Method for protecting an electric generator
Kuehnle, Barry W.; Roberts, Jeffrey B.; Folkers, Ralph W.
2008-11-18
A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.
The energetics of electric organ discharge generation in gymnotiform weakly electric fish.
Salazar, Vielka L; Krahe, Rüdiger; Lewis, John E
2013-07-01
Gymnotiform weakly electric fish produce an electric signal to sense their environment and communicate with conspecifics. Although the generation of such relatively large electric signals over an entire lifetime is expected to be energetically costly, supporting evidence to date is equivocal. In this article, we first provide a theoretical analysis of the energy budget underlying signal production. Our analysis suggests that wave-type and pulse-type species invest a similar fraction of metabolic resources into electric signal generation, supporting previous evidence of a trade-off between signal amplitude and frequency. We then consider a comparative and evolutionary framework in which to interpret and guide future studies. We suggest that species differences in signal generation and plasticity, when considered in an energetics context, will not only help to evaluate the role of energetic constraints in the evolution of signal diversity but also lead to important general insights into the energetics of bioelectric signal generation.
Timing Actions to Avoid Refractoriness: A Simple Solution for Streaming Sensory Signals
Nogueira, Javier; Caputi, Ángel Ariel
2011-01-01
Segmenting self- from allo-generated signals is crucial for active sensory processing. We report a dynamic filter used by South American pulse electric fish to distinguish active electro-sensory signals carried by their own electric discharges from other concomitant electrical stimuli (i.e. communication signals). The filter has a sensory component, consisting of an onset type central electro-sensory neuron, and a motor component, consisting of a change in the fish's discharge rate when allo-generated electrical events occur in temporal proximity to the fish's own discharge. We investigated the sensory component of the filter by in vitro mimicking synaptic inputs occurring during behavioral responses to allo-generated interfering signals. We found that active control of the discharge enhances self-generated over allo-generated responses by forcing allo-generated signals into a central refractory period. This hypothesis was confirmed by field potential recordings in freely discharging fish. Similar sensory-motor mechanisms may also contribute to signal segmentation in other sensory systems. PMID:21789228
Speedup computation of HD-sEMG signals using a motor unit-specific electrical source model.
Carriou, Vincent; Boudaoud, Sofiane; Laforet, Jeremy
2018-01-23
Nowadays, bio-reliable modeling of muscle contraction is becoming more accurate and complex. This increasing complexity induces a significant increase in computation time which prevents the possibility of using this model in certain applications and studies. Accordingly, the aim of this work is to significantly reduce the computation time of high-density surface electromyogram (HD-sEMG) generation. This will be done through a new model of motor unit (MU)-specific electrical source based on the fibers composing the MU. In order to assess the efficiency of this approach, we computed the normalized root mean square error (NRMSE) between several simulations on single generated MU action potential (MUAP) using the usual fiber electrical sources and the MU-specific electrical source. This NRMSE was computed for five different simulation sets wherein hundreds of MUAPs are generated and summed into HD-sEMG signals. The obtained results display less than 2% error on the generated signals compared to the same signals generated with fiber electrical sources. Moreover, the computation time of the HD-sEMG signal generation model is reduced to about 90% compared to the fiber electrical source model. Using this model with MU electrical sources, we can simulate HD-sEMG signals of a physiological muscle (hundreds of MU) in less than an hour on a classical workstation. Graphical Abstract Overview of the simulation of HD-sEMG signals using the fiber scale and the MU scale. Upscaling the electrical source to the MU scale reduces the computation time by 90% inducing only small deviation of the same simulated HD-sEMG signals.
Shunt regulation electric power system
NASA Technical Reports Server (NTRS)
Wright, W. H.; Bless, J. J. (Inventor)
1971-01-01
A regulated electric power system having load and return bus lines is described. A plurality of solar cells interconnected in a power supplying relationship and having a power shunt tap point electrically spaced from the bus lines is provided. A power dissipator is connected to the shunt tap point and provides for a controllable dissipation of excess energy supplied by the solar cells. A dissipation driver is coupled to the power dissipator and controls its conductance and dissipation and is also connected to the solar cells in a power taping relationship to derive operating power therefrom. An error signal generator is coupled to the load bus and to a reference signal generator to provide an error output signal which is representative of the difference between the electric parameters existing at the load bus and the reference signal generator. An error amplifier is coupled to the error signal generator and the dissipation driver to provide the driver with controlling signals.
Thermoacoustic magnetohydrodynamic electrical generator
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1984-11-16
A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.
Thermoacoustic magnetohydrodynamic electrical generator
Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1986-01-01
A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.
NASA Technical Reports Server (NTRS)
Lee, R. D. (Inventor)
1979-01-01
The combination of a "C" mode scan electronics in a portable, battery powered biomedical ultrasonoscope having "A" and "M" mode scan electronics, the latter including a clock generator for generating clock pulses, a cathode ray tube having X, Y and Z axis inputs, a sweep generator connected between the clock generator and the X axis input of the cathode ray tube for generating a cathode ray sweep signal synchronized by the clock pulses, and a receiver adapted to be connected to the Z axis input of the cathode ray tube. The "C" mode scan electronics comprises a plurality of transducer elements arranged in a row and adapted to be positioned on the skin of the patient's body for converting a pulsed electrical signal to a pulsed ultrasonic signal, radiating the ultrasonic signal into the patient's body, picking up the echoes reflected from interfaces in the patient's body and converting the echoes to electrical signals; a plurality of transmitters, each transmitter being coupled to a respective transducer for transmitting a pulsed electrical signal thereto and for transmitting the converted electrical echo signals directly to the receiver, a sequencer connected between the clock generator and the plurality of transmitters and responsive to the clock pulses for firing the transmitters in cyclic order; and a staircase voltage generator connected between the clock generator and the Y axis input of the cathode ray tube for generating a staircase voltage having steps synchronized by the clock pulses.
Method and apparatus for anti-islanding protection of distributed generations
Ye, Zhihong; John, Vinod; Wang, Changyong; Garces, Luis Jose; Zhou, Rui; Li, Lei; Walling, Reigh Allen; Premerlani, William James; Sanza, Peter Claudius; Liu, Yan; Dame, Mark Edward
2006-03-21
An apparatus for anti-islanding protection of a distributed generation with respect to a feeder connected to an electrical grid is disclosed. The apparatus includes a sensor adapted to generate a voltage signal representative of an output voltage and/or a current signal representative of an output current at the distributed generation, and a controller responsive to the signals from the sensor. The controller is productive of a control signal directed to the distributed generation to drive an operating characteristic of the distributed generation out of a nominal range in response to the electrical grid being disconnected from the feeder.
Method and apparatus for measuring response time
Johanson, Edward W.; August, Charles
1985-01-01
A method of measuring the response time of an electrical instrument which generates an output signal in response to the application of a specified input, wherein the output signal varies as a function of time and when subjected to a step input approaches a steady-state value, comprises the steps of: (a) applying a step input of predetermined value to the electrical instrument to generate an output signal; (b) simultaneously starting a timer; (c) comparing the output signal to a reference signal to generate a stop signal when the output signal is substantially equal to the reference signal, the reference signal being a specified percentage of the steady-state value of the output signal corresponding to the predetermined value of the step input; and (d) applying the stop signal when generated to stop the timer.
Method and apparatus for measuring response time
Johanson, E.W.; August, C.
1983-08-11
A method of measuring the response time of an electrical instrument which generates an output signal in response to the application of a specified input, wherein the output signal varies as a function of time and when subjected to a step input approaches a steady-state value, comprises the steps of: (a) applying a step input of predetermined value to the electrical instrument to generate an output signal; (b) simultaneously starting a timer; (c) comparing the output signal to a reference signal to generate a stop signal when the output signal is substantially equal to the reference signal, the reference signal being a specified percentage of the steady-state value of the output signal corresponding to the predetermined value of the step input; and (d) applying the stop signal when generated to stop the timer.
Heat engine generator control system
Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.
1998-05-12
An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.
Heat engine generator control system
Rajashekara, Kaushik; Gorti, Bhanuprasad Venkata; McMullen, Steven Robert; Raibert, Robert Joseph
1998-01-01
An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.
Brake blending strategy for a hybrid vehicle
Boberg, Evan S.
2000-12-05
A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.
Reference-free direct digital lock-in method and apparatus
NASA Technical Reports Server (NTRS)
Henry, James E. (Inventor); Leonard, John A. (Inventor)
2000-01-01
A reference-free direct digital lock-in system (RDDL 10) has a first input coupled to a periodic electrical signal and an output for outputting an indication of a magnitude of a desired periodic signal component. The RDDL also has a second input for receiving a signal (9) that specifies a reference period value, and operates to autonomously generate a lock-in reference signal having a specified period and a phase that is adjusted to maximize a magnitude of the outputted desired periodic signal component. In an embodiment of a measurement system that includes the RDDL 10 an optical source provides a chopped light beam having wavelengths within a predetermined range of wavelengths, and the periodic electrical signal is generated by at least one photodetector that is illuminated by the chopped light beam. In this embodiment the measurement system characterizes, for at least one wavelength of light that is generated by the optical source, a spectral response of the at least one photodetector. The RDDL can operate in nonreal-time upon previously generated and stored digital equivalent values of the periodic electrical signal or signals.
Acoustic microscope surface inspection system and method
Khuri-Yakub, Butrus T.; Parent, Philippe; Reinholdtsen, Paul A.
1991-01-01
An acoustic microscope surface inspection system and method in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respected to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations.
Apparatus for millimeter-wave signal generation
Vawter, G. Allen; Hietala, Vincent M.; Zolper, John C.; Mar, Alan; Hohimer, John P.
1999-01-01
An opto-electronic integrated circuit (OEIC) apparatus is disclosed for generating an electrical signal at a frequency .gtoreq.10 GHz. The apparatus, formed on a single substrate, includes a semiconductor ring laser for generating a continuous train of mode-locked lasing pulses and a high-speed photodetector for detecting the train of lasing pulses and generating the electrical signal therefrom. Embodiments of the invention are disclosed with an active waveguide amplifier coupling the semiconductor ring laser and the high-speed photodetector. The invention has applications for use in OEICs and millimeter-wave monolithic integrated circuits (MMICs).
Method and Apparatus for Assessment of Changes in Intracranial Pressure
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Cantrell, John H. (Inventor)
2002-01-01
A non-invasive method and apparatus for monitoring changes in intracranial pressure which removes extracranial effects from the measurements. The method and apparatus can include the supplying of a fixed frequency electrical output to a transducer coupled to the patient's head, thereby generating an acoustical tone burst in the patient's head which generates a first echo and a second echo, the first echo reflecting from a first interface in the side of the patient's head coupled to the transducer, and the second echo reflecting from a second interface at the opposite side of the patient's head. The first and second echoes are received by the transducer which can generate a first electrical signal and a second electrical signal, wherein the first and second electrical signals vary in accordance with the corresponding first and second echoes. The counterbalancing phase shifts required to bring about quadrature between each of the first and second electrical signals and the fixed frequency electrical output can be measured, and values for the change in intracranial distance based on the changes in the counterbalancing phase shifts can be obtained.
Ma, Qingyu; He, Bin
2007-08-21
A theoretical study on the magnetoacoustic signal generation with magnetic induction and its applications to electrical conductivity reconstruction is conducted. An object with a concentric cylindrical geometry is located in a static magnetic field and a pulsed magnetic field. Driven by Lorentz force generated by the static magnetic field, the magnetically induced eddy current produces acoustic vibration and the propagated sound wave is received by a transducer around the object to reconstruct the corresponding electrical conductivity distribution of the object. A theory on the magnetoacoustic waveform generation for a circular symmetric model is provided as a forward problem. The explicit formulae and quantitative algorithm for the electrical conductivity reconstruction are then presented as an inverse problem. Computer simulations were conducted to test the proposed theory and assess the performance of the inverse algorithms for a multi-layer cylindrical model. The present simulation results confirm the validity of the proposed theory and suggest the feasibility of reconstructing electrical conductivity distribution based on the proposed theory on the magnetoacoustic signal generation with magnetic induction.
Signal characteristics of electroseismic conversion
NASA Astrophysics Data System (ADS)
Peng, Rong; Di, Bangrang; Wei, Jianxin; Ding, Pinbo; Liu, Zichun; Guan, Bingyan; Huang, Shiqi
2018-04-01
Electric fields applying on the fluid-filled porous materials can induce small relative pore-fluid motions due to electroseismic conversions. In order to characterize the electroseismic propagation phenomena, we have designed an experimental apparatus to acquire the electroseismic (ES) signals. The electroseismic measurements on different samples have been conducted to confirm the origin of the recorded signals. We find that a strong acoustic signal generates around the electrode and affects the identification of ES signals. To further confirm and distinguish the ES signal as well as the acoustic signal around the electrode, we have analyzed records obtained with regular movements of the receiver, the sample and the source. Analysis has been made on the characteristics of the traveltime, polarity and frequency of ES signals. Our results show that the traveltime of ES signal relates to the distance between the rock sample and the receiver, the location of the exciting electrode has little impact on the traveltime. The applied electric field influences the polarity of ES signal, the polarity of ES signal reverses along with the changes of the electric field direction. While it has no polarity effects on the acoustic signal generated around the electrode. The frequency spectrum of ES signal is absolutely different with that of the acoustic signal generated around the electrode. The acoustic signal around the electrode has multiple dominant frequencies which are mainly in low-frequency range without being affected by the frequency of the electric field. The ES signal has only one dominant frequency which closely relates to the frequency of the electric field. The understanding of the signal characteristics on electroseismic conversion can contribute to a better application and interpretation of ES exploration.
Advanced capability RFID system
Gilbert, Ronald W.; Steele, Kerry D.; Anderson, Gordon A.
2007-09-25
A radio-frequency transponder device having an antenna circuit configured to receive radio-frequency signals and to return modulated radio-frequency signals via continuous wave backscatter, a modulation circuit coupled to the antenna circuit for generating the modulated radio-frequency signals, and a microprocessor coupled to the antenna circuit and the modulation circuit and configured to receive and extract operating power from the received radio-frequency signals and to monitor inputs on at least one input pin and to generate responsive signals to the modulation circuit for modulating the radio-frequency signals. The microprocessor can be configured to generate output signals on output pins to associated devices for controlling the operation thereof. Electrical energy can be extracted and stored in an optional electrical power storage device.
Acoustic microscope surface inspection system and method
Khuri-Yakub, B.T.; Parent, P.; Reinholdtsen, P.A.
1991-02-26
An acoustic microscope surface inspection system and method are described in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respect to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations. 7 figures.
Fiber fed x-ray/gamma ray imaging apparatus
Hailey, C.J.; Ziock, K.P.
1992-06-02
X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation. 6 figs.
Closing a Venus Flytrap with electrical and mid-IR photon stimulations
NASA Astrophysics Data System (ADS)
Eisen, David; Janssen, Douglas; Chen, Xing; Choa, Fow-Sen; Kostov, Dan; Fan, Jenyu
2013-03-01
Plants have mechanisms to perceive and transmit information between its organs and tissues. These signals had long been considered as hormonal or hydraulic in nature, but recent studies have shown that electrical signals are also produced causing physiological responses. In this work we show that Venus Flytrap, Dionaea muscipula, can respond to both electrical and optical signals beside mechanical stimulations. While the Venus Flytrap does not have any neurons, it does contain transport cells with very similar characteristics to neurotransmitters and uses ionic mechanisms, as human neurons do, to generate action potentials. In our electrical stimulation study, electrodes made out of soft cloth were soaked in salt water before being placed to the midrib (+) and lobe (-). The flytrap's surface resistance was determined by subtracting out the average electrode resistance from the measured electrode to plant surface resistance, yielding an average contact resistance of around 0.98MΩ. A logarithmic amplifier was used to monitor mechanically generated electrical signals. Two electrical pulses were generated by mechanically touching the trigger hairs in the lobe twice within 20 seconds. By discharging around 600μC charge stored in a capacitor we demonstrated electrically closing of the flytrap. For optical excitation we found in our FTIR study it's tissue contains very similar protein absorption peaks to that of insects. A 7.35μm laser with 50mw power was then used for the stimulation study. Electrical action potential was generated twice by mid-infrared photons before closure of the flytrap.
Cole, Jerald D.; Drigert, Mark W.; Reber, Edward L.; Aryaeinejad, Rahmat
2001-01-01
In one aspect, the invention encompasses a method of detecting radioactive decay, comprising: a) providing a sample comprising a radioactive material, the radioactive material generating decay particles; b)providing a plurality of detectors proximate the sample, the detectors comprising a first set and a second set, the first set of the detectors comprising liquid state detectors utilizing liquid scintillation material coupled with photo tubes to generate a first electrical signal in response to decay particles stimulating the liquid scintillation material, the second set of the detectors comprising solid state detectors utilizing a crystalline solid to generate a second electrical signal in response to decay particles stimulating the crystalline solid; c) stimulating at least one of the detectors to generate at least one of the first and second electrical signals, the at least one of the first and second electrical signals being indicative of radioactive decay in the sample. In another aspect, the invention encompasses an apparatus for identifying and quantitating radioactive nuclei of a sample comprising radioactive material that decays to generate neutrons and high-energy .gamma.-rays.
An Active Metamaterial Platform for Chiral Responsive Optoelectronics.
Kang, Lei; Lan, Shoufeng; Cui, Yonghao; Rodrigues, Sean P; Liu, Yongmin; Werner, Douglas H; Cai, Wenshan
2015-08-05
Chiral-selective non-linear optics and optoelectronic signal generation are demonstrated in an electrically active photonic metamaterial. The metamaterial reveals significant chiroptical responses in both harmonic generation and the photon drag effect, correlated to the resonance behavior in the linear regime. The multifunctional chiral metamaterial with dual electrical and optical functionality enables transduction of chiroptical responses to electrical signals for integrated photonics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Planar photovoltaic solar concentrator module
Chiang, Clement J.
1992-01-01
A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.
Planar photovoltaic solar concentrator module
Chiang, C.J.
1992-12-01
A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.
Apparatus for measuring a flux of neutrons
Stringer, James L.
1977-01-01
A flux of neutrons is measured by disposing a detector in the flux and applying electronic correlation techniques to discriminate between the electrical signals generated by the neutron detector and the unwanted interfering electrical signals generated by the incidence of a neutron flux upon the cables connecting the detector to the electronic measuring equipment at a remote location.
Compensated intruder-detection systems
McNeilly, David R.; Miller, William R.
1984-01-01
Intruder-detection systems in which intruder-induced signals are transmitted through a medium also receive spurious signals induced by changes in a climatic condition affecting the medium. To combat this, signals received from the detection medium are converted to a first signal. The system also provides a reference signal proportional to climate-induced changes in the medium. The first signal and the reference signal are combined for generating therefrom an output signal which is insensitive to the climatic changes in the medium. An alarm is energized if the output signal exceeds a preselected value. In one embodiment, an acoustic cable is coupled to a fence to generate a first electrical signal proportional to movements thereof. False alarms resulting from wind-induced movements of the fence (detection medium) are eliminated by providing an anemometer-driven voltage generator to provide a reference voltage proportional to the velocity of wind incident on the fence. An analog divider receives the first electrical signal and the reference signal as its numerator and denominator inputs, respectively, and generates therefrom an output signal which is insensitive to the wind-induced movements in the fence.
Methods of DNA methylation detection
NASA Technical Reports Server (NTRS)
Maki, Wusi Chen (Inventor); Filanoski, Brian John (Inventor); Mishra, Nirankar (Inventor); Rastogi, Shiva (Inventor)
2010-01-01
The present invention provides for methods of DNA methylation detection. The present invention provides for methods of generating and detecting specific electronic signals that report the methylation status of targeted DNA molecules in biological samples.Two methods are described, direct and indirect detection of methylated DNA molecules in a nano transistor based device. In the direct detection, methylated target DNA molecules are captured on the sensing surface resulting in changes in the electrical properties of a nano transistor. These changes generate detectable electronic signals. In the indirect detection, antibody-DNA conjugates are used to identify methylated DNA molecules. RNA signal molecules are generated through an in vitro transcription process. These RNA molecules are captured on the sensing surface change the electrical properties of nano transistor thereby generating detectable electronic signals.
Inflight IFR procedures simulator
NASA Technical Reports Server (NTRS)
Parker, L. C. (Inventor)
1984-01-01
An inflight IFR procedures simulator for generating signals and commands to conventional instruments provided in an airplane is described. The simulator includes a signal synthesizer which generates predetermined simulated signals corresponding to signals normally received from remote sources upon being activated. A computer is connected to the signal synthesizer and causes the signal synthesizer to produce simulated signals responsive to programs fed into the computer. A switching network is connected to the signal synthesizer, the antenna of the aircraft, and navigational instruments and communication devices for selectively connecting instruments and devices to the synthesizer and disconnecting the antenna from the navigational instruments and communication device. Pressure transducers are connected to the altimeter and speed indicator for supplying electrical signals to the computer indicating the altitude and speed of the aircraft. A compass is connected for supply electrical signals for the computer indicating the heading of the airplane. The computer upon receiving signals from the pressure transducer and compass, computes the signals that are fed to the signal synthesizer which, in turn, generates simulated navigational signals.
Large dynamic range radiation detector and methods thereof
Marrs, Roscoe E [Livermore, CA; Madden, Norman W [Sparks, NV
2012-02-14
According to one embodiment, a radiation detector comprises a scintillator and a photodiode optically coupled to the scintillator. The radiation detector also includes a bias voltage source electrically coupled to the photodiode, a first detector operatively electrically coupled to the photodiode for generating a signal indicative of a level of a charge at an output of the photodiode, and a second detector operatively electrically coupled to the bias voltage source for generating a signal indicative of an amount of current flowing through the photodiode.
Stepper motor control that adjusts to motor loading
NASA Technical Reports Server (NTRS)
Howard, David E. (Inventor); Nola, Frank J. (Inventor)
2000-01-01
A system and method are provided for controlling a stepper motor having a rotor and a multi-phase stator. Sinusoidal command signals define a commanded position of the motor's rotor. An actual position of the rotor is sensed as a function of an electrical angle between the actual position and the commanded position. The actual position is defined by sinusoidal position signals. An adjustment signal is generated using the sinusoidal command signals and sinusoidal position signals. The adjustment signal is defined as a function of the cosine of the electrical angle. The adjustment signal is multiplied by each sinusoidal command signal to generate a corresponding set of excitation signals, each of which is applied to a corresponding phase of the multi-phase stator.
Variable speed wind turbine generator with zero-sequence filter
Muljadi, Eduard
1998-01-01
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.
Variable Speed Wind Turbine Generator with Zero-sequence Filter
Muljadi, Eduard
1998-08-25
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.
Variable speed wind turbine generator with zero-sequence filter
Muljadi, E.
1998-08-25
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.
NASA Technical Reports Server (NTRS)
Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.; Sabaka, Terence J.; Chandrasekharan, Manoj; Olsen, Niles
2016-01-01
The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. Here we use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals an Approximately 72 km thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere.
High resolution, multiple-energy linear sweep detector for x-ray imaging
Perez-Mendez, Victor; Goodman, Claude A.
1996-01-01
Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.
High resolution, multiple-energy linear sweep detector for x-ray imaging
Perez-Mendez, V.; Goodman, C.A.
1996-08-20
Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.
Real-time holographic surveillance system
Collins, H. Dale; McMakin, Douglas L.; Hall, Thomas E.; Gribble, R. Parks
1995-01-01
A holographic surveillance system including means for generating electromagnetic waves; means for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; means for receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; means for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and means for displaying the processed information to determine nature of the target. The means for processing the electrical signals includes means for converting analog signals to digital signals followed by a computer means to apply a backward wave algorithm.
NASA Technical Reports Server (NTRS)
Johnson, Dennis A. (Inventor)
1996-01-01
A laser doppler velocimeter uses frequency shifting of a laser beam to provide signal information for each velocity component. A composite electrical signal generated by a light detector is digitized and a processor produces a discrete Fourier transform based on the digitized electrical signal. The transform includes two peak frequencies corresponding to the two velocity components.
Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary.
Grayver, Alexander V; Schnepf, Neesha R; Kuvshinov, Alexey V; Sabaka, Terence J; Manoj, Chandrasekharan; Olsen, Nils
2016-09-01
The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. We use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals a ≈72-km-thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere.
In-Situ Wire Damage Detection System
NASA Technical Reports Server (NTRS)
Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Medelius, Pedro J. (Inventor); Roberson, Luke B. (Inventor); Tate, Lanetra C. (Inventor); Smith, Trent M. (Inventor); Williams, Martha K. (Inventor)
2014-01-01
An in-situ system for detecting damage in an electrically conductive wire. The system includes a substrate at least partially covered by a layer of electrically conductive material forming a continuous or non-continuous electrically conductive layer connected to an electrical signal generator adapted to delivering electrical signals to the electrically conductive layer. Data is received and processed to identify damage to the substrate or electrically conductive layer. The electrically conductive material may include metalized carbon fibers, a thin metal coating, a conductive polymer, carbon nanotubes, metal nanoparticles or a combination thereof.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agazzone, U.; Ausiello, F.P.
1981-06-23
A power-generating installation comprises a plurality of modular power plants each comprised of an internal combustion engine connected to an electric machine. The electric machine is used to start the engine and thereafter operates as a generator supplying power to an electrical network common to all the modular plants. The installation has a control and protection system comprising a plurality of control modules each associated with a respective plant, and a central unit passing control signals to the modules to control starting and stopping of the individual power plants. Upon the detection of abnormal operation or failure of its associatedmore » power plant, each control module transmits an alarm signal back to the central unit which thereupon stops, or prevents the starting, of the corresponding power plant. Parameters monitored by each control module include generated current and inter-winding leakage current of the electric machine.« less
Surface acoustic wave dust deposition monitor
Fasching, G.E.; Smith, N.S. Jr.
1988-02-12
A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.
Prefire identification for pulse-power systems
Longmire, J.L.; Thuot, M.E.; Warren, D.S.
1982-08-23
Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.
Prefire identification for pulse power systems
Longmire, Jerry L.; Thuot, Michael E.; Warren, David S.
1985-01-01
Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.
Electrical signaling and photosynthesis: can they co-exist together?
