tree vigor was affected by fire. An Osmose model OZ-67 Shigometer with digital readout was used to collect the sample electrical resistance data. Computer-...

  14. Direct-current vertical electrical-resistivity soundings in the Lower Peninsula of Michigan

    USGS Publications Warehouse

    Westjohn, D.B.; Carter, P.J.

    1989-01-01

    Ninety-three direct-current vertical electrical-resistivity soundings were conducted in the Lower Peninsula of Michigan from June through October 1987. These soundings were made to assist in mapping the depth to brine in areas where borehole resistivity logs and water-quality data are sparse or lacking. The Schlumberger array for placement of current and potential electrodes was used for each sounding. Vertical electrical-resistivity sounding field data, shifted and smoothed sounding data, and electric layers calculated using inverse modeling techniques are presented. Also included is a summary of the near-surface conditions and depths to conductors and resistors for each sounding location.

  15. Crystal growth and magneto-transport behavior of PdS1-δ

    NASA Astrophysics Data System (ADS)

    Cao, Lin; Lv, Yang-Yang; Chen, Si-Si; Li, Xiao; Zhou, Jian; Yao, Shu-Hua; Chen, Y. B.; Lu, Minghui; Chen, Yan-Feng

    2018-04-01

    PdS is theoretically proposed to novel topological material with eight-band fermions. Here, PdS1-δ crystals were successfully grown from KI as solvent by modified flux method. The single crystalline quality and compositional homogeneity of grown PdS1-δ are characterized by X-ray diffraction and energy dispersion spectroscopy. Temperature dependent electrical transport property of PdS1-δ demonstrates a semiconductor-like behavior. Analysis of temperature-dependent resistance indicates that there is variable-range-hopping behavior at low temperature. The clear negative MR of PdS1-δ single crystals is measured at the low temperature (<30 K), which may be ascribed to the interaction between conducting carriers and localized moments. however, the magneto-transport results have not shown the clues of topological feature of PdS.

  16. Direct Observation of Surface Potential Distribution in Insulation Resistance Degraded Acceptor-Doped BaTiO3 Multilayered Ceramic Capacitors

    NASA Astrophysics Data System (ADS)

    Hong, Kootak; Lee, Tae Hyung; Suh, Jun Min; Park, Jae-Sung; Kwon, Hyung-Soon; Choi, Jaeho; Jang, Ho Won

    2018-05-01

    Insulation resistance (IR) degradation in BaTiO3 is a key issue for developing miniaturized multilayer ceramic capacitors (MLCCs) with high capacity. Despite rapid progress in BaTiO3-based MLCCs, the mechanism of IR degradation is still controversial. In this study, we demonstrate the Al doping effect on IR degradation behavior of BaTiO3 MLCCs by electrical measurements and scanning Kelvin probe microscopy (SKPM). As the Al doping concentration in BaTiO3 increases, IR degradation of MLCCs seems to be suppressed from electrical characterization results. However, SKPM results reveal that the conductive regions near the cathode become lager with Al doping after IR degradation. The formation of conducting regions is attributed to the migration of oxygen vacancies, which is the origin of IR degradation in BaTiO3, in dielectric layers. These results imply that acceptor doping in BaTiO3 solely cannot suppress the IR degradation in MLCC even though less asymmetric IR characteristics and IR degradation in MLCCs with higher Al doping concentration are observed from electrical characterization. Our results strongly suggest that observing the surface potential distribution in IR degraded dielectric layers using SKPM is an effective method to unravel the mechanism of IR degradation in MLCCs.

  17. Low-temperature electrical resistivity of transition-metal carbides

    NASA Astrophysics Data System (ADS)

    Allison, C. Y.; Finch, C. B.; Foegelle, M. D.; Modine, F. A.

    1988-10-01

    The electrical resistivities of single crystals of ZrC 0.93, VC 0.88, NbC 0.95, and TaC 0.99 were measured from liquid helium temperature to 350 K. The Bloch-Gruneisen theory of electrical resistivity gives a good fit to the zirconium carbide and the vanadium carbide measurements. In contrast, the resistivities of the two superconducting crystals, tantalum carbide and niobium carbide, show excellent agreement with the Wilson model. The appropriate model appears to depend upon the superconducting properties of the crystals.

  18. Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics

    PubMed Central

    Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun

    2015-01-01

    The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I–V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I–V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I–V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I–V behavior of (Nb + In) co-doped TiO2 ceramics. PMID:25656713

  19. Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics

    NASA Astrophysics Data System (ADS)

    Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun

    2015-02-01

    The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I-V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I-V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I-V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I-V behavior of (Nb + In) co-doped TiO2 ceramics.

  20. Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics.

    PubMed

    Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun

    2015-02-06

    The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I-V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I-V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I-V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I-V behavior of (Nb + In) co-doped TiO2 ceramics.

  1. Nonvolatile Bio-Memristor Fabricated with Egg Albumen Film

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Chih; Yu, Hsin-Chieh; Huang, Chun-Yuan; Chung, Wen-Lin; Wu, San-Lein; Su, Yan-Kuin

    2015-05-01

    This study demonstrates the fabrication and characterization of chicken egg albumen-based bio-memristors. By introducing egg albumen as an insulator to fabricate memristor devices comprising a metal/insulator/metal sandwich structure, significant bipolar resistive switching behavior can be observed. The 1/f noise characteristics of the albumen devices were measured, and results suggested that their memory behavior results from the formation and rupture of conductive filaments. Oxygen diffusion and electrochemical redox reaction of metal ions under a sufficiently large electric field are the principal physical mechanisms of the formation and rupture of conductive filaments; these mechanisms were observed by analysis of the time-of-flight secondary ion mass spectrometry (TOF-SIMS) and resistance-temperature (R-T) measurement results. The switching property of the devices remarkably improved by heat-denaturation of proteins; reliable switching endurance of over 500 cycles accompanied by an on/off current ratio (Ion/off) of higher than 103 were also observed. Both resistance states could be maintained for a suitably long time (>104 s). Taking the results together, the present study reveals for the first time that chicken egg albumen is a promising material for nonvolatile memory applications.

  2. A method to improve tree water use estimates by distinguishing sapwood from heartwood using Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Guyot, A.; Ostergaard, K.; Lenkopane, M.; Fan, J.; Lockington, D. A.

    2011-12-01

    Estimating whole-plant water use in trees requires reliable and accurate methods. Measuring sap velocity and extrapolating to tree water use is seen as the most commonly used. However, deducing the tree water use from sap velocity requires an estimate of the sapwood area. This estimate is the highest cause of uncertainty, and can reach more than 50 % of the uncertainty in the estimate of water use per day. Here, we investigate the possibility of using Electrical Resistivity Tomography to evaluate the sapwood area distribution in a plantation of Pinus elliottii. Electric resistivity tomographs of Pinus elliottii show a very typical pattern of electrical resistivity, which is highly correlated to sapwood and heartwood distribution. To identify the key factors controlling the variation of electrical resistivity, cross sections at breast height for ten trees have been monitored with electrical resistivity tomography. Trees have been cut down after the experiment to identify the heartwood/sapwood boundaries and to extract wood and sap samples. pH, electrolyte concentration and wood moisture content have then been analysed for these samples. Results show that the heartwood/sapwood patterns are highly correlated with electrical resistivity, and that the wood moisture content is the most influencing factor controlling the variability of the patterns. These results show that electric resistivity tomography could be used as a powerful tool to identify the sapwood area, and thus be used in combination with sapflow sensors to map tree water use at stand scale. However, if Pinus elliottii shows typical patterns, further work is needed to identify to see if there are species - specific characterictics as shown in previous works (, electrolyte gradients from the bark to the heartwood). Also, patterns of high resistivity in between needles positions, which are not correlated with either wood moisture content or sapwood, appear to be artifacts. Thus, inversion methods have also to be improved to take into account these measurements issues.

  3. A geophysical system combining electrical resistivity and spontaneous potential for detecting, delineating, and monitoring slope stability.

    DOT National Transportation Integrated Search

    1991-01-01

    Various geophysical electrical measuring techniques, i.e., spontaneous potential (SP) terrain conductivity meter (TCM), and conventional electrical resistivity/conductivity (ER), were tested to determine their effectiveness in detecting, delineating,...

  4. Influence of carbon content on the copper-telluride phase formation and on the resistive switching behavior of carbon alloyed Cu-Te conductive bridge random access memory cells

    NASA Astrophysics Data System (ADS)

    Devulder, Wouter; Opsomer, Karl; Franquet, Alexis; Meersschaut, Johan; Belmonte, Attilio; Muller, Robert; De Schutter, Bob; Van Elshocht, Sven; Jurczak, Malgorzata; Goux, Ludovic; Detavernier, Christophe

    2014-02-01

    In this paper, we investigate the influence of the carbon content on the Cu-Te phase formation and on the resistive switching behavior in carbon alloyed Cu0.6Te0.4 based conductive bridge random access memory (CBRAM) cells. Carbon alloying of copper-tellurium inhibits the crystallization, while attractive switching behavior is preserved when using the material as Cu-supply layer in CBRAM cells. The phase formation is first investigated in a combinatorial way. With increasing carbon content, an enlargement of the temperature window in which the material stays amorphous was observed. Moreover, if crystalline phases are formed, subsequent phase transformations are inhibited. The electrical switching behavior of memory cells with different carbon contents is then investigated by implementing them in 580 μm diameter dot TiN/Cu0.6Te0.4-C/Al2O3/Si memory cells. Reliable switching behavior is observed for carbon contents up to 40 at. %, with a resistive window of more than 2 orders of magnitude, whereas for 50 at. % carbon, a higher current in the off state and only a small resistive window are present after repeated cycling. This degradation can be ascribed to the higher thermal and lower drift contribution to the reset operation due to a lower Cu affinity towards the supply layer, leading cycle-after-cycle to an increasing amount of Cu in the switching layer, which contributes to the current. The thermal diffusion of Cu into Al2O3 under annealing also gives an indication of the Cu affinity of the source layer. Time of flight secondary ion mass spectroscopy was used to investigate this migration depth in Al2O3 before and after annealing, showing a higher Cu, Te, and C migration for high carbon contents.

  5. Negative differential resistance in BN co-doped coaxial carbon nanotube field effect transistor

    NASA Astrophysics Data System (ADS)

    Shah, Khurshed A.; Parvaiz, M. Shunaid

    2016-12-01

    The CNTFETs are the most promising advanced alternatives to the conventional FETs due to their outstanding structure and electrical properties. In this paper, we report the I-V characteristics of zig-zag (4, 0) semiconducting coaxial carbon nanotube field effect transistor (CNTFET) using the non-equilibrium Green's function formalism. The CNTFET is co-doped with two, four and six boron-nitrogen (BN) atoms separately near the electrodes using the substitutional doping method and the I-V characteristics were calculated for each model using Atomistic Tool Kit software (version 13.8.1) and its virtual interface. The results reveal that all models show negative differential resistance (NDR) behavior with the maximum peak to valley current ratio (PVCR) of 3.2 at 300 K for the four atom doped model. The NDR behavior is due to the band to band tunneling (BTBT) in semiconducting CNTFET and decreases as the doping in the channel increases. The results are beneficial for next generation designing of nano devices and their potential applications in electronic industry.

  6. Voltage-controlled ferromagnetism and magnetoresistance in LaCoO3/SrTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Hu, Chengqing; Park, Keun Woo; Posadas, Agham; Jordan-Sweet, Jean L.; Demkov, Alexander A.; Yu, Edward T.

    2013-11-01

    A LaCoO3/SrTiO3 heterostructure grown on Si (001) is shown to provide electrically switchable ferromagnetism, a large, electrically tunable magnetoresistance, and a vehicle for achieving and probing electrical control over ferromagnetic behavior at submicron dimensions. Fabrication of devices in a field-effect transistor geometry enables application of a gate bias voltage that modulates strain in the heterostructure via the converse piezoelectric effect in SrTiO3, leading to an artificial inverse magnetoelectric effect arising from the dependence of ferromagnetism in the LaCoO3 layer on strain. Below the Curie temperature of the LaCoO3 layer, this effect leads to modulation of resistance in LaCoO3 as large as 100%, and magnetoresistance as high as 80%, both of which arise from carrier scattering at ferromagnetic-nonmagnetic interfaces in LaCoO3. Finite-element numerical modeling of electric field distributions is used to explain the dependence of carrier transport behavior on gate contact geometry, and a Valet-Fert transport model enables determination of spin polarization in the LaCoO3 layer. Piezoresponse force microscopy is used to confirm the existence of piezoelectric response in SrTiO3 grown on Si (001). It is also shown that this structure offers the possibility of achieving exclusive-NOR logic functionality within a single device.

  7. Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Md Taibur; McCloy, John; Panat, Rahul, E-mail: rahul.panat@wsu.edu, E-mail: rvchintalapalle@utep.edu

    Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24–500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasingmore » trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.« less

  8. Alignment of carbon iron into polydimethylsiloxane to create conductive composite with low percolation threshold and high piezoresistivity: experiment and simulation

    NASA Astrophysics Data System (ADS)

    Dong, Shuai; Wang, Xiaojie

    2017-04-01

    In this study, various amounts of carbonyl iron particles (CIPs) were cured into polydimethylsiloxane (PDMS) matrix under a magnetic field up to 1.0 T to create anisotropy of conductive composite materials. The electrical resistivity for the longitudinal direction was measured as a function of filler volume fraction to understand the electrical percolation behavior. The electrical percolation threshold (EPT) of CIPs-PDMS composite cured under a magnetic field can be as low as 0.1 vol%, which is much less than most of those studies in particulate composites. Meanwhile, the effects of compressive strain on the electrical properties of CIPs-PDMS composites were also investigated. The strain sensitivity depends on filler volume fraction and decreases with the increasing of compressive strain. It has been found that the composites containing a small amount of CI particles curing under a magnetic field exhibit a high strain sensitivity of over 150. Based on the morphological observation of the composite structures, a two-dimensional stick percolation model for the CIPs-PDMS composites has been established. The Monte Carlo simulation is performed to obtain the percolation probability. The simulation results in prediction of the values of EPTs are close to that of experimental measurements. It demonstrates that the low percolation behavior of CIPs-PDMS composites is due to the average length of particle chains forming by external magnetic field.

  9. Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films

    NASA Astrophysics Data System (ADS)

    Rahman, Md Taibur; McCloy, John; Ramana, C. V.; Panat, Rahul

    2016-08-01

    Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24-500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasing trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.

  10. Electric and dielectric behavior of copper-chromium layered double hydroxide intercalated with dodecyl sulfate anions using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Elhatimi, Wafaa; Bouragba, Fatima Zahra; Lahkale, Redouane; Sadik, Rachid; Lebbar, Nacira; Siniti, Mostapha; Sabbar, Elmouloudi

    2018-05-01

    The Cu2Cr-DS-LDH hybrid was successfully prepared by the anion exchange method at room temperature. The structure, the chemical composition and the physico-chemical properties of the sample were determined using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and inductively coupled plasma (ICP). In this work, the electrical and dielectric properties investigated are determined using impedance spectroscopy (IS) in a frequency range of 1 Hz to 1 MHz. Indeed, the Nyquist diagram modelized by an electrical equivalent circuit showed three contributions attributed respectively to the polarization of grains, grains boundaries and interface electrode-sample. This modelization allowed us to determine the intrinsic electrical parameters of the hybrid (resistance, pseudo-capacitance and relaxation time). The presence of the non-Debye relaxation phenomena was confirmed by the frequency analysis of impedance. Moreover, the evolution of the alternating current conductivity (σac) studied obeys the double power law of Jonscher. The ionic conduction of this material was generated through a jump movement by translation of the charge carriers. As for the dielectric behavior of the material, the evolution of dielectric constant as a function of frequency shows relatively high values in a frequency range between 10 Hz and 1 KHz. The low values of the loss tangent obtained in this frequency zone can valorize this LDH hybrid.

  11. Optical and electrical characterization of high resistivity semiconductors for constant-bias microbolometer devices

    NASA Astrophysics Data System (ADS)

    Saint John, David B.

