Sample records for electrical safety features

  1. Electrical deaths in the US construction: an analysis of fatality investigations.

    PubMed

    Zhao, Dong; Thabet, Walid; McCoy, Andrew; Kleiner, Brian

    2014-01-01

    Electrocution is among the 'fatal four' in US construction according to the Occupational Safety and Health Administration. Learning from failures is believed to be an effective path to success, with deaths being the most serious system failures. This paper examined the failures in electrical safety by analysing all electrical fatality investigations (N = 132) occurring between 1989 and 2010 from the Fatality Assessment and Control Evaluation programme that is completed by the National Institute of Occupational Safety and Health. Results reveal the features of the electrical fatalities in construction and disclose the most common electrical safety challenges on construction sites. This research also suggests the sociotechnical system breakdowns and the less effectiveness of current safety training programmes may significantly contribute to worker's unsafe behaviours and electrical fatality occurrences.

  2. Solvent Recycling for Shipyards

    DTIC Science & Technology

    1993-05-01

    Suvey results are included in Section 5) Survey manufacturers and compile information on available equipment and features . (Data is summarized in Section...should be placed on safety features . Important safety features include explosion-proof electricals and grounding protection, overpressure relief valves...solvent can dissolve a polymer plastic liner, or extract water from a clay liner, resulting in liner leakage. The threat is compounded by the ability

  3. Virtual reality simulation for construction safety promotion.

    PubMed

    Zhao, Dong; Lucas, Jason

    2015-01-01

    Safety is a critical issue for the construction industry. Literature argues that human error contributes to more than half of occupational incidents and could be directly impacted by effective training programs. This paper reviews the current safety training status in the US construction industry. Results from the review evidence the gap between the status and industry expectation on safety. To narrow this gap, this paper demonstrates the development and utilisation of a training program that is based on virtual reality (VR) simulation. The VR-based safety training program can offer a safe working environment where users can effectively rehearse tasks with electrical hazards and ultimately promote their abilities for electrical hazard cognition and intervention. Its visualisation and simulation can also remove the training barriers caused by electricity's features of invisibility and dangerousness.

  4. Nuclear Powerplant Safety: Design and Planning.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    The most important concern in the design, construction and operation of nuclear powerplants is safety. Nuclear power is one of the major contributors to the nation's supply of electricity; therefore, it is important to assure its safe use. Each different type of powerplant has special design features and systems to protect health and safety. One…

  5. Nuclear energy waste-space transportation and removal

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1975-01-01

    A method for utilizing the decay heat of actinide wastes to power an electric thrust vehicle is proposed. The vehicle, launched by shuttle to earth orbit and to earth escape by a tug, obtains electrical power from the actinide waste heat by thermionic converters. The heavy gamma ray and neutron shielding which is necessary as a safety feature is removed in orbit and returned to earth for reuse. The problems associated with safety are dealt with in depth. A method for eliminating fission wastes via chemical propulsion is briefly discussed.

  6. Electrical safety Q&A. A reference guide for the clinical engineer.

    PubMed

    2005-02-01

    This guide, which ECRI developed to answer the electrical safety questions most frequently asked by member hospitals, features practical advice for addressing electrical safety concerns in the healthcare environment. Questions addressed include: STANDARDS AND APPROVALS: What electrical safety standards apply? How do NFPA 99 and IEC 60601-1 differ? What organizations approve medical devices? LEAKAGE CURRENT LIMITS AND TESTING: How are leakage current limits established? What limits apply to equipment used in the hospital? And how should the limits be applied in special cases, such as the use of PCs in the patient care area or equipment used in the clinical laboratory? ISOLATED POWER: What are its advantages and disadvantages, and is isolated power needed in the operating room? Other topics addressed include double insulation, ground-fault circuit interrupters (GFCIs), and requirements for medical devices used in the home. Supplementary articles discuss acceptable alternatives to UL listing, the use of Hospital Grade plugs, the limitations of leakage current testing of devices connected to isolated power systems, and the debate about whether to designate ORs as wet locations. Experienced clinical engineers should find this guide to be a handy reference, while those new to the field should find it to be a helpful educational resource.

  7. Hybrid Vehicle Technologies and their potential for reducing oil use

    NASA Astrophysics Data System (ADS)

    German, John

    2006-04-01

    Vehicles with hybrid gasoline-electric powertrains are starting to gain market share. Current hybrid vehicles add an electric motor, battery pack, and power electronics to the conventional powertrain. A variety of engine/motor configurations are possible, each with advantages and disadvantages. In general, efficiency is improved due to engine shut-off at idle, capture of energy during deceleration that is normally lost as heat in the brakes, downsizing of the conventional engine, and, in some cases, propulsion on the electric motor alone. Ongoing increases in hybrid market share are dependent on cost reduction, especially the battery pack, efficiency synergies with other vehicle technologies, use of the high electric power to provide features desired by customers, and future fuel price and availability. Potential barriers include historically low fuel prices, high discounting of the fuel savings by new vehicle purchasers, competing technologies, and tradeoffs with other factors desired by customers, such as performance, utility, safety, and luxury features.

  8. 7 CFR 3550.102 - Grant and loan purposes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... used to make general repairs and improvements to properties or to remove health and safety hazards, as...) The cost of providing special design features or equipment when necessary because of a physical... pro rata installation costs for utilities such as water, sewer, electricity, and gas for which the...

  9. Grumman electric truck development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kessler, J.C.; Ferdman, S.

    1981-11-01

    An electric truck development was undertaken to prepare for the markets of the 1980's. Grumman is using its aluminum truck bodies technology to create a light weight vehicle. A redesigned unitized, all aluminum body and a new propulsion system resulted in the desired vehicle. The vehicle meets the requirements of the US Postal Service and the DOE Demonstration program. The unitized chassisless structure is designed to take major driving loads. Design features and performance characteristics are enumerated. Safety and service considerations have been incorporated into the vehicle.

  10. Modelling of induced electric fields based on incompletely known magnetic fields

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; De Santis, Valerio; Cruciani, Silvano; Campi, Tommaso; Feliziani, Mauro

    2017-08-01

    Determining the induced electric fields in the human body is a fundamental problem in bioelectromagnetics that is important for both evaluation of safety of electromagnetic fields and medical applications. However, existing techniques for numerical modelling of induced electric fields require detailed information about the sources of the magnetic field, which may be unknown or difficult to model in realistic scenarios. Here, we show how induced electric fields can accurately be determined in the case where the magnetic fields are known only approximately, e.g. based on field measurements. The robustness of our approach is shown in numerical simulations for both idealized and realistic scenarios featuring a personalized MRI-based head model. The approach allows for modelling of the induced electric fields in biological bodies directly based on real-world magnetic field measurements.

  11. Solar Photovoltaic DC Systems: Basics and Safety: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNutt, Peter F; Sekulic, William R; Dreifuerst, Gary

    Solar Photovoltaic (PV) systems are common and growing with 42.4 GW installed capacity in U.S. (almost 15 GW added in 2016). This paper will help electrical workers, and emergency responders understand the basic operating principles and hazards of PV DC arrays. We briefly discuss the following aspects of solar photovoltaic (PV) DC systems: the effects of solar radiation and temperature on output power; PV module testing standards; common system configurations; a simple PV array sizing example; NEC guidelines and other safety features; DC array commissioning, periodic maintenance and testing; arc-flash hazard potential; how electrical workers and emergency responders can andmore » do work safely around PV arrays; do moonlight and artificial lighting pose a real danger; typical safe operating procedures; and other potential DC-system hazards to be aware of. We also present some statistics on PV DC array electrical incidents and injuries. Safe PV array operation is possible with a good understanding of PV DC arrays basics and having good safe operating procedures in place.« less

  12. Silicon-Etalon Fiber-Optic Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Fritsch, Klaus; Flatico, Joseph M.; Azar, Massood Tabib

    1993-01-01

    Developmental temperature sensor consists of silicon Fabry-Perot etalon attached to end of optical fiber. Features immunity to electrical interference, small size, light weight, safety, and chemical inertness. Output encoded in ration of intensities at two different wavelengths, rather than in overall intensity, with result that temperature readings not degraded much by changes in transmittance of fiber-optic link.

  13. Assessment of safety-relevant aspects of Kraftwerk Union's 200-MW(thermal) nuclear district heating plant concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erlenwein, P.; Frisch, W.; Kafka, P.

    Nuclear reactors of 200- to 400-MW(thermal) power for district heating are the subject of increasing interest, and several specific designs are under discussion today. In the Federal Republic of Germany (FRG), the Kraftwerk Union AG has presented a 200-MW(thermal) heating reactor concept. The main safety issues of this design are assessed. In this design, the primary system is fully integrated into the reactor pressure vessel (RPV), which is tightly enclosed by the containment. The low process parameters like pressure, temperature, and power density and the high ratio of coolant volume to thermal power allow the design of simple safety features.more » This is supported by the preference of passive over active components. A special feature is a newly designed hydraulic control and rod drive mechanism, which is also integrated into the RPV. Within the safety assessment an overview of the relevant FRG safety rules and guidelines, developed mainly for large, electricity-generating power plants, is given. Included is a discussion of the extent to which these licensing rules can be applied to the concept of heating reactors.« less

  14. Safety and licensing of a small modular gas-cooled reactor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, N.W.; Kelley, A.P. Jr.

    A modular side-by-side high-temperature gas-cooled reactor (SBS-HTGR) is being developed by Interatom/Kraftwerk Union (KWU). The General Electric Company and Interatom/KWU entered into a proprietary working agreement to continue develop jointly of the SBS-HTGR. A study on adapting the SBS-HTGR for application in the US has been completed. The study investigated the safety characteristics and the use of this type of design in an innovative approach to licensing. The safety objective guiding the design of the modular SBS-HTGR is to control radionuclide release by the retention of fission products within the fuel particles with minimal reliance on active design features. Themore » philosophy on which this objective is predicated is that by providing a simple safety case, the safety criteria can be demonstrated as being met with high confidence through conduct of a full-scale module safety test.« less

  15. Designing Crane Controls with Applied Mechanical and Electrical Safety Features

    NASA Technical Reports Server (NTRS)

    Lytle, Bradford P.; Walczak, Thomas A.

    2002-01-01

    The use of overhead traveling bridge cranes in many varied applications is common practice. In particular, the use of cranes in the nuclear, military, commercial, aerospace, and other industries can involve safety critical situations. Considerations for Human Injury or Casualty, Loss of Assets, Endangering the Environment, or Economic Reduction must be addressed. Traditionally, in order to achieve additional safety in these applications, mechanical systems have been augmented with a variety of devices. These devices assure that a mechanical component failure shall reduce the risk of a catastrophic loss of the correct and/or safe load carrying capability. ASME NOG-1-1998, (Rules for Construction of Overhead and Gantry Cranes, Top Running Bridge, and Multiple Girder), provides design standards for cranes in safety critical areas. Over and above the minimum safety requirements of todays design standards, users struggle with obtaining a higher degree of reliability through more precise functional specifications while attempting to provide "smart" safety systems. Electrical control systems also may be equipped with protective devices similar to the mechanical design features. Demands for improvement of the cranes "control system" is often recognized, but difficult to quantify for this traditionally "mechanically" oriented market. Finite details for each operation must be examined and understood. As an example, load drift (or small motions) at close tolerances can be unacceptable (and considered critical). To meet these high functional demands encoders and other devices are independently added to control systems to provide motion and velocity feedback to the control drive. This paper will examine the implementation of Programmable Electronic Systems (PES). PES is a term this paper will use to describe any control system utilizing any programmable electronic device such as Programmable Logic Controllers (PLC), or an Adjustable Frequency Drive (AID) 'smart' programmable motion controller. Therefore the use of the term Programmable Electronic Systems (PES) is an encompassing description for a large spectrum of programmable electronic control devices.

  16. Performance and safety aspects of the XV-15 tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Wernicke, K. G.

    1977-01-01

    Aircraft performance is presented illustrating the flexibility and capability of the XV-15 to conduct its planned proof-of-concept flight research in the areas of dynamics, stability and control, and aerodynamics. Additionally, the aircraft will demonstrate mission-type performance typical of future operational aircraft. The aircraft design is described and discussed with emphasis on the safety and fail-operate features of the aircraft and its systems. Two or more levels of redundancy are provided in the dc and ac electrical systems, hydraulics, conversion, flaps, landing gear extension, SCAS, and force-feel. RPM is maintained by a hydro-electrical blade pitch governor that consists of a primary and standby governor with a cockpit wheel control for manual backup. The two engines are interconnected for operation on a single engine. In the event of total loss of power, the aircraft can enter autorotation starting from the airplane as well as the helicopter mode of flight.

  17. 7 CFR 1724.50 - Compliance with National Electrical Safety Code (NESC).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false Compliance with National Electrical Safety Code (NESC... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.50 Compliance with National Electrical Safety Code...

  18. 7 CFR 1724.50 - Compliance with National Electrical Safety Code (NESC).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Compliance with National Electrical Safety Code (NESC... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.50 Compliance with National Electrical Safety Code...

  19. 7 CFR 1724.50 - Compliance with National Electrical Safety Code (NESC).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Compliance with National Electrical Safety Code (NESC... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.50 Compliance with National Electrical Safety Code...

  20. 7 CFR 1724.50 - Compliance with National Electrical Safety Code (NESC).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false Compliance with National Electrical Safety Code (NESC... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.50 Compliance with National Electrical Safety Code...

  1. 7 CFR 1724.50 - Compliance with National Electrical Safety Code (NESC).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false Compliance with National Electrical Safety Code (NESC... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.50 Compliance with National Electrical Safety Code...

  2. Torque sensor

    NASA Astrophysics Data System (ADS)

    Fgeppert, E.

    1984-09-01

    Mechanical means for sensing turning torque generated by the load forces in a rotary drive system is described. The sensing means is designed to operate with minimal effect on normal operation of the drive system. The invention can be employed in various drive systems, e.g., automotive engine-transmission power plants, electric motor-operated tools, and metal cutting machines. In such drive systems, the torque-sensing feature may be useful for actuation of various control devices, such as electric switches, mechanical clutches, brake actuators, fluid control valves, or audible alarms. The torque-sensing function can be used for safety overload relief, motor de-energization, engine fuel control transmission clutch actuation, remote alarm signal, tool breakage signal, etc.

  3. Electromyographic control of functional electrical stimulation in selected patients.

    PubMed

    Graupe, D; Kohn, K H; Basseas, S; Naccarato, E

    1984-07-01

    The paper describes initial results of above-lesion electromyographic (EMG) controlled functional electrical stimulation (FES) of paraplegics. Such controlled stimulation is to provide upper-motor-neuron paraplegics (T5 to T12) with self-controlled standing and some walking without braces and with only the help of walkers or crutches. The above-lesion EMG signal employed serves to map the posture of the patient's upper trunk via a computerized mapping of the temporal patterns of that EMG. Such control also has an inherent safety feature in that it prevents the patient from performing a lower-limb movement via FES unless his trunk posture is adequate. Copyright 2013, SLACK Incorporated.

  4. Assessment of Electrical Safety in Afghanistan

    DTIC Science & Technology

    2009-07-24

    effectiveness of command efforts to ensure the electrical safety of Department of Defense occupied and constructed facilities in Afghanistan. We...March 31, 2009, we announced the Assessment of Electrical Safety in Afghanistan. The objective of this assessment was to review the effectiveness of...used contractors to review and identify electrical deficiencies to include life, health , and safety issues at FOBs. According to TF POWER

  5. 29 CFR 1910.335 - Safeguards for personnel protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....335 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices § 1910... could cause injury due to electric shock, burns, or failure of electric equipment parts: (1) Safety...

  6. The Influence of Mechanical Parameters on Dielectric Characteristics of Rigid Electrical Insulating Materials

    NASA Astrophysics Data System (ADS)

    Buică, G.; Antonov, A. E.; Beiu, C.; Dobra, R.; Risteiu, M.

    2018-06-01

    Rigid electrical insulating materials are used in the manufacture of work equipment with electric safety function, being mainly intended for use in the energy sector. The paper presents the results of the research on the identification of the technical and safety requirements for rigid electrical insulating materials that are part of the electrical insulating work equipment. The paper aims to show the behaviour of rigid electrical insulating materials under the influence of mechanical risk factors, in order to check the functionality and to ensure the safety function for the entire life time. There were tested rigid electrical insulating equipment designed to be used as safety means in electrical power stations and overhead power lines.

  7. 2005 Tri-Service Infrastructure Systems Conference and Exhibition. Volume 12. Tracks 15, 16 and 17

    DTIC Science & Technology

    2005-08-04

    glare, surface luminances, and uniformity. Also, the importance of daylight on human health and productivity is emphasized. • Exterior lighting design...Electrical Safety Requirements – OSHA CFR Title 29 Part 1910 Occupational Safety and Health Standard, Subpart S – Electrical – Design Safety...Standards and Safety Related Work Practices Part 1926 Safety and Health Regulations for Construction, Subpart K – Electrical – Installation Safety

  8. Electrical Safety: Safety and Health for Electrical Trades. Student Manual.

    ERIC Educational Resources Information Center

    Fowler, Thaddeus W.; Miles, Karen K.

    This document is designed to teach learners in secondary and postsecondary electrical trades courses to recognize, evaluate, and control hazards associated with electrical work, The manual's eight sections each include some or all of the following components: instructional text; definitions; case studies illustrating key safety considerations;…

  9. 10 CFR 50.49 - Environmental qualification of electric equipment important to safety for nuclear power plants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... occurrences, design basis accidents, external events, and natural phenomena for which the plant must be... important to safety, (2) protection of electric equipment important to safety against other natural phenomena and external events, and (3) environmental qualification of electric equipment important to safety...

  10. Recurrent themes in the history of the home use of electrical stimulation: Transcranial direct current stimulation (tDCS) and the medical battery (1870-1920).

    PubMed

    Wexler, Anna

    In recent years, neuroscientists and ethicists have warned of the dangers of the unsupervised home use of transcranial direct current stimulation (tDCS), in which individuals stimulate their own brains with low levels of electricity for self-improvement purposes. Although the home use of tDCS is often referred to as a novel phenomenon, in reality the late nineteenth and early twentieth century saw a proliferation of electrical stimulation devices for home use. In particular, the use of an object known as the medical battery bears a number of striking similarities to the modern-day use of tDCS. This article reviews a number of features thought to be unique to the present day home use of brain stimulation, with a particular focus on analogies between tDCS and the medical battery. Archival research was conducted at the Bakken Museum and at the American Medical Association's Historical Health Fraud Archives. Many of the features characterizing the contemporary home use tDCS-a do-it-yourself (DIY) movement, anti-medical establishment themes, conflicts between lay and professional usage-are a repetition of themes that occurred a century ago with regard to the medical battery. A number of features, however, seem to be unique to the present, such as the dominant discourse about risk and safety, the division between cranial and non-cranial stimulation, and utilization for cognitive enhancement purposes. Viewed in the long durée, the contemporary use of electrical stimulation at home is not a novel phenomenon, but rather the latest wave in a series of ongoing attempts by lay individuals to utilize electricity for therapeutic purposes. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Department of Defense Inspector General Semiannual Report to the Congress April 1, 2009 to September 30, 2009

    DTIC Science & Technology

    2009-09-01

    and Explosives Provided to the Security Forces of Afghanistan SPO-2009-005 Assessment of Electrical Safety in Afghanistan67. SPO-2009-004...capabilities and those being developed to protect forces deployed in Iraq and Afghanistan, as well as the electrical safety of deployed personnel. Other...accidental electrocutions, electrical safety and fire services. Electrical Safety In response to concerns regarding electrocution deaths of several

  12. An Illustrated Guide to Electrical Safety. Revised

    ERIC Educational Resources Information Center

    Occupational Safety and Health Administration, Washington, DC.

    This guide was developed to serve as a supplement to the Occupational Safety and Health Administration's (OSHA) Electrical Safety Standards, 29 CFR 1910, Subpart S, Electrical. It is designed for use by a variety of people (layman, worker, employer, compliance safety and health officer, union official, educator, and others) in training, education,…

  13. System and method employing a minimum distance and a load feature database to identify electric load types of different electric loads

    DOEpatents

    Lu, Bin; Yang, Yi; Sharma, Santosh K; Zambare, Prachi; Madane, Mayura A

    2014-12-23

    A method identifies electric load types of a plurality of different electric loads. The method includes providing a load feature database of a plurality of different electric load types, each of the different electric load types including a first load feature vector having at least four different load features; sensing a voltage signal and a current signal for each of the different electric loads; determining a second load feature vector comprising at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the different electric loads; and identifying by a processor one of the different electric load types by determining a minimum distance of the second load feature vector to the first load feature vector of the different electric load types of the load feature database.

  14. Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  15. The Mod-2 wind turbine development project

    NASA Technical Reports Server (NTRS)

    Linscott, B. S.; Dennett, J. T.; Gordon, L. H.

    1981-01-01

    A major phase of the Federal Wind Energy Program, the Mod-2 wind turbine, a second-generation machine developed by the Boeing Engineering and Construction Co. for the U.S. Department of Energy and the Lewis Research Center of the National Aeronautics and Space Administration, is described. The Mod-2 is a large (2.5-MW power rating) horizontal-axis wind turbine designed for the generation of electrical power on utility networks. Three machines were built and are located in a cluster at Goodnoe Hills, Washington. All technical aspects of the project are described: design approach, significant innovation features, the mechanical system, the electrical power system, the control system, and the safety system.

  16. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric power circuit and electric equipment... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.509 Electric power circuit and electric equipment; deenergization. [Statutory Provisions] All...

  17. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric power circuit and electric equipment... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.509 Electric power circuit and electric equipment; deenergization. [Statutory Provisions] All...

  18. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric power circuit and electric equipment... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.509 Electric power circuit and electric equipment; deenergization. [Statutory Provisions] All...

  19. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric power circuit and electric equipment... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.509 Electric power circuit and electric equipment; deenergization. [Statutory Provisions] All...

  20. 30 CFR 75.509 - Electric power circuit and electric equipment; deenergization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric power circuit and electric equipment... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.509 Electric power circuit and electric equipment; deenergization. [Statutory Provisions] All...

  1. 29 CFR 1910.332 - Training.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Electrical Accident Occupation Blue collar supervisors. 1 Electrical and electronic engineers. 1 Electrical... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices § 1910.332 Training. (a... electric shock that is not reduced to a safe level by the electrical installation requirements of §§ 1910...

  2. 29 CFR 1910.332 - Training.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Electrical Accident Occupation Blue collar supervisors. 1 Electrical and electronic engineers. 1 Electrical... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices § 1910.332 Training. (a... electric shock that is not reduced to a safe level by the electrical installation requirements of §§ 1910...

  3. 29 CFR 1910.332 - Training.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Electrical Accident Occupation Blue collar supervisors. 1 Electrical and electronic engineers. 1 Electrical... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices § 1910.332 Training. (a... electric shock that is not reduced to a safe level by the electrical installation requirements of §§ 1910...

  4. 29 CFR 1910.332 - Training.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Electrical Accident Occupation Blue collar supervisors. 1 Electrical and electronic engineers. 1 Electrical... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices § 1910.332 Training. (a... electric shock that is not reduced to a safe level by the electrical installation requirements of §§ 1910...

  5. 29 CFR 1910.332 - Training.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Electrical Accident Occupation Blue collar supervisors. 1 Electrical and electronic engineers. 1 Electrical... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices § 1910.332 Training. (a... electric shock that is not reduced to a safe level by the electrical installation requirements of §§ 1910...

  6. 30 CFR 75.518 - Electric equipment and circuits; overload and short circuit protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric equipment and circuits; overload and short circuit protection. 75.518 Section 75.518 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.518 Electric...

  7. 30 CFR 75.518 - Electric equipment and circuits; overload and short circuit protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric equipment and circuits; overload and short circuit protection. 75.518 Section 75.518 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.518 Electric...

  8. 30 CFR 75.518 - Electric equipment and circuits; overload and short circuit protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric equipment and circuits; overload and short circuit protection. 75.518 Section 75.518 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.518 Electric...

  9. 30 CFR 75.518 - Electric equipment and circuits; overload and short circuit protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric equipment and circuits; overload and short circuit protection. 75.518 Section 75.518 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.518 Electric...