Pavlovič, Andrej; Mancuso, Stefano
2011-06-01
Mechanical irritation of trigger hairs and subsequent generation of action potentials have significant impact on photosynthesis and respiration in carnivorous Venus flytrap (Dionaea muscipula). Action potential-mediated inhibition of photosynthesis and stimulation of respiration is confined only to the trap and was not recorded in adjacent photosynthetic lamina. We showed that the main primary target of electrical signals on assimilation is in the dark enzymatic reaction of photosynthesis. Without doubt, the electrical signaling is costly, and the possible co-existence of such type of signals and photosynthesis in plant cell is discussed.
Real-time holographic surveillance system
Collins, H.D.; McMakin, D.L.; Hall, T.E.; Gribble, R.P.
1995-10-03
A holographic surveillance system is disclosed including means for generating electromagnetic waves; means for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; means for receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; means for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and means for displaying the processed information to determine nature of the target. The means for processing the electrical signals includes means for converting analog signals to digital signals followed by a computer means to apply a backward wave algorithm. 21 figs.
High resolution time interval counter
Condreva, Kenneth J.
1994-01-01
A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.
High resolution time interval counter
Condreva, K.J.
1994-07-26
A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.
Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary
Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.; Sabaka, Terence J.; Manoj, Chandrasekharan; Olsen, Nils
2016-01-01
The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. We use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals a ≈72-km-thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere. PMID:27704045
Salazar, Vielka L; Stoddard, Philip K
2008-03-01
To understand the evolution of sexually dimorphic communication signals, we must quantify their costs, including their energetic costs, the regulation of these costs, and the difference between the costs for the sexes. Here, we provide the first direct measurements of the relative energy expended on electric signals and show for the focal species Brachyhypopomus pinnicaudatus that males spend a significantly greater proportion of their total energy budget on signal generation (11-22%) compared with females (3%). Both sexes significantly reduce the energy spent on electric signals during daylight hours through circadian modulation of the amplitude, duration and repetition rate of the electric signal, but this effect is more marked in males. Male body condition predicted the energy spent on electric signals (R(2)=0.75). The oxygen consumed by males for signal production closely paralleled the product of the electric signal's waveform area (R(2)=0.99) and the discharge rate (R(2)=0.59), two signal parameters that can be assessed directly by conspecifics. Thus the electric communication signal of males carries the information to reveal their body condition to prospective mates and competing males. Because the electric signal constitutes a significant fraction of the energy budget, energy savings, along with predation avoidance, provides an adaptive basis for the production of circadian rhythms in electric signals.
Ultrasonic analyte concentration and application in flow cytometry
Kaduchak, Gregory; Goddard, Greg; Salzman, Gary; Sinha, Dipen; Martin, John C.; Kwiatkowski, Christopher; Graves, Steven
2014-07-22
The present invention includes an apparatus and corresponding method for concentrating analytes within a fluid flowing through a tube using acoustic radiation pressure. The apparatus includes a function generator that outputs a radio frequency electrical signal to a transducer that transforms the radio frequency electric signal to an acoustic signal and couples the acoustic signal to the tube. The acoustic signal is converted within the tube to acoustic pressure that concentrates the analytes within the fluid.
Ultrasonic analyte concentration and application in flow cytometry
Kaduchak, Gregory [Los Alamos, NM; Goddard, Greg [Los Alamos, NM; Salzman, Gary [White Rock, NM; Sinha, Dipen [Los Alamos, NM; Martin, John C [Los Alamos, NM; Kwiatkowski, Christopher [Los Alamos, NM; Graves, Steven [San Juan Pueblo, NM
2008-03-11
The present invention includes an apparatus and corresponding method for concentrating analytes within a fluid flowing through a tube using acoustic radiation pressure. The apparatus includes a function generator that outputs a radio frequency electrical signal to a transducer that transforms the radio frequency electric signal to an acoustic signal and couples the acoustic signal to the tube. The acoustic signal is converted within the tube to acoustic pressure that concentrates the analytes within the fluid.
Ultrasonic analyte concentration and application in flow cytometry
Kaduchak, Gregory; Goddard, Greg; Salzman, Gary; Sinha, Dipen; Martin, John C.; Kwiatkowski, Christopher; Graves, Steven
2015-07-07
The present invention includes an apparatus and corresponding method for concentrating analytes within a fluid flowing through a tube using acoustic radiation pressure. The apparatus includes a function generator that outputs a radio frequency electrical signal to a transducer that transforms the radio frequency electric signal to an acoustic signal and couples the acoustic signal to the tube. The acoustic signal is converted within the tube to acoustic pressure that concentrates the analytes within the fluid.
Species-independent attraction to biofilms through electrical signaling
Humphries, Jacqueline; Xiong, Liyang; Liu, Jintao; Prindle, Arthur; Yuan, Fang; Arjes, Heidi A.; Tsimring, Lev; Süel, Gürol M.
2017-01-01
Summary Bacteria residing within biofilm communities can coordinate their behavior through cell-to-cell signaling. However, it remains unclear if these signals can also influence the behavior of distant cells that are not part of the community. Using a microfluidic approach, we find that potassium ion channel-mediated electrical signaling generated by a Bacillus subtilis biofilm can attract distant cells. Integration of experiments and mathematical modeling indicates that extracellular potassium emitted from the biofilm alters the membrane potential of distant cells, thereby directing their motility. This electrically-mediated attraction appears to be a generic mechanism that enables cross-species interactions, as Pseudomonas aeruginosa cells also become attracted to the electrical signal released by the B. subtilis biofilm. Cells within a biofilm community can thus not only coordinate their own behavior, but also influence the behavior of diverse bacteria at a distance through long-range electrical signaling. PMID:28086091
Apparatus and method for prevention of cracking in welded brittle alloys
Kronberg, James W.; Younkins, Robert M.
2000-01-01
An apparatus and method for reducing cracking in a heated material as the material cools. The apparatus includes a variable frequency electric signal generator that is coupled to a transducer. The transducer produces a variable frequency acoustic signal in response to the variable frequency electric signal, which is applied to the heated material to reduce cracking as the material cools.
Electrically heated particulate filter diagnostic systems and methods
Gonze, Eugene V [Pinckney, MI
2009-09-29
A system that diagnoses regeneration of an electrically heated particulate filter is provided. The system generally includes a grid module that diagnoses a fault of the grid based on at least one of a current signal and a voltage signal. A diagnostic module at least one of sets a fault status and generates a warning signal based on the fault of the grid.
21 CFR 870.3680 - Cardiovascular permanent or temporary pacemaker electrode.
Code of Federal Regulations, 2010 CFR
2010-04-01
... applied to the heart. The device is used to transmit a pacing electrical stimulus from the pulse generator to the heart and/or to transmit the electrical signal of the heart to the pulse generator. (2... end connected to an implantable pacemaker pulse generator and the other end applied to the heart. The...
21 CFR 870.3680 - Cardiovascular permanent or temporary pacemaker electrode.
Code of Federal Regulations, 2013 CFR
2013-04-01
... applied to the heart. The device is used to transmit a pacing electrical stimulus from the pulse generator to the heart and/or to transmit the electrical signal of the heart to the pulse generator. (2... end connected to an implantable pacemaker pulse generator and the other end applied to the heart. The...
21 CFR 870.3680 - Cardiovascular permanent or temporary pacemaker electrode.
Code of Federal Regulations, 2011 CFR
2011-04-01
... applied to the heart. The device is used to transmit a pacing electrical stimulus from the pulse generator to the heart and/or to transmit the electrical signal of the heart to the pulse generator. (2... end connected to an implantable pacemaker pulse generator and the other end applied to the heart. The...
21 CFR 870.3680 - Cardiovascular permanent or temporary pacemaker electrode.
Code of Federal Regulations, 2012 CFR
2012-04-01
... applied to the heart. The device is used to transmit a pacing electrical stimulus from the pulse generator to the heart and/or to transmit the electrical signal of the heart to the pulse generator. (2... end connected to an implantable pacemaker pulse generator and the other end applied to the heart. The...
21 CFR 870.3680 - Cardiovascular permanent or temporary pacemaker electrode.
Code of Federal Regulations, 2014 CFR
2014-04-01
... applied to the heart. The device is used to transmit a pacing electrical stimulus from the pulse generator to the heart and/or to transmit the electrical signal of the heart to the pulse generator. (2... end connected to an implantable pacemaker pulse generator and the other end applied to the heart. The...
Compact self-contained electrical-to-optical converter/transmitter
Seligmann, Daniel A.; Moss, William C.; Valk, Theodore C.; Conder, Alan D.
1995-01-01
A first optical receiver and a second optical receiver are provided for receiving a calibrate command and a power switching signal, respectively, from a remote processor. A third receiver is provided for receiving an analog electrical signal from a transducer. A calibrator generates a reference signal in response to the calibrate command. A combiner mixes the electrical signal with the reference signal to form a calibrated signal. A converter converts the calibrated signal to an optical signal. A transmitter transmits the optical signal to the remote processor. A primary battery supplies power to the calibrator, the combiner, the converter, and the transmitter. An optically-activated switch supplies power to the calibrator, the combiner, the converter, and the transmitter in response to the power switching signal. An auxiliary battery supplies power continuously to the switch.
Young, K.K.; Wilkes, R.J.
1995-11-21
A transponder of an active digital sonar system identifies a multifrequency underwater activating sonar signal received from a remote sonar transmitter. The transponder includes a transducer that receives acoustic waves, including the activating sonar signal, and generates an analog electrical receipt signal. The analog electrical receipt signal is converted to a digital receipt signal and cross-correlated with a digital transmission signal pattern corresponding to the activating sonar signal. A relative peak in the cross-correlation value is indicative of the activating sonar signal having been received by the transponder. In response to identifying the activating sonar signal, the transponder transmits a responding multifrequency sonar signal. 4 figs.
Young, Kenneth K.; Wilkes, R. Jeffrey
1995-01-01
A transponder of an active digital sonar system identifies a multifrequency underwater activating sonar signal received from a remote sonar transmitter. The transponder includes a transducer that receives acoustic waves, including the activating sonar signal, and generates an analog electrical receipt signal. The analog electrical receipt signal is converted to a digital receipt signal and cross-correlated with a digital transmission signal pattern corresponding to the activating sonar signal. A relative peak in the cross-correlation value is indicative of the activating sonar signal having been received by the transponder. In response to identifying the activating sonar signal, the transponder transmits a responding multifrequency sonar signal.
Probe for optically monitoring progress of in-situ vitrification of soil
Timmerman, Craig L.; Oma, Kenton H.; Davis, Karl C.
1988-01-01
A detector system for sensing the progress of an ISV process along an expected path comprises multiple sensors each having an input port. The input ports are distributed along the expected path of the ISV process between a starting location and an expected ending location. Each sensor generates an electrical signal representative of the temperature in the vicinity of its input port. A signal processor is coupled to the sensors to receive an electrical signal generated by a sensor, and generate a signal which is encoded with information which identifies the sensor and whether the ISV process has reached the sensor's input port. A transmitter propagates the encoded signal. The signal processor and the transmitter are below ground at a location beyond the expected ending location of the ISV process in the direction from the starting location to the expected ending location. A signal receiver and a decoder are located above ground for receiving the encoded signal propagated by the transmitter, decoding the encoded signal and providing a human-perceptible indication of the progress of the ISV process.
Probe for optically monitoring progress of in-situ vitrification of soil
Timmerman, C.L.; Oma, K.H.; Davis, K.C.
1988-08-09
A detector system for sensing the progress of an ISV process along an expected path comprises multiple sensors each having an input port. The input ports are distributed along the expected path of the ISV process between a starting location and an expected ending location. Each sensor generates an electrical signal representative of the temperature in the vicinity of its input port. A signal processor is coupled to the sensors to receive an electrical signal generated by a sensor, and generate a signal which is encoded with information which identifies the sensor and whether the ISV process has reached the sensor's input port. A transmitter propagates the encoded signal. The signal processor and the transmitter are below ground at a location beyond the expected ending location of the ISV process in the direction from the starting location to the expected ending location. A signal receiver and a decoder are located above ground for receiving the encoded signal propagated by the transmitter, decoding the encoded signal and providing a human-perceptible indication of the progress of the ISV process. 7 figs.
Real power regulation for the utility power grid via responsive loads
McIntyre, Timothy J [Knoxville, TN; Kirby, Brendan J [Knoxville, TN; Kisner, Roger A
2009-05-19
A system for dynamically managing an electrical power system that determines measures of performance and control criteria for the electric power system, collects at least one automatic generation control (AGC) input parameter to at least one AGC module and at least one automatic load control (ALC) input parameter to at least one ALC module, calculates AGC control signals and loads as resources (LAR) control signals in response to said measures of performance and control criteria, propagates AGC control signals to power generating units in response to control logic in AGC modules, and propagates LAR control signals to at least one LAR in response to control logic in ALC modules.
Morphing structures and signal transduction in Mimosa pudica L. induced by localized thermal stress.
Volkov, Alexander G; O'Neal, Lawrence; Volkova, Maia I; Markin, Vladislav S
2013-10-15
Leaf movements in Mimosa pudica, are in response to thermal stress, touch, and light or darkness, appear to be regulated by electrical, hydrodynamical, and chemical signal transduction. The pulvinus of the M. pudica shows elastic properties. We have found that the movements of the petiole, or pinnules, are accompanied by a change of the pulvinus morphing structures. After brief flaming of a pinna, the volume of the lower part of the pulvinus decreases and the volume of the upper part increases due to the redistribution of electrolytes between these parts of the pulvinus; as a result of these changes the petiole falls. During the relaxation of the petiole, the process goes in the opposite direction. Ion and water channel blockers, uncouplers as well as anesthetic agents diethyl ether or chloroform decrease the speed of alert wave propagation along the plant. Brief flaming of a pinna induces bidirectional propagation of electrical signal in pulvini. Transduction of electrical signals along a pulvinus induces generation of an action potential in perpendicular direction between extensor and flexor sides of a pulvinus. Inhibition of signal transduction and mechanical responses in M. pudica by volatile anesthetic agents chloroform or by blockers of voltage gated ion channels shows that the generation and propagation of electrical signals is a primary effect responsible for turgor change and propagation of an excitation. There is an electrical coupling in a pulvinus similar to the electrical synapse in the animal nerves. Copyright © 2013 Elsevier GmbH. All rights reserved.
Compact self-contained electrical-to-optical converter/transmitter
Seligmann, D.A.; Moss, W.C.; Valk, T.C.; Conder, A.D.
1995-11-21
A first optical receiver and a second optical receiver are provided for receiving a calibrate command and a power switching signal, respectively, from a remote processor. A third receiver is provided for receiving an analog electrical signal from a transducer. A calibrator generates a reference signal in response to the calibrate command. A combiner mixes the electrical signal with the reference signal to form a calibrated signal. A converter converts the calibrated signal to an optical signal. A transmitter transmits the optical signal to the remote processor. A primary battery supplies power to the calibrator, the combiner, the converter, and the transmitter. An optically-activated switch supplies power to the calibrator, the combiner, the converter, and the transmitter in response to the power switching signal. An auxiliary battery supplies power continuously to the switch. 13 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, K.K.; Wilkes, R.J.
1995-11-21
A transponder of an active digital sonar system identifies a multifrequency underwater activating sonar signal received from a remote sonar transmitter. The transponder includes a transducer that receives acoustic waves, including the activating sonar signal, and generates an analog electrical receipt signal. The analog electrical receipt signal is converted to a digital receipt signal and cross-correlated with a digital transmission signal pattern corresponding to the activating sonar signal. A relative peak in the cross-correlation value is indicative of the activating sonar signal having been received by the transponder. In response to identifying the activating sonar signal, the transponder transmits amore » responding multifrequency sonar signal. 4 figs.« less
Spatial Acuity and Prey Detection in Weakly Electric Fish
Babineau, David; Lewis, John E; Longtin, André
2007-01-01
It is well-known that weakly electric fish can exhibit extreme temporal acuity at the behavioral level, discriminating time intervals in the submicrosecond range. However, relatively little is known about the spatial acuity of the electrosense. Here we use a recently developed model of the electric field generated by Apteronotus leptorhynchus to study spatial acuity and small signal extraction. We show that the quality of sensory information available on the lateral body surface is highest for objects close to the fish's midbody, suggesting that spatial acuity should be highest at this location. Overall, however, this information is relatively blurry and the electrosense exhibits relatively poor acuity. Despite this apparent limitation, weakly electric fish are able to extract the minute signals generated by small prey, even in the presence of large background signals. In fact, we show that the fish's poor spatial acuity may actually enhance prey detection under some conditions. This occurs because the electric image produced by a spatially dense background is relatively “blurred” or spatially uniform. Hence, the small spatially localized prey signal “pops out” when fish motion is simulated. This shows explicitly how the back-and-forth swimming, characteristic of these fish, can be used to generate motion cues that, as in other animals, assist in the extraction of sensory information when signal-to-noise ratios are low. Our study also reveals the importance of the structure of complex electrosensory backgrounds. Whereas large-object spacing is favorable for discriminating the individual elements of a scene, small spacing can increase the fish's ability to resolve a single target object against this background. PMID:17335346
Electric field measuring and display system. [for cloud formations
NASA Technical Reports Server (NTRS)
Wojtasinski, R. J.; Lovall, D. D. (Inventor)
1974-01-01
An apparatus is described for monitoring the electric fields of cloud formations within a particular area. It utilizes capacitor plates that are alternately shielded from the clouds for generating an alternating signal corresponding to the intensity of the electric field of the clouds. A synchronizing signal is produced for controlling sampling of the alternating signal. Such samplings are fed through a filter and converted by an analogue to digital converter into digital form and subsequently fed to a transmitter for transmission to the control station for recording.
Multichannel audio monitor for detecting electrical signals.
Friesen, W O; Stent, G S
1978-12-01
The multichannel audio monitor (MUCAM) permits the simultaneous auditory monitoring of concurrent trains of electrical signals generated by as many as eight different sources. The basic working principle of this device is the modulation of the amplitude of a given pure tone by the incoming signals of each input channel. The MUCAM thus converts a complex, multichannel, temporal signal sequence into a musical melody suitable for instant, subliminal pattern analysis by the human ear. Neurophysiological experiments requiring multi-electrode recordings have provided one useful application of the MUCAM.
Acoustic and electric signals from lightning
NASA Technical Reports Server (NTRS)
Balachandran, N. K.
1983-01-01
Observations of infrasound apparently generated by the collapse of the electrostatic field in the thundercloud, are presented along with electric field measurements and high-frequency thunder signals. The frequency of the infrasound pulse is about 1 Hz and amplitude a few microbars. The observations seem to confirm some of the theoretical predictions of Wilson (1920) and Dessler (1973). The signal is predominated by a compressional phase and seems to be beamed vertically. Calculation of the parameters of the charged region using the infrasound signal give reasonable values.
Zhang, Fangzheng; Pan, Shilong
2013-11-04
A novel scheme for photonic generation of a millimeter-wave ultra-wideband (MMW-UWB) signal is proposed and experimentally demonstrated based on a dual-parallel Mach-Zehnder modulator (DPMZM). In the proposed scheme, a single-frequency radio frequency (RF) signal is applied to one sub-MZM of the DPMZM to achieve optical suppressed-carrier modulation, and an electrical control pulse train is applied to the other sub-MZM biased at the minimum transmission point, to get an on/off switchable optical carrier. By filtering out the optical carrier with one of the first-order sidebands, and properly setting the amplitude of the control pulse, an MMW-UWB pulse train without the residual local oscillation is generated after photo-detection. The generated MMW-UWB signal is background-free, because the low-frequency components in the electrical spectrum are effectively suppressed. In the experiment, an MMW-UWB pulse train centered at 25 GHz with a 10-dB bandwidth of 5.5 GHz is successfully generated. The low frequency components are suppressed by 22 dB.
Position sensitive solid-state photomultipliers, systems and methods
Shah, Kanai S; Christian, James; Stapels, Christopher; Dokhale, Purushottam; McClish, Mickel
2014-11-11
An integrated silicon solid state photomultiplier (SSPM) device includes a pixel unit including an array of more than 2.times.2 p-n photodiodes on a common substrate, a signal division network electrically connected to each photodiode, where the signal division network includes four output connections, a signal output measurement unit, a processing unit configured to identify the photodiode generating a signal or a center of mass of photodiodes generating a signal, and a global receiving unit.
Personnel electronic neutron dosimeter
Falk, R.B.; Tyree, W.H.
1982-03-03
A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.
Personnel electronic neutron dosimeter
Falk, Roger B.; Tyree, William H.
1984-12-18
A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.
Thunderstorm Hypothesis Reasoner
NASA Technical Reports Server (NTRS)
Mulvehill, Alice M.
1994-01-01
THOR is a knowledge-based system which incorporates techniques from signal processing, pattern recognition, and artificial intelligence (AI) in order to determine the boundary of small thunderstorms which develop and dissipate over the area encompassed by KSC and the Cape Canaveral Air Force Station. THOR interprets electric field mill data (derived from a network of electric field mills) by using heuristics and algorithms about thunderstorms that have been obtained from several domain specialists. THOR generates two forms of output: contour plots which visually describe the electric field activity over the network and a verbal interpretation of the activity. THOR uses signal processing and pattern recognition to detect signatures associated with noise or thunderstorm behavior in a near real time fashion from over 31 electrical field mills. THOR's AI component generates hypotheses identifying areas which are under a threat from storm activity, such as lightning. THOR runs on a VAX/VMS at the Kennedy Space Center. Its software is a coupling of C and FORTRAN programs, several signal processing packages, and an expert system development shell.
NASA Astrophysics Data System (ADS)
Pacheco, P.; Álvarez, J.; Sarmiento, R.; Bredice, F.; Sánchez-Aké, C.; Villagrán-Muniz, M.; Palleschi, V.
2018-04-01
A Nd:YAG ns-pulsed laser was used to ablate Al, Cd and Zn targets, which were placed between the plates of a planar charged capacitor. The plasma generates a transient redistribution of the electrical charges on the plates that can be measured as a voltage drop across a resistor connected to the ground plate. This signal is proportional to the capacitor applied voltage, the distance between the plates and the total number of ions produced in the ablation process which in turn is related to the laser energy and the ablated mass. After a series of pulses, the targets were weighed on a thermogravimetric balance to measure the ablated mass. Our results show that the electrical signal measured on the resistor is univocally related to the ablated mass from the target. Therefore, after a proper calibration depending on the material and the experimental geometry, the electrical signal can be used for real time quantitative measurement of the ablated mass in pulsed laser generated plasma experiments. The experiments were repeated on an aluminum target, with and without the presence of the external electric field in order to determine the possible influence of the applied electric field on the ablated mass.
Ultra-wideband short-pulse radar with range accuracy for short range detection
Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P
2014-10-07
An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.
Using a Function Generator to Produce Auditory and Visual Demonstrations.
ERIC Educational Resources Information Center
Woods, Charles B.
1998-01-01
Identifies a function generator as an instrument that produces time-varying electrical signals of frequency, wavelength, and amplitude. Sending these signals to a speaker or a light-emitting diode can demonstrate how specific characteristics of auditory or visual stimuli relate to perceptual experiences. Provides specific instructions for using…
Measurements of Electric Field in a Nanosecond Pulse Discharge by 4-WAVE Mixing
NASA Astrophysics Data System (ADS)
Baratte, Edmond; Adamovich, Igor V.; Simeni Simeni, Marien; Frederickson, Kraig
2017-06-01
Picosecond four-wave mixing is used to measure temporally and Picosecond four-wave mixing is used to measure temporally and spatially resolved electric field in a nanosecond pulse dielectric discharge sustained in room air and in an atmospheric pressure hydrogen diffusion flame. Measurements of the electric field, and more precisely the reduced electric field (E/N) in the plasma is critical for determination rate coefficients of electron impact processes in the plasma, as well as for quantifying energy partition in the electric discharge among different molecular energy modes. The four-wave mixing measurements are performed using a collinear phase matching geometry, with nitrogen used as the probe species, at temporal resolution of about 2 ns . Absolute calibration is performed by measurement of a known electrostatic electric field. In the present experiments, the discharge is sustained between two stainless steel plate electrodes, each placed in a quartz sleeve, which greatly improves plasma uniformity. Our previous measurements of electric field in a nanosecond pulse dielectric barrier discharge by picosecond 4-wave mixing have been done in air at room temperature, in a discharge sustained between a razor edge high-voltage electrode and a plane grounded electrode (a quartz plate or a layer of distilled water). Electric field measurements in a flame, which is a high-temperature environment, are more challenging because the four-wave mixing signal is proportional to the to square root of the difference betwen the populations of N2 ground vibrational level (v=0) and first excited vibrational level (v=1). At high temperatures, the total number density is reduced, thus reducing absolute vibrational level populations of N2. Also, the signal is reduced further due to a wider distribution of N2 molecules over multiple rotational levels at higher temperatures, while the present four-wave mixing diagnostics is using spectrally narrow output of a ps laser and a high-pressure Raman cell, providing access only to a few N2 rotational levels. Because of this, the four-wave mixing signal in the flame is lower by more than an order of magnitude compared to the signal generated in room temperature air plasma. Preliminary experiments demonstrated four-wave mixing signal generated by the electric field in the flame, following ns pulse discharge breakdown. The electric field in the flame is estimated using four-wave mixing signal calibration vs. temperature in electrostatic electric field generated in heated air. Further measurements in the flame are underway.
Shifman, Aaron R; Longtin, André; Lewis, John E
2015-10-30
Identifying and understanding the current sources that give rise to bioelectric fields is a fundamental problem in the biological sciences. It is very difficult, for example, to attribute the time-varying features of an electroencephalogram recorded from the head surface to the neural activity of specific brain areas; model systems can provide important insight into such problems. Some species of fish actively generate an oscillating (c. 1000 Hz) quasi-dipole electric field to communicate and sense their environment in the dark. A specialized electric organ comprises neuron-like cells whose collective signal underlies this electric field. As a step towards understanding the detailed biophysics of signal generation in these fish, we use an anatomically-detailed finite-element modelling approach to reverse-engineer the electric organ signal over one oscillation cycle. We find that the spatiotemporal profile of current along the electric organ constitutes a travelling wave that is well-described by two spatial Fourier components varying in time. The conduction velocity of this wave is faster than action potential conduction in any known neuronal axon (>200 m/s), suggesting that the spatiotemporal features of high-frequency electric organ discharges are not constrained by the conduction velocities of spinal neuron pathways.