    The commercial market for uncooled infrared imaging devices has expanded in the last several decades, following the declassification of pulse-biased microbolometer-based focal plane arrays (FPAs) using vanadium oxide as the sensing material. In addition to uncooled imaging platforms based on vanadium oxide, several constant-bias microbolometer FPAs have been developed using doped hydrogenated amorphous silicon (a-Si:H) as the active sensing material. While a-Si:H and the broader Si1-xGex:H system have been studied within the context of photovoltaic (PV) devices, only recently have these materials been studied with the purpose of qualifying and optimizing them for potential use in microbolometer applications, which demand thinner films deposited onto substrates different than those used in PV. The behavior of Ge:H is of particular interest for microbolometers due to its intrinsically low resistivity without the introduction of dopants, which alter the growth behavior and frustrate any attempt to address the merits of protocrystalline a-Ge:H. This work reports the optical, microstructural, and electrical characterization and qualification of a variety of Si:H, Si1-xGex:H, and Ge:H films deposited using a plasma enhanced chemical vapor deposition (PECVD) process, including a-Ge:H films which exhibit high TCR (4-6 -%/K) and low 1/f noise at resistivities of interest for microbolometers (4000 -- 6000 O cm). Thin film deposition has been performed simultaneously with real-time optical characterization of the growth evolution dynamics, providing measurement of optical properties and surface roughness evolutions relevant to controlling the growth process for deliberate variations in film microstructure. Infrared spectroscopic ellipsometry has been used to characterize the Si-H and Ge-H absorption modes allowing assessment of the hydrogen content and local bonding behavior in thinner films than measured traditionally. This method allows IR absorption analysis of hydrogen bonding and other IR modes to be extended to arbitrary substrates, including absorbing and/or device-like substrate configurations not amenable to traditional methods of assessing hydrogen related absorption using infrared transmission measurements. In addition to novel optical assessments of hydrogen in Si1-xGe x:H films, the role of carrier type in a-Si:H has been studied, with n-type material providing a consistently higher TCR and 1/f noise character than p-type material for films of similar resistivity. As the introduction of dopant gas complicates microstructural growth, assessment of undoped material was performed, finding that only Ge-rich films possess suitable resitivities for electrical measurement. The inclusion of nanocrystalline material into otherwise amorphous films has been explored in both Si:H and Ge:H, finding that decreases in resistivity and TCR were not accompanied by a decrease in the 1/f noise character. This suggests that mixed (a+nc) Si1-xGex:H material may be less suitable for microbolometer applications than optimized amorphous material.

  12. Controlling the anomalous Hall effect by electric-field-induced piezo-strain in Fe40Pt60/(001)-Pb(Mg1/3Nb2/3)0.67Ti0.33O3 multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Yuanjun; Yao, Yingxue; Chen, Lei; Huang, Haoliang; Zhang, Benjian; Lin, Hui; Luo, Zhenlin; Gao, Chen; Lu, Y. L.; Li, Xiaoguang; Xiao, Gang; Feng, Ce; Zhao, Y. G.

    2018-01-01

    Electric-field control of the anomalous Hall effect (AHE) was investigated in Fe40Pt60/(001)-Pb(Mg1/3Nb2/3)0.67Ti0.33O3 (FePt/PMN-PT) multiferroic heterostructures at room temperature. It was observed that a very large Hall resistivity change of up to 23.9% was produced using electric fields under a magnetic field bias of 100 Oe. A pulsed electric field sequence was used to generate nonvolatile strain to manipulate the Hall resistivity. Two corresponding nonvolatile states with distinct Hall resistivities were achieved after the electric fields were removed, thus enabling the encoding of binary information for memory applications. These results demonstrate that the Hall resistivity can be reversibly switched in a nonvolatile manner using programmable electric fields. Two remanent magnetic states that were created by electric-field-induced piezo-strain from the PMN-PT were attributed to the nonvolatile and reversible properties of the AHE. This work suggests that a low-energy-consumption-based approach can be used to create nonvolatile resistance states for spintronic devices based on electric-field control of the AHE.

  13. Oxidation, carburization and/or sulfidation resistant iron aluminide alloy

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2003-08-19

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or Zro.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B. .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  14. Resistive switching of Sn-doped In2O3/HfO2 core-shell nanowire: geometry architecture engineering for nonvolatile memory.

    PubMed

    Huang, Chi-Hsin; Chang, Wen-Chih; Huang, Jian-Shiou; Lin, Shih-Ming; Chueh, Yu-Lun

    2017-05-25

    Core-shell NWs offer an innovative approach to achieve nanoscale metal-insulator-metal (MIM) heterostructures along the wire radial direction, realizing three-dimensional geometry architecture rather than planar type thin film devices. This work demonstrated the tunable resistive switching characteristics of ITO/HfO 2 core-shell nanowires with controllable shell thicknesses by the atomic layer deposition (ALD) process for the first time. Compared to planar HfO 2 thin film device configuration, ITO/HfO 2 core-shell nanowire shows a prominent resistive memory behavior, including lower power consumption with a smaller SET voltage of ∼0.6 V and better switching voltage uniformity with variations (standard deviation(σ)/mean value (μ)) of V SET and V RESET from 0.38 to 0.14 and from 0.33 to 0.05 for ITO/HfO 2 core-shell nanowire and planar HfO 2 thin film, respectively. In addition, endurance over 10 3 cycles resulting from the local electric field enhancement can be achieved, which is attributed to geometry architecture engineering. The concept of geometry architecture engineering provides a promising strategy to modify the electric-field distribution for solving the non-uniformity issue of future RRAM.

  15. Study of sintering behavior of vapor forms of 1-octanethiol coated copper nanoparticles for application to ink-jet printing technology.

    PubMed

    Kwon, Jinhyeong; Park, Shinyoung; Haque, Md Mominul; Kim, Young-Seok; Lee, Caroline Sunyong

    2012-04-01

    Sub-50 nm copper nanoparticles coated with sub-5 nm 1-octanethiol layer for oxidation inhibition were examined to confirm the 1-octanethiol removal temperature as the sub-50 nm copper nanoparticles are sintered. As a result, 1-octanethiol Self-Assembled Multi-layers (SAMs) on sub-50 nm copper nanoparticles were successfully removed before sintering of copper nanoparticles so that a high density of copper line could be obtained. Finally, the line resistivity was measured and compared to verify the effect of sintering in different atmospheres. As a result, electrical resistivity of the copper pattern sintered in hydrogen atmosphere was measured at 6.96 x 10(-6) ohm-cm whereas that of the copper pattern sintered in mixed gas atmosphere was measured at 2.62 x 10(-5) ohm-cm. Thus, sintering of copper patterns was successfully done to show low electrical resistivity values. Moreover, removal of 1-octanethiol coating after sintering process was confirmed using X-ray photoelectron spectroscopy (XPS) analysis. By showing no sulfur content, XPS results indicate that 1-octanethiol is completely removed. Therefore, the vapor form of 1-octanethiol coating layers can be safely used as an oxidation inhibition layer for low temperature sintering processes and ink-jet applications.

  16. Thermodynamic and transport properties of YbNi 4Cd

    NASA Astrophysics Data System (ADS)

    Lee, J.; Park, H.; Lee-Hone, N. R.; Broun, D. M.; Mun, E.

    2018-05-01

    The single crystal growth and the physical properties of the intermetallic compounds R Ni4Cd (R =Y and Yb) which crystallize in the face-centered cubic (fcc) MgCu4Sn -type structure (space group F 4 ¯3 m ) are discussed. Thermodynamic and transport properties of YbNi4Cd are studied by measuring the magnetization, electrical resistivity, and specific heat. The magnetic susceptibility measurement shows that the 4 f electrons of Yb3 + ions are well localized. The electrical resistivity and specific heat exhibits an antiferromagnetic ordering below TN=0.97 K. Applying the field along the [111] direction results in the suppression of TN below 0.4 K at the critical field Hc˜4.5 kOe. No non-Fermi liquid behavior has been observed in the vicinity of Hc. Above Hc, the magnetoresistivity shows an unconventional temperature dependence ρ (T ) =ρ0+A Tn with n >2 , suggesting that an additional scattering mechanism in the resistivity needs to be considered. Based on the analysis of experimental results, we conclude that the Yb3 + moments and conduction electrons are weakly coupled. Despite the antiferromagnetic ordering below TN, YbNi4Cd exhibits a large frustration parameter | θp/TN|˜16 , where the magnetic Yb3 + ions occupy the tetrahedra on the fcc lattice.

  17. Effects of preparation steps on the physical parameters and electromechanical properties of IPMC actuators

    NASA Astrophysics Data System (ADS)

    Wang, Yanjie; Zhu, Zicai; Chen, Hualing; Luo, Bin; Chang, Longfei; Wang, Yongquan; Li, Dichen

    2014-12-01

    The electromechanical properties of ionic polymer-metal composites (IPMC) are affected by many factors, including resistivity of surface electrodes, bending stiffness and dielectric modulus, etc, which are closely related to physical and chemical preparation steps. This paper focuses on the effects of preparation steps on these physical parameters and electromechanical properties of IPMC actuators. The mechanisms of electrode formation in the preparation steps are also clarified and investigated. To obtain samples with different features, one or more of the crucial process steps, including pretreatment, impregnation-reduction and chemical plating, were selected to fabricate IPMC. The experimental observations revealed that the physical parameters of IPMC strongly depend on their electrode morphologies caused by different steps, which were reasonable from the standpoint of physics. IPMC with the characteristics of low surface resistance and low bending stiffness, and a large area of interface electrode exhibits a perfect performance. The improvements were considered to be attributed to the double-layer electrostatic effect, induced by the broad dispersion of penetrated electrode nanoparticles. An electrical component, consisting of an equivalent circuit of a parallel combination of the serial circuit of the resistance and the electric double-layer capacitance, is introduced to qualitatively explain the deformation behaviors of IPMC. This research helps to improve the preparation steps and promote the understanding of IPMC.

  18. [Study on corrosion resistance of three non-noble porcelain alloys].

    PubMed

    Wu, Zhikai; Xu, Sheng; Li, Wei; Teng, Jin; Li, Ning

    2011-10-01

    To study the electrochemical corrosion behavior of Co-Cr, Ni-Cr and Ni-Cr-Be based porcelain alloys in NaCl solution. Five samples of each alloy were made respectively, electric polarization curve of each alloy was obtained using potentiodynamic polarization technique. Self-corrosion potential (E(corr)), self-corrosion current density (I(corr), passive region and transpassivation potential were tested. Microstructure and constituent was examined using scanning electron microscopy and energy dispersive spectroscopy. Co-Cr alloy possessed the most desirable corrosion resistance because of its integrated, homogeneous and compact passive film. The poor compactness of Ni-Cr alloy's passive film decreased its corrosion resistance. Ni-Cr-Be alloy exhibited the worst corrosion resistance due to the Cr and Mo depleted Ni-Be eutectic phases in the alloy. Taking biological security into consideration, it is necessary to avoid the application of porcelain alloys with Be element. Co-Cr alloy with better biocompatibility possesses much broader prospect in the field of dental restoration.

  19. Effect of Silver Doping on Transport Properties of Bi2Se3: AgxBi2Se3 and Bi2-xAgxSe3

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Wei, Zhan-Tao

    2018-05-01

    Ag-doped Bi2Se3 with the formula AgxBi2Se3 and Bi2-xAgxSe3 were prepared and their electrical and magnetic transport properties have been investigated to study the influence of silver doping on transport properties of Bi2Se3 with different Ag-doped method. All samples exhibited metallic resistivity and the resistivity increased with increasing Ag concentration. The lattice parameter c of Ag-substituted and Ag-intercalated samples displays a contrary change as the Ag concentration increased. For the Ag-intercalated samples, both the resistance upturn were observed in the curves of temperature dependent of resistivity and temperature dependent of magnetoresistance, respectively, indicating that the enhanced surface effect was obtained in those samples. Monotonously, field-induced MR peaks around 200 K were also observed in those samples. Similar behaviors were not observed in the Ag-substituted samples.

  20. Conductive contact area estimation for carbon nanotube via interconnects using secondary-electron imaging

    NASA Astrophysics Data System (ADS)

    Abe, Yusuke; Suzuki, Makoto; Vyas, Anshul; Yang, Cary Y.

    2018-01-01

    A major challenge for carbon nanotube (CNT) to become a viable replacement of copper and tungsten in the next-generation on-chip via interconnects is the high contact resistance between CNT and metal electrodes. A first step in meeting this challenge is an accurate characterization of via contact resistance. In this paper, the scanning electron microscope (SEM) image contrast at low landing energy is employed to estimate the conductive CNT area inside vias. The total conductive CNT area inside each via is deduced using SEM image with 0.1 keV landing energy and a specified threshold brightness, yielding via resistance versus CNT area behavior, which correlates well with electrical nanoprobing measurements of via resistance. Monte Carlo simulation of secondary electron generation lends further support for our analysis and suggests that the residue covering the CNT does not affect the conduction across the contact for residue thickness below 1 nm. This imaging and analysis technique can add much value to CNT via interconnect contact characterization.

  1. Electrical Switching of Perovskite Thin-Film Resistors

    NASA Technical Reports Server (NTRS)

    Liu, Shangqing; Wu, Juan; Ignatiev, Alex

    2010-01-01

    Electronic devices that exploit electrical switching of physical properties of thin films of perovskite materials (especially colossal magnetoresistive materials) have been invented. Unlike some related prior devices, these devices function at room temperature and do not depend on externally applied magnetic fields. Devices of this type can be designed to function as sensors (exhibiting varying electrical resistance in response to varying temperature, magnetic field, electric field, and/or mechanical pressure) and as elements of electronic memories. The underlying principle is that the application of one or more short electrical pulse(s) can induce a reversible, irreversible, or partly reversible change in the electrical, thermal, mechanical, and magnetic properties of a thin perovskite film. The energy in the pulse must be large enough to induce the desired change but not so large as to destroy the film. Depending on the requirements of a specific application, the pulse(s) can have any of a large variety of waveforms (e.g., square, triangular, or sine) and be of positive, negative, or alternating polarity. In some applications, it could be necessary to use multiple pulses to induce successive incremental physical changes. In one class of applications, electrical pulses of suitable shapes, sizes, and polarities are applied to vary the detection sensitivities of sensors. Another class of applications arises in electronic circuits in which certain resistance values are required to be variable: Incorporating the affected resistors into devices of the present type makes it possible to control their resistances electrically over wide ranges, and the lifetimes of electrically variable resistors exceed those of conventional mechanically variable resistors. Another and potentially the most important class of applications is that of resistance-based nonvolatile-memory devices, such as a resistance random access memory (RRAM) described in the immediately following article, Electrically Variable Resistive Memory Devices (MFS-32511-1).

  2. Optimization and performance comparison for galloping-based piezoelectric energy harvesters with alternating-current and direct-current interface circuits

    NASA Astrophysics Data System (ADS)

    Tan, Ting; Yan, Zhimiao; Lei, Hong

    2017-07-01

    Galloping-based piezoelectric energy harvesters scavenge small-scale wind energy and convert it into electrical energy. For piezoelectric energy harvesting with the same vibrational source (galloping) but different (alternating-current (AC) and direct-current (DC)) interfaces, general analytical solutions of the electromechanical coupled distributed parameter model are proposed. Galloping is theoretically proven to appear when the linear aerodynamic negative damping overcomes the electrical damping and mechanical damping. The harvested power is demonstrated as being done by the electrical damping force. Via tuning the load resistance to its optimal value for optimal or maximal electrical damping, the harvested power of the given structure with the AC/DC interface is maximized. The optimal load resistances and the corresponding performances of such two systems are compared. The optimal electrical damping are the same but with different optimal load resistances for the systems with the AC and DC interfaces. At small wind speeds where the optimal electrical damping can be realized by only tuning the load resistance, the performances of such two energy harvesting systems, including the minimal onset speeds to galloping, maximal harvested powers and corresponding tip displacements are almost the same. Smaller maximal electrical damping with larger optimal load resistance is found for the harvester with the DC interface when compared to those for the harvester with the AC interface. At large wind speeds when the maximal electrical damping rather than the optimal electrical damping can be reached by tuning the load resistance alone, the harvester with the AC interface circuit is recommended for a higher maximal harvested power with a smaller tip displacement. This study provides a method using the general electrical damping to connect and compare the performances of piezoelectric energy harvesters with same excitation source but different interfaces.

  3. Electric moisture meters for wood

    Treesearch

    William L. James

    1963-01-01

    Common methods of measuring the moisture content of wood are described briefly, and a short historical account of the development of electric moisture meters is given. Electrical properties of wood are discussed briefly, and the basic operation of the resistance type and the radio- frequency types of moisture meter is outlined. Data relating the electrical resistance...