  10. Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In

    Science.gov Websites

    Electric Vehicles Maintenance and Safety of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug

  11. Fundamentals of Electrical Safety. Module SH-03. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on fundamentals of electrical safety is one of 50 modules concerned with job safety and health. This module describes electricity and how it can affect the human body. Following the introduction, nine objectives (each keyed to a page in the text) the student is expected to accomplish are listed (e.g., Name five common…

  12. 29 CFR 1926.402 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Installation Safety Requirements § 1926.402... electrical equipment and installations used to provide electric power and light at the jobsite. These... commenced. Note: If the electrical installation is made in accordance with the National Electrical Code ANSI...

  13. 30 CFR 57.12004 - Electrical conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical conductors. 57.12004 Section 57.12004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Electricity...

  14. 30 CFR 57.12004 - Electrical conductors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electrical conductors. 57.12004 Section 57.12004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Electricity...

  15. NASA Manufacturing and Test Requirements for Normally Closed Pyrovalves for Hazardous Flight Systems Applications

    NASA Technical Reports Server (NTRS)

    McDougle, Stephen H.

    2015-01-01

    Pyrovalves (figure 1, Basic Pyrovalve Design and Features,) are typically lighter, more reliable, and in most cases less expensive than other types of valves. They also consume less electrical power. They are single-use devices that are used in propulsion systems to isolate propellants or pressurant gases. These fluids may be hazardous because of their toxicity, reactivity, temperature, or high pressure. Note that in the simplified block diagram below not all detail features are shown so that those of major interest are more prominent. The diagram is provided to point out the various features that are discussed in this Specification. Features of some NC parent metal valve designs may differ. In 2013, the NESC concluded an extensive study of the reliability and safety of NC parent metal valves used in payloads carried aboard ELVs. The assessment successfully evaluated technical data to determine the risk of NC parent metal valve leakage or inadvertent activation in ELV payloads. The study resulted in numerous recommendations to ensure personnel and hardware/facility safety during ground processing of ELV payloads. One of those recommendations was to establish a NASA specification for NC parent metal valves. This Specification is a result of that recommendation, which is documented in NESC-RP-10-00614.

  16. 30 CFR 56.12004 - Electrical conductors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electrical conductors. 56.12004 Section 56.12004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  17. 30 CFR 56.12004 - Electrical conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electrical conductors. 56.12004 Section 56.12004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  18. 30 CFR 56.12004 - Electrical conductors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electrical conductors. 56.12004 Section 56.12004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  19. 30 CFR 56.12004 - Electrical conductors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electrical conductors. 56.12004 Section 56.12004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  20. 30 CFR 56.12004 - Electrical conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical conductors. 56.12004 Section 56.12004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  1. The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vereb, F.; Winters, J.; Schulz, T.

    2012-07-01

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation inmore » the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)« less

  2. Changing An Electrical Safety Culture - The Importance of Understanding Why.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, Richard Thomas

    2015-12-01

    Abstract – Electrical workers, regardless of experience, are faced with a major barrier when first introduced to NFPA 70E, “The Standard for Electrical Safety in the Workplace,” and an erroneous electrical safety culture pre-exists. This paper describes, from the author’s point of view, the barrier that he and other electrical workers have experienced and his insight into overcoming the barrier. The author in conclusion will present a series of techniques that can be used to assist other electrical workers in overcoming the barrier.

  3. 30 CFR 56.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-potential electrical conductors. 56.12011 Section 56.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  4. 30 CFR 56.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-potential electrical conductors. 56.12011 Section 56.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  5. 30 CFR 56.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-potential electrical conductors. 56.12011 Section 56.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  6. 30 CFR 56.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-potential electrical conductors. 56.12011 Section 56.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  7. 30 CFR 56.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-potential electrical conductors. 56.12011 Section 56.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  8. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...

  9. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...

  10. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...

  11. 30 CFR 77.507 - Electric equipment; switches.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric equipment; switches. 77.507 Section 77.507 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND... Electrical Equipment-General § 77.507 Electric equipment; switches. All electric equipment shall be provided...

  12. 30 CFR 77.507 - Electric equipment; switches.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric equipment; switches. 77.507 Section 77.507 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND... Electrical Equipment-General § 77.507 Electric equipment; switches. All electric equipment shall be provided...

  13. 30 CFR 77.507 - Electric equipment; switches.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric equipment; switches. 77.507 Section 77.507 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND... Electrical Equipment-General § 77.507 Electric equipment; switches. All electric equipment shall be provided...

  14. 30 CFR 77.507 - Electric equipment; switches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric equipment; switches. 77.507 Section 77.507 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND... Electrical Equipment-General § 77.507 Electric equipment; switches. All electric equipment shall be provided...

  15. 30 CFR 77.507 - Electric equipment; switches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment; switches. 77.507 Section 77.507 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND... Electrical Equipment-General § 77.507 Electric equipment; switches. All electric equipment shall be provided...

  16. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...

  17. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...

  18. 29 CFR 1910.309-1910.330 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems §§ 1910.309-1910.330 [Reserved] Safety-Related Work Practices ...

  19. 29 CFR 1910.309-1910.330 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems §§ 1910.309-1910.330 [Reserved] Safety-Related Work Practices ...

  20. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  1. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  2. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  3. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  4. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  5. 30 CFR 77.502-2 - Electric equipment; frequency of examination and testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and testing. 77.502-2 Section 77.502-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.502-2 Electric equipment...

  6. 29 CFR 1926.402 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... installations used for the generation, transmission, and distribution of electric energy, including related...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Installation Safety Requirements § 1926.402... electrical equipment and installations used to provide electric power and light at the jobsite. These...

  7. 29 CFR 1926.402 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... installations used for the generation, transmission, and distribution of electric energy, including related...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Installation Safety Requirements § 1926.402... electrical equipment and installations used to provide electric power and light at the jobsite. These...

  8. 76 FR 45436 - Federal Motor Vehicle Safety Standards; Electric-Powered Vehicles; Electrolyte Spillage and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... electrical isolation requirements, the test specifications and requirements for electrical isolation monitoring, the state-of-charge of electric energy storage devices prior to the crash tests, a proposed protective barrier compliance option for electrical safety, the use of alternative gas to crash test hydrogen...

  9. Development and validation of safety climate scales for mobile remote workers using utility/electrical workers as exemplar.

    PubMed

    Huang, Yueng-Hsiang; Zohar, Dov; Robertson, Michelle M; Garabet, Angela; Murphy, Lauren A; Lee, Jin

    2013-10-01

    The objective of this study was to develop and test the reliability and validity of a new scale designed for measuring safety climate among mobile remote workers, using utility/electrical workers as exemplar. The new scale employs perceived safety priority as the metric of safety climate and a multi-level framework, separating the measurement of organization- and group-level safety climate items into two sub-scales. The question of the emergence of shared perceptions among remote workers was also examined. For the initial survey development, several items were adopted from a generic safety climate scale and new industry-specific items were generated based on an extensive literature review, expert judgment, 15-day field observations, and 38 in-depth individual interviews with subject matter experts (i.e., utility industry electrical workers, trainers and supervisors of electrical workers). The items were revised after 45 cognitive interviews and a pre-test with 139 additional utility/electrical workers. The revised scale was subsequently implemented with a total of 2421 workers at two large US electric utility companies (1560 participants for the pilot company and 861 for the second company). Both exploratory (EFA) and confirmatory factor analyses (CFA) were adopted to finalize the items and to ensure construct validity. Reliability of the scale was tested based on Cronbach's α. Homogeneity tests examined whether utility/electrical workers' safety climate perceptions were shared within the same supervisor group. This was followed by an analysis of the criterion-related validity, which linked the safety climate scores to self-reports of safety behavior and injury outcomes (i.e., recordable incidents, missing days due to work-related injuries, vehicle accidents, and near misses). Six dimensions (Safety pro-activity, General training, Trucks and equipment, Field orientation, Financial Investment, and Schedule flexibility) with 29 items were extracted from the EFA to measure the organization-level safety climate. Three dimensions (Supervisory care, Participation encouragement, and Safety straight talk) with 19 items were extracted to measure the group-level safety climate. Acceptable ranges of internal consistency statistics for the sub-scales were observed. Whether or not to aggregate these multi-dimensions of safety climate into a single higher-order construct (overall safety climate) was discussed. CFAs confirmed the construct validity of the developed safety climate scale for utility/electrical workers. Homogeneity tests showed that utility/electrical workers' safety climate perceptions were shared within the same supervisor group. Both the organization- and group-level safety climate scores showed a statistically significant relationship with workers' self-reported safety behaviors and injury outcomes. A valid and reliable instrument to measure the essential elements of safety climate for utility/electrical workers in the remote working situation has been introduced. The scale can provide an in-depth understanding of safety climate based on its key dimensions and show where improvements can be made at both group and organization levels. As such, it may also offer a valuable starting point for future safety interventions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. 29 CFR 1926.400 - Introduction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical General § 1926.400 Introduction. This subpart... provide electric power and light on jobsites. (b) Safety-related work practices. Safety-related work...

  11. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, andmore » emerging technologies.« less

  12. 29 CFR 1926.404 - Wiring design and protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tracks of electrically operated cranes; frames of nonelectrically driven elevator cars to which electric..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Installation Safety... conductors, transformers, or other electric equipment, unless such equipment is controlled by a disconnecting...

  13. 29 CFR 1910.306 - Specific purpose equipment and installations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and multicar installations. On single-car and multicar installations, equipment receiving electrical... ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.306 Specific purpose equipment and installations. (a) Electric signs and...

  14. 29 CFR 1910.306 - Specific purpose equipment and installations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and multicar installations. On single-car and multicar installations, equipment receiving electrical... ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.306 Specific purpose equipment and installations. (a) Electric signs and...

  15. 29 CFR 1926.404 - Wiring design and protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tracks of electrically operated cranes; frames of nonelectrically driven elevator cars to which electric..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Installation Safety... conductors, transformers, or other electric equipment, unless such equipment is controlled by a disconnecting...

  16. 29 CFR 1910.306 - Specific purpose equipment and installations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and multicar installations. On single-car and multicar installations, equipment receiving electrical... ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.306 Specific purpose equipment and installations. (a) Electric signs and...

  17. Development of instruction in hospital electrical safety for medical education.

    PubMed

    Yoo, J H; Broderick, W A

    1978-01-01

    Although hospital electrical safety is receiving increased attention in the literature of engineers, it is not, at present, reflected in the curricula of medical schools. A possible reason for this omission is that biomedical and/or clinical engineers knowledgeable in electrical safety are not usually trained to teach. One remedy for this problem is to combine the knowledge of engineers with that of instructional developers to design a systematic curriculum for a course in hospital electrical safety. This paper describes such an effort at the University of Texas Health Science Center at San Antonio (UTHSCSA). A biomedical engineer and an instructional developer designed an instructional module in hospital electrical safety; the engineer taught the module, and both evaluated the results. The process and outcome of their collaboration are described. This model was effectively applied in the classroom as a four-hour segment in hospital electrical safety for first-year medical students at UTHSCSA. It is hoped that an additional benefit of this system will be that it offers an opportunity for continuing improvement in this kind of instruction at other medical schools and hospitals.

  18. 29 CFR 1910.331 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices § 1910.331 Scope. (a) Covered work... electrical safety-related work practices for both qualified persons (those who have training in avoiding the...

  19. 29 CFR 1910.331 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices § 1910.331 Scope. (a) Covered work... electrical safety-related work practices for both qualified persons (those who have training in avoiding the...

  20. Evaluating the Performance of the NASA LaRC CMF Motion Base Safety Devices

    NASA Technical Reports Server (NTRS)

    Gupton, Lawrence E.; Bryant, Richard B., Jr.; Carrelli, David J.

    2006-01-01

    This paper describes the initial measured performance results of the previously documented NASA Langley Research Center (LaRC) Cockpit Motion Facility (CMF) motion base hardware safety devices. These safety systems are required to prevent excessive accelerations that could injure personnel and damage simulator cockpits or the motion base structure. Excessive accelerations may be caused by erroneous commands or hardware failures driving an actuator to the end of its travel at high velocity, stepping a servo valve, or instantly reversing servo direction. Such commands may result from single order failures of electrical or hydraulic components within the control system itself, or from aggressive or improper cueing commands from the host simulation computer. The safety systems must mitigate these high acceleration events while minimizing the negative performance impacts. The system accomplishes this by controlling the rate of change of valve signals to limit excessive commanded accelerations. It also aids hydraulic cushion performance by limiting valve command authority as the actuator approaches its end of travel. The design takes advantage of inherent motion base hydraulic characteristics to implement all safety features using hardware only solutions.

  1. New conducted electrical weapons: Electrical safety relative to relevant standards.

    PubMed

    Panescu, Dorin; Nerheim, Max; Kroll, Mark W; Brave, Michael A

    2017-07-01

    We have previously published about TASER ® conducted electrical weapons (CEW) compliance with international standards. CEWs deliver electrical pulses that can inhibit a person's neuromuscular control or temporarily incapacitate. An eXperimental Rotating-Field (XRF) waveform CEW and the X2 CEW are new 2-shot electrical weapon models designed to target a precise amount of delivered charge per pulse. They both can deploy 1 or 2 dart pairs, delivered by 2 separate cartridges. Additionally, the XRF controls delivery of incapacitating pulses over 4 field vectors, in a rotating sequence. As in our previous study, we were motivated by the need to understand the cardiac safety profile of these new CEWs. The goal of this paper is to analyze the nominal electrical outputs of TASER XRF and X2 CEWs in reference to provisions of all relevant international standards that specify safety requirements for electrical medical devices and electrical fences. Although these standards do not specifically mention CEWs, they are the closest electrical safety standards and hence give very relevant guidance. The outputs of several TASER XRF and X2 CEWs were measured under normal operating conditions. The measurements were compared against manufacturer specifications. CEWs electrical output parameters were reviewed against relevant safety requirements of UL 69, IEC 60335-2-76 Ed 2.1, IEC 60479-1, IEC 60479-2, AS/NZS 60479.1, AS/NZS 60479.2, IEC 60601-1 and BS EN 60601-1. Our study confirmed that the nominal electrical outputs of TASER XRF and X2 CEWs lie within safety bounds specified by relevant standards.

  2. 29 CFR 1910.308 - Special systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.308... conductors shall be installed in rigid metal conduit, in intermediate metal conduit, in electrical metallic... are installed in an identified common mounting with electrical connections that will divide the...

  3. 29 CFR 1910.308 - Special systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.308... conductors shall be installed in rigid metal conduit, in intermediate metal conduit, in electrical metallic... are installed in an identified common mounting with electrical connections that will divide the...

  4. 29 CFR 1910.308 - Special systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.308... conductors shall be installed in rigid metal conduit, in intermediate metal conduit, in electrical metallic... are installed in an identified common mounting with electrical connections that will divide the...

  5. 30 CFR 75.523 - Electric face equipment; deenergization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric face equipment; deenergization. 75.523... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.523 Electric face equipment; deenergization. [Statutory Provision] An authorized representative of the...

  6. 30 CFR 75.523 - Electric face equipment; deenergization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric face equipment; deenergization. 75.523... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.523 Electric face equipment; deenergization. [Statutory Provision] An authorized representative of the...

  7. 30 CFR 75.523 - Electric face equipment; deenergization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric face equipment; deenergization. 75.523... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.523 Electric face equipment; deenergization. [Statutory Provision] An authorized representative of the...

  8. 30 CFR 75.523 - Electric face equipment; deenergization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric face equipment; deenergization. 75.523... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.523 Electric face equipment; deenergization. [Statutory Provision] An authorized representative of the...

  9. 30 CFR 75.523 - Electric face equipment; deenergization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric face equipment; deenergization. 75.523... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.523 Electric face equipment; deenergization. [Statutory Provision] An authorized representative of the...

  10. 29 CFR 1910.308 - Special systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.308... conductors shall be installed in rigid metal conduit, in intermediate metal conduit, in electrical metallic... are installed in an identified common mounting with electrical connections that will divide the...

  11. 29 CFR 1910.308 - Special systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.308... conductors shall be installed in rigid metal conduit, in intermediate metal conduit, in electrical metallic... are installed in an identified common mounting with electrical connections that will divide the...

  12. 77 FR 14838 - General Electric-Hitachi Global Laser Enrichment LLC, Commercial Laser-Based Uranium Enrichment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... safety, chemical process safety, fire safety, emergency management, environmental protection... the transportation of SNM of low strategic significance, human factors engineering, and electrical...

  13. 7 CFR 1724.55 - Dam safety.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...

  14. 7 CFR 1724.55 - Dam safety.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...

  15. 7 CFR 1724.55 - Dam safety.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...

  16. 7 CFR 1724.55 - Dam safety.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...

  17. 7 CFR 1724.55 - Dam safety.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...

  18. 30 CFR 75.518-1 - Electric equipment and circuits; overload and short circuit protection; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric equipment and circuits; overload and short circuit protection; minimum requirements. 75.518-1 Section 75.518-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical...

  19. 30 CFR 75.518-1 - Electric equipment and circuits; overload and short circuit protection; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric equipment and circuits; overload and short circuit protection; minimum requirements. 75.518-1 Section 75.518-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical...

  20. 30 CFR 75.518-1 - Electric equipment and circuits; overload and short circuit protection; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric equipment and circuits; overload and short circuit protection; minimum requirements. 75.518-1 Section 75.518-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical...

  1. 30 CFR 75.518-1 - Electric equipment and circuits; overload and short circuit protection; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric equipment and circuits; overload and short circuit protection; minimum requirements. 75.518-1 Section 75.518-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical...

  2. Driver perceptions of the safety implications of quiet electric vehicles.

    PubMed

    Cocron, Peter; Krems, Josef F

    2013-09-01

    Previous research on the safety implications of quiet electric vehicles (EVs) has mostly focused on pedestrians' acoustic perception of EVs, and suggests that EVs are more difficult for pedestrians to hear and, therefore, compromise traffic safety. The two German field studies presented here examine the experiences of 70 drivers with low noise emissions of EVs and the drivers' long-term evaluation of the issue. Participants were surveyed via interviews and questionnaires before driving an EV for the first time, after 3 months of driving, and in the first study, again after 6 months. Based on participants' reports, a catalogue of safety-relevant incidents was composed in Study 1. The catalogue revealed that low noise-related critical incidents only rarely occur, and mostly take place in low-speed environments. The degree of hazard related to these incidents was rated as low to medium. In Study 1, driver concern for vulnerable road users as a result of low noise diminished with increasing driving experience, while perceived comfort due to this feature increased. These results were replicated in Study 2. In the second study, it was additionally examined, if drivers adjust their perceived risk of harming other road users over time. Results show that the affective assessment of risk also decreased with increased driving experience. Based on individual experience, drivers adjust their evaluation of noise-related hazards, suggesting that dangers associated with low noise emissions might be less significant than previously expected. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Electrical Safety Program: Nonelectrical Crafts at LANL, Live #12175

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, George

    Los Alamos National Laboratory (LANL) and the federal government require those working with or near electrical equipment to be trained on electrical hazards and how to avoid them. Although you might not be trained to work on electrical systems, your understanding of electricity, how it can hurt you, and what precautions to take when working near electricity could save you or others from injury or death. This course, Electrical Safety Program: Nonelectrical Crafts at LANL (12175), provides knowledge of basic electrical concepts, such as current, voltage, and resistance, and their relationship to each other. You will learn how to applymore » these concepts to safe work practices while learning about the dangers of electricity—and associated hazards—that you may encounter on the job. The course also discusses what you can do to prevent electrical accidents and what you should do in the event of an electrical emergency. The LANL Electrical Safety Program is defined by LANL Procedure (P) 101-13. An electrical safety officer (ESO) is well versed in this document and should be consulted regarding electrical questions. Appointed by the responsible line manager (RLM), ESOs can tell you if a piece of equipment or an operation is safe or how to make it safe.« less

  4. The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, volume 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings of the 1991 International Aerospace and Ground Conference on Lightning and Static Electricity are reported. Some of the topics covered include: lightning, lightning suppression, aerospace vehicles, aircraft safety, flight safety, aviation meteorology, thunderstorms, atmospheric electricity, warning systems, weather forecasting, electromagnetic coupling, electrical measurement, electrostatics, aircraft hazards, flight hazards, meteorological parameters, cloud (meteorology), ground effect, electric currents, lightning equipment, electric fields, measuring instruments, electrical grounding, and aircraft instruments.

  5. 30 CFR 75.513-1 - Electric conductor; size.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric conductor; size. 75.513-1 Section 75.513-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... Electric conductor; size. An electric conductor is not of sufficient size to have adequate carrying...

  6. 30 CFR 75.513-1 - Electric conductor; size.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric conductor; size. 75.513-1 Section 75.513-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... Electric conductor; size. An electric conductor is not of sufficient size to have adequate carrying...

  7. 30 CFR 75.501-2 - Permissible electric face equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Permissible electric face equipment. 75.501-2... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501-2 Permissible electric face equipment. (a) On and after March 30, 1971, in mines operated entirely...

  8. 30 CFR 75.501-2 - Permissible electric face equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Permissible electric face equipment. 75.501-2... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501-2 Permissible electric face equipment. (a) On and after March 30, 1971, in mines operated entirely...

  9. 30 CFR 75.501-2 - Permissible electric face equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Permissible electric face equipment. 75.501-2... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501-2 Permissible electric face equipment. (a) On and after March 30, 1971, in mines operated entirely...

  10. 75 FR 20010 - Pacific Gas & Electric Company; Establishment of Atomic Safety and Licensing Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ...] Pacific Gas & Electric Company; Establishment of Atomic Safety and Licensing Board Pursuant to delegation....321, notice is hereby given that an Atomic Safety and Licensing Board (Board) is being established to... of the following administrative judges: Alex S. Karlin, Chair, Atomic Safety and Licensing Board...

  11. 77 FR 24560 - National Highway Traffic Safety Administration Electric Vehicle Safety Technical Symposium

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... discuss safety considerations for electric vehicles powered by lithium-ion (Li-ion) batteries. The... technical symposium to discuss regulatory and safety considerations for lithium-ion (Li-ion) battery-powered... Li-ion batteries and Li-ion battery-powered vehicles, as well as presentations by the Department of...

  12. A Novel Series Connected Batteries State of High Voltage Safety Monitor System for Electric Vehicle Application

    PubMed Central

    Jiaxi, Qiang; Lin, Yang; Jianhui, He; Qisheng, Zhou

    2013-01-01

    Batteries, as the main or assistant power source of EV (Electric Vehicle), are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS), the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application. PMID:24194677

  13. A novel series connected batteries state of high voltage safety monitor system for electric vehicle application.

    PubMed

    Jiaxi, Qiang; Lin, Yang; Jianhui, He; Qisheng, Zhou

    2013-01-01

    Batteries, as the main or assistant power source of EV (Electric Vehicle), are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS), the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  14. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. [Statutory...

  15. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. [Statutory...

  16. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. [Statutory...

  17. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. [Statutory...

  18. 10 CFR 50.49 - Environmental qualification of electric equipment important to safety for nuclear power plants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... standard may be obtained from the Institute of Electrical and Electronics Engineers, Inc., 345 East 47th... 10 Energy 1 2012-01-01 2012-01-01 false Environmental qualification of electric equipment... Regulatory Approvals § 50.49 Environmental qualification of electric equipment important to safety for...

  19. Quieter Cars and the Safety of Blind Pedestrians: Phase 1.

    DOT National Transportation Integrated Search

    2010-04-01

    The National Highway Traffic Safety Administration recognizes that quieter cars such as hybrid-electric vehicles in low-speed operation using their : electric motors, may introduce a safety issue for pedestrians who are blind. This study documents th...