Shifman, Aaron R.; Longtin, André; Lewis, John E.
2015-01-01
Identifying and understanding the current sources that give rise to bioelectric fields is a fundamental problem in the biological sciences. It is very difficult, for example, to attribute the time-varying features of an electroencephalogram recorded from the head surface to the neural activity of specific brain areas; model systems can provide important insight into such problems. Some species of fish actively generate an oscillating (c. 1000 Hz) quasi-dipole electric field to communicate and sense their environment in the dark. A specialized electric organ comprises neuron-like cells whose collective signal underlies this electric field. As a step towards understanding the detailed biophysics of signal generation in these fish, we use an anatomically-detailed finite-element modelling approach to reverse-engineer the electric organ signal over one oscillation cycle. We find that the spatiotemporal profile of current along the electric organ constitutes a travelling wave that is well-described by two spatial Fourier components varying in time. The conduction velocity of this wave is faster than action potential conduction in any known neuronal axon (>200 m/s), suggesting that the spatiotemporal features of high-frequency electric organ discharges are not constrained by the conduction velocities of spinal neuron pathways. PMID:26514932
Method of Laser Vibration Defect Analysis
2010-06-04
415. In one embodiment, the frequencies from the reflected ultrasonic wave 430 are sensed and transformed to an electrical signal by transducer...actuator and sensor patches, respectively. Then, a process module loads sensor signal data to identify wave modes, determine the time of arrival of...conditions. An interrogation system includes at least one wave generator for generating a wave signal and optical fiber sensors applied to a structure
Dielectric waveguide gas-filled stark shift modulator
Hutchinson, Donald P.; Richards, Roger K.
2003-07-22
An optical modulator includes a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide. At least one Stark material is provided in the waveguide. A bias circuit generates a bias signal to produce an electrical field across the Stark material to shift at least one of the Stark absorption frequencies towards the frequency of the optical beam. A circuit for producing a time varying electric field across the Stark material modulates the optical beam. At least a portion of the bias field can be generated by an alternating bias signal, such as a square wave. A method of modulating optical signals includes the steps of providing a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide, the waveguide having at least one Stark material disposed therein, and varying an electric field imposed across the Stark material.
21 CFR 884.2600 - Fetal cardiac monitor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen with...
21 CFR 884.2600 - Fetal cardiac monitor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen with...
21 CFR 884.2600 - Fetal cardiac monitor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen with...
21 CFR 884.2600 - Fetal cardiac monitor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen with...
21 CFR 884.2600 - Fetal cardiac monitor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen with...
An Electromechanical Model for the Cochlear Microphonic
NASA Astrophysics Data System (ADS)
Teal, Paul D.; Lineton, Ben; Elliott, Stephen J.
2011-11-01
The first of the many electrical signals generated in the ear, nerves and brain as a response to a sound incident on the ear is the cochlear microphonic (CM). The CM is generated by the hair cells of the cochlea, primarily the outer hairs cells. The potentials of this signal are a nonlinear filtered version of the acoustic pressure at the tympanic membrane. The CM signal has been used very little in recent years for clinical audiology and audiological research. This is because of uncertainty in interpreting the CM signal as a diagnostic measure, and also because of the difficulty of obtaining the signal, which has usually required the use of a transtympanic electrode. There are however, several potential clinical and research applications for acquisition of the CM. To promote understanding of the CM, and potential clinical application, a model is presented which can account for the generation of the cochlear microphonic signal. The model incorporates micro-mechanical and macro-mechanical aspects of previously published models of the basilar membrane and reticular lamina, as well as cochlear fluid mechanics, piezoelectric activity and capacitance of the outer hair cells. It also models the electrical coupling of signals along the scalae.
NASA Astrophysics Data System (ADS)
Groth, H.
1982-11-01
The utilization of photovoltaic generators in measuring and signalling installations, communication systems, water pumping, and electric power plants is discussed. The advantages of solar generators over conventional power supply equipment are outlined.
Seismic intrusion detector system
Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.
1976-01-01
A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.
Method and Apparatus for Characterizing Pressure Sensors using Modulated Light Beam Pressure
NASA Technical Reports Server (NTRS)
Youngquist, Robert C. (Inventor)
2003-01-01
Embodiments of apparatuses and methods are provided that use light sources instead of sound sources for characterizing and calibrating sensors for measuring small pressures to mitigate many of the problems with using sound sources. In one embodiment an apparatus has a light source for directing a beam of light on a sensing surface of a pressure sensor for exerting a force on the sensing surface. The pressure sensor generates an electrical signal indicative of the force exerted on the sensing surface. A modulator modulates the beam of light. A signal processor is electrically coupled to the pressure sensor for receiving the electrical signal.
Capacitive charge generation apparatus and method for testing circuits
Cole, E.I. Jr.; Peterson, K.A.; Barton, D.L.
1998-07-14
An electron beam apparatus and method for testing a circuit are disclosed. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 {micro}m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits. 7 figs.
Capacitive charge generation apparatus and method for testing circuits
Cole, Jr., Edward I.; Peterson, Kenneth A.; Barton, Daniel L.
1998-01-01
An electron beam apparatus and method for testing a circuit. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 .mu.m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits.
Method and apparatus for measuring solar radiation in a vegetative canopy
Gutschick, V.P.; Barron, M.H.; Waechter, D.A.; Wolf, M.A.
1985-04-30
An apparatus and method for measuring solar radiation received in a vegetative canopy. A multiplicity of sensors selectively generates electrical signals in response to impinging photosynthetically active radiation in sunlight. Each sensor is attached to a plant within the canopy and is electrically connected to a separate port in a junction box having a multiplicity of ports. Each port is connected to an operational amplifier. Each amplifier amplifies the signals generated by the sensors. Each amplifier is connected to an analog-to-digital convertor which digitizes each signal. A computer is connected to the convertors and accumulates and stores solar radiation data. A data output device such as a printer is connected to the computer and displays the data.
Method and apparatus for measuring solar radiation in a vegetative canopy
Gutschick, Vincent P.; Barron, Michael H.; Waechter, David A.; Wolf, Michael A.
1987-01-01
An apparatus and method for measuring solar radiation received in a vegetative canopy. A multiplicity of sensors selectively generates electrical signals in response to impinging photosynthetically active radiation in sunlight. Each sensor is attached to a plant within the canopy and is electrically connected to a separate port in a junction box having a multiplicity of ports. Each port is connected to an operational amplifier. Each amplifier amplifies the signals generated by the sensors. Each amplifier is connected to an analog-to-digital convertor which digitizes each signal. A computer is connected to the convertors and accumulates and stores solar radiation data. A data output device such as a printer is connected to the computer and displays the data.
NASA Astrophysics Data System (ADS)
Tseng, Yi-Chuan; Lee, Yang-Chun; Chang, Sih-Wei; Lin, Tzu-Yao; Ma, Dai-Liang; Lin, Bo-Cheng; Chen, Hsuen-Li
2017-11-01
In this study, we found that the large area of electromagnetic field hot zone induced through magnetic dipole resonance of metal-free structures can greatly enhance Raman scattering signals. The magnetic resonant nanocavities, based on high-refractive-index silicon nanoparticles (SiNPs), were designed to resonate at the wavelength of the excitation laser of the Raman system. The well-dispersed SiNPs that were not closely packed displayed significant magnetic dipole resonance and gave a Raman enhancement per unit volume of 59 347. The hot zones of intense electric field were generated not only within the nonmetallic NPs but also around them, even within the underlying substrate. We observed experimentally that gallium nitride (GaN) and silicon carbide (SiC) surfaces presenting very few SiNPs (coverage: <0.3%) could display significantly enhanced (>50%) Raman signals. In contrast, the Raman signals of the underlying substrates were not enhanced by gold nanoparticles (AuNPs), even though these NPs displayed a localized surface plasmon resonance (LSPR) phenomenon. A comparison of the areas of the electric field hot zones (E 2 > 10) generated by SiNPs undergoing magnetic dipole resonance with the electric field hot spots (E 2 > 10) generated by AuNPs undergoing LSPR revealed that the former was approximately 70 times that of the latter. More noteworthily, the electromagnetic field hot zone generated from the SiNP is able to extend into the surrounding and underlying media. Relative to metallic NPs undergoing LSPR, these nonmetallic NPs displaying magnetic dipole resonance were more effective at enhancing the Raman scattering signals from analytes that were underlying, or even far away from, them. This application of magnetic dipole resonance in metal-free structures appears to have great potential for use in developing next-generation techniques for Raman enhancement.
NASA Astrophysics Data System (ADS)
Kozioł, Michał
2017-10-01
The article presents a parametric model describing the registered distributions spectrum of optical radiation emitted by electrical discharges generated in the systems: the needle- needle, the needleplate and in the system for surface discharges. Generation of electrical discharges and registration of the emitted radiation was carried out in three different electrical insulating oils: fabric new, operated (used) and operated with air bubbles. For registration of optical spectra in the range of ultraviolet, visible and near infrared a high resolution spectrophotometer was. The proposed mathematical model was developed in a regression procedure using gauss-sigmoid type function. The dependent variable was the intensity of the recorded optical signals. In order to estimate the optimal parameters of the model an evolutionary algorithm was used. The optimization procedure was performed in Matlab environment. For determination of the matching quality of theoretical parameters of the regression function to the empirical data determination coefficient R2 was applied.
Method and apparatus for reducing radiation exposure through the use of infrared data transmission
Austin, Frank S.; Hance, Albert B.
1989-01-01
A method and apparatus is described for transmitting information, for exae, dosimetry data from a hazardous environment such as a radioactive area to a remote relatively safe location. A radiation detector senses the radiation and generates an electrical signal which is fed as a binary coded decimal signal to an infrared transmitter having a microprocessor. The microprocessor formats the detected information into digits of data and modulates a 40 kHz oscillator, the output of which is fed to and intensity modulates one or more infrared emitting diodes. The infrared signal from the diodes is transmitted to a portable hand-held infrared receiver remote from the hazardous environment. The receiver includes an infrared sensitive diode which decodes the data and generates an electrical signal which is coupled to a microcomputer. The microcomputer synchronizes itself to the transmitter, reads the digits of data as they are received, sums the digits and compares the sum with a checksum signal generated and transmitted from the transmitter. If a match of the checksum signals exists, the received data is displayed, otherwise it is described and the receiver conditions itself for the next transmission of data.
Harris, John Richardson; Caporaso, George J; Sampayan, Stephen E
2013-10-22
A system and method for producing modulated electrical signals. The system uses a variable resistor having a photoconductive wide bandgap semiconductor material construction whose conduction response to changes in amplitude of incident radiation is substantially linear throughout a non-saturation region to enable operation in non-avalanche mode. The system also includes a modulated radiation source, such as a modulated laser, for producing amplitude-modulated radiation with which to direct upon the variable resistor and modulate its conduction response. A voltage source and an output port, are both operably connected to the variable resistor so that an electrical signal may be produced at the output port by way of the variable resistor, either generated by activation of the variable resistor or propagating through the variable resistor. In this manner, the electrical signal is modulated by the variable resistor so as to have a waveform substantially similar to the amplitude-modulated radiation.
Opto-electronic microwave oscillator
NASA Astrophysics Data System (ADS)
Yao, X. Steve; Maleki, Lute
1996-12-01
Photonic applications are important in RF communication systems to enhance many functions including remote transfer of antenna signals, carrier frequency up or down conversion, antenna beam steering, and signal filtering. Many of these functions require reference frequency oscillators. However, traditional microwave oscillators cannot meet all the requirements of photonic communication systems that need high frequency and low phase noise signal generation. Because photonic systems involve signals in both optical and electrical domains, an ideal signal source should be able to provide electrical and optical signals. In addition, it should be possible to synchronize or control the signal source by both electrical and optical means. We present such a source1-2 that converts continuous light energy into stable and spectrally pure microwave signals. This Opto-Electronic Oscillator, OEO, consists of a pump laser and a feedback circuit including an intensity modulator, an optical fiber delay line, a photodetector, an amplifier, and a filter, as shown in Figure 1a. Its oscillation frequency, limited only by the speed of the modulator, can be up to 75 GHz.
Novel design of electrical sensing interface for prosthetic limbs using optical micro cavities
NASA Astrophysics Data System (ADS)
Ali, Amir R.; Kamel, Mohamed A.
2018-04-01
This paper uses optical whispering galley modes (WGM) cavities to construct a new electrical sensing interface between prosthetic limb and the brain. The sensing element will detect the action potential signal in the neural membrane and the prosthetic limb will be actuated accordingly. The element is a WGM dielectric polymeric cavity. WGM based optical cavities can achieve very high values of sensitivity and quality factor; thus, any minute perturbations in the morphology of the cavity can be captured and measured. The action potential signal will produce an applied external electric field on the dielectric cavity causing it to deform due to the electrostriction effect. The resulting deformation will cause WGM shifts in the transmission spectrum of the cavity. Thus, the action potential or the applied electric field can be measured using these shifts. In this paper the action potential signal will be simulated through the use of a function generator and two metal electrodes. The sensing element will be situated between these electrodes to detect the electrical signal passing through. The achieved sensitivity is 27.5 pm/V in measuring the simulated action potential signal; and 0.32 pm/V.m-1 in measuring the applied electric field due to the passage of the simulated signal.
On-chip microwave signal generation based on a silicon microring modulator.
Shao, Haifeng; Yu, Hui; Li, Xia; Li, Yan; Jiang, Jianfei; Wei, Huan; Wang, Gencheng; Dai, Tingge; Chen, Qimei; Yang, Jianyi; Jiang, Xiaoqing
2015-07-15
A photonic-assisted microwave signal generator based on a silicon microring modulator is demonstrated. The microring cavity incorporates an embedded PN junction that enables a microwave signal to modulate the lightwave circling inside. The DC component of the modulated light is trapped in the cavity, while the high-order sideband components are able to exit the cavity and then generate microwave signals at new frequencies in a photodetector. In our proof-of-concept experiment, a 10 GHz microwave signal is converted to a 20 GHz signal in the optical domain with an electrical harmonic suppression ratio of 22 dB. An analytic model is also established to explain the operation mechanism, which agrees well with the measured data.
Digital electronic bone growth stimulator
Kronberg, J.W.
1993-01-01
The present invention relates to the electrical treatment of biological tissue. In particular, the present invention discloses a device that produces discrete electrical pulse trains for treating osteoporosis and accelerating bone growth. According to its major aspects and broadly stated, the present invention consists of an electrical circuit configuration capable of generating Bassett-type waveforms shown with alternative signals provide for the treatment of either fractured bones or osteoporosis. The signal generator comprises a quartz clock, an oscillator circuit, a binary divider chain, and a plurality of simple, digital logic gates. Signals are delivered efficiently, with little or no distortion, and uniformly distributed throughout the area of injury. Perferably, power is furnished by widely available and inexpensive radio batteries, needing replacement only once in several days. The present invention can be affixed to a medical cast without a great increase in either weight or bulk. Also, the disclosed stimulator can be used to treat osteoporosis or to strengthen a healing bone after the cast has been removed by attaching the device to the patient`s skin or clothing.
Electronic filters, hearing aids and methods
NASA Technical Reports Server (NTRS)
Engebretson, A. Maynard (Inventor)
1995-01-01
An electronic filter for an electroacoustic system. The system has a microphone for generating an electrical output from external sounds and an electrically driven transducer for emitting sound. Some of the sound emitted by the transducer returns to the microphone means to add a feedback contribution to its electrical output. The electronic filter includes a first circuit for electronic processing of the electrical output of the microphone to produce a first signal. An adaptive filter, interconnected with the first circuit, performs electronic processing of the first signal to produce an adaptive output to the first circuit to substantially offset the feedback contribution in the electrical output of the microphone, and the adaptive filter includes means for adapting only in response to polarities of signals supplied to and from the first circuit. Other electronic filters for hearing aids, public address systems and other electroacoustic systems, as well as such systems and methods of operating them are also disclosed.
Impacts of Severe Space Weather on the Electric Grid
2011-11-01
toasters, for instance, will tend to slow the generator, as its rotational energy is converted to electrical energy. This signal is then used to provide...dividually to order. Recognizing the vulnerability of the grid to transformer outage, there have been efforts in recent years to provide modular ...that occur during geomagnetic disturbances’ [9], and ’ Multilevels of protection for individual apparatus such as generators, transformers
Wang, Li Xian; Zhu, Ning Hua; Zheng, Jian Yu; Liu, Jian Guo; Li, Wei
2012-05-20
We induce a microwave photonic bandpass filter into an optoelectronic oscillator to generate a chaotic ultra-wideband signal in both the optical and electrical domain. The theoretical analysis and numerical simulation indicate that this system is capable of generating band-limited high-dimensional chaos. Experimental results coincide well with the theoretical prediction and show that the power spectrum of the generated chaotic signal basically meets the Federal Communications Commission indoor mask. The generated chaotic carrier is further intensity modulated by a 10 MHz square wave, and the waveform of the output ultra-wideband signal is measured for demonstrating the chaotic on-off keying modulation.
Bolton, Richard D.; Bounds, John A.; Rawool-Sullivan, Mohini W.
1996-01-01
An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.
Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.
1996-05-07
An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.
Wireless acoustic-electric feed-through for power and signal transmission
NASA Technical Reports Server (NTRS)
Doty, Benjamin (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Bar-Cohen, Yoseph (Inventor); Chang, Zensheu (Inventor)
2011-01-01
An embodiment provides electrical energy from a source on one side of a medium to a load on the other side of the medium, the embodiment including a first piezoelectric to generate acoustic energy in response to electrical energy from the source, and a second piezoelectric to convert the received acoustic energy to electrical energy used by the load. Other embodiments are described and claimed.
Concealed wire tracing apparatus
Kronberg, J.W.
1994-05-31
An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface is disclosed. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest. 4 figs.
Development of Wave Turbine Emulator in a Laboratory Environment
NASA Astrophysics Data System (ADS)
Vinatha, U.; Vittal K, P.
2013-07-01
Wave turbine emulator (WTE) is an important equipment for developing wave energy conversion system. The emulator reflects the actual behavior of the wave turbine by reproducing the characteristics of real wave turbine without reliance on natural wave resources and actual wave turbine. It offers a controllable test environment that allows the evaluation and improvement of control schemes for electric generators. The emulator can be used for research applications to drive an electrical generator in a similar way as a practical wave turbine. This article presents the development of a WTE in a laboratory environment and studies on the behavior of electrical generator coupled to the emulator. The structure of a WTE consists of a PC where the characteristics of the turbine are implemented, ac drive to emulate the turbine rotor, feedback mechanism from the drive and power electronic equipment to control the drive. The feedback signal is acquired by the PC through an A/D converter, and the signal for driving the power electronic device comes from the PC through a D/A converter.
Fluidic Active Transducer for Electricity Generation
Yang, YoungJun; Park, Junwoo; Kwon, Soon-Hyung; Kim, Youn Sang
2015-01-01
Flows in small size channels have been studied for a long time over multidisciplinary field such as chemistry, biology and medical through the various topics. Recently, the attempts of electricity generation from the small flows as a new area for energy harvesting in microfluidics have been reported. Here, we propose for the first time a new fluidic electricity generator (FEG) by modulating the electric double layer (EDL) with two phase flows of water and air without external power sources. We find that an electric current flowed by the forming/deforming of the EDL with a simple separated phase flow of water and air at the surface of the FEG. Electric signals between two electrodes of the FEG are checked from various water/air passing conditions. Moreover, we verify the possibility of a self-powered air slug sensor by applying the FEG in the detection of an air slug. PMID:26511626
Smart signal processing for an evolving electric grid
NASA Astrophysics Data System (ADS)
Silva, Leandro Rodrigues Manso; Duque, Calos Augusto; Ribeiro, Paulo F.
2015-12-01
Electric grids are interconnected complex systems consisting of generation, transmission, distribution, and active loads, recently called prosumers as they produce and consume electric energy. Additionally, these encompass a vast array of equipment such as machines, power transformers, capacitor banks, power electronic devices, motors, etc. that are continuously evolving in their demand characteristics. Given these conditions, signal processing is becoming an essential assessment tool to enable the engineer and researcher to understand, plan, design, and operate the complex and smart electronic grid of the future. This paper focuses on recent developments associated with signal processing applied to power system analysis in terms of characterization and diagnostics. The following techniques are reviewed and their characteristics and applications discussed: active power system monitoring, sparse representation of power system signal, real-time resampling, and time-frequency (i.e., wavelets) applied to power fluctuations.
Wire bonding quality monitoring via refining process of electrical signal from ultrasonic generator
NASA Astrophysics Data System (ADS)
Feng, Wuwei; Meng, Qingfeng; Xie, Youbo; Fan, Hong
2011-04-01
In this paper, a technique for on-line quality detection of ultrasonic wire bonding is developed. The electrical signals from the ultrasonic generator supply, namely, voltage and current, are picked up by a measuring circuit and transformed into digital signals by a data acquisition system. A new feature extraction method is presented to characterize the transient property of the electrical signals and further evaluate the bond quality. The method includes three steps. First, the captured voltage and current are filtered by digital bandpass filter banks to obtain the corresponding subband signals such as fundamental signal, second harmonic, and third harmonic. Second, each subband envelope is obtained using the Hilbert transform for further feature extraction. Third, the subband envelopes are, respectively, separated into three phases, namely, envelope rising, stable, and damping phases, to extract the tiny waveform changes. The different waveform features are extracted from each phase of these subband envelopes. The principal components analysis (PCA) method is used for the feature selection in order to remove the relevant information and reduce the dimension of original feature variables. Using the selected features as inputs, an artificial neural network (ANN) is constructed to identify the complex bond fault pattern. By analyzing experimental data with the proposed feature extraction method and neural network, the results demonstrate the advantages of the proposed feature extraction method and the constructed artificial neural network in detecting and identifying bond quality.
Kerns, Q.A.
1963-08-01
>An electronlc circuit for synthesizing electrical current pulses having very fast rise times includes several sinewave generators tuned to progressively higher harmonic frequencies with signal amplitudes and phases selectable according to the Fourier series of the waveform that is to be synthesized. Phase control is provided by periodically triggering the generators at precisely controlled times. The outputs of the generators are combined in a coaxial transmission line. Any frequency-dependent delays that occur in the transmission line can be readily compensated for so that the desired signal wave shape is obtained at the output of the line. (AEC)
Mechanism for detecting NAPL using electrical resistivity imaging.
Halihan, Todd; Sefa, Valina; Sale, Tom; Lyverse, Mark
2017-10-01
The detection of non-aqueous phase liquid (NAPL) related impacts in freshwater environments by electrical resistivity imaging (ERI) has been clearly demonstrated in field conditions, but the mechanism generating the resistive signature is poorly understood. An electrical barrier mechanism which allows for detecting NAPLs with ERI is tested by developing a theoretical basis for the mechanism, testing the mechanism in a two-dimensional sand tank with ERI, and performing forward modeling of the laboratory experiment. The NAPL barrier theory assumes at low bulk soil NAPL concentrations, thin saturated NAPL barriers can block pore throats and generate a detectable electrically resistive signal. The sand tank experiment utilized a photographic technique to quantify petroleum saturation, and to help determine whether ERI can detect and quantify NAPL across the water table. This experiment demonstrates electrical imaging methods can detect small quantities of NAPL of sufficient thickness in formations. The bulk volume of NAPL is not the controlling variable for the amount of resistivity signal generated. The resistivity signal is primarily due to a zone of high resistivity separate phase liquid blocking current flow through the fully NAPL saturated pores spaces. For the conditions in this tank experiment, NAPL thicknesses of 3.3cm and higher in the formation was the threshold for detectable changes in resistivity of 3% and greater. The maximum change in resistivity due to the presence of NAPL was an increase of 37%. Forward resistivity models of the experiment confirm the barrier mechanism theory for the tank experiment. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Damianos, D.; Vitrant, G.; Lei, M.; Changala, J.; Kaminski-Cachopo, A.; Blanc-Pelissier, D.; Cristoloveanu, S.; Ionica, I.
2018-05-01
In this work, we investigate Second Harmonic Generation (SHG) as a non-destructive characterization method for Silicon-On-Insulator (SOI) materials. For thick SOI stacks, the SHG signal is related to the thickness variations of the different layers. However, in thin SOI films, the comparison between measurements and optical modeling suggests a supplementary SHG contribution attributed to the electric fields at the SiO2/Si interfaces. The impact of the electric field at each interface of the SOI on the SHG is assessed. The SHG technique can be used to evaluate interfacial electric fields and consequently interface charge density in SOI materials.
Signal Cloaking by Electric Fish
STODDARD, PHILIP K.; MARKHAM, MICHAEL R.
2010-01-01
Electric fish produce weak electric fields to image their world in darkness and to communicate with potential mates and rivals. Eavesdropping by electroreceptive predators exerts selective pressure on electric fish to shift their signals into less-detectable high-frequency spectral ranges. Hypopomid electric fish evolved a signal-cloaking strategy that reduces their detectability by predators in the lab (and thus presumably their risk of predation in the field). These fish produce broad-frequency electric fields close to the body, but the heterogeneous local fields merge over space to cancel the low-frequency spectrum at a distance. Mature males dynamically regulate this cloaking mechanism to enhance or suppress low-frequency energy. The mechanism underlying electric-field cloaking involves electrogenic cells that produce two independent action potentials. In a unique twist, these cells orient sodium and potassium currents in the same direction, potentially boosting their capabilities for current generation. Exploration of such evolutionary inventions could aid the design of biogenerators to power implantable medical devices, an ambition that would benefit from the complete genome sequence of a gymnotiform fish. PMID:20209064
Coherent anti-Stokes Raman scattering under electric field stimulation
NASA Astrophysics Data System (ADS)
Capitaine, Erwan; Ould Moussa, Nawel; Louot, Christophe; Lefort, Claire; Pagnoux, Dominique; Duclère, Jean-René; Kaneyasu, Junya F.; Kano, Hideaki; Duponchel, Ludovic; Couderc, Vincent; Leproux, Philippe
2016-12-01
We introduce an experiment using electro-CARS, an electro-optical method based on the combination of ultrabroadband multiplex coherent anti-Stokes Raman scattering (M-CARS) spectroscopy and electric field stimulation. We demonstrate that this method can effectively discriminate the resonant CARS signal from the nonresonant background owing to a phenomenon of molecular orientation in the sample medium. Such molecular orientation is intrinsically related to the induction of an electric dipole moment by the applied static electric field. Evidence of the electro-CARS effect is obtained with a solution of n -alkanes (CnH2 n +2 , 15 ≤n ≤40 ), for which an enhancement of the CARS signal-to-noise ratio is achieved in the case of CH2 and CH3 symmetric/asymmetric stretching vibrations. Additionally, an electric-field-induced second-harmonic generation experiment is performed in order to corroborate the orientational organization of molecules due to the electric field excitation. Finally, we use a simple mathematical approach to compare the vibrational information extracted from electro-CARS measurements with spontaneous Raman data and to highlight the impact of electric stimulation on the vibrational signal.