  4. Effect of CFRC layers on the electrical properties and failure mode of RC beams strengthened with CFRC composites

    NASA Astrophysics Data System (ADS)

    Wu, Sigang; Dai, Hongzhe; Wang, Wei

    2007-12-01

    This paper designs an innovative reinforced concrete (RC) beam strengthened with carbon fiber reinforced concrete (CFRC) composites. Six groups of test beams, five with different degrees of strengthening, achieved by changing the location and the thickness of the CFRC layer, and one virgin RC beam, were tested in four-point bending over a span of 3000 mm. We investigate the effect of the CFRC layer on the flexural performance and the electrical properties of the designed beams. The test results indicate that the CFRC strengthened RC beam exhibits improved electrical properties as well as better mechanical performance. Also, the location and the thickness of the CFRC layer affect the initial electrical resistance and other electrical properties of the beam. Relationships between electrical resistance, loading, deflection and cracks show that the increase in the electrical resistance can be used to monitor the extent of damage to the designed beam. Based on this discovery, a new health monitoring technique for RC structures is produced by means of electrical resistance measurements.

  5. Semiconductor bridge (SCB) igniter

    DOEpatents

    Bickes, Jr., Robert W.; Schwarz, Alfred C.

    1987-01-01

    In an explosive device comprising an explosive material which can be made to explode upon activation by activation means in contact therewith; electrical activation means adaptable for activating said explosive material such that it explodes; and electrical circuitry in operation association with said activation means; there is an improvement wherein said activation means is an electrical material which, at an elevated temperature, has a negative temperature coefficient of electrical resistivity and which has a shape and size and an area of contact with said explosive material sufficient that it has an electrical resistance which will match the resistance requirements of said associated electrical circuitry when said electrical material is operationally associated with said circuitry, and wherein said electrical material is polycrystalline; or said electrical material is crystalline and (a) is mounted on a lattice matched substrate or (b) is partially covered with an intimately contacting metallization area which defines its area of contact with said explosive material.

  6. Correlation between structural and transport properties of electron beam irradiated PrMnO3 compounds

    NASA Astrophysics Data System (ADS)

    Christopher, Benedict; Rao, Ashok; Nagaraja, B. S.; Shyam Prasad, K.; Okram, G. S.; Sanjeev, Ganesh; Petwal, Vikash Chandra; Verma, Vijay Pal; Dwivedi, Jishnu; Poornesh, P.

    2018-02-01

    The structural, electrical, magnetic, and thermal properties of electron beam (EB) irradiated PrMnO3 manganites were investigated in the present communication. X-ray diffraction data reveals that all samples are single phased with orthorhombic distorted structure (Pbnm). Furthermore, the diffracted data are analyzed in detail using Rietveld refinement technique. It is observed that the EB dosage feebly disturbs the MnO6 octahedra. The electrical resistivity of all the samples exhibits semiconducting behavior. Small polaron hopping model is conveniently employed to investigate the semiconducting nature of the pristine as well as EB irradiated samples. The Seebeck coefficient (S) of the pristine as well as the irradiated samples exhibit large positive values at lower temperatures, signifying holes as the dominant charge carriers. The analysis of Seebeck coefficient data confirms that the small polaron hopping mechanism assists the thermoelectric transport property in the high temperature region. The magnetic measurements confirm the existence of paramagnetic (PM) to ferromagnetic (FM) behavior for the pristine and irradiated samples. In the lower temperature regime, coexistence of FM clusters and AFM matrix is dominating. Thus, the complex magnetic behavior of the compound has been explained in terms of rearrangement of antiferromagnetically coupled ionic moments.

  7. Study of electrical and magnetic properties of RE doped layered cobaltite thin films

    NASA Astrophysics Data System (ADS)

    Bapna, K.; Choudhary, R. J.; Phase, D. M.; Rawat, R.; Ahuja, B. L.

    2018-05-01

    Thin films of layered perovskites Sr1.5RE0.5CoO4 (RE = La, Gd) were grown on MgO (0 0 1) substrate using pulsed laser ablation method. Structural, electrical and magnetic properties of single phase oriented films were studied. Films reveal semiconducting behavior in the entire measured temperature range. The films show thermally activated behavior at high temperature regime, with a higher value of activation energy for SGCO than that for SLCO. The low temperature behavior is well fitted with 3D-variable range hopping mechanism. Both films showed negative magneto-resistance measured in temperature range of 10-200 K. The value of MR is large for SGCO film as compared to its bulk counterpart as well as SLCO film, suggesting its high potential in the spintronics applications. A pinch-shaped M-H behaviour as observed in both the films, suggests the presence of two-magnetic phases. Occurrence of pinch-shape behaviour is although in line with that of SLCO bulk counterpart, interestingly, it was absent in SGCO polycrystalline powder. It suggests major role of film growth kinetics in modifying the magnetic properties in cobaltites.

  8. Resistive field structures for semiconductor devices and uses therof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinella, Matthew; DasGupta, Sandeepan; Kaplar, Robert

    The present disclosure relates to resistive field structures that provide improved electric field profiles when used with a semiconductor device. In particular, the resistive field structures provide a uniform electric field profile, thereby enhancing breakdown voltage and improving reliability. In example, the structure is a field cage that is configured to be resistive, in which the potential changes significantly over the distance of the cage. In another example, the structure is a resistive field plate. Using these resistive field structures, the characteristics of the electric field profile can be independently modulated from the physical parameters of the semiconductor device. Additionalmore » methods and architectures are described herein.« less

  9. Validated linear dynamic model of electrically-shunted magnetostrictive transducers with application to structural vibration control

    NASA Astrophysics Data System (ADS)

    Scheidler, Justin J.; Asnani, Vivake M.

    2017-03-01

    This paper presents a linear model of the fully-coupled electromechanical behavior of a generally-shunted magnetostrictive transducer. The impedance and admittance representations of the model are reported. The model is used to derive the effect of the shunt’s electrical impedance on the storage modulus and loss factor of the transducer without neglecting the inherent resistance of the transducer’s coil. The expressions are normalized and then shown to also represent generally-shunted piezoelectric materials that have a finite leakage resistance. The generalized expressions are simplified for three shunts: resistive, series resistive-capacitive, and inductive, which are considered for shunt damping, resonant shunt damping, and stiffness tuning, respectively. For each shunt, the storage modulus and loss factor are plotted for a wide range of the normalized parameters. Then, important trends and their impact on different applications are discussed. An experimental validation of the transducer model is presented for the case of resistive and resonant shunts. The model closely predicts the measured response for a variety of operating conditions. This paper also introduces a model for the dynamic compliance of a vibrating structure that is coupled to a magnetostrictive transducer for shunt damping and resonant shunt damping applications. This compliance is normalized and then shown to be analogous to that of a structure that is coupled to a piezoelectric material. The derived analogies allow for the observations and equations in the existing literature on structural vibration control using shunted piezoelectric materials to be directly applied to the case of shunted magnetostrictive transducers.

  10. Using electrical resistance tomography to map subsurface temperatures

    DOEpatents

    Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.

    1994-09-13

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.

  11. Using electrical resistance tomography to map subsurface temperatures

    DOEpatents

    Ramirez, Abelardo L.; Chesnut, Dwayne A.; Daily, William D.

    1994-01-01

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.

  12. Simulation of variation of apparent resistivity in resistivity surveys using finite difference modelling with Monte Carlo analysis

    NASA Astrophysics Data System (ADS)

    Aguirre, E. E.; Karchewski, B.

    2017-12-01

    DC resistivity surveying is a geophysical method that quantifies the electrical properties of the subsurface of the earth by applying a source current between two electrodes and measuring potential differences between electrodes at known distances from the source. Analytical solutions for a homogeneous half-space and simple subsurface models are well known, as the former is used to define the concept of apparent resistivity. However, in situ properties are heterogeneous meaning that simple analytical models are only an approximation, and ignoring such heterogeneity can lead to misinterpretation of survey results costing time and money. The present study examines the extent to which random variations in electrical properties (i.e. electrical conductivity) affect potential difference readings and therefore apparent resistivities, relative to an assumed homogeneous subsurface model. We simulate the DC resistivity survey using a Finite Difference (FD) approximation of an appropriate simplification of Maxwell's equations implemented in Matlab. Electrical resistivity values at each node in the simulation were defined as random variables with a given mean and variance, and are assumed to follow a log-normal distribution. The Monte Carlo analysis for a given variance of electrical resistivity was performed until the mean and variance in potential difference measured at the surface converged. Finally, we used the simulation results to examine the relationship between variance in resistivity and variation in surface potential difference (or apparent resistivity) relative to a homogeneous half-space model. For relatively low values of standard deviation in the material properties (<10% of mean), we observed a linear correlation between variance of resistivity and variance in apparent resistivity.

  13. Electric microwave absorption for the study of GaAs/AlGaAs heterostructure systems

    NASA Astrophysics Data System (ADS)

    Zappe, Hans P.; Jantz, Wolfgang

    1990-12-01

    The use of magnetic-field-dependent microwave absorption as a nondestructive and contact-free means to study transport behavior in GaAs/AlGaAs devices is explored. This technique allows quick measurement of resistance, mobility, and carrier concentration in bulk substrates as well as in the two-dimensional electron gas of heterostructure quantum wells. The two- and three-dimensional conductivities may be separably evaluated, allowing detailed study of conduction in the active layer of high-electron-mobility devices. A brief theoretical foundation is provided, followed by application of the approach to examination of device structural dependencies, carrier-density conduction behavior, and the effects of etch processing on quantum-well integrity.

  14. Corrosion Embrittlement of Duralumin II Accelerated Corrosion Tests and the Behavior of High-Strength Aluminum Alloys of Different Compositions

    NASA Technical Reports Server (NTRS)

    Rawdon, Henry S

    1928-01-01

    The permanence, with respect to corrosion, of light aluminum alloy sheets of the duralumin type, that is, heat-treatable alloys containing Cu, Mg, Mn, and Si is discussed. Alloys of this type are subject to surface corrosion and corrosion of the interior by intercrystalline paths. Results are given of accelerated corrosion tests, tensile tests, the effect on corrosion of various alloying elements and heat treatments, electrical resistance measurements, and X-ray examinations.

  15. Thermoelectric and magnetic properties of CeRh 1- xM xSn (M=Co, Ni, Ru)

    NASA Astrophysics Data System (ADS)

    Echizen, Yuji; Yamane, Kyotaro; Takabatake, Toshiro

    2003-05-01

    The thermopower S, electrical resistivity ρ, and magnetic susceptibility χ are reported on CeRh 1- xM xSn (M=Co, Ni, Ru; x⩽0.25). The Ni doping changes the valence-fluctuating behavior of χ( T) for x=0 to the Currie-Weiss type, whereas the Ru one to the Pauli-type. Nevertheless, all the substitutions result in a decrease of the rather large maximum of S=60 μV/ K for x = 0.

  16. Solution-processed Al-chelated gelatin for highly transparent non-volatile memory applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yu-Chi; Wang, Yeong-Her, E-mail: yhw@ee.ncku.edu.tw

    2015-03-23

    Using the biomaterial of Al-chelated gelatin (ACG) prepared by sol-gel method in the ITO/ACG/ITO structure, a highly transparent resistive random access memory (RRAM) was obtained. The transmittance of the fabricated device is approximately 83% at 550 nm while that of Al/gelatin/ITO is opaque. As to the ITO/gelatin/ITO RRAM, no resistive switching behavior can be seen. The ITO/ACG/ITO RRAM shows high ON/OFF current ratio (>10{sup 5}), low operation voltage, good uniformity, and retention characteristics at room temperature and 85 °C. The mechanism of the ACG-based memory devices is presented. The enhancement of these electrical properties can be attributed to the chelate effect ofmore » Al ions with gelatin. Results show that transparent ACG-based memory devices possess the potential for next-generation resistive memories and bio-electronic applications.« less

  17. Thermally efficient and highly scalable In2Se3 nanowire phase change memory

    NASA Astrophysics Data System (ADS)

    Jin, Bo; Kang, Daegun; Kim, Jungsik; Meyyappan, M.; Lee, Jeong-Soo

    2013-04-01

    The electrical characteristics of nonvolatile In2Se3 nanowire phase change memory are reported. Size-dependent memory switching behavior was observed in nanowires of varying diameters and the reduction in set/reset threshold voltage was as low as 3.45 V/6.25 V for a 60 nm nanowire, which is promising for highly scalable nanowire memory applications. Also, size-dependent thermal resistance of In2Se3 nanowire memory cells was estimated with values as high as 5.86×1013 and 1.04×106 K/W for a 60 nm nanowire memory cell in amorphous and crystalline phases, respectively. Such high thermal resistances are beneficial for improvement of thermal efficiency and thus reduction in programming power consumption based on Fourier's law. The evaluation of thermal resistance provides an avenue to develop thermally efficient memory cell architecture.

  18. The Expending Retrogression Time of Hot-Extruded Sc-CONTAINING Al-Zn-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Shim, Sung-Yong; Kim, Dae-Hwan; Sung, Young-Rock; Ahn, In-Shup; Lim, Su-Gun

    In this paper, the retrogression and reaging (RRA) behavior and corrosion properties of Sc-containing Al-Zn-Mg-Cu alloy were observed. The dependence of the mechanical properties and corrosion resistance on the heat treatment condition was measured by hardness, tensile, C-ring and conductivity testing. The retrogression time for recovery of the yield strength of the alloy subjected to T6 treatment was 20 min at 200°C of retrogression temperature, which was longer than that of Al7075 alloy. The results of electrical conductivity and C-ring tests showed that the stress corrosion cracking (SCC) resistance in Sc-containing alloy treated for 20 min at 200°C was improved. These study results demonstrated the ability of the Sc-containing alloy to extend the retrogression time and thereby improve the SCC resistance and mechanical properties.

  19. Subsurface Resistivity Structures in and Around Strike-Slip Faults - Electromagnetic Surveys and Drillings Across Active Faults in Central Japan -

    NASA Astrophysics Data System (ADS)

    Omura, K.; Ikeda, R.; Iio, Y.; Matsuda, T.

    2005-12-01

    Electrical resistivity is important property to investigate the structure of active faults. Pore fluid affect seriously the electrical properties of rocks, subsurface electrical resistivity can be an indicator of the existence of fluid and distribution of pores. Fracture zone of fault is expected to have low resistivity due to high porosity and small gain size. Especially, strike-slip type fault has nearly vertical fracture zone and the fracture zone would be detected by an electrical survey across the fault. We performed electromagnetic survey across the strike-slip active faults in central Japan. At the same faults, we also drilled borehole into the fault and did downhole logging in the borehole. We applied MT or CSAMT methods onto 5 faults: Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2), western Nagano Ohtaki area(1984 Nagano-ken seibu earthquake (M=6.8), the fault did not appeared on the surface), Neodani fault which appeared by the 1891 Nobi earthquake (M=8.0), Atera fault which seemed to be dislocated by the 1586 Tensyo earthquake (M=7.9), Gofukuji fault that is considered to have activated about 1200 years ago. The sampling frequencies of electrical and magnetic field were 2 - 1024Hz (10 frequencies) for CSAMT survey and 0.00055 - 384Hz (40 frequencies) for MT survey. The electromagnetic data were processed by standard method and inverted to 2-D resistivity structure along transects of the faults. Results of the survey were compared with downhole electrical logging data and observational descriptions of drilled cores. Fault plane of each fault were recognized as low resistivity region or boundary between relatively low and high resistivity region, except for Gofukuji fault. As for Gofukuji fault, fault was located in relatively high resistivity region. During very long elapsed time from the last earthquake, the properties of fracture zone of Gofukuji fault might changed from low resistivity properties as observed for other faults. Downhole electrical logging data were consistent to values of resistivity estimated by electromagnetic survey for each fault. The existence of relatively low and high resistivity regions in 2-D structure from electromagnetic survey was observed again by downhole logging at the correspondent portion in the borehole. Cores recovered from depthes where the electrical logging showed low resistivity were hardly fractured and altered from host rock which showed high resistivity. Results of electromagnetic survey, downhole electrical logging and observation of drilled cores were consistent to each other. In present case, electromagnetic survey is useful to explore the properties of fault fracture zone. In the further investigations, it is important to explore relationships among features of resistivity structure and geological and geophysical situations of the faults.

  20. Non-destructive reversible resistive switching in Cr doped Mott insulator Ca2RuO4: Interface vs bulk effects

    NASA Astrophysics Data System (ADS)

    Shen, Shida; Williamson, Morgan; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim

    2017-12-01

    A non-destructive reversible resistive switching is demonstrated in single crystals of Cr-doped Mott insulator Ca2RuO4. An applied electrical bias was shown to reduce the DC resistance of the crystal by as much as 75%. The original resistance of the sample could be restored by applying an electrical bias of opposite polarity. We have studied this resistive switching as a function of the bias strength, applied magnetic field, and temperature. A combination of 2-, 3-, and 4-probe measurements provide a means to distinguish between bulk and interfacial contributions to the switching and suggests that the switching is mostly an interfacial effect. The switching was tentatively attributed to electric-field driven lattice distortions which accompany the impurity-induced Mott transition. This field effect was confirmed by temperature-dependent resistivity measurements which show that the activation energy of this material can be tuned by an applied DC electrical bias. The observed resistance switching can potentially be used for building non-volatile memory devices like resistive random access memory.