  20. External validity of a generic safety climate scale for lone workers across different industries and companies.

    PubMed

    Lee, Jin; Huang, Yueng-hsiang; Robertson, Michelle M; Murphy, Lauren A; Garabet, Angela; Chang, Wen-Ruey

    2014-02-01

    The goal of this study was to examine the external validity of a 12-item generic safety climate scale for lone workers in order to evaluate the appropriateness of generalized use of the scale in the measurement of safety climate across various lone work settings. External validity evidence was established by investigating the measurement equivalence (ME) across different industries and companies. Confirmatory factor analysis (CFA)-based and item response theory (IRT)-based perspectives were adopted to examine the ME of the generic safety climate scale for lone workers across 11 companies from the trucking, electrical utility, and cable television industries. Fairly strong evidence of ME was observed for both organization- and group-level generic safety climate sub-scales. Although significant invariance was observed in the item intercepts across the different lone work settings, absolute model fit indices remained satisfactory in the most robust step of CFA-based ME testing. IRT-based ME testing identified only one differentially functioning item from the organization-level generic safety climate sub-scale, but its impact was minimal and strong ME was supported. The generic safety climate scale for lone workers reported good external validity and supported the presence of a common feature of safety climate among lone workers. The scale can be used as an effective safety evaluation tool in various lone work situations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The strain capacitor: A novel energy storage device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deb Shuvra, Pranoy; McNamara, Shamus, E-mail: shamus.mcnamara@louisville.edu

    2014-12-15

    A novel electromechanical energy storage device is reported that has the potential to have high energy densities. It can efficiently store both mechanical strain energy and electrical energy in the form of an electric field between the electrodes of a strain-mismatched bilayer capacitor. When the charged device is discharged, both the electrical and mechanical energy are extracted in an electrical form. The charge-voltage profile of the device is suitable for energy storage applications since a larger portion of the stored energy can be extracted at higher voltage levels compared to a normal capacitor. Its unique features include the potential formore » long lifetime, safety, portability, wide operating temperature range, and environment friendliness. The device can be designed to operate over varied operating voltage ranges by selecting appropriate materials and by changing the dimensions of the device. In this paper a finite element model of the device is developed to verify and demonstrate the potential of the device as an energy storage element. This device has the potential to replace conventional energy storage devices.« less

  2. Evaluation of Electrical Characteristics of Protective Equipment - a Prerequisite for Ensuring Safety and Health of Workers at Work

    NASA Astrophysics Data System (ADS)

    Buică, G.; Beiu, C.; Antonov, A.; Dobra, R.; Păsculescu, D.

    2017-06-01

    The protecting electrical equipment in use are subject to various factors generated by the use, maintenance, storage and working environment, which may change the characteristics of protection against electric shock. The study presents the results of research on the behaviour over time of protective characteristics of insulating covers of material of work equipment in use, in order to determine the type and periodicity of safety tests. There were tested and evaluated safety equipment with plastic and insulating rubber covers used in operations of verifying functionality, safety and maintenance of machinery used in manufacturing industries and specific services from electric, energy and food sector.

  3. QUAD+ BWR Fuel Assembly demonstration program at Browns Ferry plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doshi, P.K.; Mayhue, L.T.; Robert, J.T.

    1984-04-01

    The QUAD+ fuel assembly is an improved BWR fuel assembly designed and manufactured by Westinghouse Electric Corporation. The design features a water cross separating four fuel minibundles in an integral channel. A demonstration program for this fuel design is planned for late 1984 in cycle 6 of Browns Ferry 2, a TVA plant. Objectives for the design of the QUAD+ demonstration assemblies are compatibility in performance and transparency in safety analysis with the feed fuel. These objectives are met. Inspections of the QUAD+ demonstration assemblies are planned at each refueling outage.

  4. Electrical safety of conducted electrical weapons relative to requirements of relevant electrical standards.

    PubMed

    Panescu, Dorin; Nerheim, Max; Kroll, Mark

    2013-01-01

    TASER(®) conducted electrical weapons (CEW) deliver electrical pulses that can inhibit a person's neuromuscular control or temporarily incapacitate. TASER X26, X26P, and X2 are among CEW models most frequently deployed by law enforcement agencies. The X2 CEW uses two cartridge bays while the X26 and X26P CEWs have only one. The TASER X26P CEW electronic output circuit design is equivalent to that of any one of the two TASER X2 outputs. The goal of this paper was to analyze the nominal electrical outputs of TASER X26, X26P, and X2 CEWs in reference to provisions of several international standards that specify safety requirements for electrical medical devices and electrical fences. Although these standards do not specifically mention CEWs, they are the closest electrical safety standards and hence give very relevant guidance. The outputs of two TASER X26 and two TASER X2 CEWs were measured and confirmed against manufacturer and other published specifications. The TASER X26, X26P, and X2 CEWs electrical output parameters were reviewed against relevant safety requirements of UL 69, IEC 60335-2-76 Ed 2.1, IEC 60479-1, IEC 60479-2, AS/NZS 60479.1, AS/NZS 60479.2 and IEC 60601-1. Prior reports on similar topics were reviewed as well. Our measurements and analyses confirmed that the nominal electrical outputs of TASER X26, X26P and X2 CEWs lie within safety bounds specified by relevant requirements of the above standards.

  5. 30 CFR 57.4600 - Extinguishing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....4600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention... electrically conductive extinguishing agent could create an electrical hazard, a multipurpose dry-chemical fire...

  6. Acoustic Data for Hybrid and Electric Heavy-Duty Vehicles and Electric Motorcycles

    DOT National Transportation Integrated Search

    2015-12-01

    The Pedestrian Safety Enhancement Act (PSEA) of 2010 requires NHTSA to conduct a rulemaking to establish a Federal Motor Vehicle Safety Standard requiring an alert sound for pedestrians to be emitted by all types of motor vehicles that are electric o...

  7. Passive safety device and internal short tested method for energy storage cells and systems

    DOEpatents

    Keyser, Matthew; Darcy, Eric; Long, Dirk; Pesaran, Ahmad

    2015-09-22

    A passive safety device for an energy storage cell for positioning between two electrically conductive layers of the energy storage cell. The safety device also comprising a separator and a non-conductive layer. A first electrically conductive material is provided on the non-conductive layer. A first opening is formed through the separator between the first electrically conductive material and one of the electrically conductive layers of the energy storage device. A second electrically conductive material is provided adjacent the first electrically conductive material on the non-conductive layer, wherein a space is formed on the non-conductive layer between the first and second electrically conductive materials. A second opening is formed through the non-conductive layer between the second electrically conductive material and another of the electrically conductive layers of the energy storage device. The first and second electrically conductive materials combine and exit at least partially through the first and second openings to connect the two electrically conductive layers of the energy storage device at a predetermined temperature.

  8. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries

    NASA Astrophysics Data System (ADS)

    Zheng, Siqi; Wang, Li; Feng, Xuning; He, Xiangming

    2018-02-01

    Safety issue is very important for the lithium ion battery used in electric vehicle or other applications. This paper probes the heat sources in the thermal runaway processes of lithium ion batteries composed of different chemistries using accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC). The adiabatic thermal runaway features for the 4 types of commercial lithium ion batteries are tested using ARC, whereas the reaction characteristics of the component materials, including the cathode, the anode and the separator, inside the 4 types of batteries are measured using DSC. The peaks and valleys of the critical component reactions measured by DSC can match the fluctuations in the temperature rise rate measured by ARC, therefore the relevance between the DSC curves and the ARC curves is utilized to probe the heat source in the thermal runaway process and reveal the thermal runaway mechanisms. The results and analysis indicate that internal short circuit is not the only way to thermal runaway, but can lead to extra electrical heat, which is comparable with the heat released by chemical reactions. The analytical approach of the thermal runaway mechanisms in this paper can guide the safety design of commercial lithium ion batteries.

  9. 78 FR 32691 - Proposed Collection; Comment Request; Certificate of Electrical Training

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... DEPARTMENT OF LABOR Mine Safety and Health Administration Proposed Collection; Comment Request; Certificate of Electrical Training AGENCY: Mine Safety and Health Administration, Labor. ACTION: 60-Day Notice... clearly identified with ``OMB 1219-0001'' and sent to the Mine Safety and Health Administration (MSHA...

  10. 30 CFR 56.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Abandoned electric circuits. 56.4011 Section 56.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and...

  11. 30 CFR 57.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Abandoned electric circuits. 57.4011 Section 57.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention...

  12. Advanced Concepts for Pressure-Channel Reactors: Modularity, Performance and Safety

    NASA Astrophysics Data System (ADS)

    Duffey, Romney B.; Pioro, Igor L.; Kuran, Sermet

    Based on an analysis of the development of advanced concepts for pressure-tube reactor technology, we adapt and adopt the pressure-tube reactor advantage of modularity, so that the subdivided core has the potential for optimization of the core, safety, fuel cycle and thermal performance independently, while retaining passive safety features. In addition, by adopting supercritical water-cooling, the logical developments from existing supercritical turbine technology and “steam” systems can be utilized. Supercritical and ultra-supercritical boilers and turbines have been operating for some time in coal-fired power plants. Using coolant outlet temperatures of about 625°C achieves operating plant thermal efficiencies in the order of 45-48%, using a direct turbine cycle. In addition, by using reheat channels, the plant has the potential to produce low-cost process heat, in amounts that are customer and market dependent. The use of reheat systems further increases the overall thermal efficiency to 55% and beyond. With the flexibility of a range of plant sizes suitable for both small (400 MWe) and large (1400 MWe) electric grids, and the ability for co-generation of electric power, process heat, and hydrogen, the concept is competitive. The choice of core power, reheat channel number and exit temperature are all set by customer and materials requirements. The pressure channel is a key technology that is needed to make use of supercritical water (SCW) in CANDU®1 reactors feasible. By optimizing the fuel bundle and fuel channel, convection and conduction assure heat removal using passive-moderator cooling. Potential for severe core damage can be almost eliminated, even without the necessity of activating the emergency-cooling systems. The small size of containment structure lends itself to a small footprint, impacts economics and building techniques. Design features related to Canadian concepts are discussed in this paper. The main conclusion is that development of SCW pressure-channel nuclear reactors is feasible and significant benefits can be expected over other thermal-energy systems.

  13. Intelligent systems installed in building of research centre for research purposes

    NASA Astrophysics Data System (ADS)

    Matusov, Jozef; Mokry, Marian; Kolkova, Zuzana; Sedivy, Stefan

    2016-06-01

    The attractiveness of intelligent buildings is nowadays directly connected with higher level of comfort and also the economic mode of consumption energy for heating, cooling and the total consumption of electricity for electric devices. The technologies of intelligent buildings compared with conventional solutions allow dynamic optimization in real time and make it easy for operational message. The basic division of functionality in horizontal direction is possible divide in to two areas such as Economical sophisticated residential care about the comfort of people in the building and Security features. The paper deals with description of intelligent systems which has a building of Research Centre. The building has installed the latest technology for utilization of renewable energy and also latest systems of controlling and driving all devices which contribute for economy operation by achieving the highest thermal comfort and overall safety.

  14. Acoustic characteristics of hybrid electric vehicles and the safety of pedestrians who are blind

    DOT National Transportation Integrated Search

    2010-08-01

    Quieter cars such as electric vehicles (EVs) and hybrid electric vehicles (HEVs) may reduce auditory cues used by pedestrians to assess the state of nearby traffic and, as a result, their use may have an adverse impact on pedestrian safety. In order ...

  15. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  16. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  17. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  18. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  19. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  20. 30 CFR 77.103 - Electrical work; qualified person.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electrical work; qualified person. 77.103... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Qualified and Certified Persons § 77.103 Electrical work; qualified person. (a) Except as...

  1. 30 CFR 77.103 - Electrical work; qualified person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical work; qualified person. 77.103... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Qualified and Certified Persons § 77.103 Electrical work; qualified person. (a) Except as...

  2. 30 CFR 77.511 - Danger signs at electrical installations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Danger signs at electrical installations. 77.511 Section 77.511 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF...

  3. Current Perspectives on Viable but Non-culturable State in Foodborne Pathogens

    PubMed Central

    Zhao, Xihong; Zhong, Junliang; Wei, Caijiao; Lin, Chii-Wann; Ding, Tian

    2017-01-01

    The viable but non-culturable (VBNC) state, a unique state in which a number of bacteria respond to adverse circumstances, was first discovered in 1982. Unfortunately, it has been reported that many foodborne pathogens can be induced to enter the VBNC state by the limiting environmental conditions during food processing and preservation, such as extreme temperatures, drying, irradiation, pulsed electric field, and high pressure stress, as well as the addition of preservatives and disinfectants. After entering the VBNC state, foodborne pathogens will introduce a serious crisis to food safety and public health because they cannot be detected using conventional plate counting techniques. This review provides an overview of the various features of the VBNC state, including the biological characteristics, induction and resuscitation factors, formation and resuscitation mechanisms, detection methods, and relationship to food safety. PMID:28421064

  4. 77 FR 16925 - Medical Devices; Neurological Devices; Classification of the Near Infrared Brain Hematoma Detector

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... Mitigation measures Excessive laser power Electrical safety and electromagnetic compatibility (EMC... should validate electromagnetic compatibility (EMC), electrical safety, and battery characteristics; (4...

  5. 30 CFR 56.4130 - Electric substations and liquid storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control Prohibitions/precautions/housekeeping § 56.4130 Electric substations...

  6. Closeup view of the Solid Rocket Booster (SRB) Forward Skirt ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Solid Rocket Booster (SRB) Forward Skirt sitting on ground support equipment in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center while being prepared for mating with the Frustum-Nose Cap Assembly and the Forward Rocket Motor Segment. The prominent feature in this view is the electrical, data, telemetry and safety systems terminal which connects to the Aft Skirt Assembly systems via the Systems Tunnel that runs the length of the Rocket Motor. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  7. 30 CFR 57.4130 - Surface electric substations and liquid storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Prohibitions/precautions/housekeeping § 57.4130 Surface electric...

  8. A NASA Approach to Safety Considerations for Electric Propulsion Aircraft Testbeds

    NASA Technical Reports Server (NTRS)

    Papathakis, Kurt V.; Sessions, Alaric M.; Burkhardt, Phillip A.; Ehmann, David W.

    2017-01-01

    Electric, hybrid-electric, and turbo-electric distributed propulsion technologies and concepts are beginning to gain traction in the aircraft design community, as they can provide improvements in operating costs, noise, fuel consumption, and emissions compared to conventional internal combustion or Brayton-cycle powered vehicles. NASA is building multiple demonstrators and testbeds to buy down airworthiness and flight safety risks for these new technologies, including X-57 Maxwell, HEIST, Airvolt, and NEAT.

  9. SUNRAYCE 1995: Working safely with lead-acid batteries and photovoltaic power systems

    NASA Astrophysics Data System (ADS)

    Dephillips, M. P.; Moskowitz, P. D.; Fthenakis, V. M.

    1994-05-01

    This document is a power system and battery safety handbook for participants in the SUNRAYCE 95 solar powered electric vehicle program. The topics of the handbook include batteries, photovoltaic modules, safety equipment needed for working with sulfuric acid electrolyte and batteries, battery transport, accident response, battery recharging and ventilation, electrical risks on-board vehicle, external electrical risks, electrical risk management strategies, and general maintenance including troubleshooting, hydrometer check and voltmeter check.

  10. 29 CFR Appendix A to Subpart S of... - References for Further Information

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Safety, Health, and Environmental Training. ANSI/IEEE C2-2002 National Electrical Safety Code. ANSI K61.1.... NFPA 59-2004 Utility LP-Gas Plant Code. NFPA 70-2002 National Electrical Code. (See also NFPA 70-2005.... NMAB 353-3-1980 Classification of Combustible Dust in Accordance with the National Electrical Code. [72...

  11. 29 CFR Appendix A to Subpart S of... - References for Further Information

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Safety, Health, and Environmental Training. ANSI/IEEE C2-2002 National Electrical Safety Code. ANSI K61.1.... NFPA 59-2004 Utility LP-Gas Plant Code. NFPA 70-2002 National Electrical Code. (See also NFPA 70-2005.... NMAB 353-3-1980 Classification of Combustible Dust in Accordance with the National Electrical Code. [72...

  12. 29 CFR Appendix A to Subpart S of... - References for Further Information

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Safety, Health, and Environmental Training. ANSI/IEEE C2-2002 National Electrical Safety Code. ANSI K61.1.... NFPA 59-2004 Utility LP-Gas Plant Code. NFPA 70-2002 National Electrical Code. (See also NFPA 70-2005.... NMAB 353-3-1980 Classification of Combustible Dust in Accordance with the National Electrical Code. [72...

  13. 29 CFR Appendix A to Subpart S of... - References for Further Information

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Safety, Health, and Environmental Training. ANSI/IEEE C2-2002 National Electrical Safety Code. ANSI K61.1.... NFPA 59-2004 Utility LP-Gas Plant Code. NFPA 70-2002 National Electrical Code. (See also NFPA 70-2005.... NMAB 353-3-1980 Classification of Combustible Dust in Accordance with the National Electrical Code. [72...

  14. 78 FR 1162 - Cardiovascular Devices; Reclassification of External Cardiac Compressor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... safety and electromagnetic compatibility; For devices containing software, software verification... electromagnetic compatibility; For devices containing software, software verification, validation, and hazard... electrical components, appropriate analysis and testing must validate electrical safety and electromagnetic...

  15. The nuclear battery

    NASA Astrophysics Data System (ADS)

    Kozier, K. S.; Rosinger, H. E.

    The evolution and present status of an Atomic Energy of Canada Limited program to develop a small, solid-state, passively cooled reactor power supply known as the Nuclear Battery is reviewed. Key technical features of the Nuclear Battery reactor core include a heat-pipe primary heat transport system, graphite neutron moderator, low-enriched uranium TRISO coated-particle fuel and the use of burnable poisons for long-term reactivity control. An external secondary heat transport system extracts useful heat energy, which may be converted into electricity in an organic Rankine cycle engine or used to produce high-pressure steam. The present reference design is capable of producing about 2400 kW(t) (about 600 kW(e) net) for 15 full-power years. Technical and safety features are described along with recent progress in component hardware development programs and market assessment work.

  16. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES...

  17. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES...

  18. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES...

  19. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES...

  20. The functional performance of the Argus II retinal prosthesis

    PubMed Central

    Stronks, H Christiaan; Dagnelie, Gislin

    2014-01-01

    Summary Visual prostheses are devices to treat profound vision loss by stimulating secondary nerve cells anywhere along the visual pathway, typically with electrical pulses. The Argus® II implant, developed by Second Sight Medical Products (SSMP, Sylmar, CA, USA), targets the retina and features 60 electrodes that electrically stimulate the surviving retinal neurons. Of the approximately 20 research groups that are actively developing visual prostheses, SSMP has the longest track record. The Argus II was the first visual prosthesis to become commercially available: It received the CE mark in Europe in 2011 and FDA approval was granted in early 2013 for humanitarian use in the USA. Meanwhile, the Argus II safety/benefit study has been extended for research purposes, and is ongoing. In this review we will discuss the performance of the Argus II in restoring sight to the blind, and we will shed light on its expected developments in the coming years. PMID:24308734

  1. 29 CFR 1926.408 - Special systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Installation Safety Requirements § 1926... electrical connections. The enclosure shall have provision for locking so only authorized qualified persons... as substations, trailers, cars, mobile shovels, draglines, hoists, drills, dredges, compressors...

  2. 29 CFR 1926.408 - Special systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Installation Safety Requirements § 1926... electrical connections. The enclosure shall have provision for locking so only authorized qualified persons... as substations, trailers, cars, mobile shovels, draglines, hoists, drills, dredges, compressors...

  3. 29 CFR 1926.408 - Special systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Installation Safety Requirements § 1926... electrical connections. The enclosure shall have provision for locking so only authorized qualified persons... as substations, trailers, cars, mobile shovels, draglines, hoists, drills, dredges, compressors...

  4. 29 CFR 1926.408 - Special systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Installation Safety Requirements § 1926... electrical connections. The enclosure shall have provision for locking so only authorized qualified persons... as substations, trailers, cars, mobile shovels, draglines, hoists, drills, dredges, compressors...

  5. 29 CFR 1926.408 - Special systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Installation Safety Requirements § 1926... electrical connections. The enclosure shall have provision for locking so only authorized qualified persons... as substations, trailers, cars, mobile shovels, draglines, hoists, drills, dredges, compressors...

  6. The value of materials R&D in the fast track development of fusion power

    NASA Astrophysics Data System (ADS)

    Ward, D. J.; Taylor, N. P.; Cook, I.

    2007-08-01

    The objective of the international fusion program is the creation of power plants with attractive safety and environmental features and viable economics. There is a range of possible plants that can meet these objectives, as studied for instance in the recent EU studies of power plant concepts. All of the concepts satisfy safety and environmental objectives but the economic performance is interpreted differently in different world regions according to the perception of future energy markets. This leads to different materials performance targets and the direction and timescales of the materials development programme needed to meet those targets. In this paper, the implications for materials requirements of a fast track approach to fusion development are investigated. This includes a quantification of the overall benefits of more advanced materials: including the effect of trading off an extended development time against a reduced cost of electricity for resulting power plants.

  7. 30 CFR 77.506-1 - Electric equipment and circuits; overload and short circuit protection; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric equipment and circuits; overload and short circuit protection; minimum requirements. 77.506-1 Section 77.506-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS O...

  8. 30 CFR 77.506-1 - Electric equipment and circuits; overload and short circuit protection; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric equipment and circuits; overload and short circuit protection; minimum requirements. 77.506-1 Section 77.506-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS O...

  9. 30 CFR 77.506-1 - Electric equipment and circuits; overload and short circuit protection; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric equipment and circuits; overload and short circuit protection; minimum requirements. 77.506-1 Section 77.506-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS O...

  10. 30 CFR 77.506-1 - Electric equipment and circuits; overload and short circuit protection; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric equipment and circuits; overload and short circuit protection; minimum requirements. 77.506-1 Section 77.506-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS O...

  11. 75 FR 2564 - Virginia Electric and Power Company D/B/A Dominion Virginia Power and Old Dominion Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ..., submit an annual update to the application's final safety analysis report (FSAR), which is a part of the... public health or safety, and are consistent with the common defense and security; and (2) special... is authorized by law. No Undue Risk to Public Health and Safety The underlying purpose of 10 CFR 50...

  12. Modelling of a Double-Track Railway Contact System Electric Field Intensity

    NASA Astrophysics Data System (ADS)

    Belinsky, Stanislav; Khanzhina, Olga; Sidorov, Alexander

    2017-12-01

    Working conditions of personnel that serves contact system (CS) are affected by factors including health and safety, security and working hours (danger of rolling stock accidents, danger of electric shock strokes, work at height, severity and tension of work, increased noise level, etc.) Low frequency electromagnetic fields as part of both electric and magnetic fields are among of the most dangerous and harmful factors. These factors can affect not only the working personnel, but also a lot of people, who do not work with the contact system itself, but could be influenced by electromagnetic field as the result of their professional activity. People, who use public transport or live not far from the electrified lines, are endangered by these factors as well. There are results of the theoretical researches in which low frequency electric fields of railway contact system were designed with the use of mathematical and computer modelling. Significant features of electric field distribution near double-track railway in presence or absence of human body were established. The studies showed the dependence of low frequency electric field parameters on the distance to the track axis, height, and presence or absence of human body. The obtained data were compared with permissible standards established in the Russian Federation and other countries with advanced electrified railway system. Evaluation of low frequency electric fields harmful effect on personnel is the main result of this work. It is also established, that location of personnel, voltage and current level, amount of tracks and other factors influence electric fields of contact systems.

  13. Safety for the Elementary Grades: A Multimedia Roundup.

    ERIC Educational Resources Information Center

    Mandell, Phyllis Levy; Rosenthal, Shiri

    1980-01-01

    Presents abstracts of films and cassettes for the elementary school dealing with basic safety, bicycle safety, electrical safety, emergencies and how to deal with them, fire and holiday safety, playground safety, poisons, school and bus safety, signs and signals, skateboard and water safety. (CS)

  14. Current status of environmental, health, and safety issues of nickel metal-hydride batteries for electric vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbus, D; Hammel, C J; Mark, J

    1993-08-01

    This report identifies important environment, health, and safety issues associated with nickel metal-hydride (Ni-MH) batteries and assesses the need for further testing and analysis. Among the issues discussed are cell and battery safety, workplace health and safety, shipping requirements, and in-vehicle safety. The manufacture and recycling of Ni-MH batteries are also examined. This report also overviews the ``FH&S`` issues associated with other nickel-based electric vehicle batteries; it examines venting characteristics, toxicity of battery materials, and the status of spent batteries as a hazardous waste.

  15. 29 CFR 1910.303 - General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.303..., including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus... from grounds other than those required or permitted by this subpart. (4) Interrupting rating. Equipment...

  16. 29 CFR 1910.303 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.303..., including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus... from grounds other than those required or permitted by this subpart. (4) Interrupting rating. Equipment...

  17. 29 CFR 1910.303 - General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.303..., including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus... from grounds other than those required or permitted by this subpart. (4) Interrupting rating. Equipment...

  18. 29 CFR 1910.303 - General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.303..., including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus... from grounds other than those required or permitted by this subpart. (4) Interrupting rating. Equipment...