NASA Astrophysics Data System (ADS)
Pham, V.-N.; Boyer, D.; Chouliaras, G.; Savvaidis, A.; Stavrakakis, G.; Le Mouël, J.-L.
2002-04-01
Anomalous transient electric signals (ATESs) in the ultra low frequency (ULF) band have been often observed during magnetotelluric (MT) investigations [Nature 319 (1986) 310; Phys. Earth Planet. Int. 114 (1999) 141; Geophys. J. Int. 142 (2000) 948], but their origin was unknown until now. They have the same characteristics as the so-called seismic electric signals (SES) claimed to be earthquake precursors by the VAN group (e.g. [Tectonophysics 110 (1984) 73] and later works by this group). Our analysis suggests that the so-called SES could be of anthropic origin. Following the devastating 7 September 1999 Athens earthquake, the VAN group claimed that a SES had been recorded at LAM station (Lamia, central Greece) some days prior to the main shock and that a second SES, which might correspond to an impending even larger earthquake, had been observed after the main shock. In the 2 years after the Athens main shock, no subsequent large earthquakes have occurred near Athens. We conducted a campaign of measurement in the Lamia region in May and June 2001. The results show that ATESs, which look like SES, have several different sources: pump-stations for ground-water, high power electric lines, and factories located to the SE of Lamia city. The ATESs can be generated by two electrochemical mechanisms of metallic electrode polarization: the "galvanic cell" and the "ac electrolytic cell" which are studied by simulated field experiments and discussed in detail in Appendix A. These two mechanisms can occur over a wide range of length scales in the field. Any isolation failure in buried metallic conductors, such as electrical and telecommunication networks, oil, water and gas pipes, railways, high power electric lines, factories and so on, can produce a galvanic cell or an ac electrolytic cell, or both, which could generate, under some circumstances, an "overvoltage", the ATES. Finally, the absence of a magnetic signal has been observed during ATES and does not constitute a firm criterion for SES [Acta Geophys. Pol. 44 (1996b) 301]. Thus, great care must be taken when claiming the existence of electric precursors of seismic or volcanic events.
Generation of electrical power
Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.
1976-01-01
A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.
Real-time wideband cylindrical holographic surveillance system
Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.; Severtsen, Ronald H.
1999-01-01
A wideband holographic cylindrical surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply Fast Fourier Transforms and obtain a three dimensional cylindrical image.
Real-time wideband holographic surveillance system
Sheen, David M.; Collins, H. Dale; Hall, Thomas E.; McMakin, Douglas L.; Gribble, R. Parks; Severtsen, Ronald H.; Prince, James M.; Reid, Larry D.
1996-01-01
A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm.
Real-time wideband holographic surveillance system
Sheen, D.M.; Collins, H.D.; Hall, T.E.; McMakin, D.L.; Gribble, R.P.; Severtsen, R.H.; Prince, J.M.; Reid, L.D.
1996-09-17
A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm. 28 figs.
Kameda, Takashi; Ohkuma, Kazuo; Sano, Natsuki; Ogura, Hideo; Terada, Kazuto
2012-01-01
Very weak electrical, magnetic and ultrasound signal stimulations are known to promote the formation, metabolism, restoration and stability of bone and surrounding tissues after treatment and operations. We have therefore investigated the possibility of intraoral generation of electricity and magnetism by occlusal force in an in vitro study. Biting bimorph piezoelectric elements with lead zirconate titanate (PZT) using dental models generated appropriate magnetism for bone formation, i. e. 0.5-0.6 gauss, and lower electric currents and higher voltages, i. e. 2.0-6.0 μA at 10-22 V (appropriate levels are 30 μA and 1.25 V), as observed by a universal testing machine. The electric currents and voltages could be changed using amplifier circuits. These results show that intraoral generation of electricity and magnetism is possible and could provide post-operative stabilization and activation of treated areas of bone and the surrounding tissues directly and/or indirectly by electrical, magnetic and ultrasound stimulation, which could accelerate healing.
Signal conditioning units for vibration measurement in HUMS
NASA Astrophysics Data System (ADS)
Wu, Kaizhi; Liu, Tingting; Yu, Zirong; Chen, Lijuan; Huang, Xinjie
2018-03-01
A signal conditioning units for vibration measurement in HUMS is proposed in the paper. Due to the frequency of vibrations caused by components in helicopter are different, two steps amplifier and programmable anti-aliasing filter are designed to meet the measurement of different types of helicopter. Vibration signals are converted into measurable electrical signals combing with ICP driver firstly. Then pre-amplifier and programmable gain amplifier is applied to magnify the weak electrical signals. In addition, programmable anti-aliasing filter is utilized to filter the interference of noise. The units were tested using function signal generator and oscilloscope. The experimental results have demonstrated the effectiveness of our proposed method in quantitatively and qualitatively. The method presented in this paper can meet the measurement requirement for different types of helicopter.
Electronic filters, hearing aids and methods
NASA Technical Reports Server (NTRS)
Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor); Zheng, Baohua (Inventor)
1991-01-01
An electronic filter for an electroacoustic system. The system has a microphone for generating an electrical output from external sounds and an electrically driven transducer for emitting sound. Some of the sound emitted by the transducer returns to the microphone means to add a feedback contribution to its electical output. The electronic filter includes a first circuit for electronic processing of the electrical output of the microphone to produce a filtered signal. An adaptive filter, interconnected with the first circuit, performs electronic processing of the filtered signal to produce an adaptive output to the first circuit to substantially offset the feedback contribution in the electrical output of the microphone, and the adaptive filter includes means for adapting only in response to polarities of signals supplied to and from the first circuit. Other electronic filters for hearing aids, public address systems and other electroacoustic systems, as well as such systems, and methods of operating them are also disclosed.
Thin film ferroelectric electro-optic memory
NASA Technical Reports Server (NTRS)
Thakoor, Sarita (Inventor); Thakoor, Anilkumar P. (Inventor)
1993-01-01
An electrically programmable, optically readable data or memory cell is configured from a thin film of ferroelectric material, such as PZT, sandwiched between a transparent top electrode and a bottom electrode. The output photoresponse, which may be a photocurrent or photo-emf, is a function of the product of the remanent polarization from a previously applied polarization voltage and the incident light intensity. The cell is useful for analog and digital data storage as well as opto-electric computing. The optical read operation is non-destructive of the remanent polarization. The cell provides a method for computing the product of stored data and incident optical data by applying an electrical signal to store data by polarizing the thin film ferroelectric material, and then applying an intensity modulated optical signal incident onto the thin film material to generate a photoresponse therein related to the product of the electrical and optical signals.
Acoustic enhancement for photo detecting devices
Thundat, Thomas G; Senesac, Lawrence R; Van Neste, Charles W
2013-02-19
Provided are improvements to photo detecting devices and methods for enhancing the sensitivity of photo detecting devices. A photo detecting device generates an electronic signal in response to a received light pulse. An electro-mechanical acoustic resonator, electrically coupled to the photo detecting device, damps the electronic signal and increases the signal noise ratio (SNR) of the electronic signal. Increased photo detector standoff distances and sensitivities will result.
Torsional vibration characteristic study of the grid-connected DFIG wind turbine
NASA Astrophysics Data System (ADS)
Yu, Songtao; Xie, Da; Wu, Wangping; Gu, Chenghong; Li, Furong
2017-01-01
This paper studies the torsional vibration characteristics of the grid-connected doubly-fed induction generator (DFIG) wind turbine by small signal analysis method. Firstly a detailed small-signal stability union model of the grid-connected DFIG wind turbine is developed, including the mechanical system and electrical system. To study the dynamic characteristic of the blade, gearbox, low speed and high speed shafts, a three mass shaft model for the mechanical system is adopted. At the same time, small signal models of DFIG, the voltage source converter (VSC) and the transmission line of the electrical system are developed respectively. Then, through calculating the eigenvalues of the state matrix A and the corresponding participation factors, the modal analysis is conducted in the shaft torsional vibration issues. And the impact of the system parameters including the series compensation capacitor, the flat-wave reactor, the PI parameters, especially the speed controller of generator rotor on shaft torsional vibration are discussed. The results show that the speed controller strengthens association between the mechanical system and the electrical system, and also produces a low-frequency oscillation mode.
Closed-loop motor control using high-speed fiber optics
NASA Technical Reports Server (NTRS)
Dawson, Reginald (Inventor); Rodriquiz, Dagobert (Inventor)
1991-01-01
A closed-loop control system for controlling the operation of one or more servo motors or other controllable devices is described. The system employs a fiber optics link immune to electromagnetic interference, for transmission of control signals from a controller or controllers at a remote station to the power electronics located in proximity to the motors or other devices at the local station. At the remote station the electrical control signals are time-multiplexed, converted to a formatted serial bit stream, and converted to light signals for transmission over a single fiber of the fiber optics link. At the local station, the received optical signals are reconstructed as electrical control signals for the controlled motors or other devices. At the local station, an encoder sensor linked to the driven device generates encoded feedback signals which provide information as to a condition of the controlled device. The encoded signals are placed in a formatted serial bit stream, multiplexed, and transmitted as optical signals over a second fiber of the fiber optic link which closes the control loop of the closed-loop motor controller. The encoded optical signals received at the remote station are demultiplexed, reconstructed and coupled to the controller(s) as electrical feedback signals.
High-resolution behavioral mapping of electric fishes in Amazonian habitats.
Madhav, Manu S; Jayakumar, Ravikrishnan P; Demir, Alican; Stamper, Sarah A; Fortune, Eric S; Cowan, Noah J
2018-04-11
The study of animal behavior has been revolutionized by sophisticated methodologies that identify and track individuals in video recordings. Video recording of behavior, however, is challenging for many species and habitats including fishes that live in turbid water. Here we present a methodology for identifying and localizing weakly electric fishes on the centimeter scale with subsecond temporal resolution based solely on the electric signals generated by each individual. These signals are recorded with a grid of electrodes and analyzed using a two-part algorithm that identifies the signals from each individual fish and then estimates the position and orientation of each fish using Bayesian inference. Interestingly, because this system involves eavesdropping on electrocommunication signals, it permits monitoring of complex social and physical interactions in the wild. This approach has potential for large-scale non-invasive monitoring of aquatic habitats in the Amazon basin and other tropical freshwater systems.
Quantum control via a genetic algorithm of the field ionization pathway of a Rydberg electron
NASA Astrophysics Data System (ADS)
Gregoric, Vincent C.; Kang, Xinyue; Liu, Zhimin Cheryl; Rowley, Zoe A.; Carroll, Thomas J.; Noel, Michael W.
2017-08-01
Quantum control of the pathway along which a Rydberg electron field ionizes is experimentally and computationally demonstrated. Selective field ionization is typically done with a slowly rising electric field pulse. The (1/n*)4 scaling of the classical ionization threshold leads to a rough mapping between arrival time of the electron signal and principal quantum number of the Rydberg electron. This is complicated by the many avoided level crossings that the electron must traverse on the way to ionization, which in general leads to broadening of the time-resolved field ionization signal. In order to control the ionization pathway, thus directing the signal to the desired arrival time, a perturbing electric field produced by an arbitrary wave-form generator is added to a slowly rising electric field. A genetic algorithm evolves the perturbing field in an effort to achieve the target time-resolved field ionization signal.
Footwear scanning systems and methods
Fernandes, Justin L.; McMakin, Douglas L.; Sheen, David M.; Tedeschi, Jonathan R.
2017-07-25
Methods and apparatus for scanning articles, such as footwear, to provide information regarding the contents of the articles are described. According to one aspect, a footwear scanning system includes a platform configured to contact footwear to be scanned, an antenna array configured to transmit electromagnetic waves through the platform into the footwear and to receive electromagnetic waves from the footwear and the platform, a transceiver coupled with antennas of the antenna array and configured to apply electrical signals to at least one of the antennas to generate the transmitted electromagnetic waves and to receive electrical signals from at least another of the antennas corresponding to the electromagnetic waves received by the others of the antennas, and processing circuitry configured to process the received electrical signals from the transceiver to provide information regarding contents within the footwear.
Infrared tracker for a portable missile launcher
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, J.J.
1993-07-13
An infrared beam tracker is described for arrangement to a housing that is unitary with a portable missile launcher, comprising: a rotating beam splitter positioned to intercept the infrared beam passing a first portion of the beam through the beam splitter along a first direction and reflecting the remaining portion along a different direction; a first infrared detector for receiving the beam reflected portion from the beam splitter and produce electric signals responsive thereto; a second infrared detector for receiving the beam portion that passes through the beam splitter and providing electric signals responsive thereto; and means interconnected to themore » first and second infrared detectors and responsive to the electric signals generated by said detectors for determining errors in missile flight direction and communicating course correction information to the missile.« less
Ogawa, Kuniyasu; Sasaki, Tatsuyoshi; Yoneda, Shigeki; Tsujinaka, Kumiko; Asai, Ritsuko
2018-05-17
In order to increase the current density generated in a PEFC (polymer electrolyte fuel cell), a method for measuring the spatial distribution of both the current and the water content of the MEA (membrane electrode assembly) is necessary. Based on the frequency shifts of NMR (nuclear magnetic resonance) signals acquired from the water contained in the MEA using 49 NMR coils in a 7 × 7 arrangement inserted in the PEFC, a method for measuring the two-dimensional spatial distribution of electric current generated in a unit cell with a power generation area of 140 mm × 160 mm was devised. We also developed an inverse analysis method to determine the two-dimensional electric current distribution that can be applied to actual PEFC connections. Two analytical techniques, namely coarse graining of segments and stepwise search, were used to shorten the calculation time required for inverse analysis of the electric current map. Using this method and techniques, spatial distributions of electric current and water content in the MEA were obtained when the PEFC generated electric power at 100 A. Copyright © 2018 Elsevier Inc. All rights reserved.
Liu, Tong; Yang, Li-Jun; Wang, Li-Jun; Wang, Lang-Ping
2014-02-01
An approach to detecting laser-induced plasma using passive probe was brought up. The plasma of laser welding was studied by using a synchronous electric and spectral information acquisition system, the laser-induced plasma was detected by a passive electric probe and fiber spectrometer, the electrical signal was analyzed on the basis of the theory of plasma sheath, and the temperature of laser-induced plasma was calculated by using the method of relative spectral intensity. The analysis results from electrical signal and spectral one were compared. Calculation results of three kinds of surface circumstances, which were respectively coated by KF, TiO2 and without coating, were compared. The factors affecting the detection accuracy were studied. The results indicated that the results calculated by passive probe matched that by spectral signal basically, and the accuracy was affected by ions mass of the plasma. The designed passive electric probe can be used to reflect the continuous fluctuation of electron temperature of the generated plasma, and monitor the laser-induced plasma.
NASA Astrophysics Data System (ADS)
Cartwright-Taylor, A. L.; Sammonds, P. R.; Vallianatos, F.
2016-12-01
We recorded spontaneous electric current flow in non-piezoelectric Carrara marble samples during triaxial deformation. Mechanical data, ultrasonic velocities and acoustic emissions were acquired simultaneously with electric current to constrain the relationship between electric current flow, differential stress and damage. Under strain-controlled loading, spontaneous electric current signals (nA) were generated and sustained under all conditions tested. In dry samples, a detectable electric current arises only during dilatancy and is correlated with the damage induced by microcracking. Signal variations with confining pressure correspond to microcrack suppression, while variations with strain rate are associated with time-dependent differences in deformation mechanism across the brittle to semi-brittle transition. In the brittle regime, the signal exhibits a precursory change as damage localises and the stress drop accelerates towards failure. This change is particularly distinct at dynamic strain rates. Similar changes are seen in the semi-brittle regime although the signal is more oscillatory in nature. Current flow in dry samples is proportional to stress within 90% of peak stress. In fluid-saturated samples proportionality holds from 40% peak stress, with a significant increase in the rate of current production from 90% peak stress associated with fluid flow during dilatancy. This direct relationship demonstrates that electric current could be used as a proxy for stress, indicating when the rock is reaching the limit of its strength. The experimental power law relationship between electric current and strain rate, which mirrors the power-law creep equation, supports this observation. High-frequency fluctuations of electric current are not normally distributed - they exhibit `heavy-tails'. We model these distributions with q-Gaussian statistics and evolution of the q-parameter during deformation reveals a two-stage precursory anomaly prior to sample failure, consistent with the acoustic emissions b-value and stress intensity evolution as modelled from fracture mechanics. Our findings support the idea that electric currents in the crust can be generated purely from solid state fracture processes and that these currents may reflect the stress state within the damaged rock.
High bandwidth magnetically isolated signal transmission circuit
NASA Technical Reports Server (NTRS)
Repp, John Donald (Inventor)
2005-01-01
Many current electronic systems incorporate expensive or sensitive electrical components. Because electrical energy is often generated or transmitted at high voltages, the power supplies to these electronic systems must be carefully designed. Power supply design must ensure that the electrical system being supplied with power is not exposed to excessive voltages or currents. In order to isolate power supplies from electrical equipment, many methods have been employed. These methods typically involve control systems or signal transfer methods. However, these methods are not always suitable because of their drawbacks. The present invention relates to transmitting information across an interface. More specifically, the present invention provides an apparatus for transmitting both AC and DC information across a high bandwidth magnetic interface with low distortion.
Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul.
Alavi, S E; Soltanian, M R K; Amiri, I S; Khalily, M; Supa'at, A S M; Ahmad, H
2016-01-27
5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated.
Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul
Alavi, S. E.; Soltanian, M. R. K.; Amiri, I. S.; Khalily, M.; Supa’at, A. S. M.; Ahmad, H.
2016-01-01
5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated. PMID:26814621
Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul
NASA Astrophysics Data System (ADS)
Alavi, S. E.; Soltanian, M. R. K.; Amiri, I. S.; Khalily, M.; Supa'At, A. S. M.; Ahmad, H.
2016-01-01
5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated.
Digital gate pulse generator for cycloconverter control
Klein, Frederick F.; Mutone, Gioacchino A.
1989-01-01
The present invention provides a digital gate pulse generator which controls the output of a cycloconverter used for electrical power conversion applications by determining the timing and delivery of the firing pulses to the switching devices in the cycloconverter. Previous gate pulse generators have been built with largely analog or discrete digital circuitry which require many precision components and periodic adjustment. The gate pulse generator of the present invention utilizes digital techniques and a predetermined series of values to develop the necessary timing signals for firing the switching device. Each timing signal is compared with a reference signal to determine the exact firing time. The present invention is significantly more compact than previous gate pulse generators, responds quickly to changes in the output demand and requires only one precision component and no adjustments.
THz-wave sensing via pump and signal wave detection interacted with evanescent THz waves.
Akiba, Takuya; Kaneko, Naoya; Suizu, Koji; Miyamoto, Katsuhiko; Omatsu, Takashige
2013-09-15
We report a novel sensing technique that uses an evanescent terahertz (THz) wave, without detecting the THz wave directly. When a THz wave generated by Cherenkov phase matching via difference frequency generation undergoes total internal reflection, the evanescent THz wave is subject to a phase change and an amplitude decrease. The reflected THz wave, under the influence of the sample, interferes with the propagating THz wave and the changing electric field of the THz wave interacts with the electric field of the pump waves. We demonstrate a sensing technique for detecting changes in the electric field of near-infrared light, transcribed from changes in the electric field of a THz wave.
Mastication noise reduction method for fully implantable hearing aid using piezo-electric sensor.
Na, Sung Dae; Lee, Gihyoun; Wei, Qun; Seong, Ki Woong; Cho, Jin Ho; Kim, Myoung Nam
2017-07-20
Fully implantable hearing devices (FIHDs) can be affected by generated biomechanical noise such as mastication noise. To reduce the mastication noise using a piezo-electric sensor, the mastication noise is measured with the piezo-electric sensor, and noise reduction is practiced by the energy difference. For the experiment on mastication noise, a skull model was designed using artificial skull model and a piezo-electric sensor that can measure the vibration signals better than other sensors. A 1 kHz pure-tone sound through a standard speaker was applied to the model while the lower jawbone of the model was moved in a masticatory fashion. The correlation coefficients and signal-to-noise ratio (SNR) before and after application of the proposed method were compared. It was found that the signal-to-noise ratio and correlation coefficients increased by 4.48 dB and 0.45, respectively. The mastication noise is measured by piezo-electric sensor as the mastication noise that occurred during vibration. In addition, the noise was reduced by using the proposed method in conjunction with MATLAB. In order to confirm the performance of the proposed method, the correlation coefficients and signal-to-noise ratio before and after signal processing were calculated. In the future, an implantable microphone for real-time processing will be developed.
Fiber-optic delay-line stabilization of heterodyne optical signal generator and method using same
NASA Technical Reports Server (NTRS)
Logan, Ronald T. (Inventor)
1997-01-01
The present invention is a laser heterodyne frequency generator system with a stabilizer for use in the microwave and millimeter-wave frequency ranges utilizing a photonic mixer as a photonic phase detector in a stable optical fiber delay-line. Phase and frequency fluctuations of the heterodyne laser signal generators are stabilized at microwave and millimeter wave frequencies by a delay line system operating as a frequency discriminator. The present invention is free from amplifier and mixer 1/.function. noise at microwave and millimeter-wave frequencies that typically limit phase noise performance in electronic cavity stabilized electronic oscillators. Thus, 1/.function. noise due to conventional mixers is eliminated and stable optical heterodyne generation of electrical signals is achieved.
Mechanisms and Methods for Selective Wavelength Filtering
NASA Technical Reports Server (NTRS)
Tuma, Margaret (Inventor); Brown, Thomas G. (Inventor); Gruhlke, Russell (Inventor)
2007-01-01
An optical filter includes a dielectric waveguide layer, supporting waveguide modes at specific wavelengths and receiving incident light, a corrugated film layer, composed of one of a metal and a semiconductor and positioned adjacent to a second surface of the waveguide layer and a sensor layer, wherein the sensor layer is capable of absorbing optical energy and generating a corresponding electrical signal. The metal film layer supports a plurality of plasmons, the plurality of plasmons producing a first field and is excited by a transverse mode of the waveguide modes at a wavelength interval. The first field penetrates the sensor layer and the sensor layer generates an electrical signal corresponding to an intensity of received incident light within the wavelength interval.
Analysis of the transfer function for layered piezoelectric ultrasonic sensors
NASA Astrophysics Data System (ADS)
Gutiérrrez-Reyes, E.; García-Segundo, C.; García-Valenzuela, A.; Reyes-Ramírez, B.; Gutiérrez-Juárez, G.; Guadarrama-Santana, A.
2017-06-01
We model theoretically the voltage response to an acoustic pulse of a multilayer system forming a low noise capacitive sensor including a Polyvinylidene Fluoride piezoelectric film. First we model a generic piezoelectric detector consisting of a piezoelectric film between two metallic electrodes that are the responsible to convert the acoustic signal into a voltage signal. Then we calculate the pressure-to-voltage transfer function for a N-layer piezo-electric capacitor detector, allowing to study the effects of the electrode and protective layers thickness in typical layered piezoelectric sensors. The derived transfer function, when multiplied by the Fourier transform of the incident acoustic pulse, gives the voltage electric response in the frequency domain. An important concern regarding the transfer function is that it may have zeros at specific frequencies, and thus inverting the voltage Fourier transform of the pulse to recover the pressure signal in the time domain is not always, in principle, possible. Our formulas can be used to predict the existence and locations of such zeroes. We illustrate the use of the transfer function by predicting the electric signal generated at a multilayer piezoelectric sensor to an ultrasonic pulse generated photoacoustically by a laser pulse at a three media system with impedance mismatch. This theoretical calculations are compared with our own experimental measurements.
NASA Astrophysics Data System (ADS)
Fan, Qingju; Wu, Yonghong
2015-08-01
In this paper, we develop a new method for the multifractal characterization of two-dimensional nonstationary signal, which is based on the detrended fluctuation analysis (DFA). By applying to two artificially generated signals of two-component ARFIMA process and binomial multifractal model, we show that the new method can reliably determine the multifractal scaling behavior of two-dimensional signal. We also illustrate the applications of this method in finance and physiology. The analyzing results exhibit that the two-dimensional signals under investigation are power-law correlations, and the electricity market consists of electricity price and trading volume is multifractal, while the two-dimensional EEG signal in sleep recorded for a single patient is weak multifractal. The new method based on the detrended fluctuation analysis may add diagnostic power to existing statistical methods.
Venugopal, G; Deepak, P; Ghosh, Diptasree M; Ramakrishnan, S
2017-11-01
Surface electromyography is a non-invasive technique used for recording the electrical activity of neuromuscular systems. These signals are random, complex and multi-component. There are several techniques to extract information about the force exerted by muscles during any activity. This work attempts to generate surface electromyography signals for various magnitudes of force under isometric non-fatigue and fatigue conditions using a feedback model. The model is based on existing current distribution, volume conductor relations, the feedback control algorithm for rate coding and generation of firing pattern. The result shows that synthetic surface electromyography signals are highly complex in both non-fatigue and fatigue conditions. Furthermore, surface electromyography signals have higher amplitude and lower frequency under fatigue condition. This model can be used to study the influence of various signal parameters under fatigue and non-fatigue conditions.