  1. Electric-Field-Driven Dual Vacancies Evolution in Ultrathin Nanosheets Realizing Reversible Semiconductor to Half-Metal Transition.

    PubMed

    Lyu, Mengjie; Liu, Youwen; Zhi, Yuduo; Xiao, Chong; Gu, Bingchuan; Hua, Xuemin; Fan, Shaojuan; Lin, Yue; Bai, Wei; Tong, Wei; Zou, Youming; Pan, Bicai; Ye, Bangjiao; Xie, Yi

    2015-12-02

    Fabricating a flexible room-temperature ferromagnetic resistive-switching random access memory (RRAM) device is of fundamental importance to integrate nonvolatile memory and spintronics both in theory and practice for modern information technology and has the potential to bring about revolutionary new foldable information-storage devices. Here, we show that a relatively low operating voltage (+1.4 V/-1.5 V, the corresponding electric field is around 20,000 V/cm) drives the dual vacancies evolution in ultrathin SnO2 nanosheets at room temperature, which causes the reversible transition between semiconductor and half-metal, accompanyied by an abrupt conductivity change up to 10(3) times, exhibiting room-temperature ferromagnetism in two resistance states. Positron annihilation spectroscopy and electron spin resonance results show that the Sn/O dual vacancies in the ultrathin SnO2 nanosheets evolve to isolated Sn vacancy under electric field, accounting for the switching behavior of SnO2 ultrathin nanosheets; on the other hand, the different defect types correspond to different conduction natures, realizing the transition between semiconductor and half-metal. Our result represents a crucial step to create new a information-storage device realizing the reversible transition between semiconductor and half-metal with flexibility and room-temperature ferromagnetism at low energy consumption. The as-obtained half-metal in the low-resistance state broadens the application of the device in spintronics and the semiconductor to half-metal transition on the basis of defects evolution and also opens up a new avenue for exploring random access memory mechanisms and finding new half-metals for spintronics.

  2. Improved Geologic Interpretation of Non-invasive Electrical Resistivity Imaging from In-situ Samples

    NASA Astrophysics Data System (ADS)

    Mucelli, A.; Aborn, L.; Jacob, R.; Malusis, M.; Evans, J.

    2016-12-01

    Non-invasive geophysical techniques are useful in characterizing the subsurface geology without disturbing the environment, however, the ability to interpret the subsurface is enhanced by invasive work. Since geologic materials have electrical resistivity values it allows for a geologic interpretation to be made based on variations of electrical resistivity measured by electrical resistivity imaging (ERI). This study focuses on the pre-characterization of the geologic subsurface from ERI collected adjacent to the Montandon Marsh, a wetland located near Lewisburg, PA within the West Branch of the Susquehanna River watershed. The previous invasive data, boreholes, indicate that the subsurface consists of limestone and shale bedrock overlain with sand and gravel deposits from glacial outwash and aeolian processes. The objective is to improve our understanding of the subsurface at this long-term hydrologic research site by using excavation results, specifically observed variations in geologic materials and electrical resistivity laboratory testing of subsurface samples. The pre-excavation ERI indicated that the shallow-most geologic material had a resistivity value of 100-500 ohm-m. In comparison, the laboratory testing indicated the shallow-most material had the same range of electrical resistivity values depending on saturation levels. The ERI also showed that there was an electrically conductive material, 7 to 70 ohm-m, that was interpreted to be clay and agreed with borehole data, however, the excavation revealed that at this depth range the geologic material varied from stratified clay to clay with cobbles to weathered residual clay. Excavation revealed that the subtle variations in the electrical conductive material corresponded well with the variations in the geologic material. We will use these results to reinterpret previously collected ERI data from the entire long-term research site.

  3. Oxidation Resistance, Electrical and Thermal Conductivity, and Spectral Emittance of Fully Dense HfB2 and ZrB2 with SiC, TaSi2, and LaB6 Additives

    DTIC Science & Technology

    2012-01-26

    Resistance , Electrical and Thermal Conductivity, and Spectral Emittance of Fully Dense HfB2 and ZrB2 "With SiC, TaSi2, and LaB6 Additives Sb. GRANT NUMBER... RESISTANCE , ELECTRICAL AND THERMAL CONDUCTIVITY, AND SPECTRAL EMITTANCE OF FULLY DENSE HfB2 AND ZrB2 WITH SiC, TaSi2, AND LaB6 ADDITIVES Air Force Office...thickened regions with dry 220 grit SiC sandpaper so that a low- resistance electrical connection could be achieved. A handheld multimeter was used to measure

  4. Nonlinear Contact Effects in Staggered Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Fischer, Axel; Zündorf, Hilke; Kaschura, Felix; Widmer, Johannes; Leo, Karl; Kraft, Ulrike; Klauk, Hagen

    2017-11-01

    The static and dynamic electrical characteristics of thin-film transistors (TFTs) are often limited by the parasitic contact resistances, especially for TFTs with a small channel length. For the smallest possible contact resistance, the staggered device architecture has a general advantage over the coplanar architecture of a larger injection area. Since the charge transport occurs over an extended area, it is inherently more difficult to develop an accurate analytical device model for staggered TFTs. Most analytical models for staggered TFTs, therefore, assume that the contact resistance is linear, even though this is commonly accepted not to be the case. Here, we introduce a semiphenomenological approach to accurately fit experimental data based on a highly discretized equivalent network circuit explicitly taking into account the inherent nonlinearity of the contact resistance. The model allows us to investigate the influence of nonlinear contact resistances on the static and dynamic performance of staggered TFTs for different contact layouts with a relatively short computation time. The precise extraction of device parameters enables us to calculate the transistor behavior as well as the potential for optimization in real circuits.

  5. Influence of Cu-Cr substitution on structural, morphological, electrical and magnetic properties of magnesium ferrite

    NASA Astrophysics Data System (ADS)

    Yonatan Mulushoa, S.; Murali, N.; Tulu Wegayehu, M.; Margarette, S. J.; Samatha, K.

    2018-03-01

    Cu-Cr substituted magnesium ferrite materials (Mg1 - xCuxCrxFe21 - xO4 with x = 0.0-0.7) have been synthesized by the solid state reaction method. XRD analysis revealed the prepared samples are cubic spinel with single phase face centered cubic. A significant decrease of ∼41.15 nm in particle size is noted in response to the increase in Cu-Cr substitution level. The room temperature resistivity increases gradually from 0.553 × 105 Ω cm (x = 0.0) to 0.105 × 108 Ω cm (x = 0.7). Temperature dependent DC-electrical resistivity of all the samples, exhibits semiconductor like behavior. Cu-Cr doped materials can be suitable to limit the eddy current losses. VSM result shows pure and doped magnesium ferrite particles show soft ferrimagnetic nature at room temperature. The saturation magnetization of the samples decreases initially from 34.5214 emu/g for x = 0.0 to 18.98 emu/g (x = 0.7). Saturation magnetization, remanence and coercivity are decreased with doping, which may be due to the increase in grain size.

  6. Correlation of Electrical Resistance to CMC Stress-Strain and Fracture Behavior Under High Heat-Flux Thermal and Stress Gradients

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory; Zhu, Dongming

    2015-01-01

    Because SiCSiC ceramic matrix composites (CMCs) are under consideration for use as turbine engine hot-section components in extreme environments, it becomes necessary to investigate their performance and damage morphologies under complex loading and environmental conditions. Monitoring of electrical resistance (ER) has been shown as an effective tool for detecting damage accumulation of woven melt-infiltrated SiCSiC CMCs. However, ER change under complicated thermo-mechanical loading is not well understood. In this study a systematic approach is taken to determine the capabilities of ER as a relevant non-destructive evaluation technique for high heat-flux testing, including thermal gradients and localized stress concentrations. Room temperature and high temperature, laser-based tensile tests were conducted in which stress-dependent damage locations were determined using modal acoustic emission (AE) monitoring and compared to full-field strain mapping using digital image correlation (DIC). This information is then compared with the results of in-situ ER monitoring, post-test ER inspection and fractography in order to correlate ER response to convoluted loading conditions and damage evolution.

  7. Chemical substitution study on magnetism and superconductivity in Ce1-x SmxCoIn5

    NASA Astrophysics Data System (ADS)

    Pouse, N.; Jang, S.; White, B.; Ran, S.; Maple, M. B.; Almasan, C. C.

    We report electrical resistivity, magnetization, and specific heat measurement measurements on the Ce1- x SmxCoIn5 system for 0 <= x <= 1. Superconductivity in CeCoIn5 is suppressed with increasing Sm concentrations up to x = 0.1, above which there is no evidence for superconductivity from measurements down to 50 mK; antiferromagnetic ordering in SmCoIn5 persists deep into the Ce-rich side, and is not completely suppressed until x = 0.25. We have observed the development of a low-temperature upturn in electrical resistivity for 0.70 <= x <= 0.85 which is consistent with behavior for a single-ion impurity Kondo effect and suggests that the substitution of Sm for Ce causes a change of the relative strength of competing Kondo and Ruderman-Kittel-Kasuya-Yosida energy scales. Research at UCSD is supported by the US DOE BES under Grant No. DE-FG02-04-ER46105, the US NSF under Grant No. DMR-1206553, and research at Kent State U. is supported by NSF under Grant No. DMR-1505826.

  8. Self-sensing concrete-filled FRP tubes using FBG strain sensors

    NASA Astrophysics Data System (ADS)

    Yan, Xin; Li, Hui

    2007-07-01

    Concrete-filled fiber-reinforced polymer (FRP) tube is a type of newly developed structural column. It behaves brittle failure at its peak strength, and so the health monitoring on the hoop strain of the FRP tube is essential for the life cycle safety of the structure. Herein, three types of FRP tubes including 5-ply tube, 2-ply tube with local reinforcement and FRP-steel composite tube were embedded with the optic fiber Bragg grating (FBG) strain sensors in the inter-ply of FRP or the interface between FRP and steel in the middle height and the hoop direction. The compressive behaviors of the concrete-filled FRP tubes were experimentally studied. The hoop strains of the FRP tubes were recorded in real time using the embedded FBG strain sensors as well as the embedded or surface electric resistance strain gauges. Results indicated that the FBG strain sensors can faithfully record the hoop strains of the FRP tubes in compression as compared with the embedded or surface electric resistance strain gauges, and the strains recorded can reach more than μɛ.

  9. Application of corona electrical discharge plasma on modifying the physicochemical properties of banana starch indigenous to Taiwan.

    PubMed

    Wu, Tsung-Yen; Sun, Nan-Nong; Chau, Chi-Fai

    2018-01-01

    Corona electrical discharge (CED) belongs to an atmospheric pressure cold plasma. In this study, raw banana starch (indigenous to Taiwan), which contained resistant starch and amylose at a level of 58.4 g/100 g and 14.5 g/100 g, respectively, was treated by CED at 30 kV/cm, 40 kV/cm, and 50 kV/cm for 3 minutes. After the CED treatment, starch analyses showed that there were no apparent changes in the resistant starch and amylose contents. Only surface and nonpenetrative damage caused by plasma etching at different voltage strengths were observed on the starch granules. The CED treatments reduced the total area of diffraction peak, gelatinization enthalpy (by -21% to -38%), and different pasting behaviors including peak viscosity, breakdown, final viscosity, and setback. The CED treatments were capable of increasing relative crystallinity and gelatinization temperature. This study revealed the potential of CED plasma technology as a tool to modify the characteristics of banana starch. Copyright © 2017. Published by Elsevier B.V.

  10. Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior.

    PubMed

    Gómez-Navarro, C; Moreno-Herrero, F; de Pablo, P J; Colchero, J; Gómez-Herrero, J; Baró, A M

    2002-06-25

    A fundamental requirement for a molecule to be considered a molecular wire (MW) is the ability to transport electrical charge with a reasonably low resistance. We have carried out two experiments that measure first, the charge transfer from an electrode to the molecule, and second, the dielectric response of the MW. The latter experiment requires no contacts to either end of the molecule. From our experiments we conclude that adsorbed individual DNA molecules have a resistivity similar to mica, glass, and silicon oxide substrates. Therefore adsorbed DNA is not a conductor, and it should not be considered as a viable candidate for MW applications. Parallel studies on other nanowires, including single-walled carbon nanotubes, showed conductivity as expected.

  11. Electrical properties of materials for high temperature strain gage applications

    NASA Technical Reports Server (NTRS)

    Brittain, John O.

    1989-01-01

    A study was done on the electrical resistance of materials that are potentially useful as resistance strain gages at high temperatures under static strain conditions. Initially a number of binary alloys were investigated. Later, third elements were added to these alloys, all of which were prepared by arc melting. Several transition metals were selected for experimentation, most prepared as thin films. Difficulties with electrical contacts thwarted efforts to extend measurements to the targeted 1000 C, but results obtained did suggest ways of improving the electrical resistance characteristics of certain materials.

  12. Electrical resistance of CNT-PEEK composites under compression at different temperatures

    PubMed Central

    2011-01-01

    Electrically conductive polymers reinforced with carbon nanotubes (CNTs) have generated a great deal of scientific and industrial interest in the last few years. Advanced thermoplastic composites made of three different weight percentages (8%, 9%, and 10%) of multiwalled CNTs and polyether ether ketone (PEEK) were prepared by shear mixing process. The temperature- and pressure-dependent electrical resistance of these CNT-PEEK composites have been studied and presented in this paper. It has been found that electrical resistance decreases significantly with the application of heat and pressure. PMID:21711952

  13. The electrical resistance of gold-capped chromium thin films

    NASA Astrophysics Data System (ADS)

    Ohashi, Masashi; Sawabu, Masaki; Ohashi, Kohei; Miyagawa, Masahiro; Maeta, Kae; Kubota, Takahide; Takanashi, Koki

    2018-03-01

    We studied the electrical resistance of polycrystalline chromium films capped by a gold layer. No anomaly was detected by resistance measurements of 10 nm thick film around room temperature, indicating that the antiferromagnetic interaction may be suppressed as decreasing the thickness of the chromium film. The sheet resistance Rs (T) curves differ from polycrystalline chromium films in previous studies because of the electrical current flows through a gold capping layer. On the other hand, the resistance drop is observed at T C = 1.15±0.05 K as that of polycrystalline chromium films in the previous report. It means that such resistance drop is not related to the chromium oxide layer on a polycrystalline chromium films. However, it is difficult to conclude that superconducting transition occurs because of the large residual resistance below the temperature where the resistance drop is observed.

  14. Structural, optical and high pressure electrical resistivity studies of pure NiO and Cu-doped NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Marselin, M. Abila; Jaya, N. Victor

    2016-04-01

    In this paper, pure NiO and Cu-doped NiO nanoparticles are prepared by co-precipitation method. The electrical resistivity measurements by applying high pressure on pure NiO and Cu-doped NiO nanoparticles were reported. The Bridgman anvil set up is used to measure high pressures up to 8 GPa. These measurements show that there is no phase transformation in the samples till the high pressure is reached. The samples show a rapid decrease in electrical resistivity up to 5 GPa and it remains constant beyond 5 GPa. The electrical resistivity and the transport activation energy of the samples under high pressure up to 8 GPa have been studied in the temperature range of 273-433 K using diamond anvil cell. The temperature versus electrical resistivity studies reveal that the samples behave like a semiconductor. The activation energies of the charge carriers depend on the size of the samples.

  15. Effects of water plasma immersion ion implantation on surface electrochemical behavior of NiTi shape memory alloys in simulated body fluids

    NASA Astrophysics Data System (ADS)

    Liu, X. M.; Wu, S. L.; Chu, Paul K.; Chung, C. Y.; Chu, C. L.; Yeung, K. W. K.; Lu, W. W.; Cheung, K. M. C.; Luk, K. D. K.

    2007-01-01

    Water plasma immersion ion implantation (PIII) was conducted on orthopedic NiTi shape memory alloy to enhance the surface electrochemical characteristics. The surface composition of the NiTi alloy before and after H 2O-PIII was determined by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was utilized to determine the roughness and morphology of the NiTi samples. Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were carried out to investigate the surface electrochemical behavior of the control and H 2O-PIII NiTi samples in simulated body fluids (SBF) at 37 °C as well as the mechanism. The H 2O-PIII NiTi sample showed a higher breakdown potential ( Eb) than the control sample. Based on the AFM results, two different physical models with related equivalent electrical circuits were obtained to fit the EIS data and explain the surface electrochemical behavior of NiTi in SBF. The simulation results demonstrate that the higher resistance of the oxide layer produced by H 2O-PIII is primarily responsible for the improvement in the surface corrosion resistance.