  19. 29 CFR 1910.303 - General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.303..., including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus... from grounds other than those required or permitted by this subpart. (4) Interrupting rating. Equipment...

  20. Blood pressure control in resistant hypertension: new therapeutic options.

    PubMed

    Grassi, Guido; Quarti-Trevano, Fosca; Brambilla, Gianmaria; Seravalle, Gino

    2010-11-01

    Resistant hypertension, namely the hypertensive state characterized by the inability of multiple antihypertensive drug interventions to lower blood pressure to goal levels, represents a condition frequently detected in clinical practice. Its main features are represented by its heterogeneous etiology as well as its very high cardiovascular risk. This latter peculiarity has implemented the research for new approaches to the treatment of the disease. This article will focus on two of them, namely carotid baroreceptor electric stimulation and the renal denervation procedure. Clinical studies and large-scale clinical trials are presently ongoing with the aim of defining the long-term efficacy and safety profile of the two interventions.

  1. Mine Winder Drives in Integrated Copper Complex

    NASA Astrophysics Data System (ADS)

    Dey, Pranab Kumar

    2018-04-01

    This paper describes various features required to be evaluated before selecting mine winder drives. In handling such project, the selection of proper equipments is necessary at the initial design stage of planning and how the electrical system design considers all aspects to protect the grid from unwarranted influence of the connected loads and minimize the generation of harmonics due to network configurations adopted to keep it within the stipulated value dictated by the supply authorities has been discussed. The design should cover all aspects to provide quality power with effective braking system required as per the mining statute for operational safety. It also emphasizes on the requirement of quality maintenance.

  2. Hybrid Electric Transit Bus Testing | Transportation Research | NREL

    Science.gov Websites

    this study are featured in the Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid manufactured by Orion Industries with BAE propulsion systems. The results of this study are featured in the In power units. The results of this study are featured in the Ebus Hybrid Electric Buses and Trolleys case

  3. System and method employing a self-organizing map load feature database to identify electric load types of different electric loads

    DOEpatents

    Lu, Bin; Harley, Ronald G.; Du, Liang; Yang, Yi; Sharma, Santosh K.; Zambare, Prachi; Madane, Mayura A.

    2014-06-17

    A method identifies electric load types of a plurality of different electric loads. The method includes providing a self-organizing map load feature database of a plurality of different electric load types and a plurality of neurons, each of the load types corresponding to a number of the neurons; employing a weight vector for each of the neurons; sensing a voltage signal and a current signal for each of the loads; determining a load feature vector including at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the loads; and identifying by a processor one of the load types by relating the load feature vector to the neurons of the database by identifying the weight vector of one of the neurons corresponding to the one of the load types that is a minimal distance to the load feature vector.

  4. Safety and Liability.

    ERIC Educational Resources Information Center

    Berthelot, Ronald J.; And Others

    1982-01-01

    This series of five articles highlights Pensacola Junior College's occupational safety course, involving simulated emergencies, Florida's standards for teacher liability, electrical safety in the classroom and laboratory, color coding for machine safety, and Florida industrial arts safety instructional materials. (SK)

  5. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 1, Cell and battery safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohi, J M

    1992-09-01

    This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&Dmore » and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD&D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH&S information on Na/S batteries is provided in the appendices.« less

  6. How important is vehicle safety in the new vehicle purchase process?

    PubMed

    Koppel, Sjaanie; Charlton, Judith; Fildes, Brian; Fitzharris, Michael

    2008-05-01

    Whilst there has been a significant increase in the amount of consumer interest in the safety performance of privately owned vehicles, the role that it plays in consumers' purchase decisions is poorly understood. The aims of the current study were to determine: how important vehicle safety is in the new vehicle purchase process; what importance consumers place on safety options/features relative to other convenience and comfort features, and how consumers conceptualise vehicle safety. In addition, the study aimed to investigate the key parameters associated with ranking 'vehicle safety' as the most important consideration in the new vehicle purchase. Participants recruited in Sweden and Spain completed a questionnaire about their new vehicle purchase. The findings from the questionnaire indicated that participants ranked safety-related factors (e.g., EuroNCAP (or other) safety ratings) as more important in the new vehicle purchase process than other vehicle factors (e.g., price, reliability etc.). Similarly, participants ranked safety-related features (e.g., advanced braking systems, front passenger airbags etc.) as more important than non-safety-related features (e.g., route navigation systems, air-conditioning etc.). Consistent with previous research, most participants equated vehicle safety with the presence of specific vehicle safety features or technologies rather than vehicle crash safety/test results or crashworthiness. The key parameters associated with ranking 'vehicle safety' as the most important consideration in the new vehicle purchase were: use of EuroNCAP, gender and education level, age, drivers' concern about crash involvement, first vehicle purchase, annual driving distance, person for whom the vehicle was purchased, and traffic infringement history. The findings from this study are important for policy makers, manufacturers and other stakeholders to assist in setting priorities with regard to the promotion and publicity of vehicle safety features for particular consumer groups (such as younger consumers) in order to increase their knowledge regarding vehicle safety and to encourage them to place highest priority on safety in the new vehicle purchase process.

  7. 30 CFR 56.12047 - Guy wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... insulator protection of the National Electrical Safety Code, part 2, entitled “Safety Rules for the Installation and Maintenance of Electric Supply and Communication Lines” (also referred to as National Bureau... from the National Institute of Science and Technology, 100 Bureau Drive, Stop 3460, Gaithersburg, MD...

  8. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for grounding or insulator protection of the National Electrical Safety Code, part 2, entitled “Safety Rules for the Installation and Maintenance of Electric Supply and Communication Lines” (also... documents may be obtained from the National Institute of Science and Technology, 100 Bureau Drive, Stop 3460...

  9. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for grounding or insulator protection of the National Electrical Safety Code, part 2, entitled “Safety Rules for the Installation and Maintenance of Electric Supply and Communication Lines” (also... documents may be obtained from the National Institute of Science and Technology, 100 Bureau Drive, Stop 3460...

  10. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for grounding or insulator protection of the National Electrical Safety Code, part 2, entitled “Safety Rules for the Installation and Maintenance of Electric Supply and Communication Lines” (also... documents may be obtained from the National Institute of Science and Technology, 100 Bureau Drive, Stop 3460...

  11. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for grounding or insulator protection of the National Electrical Safety Code, part 2, entitled “Safety Rules for the Installation and Maintenance of Electric Supply and Communication Lines” (also... documents may be obtained from the National Institute of Science and Technology, 100 Bureau Drive, Stop 3460...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Camp

    Over the past four years, the Electrical Safety Program at PPPL has evolved in addressing changing regulatory requirements and lessons learned from accident events, particularly in regards to arc flash hazards and implementing NFPA 70E requirements. This presentation will discuss PPPL's approaches to the areas of electrical hazards evaluation, both shock and arc flash; engineered solutions for hazards mitigation such as remote racking of medium voltage breakers, operational changes for hazards avoidance, targeted personnel training and hazard appropriate personal protective equipment. Practical solutions for nominal voltage identification and zero voltage checks for lockout/tagout will also be covered. Finally, we willmore » review the value of a comprehensive electrical drawing program, employee attitudes expressed as a personal safety work ethic, integrated safety management, and sustained management support for continuous safety improvement.« less

  13. Current collectors for improved safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelmalak, Michael Naguib; Allu, Srikanth; Dudney, Nancy J.

    A battery electrode assembly includes a current collector with conduction barrier regions having a conductive state in which electrical conductivity through the conduction barrier region is permitted, and a safety state in which electrical conductivity through the conduction barrier regions is reduced. The conduction barrier regions change from the conductive state to the safety state when the current collector receives a short-threatening event. An electrode material can be connected to the current collector. The conduction barrier regions can define electrical isolation subregions. A battery is also disclosed, and methods for making the electrode assembly, methods for making a battery, andmore » methods for operating a battery.« less

  14. ZEBRA battery meets USABC goals

    NASA Astrophysics Data System (ADS)

    Dustmann, Cord-H.

    In 1990, the California Air Resources Board has established a mandate to introduce electric vehicles in order to improve air quality in Los Angeles and other capitals. The United States Advanced Battery Consortium has been formed by the big car companies, Electric Power Research Institute (EPRI) and the Department of Energy in order to establish the requirements on EV-batteries and to support battery development. The ZEBRA battery system is a candidate to power future electric vehicles. Not only because its energy density is three-fold that of lead acid batteries (50% more than NiMH) but also because of all the other EV requirements such as power density, no maintenance, summer and winter operation, safety, failure tolerance and low cost potential are fulfilled. The electrode material is plain salt and nickel in combination with a ceramic electrolyte. The cell voltage is 2.58 V and the capacity of a standard cell is 32 Ah. Some hundred cells are connected in series and parallel to form a battery with about 300 V OCV. The battery system including battery controller, main circuit-breaker and cooling system is engineered for vehicle integration and ready to be mounted in a vehicle [J. Gaub, A. van Zyl, Mercedes-Benz Electric Vehicles with ZEBRA Batteries, EVS-14, Orlando, FL, Dec. 1997]. The background of these features are described.

  15. Design and development of a low-cost biphasic charge-balanced functional electric stimulator and its clinical validation.

    PubMed

    Shendkar, Chandrashekhar; Lenka, Prasanna K; Biswas, Abhishek; Kumar, Ratnesh; Mahadevappa, Manjunatha

    2015-10-01

    Functional electric stimulators that produce near-ideal, charge-balanced biphasic stimulation waveforms with interphase delay are considered safer and more efficacious than conventional stimulators. An indigenously designed, low-cost, portable FES device named InStim is developed. It features a charge-balanced biphasic single channel. The authors present the complete design, mathematical analysis of the circuit and the clinical evaluation of the device. The developed circuit was tested on stroke patients affected by foot drop problems. It was tested both under laboratory conditions and in clinical settings. The key building blocks of this circuit are low dropout regulators, a DC-DC voltage booster and a single high-power current source OP-Amp with current-limiting capabilities. This allows the device to deliver high-voltage, constant current, biphasic pulses without the use of a bulky step-up transformer. The advantages of the proposed design over the currently existing devices include improved safety features (zero DC current, current-limiting mechanism and safe pulses), waveform morphology that causes less muscle fatigue, cost-effectiveness and compact power-efficient circuit design with minimal components. The device is also capable of producing appropriate ankle dorsiflexion in patients having foot drop problems of various Medical Research Council scale grades.

  16. Six Tips for College Health and Safety

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  17. 30 CFR 56.6403 - Branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Electric Blasting § 56.6403 Branch circuits. (a) If electric blasting includes the use of branch circuits, each... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Branch circuits. 56.6403 Section 56.6403...

  18. 30 CFR 57.6403 - Branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Electric Blasting-Surface and Underground § 57.6403 Branch circuits. (a) If electric blasting includes the use of... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Branch circuits. 57.6403 Section 57.6403...

  19. 30 CFR 57.6407 - Circuit testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... connection of electric detonator series; and (4) Total blasting circuit resistance prior to connection to the... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Circuit testing. 57.6407 Section 57.6407... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Electric...

  20. Electrical injury in relation to voltage, "no-let-go" phenomenon, symptoms and perceived safety culture: a survey of Swedish male electricians.

    PubMed

    Rådman, Lisa; Nilsagård, Ylva; Jakobsson, Kristina; Ek, Åsa; Gunnarsson, Lars-Gunnar

    2016-02-01

    Professional electricians are highly subjected to electrical injuries. Previous studies describing symptoms after electrical injury have not included people with less severe initial injuries. The purpose of the present study was to describe symptoms at different time points after electrical injury, the impact of "no-let-go" phenomenon and different electrical potential [high voltage (HV) vs. low voltage (LV)], and the safety culture at the workplace. A retrospective survey was conducted with 523 Swedish electricians. Two questionnaires were issued: the first to identify electricians who had experienced electrical injury and the second to gain information about symptoms and safety culture. Self-reported symptoms were described at different time points following injury. Symptoms for HV and LV accidents were compared. Occurrence or nonoccurrence of "no-let-go" phenomenon was analysed using two-tailed Chi-2. Safety culture was assessed with a validated questionnaire. Nearly all reported having symptoms directly after the injury, mainly paraesthesia and pain. For the first weeks after injury, pain and muscle weakness dominated. The most frequently occurring symptoms at follow-up were pain, muscle weakness and loss of sensation. HV injuries and "no-let go" phenomenon were associated with more sustained symptoms. Deficiencies in the reporting routines were present, as well as shortage of preventive measures. The results indicate that symptoms are reported also long time after an electrical injury and that special attention should be paid to HV injuries and "no-let go" accidents. The workplace routines to reduce the number of work-related electrical injuries for Swedish electricians can be improved.

  1. Laboratory Safety Manual for Alabama Schools. Bulletin 1975. No. 20.

    ERIC Educational Resources Information Center

    Alabama State Dept. of Education, Montgomery.

    This document presents the Alabama State Department of Education guidelines for science laboratory safety, equipment, storage, chemical safety, rocket safety, electrical safety, safety with radioisotopes, and safety with biologicals. Also included is a brief bibliography, a teacher's checklist, a listing of laser facts and regulations, and a…

  2. Millwright Apprenticeship. Related Training Modules. 1.1-1.8 Safety.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet, part of the instructional materials for the Oregon apprenticeship program for millwright training, contains eight modules covering safety. The modules provide information on the following topics: general safety, hand tool safety, power tool safety, fire safety, hygiene, safety and electricity, types of fire and fire prevention, and…

  3. 30 CFR 56.6407 - Circuit testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... blasting circuits shall be used to test each of the following: (a) Continuity of each electric detonator in... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Circuit testing. 56.6407 Section 56.6407... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Electric...

  4. 33 CFR 222.3 - Clearances for power and communication lines over reservoirs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... communication lines over reservoirs. 222.3 Section 222.3 Navigation and Navigable Waters CORPS OF ENGINEERS... Works responsibilities. (c) References. (1) ER 1180-1-1 (Section 73). (2) National Electrical Safety... including temperature, loading and length of spans as outlined in the National Electrical Safety Code. (3...

  5. 33 CFR 222.3 - Clearances for power and communication lines over reservoirs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... communication lines over reservoirs. 222.3 Section 222.3 Navigation and Navigable Waters CORPS OF ENGINEERS... Works responsibilities. (c) References. (1) ER 1180-1-1 (Section 73). (2) National Electrical Safety... including temperature, loading and length of spans as outlined in the National Electrical Safety Code. (3...

  6. 33 CFR 222.3 - Clearances for power and communication lines over reservoirs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... communication lines over reservoirs. 222.3 Section 222.3 Navigation and Navigable Waters CORPS OF ENGINEERS... Works responsibilities. (c) References. (1) ER 1180-1-1 (Section 73). (2) National Electrical Safety... including temperature, loading and length of spans as outlined in the National Electrical Safety Code. (3...

  7. 16 CFR 1204.4 - Electric shock protection tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Electric shock protection tests. 1204.4 Section 1204.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... the cable shall be between 28 and 29 feet (8.5 to 8.8 meters) above a horizontal plane through the...

  8. 77 FR 43167 - Safety Zone; Electric Zoo Fireworks, East River, Randall's Island, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket Number USCG-2012-0588] RIN 1625-AA00 Safety Zone; Electric Zoo Fireworks, East River, Randall's Island, NY AGENCY: Coast Guard... Zone; Electronic Zoo Fireworks, East River, Randall's Island, NY. (a) Regulated Area. The following...

  9. 2011 Annual Meeting of the Safety Pharmacology Society: an overview.

    PubMed

    Cavero, Icilio

    2012-03-01

    The keynote address of 2011 Annual Meeting of the Safety Pharmacology Society examined the known and the still to be known on drug-induced nephrotoxicity. The nominee of the Distinguished Service Award Lecture gave an account of his career achievements particularly on the domain of chronically instrumented animals for assessing cardiovascular safety. The value of Safety Pharmacology resides in the benefits delivered to Pharma organizations, regulators, payers and patients. Meticulous due diligence concerning compliance of Safety Pharmacology studies to best practices is an effective means to ensure that equally stringent safety criteria are applied to both in-licensed and in-house compounds. Innovative technologies of great potential for Safety Pharmacology presented at the meeting are organs on chips (lung, heart, intestine) displaying mechanical and biochemical features of native organs, electrical field potential (MEA) or impedance (xCELLigence Cardio) measurements in human induced pluripotent stem cell-derived cardiomyocytes for unveiling cardiac electrophysiological and mechanical liabilities, functional human airway epithelium (MucilAir™) preparations with unique 1-year shelf-life for acute and chronic in vitro evaluation of drug efficacy and toxicity. Custom-designed in silico and in vitro assay platforms defining the receptorome space occupied by chemical entities facilitate, throughout the drug discovery phase, the selection of candidates with optimized safety profile on organ function. These approaches can now be complemented by advanced computational analysis allowing the identification of compounds with receptorome, or clinically adverse effect profiles, similar to those of the drug candidate under scrutiny for extending the safety assessment to potential liability targets not captured by classical approaches. Nonclinical data supporting safety can be quite reassuring for drugs with a discovered signal of risk. However, for marketing authorization this information should be complemented by a clear clinical proof of safety. The ongoing outsourcing process of Regulatory Safety Pharmacology activities from large Pharmas to contract research organizations should be taken as an opportunity to establish long-overdue in-house Exploratory Safety Pharmacology units fully dedicated to the optimization of clinical candidates on organ safety.

  10. What vehicle features are considered important when buying an automobile? An examination of driver preferences by age and gender.

    PubMed

    Vrkljan, Brenda H; Anaby, Dana

    2011-02-01

    Certain vehicle features can help drivers avoid collisions and/or protect occupants in the event of a crash, and therefore, might play an important role when deciding which vehicle to purchase. The objective of this study was to examine the importance attributed to key vehicle features (including safety) that drivers consider when buying a car and its association with age and gender. A sample of 2,002 Canadian drivers aged 18 years and older completed a survey that asked them to rank the importance of eight vehicle features if they were to purchase a vehicle (storage, mileage, safety, price, comfort, performance, design, and reliability). ANOVA tests were performed to: (a) determine if there were differences in the level of importance between features and; (b) examine the effect of age and gender on the importance attributed to these features. Of the features examined, safety and reliability were the most highly rated in terms of importance, whereas design and performance had the lowest rating. Differences in safety and performance across age groups were dependent on gender. This effect was most evident in the youngest and oldest age groups. Safety and reliability were considered the most important features. Age and gender play a significant role in explaining the importance of certain features. Targeted efforts for translating safety-related information to the youngest and oldest consumers should be emphasized due to their high collision, injury, and fatality rates. Copyright © 2011 National Safety Council and Elsevier Ltd. All rights reserved.

  11. 9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves, cattle, and goats with the use of electric current and the handling in connection therewith, in compliance... with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION...

  12. 9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves, cattle, and goats with the use of electric current and the handling in connection therewith, in compliance... with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION...

  13. 9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Electrical; stunning or slaughtering with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves, cattle...

  14. 30 CFR 75.508 - Map of electrical system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Map of electrical system. 75.508 Section 75.508... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.508 Map of electrical system. [Statutory Provisions] The location and the electrical rating of all stationary electric...

  15. 30 CFR 75.508 - Map of electrical system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Map of electrical system. 75.508 Section 75.508... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.508 Map of electrical system. [Statutory Provisions] The location and the electrical rating of all stationary electric...

  16. 30 CFR 75.508 - Map of electrical system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Map of electrical system. 75.508 Section 75.508... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.508 Map of electrical system. [Statutory Provisions] The location and the electrical rating of all stationary electric...

  17. 9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Electrical; stunning or slaughtering with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves, cattle...

  18. 9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Electrical; stunning or slaughtering with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves, cattle...

  19. Electricity. A Bilingual Text = Electricidad. Un Texto Bilingue.

    ERIC Educational Resources Information Center

    Los Angeles Unified School District, CA. Div. of Career and Continuing Education.

    This booklet is a course of instruction in electricity in a two-column, English-Spanish format. Following an introduction to electricity and a lesson on safety, the booklet contains 21 units covering the following topics: ways to produce electricity; basic circuits; electrical measurements; electric generators; transformers, symbols and…

  20. Safety Features in Anaesthesia Machine

    PubMed Central

    Subrahmanyam, M; Mohan, S

    2013-01-01

    Anaesthesia is one of the few sub-specialties of medicine, which has quickly adapted technology to improve patient safety. This application of technology can be seen in patient monitoring, advances in anaesthesia machines, intubating devices, ultrasound for visualisation of nerves and vessels, etc., Anaesthesia machines have come a long way in the last 100 years, the improvements being driven both by patient safety as well as functionality and economy of use. Incorporation of safety features in anaesthesia machines and ensuring that a proper check of the machine is done before use on a patient ensures patient safety. This review will trace all the present safety features in the machine and their evolution. PMID:24249880

  1. Patient Safety: Ten Things You Can Do to Be a Safe Patient

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  2. 29 CFR 1910.361-1910.380 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Maintenance Requirements §§ 1910.361-1910.380 [Reserved] Safety Requirements for Special Equipment ...

  3. 29 CFR 1910.336-1910.360 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices §§ 1910.336-1910.360 [Reserved] Safety-Related Maintenance Requirements ...

  4. 29 CFR 1910.336-1910.360 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices §§ 1910.336-1910.360 [Reserved] Safety-Related Maintenance Requirements ...

  5. 29 CFR 1910.361-1910.380 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Maintenance Requirements §§ 1910.361-1910.380 [Reserved] Safety Requirements for Special Equipment ...

  6. Right median nerve electrical stimulation for acute traumatic coma (the Asia Coma Electrical Stimulation trial): study protocol for a randomised controlled trial.

    PubMed

    Wu, Xiang; Zhang, Chao; Feng, Junfeng; Mao, Qing; Gao, Guoyi; Jiang, Jiyao

    2017-07-10

    Traumatic brain injury (TBI) has become the most common cause of death and disability in persons between 15 and 30 years of age, and about 10-15% of patients affected by TBI will end up in a coma. Coma caused by TBI presents a significant challenge to neuroscientists. Right median nerve electrical stimulation has been reported as a simple, inexpensive, non-invasive technique to speed recovery and improve outcomes for traumatic comatose patients. This multicentre, prospective, randomised (1:1) controlled trial aims to demonstrate the efficacy and safety of electrical right median nerve stimulation (RMNS) in both accelerating emergence from coma and promoting long-term outcomes. This trial aims to enrol 380 TBI comatose patients to partake in either an electrical stimulation group or a non-stimulation group. Patients assigned to the stimulation group will receive RMNS in addition to standard treatment at an amplitude of 15-20 mA with a pulse width of 300 μs at 40 Hz ON for 20 s and OFF for 40 s. The electrical treatment will last for 8 h per day for 2 weeks. The primary endpoint will be the percentage of patients regaining consciousness 6 months after injury. The secondary endpoints will be Extended Glasgow Outcome Scale, Coma Recovery Scale-Revised and Disability Rating Scale scores at 28 days, 3 months and 6 months after injury; Glasgow Coma Scale, Glasgow Coma Scale Motor Part and Full Outline of Unresponsiveness scale scores on day 1 and day 7 after enrolment and 28 days, 3 months and 6 months after injury; duration of unconsciousness and mechanical ventilation; length of intensive care unit and hospital stays; and incidence of adverse events. Right median nerve electrical stimulation has been used as a safe, inexpensive, non-invasive therapy for neuroresuscitation of coma patients for more than two decades, yet no trial has robustly proven the efficacy and safety of this treatment. The Asia Coma Electrical Stimulation (ACES) trial has the following novel features compared with other major RMNS trials: (1) the ACES trial is an Asian multicentre randomised controlled trial; (2) RMNS therapy starts at an early stage 7-14 days after the injury; and (3) various assessment scales are used to evaluate the condition of patients. We hope the ACES trial will lead to optimal use of right median nerve electrical treatment. ClinicalTrials.gov, NCT02645578 . Registered on 23 December 2015.

  7. Communicating with residential electrical devices via a vehicle telematics unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Rebecca C.; Pebbles, Paul H.

    A method of communicating with residential electrical devices using a vehicle telematics unit includes receiving information identifying a residential electrical device to control; displaying in a vehicle one or more controlled features of the identified residential electrical device; receiving from a vehicle occupant a selection of the displayed controlled features of the residential electrical device; sending an instruction from the vehicle telematics unit to the residential electrical device via a wireless carrier system in response to the received selection; and controlling the residential electrical device using the sent instruction.