NASA Astrophysics Data System (ADS)
Wu, Tonggen; Ma, Jianxin
2017-12-01
This paper proposes an original scheme to generate the photonic dual-tone optical millimeter wave (MMW) carrying the 16-star quadrature-amplitude-modulation (QAM) signal via an optical phase modulator (PM) and an interleaver with adaptive photonic frequency-nonupling without phase precoding. To enable the generated optical vector MMW signal to resist the power fading effect caused by the fiber chromatic dispersion, the modulated -5th- and +4th-order sidebands are selected from the output of the PM, which is driven by the precoding 16-star QAM signal. The modulation index of the PM is optimized to gain the maximum opto-electrical conversion efficiency. A radio over fiber link is built by simulation, and the simulated constellations and the bit error rate graph demonstrate that the frequency-nonupling 16-star QAM MMW signal has good transmission performance. The simulation results agree well with our theoretical results.
Real-time wideband cylindrical holographic surveillance system
Sheen, D.M.; McMakin, D.L.; Hall, T.E.; Severtsen, R.H.
1999-01-12
A wideband holographic cylindrical surveillance system is disclosed including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply Fast Fourier Transforms and obtain a three dimensional cylindrical image. 13 figs.
Radar signal transmission and switching over optical networks
NASA Astrophysics Data System (ADS)
Esmail, Maged A.; Ragheb, Amr; Seleem, Hussein; Fathallah, Habib; Alshebeili, Saleh
2018-03-01
In this paper, we experimentally demonstrate a radar signal distribution over optical networks. The use of fiber enables us to distribute radar signals to distant sites with a low power loss. Moreover, fiber networks can reduce the radar system cost, by sharing precise and expensive radar signal generation and processing equipment. In order to overcome the bandwidth challenges in electrical switches, a semiconductor optical amplifier (SOA) is used as an all-optical device for wavelength conversion to the desired port (or channel) of a wavelength division multiplexing (WDM) network. Moreover, the effect of chromatic dispersion in double sideband (DSB) signals is combated by generating optical single sideband (OSSB) signals. The optimal values of the SOA device parameters required to generate an OSSB with a high sideband suppression ratio (SSR) are determined. We considered various parameters such as injection current, pump power, and probe power. In addition, the effect of signal wavelength conversion and transmission over fiber are studied in terms of signal dynamic range.
Sinnett, Philip M; Markham, Michael R
2015-05-01
Energetic demands of social communication signals can constrain signal duration, repetition, and magnitude. The metabolic costs of communication signals are further magnified when they are coupled to active sensory systems that require constant signal generation. Under such circumstances, metabolic stress incurs additional risk because energy shortfalls could degrade sensory system performance as well as the social functions of the communication signal. The weakly electric fish Eigenmannia virescens generates electric organ discharges (EODs) that serve as both active sensory and communication signals. These EODs are maintained at steady frequencies of 200-600Hz throughout the lifespan, and thus represent a substantial metabolic investment. We investigated the effects of metabolic stress (food deprivation) on EOD amplitude (EODa) and EOD frequency (EODf) in E. virescens and found that only EODa decreases during food deprivation and recovers after restoration of feeding. Cortisol did not alter EODa under any conditions, and plasma cortisol levels were not changed by food deprivation. Both melanocortin hormones and social challenges caused transient EODa increases in both food-deprived and well-fed fish. Intramuscular injections of leptin increased EODa in food-deprived fish but not well-fed fish, identifying leptin as a novel regulator of EODa and suggesting that leptin mediates EODa responses to metabolic stress. The sensitivity of EODa to dietary energy availability likely arises because of the extreme energetic costs of EOD production in E. virescens and also could reflect reproductive strategies of iteroparous species that reduce social signaling and reproduction during periods of stress to later resume reproductive efforts when conditions improve. Copyright © 2015. Published by Elsevier Inc.
Piezoelectric particle accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemp, Mark A.; Jongewaard, Erik N.; Haase, Andrew A.
2017-08-29
A particle accelerator is provided that includes a piezoelectric accelerator element, where the piezoelectric accelerator element includes a hollow cylindrical shape, and an input transducer, where the input transducer is disposed to provide an input signal to the piezoelectric accelerator element, where the input signal induces a mechanical excitation of the piezoelectric accelerator element, where the mechanical excitation is capable of generating a piezoelectric electric field proximal to an axis of the cylindrical shape, where the piezoelectric accelerator is configured to accelerate a charged particle longitudinally along the axis of the cylindrical shape according to the piezoelectric electric field.
Code of Federal Regulations, 2014 CFR
2014-04-01
... within whose jurisdiction such purchaser or purchasers distribute and sell electric energy at retail, a... operator's automatic generation control signal in order to correct for actual or expected Area Control...
Code of Federal Regulations, 2013 CFR
2013-04-01
... within whose jurisdiction such purchaser or purchasers distribute and sell electric energy at retail, a... operator's automatic generation control signal in order to correct for actual or expected Area Control...
Code of Federal Regulations, 2012 CFR
2012-04-01
... within whose jurisdiction such purchaser or purchasers distribute and sell electric energy at retail, a... operator's automatic generation control signal in order to correct for actual or expected Area Control...
Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro
NASA Astrophysics Data System (ADS)
Jin, Jing; Tian, Hai-Ting; Pan, Xiong; Song, Ning-Fang
2010-03-01
The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed-loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted.
NASA Technical Reports Server (NTRS)
Yao, X. S.; Maleki, L.
1995-01-01
We report a novel oscillator for photonic RF systems. This oscillator is capable of generating high-frequency signals up to 70 GHz in both electrical and optical domains and is a special voltage-controlled oscillator with an optical output port. It can be used to make a phase-locked loop (PLL) and perform all functions that a PLL is capable of for photonic systems. It can be synchronized to a reference source by means of optical injection locking, electrical injection locking, and PLL. It can also be self-phase locked and self-injection locked to generate a high-stability photonic RF reference. Its applications include high-frequency reference regeneration and distribution, high-gain frequency multiplication, comb-frequecy and square-wave generation, carrier recovery, and clock recovery. We anticipate that such photonic voltage-controlled oscillators (VCOs) will be as important to photonic RF systems as electrical VCOs are to electrical RF systems.
In situ calibration of a light source in a sensor device
Okandan, Murat; Serkland, Darwin k.; Merchant, Bion J.
2015-12-29
A sensor device is described herein, wherein the sensor device includes an optical measurement system, such as an interferometer. The sensor device further includes a low-power light source that is configured to emit an optical signal having a constant wavelength, wherein accuracy of a measurement output by the sensor device is dependent upon the optical signal having the constant wavelength. At least a portion of the optical signal is directed to a vapor cell, the vapor cell including an atomic species that absorbs light having the constant wavelength. A photodetector captures light that exits the vapor cell, and generates an electrical signal that is indicative of intensity of the light that exits the vapor cell. A control circuit controls operation of the light source based upon the electrical signal, such that the light source emits the optical signal with the constant wavelength.
Ion-beam apparatus and method for analyzing and controlling integrated circuits
Campbell, A.N.; Soden, J.M.
1998-12-01
An ion-beam apparatus and method for analyzing and controlling integrated circuits are disclosed. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal. 4 figs.
Ion-beam apparatus and method for analyzing and controlling integrated circuits
Campbell, Ann N.; Soden, Jerry M.
1998-01-01
An ion-beam apparatus and method for analyzing and controlling integrated circuits. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal.
Automatic control of electric thermal storage (heat) under real-time pricing. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daryanian, B.; Tabors, R.D.; Bohn, R.E.
1995-01-01
Real-time pricing (RTP) can be used by electric utilities as a control signal for responsive demand-side management (DSM) programs. Electric thermal storage (ETS) systems in buildings provide the inherent flexibility needed to take advantage of variations in prices. Under RTP, optimal performance for ETS operations is achieved under market conditions where reductions in customers` costs coincide with the lowering of the cost of service for electric utilities. The RTP signal conveys the time-varying actual marginal cost of the electric service to customers. The RTP rate is a combination of various cost components, including marginal generation fuel and maintenance costs, marginalmore » costs of transmission and distribution losses, and marginal quality of supply and transmission costs. This report describes the results of an experiment in automatic control of heat storage systems under RTP during the winter seasons of 1989--90 and 1990--91.« less
Torque control for electric motors
NASA Technical Reports Server (NTRS)
Bernard, C. A.
1980-01-01
Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.
Memory-Metal Electromechanical Actuators
NASA Technical Reports Server (NTRS)
Ruoff, C. F.
1984-01-01
Electrically controlled actuator produces predetermined force, torque, or displacement without motors, solenoids, or gears. Using memory-metal elements, actuator responds to digital input without electronic digitalto-analog conversion. To prevent overheating and consequent loss of hotformed shape, each element protected by thermostat turns off current when predetermined temperature is exceeded. Memory metals used to generate fast mechanical response to electric signals.
Analysis of electrical transients created by lightning
NASA Technical Reports Server (NTRS)
Nanevicz, J. E.; Vance, E. F.
1980-01-01
A series of flight tests was conducted using a specially-instrumented NASA Learjet to study the electrical transients created on an aircraft by nearby lightning. The instrumentation included provisions for the time-domain and frequency-domain recording of the electrical signals induced in sensors located both on the exterior and on the interior of the aircraft. The design and calibration of the sensors and associated measuring systems is described together with the results of the flight test measurements. The results indicate that the concept of providing instrumentation to follow the lightning signal from propagation field, to aircraft skin current, to current on interior wiring is basically sound. The results of the measurement indicate that the high frequency signals associated with lightning stroke precursor activity are important in generating electromagnetic noise on the interior of the aircraft. Indeed, the signals produced by the precursors are often of higher amplitude and of longer duration that the pulse produced by the main return stroke.
Interrogator system for identifying electrical circuits
Jatko, W.B.; McNeilly, D.R.
1988-04-12
A system for interrogating electrical leads to correctly ascertain the identity of equipment attached to remote ends of the leads is disclosed. The system includes a source of a carrier signal generated in a controller/receiver to be sent over the leads and an identifier unit at the equipment. The identifier is activated by command of the carrier and uses a portion of the carrier to produce a supply voltage. Each identifier is uniquely programmed for a specific piece of equipment, and causes the impedance of the circuit to be modified whereby the carrier signal is modulated according to that program. The modulation can be amplitude, frequency or phase modulation. A demodulator in the controller/receiver analyzes the modulated carrier signal, and if a verified signal is recognized displays and/or records the information. This information can be utilized in a computer system to prepare a wiring diagram of the electrical equipment attached to specific leads. Specific circuit values are given for amplitude modulation, and the system is particularly described for use with thermocouples. 6 figs.
Interrogator system for identifying electrical circuits
Jatko, William B.; McNeilly, David R.
1988-01-01
A system for interrogating electrical leads to correctly ascertain the identity of equipment attached to remote ends of the leads. The system includes a source of a carrier signal generated in a controller/receiver to be sent over the leads and an identifier unit at the equipment. The identifier is activated by command of the carrier and uses a portion of the carrier to produce a supply voltage. Each identifier is uniquely programmed for a specific piece of equipment, and causes the impedance of the circuit to be modified whereby the carrier signal is modulated according to that program. The modulation can be amplitude, frequency or phase modulation. A demodulator in the controller/receiver analyzes the modulated carrier signal, and if a verified signal is recognized displays and/or records the information. This information can be utilized in a computer system to prepare a wiring diagram of the electrical equipment attached to specific leads. Specific circuit values are given for amplitude modulation, and the system is particularly described for use with thermocouples.
Parallel phase-sensitive three-dimensional imaging camera
Smithpeter, Colin L.; Hoover, Eddie R.; Pain, Bedabrata; Hancock, Bruce R.; Nellums, Robert O.
2007-09-25
An apparatus is disclosed for generating a three-dimensional (3-D) image of a scene illuminated by a pulsed light source (e.g. a laser or light-emitting diode). The apparatus, referred to as a phase-sensitive 3-D imaging camera utilizes a two-dimensional (2-D) array of photodetectors to receive light that is reflected or scattered from the scene and processes an electrical output signal from each photodetector in the 2-D array in parallel using multiple modulators, each having inputs of the photodetector output signal and a reference signal, with the reference signal provided to each modulator having a different phase delay. The output from each modulator is provided to a computational unit which can be used to generate intensity and range information for use in generating a 3-D image of the scene. The 3-D camera is capable of generating a 3-D image using a single pulse of light, or alternately can be used to generate subsequent 3-D images with each additional pulse of light.
Automatic lightning detection and photographic system
NASA Technical Reports Server (NTRS)
Wojtasinski, R. J.; Holley, L. D.; Gray, J. L.; Hoover, R. B. (Inventor)
1972-01-01
A system is presented for monitoring and recording lightning strokes within a predetermined area with a camera having an electrically operated shutter with means for advancing the film in the camera after activating the shutter. The system includes an antenna for sensing lightning strikes which, in turn, generates a signal that is fed to an electronic circuit which generates signals for operating the shutter of the camera. Circuitry is provided for preventing activation of the shutter as the film in the camera is being advanced.
NASA Astrophysics Data System (ADS)
Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.
2011-06-01
Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning-related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401-867 km). Lightning-generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.
NASA Technical Reports Server (NTRS)
Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.
2011-01-01
Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning ]related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401.867 km). Lightning ]generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.
Thermal emf generated by laser emission along thin metal films
NASA Astrophysics Data System (ADS)
Konov, V. I.; Nikitin, P. I.; Satiukov, D. G.; Uglov, S. A.
1991-07-01
Substantial pulse thermal emf values (about 1.5 V) have been detected along the substrate during the interaction of laser emission with thin metal films (Ni, Ti, and Bi) sprayed on corrugated substrates. Relationships are established between the irradiation conditions and parameters of the generated electrical signals. Possible mechanisms of thermal emf generation and promising applications are discussed.
NASA Astrophysics Data System (ADS)
Karashtin, E. A.; Fraerman, A. A.
2018-04-01
We report a theoretical study of the second harmonic generation in a noncollinearly magnetized conductive medium with equilibrium spin current. The hydrodynamic model is used to unravel the mechanism of a novel effect of the double frequency signal generation that is attributed to the spin current. According to our calculations, this second harmonic response appears due to the ‘non-adiabatic’ spin polarization of the conduction electrons induced by the oscillations in the non-uniform magnetization forced by the electric field of the electromagnetic wave. Together with the linear velocity response this leads to the generation of the double frequency spin current. This spin current is converted to the electric current via the inverse spin Hall effect, and the double-frequency electric current emits the second harmonic radiation. Possible experiment for detection of the new second harmonic effect is proposed.
Corrected Four-Sphere Head Model for EEG Signals.
Næss, Solveig; Chintaluri, Chaitanya; Ness, Torbjørn V; Dale, Anders M; Einevoll, Gaute T; Wójcik, Daniel K
2017-01-01
The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM). We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations.
Corrected Four-Sphere Head Model for EEG Signals
Næss, Solveig; Chintaluri, Chaitanya; Ness, Torbjørn V.; Dale, Anders M.; Einevoll, Gaute T.; Wójcik, Daniel K.
2017-01-01
The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM). We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations. PMID:29093671
Apparatus for measuring surface movement of an object that is subjected to external vibrations
Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.
1997-01-01
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.
Furnace control apparatus using polarizing interferometer
Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.
1995-01-01
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.
Polarizing optical interferometer having a dual use optical element
Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.
1995-04-04
A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.
Process control system using polarizing interferometer
Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.
1994-02-15
A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.
Polarizing optical interferometer having a dual use optical element
Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.
1995-01-01
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.
Process control system using polarizing interferometer
Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.
1994-01-01
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.
Furnace control apparatus using polarizing interferometer
Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.
1995-03-28
A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.
Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.
1995-01-01
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.
Method and apparatus for measuring surface movement of an object using a polarizing interfeometer
Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.
1995-01-01
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.
Method and apparatus for measuring surface movement of an object using a polarizing interferometer
Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.
1995-05-09
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figs.
Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.
1995-04-25
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figs.
Apparatus for measuring surface movement of an object that is subjected to external vibrations
Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.
1997-04-22
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Liang; Yang, Yi; Harley, Ronald Gordon
A system is for a plurality of different electric load types. The system includes a plurality of sensors structured to sense a voltage signal and a current signal for each of the different electric loads; and a processor. The processor acquires a voltage and current waveform from the sensors for a corresponding one of the different electric load types; calculates a power or current RMS profile of the waveform; quantizes the power or current RMS profile into a set of quantized state-values; evaluates a state-duration for each of the quantized state-values; evaluates a plurality of state-types based on the powermore » or current RMS profile and the quantized state-values; generates a state-sequence that describes a corresponding finite state machine model of a generalized load start-up or transient profile for the corresponding electric load type; and identifies the corresponding electric load type.« less
Redox active polymer devices and methods of using and manufacturing the same
Johnson, Paul; Bautista-Martinez, Jose Antonio; Friesen, Cody; Switzer, Elise
2018-06-05
The disclosed technology relates generally to apparatus comprising conductive polymers and more particularly to tag and tag devices comprising a redox-active polymer film, and method of using and manufacturing the same. In one aspect, an apparatus includes a substrate and a conductive structure formed on the substrate which includes a layer of redox-active polymer film having mobile ions and electrons. The conductive structure further includes a first terminal and a second terminal configured to receive an electrical signal therebetween, where the layer of redox-active polymer is configured to conduct an electrical current generated by the mobile ions and the electrons in response to the electrical signal. The apparatus additionally includes a detection circuit operatively coupled to the conductive structure and configured to detect the electrical current flowing through the conductive structure.
BPSK optical mm-wave signal generation by septupling frequency via a single optical phase modulator
NASA Astrophysics Data System (ADS)
Wu, Peng; Ma, Jianxin
2016-09-01
In this paper, we have proposed a novel and simple scheme to generate the BPSK optical millimeter wave (MMW) signal with frequency septupling by using an optical phase modulator (PM) and a wavelength selective switch (WSS). In this scheme, the PM is driven by a radio frequency (RF) BPSK signal at the optimized modulation index of 4.89 to assure the 4th and 3rd-order sidebands have equal amplitudes. An wavelength selective switch (WSS) is used to abstract the -4th and +3rd-order sidebands from the spectrum generated by RF BPSK signal modulating the lightwave to form the BPSK optical MMW signal with frequency septupling the driving RF signal. In these two tones, only the +3rd-order sideband bears the BPSK signal while the -4th-order sideband is unmodulated since the phase information is canceled by the even times multiplication of the phase of BPSK signal. The MMW signal can avoid the pulse walk-off effect and the amplitude fading effect caused by the fiber chromatic dispersion. By adjusting the modulation index to assure the two tones have equal amplitude, the generated optical MMW signal has the maximal opto-electrical conversion efficiency and good transmission performance.
NASA Astrophysics Data System (ADS)
Katsuno, Takashi; Manaka, Takaaki; Soejima, Narumasa; Iwamoto, Mitsumasa
2017-02-01
Trapped charges underneath the field-plate (FP) in a p-gallium nitride (GaN) gate AlGaN/ GaN high electron mobility transistor device were visualized by using electric field-induced optical second-harmonic generation imaging. Second-harmonic (SH) signals in the off-state of the device with FP indicated that the electric field decreased at the p-GaN gate edge and concentrated at the FP edge. Nevertheless, SH signals originating from trapped charges were slightly observed at the p-GaN gate edge and were not observed at the FP edge in the on-state. Compared with the device without FP, reduction of trapped charges at the p-GaN gate edge of the device with FP is attributed to attenuation of the electric field with the aid of the FP. Negligible trapped charges at the FP edge is owing to lower trap density of the SiO2/AlGaN interface at the FP edge compared with that of the SiO2/p-GaN sidewall interface at the p-GaN gate edge and attenuated electric field by the thickness of the SiO2 passivation layer on the AlGaN surface.
Infrared signal generation from AC induction field heating of graphite foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klett, James W.; Rios, Orlando
A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam to produce light. An energy conversion device utilizes light energy from the heated graphite foam to perform a light energy consuming function. A device for producing light and a method of converting energy are also disclosed.
Decompositions of injection patterns for nodal flow allocation in renewable electricity networks
NASA Astrophysics Data System (ADS)
Schäfer, Mirko; Tranberg, Bo; Hempel, Sabrina; Schramm, Stefan; Greiner, Martin
2017-08-01
The large-scale integration of fluctuating renewable power generation represents a challenge to the technical and economical design of a sustainable future electricity system. In this context, the increasing significance of long-range power transmission calls for innovative methods to understand the emerging complex flow patterns and to integrate price signals about the respective infrastructure needs into the energy market design. We introduce a decomposition method of injection patterns. Contrary to standard flow tracing approaches, it provides nodal allocations of link flows and costs in electricity networks by decomposing the network injection pattern into market-inspired elementary import/export building blocks. We apply the new approach to a simplified data-driven model of a European electricity grid with a high share of renewable wind and solar power generation.
M-CARS and EFISHG study of the influence of a static electric field on a non-polar molecule
NASA Astrophysics Data System (ADS)
Capitaine, E.; Louot, C.; Ould-Moussa, N.; Lefort, C.; Kaneyasu, J. F.; Kano, H.; Pagnoux, D.; Couderc, V.; Leproux, P.
2016-03-01
The influence of a static electric field on a non-polar molecule has been studied by means of multiplex coherent anti-Stokes Raman scattering (M-CARS). A parallel measurement of electric field induced second harmonic generation (EFISHG) has also been led. Both techniques suggest a reorientation of the molecule due to the presence of an electric field. This phenomenon can be used to increase the chemical selectivity and the signal to non-resonant background ratio, namely, the sensitivity of the M-CARS spectroscopy.
Hietala, V.M.; Vawter, G.A.
1993-12-14
The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.
Hietala, Vincent M.; Vawter, Gregory A.
1993-01-01
The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.
USDA-ARS?s Scientific Manuscript database
A 3rd-generation AC-DC electrical penetration graph (EPG) monitor was used to study feeding behaviors of pre-reproductive adult Lygus lineolaris (Hemiptera: Miridae) on pinhead (<3mm) cotton squares, applying different signal voltages at several input impedances. The AC-DC monitor allows a user to s...
NASA Astrophysics Data System (ADS)
Goldberg, Benjamin M.; Chng, Tat Loon; Dogariu, Arthur; Miles, Richard B.
2018-02-01
We present an optical electric field measurement method for use in high pressure plasma discharges. The method is based upon the field induced second harmonic generation technique and can be used for localized electric field measurements with sub-nanosecond resolution in any gaseous species. When an external electric field is present, a dipole is induced in the typically centrosymmetric medium, allowing for second harmonic generation with signal intensities which scale by the square of the electric field. Calibrations have been carried out in 100 Torr room air, and a minimum sensitivity of 450 V/cm is demonstrated. Measurements were performed with nanosecond or faster temporal resolution in a 100 Torr room air environment both with and without a plasma present. It was shown that with no plasma present, the field follows the applied voltage to gap ratio, as measured using the back current shunt method. When the electric field is strong enough to exceed the breakdown threshold, the measured field was shown to exceed the anticipated voltage to gap ratio which is taken as an indication of the ionization wave front as it sweeps through the plasma volume.
NASA Astrophysics Data System (ADS)
Wang, Yunxin; Li, Jingnan; Wang, Dayong; Zhou, Tao; Xu, Jiahao; Zhong, Xin; Yang, Dengcai; Rong, Lu
2018-03-01
An ultra-wideband microwave photonic frequency downconverter is proposed based on carrier-suppressed single-sideband (CS-SSB) modulation. A radio frequency (RF) signal and a local oscillator (LO) signal are combined to drive a dual-parallel Mach-Zehnder modulator (DPMZM) through the electrical 90°hybrid coupler. To break through the bandwidth limit, an optical bandpass filter (OBPF) is applied simultaneously. Then a photodetector (PD) after OBPF is used to obtain intermediate frequency (IF) signal. Experimental results demonstrate that the proposed frequency downconverter can generate the CS-SSB modulation signal from 2 to 40 GHz in optical spectrum. All the mixing spurs are completely suppressed under the noise floor in electrical spectrum, and the output IF signal possesses high purity with a suppression ratio of the undesired signals (≥40 dB). Furthermore, the multi-octave downconversion can also be implemented to satisfy the bandwidth requirement of multi-channel communication. The proposed frequency downconverter supplies an ultra-wideband and high-purity alternative for the signal processing in microwave photonic applications.
On-Chip Power-Combining for High-Power Schottky Diode Based Frequency Multipliers
NASA Technical Reports Server (NTRS)
Siles Perez, Jose Vicente (Inventor); Chattopadhyay, Goutam (Inventor); Lee, Choonsup (Inventor); Schlecht, Erich T. (Inventor); Jung-Kubiak, Cecile D. (Inventor); Mehdi, Imran (Inventor)
2015-01-01
A novel MMIC on-chip power-combined frequency multiplier device and a method of fabricating the same, comprising two or more multiplying structures integrated on a single chip, wherein each of the integrated multiplying structures are electrically identical and each of the multiplying structures include one input antenna (E-probe) for receiving an input signal in the millimeter-wave, submillimeter-wave or terahertz frequency range inputted on the chip, a stripline based input matching network electrically connecting the input antennas to two or more Schottky diodes in a balanced configuration, two or more Schottky diodes that are used as nonlinear semiconductor devices to generate harmonics out of the input signal and produce the multiplied output signal, stripline based output matching networks for transmitting the output signal from the Schottky diodes to an output antenna, and an output antenna (E-probe) for transmitting the output signal off the chip into the output waveguide transmission line.
Integrated control system and method
Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin
2013-10-29
An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.