  16. Germanium Resistance Thermometer For Subkelvin Temperatures

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.

    1993-01-01

    Improved germanium resistance thermometer measures temperatures as small as 0.01 K accurately. Design provides large area for electrical connections (to reduce electrical gradients and increase sensitivity to changes in temperatures) and large heat sink (to minimize resistance heating). Gold pads on top and bottom of germanium crystal distribute electrical current and flow of heat nearly uniformly across crystal. Less expensive than magnetic thermometers or superconducting quantum interference devices (SQUID's) otherwise used.

  17. The Development and Application of Simulative Insulation Resistance Tester

    NASA Astrophysics Data System (ADS)

    Jia, Yan; Chai, Ziqi; Wang, Bo; Ma, Hao

    2018-02-01

    The insulation state determines the performance and insulation life of electrical equipment, so it has to be judged in a timely and accurate manner. Insulation resistance test, as the simplest and most basic test of high voltage electric tests, can measure the insulation resistance and absorption ratio which are effective criterion of part or whole damp or dirty, breakdown, severe overheating aging and other insulation defects. It means that the electrical test personnel need to be familiar with the principle of insulation resistance test, and able to operate the insulation resistance tester correctly. At present, like the insulation resistance test, most of electrical tests are trained by physical devices with the real high voltage. Although this allows the students to truly experience the test process and notes on security, it also has certain limitations in terms of safety and test efficiency, especially for a large number of new staves needing induction training every year. This paper presents a new kind of electrical test training system based on the simulative device of dielectric loss measurement and simulative electrical testing devices. It can not only overcome the defects of current training methods, but also provide other advantages in economical efficiency and scalability. That makes it possible for the system to be allied in widespread.

  18. The Influence of Basic Physical Properties of Soil on its Electrical Resistivity Value under Loose and Dense Condition

    NASA Astrophysics Data System (ADS)

    Abidin, M. H. Z.; Ahmad, F.; Wijeyesekera, D. C.; Saad, R.

    2014-04-01

    Electrical resistivity technique has become a famous alternative tool in subsurface characterization. In the past, several interpretations of electrical resistivity results were unable to be delivered in a strong justification due to lack of appreciation of soil mechanics. Traditionally, interpreters will come out with different conclusion which commonly from qualitative point of view thus creating some uncertainty regarding the result reliability. Most engineers desire to apply any techniques in their project which are able to provide some clear justification with strong, reliable and meaningful results. In order to reduce the problem, this study presents the influence of basic physical properties of soil due to the electrical resistivity value under loose and dense condition. Two different conditions of soil embankment model were tested under electrical resistivity test and basic geotechnical test. It was found that the electrical resistivity value (ERV, ρ) was highly influenced by the variations of soil basic physical properties (BPP) with particular reference to moisture content (w), densities (ρbulk/dry), void ratio (e), porosity (η) and particle grain fraction (d) of soil. Strong relationship between ERV and BPP can be clearly presents such as ρ ∞ 1/w, ρ ∞ 1/ρbulk/dry, ρ ∞ e and ρ ∞ η. This study therefore contributes a means of ERV data interpretation using BPP in order to reduce ambiguity of ERV result and interpretation discussed among related persons such as geophysicist, engineers and geologist who applied these electrical resistivity techniques in subsurface profile assessment.

  19. Multiferroic properties of Indian natural ilmenite

    NASA Astrophysics Data System (ADS)

    Acharya, Truptimayee; Choudhary, R. N. P.

    2017-03-01

    In this communication, the main results and analysis of extensive studies of electric and magnetic characteristics (relative dielectric constant, tangent loss, electric polarization, electric transport, impedance, magnetic polarization and magneto-electric coupling coefficient) of Indian natural ilmenite (NI) have been presented. Preliminary structural analysis was studied by Rietveld refinement of room temperature XRD data, which suggests the rhombohedral crystal system of NI. Maxwell-Wagner mechanism was used to explain the nature of the frequency dependence of the relative dielectric constant. The impedance analysis reveals that below 270 °C, only the bulk contributes, whereas at higher temperature, both grain boundary and the bulk contribute to the resistive characteristics of the material. The magnitude of the depression angles of the semicircles in the Nyquist plot has been estimated. The correlated barrier hopping model has been used to explain the frequency dependence of ac conductivity of the material. The activation energy of the compound has been estimated using the temperature dependence of dc conductivity plot. The obtained polarization hysteresis loops manifest improper ferroelectric behavior of NI. The existence M-H hysteresis loop supports anti-ferromagnetism in the studied material. The magneto-electric voltage coupling coefficient is found to be 0.7 mV/cm Oe. Hence, other than dielectric constant, electric polarization, magnetization and magneto-electric studies support the existence of multiferroic properties in NI.

  20. Thermoelectric System Absorbing Waste Heat from a Steel Ladle

    NASA Astrophysics Data System (ADS)

    Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2018-06-01

    China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.

  1. Thermoelectric System Absorbing Waste Heat from a Steel Ladle

    NASA Astrophysics Data System (ADS)

    Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2018-01-01

    China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.

  2. Coaxial Electric Heaters

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2008-01-01

    Coaxial electric heaters have been conceived for use in highly sensitive instruments in which there are requirements for compact heaters but stray magnetic fields associated with heater electric currents would adversely affect operation. Such instruments include atomic clocks and magnetometers that utilize heated atomic-sample cells, wherein stray magnetic fields at picotesla levels could introduce systematic errors into instrument readings. A coaxial electric heater is essentially an axisymmetric coaxial cable, the outer conductor of which is deliberately made highly electrically resistive so that it can serve as a heating element. As in the cases of other axisymmetric coaxial cables, the equal magnitude electric currents flowing in opposite directions along the inner and outer conductors give rise to zero net magnetic field outside the outer conductor. Hence, a coaxial electric heater can be placed near an atomic-sample cell or other sensitive device. A coaxial electric heater can be fabricated from an insulated copper wire, the copper core of which serves as the inner conductor. For example, in one approach, the insulated wire is dipped in a colloidal graphite emulsion, then the emulsion-coated wire is dried to form a thin, uniform, highly electrically resistive film that serves as the outer conductor. Then the film is coated with a protective layer of high-temperature epoxy except at the end to be electrically connected to the power supply. Next, the insulation is stripped from the wire at that end. Finally, electrical leads from the heater power supply are attached to the exposed portions of the wire and the resistive film. The resistance of the graphite film can be tailored via its thickness. Alternatively, the film can be made from an electrically conductive paint, other than a colloidal graphite emulsion, chosen to impart the desired resistance. Yet another alternative is to tailor the resistance of a graphite film by exploiting the fact that its resistance can be changed permanently within about 10 percent by heating it to a temperature above 300 C. A coaxial heater, with electrical leads attached, that has been bent into an almost full circle for edge heating of a circular window is shown. (In the specific application, there is a requirement for a heated cell window, through which an optical beam enters the cell.)

  3. Kirchhoff and Ohm in action: solving electric currents in continuous extended media

    NASA Astrophysics Data System (ADS)

    Dolinko, A. E.

    2018-03-01

    In this paper we show a simple and versatile computational simulation method for determining electric currents and electric potential in 2D and 3D media with arbitrary distribution of resistivity. One of the highlights of the proposed method is that the simulation space containing the distribution of resistivity and the points of external applied voltage are introduced by means of digital images or bitmaps, which easily allows simulating any phenomena involving distributions of resistivity. The simulation is based on the Kirchhoff’s laws of electric currents and it is solved by means of an iterative procedure. The method is also generalised to account for media with distributions of reactive impedance. At the end of this work, we show an example of application of the simulation, consisting in reproducing the response obtained with the geophysical method of electric resistivity tomography in presence of soil cracks. This paper is aimed at undergraduate or graduated students interested in computational physics and electricity and also researchers involved in the area of continuous electric media, which could find a simple and powerful tool for investigation.

  4. An Integration of Geophysical Methods to Explore Buried Structures on the Bench and in the Field

    NASA Astrophysics Data System (ADS)

    Booterbaugh, A. P.; Lachhab, A.

    2011-12-01

    In the following study, an integration of geophysical methods and devices were implemented on the bench and in the field to accurately identify buried structures. Electrical resistivity and ground penetrating radar methods, including both a fabricated electrical resistivity apparatus and an electrical resistivity device were all used in this study. The primary goal of the study was to test the accuracy and reliability of the apparatus which costs a fraction of the price of a commercially sold resistivity instrument. The apparatus consists of four electrodes, two multimeters, a 12-volt battery, a DC to AC inverter and wires. Using this apparatus, an electrical current, is injected into earth material through the outer electrodes and the potential voltage is measured across the inner electrodes using a multimeter. The recorded potential and the intensity of the current can then be used to calculate the apparent resistivity of a given material. In this study the Wenner array, which consists of four equally spaced electrodes, was used due to its higher accuracy and greater resolution when investigating lateral variations of resistivity in shallow depths. In addition, the apparatus was used with an electrical resistivity device and a ground penetrating radar unit to explore the buried building foundation of Gustavus Adolphus Hall located on Susquehanna University Campus, Selinsgrove, PA. The apparatus successfully produced consistent results on the bench level revealing the location of small bricks buried under a soil material. In the summer of 2010, seventeen electrical resistivity transects were conducted on the Gustavus Adolphus site where and revealed remnants of the foundation. In the summer of 2011, a ground penetrating radar survey and an electrical resistivity tomography survey were conducted to further explore the site. Together these methods identified the location of the foundation and proved that the apparatus was a reliable tool for regular use on the bench and in the field.

  5. The nanocoherer: an electrically and mechanically resettable resistive switching device based on gold clusters assembled on paper

    NASA Astrophysics Data System (ADS)

    Minnai, Chloé; Mirigliano, Matteo; Brown, Simon A.; Milani, Paolo

    2018-03-01

    We report the realization of a resettable resistive switching device based on a nanostructured film fabricated by supersonic cluster beam deposition of gold clusters on plain paper substrates. Through the application of suitable voltage ramps, we obtain, in the same device, either a complex pattern of resistive switchings, or reproducible and stable switchings between low resistance and high resistance states, with an amplitude up to five orders of magnitude. Our device retains a state of internal resistance following the history of the applied voltage similar to that reported for memristors. The two different switching regimes in the same device are both stable, the transition between them is reversible, and it can be controlled by applying voltage ramps or by mechanical deformation of the substrate. The device behavior can be related to the formation, growth and breaking of junctions between the loosely aggregated gold clusters forming the nanostructured films. The fact that our cluster-assembled device is mechanically resettable suggests that it can be considered as the analog of the coherer: a switching device based on metallic powders used for the first radio communication system.

  6. Fitness Trade-Off Associated With Spinosad Resistance in Frankliniella occidentalis (Thysanoptera: Thripidae).

    PubMed

    Li, Xiaoyu; Wan, Yanran; Yuan, Guangdi; Hussain, Sabir; Xu, Baoyun; Xie, Wen; Wang, Shaoli; Zhang, Youjun; Wu, Qingjun

    2017-08-01

    Frankliniella occidentalis (Pergande) is an economically important pest of agricultural crops. High resistance has been detected in field populations of F. occidentalis against the insecticide spinosad. In this study, we compared life history traits, body sizes, and feeding behaviors (recorded via an electrical penetration graph) of spinosad-susceptible (Ivf03) and spinosad-resistant (NIL-R) near-isogenic lines of F. occidentalis. Life table analysis showed that NIL-R had reduced female longevity and reduced fecundity. The relative fitness of NIL-R (0.43) was less than half that of Ivf03. NIL-R individuals were smaller than Ivf03 individuals, both in body length and body width at every stage. The number and duration of feeding activities were significantly reduced in NIL-R, with the exception of total duration of long-ingestion probes. These results suggest that there is a fitness trade-off associated with spinosad resistance in F. occidentalis, and that the development of resistance in this pest species may be reduced by rotating spinosad with other pesticides lacking cross-resistance. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Resistance probe for energetic particle dosimetry

    DOEpatents

    Wampler, W.R.

    A probe for determining the energy and flux of particles in a plasma comprises a carbon film adapted to be exposed to the plasma, the film having an electrical resistance which is related to the number of particles impacting the film, contacts for passing an electrical current throught the film, and contacts for determining the electrical resistance of the film. An improved method for determining the energy or flux of particles in a plasma is also disclosed.

  8. Resistance probe for energetic particle dosimetry

    DOEpatents

    Wampler, William R.

    1988-01-01

    A probe for determining the energy and flux of particles in a plasma comprises a carbon film adapted to be exposed to the plasma, the film havinmg an electrical resistance which is related to the number of particles impacting the film, contacts for passing an electrical current through the film, and contacts for determining the electrical resistance of the film. An improved method for determining the energy or flux of particles in a plasma is also disclosed.

  9. Electrically Variable Resistive Memory Devices

    NASA Technical Reports Server (NTRS)

    Liu, Shangqing; Wu, Nai-Juan; Ignatiev, Alex; Charlson, E. J.

    2010-01-01

    Nonvolatile electronic memory devices that store data in the form of electrical- resistance values, and memory circuits based on such devices, have been invented. These devices and circuits exploit an electrically-variable-resistance phenomenon that occurs in thin films of certain oxides that exhibit the colossal magnetoresistive (CMR) effect. It is worth emphasizing that, as stated in the immediately preceding article, these devices function at room temperature and do not depend on externally applied magnetic fields. A device of this type is basically a thin film resistor: it consists of a thin film of a CMR material located between, and in contact with, two electrical conductors. The application of a short-duration, low-voltage current pulse via the terminals changes the electrical resistance of the film. The amount of the change in resistance depends on the size of the pulse. The direction of change (increase or decrease of resistance) depends on the polarity of the pulse. Hence, a datum can be written (or a prior datum overwritten) in the memory device by applying a pulse of size and polarity tailored to set the resistance at a value that represents a specific numerical value. To read the datum, one applies a smaller pulse - one that is large enough to enable accurate measurement of resistance, but small enough so as not to change the resistance. In writing, the resistance can be set to any value within the dynamic range of the CMR film. Typically, the value would be one of several discrete resistance values that represent logic levels or digits. Because the number of levels can exceed 2, a memory device of this type is not limited to binary data. Like other memory devices, devices of this type can be incorporated into a memory integrated circuit by laying them out on a substrate in rows and columns, along with row and column conductors for electrically addressing them individually or collectively.

  10. Electrical resistivity tomography for studying liquefaction induced by the May 2012 Emilia-Romagna earthquake (Mw = 6.1, northern Italy)

    NASA Astrophysics Data System (ADS)

    Giocoli, A.; Quadrio, B.; Bellanova, J.; Lapenna, V.; Piscitelli, S.

    2014-04-01

    This work shows the result of an electrical resistivity tomography (ERT) survey carried out for imaging and characterizing the shallow subsurface affected by the coseismic effects of the Mw = 6.1 Emilia-Romagna (northern Italy) earthquake that occurred on 20 May 2012. The most characteristic coseismic effects were ground failure, lateral spreading and liquefaction that occurred extensively along the paleo-Reno River in the urban areas of San Carlo and Mirabello (southwestern portion of Ferrara Province). In total, six electrical resistivity tomographies were performed and calibrated with surface geological surveys, exploratory boreholes and aerial photo interpretations. This was one of first applications of the electrical resistivity tomography method in investigating coseismic liquefaction.

  11. Low temperature resistivity studies of SmB6: Observation of two-dimensional variable-range hopping conductivity

    NASA Astrophysics Data System (ADS)

    Batkova, Marianna; Batko, Ivan; Gabáni, Slavomír; Gažo, Emil; Konovalova, Elena; Filippov, Vladimir

    2018-05-01

    We studied electrical resistance of a single-crystalline SmB6 sample with a focus on the region of the "low-temperature resistivity plateau". Our observations did not show any true saturation of the electrical resistance at temperatures below 3 K down to 70 mK. According to our findings, temperature dependence of the electrical conduction in a certain temperature interval above 70 mK can be decomposed into a temperature-independent term and a temperature-activated term that can be described by variable-range hopping formula for two-dimensional systems, exp [ -(T0 / T) 1 / 3 ]. Thus, our results indicate importance of hopping type of electrical transport in the near-surface region of SmB6.

  12. Optimization of La 2O 3-containing diopside based glass-ceramic sealants for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Goel, Ashutosh; Tulyaganov, Dilshat U.; Kharton, Vladislav V.; Yaremchenko, Aleksey A.; Eriksson, Sten; Ferreira, José M. F.