  8. 30 CFR 75.520 - Electric equipment; switches.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric equipment; switches. 75.520 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.520 Electric equipment; switches. [Statutory Provision] All electric equipment shall be provided with switches or other...

  9. 30 CFR 75.520 - Electric equipment; switches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment; switches. 75.520 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.520 Electric equipment; switches. [Statutory Provision] All electric equipment shall be provided with switches or other...

  10. 30 CFR 75.520 - Electric equipment; switches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric equipment; switches. 75.520 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.520 Electric equipment; switches. [Statutory Provision] All electric equipment shall be provided with switches or other...

  11. 30 CFR 75.520 - Electric equipment; switches.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric equipment; switches. 75.520 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.520 Electric equipment; switches. [Statutory Provision] All electric equipment shall be provided with switches or other...

  12. 30 CFR 75.520 - Electric equipment; switches.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric equipment; switches. 75.520 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.520 Electric equipment; switches. [Statutory Provision] All electric equipment shall be provided with switches or other...

  13. Safety in the Physics Laboratory

    ERIC Educational Resources Information Center

    Bullen, Brother T. G.

    1974-01-01

    Briefly defines the legal aspects of safety. Presents prominent safety hazards and procedures that should be followed when dealing with electricity, radioactive materials, lasers, poisons, and vacuum apparatus. (GS)

  14. Manned spacecraft electrical fire safety

    NASA Technical Reports Server (NTRS)

    Wardell, A. W.

    1971-01-01

    The fire hazards created in spacecraft compartments by malfunction of electrical wiring are described. The tests for electrical wire/cable current overload flammability are presented. The application of electrical and material technologies to the reduction of fire hazards in spacecraft are examined.

  15. Relay protection features of frequency-adjustable electric drive

    NASA Astrophysics Data System (ADS)

    Kuprienko, V. V.

    2018-03-01

    The features of relay protection of high-voltage electric motors in composition of the frequency-adjustable electric drive are considered in the article. The influence of frequency converters on the stability of the operation of various types of relay protection used on electric motors is noted. Variants of circuits for connecting relay protection devices are suggested. The need to develop special relay protection devices for a frequency-adjustable electric drive is substantiated.

  16. 14 CFR 27.1307 - Miscellaneous equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... safety belt for each occupant. (c) A master switch arrangement. (d) An adequate source of electrical energy, where electrical energy is necessary for operation of the rotorcraft. (e) Electrical protective...

  17. 14 CFR 27.1307 - Miscellaneous equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... safety belt for each occupant. (c) A master switch arrangement. (d) An adequate source of electrical energy, where electrical energy is necessary for operation of the rotorcraft. (e) Electrical protective...

  18. Electricity-Electronics Curriculum Guide. Instructional Modules Level II.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Div. of Vocational Education.

    These teacher's materials are for a 24-unit competency-based secondary education course on electricity and electronics designed for California public schools. The 24 units are: (1) an orientation; (2) an introduction to electricity; (3) safety; (4) history of electricity; (5) basic electrical skills; (6) magnetism; (7) the nature of electricity;…

  19. Industrial Education. Electricity/Electronics Curriculum Guide, Phase II. Instructional Modules, Level II.

    ERIC Educational Resources Information Center

    Lillo, Robert E.; Soffiotto, Nicholas S.

    Designed for students in the ninth grade, this electricity/electronics curriculum guide contains instructional modules for twenty-four units of instruction. Among the modules included are (1) introduction to the world of electricity, (2) electrical safety, (3) the electrical team, (4) resistance and resistors, (5) electric lamps and heating…

  20. Symmetric Sodium-Ion Capacitor Based on Na0.44MnO2 Nanorods for Low-Cost and High-Performance Energy Storage.

    PubMed

    Chen, Zhongxue; Yuan, Tianci; Pu, Xiangjun; Yang, Hanxi; Ai, Xinping; Xia, Yongyao; Cao, Yuliang

    2018-04-11

    Batteries and electrochemical capacitors play very important roles in the portable electronic devices and electric vehicles and have shown promising potential for large-scale energy storage applications. However, batteries or capacitors alone cannot meet the energy and power density requirements because rechargeable batteries have a poor power property, whereas supercapacitors offer limited capacity. Here, a novel symmetric sodium-ion capacitor (NIC) is developed based on low-cost Na 0.44 MnO 2 nanorods. The Na 0.44 MnO 2 with unique nanoarchitectures and iso-oriented feature offers shortened diffusion path lengths for both electronic and Na + transport and reduces the stress associated with Na + insertion and extraction. Benefiting from these merits, the symmetric device achieves a high power density of 2432.7 W kg -1 , an improved energy density of 27.9 Wh kg -1 , and a capacitance retention of 85.2% over 5000 cycles. Particularly, the symmetric NIC based on Na 0.44 MnO 2 permits repeatedly reverse-polarity characteristics, thus simplifying energy management system and greatly enhancing the safety under abuse condition. This cost-effective, high-safety, and high-performance symmetric NIC can balance the energy and power density between batteries and capacitors and serve as an electric power source for future low-maintenance large-scale energy storage systems.

  1. 30 CFR 57.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-potential electrical conductors. 57.12011 Section 57.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12011 High-potential electrical conductors. High-potential electrical...

  2. 30 CFR 57.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-potential electrical conductors. 57.12011 Section 57.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12011 High-potential electrical conductors. High-potential electrical...

  3. 30 CFR 57.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-potential electrical conductors. 57.12011 Section 57.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12011 High-potential electrical conductors. High-potential electrical...

  4. Reducing non-contact electric arc injuries: an investigation of behavioral and organizational issues.

    PubMed

    Kowalski-Trakofler, Kathleen; Barrett, Edward

    2007-01-01

    It is estimated that 5 to 10 arc flash explosions occur in electric equipment every day in the United States. In the mining industry the largest single injury category of electrical injuries are caused by non-contact electrical arcs. This investigation progressed in two phases: (a) 836 Mine Safety and Health Administration (MSHA) reports of electric arcing incidents that occurred over a period of 11 years were reviewed, and (b) personal interviews were conducted with 32 individuals. A theoretical Safe Job Performance Model guided the study. Behavioral dimensions were identified and included the effect of worker experience, judgment and decision-making ability, behavioral and organizational controls, and safety culture. The National Institute for Occupational Safety and Health (NIOSH) conducted an investigation of behavioral components associated with arc flash incidents and developed recommendations for interventions based on findings. This study fills a vacuum in electrical training with a focus on the organizational and behavioral aspects of arc flash incidents. The research is cross-cutting in its scope, in that the results apply not only to mining and construction, but many other industries employing electricians. Although the majority of mine electrical injuries are the results of burns from electrical arcs, few miners are aware that such a hazard exists. A safety training program, which includes a video and an instructor's discussion guide, was developed for electricians based on this study's findings. "Arc Flash Awareness" was released in 2007 (DHHS NIOSH Publication No.2007-116D) and is available through 1-800 CDC INFO. Phone: 1-800 232-4636 or email cdcinfo@cdc.gov. It is also available from MSHA at MSHADistribution@dol.gov or 304-256-3257 (DVD-576). Private industry is producing Portuguese and Spanish language translations.

  5. Electrical safety for high voltage arrays

    NASA Technical Reports Server (NTRS)

    Marshall, N. A.

    1983-01-01

    A number of key electrical safety requirements for the high voltage arrays of central station photovoltaic power systems are explored. The suitability of representative industrial DC power switchgear for control and fault protection was evaluated. Included were AC/DC circuit breakers, electromechanical contactors and relays, load interruptors, cold disconnect devices, sectionalizing switches, and high voltage DC fuses. As appropriate, steady state and transient characteristics were analyzed. Failure modes impacting upon operation and maintenance safety were also identified, as were the voltage withstand and current interruption levels.

  6. US/CIS integrated NTRE

    NASA Astrophysics Data System (ADS)

    Bulman, M. J.; Culver, D. W.; McIlwain, M. C.; Rochow, Richard; D'Yakov, E. K.; Smetannikov, V. P.

    1993-06-01

    The paper describes the Nuclear Thermal Energy (NTRE) engine, developed by taking advantage of mature fuel technology developed in the former Soviet Union, thus shortening the development schedule of this engine for moon and Mars explorations. The near-term NTRE engine has a number of features that provide safety, mission performance, cost, and risk benefits. These include: (1) high-temperature long-life CIS fuel, (2) high-pressure recuperated expander cycle, (3) assured restart, (4) long-life cooled nozzle with thin inner wall, (5) long-life turbopumps, (6) heat radiation and electrical power generation, and (7) component integration synergy. Diagrams of the reactor core, the recuperated bottoming cycle flow schematic, and the recuperated bottoming cycle engine schematic are presented.

  7. The moving-ring field-reversed mirror prototype reactor

    NASA Astrophysics Data System (ADS)

    Smith, A. C., Jr.; Carlson, G. A.; Fleischmann, H. H.; Grossman, W., Jr.; Kammash, T.; Schultz, K. R.; Woodall, D. M.

    1981-03-01

    A prototype fusion reactor was designed based on magnetic field reversed plasma confinement. A set of physics, technology, and mechanical design criteria were developed in order to make this concept attractive. Six major criteria guide the commercial prototype design. The prototype must: (1) produce net electricity decisively P sub net 70% of P sub gross; (2) scale to an economical commercial plant and have small physical size; (3) have all features required of a correcial upgrade plant (H-3 breeding, etc.); (4) minimize exotic technology and maintenance complexity; (5) promise significantly lower safety hazards than fission plants (environmentally and socially acceptable); and (6) be modular in design to permit repetitive production of components.

  8. A review on the key issues for lithium-ion battery management in electric vehicles

    NASA Astrophysics Data System (ADS)

    Lu, Languang; Han, Xuebing; Li, Jianqiu; Hua, Jianfeng; Ouyang, Minggao

    2013-03-01

    Compared with other commonly used batteries, lithium-ion batteries are featured by high energy density, high power density, long service life and environmental friendliness and thus have found wide application in the area of consumer electronics. However, lithium-ion batteries for vehicles have high capacity and large serial-parallel numbers, which, coupled with such problems as safety, durability, uniformity and cost, imposes limitations on the wide application of lithium-ion batteries in the vehicle. The narrow area in which lithium-ion batteries operate with safety and reliability necessitates the effective control and management of battery management system. This present paper, through the analysis of literature and in combination with our practical experience, gives a brief introduction to the composition of the battery management system (BMS) and its key issues such as battery cell voltage measurement, battery states estimation, battery uniformity and equalization, battery fault diagnosis and so on, in the hope of providing some inspirations to the design and research of the battery management system.

  9. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety.

    PubMed

    Zhang, Jinqiang; Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang; Wang, Guoxiu

    2014-08-29

    Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer membranes with multi-sized honeycomb-like porous architectures. The as-prepared polymer electrolyte membranes contain porosity as high as 78%, which leads to the high electrolyte uptake of 86.2 wt%. The PVDF-HFP gel polymer electrolyte membranes exhibited a high ionic conductivity of 1.03 mS cm(-1) at room temperature, which is much higher than that of commercial polymer membranes. Moreover, the as-obtained gel polymer membranes are also thermally stable up to 350 °C and non-combustible in fire (fire-proof). When applied in lithium ion batteries with LiFePO4 as cathode materials, the gel polymer electrolyte demonstrated excellent electrochemical performances. This investigation indicates that PVDF-HFP gel polymer membranes could be potentially applicable for high power lithium ion batteries with the features of high safety, low cost and good performance.

  10. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety

    NASA Astrophysics Data System (ADS)

    Zhang, Jinqiang; Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang; Wang, Guoxiu

    2014-08-01

    Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer membranes with multi-sized honeycomb-like porous architectures. The as-prepared polymer electrolyte membranes contain porosity as high as 78%, which leads to the high electrolyte uptake of 86.2 wt%. The PVDF-HFP gel polymer electrolyte membranes exhibited a high ionic conductivity of 1.03 mS cm-1 at room temperature, which is much higher than that of commercial polymer membranes. Moreover, the as-obtained gel polymer membranes are also thermally stable up to 350°C and non-combustible in fire (fire-proof). When applied in lithium ion batteries with LiFePO4 as cathode materials, the gel polymer electrolyte demonstrated excellent electrochemical performances. This investigation indicates that PVDF-HFP gel polymer membranes could be potentially applicable for high power lithium ion batteries with the features of high safety, low cost and good performance.

  11. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety

    PubMed Central

    Zhang, Jinqiang; Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang; Wang, Guoxiu

    2014-01-01

    Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer membranes with multi-sized honeycomb-like porous architectures. The as-prepared polymer electrolyte membranes contain porosity as high as 78%, which leads to the high electrolyte uptake of 86.2 wt%. The PVDF-HFP gel polymer electrolyte membranes exhibited a high ionic conductivity of 1.03 mS cm−1 at room temperature, which is much higher than that of commercial polymer membranes. Moreover, the as-obtained gel polymer membranes are also thermally stable up to 350°C and non-combustible in fire (fire-proof). When applied in lithium ion batteries with LiFePO4 as cathode materials, the gel polymer electrolyte demonstrated excellent electrochemical performances. This investigation indicates that PVDF-HFP gel polymer membranes could be potentially applicable for high power lithium ion batteries with the features of high safety, low cost and good performance. PMID:25168687

  12. Electrical injuries in the US mining industry, 2000-2009

    PubMed Central

    Homce, G.T.; Cawley, J.C.

    2015-01-01

    The U.S. National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) conducted a study of mining industry electrical injuries reported to the U.S. Mine Safety and Health Administration (MSHA) for the years 2000 to 2009. The findings of that study are detailed in this paper, and serve to characterize the circumstances surrounding electrical injuries and identify causal factors. The study included three tasks: 1) a direct review of mining industry occupational injury data compiled by MSHA, 2) interpretation of the narrative descriptions available for the injuries (from MSHA data) and 3) a separate examination of fatal electrical injuries. Eight-hundred sixty-five electrical injuries were reported during the 10-year period studied, with 39 of those being fatalities. This makes electrical injuries disproportionately fatal with respect to most other types of injuries in mining. Electrical injury rates were higher in coal mining than noncoal mining and, within the coal sector, rates were higher in underground operations than in surface operations. Of the 865 total cases, electrical and machine maintenance or repair activities were involved in 580 (69%), and electricians and mechanics were injured in 362 cases (42%). Of the 39 fatal electrical injuries, 27 (69%) involved electrical maintenance or repair work, and in 21 of these 27 cases, the failure to de-energize, lock-out and tag the circuit was the cause or a contributing factor. Also, contractor employees had a much greater chance of an electrical injury being fatal than did mine operator employees. The top three root causes for fatal electrical injuries were 1) no or inadequate lock-out and tagging, 2) failure of power system components and 3) contact of overhead electrical power lines by mobile equipment. PMID:26346041

  13. Electrical injuries in the US mining industry, 2000-2009.

    PubMed

    Homce, G T; Cawley, J C

    The U.S. National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) conducted a study of mining industry electrical injuries reported to the U.S. Mine Safety and Health Administration (MSHA) for the years 2000 to 2009. The findings of that study are detailed in this paper, and serve to characterize the circumstances surrounding electrical injuries and identify causal factors. The study included three tasks: 1) a direct review of mining industry occupational injury data compiled by MSHA, 2) interpretation of the narrative descriptions available for the injuries (from MSHA data) and 3) a separate examination of fatal electrical injuries. Eight-hundred sixty-five electrical injuries were reported during the 10-year period studied, with 39 of those being fatalities. This makes electrical injuries disproportionately fatal with respect to most other types of injuries in mining. Electrical injury rates were higher in coal mining than noncoal mining and, within the coal sector, rates were higher in underground operations than in surface operations. Of the 865 total cases, electrical and machine maintenance or repair activities were involved in 580 (69%), and electricians and mechanics were injured in 362 cases (42%). Of the 39 fatal electrical injuries, 27 (69%) involved electrical maintenance or repair work, and in 21 of these 27 cases, the failure to de-energize, lock-out and tag the circuit was the cause or a contributing factor. Also, contractor employees had a much greater chance of an electrical injury being fatal than did mine operator employees. The top three root causes for fatal electrical injuries were 1) no or inadequate lock-out and tagging, 2) failure of power system components and 3) contact of overhead electrical power lines by mobile equipment.

  14. National Electrical Code in Power Engineering Course for Electrical Engineering Curriculum

    ERIC Educational Resources Information Center

    Azizur, Rahman M. M.

    2011-01-01

    In order to ensure the safety of their inhabitants and properties, the residential, industrial and business installations require complying with NEC (national electrical code) for electrical systems. Electrical design engineers and technicians rely heavily on these very important design guidelines. However, these design guidelines are not formally…

  15. 30 CFR 75.513-1 - Electric conductor; size.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric conductor; size. 75.513-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.513-1 Electric conductor; size. An electric conductor is not of sufficient size to have adequate carrying...

  16. 30 CFR 75.513-1 - Electric conductor; size.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric conductor; size. 75.513-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.513-1 Electric conductor; size. An electric conductor is not of sufficient size to have adequate carrying...

  17. 30 CFR 75.513-1 - Electric conductor; size.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric conductor; size. 75.513-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.513-1 Electric conductor; size. An electric conductor is not of sufficient size to have adequate carrying...

  18. Safety Features of Material and Personnel Movement Devices. Module SH-25. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safety features of material and personnel movement devices is one of 50 modules concerned with job safety and health. This module covers safe conditions and operating practices for conveyors, elevators, escalators, moving walks, manlifts, forklifts, and motorized hand trucks. Following the introduction, 10 objectives (each…

  19. Electrical Safety for Non-Electricians

    MedlinePlus

    ... In 2010, 239 construction workers were killed by electricity.* More than 2/3 of those killed are ... must be grounded. Your employer must check all electric systems, including wiring and switches, to be sure ...

  20. A Spacecraft Electrical Characteristics Multi-Label Classification Method Based on Off-Line FCM Clustering and On-Line WPSVM

    PubMed Central

    Li, Ke; Liu, Yi; Wang, Quanxin; Wu, Yalei; Song, Shimin; Sun, Yi; Liu, Tengchong; Wang, Jun; Li, Yang; Du, Shaoyi

    2015-01-01

    This paper proposes a novel multi-label classification method for resolving the spacecraft electrical characteristics problems which involve many unlabeled test data processing, high-dimensional features, long computing time and identification of slow rate. Firstly, both the fuzzy c-means (FCM) offline clustering and the principal component feature extraction algorithms are applied for the feature selection process. Secondly, the approximate weighted proximal support vector machine (WPSVM) online classification algorithms is used to reduce the feature dimension and further improve the rate of recognition for electrical characteristics spacecraft. Finally, the data capture contribution method by using thresholds is proposed to guarantee the validity and consistency of the data selection. The experimental results indicate that the method proposed can obtain better data features of the spacecraft electrical characteristics, improve the accuracy of identification and shorten the computing time effectively. PMID:26544549

  1. Safety leadership in the teaching laboratories of electrical and electronic engineering departments at Taiwanese Universities.

    PubMed

    Wu, Tsung-Chih

    2008-01-01

    Safety has always been one of the principal goals in teaching laboratories. Laboratories cannot serve their educational purpose when accidents occur. The leadership of department heads has a major impact on laboratory safety, so this study discusses the factors affecting safety leadership in teaching laboratories. This study uses a mail survey to explore the perceived safety leadership in electrical and electronic engineering departments at Taiwanese universities. An exploratory factor analysis shows that there are three main components of safety leadership, as measured on a safety leadership scale: safety controlling, safety coaching, and safety caring. The descriptive statistics also reveals that among faculty, the perception of department heads' safety leadership is in general positive. A two-way MANOVA shows that there are interaction effects on safety leadership between university size and instructor age; there are also interaction effects between presence of a safety committee and faculty gender and faculty age. It is therefore necessary to assess organizational factors when determining whether individual factors are the cause of differing perceptions among faculty members. The author also presents advice on improving safety leadership for department heads at small universities and at universities without safety committees.

  2. How important is vehicle safety for older consumers in the vehicle purchase process?

    PubMed

    Koppel, Sjaan; Clark, Belinda; Hoareau, Effie; Charlton, Judith L; Newstead, Stuart V

    2013-01-01

    This study aimed to investigate the importance of vehicle safety to older consumers in the vehicle purchase process. Older (n = 102), middle-aged (n = 791), and younger (n = 109) participants throughout the eastern Australian states of Victoria, New South Wales, and Queensland who had recently purchased a new or used vehicle completed an online questionnaire about their vehicle purchase process. When asked to list the 3 most important considerations in the vehicle purchase process (in an open-ended format), older consumers were mostly likely to list price as their most important consideration (43%). Similarly, when presented with a list of vehicle factors (such as price, design, Australasian New Car Assessment Program [ANCAP] rating), older consumers were most likely to identify price as the most important vehicle factor (36%). When presented with a list of vehicle features (such as automatic transmission, braking, air bags), older consumers in the current study were most likely to identify an antilock braking system (41%) as the most important vehicle feature, and 50 percent of older consumers identified a safety-related vehicle feature as the highest priority vehicle feature (50%). When asked to list up to 3 factors that make a vehicle safe, older consumers in the current study were most likely to list braking systems (35%), air bags (22%), and the driver's behavior or skill (11%). When asked about the influence of safety in the new vehicle purchase process, one third of older consumers reported that all new vehicles are safe (33%) and almost half of the older consumers rated their vehicle as safer than average (49%). A logistic regression model was developed to predict the profile of older consumers more likely to assign a higher priority to safety features in the vehicle purchasing process. The model predicted that the importance of safety-related features was influenced by several variables, including older consumers' beliefs that they could protect themselves and their family from a crash, their traffic infringement history, and whether they had children. These findings are consistent with previous research that suggests that, though older consumers highlight the importance of safety features (i.e., seat belts, air bags, braking), they often downplay the role of safety in their vehicle purchasing process and are more likely to equate vehicle safety with the presence of specific vehicle safety features or technologies rather than the vehicle's crash safety/test results or crashworthiness. The findings from this study provide a foundation to support further research in this area that can be used by policy makers, manufacturers, and other stakeholders to better target the promotion and publicity of vehicle safety features to particular consumer groups (such as older consumers). Better targeted campaigns may help to emphasize the value of safety features and their role in reducing the risk of injury/death. If older consumers are better informed of the benefits of safety features when purchasing a vehicle, a further reduction in injuries and deaths related to motor vehicle crashes may be realized.

  3. Nuclear safety considerations in the conceptual design of a fast reactor for space electric power and propulsion

    NASA Technical Reports Server (NTRS)

    Hsieh, T.-M.; Koenig, D. R.

    1977-01-01

    Some nuclear safety aspects of a 3.2 mWt heat pipe cooled fast reactor with out-of-core thermionic converters are discussed. Safety related characteristics of the design including a thin layer of B4C surrounding the core, the use of heat pipes and BeO reflector assembly, the elimination of fuel element bowing, etc., are highlighted. Potential supercriticality hazards and countermeasures are considered. Impacts of some safety guidelines of space transportation system are also briefly discussed, since the currently developing space shuttle would be used as the primary launch vehicle for the nuclear electric propulsion spacecraft.

  4. 46 CFR 169.685 - Electric heating and cooking equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SCHOOL VESSELS Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or... spillage on wiring or the deck. (f) Where necessary for safety of personnel, grab rails must be provided...

  5. Design and development of electric vehicle charging station equipped with RFID

    NASA Astrophysics Data System (ADS)

    Panatarani, C.; Murtaddo, D.; Maulana, D. W.; Irawan, S.; Joni, I. M.

    2016-02-01

    This paper reports the development of electric charging station from distributed renewable for electric vehicle (EV). This designed refer to the input voltage standard of IEC 61851, plugs features of IEC 62196 and standard communication of ISO 15118. The developed electric charging station used microcontroller ATMEGA8535 and RFID as controller and identifier of the EV users, respectively. The charging station successfully developed as desired features for electric vehicle from renewable energy resources grid with solar panel, wind power and batteries storage.

  6. 30 CFR 75.505 - Mines classed gassy; use and maintenance of permissible electric face equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... permissible electric face equipment. 75.505 Section 75.505 Mineral Resources MINE SAFETY AND HEALTH... Electrical Equipment-General § 75.505 Mines classed gassy; use and maintenance of permissible electric face... provision of law and was required to use permissible electric face equipment and to maintain such equipment...

  7. 30 CFR 75.505 - Mines classed gassy; use and maintenance of permissible electric face equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... permissible electric face equipment. 75.505 Section 75.505 Mineral Resources MINE SAFETY AND HEALTH... Electrical Equipment-General § 75.505 Mines classed gassy; use and maintenance of permissible electric face... provision of law and was required to use permissible electric face equipment and to maintain such equipment...