Connelly, William M; Crunelli, Vincenzo; Errington, Adam C
2015-11-25
Low-threshold Ca(2+) spikes (LTS) are an indispensible signaling mechanism for neurons in areas including the cortex, cerebellum, basal ganglia, and thalamus. They have critical physiological roles and have been strongly associated with disorders including epilepsy, Parkinson's disease, and schizophrenia. However, although dendritic T-type Ca(2+) channels have been implicated in LTS generation, because the properties of low-threshold spiking neuron dendrites are unknown, the precise mechanism has remained elusive. Here, combining data from fluorescence-targeted dendritic recordings and Ca(2+) imaging from low-threshold spiking cells in rat brain slices with computational modeling, the cellular mechanism responsible for LTS generation is established. Our data demonstrate that key somatodendritic electrical conduction properties are highly conserved between glutamatergic thalamocortical neurons and GABAergic thalamic reticular nucleus neurons and that these properties are critical for LTS generation. In particular, the efficiency of soma to dendrite voltage transfer is highly asymmetric in low-threshold spiking cells, and in the somatofugal direction, these neurons are particularly electrotonically compact. Our data demonstrate that LTS have remarkably similar amplitudes and occur synchronously throughout the dendritic tree. In fact, these Ca(2+) spikes cannot occur locally in any part of the cell, and hence we reveal that LTS are generated by a unique whole-cell mechanism that means they always occur as spatially global spikes. This all-or-none, global electrical and biochemical signaling mechanism clearly distinguishes LTS from other signals, including backpropagating action potentials and dendritic Ca(2+)/NMDA spikes, and has important consequences for dendritic function in low-threshold spiking neurons. Low-threshold Ca(2+) spikes (LTS) are critical for important physiological processes, including generation of sleep-related oscillations, and are implicated in disorders including epilepsy, Parkinson's disease, and schizophrenia. However, the mechanism underlying LTS generation in neurons, which is thought to involve dendritic T-type Ca(2+) channels, has remained elusive due to a lack of knowledge of the dendritic properties of low-threshold spiking cells. Combining dendritic recordings, two-photon Ca(2+) imaging, and computational modeling, this study reveals that dendritic properties are highly conserved between two prominent low-threshold spiking neurons and that these properties underpin a whole-cell somatodendritic spike generation mechanism that makes the LTS a unique global electrical and biochemical signal in neurons. Copyright © 2015 Connelly et al.
Microwave generation with photonic frequency octupling using a DPMZM in a Sagnac loop
NASA Astrophysics Data System (ADS)
Gao, Yongsheng; Wen, Aijun; Li, Ningning; Wu, Xiaohui; Zhang, Huixing
2015-09-01
A photonic microwave signal generation scheme with frequency octupling is proposed and experimentally demonstrated. The scheme is based on bi-directional use of a dual-parallel Mach-Zehnder modulator (DPMZM) in a Sagnac loop. The two sub-modulators in the DPMZM are driven by two low-frequency signals with a π/2 phase difference, and the dc biases of the modulator are all set at the maximum transmission points. Due to the velocity mismatch of the modulator, only the light wave along the clockwise direction is effectively modulated by the drive signals to generate an optical signal with a carrier and ±4th order sidebands, while the modulation of the light wave along the counterclockwise direction is far less effective and can be ignored. By properly adjusting the polarization of the light wave output from the Sagnac loop, the optical carrier can be significantly suppressed at a polarizer, and then an optical signal with only ±4th order sidebands is generated. In the experiment, a pure 24-GHz microwave signal without additional phase noise from the optical system is generated using a 3-GHz local oscillator signal. As no electrical or optical filter is used, the photonic frequency octupler is of good frequency tunability.
Circuit for Communication over DC Power Line Using High Temperature Electronics
NASA Technical Reports Server (NTRS)
Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor)
2014-01-01
A high temperature communications circuit includes a power conductor for concurrently conducting electrical energy for powering circuit components and transmitting a modulated data signal, and a demodulator for demodulating the data signal and generating a serial bit stream based on the data signal. The demodulator includes an absolute value amplifier for conditionally inverting or conditionally passing a signal applied to the absolute value amplifier. The absolute value amplifier utilizes no diodes to control the conditional inversion or passing of the signal applied to the absolute value amplifier.
Gryshchenko, Oleksiy; Gerasimenko, Julia V; Peng, Shuang; Gerasimenko, Oleg V; Petersen, Ole H
2018-02-09
Ca 2+ signalling in different cell types in exocrine pancreatic lobules was monitored simultaneously and signalling responses to various stimuli were directly compared. Ca 2+ signals evoked by K + -induced depolarization were recorded from pancreatic nerve cells. Nerve cell stimulation evoked Ca 2+ signals in acinar but not in stellate cells. Stellate cells are not electrically excitable as they, like acinar cells, did not generate Ca 2+ signals in response to membrane depolarization. The responsiveness of the stellate cells to bradykinin was markedly reduced in experimental alcohol-related acute pancreatitis, but they became sensitive to stimulation with trypsin. Our results provide fresh evidence for an important role of stellate cells in acute pancreatitis. They seem to be a critical element in a vicious circle promoting necrotic acinar cell death. Initial trypsin release from a few dying acinar cells generates Ca 2+ signals in the stellate cells, which then in turn damage more acinar cells causing further trypsin liberation. Physiological Ca 2+ signals in pancreatic acinar cells control fluid and enzyme secretion, whereas excessive Ca 2+ signals induced by pathological agents induce destructive processes leading to acute pancreatitis. Ca 2+ signals in the peri-acinar stellate cells may also play a role in the development of acute pancreatitis. In this study, we explored Ca 2+ signalling in the different cell types in the acinar environment of the pancreatic tissue. We have, for the first time, recorded depolarization-evoked Ca 2+ signals in pancreatic nerves and shown that whereas acinar cells receive a functional cholinergic innervation, there is no evidence for functional innervation of the stellate cells. The stellate, like the acinar, cells are not electrically excitable as they do not generate Ca 2+ signals in response to membrane depolarization. The principal agent evoking Ca 2+ signals in the stellate cells is bradykinin, but in experimental alcohol-related acute pancreatitis, these cells become much less responsive to bradykinin and then acquire sensitivity to trypsin. Our new findings have implications for our understanding of the development of acute pancreatitis and we propose a scheme in which Ca 2+ signals in stellate cells provide an amplification loop promoting acinar cell death. Initial release of the proteases kallikrein and trypsin from dying acinar cells can, via bradykinin generation and protease-activated receptors, induce Ca 2+ signals in stellate cells which can then, possibly via nitric oxide generation, damage more acinar cells and thereby cause additional release of proteases, generating a vicious circle. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Bae, S H; Kim, Hoon; Chung, Y C
2016-10-03
We demonstrate the transmission of 51.56-Gb/s on-off keying (OOK) signals generated by using a 1.55-μm directly modulated laser (DML) over 15-km long standard single-mode fiber. In this experiment, a duobinary electrical equalizer based on a finite-impulse-response filter is used at the receiver to increase the dispersion-limited transmission distance. We evaluate the performances of the 51.56-Gb/s OOK signals with respect to the transmission distance by using the frequency response analysis of the proposed system. This result is used to explain why it is effective to utilize the duobinary equalization (instead of binary equalization) for increasing the transmission distance.
ELECTRICAL SIGNALING IN CONTROL OF OCULAR CELL BEHAVIORS
Zhao, Min; Chalmers, Laura; Cao, Lin; Viera, Ana C.; Mannis, Mark; Reid, Brian
2011-01-01
Epithelia of the cornea, lens and retina contain a vast array of ion channels and pumps. Together they produce a polarized flow of ions in and out of cells, as well as across the epithelia. These naturally occurring ion fluxes are essential to the hydration and metabolism of the ocular tissues, especially for the avascular cornea and lens. The directional transport of ions generates electric fields and currents in those tissues. Applied electric fields affect migration, division and proliferation of ocular cells which are important in homeostasis and healing of the ocular tissues. Abnormalities in any of those aspects may underlie many ocular diseases, for example chronic corneal ulcers, posterior capsule opacity after cataract surgery, and retinopathies. Electric field-inducing cellular responses, termed electrical signaling here, therefore may be an unexpected yet powerful mechanism in regulating ocular cell behavior. Both endogenous electric fields and applied electric fields could be exploited to regulate ocular cells. We aim to briefly describe the physiology of the naturally occurring electrical activities in the corneal, lens, and retinal epithelia, to provide experimental evidence of the effects of electric fields on ocular cell behaviors, and to suggest possible clinical implications. PMID:22020127
Innovative on board payload optical architecture for high throughput satellites
NASA Astrophysics Data System (ADS)
Baudet, D.; Braux, B.; Prieur, O.; Hughes, R.; Wilkinson, M.; Latunde-Dada, K.; Jahns, J.; Lohmann, U.; Fey, D.; Karafolas, N.
2017-11-01
For the next generation of HighThroughPut (HTP) Telecommunications Satellites, space end users' needs will result in higher link speeds and an increase in the number of channels; up to 512 channels running at 10Gbits/s. By keeping electrical interconnections based on copper, the constraints in term of power dissipation, number of electrical wires and signal integrity will become too demanding. The replacement of the electrical links by optical links is the most adapted solution as it provides high speed links with low power consumption and no EMC/EMI. But replacing all electrical links by optical links of an On Board Payload (OBP) is challenging. It is not simply a matter of replacing electrical components with optical but rather the whole concept and architecture have to be rethought to achieve a high reliability and high performance optical solution. In this context, this paper will present the concept of an Innovative OBP Optical Architecture. The optical architecture was defined to meet the critical requirements of the application: signal speed, number of channels, space reliability, power dissipation, optical signals crossing and components availability. The resulting architecture is challenging and the need for new developments is highlighted. But this innovative optically interconnected architecture will substantially outperform standard electrical ones.
NASA Astrophysics Data System (ADS)
Horodinca, M.
2016-08-01
This paper intend to propose some new results related with computer aided monitoring of transient regimes on machine-tools based on the evolution of active electrical power absorbed by the electric motor used to drive the main kinematic chains and the evolution of rotational speed and acceleration of the main shaft. The active power is calculated in numerical format using the evolution of instantaneous voltage and current delivered by electrical power system to the electric motor. The rotational speed and acceleration of the main shaft are calculated based on the signal delivered by a sensor. Three real-time analogic signals are acquired with a very simple computer assisted setup which contains a voltage transformer, a current transformer, an AC generator as rotational speed sensor, a data acquisition system and a personal computer. The data processing and analysis was done using Matlab software. Some different transient regimes were investigated; several important conclusions related with the advantages of this monitoring technique were formulated. Many others features of the experimental setup are also available: to supervise the mechanical loading of machine-tools during cutting processes or for diagnosis of machine-tools condition by active electrical power signal analysis in frequency domain.
de Vera, Luis; Pereda, Ernesto; Santana, Alejandro; González, Julián J
2005-03-01
Electroencephalograms of medial cortex and electromyograms of intercostal muscles (EMG-icm) were simultaneously recorded in the lizard, Gallotia galloti, during two daily time periods (at daytime, DTP: 1200-1600 h; by night, NTP: 0000-0400 h), to investigate whether a relationship exists between the respiratory and cortical electrical activity of reptiles, and, if so, how this relationship changes during the night rest period. Testing was carried out by studying interdependence between cortical electrical and respiratory activities, by means of linear and nonlinear signal analysis techniques. Both physiological activities were evaluated through simultaneous power signals, derived from the power of the low-frequency band of the electroencephalogram (pEEG-LF), and from the power of the EMG-icm (pEMG-icm), respectively. During both DTP and NTP, there was a significant coherence between both signals in the main frequency band of pEMG-icm. During both DTP and NTP, the nonlinear index N measured significant linear asymmetric interdependence between pEEG-LF and pEMG-icm. The N value obtained between pEEG-LF vs. pEMG-icm was greater than the one between pEMG-icm vs. pEEG-LF. This means that the system that generates the pEEG-LF is more complex than the one that generates the pEMG-icm, and suggests that the temporal variability of power in the low-frequency cortical electrical activity is driven by the power of the respiratory activity.
DNA Base-Calling from a Nanopore Using a Viterbi Algorithm
Timp, Winston; Comer, Jeffrey; Aksimentiev, Aleksei
2012-01-01
Nanopore-based DNA sequencing is the most promising third-generation sequencing method. It has superior read length, speed, and sample requirements compared with state-of-the-art second-generation methods. However, base-calling still presents substantial difficulty because the resolution of the technique is limited compared with the measured signal/noise ratio. Here we demonstrate a method to decode 3-bp-resolution nanopore electrical measurements into a DNA sequence using a Hidden Markov model. This method shows tremendous potential for accuracy (∼98%), even with a poor signal/noise ratio. PMID:22677395
Method and apparatus for electrospark deposition
Bailey, Jeffrey A.; Johnson, Roger N.; Park, Walter R.; Munley, John T.
2004-12-28
A method and apparatus for controlling electrospark deposition (ESD) comprises using electrical variable waveforms from the ESD process as a feedback parameter. The method comprises measuring a plurality of peak amplitudes from a series of electrical energy pulses delivered to an electrode tip. The maximum peak value from among the plurality of peak amplitudes correlates to the contact force between the electrode tip and a workpiece. The method further comprises comparing the maximum peak value to a set point to determine an offset and optimizing the contact force according to the value of the offset. The apparatus comprises an electrode tip connected to an electrical energy wave generator and an electrical signal sensor, which connects to a high-speed data acquisition card. An actuator provides relative motion between the electrode tip and a workpiece by receiving a feedback drive signal from a processor that is operably connected to the actuator and the high-speed data acquisition card.
NASA Astrophysics Data System (ADS)
Hosokawa, Atsushi
2018-07-01
Experimental and numerical waveforms of piezoelectric signals generated in the bovine cancellous bone by ultrasound waves at 1.0 MHz were observed. The experimental observations were performed using a “piezoelectric cell (PE-cell)”, in which an air-saturated cancellous bone specimen was electrically shielded. The PE-cell was used to receive burst ultrasound waves. The numerical observations were performed using a piezoelectric finite-difference time-domain (PE-FDTD) method, which was an elastic FDTD method with piezoelectric constitutive equations. The cancellous bone model was reconstructed from the three-dimensional X-ray microcomputed tomographic image of the specimen used in the experiments. Both experimental and numerical results showed that the repetitive piezoelectric signals could be generated by the multireflected ultrasound waves within the cancellous bone specimen. Moreover, it was shown that the output piezoelectric signal in the PE-cell could be the overlap of the local signals in the trabecular elements at various depths (or thicknesses) in the cancellous bone specimen.
Nanomaterial-Enabled Neural Stimulation
Wang, Yongchen; Guo, Liang
2016-01-01
Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed. PMID:27013938
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mary A.; Tangyunyong, Paiboon; Cole, Edward I.
2016-01-14
Laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes (LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increased leakage ismore » not present in devices without AVM signals. Transmission electron microscopy analysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less
Miller, Mary A.; Tangyunyong, Paiboon; Edward I. Cole, Jr.
2016-01-12
In this study, laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes(LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increasedmore » leakage is not present in devices without AVM signals. Transmission electron microscopyanalysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less
The Coherer: With Simple Demonstrations of the Generation, Propagation and Detection of Radio Waves
ERIC Educational Resources Information Center
Mills, Allan
2010-01-01
A coherer is a bistable device based on metal filings loosely confined between solid metal electrodes. This granular material normally exhibits a very high electrical resistance (tens of kilohms), but passage of the high-frequency current generated by reception of a radio signal causes it to "cohere" into a comparatively low resistance condition…
MuSET, A High Precision Logging Sensor For Downhole Spontaneous Electrical Potential.
NASA Astrophysics Data System (ADS)
Pezard, P. A.; Gautier, S.; Le Borgne, T.; Deltombe, J.
2008-12-01
MuSET has been designed by ALT and CNRS in the context of the EC ALIANCE research project. It is based on an existing multi-parameter borehole fluid sensor (p, T, Cw, pH, Eh) built by ALT. The new downhole geophysical tool aims to measure subsurface spontaneous electrical potentials (SP) in situ with great precision (< µV). For this, the device includes an unpolazirable Pb/PbCl2 electrode referred to a similar one at surface. Initial field testing in Montpellier (Languedoc, France), Ploemeur (Brittany, France) and Campos (Mallorca, Spain) took advantage of the set of field sites developed as part of ALIANCE then as part of the environmental research observatory (ORE) network for hydrogeology "H+". While Cretaceous marly limestone at Lavalette (Montpellier) proved to be almost exclusively the source of membrane potential, the clay-starved Miocene reefal carbonates of Campos generate a signal dominated by electrokinetic potential. This signal is generated due to nearby agricultural pumping, and associated strong horizontal flow. At the top of the salt to fresh water transtion, a discrepancy between the SP signal and the absence of vertical flow measured with a heat-pulse flowmeter hints at a capacity to detect the "fluid-junction", diffusion potential. At Ploemeur, the altered granite found in the vicinity of faults and fractures is also the source of a SP signal, mostly surface related while most fractures appear to be closed. In all, the MuSET demonstrates a capacity to identify several subsurface sources of natural electrical potential such as diffusion ones (membrane potential in the presence of clays, fickean processes due to pore fluid salinity gradients), or else the electrokinetic potential with pore fluid pressure gradients. While spontaneous electrical currents often loop out of the borehole, MuSET might be used as a radial electrical flowmeter once the diffusion components taken into account.
Structural Health Monitoring and Impact Detection Using Neural Networks for Damage Characterization
NASA Technical Reports Server (NTRS)
Ross, Richard W.
2006-01-01
Detection of damage due to foreign object impact is an important factor in the development of new aerospace vehicles. Acoustic waves generated on impact can be detected using a set of piezoelectric transducers, and the location of impact can be determined by triangulation based on the differences in the arrival time of the waves at each of the sensors. These sensors generate electrical signals in response to mechanical motion resulting from the impact as well as from natural vibrations. Due to electrical noise and mechanical vibration, accurately determining these time differentials can be challenging, and even small measurement inaccuracies can lead to significant errors in the computed damage location. Wavelet transforms are used to analyze the signals at multiple levels of detail, allowing the signals resulting from the impact to be isolated from ambient electromechanical noise. Data extracted from these transformed signals are input to an artificial neural network to aid in identifying the moment of impact from the transformed signals. By distinguishing which of the signal components are resultant from the impact and which are characteristic of noise and normal aerodynamic loads, the time differentials as well as the location of damage can be accurately assessed. The combination of wavelet transformations and neural network processing results in an efficient and accurate approach for passive in-flight detection of foreign object damage.
Moen, Erick K.; Ibey, Bennett L.; Beier, Hope T.
2014-01-01
The requirement of center asymmetry for the creation of second harmonic generation (SHG) signals makes it an attractive technique for visualizing changes in interfacial layers such as the plasma membrane of biological cells. In this article, we explore the use of lipophilic SHG probes to detect minute perturbations in the plasma membrane. Three candidate probes, Di-4-ANEPPDHQ (Di-4), FM4-64, and all-trans-retinol, were evaluated for SHG effectiveness in Jurkat cells. Di-4 proved superior with both strong SHG signal and limited bleaching artifacts. To test whether rapid changes in membrane symmetry could be detected using SHG, we exposed cells to nanosecond-pulsed electric fields, which are believed to cause formation of nanopores in the plasma membrane. Upon nanosecond-pulsed electric fields exposure, we observed an instantaneous drop of ∼50% in SHG signal from the anodic pole of the cell. When compared to the simultaneously acquired fluorescence signals, it appears that the signal change was not due to the probe diffusing out of the membrane or changes in membrane potential or fluidity. We hypothesize that this loss in SHG signal is due to disruption in the interfacial nature of the membrane. The results show that SHG imaging has great potential as a tool for measuring rapid and subtle plasma membrane disturbance in living cells. PMID:24853757
Moen, Erick K; Ibey, Bennett L; Beier, Hope T
2014-05-20
The requirement of center asymmetry for the creation of second harmonic generation (SHG) signals makes it an attractive technique for visualizing changes in interfacial layers such as the plasma membrane of biological cells. In this article, we explore the use of lipophilic SHG probes to detect minute perturbations in the plasma membrane. Three candidate probes, Di-4-ANEPPDHQ (Di-4), FM4-64, and all-trans-retinol, were evaluated for SHG effectiveness in Jurkat cells. Di-4 proved superior with both strong SHG signal and limited bleaching artifacts. To test whether rapid changes in membrane symmetry could be detected using SHG, we exposed cells to nanosecond-pulsed electric fields, which are believed to cause formation of nanopores in the plasma membrane. Upon nanosecond-pulsed electric fields exposure, we observed an instantaneous drop of ~50% in SHG signal from the anodic pole of the cell. When compared to the simultaneously acquired fluorescence signals, it appears that the signal change was not due to the probe diffusing out of the membrane or changes in membrane potential or fluidity. We hypothesize that this loss in SHG signal is due to disruption in the interfacial nature of the membrane. The results show that SHG imaging has great potential as a tool for measuring rapid and subtle plasma membrane disturbance in living cells. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Method and apparatus for probing relative volume fractions
Jandrasits, Walter G.; Kikta, Thomas J.
1998-01-01
A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining therebetween a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirely of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction.
Method and apparatus for probing relative volume fractions
Jandrasits, W.G.; Kikta, T.J.
1998-03-17
A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining therebetween a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirely of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction. 9 figs.
Electrotonic and action potentials in the Venus flytrap.
Volkov, Alexander G; Vilfranc, Chrystelle L; Murphy, Veronica A; Mitchell, Colee M; Volkova, Maia I; O'Neal, Lawrence; Markin, Vladislav S
2013-06-15
The electrical phenomena and morphing structures in the Venus flytrap have attracted researchers since the nineteenth century. We have observed that mechanical stimulation of trigger hairs on the lobes of the Venus flytrap induces electrotonic potentials in the lower leaf. Electrostimulation of electrical circuits in the Venus flytrap can induce electrotonic potentials propagating along the upper and lower leaves. The instantaneous increase or decrease in voltage of stimulating potential generates a nonlinear electrical response in plant tissues. Any electrostimulation that is not instantaneous, such as sinusoidal or triangular functions, results in linear responses in the form of small electrotonic potentials. The amplitude and sign of electrotonic potentials depend on the polarity and the amplitude of the applied voltage. Electrical stimulation of the lower leaf induces electrical signals, which resemble action potentials, in the trap between the lobes and the midrib. The trap closes if the stimulating voltage is above the threshold level of 4.4V. Electrical responses in the Venus flytrap were analyzed and reproduced in the discrete electrical circuit. The information gained from this study can be used to elucidate the coupling of intracellular and intercellular communications in the form of electrical signals within plants. Copyright © 2013 Elsevier GmbH. All rights reserved.
Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Y.; Roland, I.; Checoury, X.
We demonstrate second harmonic generation in a gallium nitride photonic crystal cavity embedded in a two-dimensional free-standing photonic crystal platform on silicon. The photonic crystal nanocavity is optically pumped with a continuous-wave laser at telecom wavelengths in the transparency window of the nitride material. The harmonic generation is evidenced by the spectral range of the emitted signal, the quadratic power dependence vs. input power, and the spectral dependence of second harmonic signal. The harmonic emission pattern is correlated to the harmonic polarization generated by the second-order nonlinear susceptibilities χ{sub zxx}{sup (2)}, χ{sub zyy}{sup (2)} and the electric fields of the fundamentalmore » cavity mode.« less
Method and apparatus for characterizing reflected ultrasonic pulses
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)
1991-01-01
The invention is a method of and apparatus for characterizing the amplitudes of a sequence of reflected pulses R1, R2, and R3 by converting them into corresponding electric signals E1, E2, and E3 to substantially the same value during each sequence thereby restoring the reflected pulses R1, R2, and R3 to their initial reflection values by timing means, an exponential generator, and a time gain compensator. Envelope and baseline reject circuits permit the display and accurate location of the time spaced sequence of electric signals having substantially the same amplitude on a measurement scale on a suitable video display or oscilloscope.
NASA Astrophysics Data System (ADS)
Fgeppert, E.
1984-09-01
Mechanical means for sensing turning torque generated by the load forces in a rotary drive system is described. The sensing means is designed to operate with minimal effect on normal operation of the drive system. The invention can be employed in various drive systems, e.g., automotive engine-transmission power plants, electric motor-operated tools, and metal cutting machines. In such drive systems, the torque-sensing feature may be useful for actuation of various control devices, such as electric switches, mechanical clutches, brake actuators, fluid control valves, or audible alarms. The torque-sensing function can be used for safety overload relief, motor de-energization, engine fuel control transmission clutch actuation, remote alarm signal, tool breakage signal, etc.
In-line rotating torque sensor with on-board amplifier
Kronberg, James W.
1990-01-01
A rotating torque sensor apparatus and method for measuring small torques comprising a shaft, a platform having a circuit board and a first moment arm attached to the shaft, a rotatable wheel coaxial with the shaft and having a second moment arm spaced apart from the first moment arm with a load cell therebetween for generating an electric signal as the torque is applied to the shaft and transferred through the moment arms to the load cell. The electrical signal is conducted from the load cell to the circuit board for filtering and amplification before being extracted from the torque assembly through a slip ring.
Benítez, Alfredo; Santiago, Ulises; Sanchez, John E; Ponce, Arturo
2018-01-01
In this work, an innovative cathodoluminescence (CL) system is coupled to a scanning electron microscope and synchronized with a Raspberry Pi computer integrated with an innovative processing signal. The post-processing signal is based on a Python algorithm that correlates the CL and secondary electron (SE) images with a precise dwell time correction. For CL imaging, the emission signal is collected through an optical fiber and transduced to an electrical signal via a photomultiplier tube (PMT). CL Images are registered in a panchromatic mode and can be filtered using a monochromator connected between the optical fiber and the PMT to produce monochromatic CL images. The designed system has been employed to study ZnO samples prepared by electrical arc discharge and microwave methods. CL images are compared with SE images and chemical elemental mapping images to correlate the emission regions of the sample.
NASA Astrophysics Data System (ADS)
Benítez, Alfredo; Santiago, Ulises; Sanchez, John E.; Ponce, Arturo
2018-01-01
In this work, an innovative cathodoluminescence (CL) system is coupled to a scanning electron microscope and synchronized with a Raspberry Pi computer integrated with an innovative processing signal. The post-processing signal is based on a Python algorithm that correlates the CL and secondary electron (SE) images with a precise dwell time correction. For CL imaging, the emission signal is collected through an optical fiber and transduced to an electrical signal via a photomultiplier tube (PMT). CL Images are registered in a panchromatic mode and can be filtered using a monochromator connected between the optical fiber and the PMT to produce monochromatic CL images. The designed system has been employed to study ZnO samples prepared by electrical arc discharge and microwave methods. CL images are compared with SE images and chemical elemental mapping images to correlate the emission regions of the sample.