    We report on the optimization of La 2O 3-containing diopside based glass-ceramics (GCs) for sealant applications in solid oxide fuel cells (SOFC). Seven glass compositions were prepared by modifying the parent glass composition, Ca 0.8Ba 0.1MgAl 0.1La 0.1Si 1.9O 6. First five glasses were prepared by the addition of different amounts of B 2O 3 in a systematic manner (i.e. 2, 5, 10, 15, 20 wt.%) to the parent glass composition while the remaining two glasses were derived by substituting SrO for BaO in the glasses containing 2 wt.% and 5 wt.% B 2O 3. Structural and thermal behavior of the glasses was investigated by infrared spectroscopy (FTIR), density measurements, dilatometry and differential thermal analysis (DTA). Liquid-liquid amorphous phase separation was observed in B 2O 3-containing glasses. Sintering and crystallization behavior, microstructure, and properties of the GCs were investigated under different heat treatment conditions (800 and 850 °C; 1-300 h). The GCs with ≥5 wt.% B 2O 3 showed an abnormal thermal expansion behavior above 600 °C. The chemical interaction behavior of the glasses with SOFC electrolyte and metallic interconnects, has been investigated in air atmosphere at SOFC operating temperature. Thermal shock resistance and gas-tightness of GC sealants in contact with 8YSZ was evaluated in air and water. The total electrical resistance of a model cell comprising Crofer 22 APU and 8YSZ plates joined by a GC sealant has been examined by the impedance spectroscopy. Good matching of thermal expansion coefficients (CTE) and strong, but not reactive, adhesion to electrolyte and interconnect, in conjunction with a low level of electrical conductivity, indicate that the investigated GCs are suitable candidates for further experimentation as SOFC sealants.

  13. Anomalous physical properties of Heusler-type Co2Cr (Ga,Si) alloys and thermodynamic study on reentrant martensitic transformation

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Nagasako, Makoto; Kataoka, Mitsuo; Umetsu, Rie Y.; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2015-03-01

    Electronic, magnetic, and thermodynamic properties of Co2Cr(Ga,Si) -based shape-memory alloys, which exhibit reentrant martensitic transformation (RMT) behavior, were studied experimentally. For electric resistivity (ER), an inverse (semiconductor-like) temperature dependence in the parent phase was found, along with anomalous behavior below its Curie temperature. A pseudobinary phase diagram was determined, which gives a "martensite loop" clearly showing the reentrant behavior. Differential scanning calorimetry and specific-heat measurements were used to derive the entropy change Δ S between martensite and parent phases. The temperature dependence of the derived Δ S was analyzed thermodynamically to confirm the appearances of both the RMT and normal martensitic transformation. Detailed studies on the specific heat in martensite and parent phases at low temperatures were also conducted.

  14. Transfer of Wire Arc-Sprayed Metal Coatings onto Plastic Parts

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch.; Ochotta, P.

    2018-01-01

    By means of In-Mold-Metal-Spraying (IMMS), metal coatings deposited by means of arc spraying process (ASP) can be transferred onto plastic parts during injection molding, thus realizing an efficient production of metallized plastic parts. Parts produced by means of IMMS can be used in electrical applications. In the current study, the electrical resistivity of coatings applied with different feedstock materials was determined. As a starting point, pressurized air is used as atomizing gas for ASP. In contrast to Zn coatings, Cu coatings applied with pressurized air exhibit a significantly higher electrical resistivity in comparison with massive material. One possible reason is the more pronounced oxidation of Cu particles during ASP. Therefore, N2 and a mixture of N2 and H2 were used as atomizing gas. As a result, the electrical resistivity of coatings applied by means of IMMS could be significantly reduced. Furthermore, standoff distance, current and pressure of the atomizing gas were varied to investigate the influence of these process parameters on the electrical resistivity of Zn coatings using a full factorial experiment design with center point. It can be observed that the electrical resistivity of the Zn coatings increases with decreasing current and increasing standoff distance and pressure.

  15. Transfer of Wire Arc-Sprayed Metal Coatings onto Plastic Parts

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch.; Ochotta, P.

    2017-12-01

    By means of In-Mold-Metal-Spraying (IMMS), metal coatings deposited by means of arc spraying process (ASP) can be transferred onto plastic parts during injection molding, thus realizing an efficient production of metallized plastic parts. Parts produced by means of IMMS can be used in electrical applications. In the current study, the electrical resistivity of coatings applied with different feedstock materials was determined. As a starting point, pressurized air is used as atomizing gas for ASP. In contrast to Zn coatings, Cu coatings applied with pressurized air exhibit a significantly higher electrical resistivity in comparison with massive material. One possible reason is the more pronounced oxidation of Cu particles during ASP. Therefore, N2 and a mixture of N2 and H2 were used as atomizing gas. As a result, the electrical resistivity of coatings applied by means of IMMS could be significantly reduced. Furthermore, standoff distance, current and pressure of the atomizing gas were varied to investigate the influence of these process parameters on the electrical resistivity of Zn coatings using a full factorial experiment design with center point. It can be observed that the electrical resistivity of the Zn coatings increases with decreasing current and increasing standoff distance and pressure.

  16. Electrical Resistance as a NDE Technique to Monitor Processing and Damage Accumulation in SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory N.; Xia, Zhenhai

    2008-01-01

    Ceramic matrix composites are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems. The employment of these materials in such applications is limited by the ability to process components reliable and to accurately monitor and predict damage evolution that leads to failure under stressed-oxidation conditions. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. Electrical resistance of SiC/SiC composites is one technique that shows special promise towards this end. Since both the matrix and the fibers are conductive, changes in matrix or fiber properties should relate to changes in electrical conductivity along the length of a specimen or part. Initial efforts to quantify the electrical resistance of different fiber and different matrix SiC/SiC composites will be presented. Also, the effect of matrix cracking on electrical resistivity for several composite systems will be presented. The implications towards electrical resistance as a technique applied to composite processing, damage detection, and life-modeling will be discussed.

  17. The electrical resistivity and percolation threshold of MWCNTs/polymer composites filled with a few aligned carbonyl iron particles

    NASA Astrophysics Data System (ADS)

    Dong, Shuai; Wang, Xiaojie

    2018-03-01

    Conductive polymer composites (CPCs) consist of multi-walled carbon nanotubes (MWCNTs), a few carbonyl iron particles (CIPs) and polydimethylsiloxane (PDMS) are fabricated under a moderate magnetic field. The alignment of CIPs will change the structure of MWCNT network, and consequently the electrical properties of CPCs. The volume fraction of CIPs is fixed at 0.08 vol% at which CIPs will not directly participate in electric conduction. The electrical resistivity of CPCs and the changes of resistance versus strain are evaluated at various MWCNT volume fractions. The testing results show that a percolation threshold as low as 0.19 vol% is obtained due to the effect of aligned CIPs, comparing with 0.39 vol% of isotropic MWCNT/CIP/PDMS (prepared without magnetic field). Meanwhile, the anisotropic structure reduces the electrical resistivity by more than 80% when the MWCNT volume fractions is over the percolation threshold.

  18. Single crystal growth and physical properties of the new ternary compound Eu2Mg4Si3

    NASA Astrophysics Data System (ADS)

    Numakura, Ryosuke; Iizuka, Ryosuke; Michimura, Shinji; Katano, Susumu; Kosaka, Masashi

    2018-05-01

    We have studied the magnetic and electrical properties of new ternary europium magnesium silicide Eu2Mg4Si3. The single crystalline Eu2Mg4Si3 has been prepared by the Mg self-flux method. The compound crystalizes in the hexagonal Hf2Co4P3-type structure with space group P 6 bar 2 m with unit cell parameters a = 14.78 (3) Å and c = 4.434 (6) Å . Magnetic, electrical, and thermal properties indicate that the system undergoes two successive phase transitions, occurring at TN1 = 9.6 K and TN2 = 8.4 K . The estimated effective magnetic moment is close to the moment of free Eu2+ ion. The electrical resistivity data ρ (T) for Eu2Mg4Si3 show a metallic-like behavior from room temperature down to about 100 K. However, the ρ (T) data exhibit a notable upturn below 80 K and a maximum around TN1 and then suddenly decrease with decreasing temperature. These features are strongly suppressed by applying magnetic fields and a metallic temperature dependence eventually exhibits over the whole temperature range in a magnetic field of 30 kOe. Such behavior is observed in some magnetoresistive compounds.

  19. Investigation of the heating behavior of carbide-bonded graphene coated silicon wafer used for hot embossing

    NASA Astrophysics Data System (ADS)

    Yang, Gao; Li, Lihua; Lee, Wing Bun; Ng, Man Cheung; Chan, Chang Yuen

    2018-03-01

    A recently developed carbide-bonded graphene (CBG) coated silicon wafer was found to be an effective micro-patterned mold material for implementing rapid heating in hot embossing processes owing to its superior electrical and thermal conductivity, in addition to excellent mechanical properties. To facilitate the achievement of precision temperature control in the hot embossing, the heating behavior of a CBG coated silicon wafer sample was experimentally investigated. First, two groups of controlled experiments were conducted for quantitatively evaluating the influence of the main factors such as the vacuum pressure and gaseous environment (vacuum versus nitrogen) on its heating performance. The electrical and thermal responses of this sample under a voltage of 60 V were then intensively analyzed, and revealed that it had somewhat semi-conducting properties. Further, we compared its thermal profiles under different settings of the input voltage and current limiting threshold. Moreover, the strong temperature dependence of electrical resistance for this material was observed and determined. Ultimately, the surface temperature of CBG coated silicon wafer could be as high as 1300 ℃, but surprisingly the graphene coating did not detach from the substrate under such an elevated temperature due to its strong thermal coupling with the silicon wafer.

  20. Mechanism for detecting NAPL using electrical resistivity imaging.

    PubMed

    Halihan, Todd; Sefa, Valina; Sale, Tom; Lyverse, Mark

    2017-10-01

    The detection of non-aqueous phase liquid (NAPL) related impacts in freshwater environments by electrical resistivity imaging (ERI) has been clearly demonstrated in field conditions, but the mechanism generating the resistive signature is poorly understood. An electrical barrier mechanism which allows for detecting NAPLs with ERI is tested by developing a theoretical basis for the mechanism, testing the mechanism in a two-dimensional sand tank with ERI, and performing forward modeling of the laboratory experiment. The NAPL barrier theory assumes at low bulk soil NAPL concentrations, thin saturated NAPL barriers can block pore throats and generate a detectable electrically resistive signal. The sand tank experiment utilized a photographic technique to quantify petroleum saturation, and to help determine whether ERI can detect and quantify NAPL across the water table. This experiment demonstrates electrical imaging methods can detect small quantities of NAPL of sufficient thickness in formations. The bulk volume of NAPL is not the controlling variable for the amount of resistivity signal generated. The resistivity signal is primarily due to a zone of high resistivity separate phase liquid blocking current flow through the fully NAPL saturated pores spaces. For the conditions in this tank experiment, NAPL thicknesses of 3.3cm and higher in the formation was the threshold for detectable changes in resistivity of 3% and greater. The maximum change in resistivity due to the presence of NAPL was an increase of 37%. Forward resistivity models of the experiment confirm the barrier mechanism theory for the tank experiment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Intermetallic Nickel-Titanium Alloys for Oil-Lubricated Bearing Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Pepper, S. V.; Noebe, R.; Hull, D. R.; Glennon, G.

    2009-01-01

    An intermetallic nickel-titanium alloy, NITINOL 60 (60NiTi), containing 60 wt% nickel and 40 wt% titanium, is shown to be a promising candidate material for oil-lubricated rolling and sliding contact applications such as bearings and gears. NiTi alloys are well known and normally exploited for their shape memory behavior. When properly processed, however, NITINOL 60 exhibits excellent dimensional stability and useful structural properties. Processed via high temperature, high-pressure powder metallurgy techniques or other means, NITINOL 60 offers a broad combination of physical properties that make it unique among bearing materials. NITINOL 60 is hard, electrically conductive, highly corrosion resistant, less dense than steel, readily machined prior to final heat treatment, nongalling and nonmagnetic. No other bearing alloy, metallic or ceramic encompasses all of these attributes. Further, NITINOL 60 has shown remarkable tribological performance when compared to other aerospace bearing alloys under oil-lubricated conditions. Spiral orbit tribometer (SOT) tests were conducted in vacuum using NITINOL 60 balls loaded between rotating 440C stainless steel disks, lubricated with synthetic hydrocarbon oil. Under conditions considered representative of precision bearings, the performance (life and friction) equaled or exceeded that observed with silicon nitride or titanium carbide coated 440C bearing balls. Based upon this preliminary data, it appears that NITINOL 60, despite its high titanium content, is a promising candidate alloy for advanced mechanical systems requiring superior and intrinsic corrosion resistance, electrical conductivity and nonmagnetic behavior under lubricated contacting conditions.

  2. The effect of mechanical stress on electric resistance of nanographite-epoxy composites

    NASA Astrophysics Data System (ADS)

    Vovchenko, L.; Lazarenko, A.; Matzui, L.; Zhuravkov, A.

    2012-03-01

    The in-plane electric resistance Ra of composite materials (CMs) thermoexfoliated graphite(TEG)-epoxy resin(ED) under compression along compacting C-axis has been investigated by four-probe method. TEG content was 5-75 wt%. It was shown that specimens prepared by cold pressing are denser and reveal lower values of electric resistivity in comparison with specimens prepared by pouring. It was found that compression of the specimens leads to plastic deformation of specimens (εpl) and essential irreversible decrease of electric resistance during the first cycle of loading (up to 50 MPa), especially for the poured specimens with low density. Within the proposed model the contact resistance Rk between graphite particles in CM has been evaluated and it was shown that it increased with the decrease in TEG content in CM and depends on compacting method of CMs and the dispersity of graphite filler.

  3. Conductive Textiles via Vapor-Phase Polymerization of 3,4-Ethylenedioxythiophene.

    PubMed

    Ala, Okan; Hu, Bin; Li, Dapeng; Yang, Chen-Lu; Calvert, Paul; Fan, Qinguo

    2017-08-30

    We fabricated electrically conductive textiles via vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) layers on cotton, cotton/poly(ethylene terephthalate) (PET), cotton/Lycra, and PET fabrics. We then measured the electrical resistivity values of such PEDOT-coated textiles and analyzed the effect of water treatment on the electrical resistivity. Additionally, we tested the change in the electrical resistance of the conductive textiles under cyclic stretching and relaxation. Last, we characterized the uniformity and morphology of the conductive layer formed on the fabrics using scanning electron microscopy and electron-dispersive X-ray spectroscopy.

  4. Research on HOPE communication and data processing equipment

    NASA Astrophysics Data System (ADS)

    Yamamoto, Satoru; Kikuchi, Toshio

    1992-08-01

    An overview of the research on heat-resisting antenna is presented. Candidate heat-resisting antennas which were selected as the result of review on seven kinds of antenna are the antennas of micro strip, cavity, and horn types. Heat resistance characteristics of electric power supplying section (connectors) of heat-resisting antenna were studied. Heat cycling test and heat shock tests were conducted on the subject plugs and it was confirmed that they can be usable at - 80 C to + 200 C against - 65 C to + 125 C for the existing plugs. Fundamental electric data such as antenna pattern were acquired mating trial produced components simulating electric characteristics of heat-resisting antenna and trial-produced ceramic tiles.

  5. Electrically resistive coating for remediation (regeneration) of a diesel particulate filter and method

    DOEpatents

    Phelps, Amanda C [Malibu, CA; Kirby, Kevin K [Calabasas Hills, CA; Gregoire, Daniel J [Thousand Oaks, CA

    2012-02-14

    A resistively heated diesel particulate filter (DPF). The resistively heated DPF includes a DPF having an inlet surface and at least one resistive coating on the inlet surface. The at least one resistive coating is configured to substantially maintain its resistance in an operating range of the DPF. The at least one resistive coating has a first terminal and a second terminal for applying electrical power to resistively heat up the at least one resistive coating in order to increase the temperature of the DPF to a regeneration temperature. The at least one resistive coating includes metal and semiconductor constituents.

  6. Concentration dependence of electrical resistivity of binary liquid alloy HgZn: Ab-initio study

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2013-06-01

    The electrical resistivity of HgZn liquid alloy has been made calculated using Troullier and Martins ab-initio pseudopotential as a function of concentration. Hard sphere diameters of Hg and Zn are obtained through the inter-ionic pair potential have been used to calculate partial structure factors. Considering the liquid alloy to be a ternary mixture Ziman's formula for calculating the resistivity of binary liquid alloys, modified for complex formation, has been used. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys.