  8. 30 CFR 75.505 - Mines classed gassy; use and maintenance of permissible electric face equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... permissible electric face equipment. 75.505 Section 75.505 Mineral Resources MINE SAFETY AND HEALTH... Electrical Equipment-General § 75.505 Mines classed gassy; use and maintenance of permissible electric face... provision of law and was required to use permissible electric face equipment and to maintain such equipment...

  9. 30 CFR 75.505 - Mines classed gassy; use and maintenance of permissible electric face equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... permissible electric face equipment. 75.505 Section 75.505 Mineral Resources MINE SAFETY AND HEALTH... Electrical Equipment-General § 75.505 Mines classed gassy; use and maintenance of permissible electric face... provision of law and was required to use permissible electric face equipment and to maintain such equipment...

  10. 30 CFR 75.505 - Mines classed gassy; use and maintenance of permissible electric face equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... permissible electric face equipment. 75.505 Section 75.505 Mineral Resources MINE SAFETY AND HEALTH... Electrical Equipment-General § 75.505 Mines classed gassy; use and maintenance of permissible electric face... provision of law and was required to use permissible electric face equipment and to maintain such equipment...

  11. 46 CFR 111.01-19 - Inclination of the vessel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must be.... Additionally, electrical equipment necessary for the maneuvering, navigation, and safety of the vessel or its...

  12. 46 CFR 111.01-19 - Inclination of the vessel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must be.... Additionally, electrical equipment necessary for the maneuvering, navigation, and safety of the vessel or its...

  13. 46 CFR 111.01-19 - Inclination of the vessel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must be.... Additionally, electrical equipment necessary for the maneuvering, navigation, and safety of the vessel or its...

  14. 46 CFR 111.01-19 - Inclination of the vessel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must be.... Additionally, electrical equipment necessary for the maneuvering, navigation, and safety of the vessel or its...

  15. Job Grading Standard for Electrician (High Voltage) WG-2810.

    ERIC Educational Resources Information Center

    Civil Service Commission, Washington, DC. Bureau of Policies and Standards.

    The standard covers nonsupervisory work involved in installation, test, repair, and maintenance of electric power plant and/or overhead and underground primary electrical distribution systems. These jobs require knowledge and application of electrical principles, procedures, materials, and safety standards governing work on electrical systems…

  16. 30 CFR 75.500 - Permissible electric equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Permissible electric equipment. 75.500 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.500 Permissible electric equipment. [Statutory Provision] On and after March 30, 1971: (a) All junction or...

  17. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. [Statutory Provisions] Persons underground shall use only permissible electric lamps approved by the...

  18. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. [Statutory Provisions] Persons underground shall use only permissible electric lamps approved by the...

  19. 30 CFR 75.500 - Permissible electric equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Permissible electric equipment. 75.500 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.500 Permissible electric equipment. [Statutory Provision] On and after March 30, 1971: (a) All junction or...

  20. 30 CFR 57.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Abandoned electric circuits. 57.4011 Section 57.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control § 57.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized...

  1. 30 CFR 56.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Abandoned electric circuits. 56.4011 Section 56.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control § 56.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized and...

  2. 24 CFR 3280.810 - Electrical testing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Electrical testing. 3280.810... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Electrical Systems § 3280.810 Electrical testing. (a) Dielectric strength test. The wiring of each manufactured home shall be subjected to...

  3. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. [Statutory Provisions] Persons underground shall use only permissible electric lamps approved by the...

  4. 24 CFR 3280.810 - Electrical testing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Electrical testing. 3280.810... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Electrical Systems § 3280.810 Electrical testing. (a) Dielectric strength test. The wiring of each manufactured home shall be subjected to...

  5. 30 CFR 57.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Abandoned electric circuits. 57.4011 Section 57.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control § 57.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized...

  6. 30 CFR 75.500 - Permissible electric equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Permissible electric equipment. 75.500 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.500 Permissible electric equipment. [Statutory Provision] On and after March 30, 1971: (a) All junction or...

  7. 30 CFR 56.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Abandoned electric circuits. 56.4011 Section 56.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control § 56.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized and...

  8. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all persons...

  9. 30 CFR 75.500 - Permissible electric equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Permissible electric equipment. 75.500 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.500 Permissible electric equipment. [Statutory Provision] On and after March 30, 1971: (a) All junction or...

  10. 30 CFR 57.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Abandoned electric circuits. 57.4011 Section 57.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control § 57.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized...

  11. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all persons...

  12. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all persons...

  13. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all persons...

  14. 30 CFR 56.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Abandoned electric circuits. 56.4011 Section 56.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control § 56.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized and...

  15. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. [Statutory Provisions] Persons underground shall use only permissible electric lamps approved by the...

  16. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all persons...

  17. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. [Statutory Provisions] Persons underground shall use only permissible electric lamps approved by the...

  18. 30 CFR 56.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Abandoned electric circuits. 56.4011 Section 56.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control § 56.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized and...

  19. 24 CFR 3280.810 - Electrical testing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Electrical testing. 3280.810... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Electrical Systems § 3280.810 Electrical testing. (a) Dielectric strength test. The wiring of each manufactured home shall be subjected to...

  20. 30 CFR 75.500 - Permissible electric equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Permissible electric equipment. 75.500 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.500 Permissible electric equipment. [Statutory Provision] On and after March 30, 1971: (a) All junction or...

  1. 30 CFR 57.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Abandoned electric circuits. 57.4011 Section 57.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control § 57.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized...

  2. Thalassemia

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  3. 29 CFR 1910.334 - Use of equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices § 1910.334 Use of equipment... allowed by § 1910.304(e), the installation safety requirements for overcurrent protection. (c) Test...

  4. 29 CFR 1910.334 - Use of equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices § 1910.334 Use of equipment... allowed by § 1910.304(e), the installation safety requirements for overcurrent protection. (c) Test...

  5. Commercial grade item (CGI) dedication of MDR relays for nuclear safety related applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, R.K.; Julka, A.; Modi, G.

    1994-08-01

    MDR relays manufactured by Potter and Brumfield (P and B) have been used in various safety related applications in commercial nuclear power plants. These include emergency safety features (ESF) actuation systems, emergency core cooling systems (ECCS) actuation, and reactor protection systems. The MDR relays manufactured prior to May 1990 showed signs of generic failure due to corrosion and outgassing of coil varnish. P and B has made design changes to correct these problems in relays manufactured after May 1990. However, P and B does not manufacture the relays under any 10CFR50 Appendix B quality assurance (QA) program. They manufacture themore » relays under their commercial QA program and supply these as commercial grade items. This necessitates CGI Dedication of these relays for use in nuclear-safety-related applications. This paper presents a CGI dedication program that has been used to dedicate the MDR relays manufactured after May 1990. The program is in compliance with current Nuclear Regulatory Commission (NRC) and Electric Power Research Institute (EPRI) guidelines and applicable industry standards; it specifies the critical characteristics of the relays, provides the tests and analysis required to verify the critical characteristics, the acceptance criteria for the test results, performs source verification to qualify P and B for its control of the critical characteristics, and provides documentation. The program provides reasonable assurance that the new MDR relays will perform their intended safety functions.« less

  6. Active transportation safety features around schools in Canada.

    PubMed

    Pinkerton, Bryn; Rosu, Andrei; Janssen, Ian; Pickett, William

    2013-10-31

    The purpose of this study was to describe the presence and quality of active transportation safety features in Canadian school environments that relate to pedestrian and bicycle safety. Variations in these features and associated traffic concerns as perceived by school administrators were examined by geographic status and school type. The study was based on schools that participated in 2009/2010 Health Behaviour in School-aged Children (HBSC) survey. ArcGIS software version 10 and Google Earth were used to assess the presence and quality of ten different active transportation safety features. Findings suggest that there are crosswalks and good sidewalk coverage in the environments surrounding most Canadian schools, but a dearth of bicycle lanes and other traffic calming measures (e.g., speed bumps, traffic chokers). Significant urban/rural inequities exist with a greater prevalence of sidewalk coverage, crosswalks, traffic medians, and speed bumps in urban areas. With the exception of bicycle lanes, the active transportation safety features that were present were generally rated as high quality. Traffic was more of a concern to administrators in urban areas. This study provides novel information about active transportation safety features in Canadian school environments. This information could help guide public health efforts aimed at increasing active transportation levels while simultaneously decreasing active transportation injuries.

  7. Active Transportation Safety Features around Schools in Canada

    PubMed Central

    Pinkerton, Bryn; Rosu, Andrei; Janssen, Ian; Pickett, William

    2013-01-01

    The purpose of this study was to describe the presence and quality of active transportation safety features in Canadian school environments that relate to pedestrian and bicycle safety. Variations in these features and associated traffic concerns as perceived by school administrators were examined by geographic status and school type. The study was based on schools that participated in 2009/2010 Health Behaviour in School-aged Children (HBSC) survey. ArcGIS software version 10 and Google Earth were used to assess the presence and quality of ten different active transportation safety features. Findings suggest that there are crosswalks and good sidewalk coverage in the environments surrounding most Canadian schools, but a dearth of bicycle lanes and other traffic calming measures (e.g., speed bumps, traffic chokers). Significant urban/rural inequities exist with a greater prevalence of sidewalk coverage, crosswalks, traffic medians, and speed bumps in urban areas. With the exception of bicycle lanes, the active transportation safety features that were present were generally rated as high quality. Traffic was more of a concern to administrators in urban areas. This study provides novel information about active transportation safety features in Canadian school environments. This information could help guide public health efforts aimed at increasing active transportation levels while simultaneously decreasing active transportation injuries. PMID:24185844

  8. Westinghouse Small Modular Reactor passive safety system response to postulated events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M. C.; Wright, R. F.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor. This paper is part of a series of four describing the design and safety features of the Westinghouse SMR. This paper focuses in particular upon the passive safety features and the safety system response of the Westinghouse SMR. The Westinghouse SMR design incorporates many features to minimize the effects of, and in some cases eliminates the possibility of postulated accidents. The small size of the reactor and the low power density limits the potential consequences of an accident relative to a large plant. Themore » integral design eliminates large loop piping, which significantly reduces the flow area of postulated loss of coolant accidents (LOCAs). The Westinghouse SMR containment is a high-pressure, compact design that normally operates at a partial vacuum. This facilitates heat removal from the containment during LOCA events. The containment is submerged in water which also aides the heat removal and provides an additional radionuclide filter. The Westinghouse SMR safety system design is passive, is based largely on the passive safety systems used in the AP1000{sup R} reactor, and provides mitigation of all design basis accidents without the need for AC electrical power for a period of seven days. Frequent faults, such as reactivity insertion events and loss of power events, are protected by first shutting down the nuclear reaction by inserting control rods, then providing cold, borated water through a passive, buoyancy-driven flow. Decay heat removal is provided using a layered approach that includes the passive removal of heat by the steam drum and independent passive heat removal system that transfers heat from the primary system to the environment. Less frequent faults such as loss of coolant accidents are mitigated by passive injection of a large quantity of water that is readily available inside containment. An automatic depressurization system is used to reduce the reactor pressure in a controlled manner to facilitate the passive injection. Long-term decay heat removal is accomplished using the passive heat removal systems augmented by heat transfer through the containment vessel to the environment. The passive injection systems are designed so that the fuel remains covered and effectively cooled throughout the event. Like during the frequent faults, the passive systems provide effective cooling without the need for ac power for seven days following the accident. Connections are available to add additional water to indefinitely cool the plant. The response of the safety systems of the Westinghouse SMR to various initiating faults has been examined. Among them, two accidents; an extended station blackout event, and a LOCA event have been evaluated to demonstrate how the plant will remain safe in the unlikely event that either should occur. (authors)« less

  9. Stop Ticks

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  10. Prevent Shingles

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  11. Preventing Suicide

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  12. Accidental fires in clinical laboratories.

    PubMed

    Hoeltge, G A; Miller, A; Klein, B R; Hamlin, W B

    1993-12-01

    The National Fire Protection Association, Quincy, Mass, estimates that 169 fires have occurred annually in health care, medical, and chemical laboratories. On the average, there are 13 civilian injuries and $1.5 million per year in direct property damage. Most fires in which the cause or ignition source can be identified originate in malfunctioning electrical equipment (41.6%) or in the facility's electrical distribution system (14.7%). The prevalence of fire safety deficiencies was measured in the College of American Pathologists Laboratory Accreditation Program. Of the 1732 inspected laboratories, 5.5% lacked records of electrical receptacle polarity and ground checks in the preceding year. Of these inspected laboratories, 4.7% had no or incomplete documentation of electrical safety checks on laboratory instruments. There was no evidence of quarterly fire exit drills in 9% of the laboratories. Deficiencies were also found in precautionary labeling (6.8%), in periodic review of safe work practices (4.2%), in the use of safety cans (3.7%), and in venting of flammable liquid storage areas (2.8%). Fire preparedness would be improved if all clinical laboratories had smoke detectors and automatic fire-extinguishing systems. In-service training courses in fire safety should be targeted to the needs of specific service areas.

  13. Nuclear Reactor Safety--The APS Submits its Report

    ERIC Educational Resources Information Center

    Physics Today, 1975

    1975-01-01

    Presents the summary section of the American Physical Society (APS) report on the safety features of the light-water reactor, reviews the design, construction, and operation of a reactor and outlines the primary engineered safety features. Summarizes the major recommendations of the study group. (GS)

  14. 30 CFR 75.513 - Electric conductor; capacity and insulation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric conductor; capacity and insulation. 75.513 Section 75.513 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL... § 75.513 Electric conductor; capacity and insulation. [Statutory Provision] All electric conductors...

  15. 30 CFR 75.513 - Electric conductor; capacity and insulation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric conductor; capacity and insulation. 75.513 Section 75.513 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL... § 75.513 Electric conductor; capacity and insulation. [Statutory Provision] All electric conductors...

  16. 30 CFR 77.503-1 - Electric conductors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Cable Engineers Association—National Electric Manufacturers Association in effect when such cables are... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric conductors. 77.503-1 Section 77.503-1... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical...

  17. 30 CFR 77.503-1 - Electric conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Cable Engineers Association—National Electric Manufacturers Association in effect when such cables are... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric conductors. 77.503-1 Section 77.503-1... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical...

  18. 30 CFR 77.503-1 - Electric conductors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Cable Engineers Association—National Electric Manufacturers Association in effect when such cables are... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric conductors. 77.503-1 Section 77.503-1... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical...

  19. 30 CFR 77.503-1 - Electric conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Cable Engineers Association—National Electric Manufacturers Association in effect when such cables are... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric conductors. 77.503-1 Section 77.503-1... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical...

  20. 30 CFR 77.503-1 - Electric conductors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Cable Engineers Association—National Electric Manufacturers Association in effect when such cables are... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric conductors. 77.503-1 Section 77.503-1... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical...

  1. Industrial Education. Electricity/Electronics Curriculum Guide, Phase II. Instructional Modules, Level III.

    ERIC Educational Resources Information Center

    Lillo, Robert E.; Soffiotto, Nicholas S.

    Designed for students in the tenth grade, this electricity/electronics curriculum guide contains instructional modules for sixteen units of instruction: (1) orientation, (2) introduction to electricity/electronics, (3) electricity/electronics safety, (4) fundamental skills, (5) direct current circuits, (6) graphical illustrations, (7) circuit…

  2. Wash Your Hands

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  3. Avoid Mosquito Bites

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  4. Oysters and Vibriosis

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  5. Safety in the Chemical Laboratory

    ERIC Educational Resources Information Center

    Steere, Norman V.

    1969-01-01

    Presents the Safety Guide used in the Research Center at Monsanto Chemical Company (St. Louis). Topics include: general safety practices, safety glasses and shoes, respiratory protection, electrical wiring, solvent handling and waste disposal. Procedures are given for evacuating, "tagging out, and "locking out. Special mention is given to…

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation,more » boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.« less

  7. Low-frequency electrical dosimetry: research agenda of the IEEE International Committee on Electromagnetic Safety.

    PubMed

    Reilly, J Patrick; Hirata, Akimasa

    2016-06-21

    This article treats unsettled issues in the use of numerical models of electrical dosimetry as applied to international limits on human exposure to low-frequency (typically  <  100 kHz) electromagnetic fields and contact current. The perspective in this publication is that of Subcommittee 6 of IEEE-ICES (International Committee on Electromagnetic Safety) Technical Committee 95. The paper discusses 25 issues needing attention, fitting into three general categories: induction models; electrostimulation models; and human exposure limits. Of these, 9 were voted as 'high priority' by members of Subcommittee 6. The list is presented as a research agenda for refinements in numerical modeling with applications to human exposure limits. It is likely that such issues are also important in medical and electrical product safety design applications.

  8. Chicken and Food Poisoning

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  9. Autism: Why Act Early?

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  10. Medication Use during Pregnancy

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  11. Learn About Cronobacter Infection

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  12. Bleeding Disorders in Women

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  13. Pregnant? Don't Smoke!

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  14. Home Canning and Botulism

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  15. Transactions of the Twenty-First Water Reactor Safety Information Meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteleone, S.

    1993-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 21st Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 25--27, 1993. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningfulmore » discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session.« less

  16. Atmospheric electric field and current configurations in the vicinity of mountains

    NASA Technical Reports Server (NTRS)

    Tzur, I.; Roble, R. G.; Adams, J. C.

    1985-01-01

    A number of investigations have been conducted regarding the electrical distortion produced by the earth's orography. Hays and Roble (1979) utilized their global model of atmospheric electricity to study the effect of large-scale orographic features on the currents and fields of the global circuit. The present paper is concerned with an extension of the previous work, taking into account an application of model calculations to orographic features with different configurations and an examination of the electric mapping of these features to ionospheric heights. A two-dimensional quasi-static numerical model of atmospheric electricity is employed. The model contains a detailed electrical conductivity profile. The model region extends from the surface to 100 km and includes the equalization layer located above approximately 70 km. The obtained results show that the electric field and current configurations above mountains depend upon the curvature of the mountain slopes, on the width of the mountain, and on the columnar resistance above the mountain (or mountain height).

  17. Neuromuscular Electrical Stimulation for Mobility Support of Elderly

    PubMed Central

    2015-01-01

    The stimulator for neuromuscular electrical stimulation for mobility support of elderly is not very complicated, but for application within “MOBIL” we have some additional demands to fulfill. First we have specific safety issues for this user group. A powerful compliance management system is crucial not only to guide daily application, but for creating hard data for the scientific outcome. We also need to assure easy handling of the stimulator, because the subjects are generally not able to cope with too difficult and complex motor skills. So, we developed five generations of stimulators and optimizing solutions after field tests. We are already planning the sixth generation with wireless control of the stimulation units by the central main handheld control unit. In a prototype, we have implemented a newly available high capacity memory, a breakthrough in “compliance data storage” as they offer the necessary high storage capacity and fast data handling for an affordable prize. The circuit also contains a 3D accelerometer sensor which acts as a further important safety features: if the control unit drops, this event is detected automatically by the sensor and activates an emergency switch-off that disables the stimulation to avoid associated risks. Further, we have implemented a hardware emergence shutdown and other safety measures. Finally, in the last example muscle torque measurements are referenced with compliance data. In the study normalized maximum voluntary contraction (MVC) and maximum stimulation induced contraction (MSC) were assessed in regular check-ups along the training period. With additional consideration of adjusted stimulation intensity for training out of the compliance data records we are able to estimate the induced contraction strength, which turned out to amount in average 11% of MVC. This value may seem on a first sight rather low, and ought to be considered in relation to the results at the end of the training period. Therefore the correlation between normalized MVC and normalized MSC was calculated. It is obvious that MVC can increase to strongly variable extent (3 to 65 %), but in few cases also decrease (-4 to 15 %) over the study period. The correlation suggests that an increase of roughly 1 % of normalized MSC can lead to an increase of about 10 % in MVC in the given training conditions. Overall, we can say that we have a stimulator that has turned out to work sufficiently. The most important feature is the integrated compliance recording because this is very useful for interpretation of the study outcome. The electrical stimulation training has shown that even with relatively small induced contraction intensity we still get some increase in the achievable voluntary extension torque. PMID:26913167

  18. Neuromuscular Electrical Stimulation for Mobility Support of Elderly.

    PubMed

    Mayr, Winfried

    2015-08-24

    The stimulator for neuromuscular electrical stimulation for mobility support of elderly is not very complicated, but for application within "MOBIL" we have some additional demands to fulfill. First we have specific safety issues for this user group. A powerful compliance management system is crucial not only to guide daily application, but for creating hard data for the scientific outcome. We also need to assure easy handling of the stimulator, because the subjects are generally not able to cope with too difficult and complex motor skills. So, we developed five generations of stimulators and optimizing solutions after field tests. We are already planning the sixth generation with wireless control of the stimulation units by the central main handheld control unit. In a prototype, we have implemented a newly available high capacity memory, a breakthrough in "compliance data storage" as they offer the necessary high storage capacity and fast data handling for an affordable prize. The circuit also contains a 3D accelerometer sensor which acts as a further important safety features: if the control unit drops, this event is detected automatically by the sensor and activates an emergency switch-off that disables the stimulation to avoid associated risks. Further, we have implemented a hardware emergence shutdown and other safety measures. Finally, in the last example muscle torque measurements are referenced with compliance data. In the study normalized maximum voluntary contraction (MVC) and maximum stimulation induced contraction (MSC) were assessed in regular check-ups along the training period. With additional consideration of adjusted stimulation intensity for training out of the compliance data records we are able to estimate the induced contraction strength, which turned out to amount in average 11% of MVC. This value may seem on a first sight rather low, and ought to be considered in relation to the results at the end of the training period. Therefore the correlation between normalized MVC and normalized MSC was calculated. It is obvious that MVC can increase to strongly variable extent (3 to 65 %), but in few cases also decrease (-4 to 15 %) over the study period. The correlation suggests that an increase of roughly 1 % of normalized MSC can lead to an increase of about 10 % in MVC in the given training conditions. Overall, we can say that we have a stimulator that has turned out to work sufficiently. The most important feature is the integrated compliance recording because this is very useful for interpretation of the study outcome. The electrical stimulation training has shown that even with relatively small induced contraction intensity we still get some increase in the achievable voluntary extension torque.

  19. Electrical Procedures and Environmental Control Systems. Building Maintenance. Module IV. Instructor's Guide.

    ERIC Educational Resources Information Center

    Sloan, Garry

    This curriculum guide, one of six modules keyed to the building maintenance competency profile developed by industry and education professionals, provides materials for two units on electrical procedures and environmental control systems. Unit 1, on electrical procedures, includes the following lessons: electrical safety; troubleshooting and…

  20. 16 CFR 1204.4 - Electric shock protection tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Electric shock protection tests. 1204.4... Electric shock protection tests. (a) Safety precautions. For tests involving high voltage, the following... Effectiveness Test or the Antenna-Mast System Test if no electrical breakdown occurs and if no current reading...

  1. 16 CFR 1204.4 - Electric shock protection tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Electric shock protection tests. 1204.4... Electric shock protection tests. (a) Safety precautions. For tests involving high voltage, the following... Effectiveness Test or the Antenna-Mast System Test if no electrical breakdown occurs and if no current reading...

  2. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  3. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  4. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  5. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  6. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  7. 16 CFR 1204.4 - Electric shock protection tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Electric shock protection tests. 1204.4... Electric shock protection tests. (a) Safety precautions. For tests involving high voltage, the following... Effectiveness Test or the Antenna-Mast System Test if no electrical breakdown occurs and if no current reading...

  8. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements for electrical stimulating (EST) equipment. (a) General. Electrical stimulating (EST) equipment is... of facilitating blood removal. These provisions do not apply to electrical equipment used to stun and... generate pulsed DC or AC voltage for stimulation and is separate from the equipment used to apply the...

  9. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements for electrical stimulating (EST) equipment. (a) General. Electrical stimulating (EST) equipment is... of facilitating blood removal. These provisions do not apply to electrical equipment used to stun and... generate pulsed DC or AC voltage for stimulation and is separate from the equipment used to apply the...

  10. Lupus among Asians and Hispanics

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  11. Prevent the Spread of Norovirus

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  12. Are You Getting Enough Sleep?