Pacific Northwest GridWise™ Testbed Demonstration Projects; Part I. Olympic Peninsula Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammerstrom, Donald J.; Ambrosio, Ron; Carlon, Teresa A.
2008-01-09
This report describes the implementation and results of a field demonstration wherein residential electric water heaters and thermostats, commercial building space conditioning, municipal water pump loads, and several distributed generators were coordinated to manage constrained feeder electrical distribution through the two-way communication of load status and electric price signals. The field demonstration took place in Washington and Oregon and was paid for by the U.S. Department of Energy and several northwest utilities. Price is found to be an effective control signal for managing transmission or distribution congestion. Real-time signals at 5-minute intervals are shown to shift controlled load in time.more » The behaviors of customers and their responses under fixed, time-of-use, and real-time price contracts are compared. Peak loads are effectively reduced on the experimental feeder. A novel application of portfolio theory is applied to the selection of an optimal mix of customer contract types.« less
Introduction to Communication Systems
2014-01-17
channel modeling in complex baseband using ray tracing, reinforced by a software lab which applies these ideas to simulate link time variations for a...analog acoustic signal is generated (often translated to an analog electrical signal using a microphone). Even when this music is recorded onto a...include line of sight (LOS) and reflected paths. Equation (2.35) immediately tells us how to model multipath channels, in which multiple scat- tered
Method of determining interwell oil field fluid saturation distribution
Donaldson, Erle C.; Sutterfield, F. Dexter
1981-01-01
A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.
Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias.
Islam, Nazmul; Reyna, Jairo
2012-04-01
This paper discusses the principle of biased alternating current electroosmosis (ACEO) and its application to move the bulk fluid in a microchannel, as an alternative to mechanical pumping methods. Previous EO-driven flow research has looked at the effect of electrode asymmetry and transverse traveling wave forms on the performance of electroosmotic pumps. This paper presents an analysis that was conducted to assess the effect of combining an AC signal with a DC (direct current) bias when generating the electric field needed to impart electroosmosis (EO) within a microchannel. The results presented here are numerical and experimental. The numerical results were generated through simulations performed using COMSOL 3.5a. Currently available theoretical models for EO flows were embedded in the software and solved numerically to evaluate the effects of channel geometry, frequency of excitation, electrode array geometry, and AC signal with a DC bias on the flow imparted on an electrically conducting fluid. Simulations of the ACEO flow driven by a constant magnitude of AC voltage over symmetric electrodes did not indicate relevant net flows. However, superimposing a DC signal over the AC signal on the same symmetric electrode array leads to a noticeable net forward flow. Moreover, changing the polarity of electrical signal creates a bi-directional flow on symmetrical electrode array. Experimental flow measurements were performed on several electrode array configurations. The mismatch between the numerical and experimental results revealed the limitations of the currently available models for the biased EO. However, they confirm that using a symmetric electrode array excited by an AC signal with a DC bias leads to a significant improvement in flow rates in comparison to the flow rates obtained in an asymmetric electrode array configuration excited just with an AC signal. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultrafast Plasmonic Control of Second Harmonic Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Roderick B.; Yanchenko, Anna; Ziegler, Jed I.
Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic conversion efficiencies per unit volume than those attainable in bulk materials. Here we demonstrate efficient second-harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients on a dielectric metasurface. An ultrafast control pulse is used to control plasmon-induced electric fields in a thin-film material with inversion symmetry that, without plasmonic enhancement, does not exhibit an even-order nonlinear optical response. The temporal evolution of the plasmonic near-fieldmore » is characterized with ~100 as resolution using a novel nonlinear interferometric technique. The serrated nanogap is a unique platform in which to investigate optically controlled, plasmonically enhanced harmonic generation in dielectric materials on an ultrafast time scale. Lastly, this metamaterial geometry can also be readily extended to all-optical control of other nonlinear phenomena, such as four-wave mixing and sum- and difference-frequency generation, in a wide variety of dielectric materials.« less
Ultrafast Plasmonic Control of Second Harmonic Generation
Davidson, Roderick B.; Yanchenko, Anna; Ziegler, Jed I.; ...
2016-06-01
Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic conversion efficiencies per unit volume than those attainable in bulk materials. Here we demonstrate efficient second-harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients on a dielectric metasurface. An ultrafast control pulse is used to control plasmon-induced electric fields in a thin-film material with inversion symmetry that, without plasmonic enhancement, does not exhibit an even-order nonlinear optical response. The temporal evolution of the plasmonic near-fieldmore » is characterized with ~100 as resolution using a novel nonlinear interferometric technique. The serrated nanogap is a unique platform in which to investigate optically controlled, plasmonically enhanced harmonic generation in dielectric materials on an ultrafast time scale. Lastly, this metamaterial geometry can also be readily extended to all-optical control of other nonlinear phenomena, such as four-wave mixing and sum- and difference-frequency generation, in a wide variety of dielectric materials.« less
Pulsed Corona Discharge Generated By Marx Generator
NASA Astrophysics Data System (ADS)
Sretenovic, G. B.; Obradovic, B. M.; Kovacevic, V. V.; Kuraica, M. M.; Puric J.
2010-07-01
The pulsed plasma has a significant role in new environmental protection technologies. As a part of a pulsed corona system for pollution control applications, Marx type repetitive pulse generator was constructed and tested in arrangement with wire-plate corona reactor. We performed electrical measurements, and obtained voltage and current signals, and also power and energy delivered per pulse. Ozone formation by streamer plasma in air was chosen to monitor chemical activity of the pulsed corona discharge.
Roelofs, Andreas; Hong, Seungbum
2018-02-06
A method for rapid imaging of a material specimen includes positioning a tip to contact the material specimen, and applying a force to a surface of the material specimen via the tip. In addition, the method includes moving the tip across the surface of the material specimen while removing electrical charge therefrom, generating a signal produced by contact between the tip and the surface, and detecting, based on the data, the removed electrical charge induced through the tip during movement of the tip across the surface. The method further includes measuring the detected electrical charge.
DNA base-calling from a nanopore using a Viterbi algorithm.
Timp, Winston; Comer, Jeffrey; Aksimentiev, Aleksei
2012-05-16
Nanopore-based DNA sequencing is the most promising third-generation sequencing method. It has superior read length, speed, and sample requirements compared with state-of-the-art second-generation methods. However, base-calling still presents substantial difficulty because the resolution of the technique is limited compared with the measured signal/noise ratio. Here we demonstrate a method to decode 3-bp-resolution nanopore electrical measurements into a DNA sequence using a Hidden Markov model. This method shows tremendous potential for accuracy (~98%), even with a poor signal/noise ratio. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Sensor probes and phantoms for advanced transcranial magnetic stimulation system developments
NASA Astrophysics Data System (ADS)
Meng, Qinglei; Patel, Prashil; Trivedi, Sudhir; Du, Xiaoming; Hong, Elliot; Choa, Fow-Sen
2015-05-01
Transcranial magnetic stimulation (TMS) has become one of the most widely used noninvasive method for brain tissue stimulation and has been used as a treatment tool for various neurological and psychiatric disorders including migraine, stroke, Parkinson's disease, dystonia, tinnitus and depression. In the process of developing advanced TMS deep brain stimulation tools, we need first to develop field measurement devices like sensory probes and brain phantoms, which can be used to calibrate the TMS systems. Currently there are commercially available DC magnetic or electric filed measurement sensors, but there is no instrument to measure transient fields. In our study, we used a commercial figure-8 shaped TMS coil to generate transient magnetic field and followed induced field and current. The coil was driven by power amplified signal from a pulse generator with tunable pulse rate, amplitude, and duration. In order to obtain a 3D plot of induced vector electric field, many types of probes were designed to detect single component of electric-field vectors along x, y and z axis in the space around TMS coil. We found that resistor probes has an optimized signal-to-noise ratio (SNR) near 3k ohm but it signal output is too weak compared with other techniques. We also found that inductor probes can have very high output for Curl E measurement, but it is not the E-field distribution we are interested in. Probes with electrical wire wrapped around iron coil can directly measure induced E-field with high sensitivity, which matched computer simulation results.
NASA Astrophysics Data System (ADS)
Han, Xifeng; Zhou, Wen
2018-03-01
Optical vector radio-frequency (RF) signal generation based on optical carrier suppression (OCS) in one Mach-Zehnder modulator (MZM) can realize frequency-doubling. In order to match the phase or amplitude of the recovered quadrature amplitude modulation (QAM) signal, phase or amplitude pre-coding is necessary in the transmitter side. The detected QAM signals usually have one non-uniform phase distribution after square-law detection at the photodiode because of the imperfect characteristics of the optical and electrical devices. We propose to use optimal threshold of error decision for non-uniform phase contribution to reduce the bit error rate (BER). By employing this scheme, the BER of 16 Gbaud (32 Gbit/s) quadrature-phase-shift-keying (QPSK) millimeter wave signal at 36 GHz is improved from 1 × 10-3 to 1 × 10-4 at - 4 . 6 dBm input power into the photodiode.
An electrohydrodynamic flow in ac electrowetting.
Lee, Horim; Yun, Sungchan; Ko, Sung Hee; Kang, Kwan Hyoung
2009-12-17
In ac electrowetting, hydrodynamic flows occur within a droplet. Two distinct flow patterns were observed, depending on the frequency of the applied electrical signal. The flow at low-frequency range was explained in terms of shape oscillation and a steady streaming process in conjunction with contact line oscillation. The origin of the flow at high-frequency range has not yet been explained. We suggest that the high-frequency flow originated mainly from the electrothermal effect, in which electrical charge is generated due to the gradient of electrical conductivity and permittivity, which is induced by the Joule heating of fluid medium. To support our argument, we analyzed the flow field numerically while considering the electrical body force generated by the electrothermal effect. We visualized the flow pattern and measured the flow velocity inside the droplet. The numerical results show qualitative agreement with experimental results with respect to electric field and frequency dependence of flow velocity. The effects of induced-charge electro-osmosis, natural convection, and the Marangoni flow are discussed.
NASA Astrophysics Data System (ADS)
Ren, Tianying; He, Wenxuan
2015-12-01
Mechanical coupling between the tectorial membrane and the hair bundles of outer hair cells is crucial for stimulating mechanoelectrical transduction channels, which convert sound-induced vibrations into electrical signal, and for transmitting outer hair cell-generated force back to the basilar membrane to boost hearing sensitivity. It has been demonstrated that the detached tectorial membrane in mice with C1509G alpha tectorin mutation caused hearing loss, but enhanced electrically evoked otoacoustic emissions. To understand how the mutated cochlea emits sounds, the reticular lamina and basilar membrane vibrations were measured in the electrically stimulated cochlea in this study. The results showed that the electrically evoked basilar membrane vibration decreased dramatically while the reticular lamina vibration and otoacoustic emissions exhibited no significant change in C1509G mutation mice. This result indicates that a functional cochlear amplifier and a normal basilar membrane vibration are not required for the outer hair cell-generated sound to exit the cochlea.
Improvement of Human Keratinocyte Migration by a Redox Active Bioelectric Dressing
Banerjee, Jaideep; Das Ghatak, Piya; Roy, Sashwati; Khanna, Savita; Sequin, Emily K.; Bellman, Karen; Dickinson, Bryan C.; Suri, Prerna; Subramaniam, Vish V.; Chang, Christopher J.; Sen, Chandan K.
2014-01-01
Exogenous application of an electric field can direct cell migration and improve wound healing; however clinical application of the therapy remains elusive due to lack of a suitable device and hence, limitations in understanding the molecular mechanisms. Here we report on a novel FDA approved redox-active Ag/Zn bioelectric dressing (BED) which generates electric fields. To develop a mechanistic understanding of how the BED may potentially influence wound re-epithelialization, we direct emphasis on understanding the influence of BED on human keratinocyte cell migration. Mapping of the electrical field generated by BED led to the observation that BED increases keratinocyte migration by three mechanisms: (i) generating hydrogen peroxide, known to be a potent driver of redox signaling, (ii) phosphorylation of redox-sensitive IGF1R directly implicated in cell migration, and (iii) reduction of protein thiols and increase in integrinαv expression, both of which are known to be drivers of cell migration. BED also increased keratinocyte mitochondrial membrane potential consistent with its ability to fuel an energy demanding migration process. Electric fields generated by a Ag/Zn BED can cross-talk with keratinocytes via redox-dependent processes improving keratinocyte migration, a critical event in wound re-epithelialization. PMID:24595050
Credo, Grace M; Su, Xing; Wu, Kai; Elibol, Oguz H; Liu, David J; Reddy, Bobby; Tsai, Ta-Wei; Dorvel, Brian R; Daniels, Jonathan S; Bashir, Rashid; Varma, Madoo
2012-03-21
We introduce a label-free approach for sensing polymerase reactions on deoxyribonucleic acid (DNA) using a chelator-modified silicon-on-insulator field-effect transistor (SOI-FET) that exhibits selective and reversible electrical response to pyrophosphate anions. The chemical modification of the sensor surface was designed to include rolling-circle amplification (RCA) DNA colonies for locally enhanced pyrophosphate (PPi) signal generation and sensors with immobilized chelators for capture and surface-sensitive detection of diffusible reaction by-products. While detecting arrays of enzymatic base incorporation reactions is typically accomplished using optical fluorescence or chemiluminescence techniques, our results suggest that it is possible to develop scalable and portable PPi-specific sensors and platforms for broad biomedical applications such as DNA sequencing and microbe detection using surface-sensitive electrical readout techniques.
Dynamic Time Expansion and Compression Using Nonlinear Waveguides
Findikoglu, Alp T.; Hahn, Sangkoo F.; Jia, Quanxi
2004-06-22
Dynamic time expansion or compression of a small amplitude input signal generated with an initial scale is performed using a nonlinear waveguide. A nonlinear waveguide having a variable refractive index is connected to a bias voltage source having a bias signal amplitude that is large relative to the input signal to vary the reflective index and concomitant speed of propagation of the nonlinear waveguide and an electrical circuit for applying the small amplitude signal and the large amplitude bias signal simultaneously to the nonlinear waveguide. The large amplitude bias signal with the input signal alters the speed of propagation of the small-amplitude signal with time in the nonlinear waveguide to expand or contract the initial time scale of the small-amplitude input signal.
Dynamic time expansion and compression using nonlinear waveguides
Findikoglu, Alp T [Los Alamos, NM; Hahn, Sangkoo F [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM
2004-06-22
Dynamic time expansion or compression of a small-amplitude input signal generated with an initial scale is performed using a nonlinear waveguide. A nonlinear waveguide having a variable refractive index is connected to a bias voltage source having a bias signal amplitude that is large relative to the input signal to vary the reflective index and concomitant speed of propagation of the nonlinear waveguide and an electrical circuit for applying the small-amplitude signal and the large amplitude bias signal simultaneously to the nonlinear waveguide. The large amplitude bias signal with the input signal alters the speed of propagation of the small-amplitude signal with time in the nonlinear waveguide to expand or contract the initial time scale of the small-amplitude input signal.
Zhou, Haibin; Zhang, Yongmin; Han, Ruoyu; Jing, Yan; Wu, Jiawei; Liu, Qiaojue; Ding, Weidong; Qiu, Aici
2016-04-22
Underwater shock waves (SWs) generated by underwater electrical wire explosions (UEWEs) have been widely studied and applied. Precise measurement of this kind of SWs is important, but very difficult to accomplish due to their high peak pressure, steep rising edge and very short pulse width (on the order of tens of μs). This paper aims to analyze the signals obtained by two kinds of commercial piezoelectric pressure probes, and reconstruct the correct pressure waveform from the distorted one measured by the pressure probes. It is found that both PCB138 and Müller-plate probes can be used to measure the relative SW pressure value because of their good uniformities and linearities, but none of them can obtain precise SW waveforms. In order to approach to the real SW signal better, we propose a new multi-exponential pressure waveform model, which has considered the faster pressure decay at the early stage and the slower pressure decay in longer times. Based on this model and the energy conservation law, the pressure waveform obtained by the PCB138 probe has been reconstructed, and the reconstruction accuracy has been verified by the signals obtained by the Müller-plate probe. Reconstruction results show that the measured SW peak pressures are smaller than the real signal. The waveform reconstruction method is both reasonable and reliable.
Zhou, Haibin; Zhang, Yongmin; Han, Ruoyu; Jing, Yan; Wu, Jiawei; Liu, Qiaojue; Ding, Weidong; Qiu, Aici
2016-01-01
Underwater shock waves (SWs) generated by underwater electrical wire explosions (UEWEs) have been widely studied and applied. Precise measurement of this kind of SWs is important, but very difficult to accomplish due to their high peak pressure, steep rising edge and very short pulse width (on the order of tens of μs). This paper aims to analyze the signals obtained by two kinds of commercial piezoelectric pressure probes, and reconstruct the correct pressure waveform from the distorted one measured by the pressure probes. It is found that both PCB138 and Müller-plate probes can be used to measure the relative SW pressure value because of their good uniformities and linearities, but none of them can obtain precise SW waveforms. In order to approach to the real SW signal better, we propose a new multi-exponential pressure waveform model, which has considered the faster pressure decay at the early stage and the slower pressure decay in longer times. Based on this model and the energy conservation law, the pressure waveform obtained by the PCB138 probe has been reconstructed, and the reconstruction accuracy has been verified by the signals obtained by the Müller-plate probe. Reconstruction results show that the measured SW peak pressures are smaller than the real signal. The waveform reconstruction method is both reasonable and reliable. PMID:27110789
NASA Astrophysics Data System (ADS)
Bai, Xian-Xu; Zhong, Wei-Min; Zou, Qi; Zhu, An-Ding; Sun, Jun
2018-07-01
Based on the structural design concept of ‘functional integration’, this paper proposes the principle of a power-generated magnetorheological energy absorber with velocity self-sensing capability (PGMREA), which realizes the integration of controllable damping mechanism and mechanical energy-electrical energy conversion mechanism in structure profile and multiple functions in function profile, including controllable damping, power generation and velocity self-sensing. The controllable damping mechanism consists of an annular gap and a ball screw. The annular gap fulfilled with MR fluid that operates in pure shear mode under controllable electromagnetic field. The rotational damping torque generated from the controllable damping mechanism is translated to a linear damping force via the ball screw. The mechanical energy-electrical energy conversion mechanism is realized by the ball screw and a generator composed of a permanent magnet rotor and a generator stator. The ball screw based mechanical energy-electrical energy conversion mechanism converts the mechanical energy of excitations to electrical energy for storage or directly to power the controllable damping mechanism of the PGMREA. The velocity self-sensing capability of the PGMREA is achieved via signal processing using the mechanical energy-electrical energy conversion information. Based on the principle of the proposed PGMREA, the mathematical model of the PGMREA is established, including the damping force, generated power and self-sensing velocity. The electromagnetic circuit of the PGMREA is simulated and verified via a finite element analysis software ANSYS. The developed PGMREA prototype is experimentally tested on a servo-hydraulic testing system. The model-based predicted results and the experimental results are compared and analyzed.
Laboratory investigation of dust impacts induced signals on antennas in space
NASA Astrophysics Data System (ADS)
Rocha, J. R.; Collette, A.; Malaspina, D.; Gruen, E.; Sternovsky, Z.
2014-12-01
Recent observations of sharp voltage spikes by the WAVES electric field experiments onboard the twin STEREO spacecraft have been attributed to plasma clouds generated by the impact ionization of high velocity dust particles. The reported dust fluxes are much higher than those measured by dedicated dust detectors at 1 AU, which leads to the interpretation that the STEREO observations are due to nanometer-sized dust particles originating from the inner solar system and accelerated to high velocities by the solar wind magnetic field. However, this interpretation is based on a simplified model of coupling between the expanding plasma cloud from the dust impact and the WAVES electric field instrument. A series of laboratory measurements are performed to validate this model and to calibrate/investigate the effect of various impact parameters on the signals measured by the electric field instrument. The dust accelerator facility operating at the University of Colorado is used for the measurement with micron and submicron sized particles accelerated to 50 km/s. The first set of measurements was aimed at the understanding of the charge yield of impact-generated plasmas from common materials used on spacecraft, i.e. BeCu, germanium coated black Kapton, MLI, and solar cells. The measurements show that at 10 km/s these materials yield similar charge signals. At higher speeds (~50 km/s) the variation is with material increases. The impact charge is also found to depend on angle of incidence; the data suggest a maximum at 45 degrees. The second set of measurements investigates the variation of the induced dust signal with bias potential applied on the simulated spacecraft.
Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line
Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun
2015-01-01
A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid. PMID:26729119
Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line.
Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun
2015-12-30
A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid.
NASA Astrophysics Data System (ADS)
Tazlauanu, Mihai
The research work reported in this thesis details a new fabrication technology for high speed integrated circuits in the broadest sense, including original contributions to device modeling, circuit simulation, integrated circuit design, wafer fabrication, micro-physical and electrical characterization, process flow and final device testing as part of an electrical system. The primary building block of this technology is the heterostructure insulated gate field effect transistor, HIGFET. We used an InP/InGaAs epitaxial heterostructure to ensure a high charge carrier mobility and hence obtain a higher operating frequency than that currently possible for silicon devices. We designed and built integrated circuits with two system architectures. The first architecture integrates the clock signal generator with the sample and hold circuitry on the InP die, while the second is a hybrid architecture of an InP sample and hold assembled with an external clock signal generator made with ECL circuits on GaAs. To generate the clock signals on the same die with the sample and hold circuits, we developed a digital circuit family based on an original inverter, appropriate for depletion mode NMOS technology. We used this circuit to design buffer amplifiers and ring oscillators. Four mask sets produced in a Cadence environment, have permitted the fabrication of test and working devices. Each new mask generation has reflected the previous achievements and has implemented new structures and circuit techniques. The fabrication technology has undergone successive modifications and refinements to optimize device manufacturing. Particular attention has been paid to the technological robustness. The plasma enhanced etching process (RIE) had been used for an exhaustive study for the statistical simulation of the technological steps. Electrical measurements, performed on the experimental samples, have permitted the modeling of the devices, technological processing to be adjusted and circuit design improved. Electrical measurements performed on dedicated test structures, during the fabrication cycle, allowed the identification and correction of some technological problems (ohmic contacts, current leakage, interconnection integrity, and thermal instabilities). Feedback corrections were validated by dedicated experiments with the experimental effort optimized by statistical techniques (factorial fractional design). (Abstract shortened by UMI.)
Nulling Hall-Effect Current-Measuring Circuit
NASA Technical Reports Server (NTRS)
Sullender, Craig C.; Vazquez, Juan M.; Berru, Robert I.
1993-01-01
Circuit measures electrical current via combination of Hall-effect-sensing and magnetic-field-nulling techniques. Known current generated by feedback circuit adjusted until it causes cancellation or near cancellation of magnetic field produced in toroidal ferrite core by current measured. Remaining magnetic field measured by Hall-effect sensor. Circuit puts out analog signal and digital signal proportional to current measured. Accuracy of measurement does not depend on linearity of sensing components.
Marcoux, Curtis M; Clarke, Stephen E; Nesse, William H; Longtin, Andre; Maler, Leonard
2016-01-01
Encoding behaviorally relevant stimuli in a noisy background is critical for animals to survive in their natural environment. We identify core biophysical and synaptic mechanisms that permit the encoding of low-frequency signals in pyramidal neurons of the weakly electric fish Apteronotus leptorhynchus, an animal that can accurately encode even miniscule amplitude modulations of its self-generated electric field. We demonstrate that slow NMDA receptor (NMDA-R)-mediated excitatory postsynaptic potentials (EPSPs) are able to summate over many interspike intervals (ISIs) of the primary electrosensory afferents (EAs), effectively eliminating the baseline EA ISI correlations from the pyramidal cell input. Together with a dynamic balance of NMDA-R and GABA-A-R currents, this permits stimulus-evoked changes in EA spiking to be transmitted efficiently to target electrosensory lobe (ELL) pyramidal cells, for encoding low-frequency signals. Interestingly, AMPA-R activity is depressed and appears to play a negligible role in the generation of action potentials. Instead, we hypothesize that cell-intrinsic voltage-dependent membrane noise supports the encoding of perithreshold sensory input; this noise drives a significant proportion of pyramidal cell spikes. Together, these mechanisms may be sufficient for the ELL to encode signals near the threshold of behavioral detection. Copyright © 2016 the American Physiological Society.
Mechanical signaling coordinates the embryonic heartbeat.
Chiou, Kevin K; Rocks, Jason W; Chen, Christina Yingxian; Cho, Sangkyun; Merkus, Koen E; Rajaratnam, Anjali; Robison, Patrick; Tewari, Manorama; Vogel, Kenneth; Majkut, Stephanie F; Prosser, Benjamin L; Discher, Dennis E; Liu, Andrea J
2016-08-09
In the beating heart, cardiac myocytes (CMs) contract in a coordinated fashion, generating contractile wave fronts that propagate through the heart with each beat. Coordinating this wave front requires fast and robust signaling mechanisms between CMs. The primary signaling mechanism has long been identified as electrical: gap junctions conduct ions between CMs, triggering membrane depolarization, intracellular calcium release, and actomyosin contraction. In contrast, we propose here that, in the early embryonic heart tube, the signaling mechanism coordinating beats is mechanical rather than electrical. We present a simple biophysical model in which CMs are mechanically excitable inclusions embedded within the extracellular matrix (ECM), modeled as an elastic-fluid biphasic material. Our model predicts strong stiffness dependence in both the heartbeat velocity and strain in isolated hearts, as well as the strain for a hydrogel-cultured CM, in quantitative agreement with recent experiments. We challenge our model with experiments disrupting electrical conduction by perfusing intact adult and embryonic hearts with a gap junction blocker, β-glycyrrhetinic acid (BGA). We find this treatment causes rapid failure in adult hearts but not embryonic hearts-consistent with our hypothesis. Last, our model predicts a minimum matrix stiffness necessary to propagate a mechanically coordinated wave front. The predicted value is in accord with our stiffness measurements at the onset of beating, suggesting that mechanical signaling may initiate the very first heartbeats.