  7. Modeling the electrical resistance of gold film conductors on uniaxially stretched elastomeric substrates

    NASA Astrophysics Data System (ADS)

    Cao, Wenzhe; Görrn, Patrick; Wagner, Sigurd

    2011-05-01

    The electrical resistance of gold film conductors on polydimethyl siloxane substrates at stages of uniaxial stretching is measured and modeled. The surface area of a gold conductor is assumed constant during stretching so that the exposed substrate takes up all strain. Sheet resistances are calculated from frames of scanning electron micrographs by numerically solving for the electrical potentials of all pixels in a frame. These sheet resistances agree sufficiently well with values measured on the same conductors to give credence to the model of a stretchable network of gold links defined by microcracks.

  8. Electrical Resistance of Ceramic Matrix Composites for Damage Detection and Life-Prediction

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory N.; Xia, Zhenhai

    2008-01-01

    The electric resistance of woven SiC fiber reinforced SiC matrix composites were measured under tensile loading conditions. The results show that the electrical resistance is closely related to damage and that real-time information about the damage state can be obtained through monitoring of the resistance. Such self-sensing capability provides the possibility of on-board/in-situ damage detection or inspection of a component during "down time". The correlation of damage with appropriate failure mechanism can then be applied to accurate life prediction for high-temperature ceramic matrix composites.

  9. Silicon switching transistor with high power and low saturation voltage

    NASA Technical Reports Server (NTRS)

    Stonebraker, E.; Stoneburner, D.; Ferree, H.

    1973-01-01

    Assembly of two individually encapsulated silicon-chip transistors produces silicon power-transistor that has low electrical resistance and low thermal impedance. Electrical resistance and thermal impedance are low because of short lead lengths, and external contact surfaces are plated to reduce resistance at interfaces.

  10. Two different electrical properties can improve transoceanic cable-route mapping

    USGS Publications Warehouse

    Wynn, J.; McGinnis, T.

    2001-01-01

    Induced polarization (IP) measurements made in the marine environment were investigated to map and remotely characterize the top 6-10 meters of the seafloor. The continuous resistivity profiling with cone-penetrometer tests, providing important information to engineers planning transoceanic cable routes, was also described. The IP effect and resistivity were identified as the two electric properties to improve transoceanic cable-route mapping. The measurement of IP and resistivity was found to depend on electrical current.

  11. Electrical Resistivity of Vanadium and Zirconium.

    DTIC Science & Technology

    1982-12-01

    general agreement on the temperature depodeace of the electrical resistivity. There are little good data from 300 VI to 1200 K. The recommended values...liquid region, are based on the compromise between the only two data sets available. due to Seydel and Fucks [91 (data set 1) and to Gathers et al. (101...555-600 (1928). 8. Block. F., ’The Electrical Resistance Law at Low Temperatures,’ Z. Phys.. 12.208-14 (1930). -𔄃. Seydel, U. and Fucke , W

  12. Switchable diode effect in oxygen vacancy-modulated SrTiO3 single crystal

    NASA Astrophysics Data System (ADS)

    Pan, Xinqiang; Shuai, Yao; Wu, Chuangui; Luo, Wenbo; Sun, Xiangyu; Zeng, Huizhong; Bai, Xiaoyuan; Gong, Chaoguan; Jian, Ke; Zhang, Lu; Guo, Hongliang; Tian, Benlang; Zhang, Wanli

    2017-09-01

    SrTiO3 (STO) single crystal wafer was annealed in vacuum, and co-planar metal-insulator-metal structure of Pt/Ti/STO/Ti/Pt were formed by sputtering Pt/Ti electrodes onto the surface of STO after annealing. The forming-free resistive switching behavior with self-compliance property was observed in the sample. The sample showed switchable diode effect, which is explained by a simple model that redistribution of oxygen vacancies (OVs) under the external electric field results in the formation of n-n+ junction or n+-n junction (n donated n-type semiconductor; n+ donated heavily doped n-type semiconductor). The self-compliance property is also interpreted by the formation of n-n+/n+-n junction caused by the migration of the OVs under the electric field.

  13. Electrical transport through individual nanowires with transverse grain boundaries

    NASA Astrophysics Data System (ADS)

    Xue, X. Y.; Feng, P.; Wang, C.; Chen, Y. J.; Wang, Y. G.; Wang, T. H.

    2006-07-01

    V2O4•0.25H2O nanowires are synthesized via hydrothermal route. The nanowires are of metastable phase, and transverse grain boundaries are observed in their microstructures. Transport through individual V2O4•0.25H2O nanowires shows nonlinear current-voltage (I-V) characteristics in the bias range of -3to3V. The resistance rapidly decreases from 2.54to0.5MΩ as the bias is raised from 0to1V. Such behaviors can be attributed to the presence of the barrier at the transverse grain boundary. By analyzing the I-V curves at various temperatures, the effective barrier height is estimated to be about 0.13eV. Our results provide important information about how the microstructure mismatch affects the electrical properties.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.

    Lithium-ion batteries are currently the state-of-the-art power sources for a variety of applications, from consumer electronic devices to electric-drive vehicles (EDVs). Being an energized component, failure of the battery is an essential concern, which can result in rupture, smoke, fire, or venting. The failure of Lithium-ion batteries can be due to a number of external abusive conditions (impact/crush, overcharge, thermal ramp, etc.) or internal conditions (internal short circuits, excessive heating due to resistance build-up, etc.), of which the mechanical-abuse-induced short circuit is a very practical problem. In order to better understand the behavior of Lithium-ion batteries under mechanical abuse, amore » coupled modeling methodology encompassing the mechanical, thermal and electrical response has been developed for predicting short circuit under external crush.« less

  15. Local control of the resistivity of graphene through mechanically induced switching of a ferroelectric superlattice

    NASA Astrophysics Data System (ADS)

    Humed Yusuf, Mohammed; Gura, Anna; Du, Xu; Dawber, Matthew

    2017-06-01

    We exploit nanoscale mechanically induced switching of an artificially layered ferroelectric material, used as an active substrate, to achieve the local manipulation of the electrical transport properties of graphene. In Graphene Ferroelectric Field Effect Transistors (GFeFETs), the graphene channel’s charge state is controlled by an underlying ferroelectric layer. The tip of an atomic force microscope (AFM) can be used to mechanically ‘write’ nanoscale regions of the graphene channel and ‘read’ off the modulation in the transport behavior. The written features associated with the switching of ferroelectric domains remain polarized until an electrical reset operation is carried out. Our result provides a method for flexible and reversible nano-scale manipulation of the transport properties of a broad class of 2D materials.

  16. Electrical Resistivity Imaging Below Nuclear Waste Tank Farms at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Rucker, D. F.; Levitt, M. T.

    2006-12-01

    The Hanford Site, a Department of Energy nuclear processing facility in eastern Washington, contains a complex series of radiological liquid waste disposal and storage facilities. The primary method of interim storage is the use of large single-shelled steel tanks with capacities of up to 3790 m3 (1 million gallons). The tanks are organized below ground into tank farms, with about 12 tanks per farm. The liquid waste within the tanks is primarily comprised of inorganic salts with minor constituents of heavy metals and radiological metals. The electrical properties of the radiological waste are significantly different to that of the surrounding engineered fill and native geologic formations. Over the past 60 years since the earliest tanks have been in use, many have been known to leak. An electrical resistivity survey was conducted within a tank farm to map the extent of the plumes resulting from historic leaks. Traditional surface-based electrical resistivity surveys resulted in unusable data due to the significant subsurface infrastructure that included a network of delivery pipes, wells, fences, and electrical discharge sources . HGI adapted the resistivity technique to include the site infrastructure as transceivers to augment data density and geometry. The results show a distribution of low resistivity values within the farm in areas that match known historic leak sites. The addition of site infrastructure as sensors demonstrates that the electrical resistivity technique can be used in highly industrial sites.

  17. An alternative gas sensor material: Synthesis and electrical characterization of SmCoO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, Carlos Rafael; Delgado, Emilio; Santillan, Gloria

    2007-01-18

    Single-phase perovskite SmCoO{sub 3} was prepared by a wet-chemical synthesis technique using metal-nitrates and citric acid; after its characterization by thermal analyses and X-ray diffraction, sintering at 900 deg. C in air, gave single phase and well crystallized powders. The powders were mixed with an organic solvent to prepare a slurry, which was deposited on alumina substrates as thick films, using the screen-printing technique. Electrical and gas sensing properties of sintered SmCoO{sub 3} films were investigated in air, O{sub 2} and CO{sub 2}, the results show that sensitivity reached a maximum value at 420 deg. C, for both gases. Dynamicmore » tests revealed a better behavior of SmCoO{sub 3} in CO{sub 2} than O{sub 2}, due to a fast response and a larger electrical resistance change to this gas. X-ray diffraction made on powders after electrical characterization in gases, showed that perovskite-type structure was preserved.« less

  18. Finite element analysis and simulation of rheological properties of bulk molding compound (BMC)

    NASA Astrophysics Data System (ADS)

    Ergin, M. Fatih; Aydin, Ismail

    2013-12-01

    Bulk molding compound (BMC) is one of the important composite materials with various engineering applications. BMC is a thermoset plastic resin blend of various inert fillers, fiber reinforcements, catalysts, stabilizers and pigments that form a viscous, molding compound. Depending on the end-use application, bulk molding compounds are formulated to achieve close dimensional control, flame and scratch resistance, electrical insulation, corrosion and stain resistance, superior mechanical properties, low shrink and color stability. Its excellent flow characteristics, dielectric properties, and flame resistance make this thermoset material well-suited to a wide variety of applications requiring precision in detail and dimensions as well as high performance. When a BMC is used for these purposes, the rheological behavior and properties of the BMC is the main concern. In this paper, finite element analysis of rheological properties of bulk molding composite material was studied. For this purpose, standard samples of composite material were obtained by means of uniaxial hot pressing. 3 point flexural tests were then carried out by using a universal testing machine. Finite element analyses were then performed with defined material properties within a specific constitutive material behavior. Experimental and numerical results were then compared. Good correlation between the numerical simulation and the experimental results was obtained. It was expected with this study that effects of various process parameters and boundary conditions on the rheological behavior of bulk molding compounds could be determined by means of numerical analysis without detailed experimental work.

  19. On conductivity changes in shocked potassium chloride

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.; Townsend, D.; Braithwaite, M.

    2005-06-01

    A previous work has reported that shock loading of ionic crystals produces an induced polarization and changes in electrical conductivity. However, previous measurements recorded an integrated electrical signal comprising the induced electrical field and that due to current flow. For this reason a differential system was designed to separate these effects that was adapted from that used in the investigation of the conductivity of hydrogen under shock. The measurement removes voltages produced in the shock-induced electrical field, allowing determination of those resulting from resistance changes. Although the mechanical response of potassium chloride to shock has been studied extensively, the electrical response is less studied. Here, experiments are reported in which it is shocked to various stresses in order to observe conductivity changes. The range of stresses induced includes several mechanical thresholds, including the elastic-plastic transition, the B1:B2 phase transformation, and the overdriving of the shock faster than the elastic wave. The behavior observed when single crystal and targets pressed from granular material (to close to full density) are shocked around each of these thresholds is presented. The effects of loading to a particular stress in a single step or in multiple steps are discussed.

  20. Resistive spectroscopy coupled with non-contacting oscillator for detecting discontinuous-continuous transition of metallic films

    NASA Astrophysics Data System (ADS)

    Nakamura, N.; Ogi, H.

    2017-09-01

    In spectroscopic measurements, one measures responses of specimens to oscillating fields (including electric, magnetic, and stress fields) at different frequencies for characterizing the samples. In contrast, we develop spectroscopy where the response (loss) is measured by changing the electric resistance, named the resistive spectroscopy. In the resistive spectroscopy, an energy-loss peak appears when the resistance is changed. We here apply it for studying the morphological change of thin films. When a metallic material is deposited on a substrate, the morphological transition from discontinuous islands to the continuous film occurs. It accompanies a drastic change in the resistance of the deposited material because of the transition from an insulator to a conductor. We find that the energy-loss peak appears at the transition moment during deposition of Ag. The resistive spectroscopy we develop uses no electrodes; it adopts the electric field generated by a piezoelectric material vibrating at its resonant frequency beneath the substrate. It is observed that the full width at half maximum (FWHM) of the resonance shows the peak during the deposition for high resistance substrates. The FWHM peak fails to be found for low resistance substrates, but it appears when the resonance frequency is increased. We propose an electrical-circuit model for explaining these observations.

  1. Experimental and numerical investigations of wire bending by linear winding of rectangular tooth coils

    NASA Astrophysics Data System (ADS)

    Komodromos, A.; Tekkaya, A. E.; Hofmann, J.; Fleischer, J.

    2018-05-01

    Since electric motors are gaining in importance in many fields of application, e.g. hybrid electric vehicles, optimization of the linear coil winding process greatly contributes to an increase in productivity and flexibility. For the investigation of the forming behavior of the winding wire the material behavior is characterized in different experimental setups. Numerical examinatons of the linear winding process are carried out in a case study for a rectangular bobbin in order to analyze the influence of forming parameters on the resulting properties of the wound coil. Besides the numerical investigation of the linear winding method by using the finite element method (FEM), a multi-body dynamics (MBD) simulation is carried out. The multi-body dynamics simulation is necessary to represent the movement of the bodies as well as the connection of the components during winding. The finite element method is used to represent the material behavior of the copper wire and the plastic strain distribution within the wire. It becomes clear that the MBD simulation is not sufficient for analyzing the process and the wire behavior in its entirety. Important parameters that define the final coil properties cannot be analyzed in the manner of a precise manifestation, e.g. the clearance between coil bobbin and wire as well as the wire deformation behavior in form of a diameter reduction which negatively affects the ohmic resistance. Finally, the numerical investigations are validated experimentally by linear winding tests.

  2. Apparatus for measuring Seebeck coefficient and electrical resistivity of small dimension samples using infrared microscope as temperature sensor.

    PubMed

    Jaafar, W M N Wan; Snyder, J E; Min, Gao

    2013-05-01

    An apparatus for measuring the Seebeck coefficient (α) and electrical resistivity (ρ) was designed to operate under an infrared microscope. A unique feature of this apparatus is its capability of measuring α and ρ of small-dimension (sub-millimeter) samples without the need for microfabrication. An essential part of this apparatus is a four-probe assembly that has one heated probe, which combines the hot probe technique with the Van der Pauw method for "simultaneous" measurements of the Seebeck coefficient and electrical resistivity. The repeatability of the apparatus was investigated over a temperature range of 40 °C-100 °C using a nickel plate as a standard reference. The results show that the apparatus has an uncertainty of ±4.9% for Seebeck coefficient and ±5.0% for electrical resistivity. The standard deviation of the apparatus against a nickel reference sample is -2.43 μVK(-1) (-12.5%) for the Seebeck coefficient and -0.4 μΩ cm (-4.6%) for the electrical resistivity, respectively.

  3. Study on strength estimation of soil cement used in the embedded pile method by electrical resistivity measurement

    NASA Astrophysics Data System (ADS)

    Mochida, Y.; Sakurai, Y.; Indra, H.; Karimi, A. L.

    2017-11-01

    Problems caused by poor quality control and quality assurance of the pre-boring embedded pile construction, such as on domestic apartment house is still occurring nowadays. An adequate consideration for invisible risks inside or below the ground is important in pile foundation construction therefore the demand for advanced and reliable quality assurance is increase in the future. In this research, to understand the quality of the construction at early stage, the compressive strength of cement-soil mixture of pile construction after 28 days is estimated using electrical resistivity value of the mixture. More accurate measurement for electrical resistivity value is conducted by inserting the electrodes without using potassium chloride solution as a catalyst. The result showed that there is a certain tendency in the electric resistivity value at the early age regarding to the type of soil (sand, clay) mixed in. The most accurate estimation was achieved from the electric resistivity value at the first day and several days onwards, and from the compressive strength after 3 days.