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  13. Take Care with Pet Reptiles

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  14. Hand, Foot and Mouth Disease

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  15. Carbon Monoxide (CO) Poisoning Prevention

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  16. Helping Children with Congenital CMV

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  17. Seniors' perceptions of vehicle safety risks and needs.

    PubMed

    Shaw, Lynn; Polgar, Jan Miller; Vrkljan, Brenda; Jacobson, Jill

    2010-01-01

    The investigation of vehicle safety needs for older drivers and passengers is integral for their safe transportation. A program of research on safe transportation for seniors was launched through AUTO21, a Canadian Network of Centres of Excellence. This national research network focuses on a wide range of automotive issues, from materials and design to safety and societal issues. An inductive qualitative inquiry of seniors' driving experiences, safety feature use, and strategies to prevent injury and manage risks was a first step in this program. We conducted interviews and focus groups with 58 seniors without disabilities and 9 seniors with disabilities. We identified a lack of congruity between the vehicle and safety feature design and seniors' needs. Seniors described strategies to manage their safety and that of others. Specific aspects of vehicle design, safety features, and action strategies that support safer use and operation of a vehicle by seniors are outlined.

  18. National Children's Center for Rural and Agricultural Health and Safety

    MedlinePlus

    ... Network Grain Safety Model Policy: Youth Employment in Agriculture Agricultural Youth Work Guidelines North American Guidelines for ... Sept. 20 Teaching fall and electrical safety in agriculture: free webinar, Sept. 13 Agricultural Youth Work Guidelines ...

  19. Space engine safety system

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Meyer, Claudia M.

    1991-01-01

    A rocket engine safety system was designed to initiate control procedures to minimize damage to the engine or vehicle or test stand in the event of an engine failure. The features and the implementation issues associated with rocket engine safety systems are discussed, as well as the specific concerns of safety systems applied to a space-based engine and long duration space missions. Examples of safety system features and architectures are given, based on recent safety monitoring investigations conducted for the Space Shuttle Main Engine and for future liquid rocket engines. Also, the general design and implementation process for rocket engine safety systems is presented.

  20. Mitigating Motion Base Safety Issues: The NASA LaRC CMF Implementation

    NASA Technical Reports Server (NTRS)

    Bryant, Richard B., Jr.; Grupton, Lawrence E.; Martinez, Debbie; Carrelli, David J.

    2005-01-01

    The NASA Langley Research Center (LaRC), Cockpit Motion Facility (CMF) motion base design has taken advantage of inherent hydraulic characteristics to implement safety features using hardware solutions only. Motion system safety has always been a concern and its implementation is addressed differently by each organization. Some approaches rely heavily on software safety features. Software which performs safety functions is subject to more scrutiny making its approval, modification, and development time consuming and expensive. The NASA LaRC's CMF motion system is used for research and, as such, requires that the software be updated or modified frequently. The CMF's customers need the ability to update the simulation software frequently without the associated cost incurred with safety critical software. This paper describes the CMF engineering team's approach to achieving motion base safety by designing and implementing all safety features in hardware, resulting in applications software (including motion cueing and actuator dynamic control) being completely independent of the safety devices. This allows the CMF safety systems to remain intact and unaffected by frequent research system modifications.

  1. Need yellow fever vaccine? Plan ahead

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  2. Drowsy Driving: Asleep at the Wheel

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  3. Prevent Type 2 Diabetes in Kids

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  4. Help Protect Babies from Whooping Cough

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  5. Test Your Knowledge of Spina Bifida

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  6. Protect Your Child from Rotavirus Disease

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  7. Type C investigation of electrical fabrication projects in ICF Kaiser shops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huckfeldt, R.A.

    1995-06-01

    A Type C Investigation Board was convened to investigate an electrical miswiring problem found during the operation of the electrical distribution trailer for the TWRS Rotary Mode Core Sampling Truck {number_sign}2. The trailer was designed by WHC and fabricated ICF KH on site for use in the Characterization Program. This problem resulted in a serious safety hazard since the support truck frame/chassis became electrically energized. This final report provides results of the ``Type C Investigation, Electrical Fabrication Projects in ICF KH Shops, June, 1995.`` It contains the investigation scope, executive summary, relevant facts, analysis, conclusions and corrective actions. DOE Ordermore » 5484.1, ``Environmental Protection, Safety and Health Protection Information Reporting Requirements,`` was followed in preparation of this report. Because the incident was electrical in nature and involved both Westinghouse Hanford Company and ICF Kaiser Hanford organizations, the board included members from both contractors and members with considerable electrical expertise.« less

  8. Safety of High Speed Guided Ground Transportation Systems : Review of Existing EMF Guidelines, Standards and Regulations

    DOT National Transportation Integrated Search

    1993-08-01

    To assess the state of knowledge about anticipated electric and magnetic field (EMF) exposures from electrical transportation systems, including electrically powered rail and magnetically levitated (maglev), research concerning biological effects of ...

  9. New reactor cavity cooling system having passive safety features using novel shape for HTGRs and VHTRs

    DOE PAGES

    Takamatsu, Kuniyoshi; Hu, Rui

    2014-11-27

    A new, highly efficient reactor cavity cooling system (RCCS) with passive safety features without a requirement for electricity and mechanical drive is proposed for high temperature gas cooled reactors (HTGRs) and very high temperature reactors (VHTRs). The RCCS design consists of continuous closed regions; one is an ex-reactor pressure vessel (RPV) region and another is a cooling region having heat transfer area to ambient air assumed at 40 (°C). The RCCS uses a novel shape to efficiently remove the heat released from the RPV with radiation and natural convection. Employing the air as the working fluid and the ambient airmore » as the ultimate heat sink, the new RCCS design strongly reduces the possibility of losing the heat sink for decay heat removal. Therefore, HTGRs and VHTRs adopting the new RCCS design can avoid core melting due to overheating the fuels. The simulation results from a commercial CFD code, STAR-CCM+, show that the temperature distribution of the RCCS is within the temperature limits of the structures, such as the maximum operating temperature of the RPV, 713.15 (K) = 440 (°C), and the heat released from the RPV could be removed safely, even during a loss of coolant accident (LOCA). Finally, when the RCCS can remove 600 (kW) of the rated nominal state even during LOCA, the safety review for building the HTTR could confirm that the temperature distribution of the HTTR is within the temperature limits of the structures to secure structures and fuels after the shutdown because the large heat capacity of the graphite core can absorb heat from the fuel in a short period. Therefore, the capacity of the new RCCS design would be sufficient for decay heat removal.« less

  10. An evaluation of two conducted electrical weapons and two probe designs using a swine comparative cardiac safety model.

    PubMed

    Dawes, Donald Murray; Ho, Jeffrey D; Moore, Johanna C; Miner, James R

    2013-09-01

    Despite human laboratory and field studies that have demonstrated a reasonable safety profile for TASER brand conducted electrical weapons (CEW), the results of some swine studies and arrest related deaths temporal to the use of the CEWs continue to raise questions regarding cardiac safety. TASER International, Inc., has released a new CEW, the TASER X2, touted to have a better safety profile than its long-standing predecessor, the TASER X26. We have developed a model to assess the relative cardiac safety of CEWs and used it to compare the TASER X2 and the TASER X26. This safety model was also used to assess the relative safety of an experimental probe design as compared to the standard steel probe. Our results suggest that the TASER X2 has an improved safety margin over the TASER X26. The new probe design also has promise for enhanced cardiac safety, although may have some disadvantages when compared to the existing design which would make field use impractical.

  11. Critical safety features of the vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Whitehead, A. H.; Rabbow, T. J.; Trampert, M.; Pokorny, P.

    2017-05-01

    In this work the behaviour of the vanadium redox flow battery is examined under a variety of short-circuit conditions (e.g. with and without the pumps stopping as a result of the short). In contrast to other battery types, only a small proportion of the electroactive material, in a flow battery, is held between the electrodes at any given time. Therefore, together with the relatively low energy density of the vanadium electrolyte, the immediate release of energy, which occurs as a result of electrical shorting, is somewhat limited. The high heat capacity of the aqueous electrolyte is also beneficial in limiting the temperature rise. It will be seen that the flow battery is therefore considerably safer than other battery types, in this respect.

  12. KSC-07pd1774

    NASA Image and Video Library

    2007-07-03

    KENNEDY SPACE CENTER, FLA. -- The main engines on the orbiter Endeavour (upper right) are seen as Endeavour is lowered into high bay 1 of the Vehicle Assembly Building for stacking with the external tank (seen at left) and solid rocket boosters on the mobile launcher platform. Endeavour will be launched on mission STS-118, its first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. Endeavour is targeted for launch on Aug. 7. Photo credit: NASA/Troy Cryder

  13. Lithium rechargeable cell with a polymer cathode

    NASA Astrophysics Data System (ADS)

    Walker, Charles W., Jr.

    1991-11-01

    Thin films of electropolymerized poly 3-methylthiophene (PMT) were used as a rechargeable cathode in Li(SO2)3AlCl4 electrolyte. Capacity was superior to porous carbon electrodes of like thickness. Pulse power levels of 2 W cm-2 were achieved, and high rate constant current pulses of four-second duration were reproducible over cycles. Cells could be recharged at potentials below 4.0 V, minimizing the formation of chlorine and thereby diminishing the capacity for corrosion. For a primary cell, greater discharge capacity was obtained with thionyl chloride and sulfuryl chloride electrolytes. Since PMT becomes electrically insulating in the reduced state, this could be used as a built-in safety feature to avert the hazards associated with abuse over-discharge.

  14. The ARAMIS project: a concept robot and technical design.

    PubMed

    Colizzi, Lucio; Lidonnici, Antonio; Pignolo, Loris

    2009-11-01

    To describe the ARAMIS (Automatic Recovery Arm Motility Integrated System) project, a concept robot applicable in the neuro-rehabilitation of the paretic upper limb after stroke. Methods, results and conclusion: The rationale and engineering of a state-of-the-art, hardware/software integrated robot system, its mechanics, ergonomics, electric/electronics features providing control, safety and suitability of use are described. An ARAMIS prototype has been built and is now available for clinical tests. It allows the therapist to design neuro-rehabilitative (synchronous or asynchronous) training protocols in which sample exercises are generated by a single exoskeleton (operated by the patient's unaffected arm or by the therapist's arm) and mirrored in real-time or offline by the exoskeleton supporting the paretic arm.

  15. 77 FR 26792 - Union Electric Company; Establishment of Atomic Safety and Licensing Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... Company; Establishment of Atomic Safety and Licensing Board Pursuant to delegation by the Commission dated... Atomic Safety and Licensing Board (Board) is being established to preside over the following proceeding... Board is comprised of the following administrative judges: G. Paul Bollwerk, III, Chair, Atomic Safety...

  16. Pneumonia Can Be Prevented -- Vaccines Can Help

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  17. Protect Your Baby from Group B Strep!

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  18. Don't Let Glaucoma Steal Your Sight!

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  19. Rubella: Make Sure Your Child Gets Vaccinated

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  20. Worried Your Sore Throat May Be Strep?

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  1. Scarlet Fever: A Group A Streptococcal Infection

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  2. Tips to Prevent Illness from Clostridium Perfringens

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  3. The architecture of safety: hospital design.

    PubMed

    Joseph, Anjali; Rashid, Mahbub

    2007-12-01

    This paper reviews recent research literature reporting the effects of hospital design on patient safety. Features of hospital design that are linked to patient safety in the literature include noise, air quality, lighting conditions, patient room design, unit layout, and several other interior design features. Some of these features act as latent conditions for adverse events, and impact safety outcomes directly and indirectly by impacting staff working conditions. Others act as barriers to adverse events by providing hospital staff with opportunities for preventing accidents before they occur. Although the evidence linking hospital design to patient safety is growing, much is left to be done in this area of research. Nevertheless, the evidence reported in the literature may already be sufficient to have a positive impact on hospital design.

  4. A combined methodology using electrical resistivity tomography, ordinary kriging and porosimetry for quantifying total C trapped in carbonate formations associated with natural analogues for CO2 leakage

    NASA Astrophysics Data System (ADS)

    Prado-Pérez, A. J.; Aracil, E.; Pérez del Villar, L.

    2014-06-01

    Currently, carbon deep geological storage is one of the most accepted methods for CO2 sequestration, being the long-term behaviour assessment of these artificial systems absolutely essential to guarantee the safety of the CO2 storage. In this sense, hydrogeochemical modelling is being used for evaluating any artificial CO2 deep geological storage as a potential CO2 sinkhole and to assess the leakage processes that are usually associated with these engineered systems. Carbonate precipitation, as travertines or speleothems, is a common feature in the CO2 leakage scenarios and, therefore, is of the utmost importance to quantify the total C content trapped as a stable mineral phase in these carbonate formations. A methodology combining three classical techniques such as: electrical resistivity tomography, geostatistical analysis and mercury porosimetry is described in this work, which was developed for calculating the total amount of C trapped as CaCO3 associated with the CO2 leakages in Alicún de las Torres natural analogue (Granada, Spain). The proposed methodology has allowed estimating the amount of C trapped as calcite, as more than 1.7 Mt. This last parameter, focussed on an artificial CO2 deep geological storage, is essential for hydrogeochemical modellers when evaluating whether CO2 storages constitute or not CO2 sinkholes. This finding is extremely important when assessing the long-term behaviour and safety of any artificial CO2 deep geological storage.

  5. Be Food Safe: Protect Yourself from Food Poisoning

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  6. Measles: Make Sure Your Child Is Fully Immunized

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  7. Prepare for Diabetes Care in Heat and Emergencies

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  8. Don't Let Measles Be Your Travel Souvenir

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  9. The effects of electric power industry restructuring on the safety of nuclear power plants in the United States

    NASA Astrophysics Data System (ADS)

    Butler, Thomas S.

    Throughout the United States the electric utility industry is restructuring in response to federal legislation mandating deregulation. The electric utility industry has embarked upon an extraordinary experiment by restructuring in response to deregulation that has been advocated on the premise of improving economic efficiency by encouraging competition in as many sectors of the industry as possible. However, unlike the telephone, trucking, and airline industries, the potential effects of electric deregulation reach far beyond simple energy economics. This dissertation presents the potential safety risks involved with the deregulation of the electric power industry in the United States and abroad. The pressures of a competitive environment on utilities with nuclear power plants in their portfolio to lower operation and maintenance costs could squeeze them to resort to some risky cost-cutting measures. These include deferring maintenance, reducing training, downsizing staff, excessive reductions in refueling down time, and increasing the use of on-line maintenance. The results of this study indicate statistically significant differences at the .01 level between the safety of pressurized water reactor nuclear power plants and boiling water reactor nuclear power plants. Boiling water reactors exhibited significantly more problems than did pressurized water reactors.

  10. 76 FR 15798 - Special Conditions: Boeing 747-468, Installation of a Medical Lift

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... a novel or unusual design feature associated with the installation of a medical lift. The applicable airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. These... airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. Type...

  11. Safety of High Speed Guided Ground Transportation Systems. Broadband Magnetic Fields : Their Possible Role in EMF Associated Bioeffects

    DOT National Transportation Integrated Search

    1993-08-01

    This report reviews electric and magnetic field (EMF) exposures from electrical transportation systems, including : electrically powered rail and magnetic levitation (maglev). Material also covered includes research concerning : biological effects of...

  12. Is your electric process heater safe?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiras, C.S.

    2000-04-01

    Over the past 35 years, electric process heaters (EPHs) have been used to heat flowing fluids in different sectors of the energy industry: oil and gas exploration and production, refineries, petrochemical plants, pipeline compression facilities and power-generation plants. EPHs offer several advantages over fired heaters and shell-and-tube exchangers, which have been around for many years, including: smaller size, lighter weight, cleaner operation, lower capital costs, lower maintenance costs, no emissions or leakage, better control and improved safety. However, while many industrial standards have addressed safety concerns of fired heaters and shell-and-tube exchangers (API, TEMA, NFPA, OSHA and NEC), no standardsmore » address EPHs. The paper presents a list of questions that plant operators need to ask about the safety of their electric process heaters. The answers are also given.« less

  13. Nozzle Extension for Safety Air Gun

    NASA Technical Reports Server (NTRS)

    Zumbrun, H. N.; Croom, Delwin R., Jr.

    1986-01-01

    New nozzle-extension design overcomes problems and incorporates original commercial nozzle, retaining intrinsic safety features. Components include extension tube, length of which made to suit application; adaptor fitting, and nozzle adaptor repinned to maintain original safety features. Design moves conical airstream to end of extension to blow machine chips away from operator. Nozzle-extension modification allows safe and efficient operation of machine tools while maintaining integrity of orginial safety-air-gun design.

  14. 16 CFR § 1204.4 - Electric shock protection tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Electric shock protection tests. § 1204.4... Electric shock protection tests. (a) Safety precautions. For tests involving high voltage, the following... Effectiveness Test or the Antenna-Mast System Test if no electrical breakdown occurs and if no current reading...

  15. Industrial Education. Electricity/Electronics Curriculum Guide, Phase II. Instructional Modules, Level I (9 Week).

    ERIC Educational Resources Information Center

    Lillo, Robert E.; Soffiotto, Nicholas S.

    Designed for students in grades 7 and 8, this electricity/electronics curriculum guide contains instructional modules for ten units of instruction (nine-week class): (1) orientation; (2) understanding electricity; (3) safety; (4) methods to generate electricity; (5) wiring tools and wire; (6) soldering; (7) magnetism and electromagnetism; (8)…

  16. Industrial Education. Electricity/Electronics Curriculum Guide, Phase II. Instructional Modules, Level I (18 Week).

    ERIC Educational Resources Information Center

    Lillo, Robert E.; Soffiotto, Nicholas S.

    Designed for students in grades 7 and 8, this electricity/electronics curriculum guide contains instructional modules for twelve units of instruction: (1) orientation; (2) understanding electricity; (3) safety; (4) methods to generate electricity; (5) wiring tools and wire; (6) soldering; (7) magnetism and electromagnetism; (8) circuits, symbols,…

  17. Captured key electrical safety lockout system

    DOEpatents

    Darimont, Daniel E.

    1995-01-01

    A safety lockout apparatus for an electrical circuit includes an electrical switch, a key, a lock and a blocking mechanism. The electrical switch is movable between an ON position at which the electrical circuit is energized and an OFF position at which the electrical circuit is deactivated. The lock is adapted to receive the key and is rotatable among a plurality of positions by the key. The key is only insertable and removable when the lock is at a preselected position. The lock is maintained in the preselected position when the key is removed from the lock. The blocking mechanism physically maintains the switch in its OFF position when the key is removed from the lock. The blocking mechanism preferably includes a member driven by the lock between a first position at which the electrical switch is movable between its ON and OFF positions and a second position at which the member physically maintains the electrical switch in its OFF position. Advantageously, the driven member's second position corresponds to the preselected position at which the key can be removed from and inserted into the lock.

  18. Captured key electrical safety lockout system

    DOEpatents

    Darimont, D.E.

    1995-10-31

    A safety lockout apparatus for an electrical circuit includes an electrical switch, a key, a lock and a blocking mechanism. The electrical switch is movable between an ON position at which the electrical circuit is energized and an OFF position at which the electrical circuit is deactivated. The lock is adapted to receive the key and is rotatable among a plurality of positions by the key. The key is only insertable and removable when the lock is at a preselected position. The lock is maintained in the preselected position when the key is removed from the lock. The blocking mechanism physically maintains the switch in its OFF position when the key is removed from the lock. The blocking mechanism preferably includes a member driven by the lock between a first position at which the electrical switch is movable between its ON and OFF positions and a second position at which the member physically maintains the electrical switch in its OFF position. Advantageously, the driven member`s second position corresponds to the preselected position at which the key can be removed from and inserted into the lock. 7 figs.

  19. How safe is safe enough. The relation of environmental characteristics and economic competitiveness in fusion-reactor design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdren, J.P.

    The need for fusion energy depends strongly on fusion's potential to achieve ambitious safety goals more completely or more economically than fission can. The history and present complexion of public opinion about environment and safety gives little basis for expecting either that these concerns will prove to be a passing fad or that the public will make demands for zero risk that no energy source can meet. Hazard indices based on ''worst case'' accidents and exposures should be used as design tools to promote combinations of fusion-reactor materials and configurations that bring the worst cases down to levels small comparedmore » to the hazards people tolerate from electricity at the point of end use. It may well be possible, by building such safety into fusion from the ground up, to accomplish this goal at costs competitive with other inexhaustible electricity sources. Indeed, the still rising and ultimately indeterminate costs of meeting safety and environmental requirements in nonbreeder fission reactors and coal-burning power plants mean that fusion reactors meeting ambitious safety goals may be able to compete economically with these ''interim'' electricity sources as well.« less

  20. Chickenpox Can Be Serious. Protect Yourself and Your Child.

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  1. US Adults Drink 17 Billion Binge Drinks a Year

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  2. Tuberculosis: Learn the Signs and Symptoms of TB Disease

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  3. Necrotizing Fasciitis: A Rare Disease, Especially for the Healthy

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  4. E-Cigarettes and Young People: A Public Health Concern

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  5. Safety lock-out device for electrical appliances

    DOEpatents

    Cliff, Jr., Paul L.

    1996-01-01

    A safety lock-out device prevents the insertion of an electrical power cord into an electrical power cord receptacle of an electrical appliance. The devise comprises a mounting plate fastened to the appliance and a cover plate hingedly attached to the appliance. The cover plate is movable between a first position and a second position such that, in the first position, the cover plate covers and prevents insertion of a power cord into the appliance receptacle. In said second position, the appliance receptacle is uncovered to permit insertion of a power cord into the receptacle. Extending a lock shank through aligned openings formed in flange members extending from the mounting plate and the cover plate locks the cover plate in the first position.

  6. Safety lock-out device for electrical appliances

    DOEpatents

    Cliff, P.L. Jr.

    1996-07-09

    A safety lock-out device prevents the insertion of an electrical power cord into an electrical power cord receptacle of an electrical appliance. The device comprises a mounting plate fastened to the appliance and a hinged cover plate attached to the appliance. The cover plate is movable between a first position and a second position such that, in the first position, the cover plate covers and prevents insertion of a power cord into the appliance receptacle. In said second position, the appliance receptacle is uncovered to permit insertion of a power cord into the receptacle. Extending a lock shank through aligned openings formed in flange members extending from the mounting plate, the cover plate locks the cover plate in the first position. 15 figs.

  7. Safety: Special Effects of Thermal Runaway Chapter Heading for Encyclopedia of Electrochemical Power Sources (PREPRINT)

    DTIC Science & Technology

    2007-11-09

    been following developments related to the recent lithium ion battery recalls and is preparing itself for revising its battery safety standard...manufacturer (OEM) Critical Components Committee. In October 2006, the IPC Lithium Ion Battery Subcommittee, that represents both the major...cover process requirements, quality control and assurance for lithium ion battery cells. Electric and Hybrid Electric Vehicle Power Source Testing In

  8. [Medication error management climate and perception for system use according to construction of medication error prevention system].

    PubMed

    Kim, Myoung Soo

    2012-08-01

    The purpose of this cross-sectional study was to examine current status of IT-based medication error prevention system construction and the relationships among system construction, medication error management climate and perception for system use. The participants were 124 patient safety chief managers working for 124 hospitals with over 300 beds in Korea. The characteristics of the participants, construction status and perception of systems (electric pharmacopoeia, electric drug dosage calculation system, computer-based patient safety reporting and bar-code system) and medication error management climate were measured in this study. The data were collected between June and August 2011. Descriptive statistics, partial Pearson correlation and MANCOVA were used for data analysis. Electric pharmacopoeia were constructed in 67.7% of participating hospitals, computer-based patient safety reporting systems were constructed in 50.8%, electric drug dosage calculation systems were in use in 32.3%. Bar-code systems showed up the lowest construction rate at 16.1% of Korean hospitals. Higher rates of construction of IT-based medication error prevention systems resulted in greater safety and a more positive error management climate prevailed. The supportive strategies for improving perception for use of IT-based systems would add to system construction, and positive error management climate would be more easily promoted.

  9. 49 CFR 193.2445 - Sources of power.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Equipment Vaporization Equipment § 193.2445 Sources of power. (a) Electrical...

  10. 29 CFR 1926.432 - Environmental deterioration of equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 1926.432 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Safety-Related...) Deteriorating agents—(1) Unless identified for use in the operating environment, no conductors or equipment...

  11. 29 CFR 1926.432 - Environmental deterioration of equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 1926.432 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Safety-Related...) Deteriorating agents—(1) Unless identified for use in the operating environment, no conductors or equipment...