  4. Fully Electrical Modeling of Thermoelectric Generators with Contact Thermal Resistance Under Different Operating Conditions

    NASA Astrophysics Data System (ADS)

    Siouane, Saima; Jovanović, Slaviša; Poure, Philippe

    2017-01-01

    The Seebeck effect is used in thermoelectric generators (TEGs) to supply electronic circuits by converting the waste thermal into electrical energy. This generated electrical power is directly proportional to the temperature difference between the TEG module's hot and cold sides. Depending on the applications, TEGs can be used either under constant temperature gradient between heat reservoirs or constant heat flow conditions. Moreover, the generated electrical power of a TEG depends not only on these operating conditions, but also on the contact thermal resistance. The influence of the contact thermal resistance on the generated electrical power have already been extensively reported in the literature. However, as reported in Park et al. (Energy Convers Manag 86:233, 2014) and Montecucco and Knox (IEEE Trans Power Electron 30:828, 2015), while designing TEG-powered circuit and systems, a TEG module is mostly modeled with a Thévenin equivalent circuit whose resistance is constant and voltage proportional to the temperature gradient applied to the TEG's terminals. This widely used simplified electrical TEG model is inaccurate and not suitable under constant heat flow conditions or when the contact thermal resistance is considered. Moreover, it does not provide realistic behaviour corresponding to the physical phenomena taking place in a TEG. Therefore, from the circuit designer's point of view, faithful and fully electrical TEG models under different operating conditions are needed. Such models are mainly necessary to design and evaluate the power conditioning electronic stages and the maximum power point tracking algorithms of a TEG power supply. In this study, these fully electrical models with the contact thermal resistance taken into account are presented and the analytical expressions of the Thévenin equivalent circuit parameters are provided.

  5. Multiscale modeling of localized resistive heating in nanocrystalline metals subjected to electropulsing

    NASA Astrophysics Data System (ADS)

    Zhao, Jingyi; Wang, G.-X.; Dong, Yalin; Ye, Chang

    2017-08-01

    Many electrically assisted processes have been reported to induce changes in microstructure and metal plasticity. To understand the physics-based mechanisms behind these interesting phenomena, however, requires an understanding of the interaction between the electric current and heterogeneous microstructure. In this work, multiscale modeling of the electric current flow in a nanocrystalline material is reported. The cellular automata method was used to track the nanoscale grain boundaries in the matrix. Maxwell's electromagnetic equations were solved to obtain the electrical potential distribution at the macro scale. Kirchhoff's circuit equation was solved to obtain the electric current flow at the micro/nano scale. The electric current distribution at two representative locations was investigated. A significant electric current concentration was observed near the grain boundaries, particularly near the triple junctions. This higher localized electric current leads to localized resistive heating near the grain boundaries. The electric current distribution could be used to obtain critical information such as localized resistive heating rate and extra system free energy, which are critical for explaining many interesting phenomena, including microstructure evolution and plasticity enhancement in many electrically assisted processes.

  6. Electrical resistivity tomography for studying liquefaction induced by the May 2012 Emilia-Romagna earthquake (Mw = 6.1, North Italy)

    NASA Astrophysics Data System (ADS)

    Giocoli, A.; Quadrio, B.; Bellanova, J.; Lapenna, V.; Piscitelli, S.

    2013-10-01

    This work shows the result of an Electrical Resistivity Tomography survey carried out for imaging and characterizing the shallow subsurface affected by the coseismic effects of the Mw = 6.1 Emilia-Romagna (North Italy) earthquake occurred on 20 May 2012. The most characteristic coseismic effects were ground failure, lateral spreading and liquefaction that occurred extensively along the paleo-Reno river in the urban areas of San Carlo, a hamlet of Sant'Agostino municipality, and of Mirabello (south-western portion of the Ferrara Province). Totally, six Electrical Resistivity Tomography were performed and calibrated with surface geological surveys, exploratory borehole and aerial photo interpretations. This was one of the first applications of the Electrical Resistivity Tomography method in investigating coseismic liquefaction.

  7. Note: Triggering behavior of a vacuum arc plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, C. H., E-mail: lanchaohui@163.com; Long, J. D.; Zheng, L.

    2016-08-15

    Axial symmetry of discharge is very important for application of vacuum arc plasma. It is discovered that the triggering method is a significant factor that would influence the symmetry of arc discharge at the final stable stage. Using high-speed multiframe photography, the transition processes from cathode-trigger discharge to cathode-anode discharge were observed. It is shown that the performances of the two triggering methods investigated are quite different. Arc discharge triggered by independent electric source can be stabilized at the center of anode grid, but it is difficult to achieve such good symmetry through resistance triggering. It is also found thatmore » the triggering process is highly correlated to the behavior of emitted electrons.« less

  8. Intrinsic electrical properties of LuFe2O4

    NASA Astrophysics Data System (ADS)

    Lafuerza, Sara; García, Joaquín; Subías, Gloria; Blasco, Javier; Conder, Kazimierz; Pomjakushina, Ekaterina

    2013-08-01

    We here revisit the electrical properties of LuFe2O4, compound candidate for exhibiting multiferroicity. Measurements of dc electrical resistivity as a function of temperature, electric-field polarization measurements at low temperatures with and without magnetic field, and complex impedance as a function of both frequency and temperature were carried out in a LuFe2O4 single crystal, perpendicular and parallel to the hexagonal c axis, and in several ceramic polycrystalline samples. Resistivity measurements reveal that this material is a highly anisotropic semiconductor, being about two orders of magnitude more resistive along the c axis. The temperature dependence of the resistivity indicates a change in the conduction mechanism at TCO ≈ 320 K from thermal activation above TCO to variable range hopping below TCO. The resistivity values at room temperature are relatively small and are below 5000 Ω cm for all samples but we carried out polarization measurements at sufficiently low temperatures, showing that electric-field polarization curves are a straight line as expected for a paraelectric or antiferroelectric material. Furthermore, no differences are found in the polarization curves when a magnetic field is applied either parallel or perpendicular to the electric field. The analysis of the complex impedance data corroborates that the claimed colossal dielectric constant is a spurious effect mainly derived from the capacitance of the electrical contacts. Therefore, our data unequivocally evidence that LuFe2O4 is not ferroelectric.

  9. Dielectric, Impedance and Conduction Behavior of Double Perovskite Pr2CuTiO6 Ceramics

    NASA Astrophysics Data System (ADS)

    Mahato, Dev K.; Sinha, T. P.

    2017-01-01

    Polycrystalline Pr2CuTiO6 (PCT) ceramics exhibits dielectric, impedance and modulus characteristics as a possible material for microelectronic devices. PCT was synthesized through the standard solid-state reaction method. The dielectric permittivity, impedance and electric modulus of PCT have been studied in a wide frequency (100 Hz-1 MHz) and temperature (303-593 K) range. Structural analysis of the compound revealed a monoclinic phase at room temperature. Complex impedance Cole-Cole plots are used to interpret the relaxation mechanism, and grain boundary contributions towards conductivity have been estimated. From electrical modulus formalism polarization and conductivity relaxation behavior in PCT have been discussed. Normalization of the imaginary part of impedance ( Z″) and the normalized imaginary part of modulus ( M″) indicates contributions from both long-range and localized relaxation effects. The grain boundary resistance along with their relaxation frequencies are plotted in the form of an Arrhenius plot with activation energy 0.45 eV and 0.46 eV, respectively. The ac conductivity mechanism has been discussed.

  10. A lithium-ion capacitor model working on a wide temperature range

    NASA Astrophysics Data System (ADS)

    Barcellona, S.; Piegari, L.

    2017-02-01

    Energy storage systems are spreading both in stationary and transport applications. Among innovative storage devices, lithium ion capacitors (LiCs) are very interesting. They combine the advantages of both traditional electric double layer capacitors (EDLCs) and lithium ion batteries (LiBs). The behavior of this device is much more similar to ELDCs than to batteries. For this reason, several models developed for traditional ELDCs were extended to LiCs. Anyway, at low temperatures LiCs behavior is quite different from ELDCs and it is more similar to a LiB. Consequently, EDLC models works fine at room temperature but give worse results at low temperatures. This paper proposes a new electric model that, overcoming this issue, is a valid solution in a wide temperature range. Based on only five parameters, depending on polarization voltage and temperature, the proposed model is very simple to be implemented. Its accuracy is verified through experimental tests. From the reported results, it is also shown that, at very low temperatures, the dependence of the resistance from the current has to be taken into account.

  11. Dynamical electrical conductivity of graphene.

    PubMed

    Rani, Luxmi; Singh, Navinder

    2017-06-28

    For graphene (a Dirac material) it has been theoretically predicted and experimentally observed that DC resistivity is proportional to T 4 when the temperature is much less than Bloch-Grüneisen temperature ([Formula: see text]) and T-linear in the opposite case ([Formula: see text]). Going beyond this case, we investigate the dynamical electrical conductivity in graphene using the powerful method of the memory function formalism. In the zero frequency regime, we obtain the above mentioned behavior which was previously obtained using the Bloch-Boltzmann kinetic equation. In the finite frequency regime, we obtain several new results: (1) the generalized Drude scattering rate, in the zero temperature limit, shows [Formula: see text] behavior at low frequencies ([Formula: see text]) and saturates at higher frequencies. We also observed the Holstein mechanism, however, with different power laws from that in the case of metals; (2) at higher frequencies, [Formula: see text], and higher temperatures [Formula: see text], we observed that the generalized Drude scattering rate is linear in temperature. In addition, several other results are also obtained. With the experimental advancement of this field, these results should be experimentally tested.

  12. System and method to determine electric motor efficiency nonintrusively

    DOEpatents

    Lu, Bin [Kenosha, WI; Habetler, Thomas G [Snellville, GA; Harley, Ronald G [Lawrenceville, GA

    2011-08-30

    A system and method for nonintrusively determining electric motor efficiency includes a processor programed to, while the motor is in operation, determine a plurality of stator input currents, electrical input data, a rotor speed, a value of stator resistance, and an efficiency of the motor based on the determined rotor speed, the value of stator resistance, the plurality of stator input currents, and the electrical input data. The determination of the rotor speed is based on one of the input power and the plurality of stator input currents. The determination of the value of the stator resistance is based on at least one of a horsepower rating and a combination of the plurality of stator input currents and the electrical input data. The electrical input data includes at least one of an input power and a plurality of stator input voltages.

  13. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to effectively resist underfilm migration of moisture; (3) Be sufficiently ductile to resist cracking... is an electrically insulating type must also have low moisture absorption and high electrical...

  14. Spin filter effect of hBN/Co detector electrodes in a 3D topological insulator spin valve

    NASA Astrophysics Data System (ADS)

    Vaklinova, Kristina; Polyudov, Katharina; Burghard, Marko; Kern, Klaus

    2018-03-01

    Topological insulators emerge as promising components of spintronic devices, in particular for applications where all-electrical spin control is essential. While the capability of these materials to generate spin-polarized currents is well established, only very little is known about the spin injection/extraction into/out of them. Here, we explore the switching behavior of lateral spin valves comprising the 3D topological insulator Bi2Te2Se as channel, which is separated from ferromagnetic Cobalt detector contacts by an ultrathin hexagonal boron nitride (hBN) tunnel barrier. The corresponding contact resistance displays a notable variation, which is correlated with a change of the switching characteristics of the spin valve. For contact resistances below ~5 kΩ, the hysteresis in the switching curve reverses upon reversing the applied current, as expected for spin-polarized currents carried by the helical surface states. By contrast, for higher contact resistances an opposite polarity of the hysteresis loop is observed, which is independent of the current direction, a behavior signifying negative spin detection efficiency of the multilayer hBN/Co contacts combined with bias-induced spin signal inversion. Our findings suggest the possibility to tune the spin exchange across the interface between a ferromagnetic metal and a topological insulator through the number of intervening hBN layers.

  15. Electrical resistivity of ultrafine-grained copper with nanoscale growth twins

    NASA Astrophysics Data System (ADS)

    Chen, X. H.; Lu, L.; Lu, K.

    2007-10-01

    We have investigated electrical resistivities of high-purity ultrafine-grained Cu containing different concentrations of nanoscale growth twins, but having identical grain size. The samples were synthesized by pulsed electrodeposition, wherein the density of twins was varied systematically by adjusting the processing parameters. The electrical resistivity of the Cu specimen with a twin spacing of 15nm at room temperature (RT) is 1.75μΩcm (the conductivity is about 97% IACS), which is comparable to that of coarse-grained (CG) pure Cu specimen. A reduction in twin density for the same grain size (with twin lamellar spacings of 35 and 90nm, respectively) results in an increment in electrical resistivity from 1.75to2.12μΩcm. However, the temperature coefficient of resistivity at RT for these Cu specimens is insensitive to the twin spacing and shows a consistent value of ˜3.78×10-3/K, which is slightly smaller than that of CG Cu (3.98×10-3/K). The increased electrical resistivities of the Cu samples were ascribed dominantly to the intrinsic grain boundary (GB) scattering, while the GB defects and GB energy would decrease with increasing twin density. Transmission electron microscope observations revealed the GB configuration difference from the Cu samples with various twin densities. Plastic deformation would induce an apparent increase in the resistivity. The higher of the twin density, the higher increment of RT resistivity was detected in the Cu specimens subjected to 40% rolling strain. Both the deviated twin boundaries and strained GBs may give rise to an increase in the resistivity.

  16. Multiple doping of silicon-germanium alloys for thermoelectric applications

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre; Vining, Cronin B.; Borshchevsky, Alex

    1989-01-01

    It is shown that heavy doping of n-type Si/Ge alloys with phosphorus and arsenic (V-V doping interaction) by diffusion leads to a significant enhancement of their carrier concentration and possible improvement of the thermoelectric figure of merit. High carrier concentrations were achieved by arsenic doping alone, but for a same doping level higher carrier mobilities and lower resistivities are obtained through phosphorus doping. By combining the two dopants with the proper diffusion treatments, it was possible to optimize the different properties, obtaining high carrier concentration, good carrier mobility and low electrical resistivity. Similar experiments, using the III-V doping interaction, were conducted on boron-doped p-type samples and showed the possibility of overcompensating the samples by diffusing arsenic, in order to get n-type behavior.

  17. Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K

    NASA Astrophysics Data System (ADS)

    Chiu, Shao-Pin; Chung, Hui-Fang; Lin, Yong-Han; Kai, Ji-Jung; Chen, Fu-Rong; Lin, Juhn-Jong

    2009-03-01

    Single-crystalline indium tin oxide (ITO) nanowires (NWs) were grown by the standard thermal evaporation method. The as-grown NWs were typically 100-300 nm in diameter and a few µm long. Four-probe submicron Ti/Au electrodes on individual NWs were fabricated by the electron-beam lithography technique. The resistivities of several single NWs have been measured from 300 down to 1.5 K. The results indicate that the as-grown ITO NWs are metallic, but disordered. The overall temperature behavior of resistivity can be described by the Bloch-Grüneisen law plus a low-temperature correction due to the scattering of electrons off dynamic point defects. This observation suggests the existence of numerous dynamic point defects in as-grown ITO NWs.

  18. Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2013-01-01

    Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.

  19. Magnetic Properties of Heavy Fermion Compound Ce5Si4 with Chiral Structure

    NASA Astrophysics Data System (ADS)

    Sato, Yoshiki J.; Shimizu, Yusei; Nakamura, Ai; Homma, Yoshiya; Li, Dexin; Maurya, Arvind; Honda, Fuminori; Aoki, Dai

    2018-07-01

    The low-temperature magnetic properties of Ce5Si4 with a chiral structure have been studied by electrical resistivity, heat capacity, and magnetization measurements using single-crystalline samples. It is found that Ce5Si4 is an antiferromagnet with moderately correlated electronic states. The resistivity decreases strongly under magnetic fields, indicating scaling behavior based on the Coqblin-Schrieffer model. The obtained characteristic energy scale of the Kondo effect is clearly anisotropic for the magnetic field H ∥ a-axis and H ∥ c-axis in the tetragonal structure, possibly related to the anisotropic antiferromagnetic phase. Furthermore, in the antiferromagnetic phase, a shoulderlike crossover anomaly is observed in C/T. A possible scenario is that non-ordered Ce atoms exist even below TN in this chiral system.

  20. Schottky Emission Distance and Barrier Height Properties of Bipolar Switching Gd:SiOx RRAM Devices under Different Oxygen Concentration Environments

    PubMed Central

    Chen, Kai-Huang; Tsai, Tsung-Ming; Cheng, Chien-Min; Huang, Shou-Jen; Chang, Kuan-Chang; Liang, Shu-Ping; Young, Tai-Fa

    2017-01-01

    In this study, the hopping conduction distance and bipolar switching properties of the Gd:SiOx thin film by (radio frequency, rf) rf sputtering technology for applications in RRAM devices were calculated and investigated. To discuss and verify the electrical switching mechanism in various different constant compliance currents, the typical current versus applied voltage (I-V) characteristics of gadolinium oxide RRAM devices was transferred and fitted. Finally, the transmission electrons’ switching behavior between the TiN bottom electrode and Pt top electrode in the initial metallic filament forming process of the gadolinium oxide thin film RRAM devices for low resistance state (LRS)/high resistance state (HRS) was described and explained in a simulated physical diagram model. PMID:29283368

Top