  12. 29 CFR 1926.432 - Environmental deterioration of equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1926.432 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Safety-Related...) Deteriorating agents—(1) Unless identified for use in the operating environment, no conductors or equipment...

  13. 29 CFR 1926.432 - Environmental deterioration of equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1926.432 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Safety-Related...) Deteriorating agents—(1) Unless identified for use in the operating environment, no conductors or equipment...

  14. 30 CFR 56.4600 - Extinguishing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....4600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and... conductive extinguishing agent could create an electrical hazard, a multipurpose dry-chemical fire...

  15. Hydrogen Fuel Cell Vehicle Fuel System Integrity Research : Electrical Isolation Test Procedure Development and Verification

    DOT National Transportation Integrated Search

    2012-03-01

    The Federal Motor Vehicle Safety Standards (FMVSS) establish minimum levels for vehicle safety, and manufacturers of motor vehicle and equipment items must comply with these standards. The National Highway Traffic Safety Administration (NHTSA) contra...

  16. Does employee safety influence customer satisfaction? Evidence from the electric utility industry.

    PubMed

    Willis, P Geoffrey; Brown, Karen A; Prussia, Gregory E

    2012-12-01

    Research on workplace safety has not examined implications for business performance outcomes such as customer satisfaction. In a U.S. electric utility company, we surveyed 821 employees in 20 work groups, and also had access to archival safety data and the results of a customer satisfaction survey (n=341). In geographically-based work units where there were more employee injuries (based on archival records), customers were less satisfied with the service they received. Safety climate, mediated by safety citizenship behaviors (SCBs), added to the predictive power of the group-level model, but these two constructs exerted their influence independently from actual injuries. In combination, two safety-related predictor paths (injuries and climate/SCB) explained 53% of the variance in customer satisfaction. Results offer preliminary evidence that workplace safety influences customer satisfaction, suggesting that there are likely spillover effects between the safety environment and the service environment. Additional research will be needed to assess the specific mechanisms that convert employee injuries into palpable results for customers. Better safety climate and reductions in employee injuries have the potential to offer payoffs in terms of what customers experience. Copyright © 2012 National Safety Council and Elsevier Ltd. All rights reserved.

  17. Evaluation of sounds for hybrid and electric vehicles operating at low speed

    DOT National Transportation Integrated Search

    2012-10-22

    Electric vehicles (EV) and hybrid electric vehicles (HEVs), operated at low speeds may reduce auditory cues used by pedestrians to assess the state of nearby traffic creating a safety issue. This field study compares the auditory detectability of num...

  18. Student manual, Book 2: Orientation to occupational safety compliance in DOE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colley, D.L.

    1993-10-01

    This is a student hand-book an Occupational Safety Compliance in DOE. Topics include the following: Electrical; materials handling & storage; inspection responsibilities & procedures; general environmental controls; confined space entry; lockout/tagout; office safety, ergonomics & human factors; medical & first aid, access to records; construction safety; injury/illness reporting system; and accident investigation procedures.

  19. Installation of the Ignitor Machine at the Caorso Site

    NASA Astrophysics Data System (ADS)

    Migliori, S.; Pierattini, S.; Bombarda, F.; Faelli, G.; Zucchetti, M.; Coppi, B.

    2008-11-01

    The actual cost of building a new experiment can be considerably contained if infrastructures are already available on its envisioned site. The facilities of the Caorso site (near Piacenza, Italy) that, at present, houses a spent nuclear power station, have been analyzed in view of their utilization for the operation of the Ignitor machine. The main feature of the site is its robust connection to the electrical national power grid that can take the disturbance caused by Ignitor discharges with the highest magnetic fields and plasma currents, avoiding the need for rotating flywheels generators. Other assets include a vast building that can be modified to house the machine core and the associated diagnostic systems. A layout of the Ignitor plant, including the tritium laboratory and other service areas, the distribution of the components of the electrical power supply system and of the He gas cooling sytem are presented. Relevant safety issues have been analyzed, based on the in depth activation analysis of the machine components carried out by means of the FISPAC code. Waste management and environment impact issues, including risk to the population assessments, have also been addressed.

  20. Method to pattern <10 micrometer conducting and passivating features on 3D substrates for implantable devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolosa, Vanessa; Pannu, Satinderpall S.; Sheth, Heeral

    2017-07-04

    An implantable device has a cylindrical base, at least one electrode on the cylindrical base, at least one electrically conducting lead on the cylindrical base connected to the electrode wherein the electrically conducting lead has a feature size of <10 micrometers. A protective coating on the cylindrical base covers the at least one electrically conducting lead.

  1. Analysis of acoustic data for hybrid and electric vehicles measured on hemi-anechoic chambers

    DOT National Transportation Integrated Search

    2015-04-01

    The Pedestrian Safety Enhancement Act of 2010 requires the National Highway Traffic Safety : Administration to conduct a rulemaking to establish a Federal Motor Vehicle Safety Standard requiring an alert sound for pedestrians to be emitted by electri...

  2. 78 FR 18614 - National Offshore Safety Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... Continental Shelf (OCS); (b) Electrical Equipment in Hazardous Areas on Foreign Flag Mobile Offshore Drilling... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2013-0182] National Offshore Safety... Advisory Committee Meetings. SUMMARY: The National Offshore Safety Advisory Committee (NOSAC) will meet on...

  3. 30 CFR 57.6601 - Grounding.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Grounding. 57.6601 Section 57.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  4. 30 CFR 56.6601 - Grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding. 56.6601 Section 56.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  5. 30 CFR 56.6601 - Grounding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Grounding. 56.6601 Section 56.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  6. 30 CFR 57.6601 - Grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding. 57.6601 Section 57.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  7. 30 CFR 57.6601 - Grounding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Grounding. 57.6601 Section 57.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  8. 30 CFR 57.6601 - Grounding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Grounding. 57.6601 Section 57.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  9. 30 CFR 56.6601 - Grounding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Grounding. 56.6601 Section 56.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  10. 30 CFR 56.6601 - Grounding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding. 56.6601 Section 56.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  11. 30 CFR 56.6601 - Grounding.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Grounding. 56.6601 Section 56.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  12. 30 CFR 57.6601 - Grounding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding. 57.6601 Section 57.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  13. 78 FR 14013 - Medical Devices; Exemption From Premarket Notification; Class II Devices; Wheelchair Elevator

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ...: General Requirements for Safety-- Collateral Standard: Electromagnetic Compatibility--Requirements and... electromagnetic compatibility and electrical safety. Firms are now exempt from 510(k) requirements for vertical... Equipment--Part 1-2: General Requirements for Safety--Collateral Standard: Electromagnetic Compatibility...

  14. 29 CFR 1910.381-1910.398 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false [Reserved] 1910.381-1910.398 Section 1910.381-1910.398 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety Requirements for Special...

  15. 29 CFR 1910.381-1910.398 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false [Reserved] 1910.381-1910.398 Section 1910.381-1910.398 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety Requirements for Special...

  16. 29 CFR 1926.417 - Lockout and tagging of circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Safety-Related Work... during the course of work on energized or deenergized equipment or circuits shall be tagged. (b...

  17. Guide for Science Laboratory Safety.

    ERIC Educational Resources Information Center

    McDermott, John J.

    General and specific safety procedures and recommendations for secondary school science laboratories are provided in this guide. Areas of concern include: (1) chemicals (storage, disposal, toxicity, unstable and incompatible chemicals); (2) microorganisms; (3) plants; (4) animals; (5) electricity; (6) lasers; (7) rockets; (8) eye safety and…

  18. 30 CFR 75.524 - Electric face equipment; electric equipment used in return air outby the last open crosscut...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... current between frames of equipment. 75.524 Section 75.524 Mineral Resources MINE SAFETY AND HEALTH... the last open crosscut; maximum level of alternating or direct electric current between frames of equipment. The maximum level of alternating or direct electric current that exists between the frames of any...

  19. 50 CFR 29.21-8 - Electric power transmission line rights-of-way.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Electric power transmission line rights-of... General Regulations § 29.21-8 Electric power transmission line rights-of-way. By accepting a right-of-way... with the rules prescribed in the National Electric Safety Code, all Government and other telephone...

  20. Articulated, Performance-Based Instruction Objectives Guide for Electricity/Industrial Electricity. Development Period, July, 1983--June, 1984. Edition I.

    ERIC Educational Resources Information Center

    Henderson, Wm. Edward, Jr., Ed.

    This curriculum guide is designed to assist vocational educators in presenting an articulated, performance-based course in electricity and industrial electricity. Addressed in the individual units of the course (included in 11 modules) are the following topics: safety, leadership, communication skills, career preparation, good work habits and…

  1. Driving Control for Electric Power Assisted Wheelchair Based on Regenerative Brake

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Takahashi, Kazuki; Tadakuma, Susumu

    This paper describes a novel safety driving control scheme for electric power assisted wheelchairs based on the regenerative braking system. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the safe and secure driving performance especially on downhill roads must be further improved because electric power assisted wheelchairs have no braking devices. The proposed control system automatically switches the driving mode, from “assisting mode” to “braking mode”, based on the wheelchair's velocity and the declined angle and smoothly suppresses the wheelchair's acceleration based on variable duty ratio control in order to realize the safety driving and to improve the ride quality. Some experiments on the practical roads and subjective evaluation show the effectiveness of the proposed control system.

  2. Arrows as anchors: An analysis of the material features of electric field vector arrows

    NASA Astrophysics Data System (ADS)

    Gire, Elizabeth; Price, Edward

    2014-12-01

    Representations in physics possess both physical and conceptual aspects that are fundamentally intertwined and can interact to support or hinder sense making and computation. We use distributed cognition and the theory of conceptual blending with material anchors to interpret the roles of conceptual and material features of representations in students' use of representations for computation. We focus on the vector-arrows representation of electric fields and describe this representation as a conceptual blend of electric field concepts, physical space, and the material features of the representation (i.e., the physical writing and the surface upon which it is drawn). In this representation, spatial extent (e.g., distance on paper) is used to represent both distances in coordinate space and magnitudes of electric field vectors. In conceptual blending theory, this conflation is described as a clash between the input spaces in the blend. We explore the benefits and drawbacks of this clash, as well as other features of this representation. This analysis is illustrated with examples from clinical problem-solving interviews with upper-division physics majors. We see that while these intermediate physics students make a variety of errors using this representation, they also use the geometric features of the representation to add electric field contributions and to organize the problem situation productively.

  3. 49 CFR 228.313 - Electrical system requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Electrical system requirements. 228.313 Section...; SLEEPING QUARTERS Safety and Health Requirements for Camp Cars Provided by Railroads as Sleeping Quarters § 228.313 Electrical system requirements. (a) All heating, cooking, ventilation, air conditioning, and...

  4. 49 CFR 228.313 - Electrical system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Electrical system requirements. 228.313 Section...; SLEEPING QUARTERS Safety and Health Requirements for Camp Cars Provided by Railroads as Sleeping Quarters § 228.313 Electrical system requirements. (a) All heating, cooking, ventilation, air conditioning, and...

  5. 49 CFR 228.313 - Electrical system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Electrical system requirements. 228.313 Section...; SLEEPING QUARTERS Safety and Health Requirements for Camp Cars Provided by Railroads as Sleeping Quarters § 228.313 Electrical system requirements. (a) All heating, cooking, ventilation, air conditioning, and...

  6. Auditory detectability of hybrid electric vehicles by pedestrians who are blind

    DOT National Transportation Integrated Search

    2010-11-15

    Quieter cars such as electric vehicles (EVs) and hybrid electric vehicles (HEVs) may reduce auditory cues used by pedestrians to assess the state of nearby traffic and, as a result, their use may have an adverse impact on pedestrian safety. In order ...

  7. 15 CFR 270.104 - Size and composition of a Team.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS... disciplines: civil, structural, mechanical, electrical, fire, forensic, safety, architectural, and materials...

  8. 49 CFR 229.77 - Current collectors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical System § 229... engineer's normal position in the cab. Pantographs that automatically rise when released shall have an...

  9. 49 CFR 229.77 - Current collectors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical System § 229... engineer's normal position in the cab. Pantographs that automatically rise when released shall have an...

  10. 49 CFR 229.77 - Current collectors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical System § 229... engineer's normal position in the cab. Pantographs that automatically rise when released shall have an...

  11. 49 CFR 229.77 - Current collectors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical System § 229... engineer's normal position in the cab. Pantographs that automatically rise when released shall have an...

  12. 49 CFR 229.77 - Current collectors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical System § 229... engineer's normal position in the cab. Pantographs that automatically rise when released shall have an...

  13. Accidental deaths caused by electricity in Sweden, 1975-2000.

    PubMed

    Lindström, Richard; Bylund, Per-Olof; Eriksson, Anders

    2006-11-01

    This study analyzes accidental fatalities caused by electricity--at work and during leisure time--to evaluate risk factors, the role of alcohol, and to identify possible preventive strategies. In Sweden, data on fatalities by electrocution from 1975 through 2000 were collected from the National Cause-of-Death Register. Additional cases were found in the archives of The Swedish National Electrical Safety Board. Suicides and deaths by lightning were excluded. Two hundred and eighty-five deaths were found, including occupational (n=132), leisure time (n=151), and unknown (n=2). Most deaths were caused by aerial power lines, and the most common place for an electrical injury was a railway area or residential property. Postmortem blood from 20% (n=47) of the tested cases was found positive for alcohol, and these persons were killed mainly during leisure time. During the study period, the overall incidence of electricity-related fatalities has decreased, in spite of increased use of electricity. This indicates that safety improvements have been successful.

  14. Clinical features of children and adults with a muscular dystrophy using powered indoor/outdoor wheelchairs: disease features, comorbidities and complications of disability.

    PubMed

    Frank, Andrew Oliver; De Souza, Lorraine H

    2018-05-01

    To describe the clinical features of electric powered indoor/outdoor wheelchair users with a muscular dystrophy, likely to influence optimal prescription; reflecting features of muscular dystrophies, conditions secondary to disability, and comorbidities impacting on equipment provision. Cross-sectional retrospective case note review of recipients of electric powered indoor/outdoor wheelchairs provided by a specialist regional wheelchair service. Data on demography, diagnostic/clinical, and wheelchair prescription were systematically extracted. Fifty-one men and 14 women, mean age 23.7 (range 10-67, s.d. 12.95) years, were studied. Forty had Duchenne muscular dystrophy, 22 had other forms of muscular dystrophy, and three were unclassified. Twenty-seven were aged under 19. Notable clinical features included problematic pain (10), cardiomyopathy (5), and ventilatory failure (4). Features related to disability were (kypho)scoliosis (20) and edema/cellulitis (3) whilst comorbidities included back pain (5). Comparison of younger with older users revealed younger users had more features of muscular dystrophy affecting electric powered chair provision (56%) whilst older users had more comorbidity (37%). Tilt-in-space was prescribed for 81% of users, specialized seating for 55% and complex controls for 16%. Muscular dystrophy users were prescribed electric powered indoor/outdoor chairs with many additional features reflecting the consequences of profound muscle weakness. In addition to facilitating independence and participation, electric powered indoor/outdoor chairs have major therapeutic benefits. Implications for rehabilitation Powered wheelchairs have therapeutic benefits in managing muscular dystrophy pain and weakness. The use of specialized seating needs careful consideration in supporting progressive muscle weakness and the management of scoliosis. Pain, discomfort, pressure risk, and muscle fatigue may be reduced by use of tilt-in-space.

  15. Research on Heat Dissipation of Electric Vehicle Based on Safety Architecture Optimization

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Guo, Yajuan; Huang, Wei; Jiang, Haitao; Wu, Liwei

    2017-10-01

    In order to solve the problem of excessive temperature in the discharge process of lithium-ion battery and the temperature difference between batteries, a heat dissipation of electric vehicle based on safety architecture optimization is designed. The simulation is used to optimize the temperature field of the heat dissipation of the battery. A reasonable heat dissipation control scheme is formulated to achieve heat dissipation requirements. The results show that the ideal working temperature range of the lithium ion battery is 20?∼45?, and the temperature difference between the batteries should be controlled within 5?. A cooling fan is arranged at the original air outlet of the battery model, and the two cooling fans work in turn to realize the reciprocating flow. The temperature difference is controlled within 5? to ensure the good temperature uniformity between the batteries of the electric vehicle. Based on the above finding, it is concluded that the heat dissipation design for electric vehicle batteries is safe and effective, which is the most effective methods to ensure battery life and vehicle safety.

  16. Using an Animated Case Scenario Based on Constructivist 5E Model to Enhance Pre-Service Teachers' Awareness of Electrical Safety

    ERIC Educational Resources Information Center

    Hirca, Necati

    2013-01-01

    The objective of this study is to get pre-service teachers to develop an awareness of first aid knowledge and skills related to electrical shocking and safety within a scenario based animation based on a Constructivist 5E model. The sample of the study was composed of 78 (46 girls and 32 boys) pre-service classroom teachers from two faculties of…

  17. Identification of features of electronic prescribing systems to support quality and safety in primary care using a modified Delphi process.

    PubMed

    Sweidan, Michelle; Williamson, Margaret; Reeve, James F; Harvey, Ken; O'Neill, Jennifer A; Schattner, Peter; Snowdon, Teri

    2010-04-15

    Electronic prescribing is increasingly being used in primary care and in hospitals. Studies on the effects of e-prescribing systems have found evidence for both benefit and harm. The aim of this study was to identify features of e-prescribing software systems that support patient safety and quality of care and that are useful to the clinician and the patient, with a focus on improving the quality use of medicines. Software features were identified by a literature review, key informants and an expert group. A modified Delphi process was used with a 12-member multidisciplinary expert group to reach consensus on the expected impact of the features in four domains: patient safety, quality of care, usefulness to the clinician and usefulness to the patient. The setting was electronic prescribing in general practice in Australia. A list of 114 software features was developed. Most of the features relate to the recording and use of patient data, the medication selection process, prescribing decision support, monitoring drug therapy and clinical reports. The expert group rated 78 of the features (68%) as likely to have a high positive impact in at least one domain, 36 features (32%) as medium impact, and none as low or negative impact. Twenty seven features were rated as high positive impact across 3 or 4 domains including patient safety and quality of care. Ten features were considered "aspirational" because of a lack of agreed standards and/or suitable knowledge bases. This study defines features of e-prescribing software systems that are expected to support safety and quality, especially in relation to prescribing and use of medicines in general practice. The features could be used to develop software standards, and could be adapted if necessary for use in other settings and countries.

  18. Identification of features of electronic prescribing systems to support quality and safety in primary care using a modified Delphi process

    PubMed Central

    2010-01-01

    Background Electronic prescribing is increasingly being used in primary care and in hospitals. Studies on the effects of e-prescribing systems have found evidence for both benefit and harm. The aim of this study was to identify features of e-prescribing software systems that support patient safety and quality of care and that are useful to the clinician and the patient, with a focus on improving the quality use of medicines. Methods Software features were identified by a literature review, key informants and an expert group. A modified Delphi process was used with a 12-member multidisciplinary expert group to reach consensus on the expected impact of the features in four domains: patient safety, quality of care, usefulness to the clinician and usefulness to the patient. The setting was electronic prescribing in general practice in Australia. Results A list of 114 software features was developed. Most of the features relate to the recording and use of patient data, the medication selection process, prescribing decision support, monitoring drug therapy and clinical reports. The expert group rated 78 of the features (68%) as likely to have a high positive impact in at least one domain, 36 features (32%) as medium impact, and none as low or negative impact. Twenty seven features were rated as high positive impact across 3 or 4 domains including patient safety and quality of care. Ten features were considered "aspirational" because of a lack of agreed standards and/or suitable knowledge bases. Conclusions This study defines features of e-prescribing software systems that are expected to support safety and quality, especially in relation to prescribing and use of medicines in general practice. The features could be used to develop software standards, and could be adapted if necessary for use in other settings and countries. PMID:20398294

  19. Usage monitoring of electrical devices in a smart home.

    PubMed

    Rahimi, Saba; Chan, Adrian D C; Goubran, Rafik A

    2011-01-01

    Profiling the usage of electrical devices within a smart home can be used as a method for determining an occupant's activities of daily living. A nonintrusive load monitoring system monitors the electrical consumption at a single electrical source (e.g., main electric utility service entry) and the operating schedules of individual devices are determined by disaggregating the composite electrical consumption waveforms. An electrical device's load signature plays a key role in nonintrusive load monitoring systems. A load signature is the unique electrical behaviour of an individual device when it is in operation. This paper proposes a feature-based model, using the real power and reactive power as features for describing the load signatures of individual devices. Experimental results for single device recognition for 7 devices show that the proposed approach can achieve 100% classification accuracy with discriminant analysis using Mahalanobis distances.

  20. Energy alternative for industry: the high-temperature gas-cooled reactor steamer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMain, A.T. Jr.; Blok, F.J.

    1978-04-01

    Large industrial complexes are faced with new requirements that will lead to a transition from such fluid fuels as natural gas and oil to such solid fuels as coal and uranium for supply of industrial energy. Power plants using these latter fuels will be of moderate size (800 to 1200 MW(thermal)) and will generally have the capability of co-generating electric power and process steam. A study has been made regarding use of the 840-MW(thermal) Fort St. Vrain high-temperature gas-cooled reactor (HTGR) design for industrial applications. The initial conceptual design (referred to as the HTGR Steamer) is substantially simplified relative tomore » Fort St. Vrain in that outlet helium and steam temperatures are lower and the reheat section is deleted from the steam generators. The Steamer has four independent steam generating loops producing a total of 277 kg/s (2.2 x 10/sup 6/ lb/h) of prime steam at 4.5 MPa/672 K (650 psia/750/sup 0/F). The unit co-generates 46 MW(electric) and provides process steam at 8.31 MPa/762 K(1200 psia/912/sup 0/F). The basic configuration and much of the equipment are retained from the Fort St. Vrain design. The system has inherent safety features important for industrial applications. These and other features indicate that the HTGR Steamer is an industrial energy option deserving additional evaluation. Subsequent work will focus on parallel design optimization and application studies.« less

  1. The World's Largest Photovoltaic Concentrator System.

    ERIC Educational Resources Information Center

    Smith, Harry V.

    1982-01-01

    The Mississippi County Community College large-scale energy experiment, featuring the emerging high technology of solar electricity, is described. The project includes a building designed for solar electricity and a power plant consisting of a total energy photovoltaic system, and features two experimental developments. (MLW)

  2. 30 CFR 56.6603 - Air gap.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air gap. 56.6603 Section 56.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  3. 30 CFR 57.6603 - Air gap.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air gap. 57.6603 Section 57.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  4. 30 CFR 57.12002 - Controls and switches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Controls and switches. 57.12002 Section 57.12002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Electricity...

  5. 30 CFR 57.6603 - Air gap.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air gap. 57.6603 Section 57.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  6. 30 CFR 57.6603 - Air gap.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air gap. 57.6603 Section 57.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  7. 30 CFR 56.12025 - Grounding circuit enclosures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Grounding circuit enclosures. 56.12025 Section 56.12025 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  8. 30 CFR 57.6603 - Air gap.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air gap. 57.6603 Section 57.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  9. 30 CFR 56.6603 - Air gap.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air gap. 56.6603 Section 56.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  10. 30 CFR 56.6603 - Air gap.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air gap. 56.6603 Section 56.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  11. 30 CFR 57.12002 - Controls and switches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Controls and switches. 57.12002 Section 57.12002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Electricity...

  12. 30 CFR 57.12002 - Controls and switches.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Controls and switches. 57.12002 Section 57.12002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Electricity...

  13. 30 CFR 56.12025 - Grounding circuit enclosures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Grounding circuit enclosures. 56.12025 Section 56.12025 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  14. 30 CFR 56.6603 - Air gap.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air gap. 56.6603 Section 56.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  15. 30 CFR 56.12025 - Grounding circuit enclosures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Grounding circuit enclosures. 56.12025 Section 56.12025 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  16. 30 CFR 57.6603 - Air gap.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air gap. 57.6603 Section 57.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  17. 30 CFR 56.6603 - Air gap.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air gap. 56.6603 Section 56.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...

  18. 30 CFR 56.12025 - Grounding circuit enclosures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding circuit enclosures. 56.12025 Section 56.12025 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  19. 30 CFR 56.12001 - Circuit overload protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Circuit overload protection. 56.12001 Section 56.12001 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  20. 30 CFR 57.12006 - Distribution boxes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Distribution boxes. 57.12006 Section 57.12006 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Electricity Surface...

Top