Detection of Partial Discharge Sources Using UHF Sensors and Blind Signal Separation
Boya, Carlos; Parrado-Hernández, Emilio
2017-01-01
The measurement of the emitted electromagnetic energy in the UHF region of the spectrum allows the detection of partial discharges and, thus, the on-line monitoring of the condition of the insulation of electrical equipment. Unfortunately, determining the affected asset is difficult when there are several simultaneous insulation defects. This paper proposes the use of an independent component analysis (ICA) algorithm to separate the signals coming from different partial discharge (PD) sources. The performance of the algorithm has been tested using UHF signals generated by test objects. The results are validated by two automatic classification techniques: support vector machines and similarity with class mean. Both methods corroborate the suitability of the algorithm to separate the signals emitted by each PD source even when they are generated by the same type of insulation defect. PMID:29140267
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reno; Fowles, H.M.
On most previous nuclear detonations, signatures and quantitative measurements of the electric-field signals associated with the detonations was obtained at distances such that normal radiation field characteristics apply. On Small Boy, measurements were made from stations located much closer in, such as to be inside, on the boundary of and just outside the limits of the ionized sphere created by the nuclear burst. The electric-field characteristics in these regions were unknown. In the hope of providing continuity from the region of the unknown into the reasonably well-understood region of the radiation field, this project was requested to make the typicalmore » radiation-field type of measurement that had been made on previous detonations. This report covers the signature characteristics and quantitative measurements of the electric-field signal from Small Boy as seen from outside the immediate region of theoretical generating mechanism.« less
Catechol-chitosan redox capacitor for added amplification in electrochemical immunoanalysis.
Yan, Kun; Liu, Yi; Guan, Yongguang; Bhokisham, Narendranath; Tsao, Chen-Yu; Kim, Eunkyoung; Shi, Xiao-Wen; Wang, Qin; Bentley, William E; Payne, Gregory F
2018-05-22
Antibodies are common recognition elements for molecular detection but often the signals generated by their stoichiometric binding must be amplified to enhance sensitivity. Here, we report that an electrode coated with a catechol-chitosan redox capacitor can amplify the electrochemical signal generated from an alkaline phosphatase (AP) linked immunoassay. Specifically, the AP product p-aminophenol (PAP) undergoes redox-cycling in the redox capacitor to generate amplified oxidation currents. We estimate an 8-fold amplification associated with this redox-cycling in the capacitor (compared to detection by a bare electrode). Importantly, this capacitor-based amplification is generic and can be coupled to existing amplification approaches based on enzyme-linked catalysis or magnetic nanoparticle-based collection/concentration. Thus, the capacitor should enhance sensitivities in conventional immunoassays and also provide chemical to electrical signal transduction for emerging applications in molecular communication. Copyright © 2018 Elsevier B.V. All rights reserved.
Analytical study of the performance of a geomembrane leak detection system.
Lugli, Francesco; Mahler, Claudio Fernando
2016-05-01
The electrical detection of leaks in geomembranes is a method that allows identifying leakage of contaminants in lined facilities (e.g. sanitary landfills, pollutant ponds, etc.). The procedure in the field involves placing electrodes above and below the geomembrane, to generate an electrical current, which in turn engenders an electric potential distribution in the protective layer (generally a clayey soil). The electric potential will be greater in areas with higher current density, i.e. near leaks. In this study, we combined models from the literature to carry out a parametric analysis to identify the variables that most influence the amplitude of the electrical signals produced by leaks. The basic hypothesis is that the electrical conduction phenomena in a liner system could be depicted by a direct current circuit. After determining the value of the current at the leak, we calculated the electric potential distribution according to the model of Darilek and Laine. This enabled analysing the sensitivity of the parameters, which can be useful in the design of landfills and facilitate the location of leaks. This study showed that geomembranes with low electrical resistance (owing to low thickness, low resistivity, or extensive area) can hinder the leak detection process. In contrast, low thickness and high resistivity of the protection layer magnify the leak signal. © The Author(s) 2016.
Hearing aid malfunction detection system
NASA Technical Reports Server (NTRS)
Kessinger, R. L. (Inventor)
1977-01-01
A malfunction detection system for detecting malfunctions in electrical signal processing circuits is disclosed. Malfunctions of a hearing aid in the form of frequency distortion and/or inadequate amplification by the hearing aid amplifier, as well as weakening of the hearing aid power supply are detectable. A test signal is generated and a timed switching circuit periodically applies the test signal to the input of the hearing aid amplifier in place of the input signal from the microphone. The resulting amplifier output is compared with the input test signal used as a reference signal. The hearing aid battery voltage is also periodically compared to a reference voltage. Deviations from the references beyond preset limits cause a warning system to operate.
Characterization of real objects by an active electrolocation sensor
NASA Astrophysics Data System (ADS)
Metzen, Michael G.; Al Ghouz, Imène; Krueger, Sandra; Bousack, Herbert; von der Emde, Gerhard
2012-04-01
Weakly electric fish use a process called 'active electrolocation' to orientate in their environment and to localize objects based on their electrical properties. To do so, the fish discharge an electric organ which emits brief electrical current pulses (electric organ discharge, EOD) and in return sense the generated electric field which builds up surrounding the animal. Caused by the electrical properties of nearby objects, fish measure characteristic signal modulations with an array of electroreceptors in their skin. The fish are able to gain important information about the geometrical properties of an object as well as its complex impedance and its distance. Thus, active electrolocation is an interesting feature to be used in biomimetic approaches. We used this sensory principle to identify different insertions in the walls of Plexiglas tubes. The insertions tested were composed of aluminum, brass and graphite in sizes between 3 and 20 mm. A carrier signal was emitted and perceived with the poles of a commercial catheter for medical diagnostics. Measurements were performed with the poles separated by 6.3 to 55.3 mm. Depending on the length of the insertion in relation to the sender-receiver distance, we observed up to three peaks in the measured electric images. The first peak was affected by the material of the insertion, while the distance between the second and third peak strongly correlated with the length of the insertion. In a second experiment we tested whether various materials could be detected by using signals of different frequency compositions. Based on their electric images we were able to discriminate between objects having different resistive properties, but not between objects of complex impedances.
Automated manual transmission clutch controller
Lawrie, Robert E.; Reed, Jr., Richard G.; Rausen, David J.
1999-11-30
A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.
Automated manual transmission shift sequence controller
Lawrie, Robert E.; Reed, Richard G.; Rausen, David J.
2000-02-01
A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both, an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.
Automated manual transmission mode selection controller
Lawrie, Robert E.
1999-11-09
A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.
Automated manual transmission controller
Lawrie, Robert E.; Reed, Jr., Richard G.; Bernier, David R.
1999-12-28
A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.
WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.C. Khamamkar
2000-06-23
The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will bemore » designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations Monitoring and Control System for supervisory monitoring and control signals. The system interfaces with all facility support loads such as heating, ventilation, and air conditioning, office, fire protection, monitoring and control, safeguards and security, and communications subsystems.« less
Spectral response analysis of PVDF capacitive sensors
NASA Astrophysics Data System (ADS)
Reyes-Ramírez, B.; García-Segundo, C.; García-Valenzuela, A.
2013-06-01
We investigate the spectral response to ultrasound waves in water of low-noise capacitive sensors based on PVDF polymer piezoelectric films. First, we analyze theoretically the mechanical-to-electrical transduction as a function of the frequency of ultrasonic signals and derive an analytic expression of the sensor's transfer function. Then we present experimental results of the frequency response of a home-made PDVF in water to test signals from 1 to 20 MHz induced by a commercial hydrophone powered by a signal generator and compare with our theoretical model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, Jason; Dobrzynski, Daniel S.
A smart charging system for charging a plug-in electric vehicle (PEV) includes an electric vehicle supply equipment (EVSE) configured to supply electrical power to the PEV through a smart charging module coupled to the EVSE. The smart charging module comprises an electronic circuitry which includes a processor. The electronic circuitry includes electronic components structured to receive electrical power from the EVSE, and supply the electrical power to the PEV. The electronic circuitry is configured to measure a charging parameter of the PEV. The electronic circuitry is further structured to emulate a pulse width modulated signal generated by the EVSE. Themore » smart charging module can also include a first coupler structured to be removably couple to the EVSE and a second coupler structured to be removably coupled to the PEV.« less
Wu, Fengluan; Jin, Long; Zheng, Xiaotong; Yan, Bingyun; Tang, Pandeng; Yang, Huikai; Deng, Weili; Yang, Weiqing
2017-11-08
Electrical stimulation in biology and gene expression has attracted considerable attention in recent years. However, it is inconvenient that the electric stimulation needs to be supplied an implanted power-transported wire connecting the external power supply. Here, we fabricated a self-powered composite nanofiber (CNF) and developed an electric generating system to realize electrical stimulation based on the electromagnetic induction effect under an external rotating magnetic field. The self-powered CNFs generating an electric signal consist of modified MWNTs (m-MWNTs) coated Fe 3 O 4 /PCL fibers. Moreover, the output current of the nanocomposites can be increased due to the presence of the magnetic nanoparticles during an external magnetic field is applied. In this paper, these CNFs were employed to replace a bullfrog's sciatic nerve and to realize the effective functional electrical stimulation. The cytotoxicity assays and animal tests of the nanocomposites were also used to evaluate the biocompatibility and tissue integration. These results demonstrated that this self-powered CNF not only plays a role as power source but also can act as an external power supply under an external rotating magnetic field for noninvasive the replacement of injured nerve.
NASA Astrophysics Data System (ADS)
Vaverka, Jakub; Pellinen-Wannberg, Asta; Kero, Johan; Mann, Ingrid; De Spiegeleer, Alexandre; Hamrin, Maria; Norberg, Carol; Pitkänen, Timo
2017-04-01
Detection of hypervelocity dust impacts on a spacecraft body by electric field instruments have been reported by several missions such as Voyager, WIND, Cassini, STEREO. The mechanism of this detection is still not completely understood and is under intensive laboratory investigation. A commonly accepted theory is based on re-collection of plasma cloud particles generated by a hypervelocity dust impact by a spacecraft surface and an electric field antenna resulting in a fast change in the potential of the spacecraft body and antenna. These changes can be detected as a short pulse measured by the electric field instrument. We present the first detection of dust impacts on the Earth-orbiting MMS and Cluster satellites. Each of the four MMS spacecraft provide probe-to-spacecraft potential measurements for their respective the six electric field antennas. This gives a unique view on signals generated by dust impacts and allow their reliable identification which is not possible for example on the Cluster spacecraft. We discuss various instrumental effects and solitary waves, commonly present in the Earth's magnetosphere, which can be easily misinterpreted as dust impacts. We show the influence of local plasma environment on dust impact detection for satellites crossing various regions of the Earth's magnetosphere where the concentration and the temperature of plasma particles change significantly.
Magnetic transit-time flowmeter
Forster, George A.
1976-07-06
The flow rate of a conducting fluid in a stream is determined by disposing two permanent-magnet flowmeters in the stream, one downstream of the other. Flow of the conducting fluid causes the generation of both d-c and a-c electrical signals, the a-c comprising flow noise. Measurement of the time delay between similarities in the a-c signals by cross-correlation methods provides a measure of the rate of flow of the fluid.
Vasotocin increases dominance in the weakly electric fish Brachyhypopomus gauderio.
Perrone, Rossana; Silva, Ana
2016-10-01
Animals establish social hierarchies through agonistic behavior. The recognition of the own and others social ranks is crucial for animals that live in groups to avoid costly constant conflicts. Weakly electric fish are valuable model systems for the study of agonistic behavior and its neuromodulation, given that they display conspicuous electrocommunication signals that are generated by a very well-known electromotor circuit. Brachyhypopomus gauderio is a gregarious electric fish, presents a polygynous breeding system, morphological and electrophysiological sexual dimorphism during the breeding season, and displays a typical intrasexual reproduction-related aggression. Dominants signal their social status by increasing their electric organ discharge (EOD) rate after an agonistic encounter (electric dominance). Subordinates only occasionally produce transient electric signals (chirps and offs). The hypothalamic neuropeptide arginine-vasotocin (AVT) and its mammalian homologue, arginine- vasopressin (AVP) are key modulators of social behavior across vertebrates. In this study, we focus on the role of AVT on dominance establishment in Brachyhypopomus gauderio by analyzing the effects of pharmacological manipulations of the AVT system in potential dominants. AVT exerts a very specific direct effect restricted only to EOD rate, and is responsible for the electric dominance. Unexpectedly, AVT did not affect the intensity of aggression in either contender. Nor was the time structure affected by AVT administration. We also present two interesting examples of the interplay between contenders by evaluating how AVT modulations, even when directed to one individual, affect the behavior of the dyad as a unit. First, we found that V1a AVT receptor antagonist Manning Compound (MC) induces a reversion in the positive correlation between dominants' and subordinates' attack rates, observed in both control and AVT treated dyads, suggesting that an endogenous AVT tone modulates aggressive interactions. Second, we confirmed that AVT administered to dominants induces an increase in the submissive transient electric signals in subordinates. Copyright © 2016. Published by Elsevier Ltd.
An induced current method for measuring zeta potential of electrolyte solution-air interface.
Song, Yongxin; Zhao, Kai; Wang, Junsheng; Wu, Xudong; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing
2014-02-15
This paper reports a novel and very simple method for measuring the zeta potential of electrolyte solution-air interface. When a measuring electrode contacts the electrolyte solution-air interface, an electrical current will be generated due to the potential difference between the electrode-air surface and the electrolyte solution-air interface. The amplitude of the measured electric signal is linearly proportional to this potential difference; and depends only on the zeta potential at the electrolyte solution-air interface, regardless of the types and concentrations of the electrolyte. A correlation between the zeta potential and the measured voltage signal is obtained based on the experimental data. Using this equation, the zeta potential of any electrolyte solution-air interface can be evaluated quickly and easily by inserting an electrode through the electrolyte solution-air interface and measuring the electrical signal amplitude. This method was verified by comparing the obtained results of NaCl, MgCl2 and CaCl2 solutions of different pH values and concentrations with the zeta potential data reported in the published journal papers. Copyright © 2013 Elsevier Inc. All rights reserved.
Method and apparatus for probing relative volume fractions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandrasits, W.G.; Kikta, T.J.
1996-12-31
A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining there between a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirelymore » of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction.« less
High temperature charge amplifier for geothermal applications
Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.
2015-12-08
An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.
Yan, Kun; Liu, Yi; Zhang, Jitao; Correa, Santiago O; Shang, Wu; Tsai, Cheng-Chieh; Bentley, William E; Shen, Jana; Scarcelli, Giuliano; Raub, Christopher B; Shi, Xiao-Wen; Payne, Gregory F
2018-02-12
The growing importance of hydrogels in translational medicine has stimulated the development of top-down fabrication methods, yet often these methods lack the capabilities to generate the complex matrix architectures observed in biology. Here we show that temporally varying electrical signals can cue a self-assembling polysaccharide to controllably form a hydrogel with complex internal patterns. Evidence from theory and experiment indicate that internal structure emerges through a subtle interplay between the electrical current that triggers self-assembly and the electrical potential (or electric field) that recruits and appears to orient the polysaccharide chains at the growing gel front. These studies demonstrate that short sequences (minutes) of low-power (∼1 V) electrical inputs can provide the program to guide self-assembly that yields hydrogels with stable, complex, and spatially varying structure and properties.
Tolerance of the frequency deviation of LO sources at a MIMO system
NASA Astrophysics Data System (ADS)
Xiao, Jiangnan; Li, Xingying; Zhang, Zirang; Xu, Yuming; Chen, Long; Yu, Jianjun
2015-11-01
We analyze and simulate the tolerance of frequency offset at a W-band optical-wireless transmission system. The transmission system adopts optical polarization division multiplexing (PDM), and multiple-input multiple-output (MIMO) reception. The transmission signal adopts optical quadrature phase shift keying (QPSK) modulation, and the generation of millimeter-wave is based on the optical heterodyning technique. After 20-km single-mode fiber-28 (SMF-28) transmission, tens of Gb/s millimeter-wave signal is delivered. At the receiver, two millimeter-wave signals are down-converted into electrical intermediate-frequency (IF) signals in the analog domain by mixing with two electrical local oscillators (LOs) with different frequencies. We investigate the different frequency LO effect on the 2×2 MIMO system performance for the first time, finding that the process during DSP of implementing frequency offset estimation (FOE) before cascaded multi-modulus-algorithm (CMMA) equalization can get rid of the inter-channel interference (ICI) and improve system bit-error-ratio (BER) performance in this type of transmission system.
Smartphone-based portable wireless optical system for the detection of target analytes.
Gautam, Shreedhar; Batule, Bhagwan S; Kim, Hyo Yong; Park, Ki Soo; Park, Hyun Gyu
2017-02-01
Rapid and accurate on-site wireless measurement of hazardous molecules or biomarkers is one of the biggest challenges in nanobiotechnology. A novel smartphone-based Portable and Wireless Optical System (PAWS) for rapid, quantitative, and on-site analysis of target analytes is described. As a proof-of-concept, we employed gold nanoparticles (GNP) and an enzyme, horse radish peroxidase (HRP), to generate colorimetric signals in response to two model target molecules, melamine and hydrogen peroxide, respectively. The colorimetric signal produced by the presence of the target molecules is converted to an electrical signal by the inbuilt electronic circuit of the device. The converted electrical signal is then measured wirelessly via multimeter in the smartphone which processes the data and displays the results, including the concentration of analytes and its significance. This handheld device has great potential as a programmable and miniaturized platform to achieve rapid and on-site detection of various analytes in a point-of-care testing (POCT) manner. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Cartwright-Taylor, Alexis; Vallianatos, Filippos; Sammonds, Peter
2014-05-01
We have conducted room-temperature, triaxial compression experiments on samples of Carrara marble, recording concurrently acoustic and electric current signals emitted during the deformation process as well as mechanical loading information and ultrasonic wave velocities. Our results reveal that in a dry non-piezoelectric rock under simulated crustal pressure conditions, a measurable electric current (nA) is generated within the stressed sample. The current is detected only in the region beyond (quasi-)linear elastic deformation; i.e. in the region of permanent deformation beyond the yield point of the material and in the presence of microcracking. Our results extend to shallow crustal conditions previous observations of electric current signals in quartz-free rocks undergoing uniaxial deformation and support the idea of a universal electrification mechanism related to deformation. Confining pressure conditions of our slow strain rate (10-6 s-1) experiments range from the purely brittle regime (10 MPa) to the semi-brittle transition (30-100MPa) where cataclastic flow is the dominant deformation mechanism. Electric current is generated under all confining pressures,implying the existence of a current-producing mechanism during both microfracture and frictional sliding. Some differences are seen in the current evolution between these two regimes, possibly related to crack localisation. In all cases, the measured electric current exhibits episodes of strong fluctuations over short timescales; calm periods punctuated by bursts of strong activity. For the analysis, we adopt an entropy-based statistical physics approach (Tsallis, 1988), particularly suited to the study of fracture related phenomena. We find that the probability distribution of normalised electric current fluctuations over short time intervals (0.5 s) can be well described by a q-Gaussian distribution of a form similar to that which describes turbulent flows. This approach yields different entropic indices (q-values) for electric current fluctuations in the brittle and semi-brittle regimes (c. 1.5 and 1.8 respectively), implying an increase in interactions between microcracks in the semi-brittle regime. We interpret this non-Gaussian behaviour as a 'superstatistical' superposition of local Gaussian fluctuations that combine to produce a higher-order overall distribution; i.e. the measured electric current is driven to varying, temporary, local equilibria during deformation. This behaviour is analogous to the self-organising avalanche-like behaviour of fracture events, suggesting that the observed behaviour of measured electric current is a direct response to the microcracking events themselves and supporting the idea of a fracture-generated electrification mechanism in the crust. Our results have implications for the earthquake preparation process and the application of Tsallis statistical physics to the analysis of electric earthquake precursors. This research has been funded by the European Union (European Social Fund) and Greek national resources under the framework of the "THALES Program: SEISMO FEAR HELLARC" project of the "Education & Lifelong Learning" Operational Programme.
An in vitro model of a system of electrical potential compensation in extracorporeal circulation.
Carletti, Umberto; Cattini, Stefano; Lodi, Renzo; Petralia, Antonio; Rovati, Luigi; Zaffe, Davide
2014-02-01
Extracorporeal circulation (ECC) in patients undergoing cardiac surgery induces systemic immune-inflammatory reaction that results in increased postoperative morbidity. Many factors are responsible for the adverse response after ECC. The present in vitro study aimed to investigate electric charges (ECs) generated during ECC, to set a device compensating the ECs, and checking its effect on red blood cells (RBC). The electrical signals of blood in ECC were collected by a custom developed low-noise electronic circuit, processed by a digital oscilloscope (DSO) and a dynamic signal analyzer (DSA). The compensation of ECs was performed using a compensation device, injecting a nulling charge into the blood circuit. The compensation effect of the ECs on RBCs was evaluated by scanning electron microscope (SEM). The electrical analysis performed using both the DSO and the DSA confirmed the EC formation during ECC. The notable electric signals recorded in standard ECC circuits substantially nulled once the compensation device was used, thus confirming efficient EC compensation. After two hours of ECC, the SEM non-blended test on human RBC samples highlighted morphological changes in acanthocytes of the normal biconcave-shaped RBC. The outcomes confirm the development of parasitic ECs during ECC and that a suppressor system may decrease the potential damage of ECs. Nevertheless, further studies are ongoing in order to investigate the complex mechanisms related to lymphocytes and platelet morphological and physiological chances during triboelectric charges in ECC.
Analysis of Even Harmonics Generation in an Isolated Electric Power System
NASA Astrophysics Data System (ADS)
Kanao, Norikazu; Hayashi, Yasuhiro; Matsuki, Junya
Harmonics bred from loads are mainly odd order because the current waveform has half-wave symmetry. Since the even harmonics are negligibly small, those are not generally measured in electric power systems. However, even harmonics were measured at a 500/275/154kV substation in Hokuriku Electric Power Company after removal of a transmission line fault. The even harmonics caused malfunctions of protective digital relays because the relays used 4th harmonics at the input filter as automatic supervisory signal. This paper describes the mechanism of generation of the even harmonics by comparing measured waveforms with ATP-EMTP simulation results. As a result of analysis, it is cleared that even harmonics are generated by three causes. The first cause is a magnetizing current of transformers due to flux deviation by DC component of a fault current. The second one is due to harmonic conversion of a synchronous machine which generates even harmonics when direct current component or even harmonic current flow into the machine. The third one is that increase of harmonic impedance due to an isolated power system produces harmonic voltages. The design of the input filter of protective digital relays should consider even harmonics generation in an isolated power system.
Plants respond to leaf vibrations caused by insect herbivore chewing.
Appel, H M; Cocroft, R B
2014-08-01
Plant germination and growth can be influenced by sound, but the ecological significance of these responses is unclear. We asked whether acoustic energy generated by the feeding of insect herbivores was detected by plants. We report that the vibrations caused by insect feeding can elicit chemical defenses. Arabidopsis thaliana (L.) rosettes pre-treated with the vibrations caused by caterpillar feeding had higher levels of glucosinolate and anthocyanin defenses when subsequently fed upon by Pieris rapae (L.) caterpillars than did untreated plants. The plants also discriminated between the vibrations caused by chewing and those caused by wind or insect song. Plants thus respond to herbivore-generated vibrations in a selective and ecologically meaningful way. A vibration signaling pathway would complement the known signaling pathways that rely on volatile, electrical, or phloem-borne signals. We suggest that vibration may represent a new long distance signaling mechanism in plant-insect interactions that contributes to systemic induction of chemical defenses.
Patient ECG recording control for an automatic implantable defibrillator
NASA Technical Reports Server (NTRS)
Fountain, Glen H. (Inventor); Lee, Jr., David G. (Inventor); Kitchin, David A. (Inventor)
1986-01-01
An implantable automatic defibrillator includes sensors which are placed on or near the patient's heart to detect electrical signals indicative of the physiology of the heart. The signals are digitally converted and stored into a FIFO region of a RAM by operation of a direct memory access (DMA) controller. The DMA controller operates transparently with respect to the microprocessor which is part of the defibrillator. The implantable defibrillator includes a telemetry communications circuit for sending data outbound from the defibrillator to an external device (either a patient controller or a physician's console or other) and a receiver for sensing at least an externally generated patient ECG recording command signal. The patient recording command signal is generated by the hand held patient controller. Upon detection of the patient ECG recording command, DMA copies the contents of the FIFO into a specific region of the RAM.
Dynamic nuclear polarization in solid samples by electrical-discharge-induced radicals
NASA Astrophysics Data System (ADS)
Katz, Itai; Blank, Aharon
2015-12-01
Dynamic nuclear polarization (DNP) is a method for enhancing nuclear magnetic resonance (NMR) signals that has many potential applications in chemistry and medicine. Traditionally, DNP signal enhancement is achieved through the use of exogenous radicals mixed in a solution with the molecules of interest. Here we show that proton DNP signal enhancements can be obtained for solid samples without the use of solvent and exogenous radicals. Radicals are generated primarily on the surface of a solid sample using electrical discharges. These radicals are found suitable for DNP. They are stable under moderate vacuum conditions, yet readily annihilate upon compound dissolution or air exposure. This feature makes them attractive for use in medical applications, where the current variety of radicals used for DNP faces regulatory problems. In addition, this solvent-free method may be found useful for analytical NMR of solid samples which cannot tolerate solvents, such as certain pharmaceutical products.
Romeira, Bruno; Javaloyes, Julien; Ironside, Charles N; Figueiredo, José M L; Balle, Salvador; Piro, Oreste
2013-09-09
We demonstrate, experimentally and theoretically, excitable nanosecond optical pulses in optoelectronic integrated circuits operating at telecommunication wavelengths (1550 nm) comprising a nanoscale double barrier quantum well resonant tunneling diode (RTD) photo-detector driving a laser diode (LD). When perturbed either electrically or optically by an input signal above a certain threshold, the optoelectronic circuit generates short electrical and optical excitable pulses mimicking the spiking behavior of biological neurons. Interestingly, the asymmetric nonlinear characteristic of the RTD-LD allows for two different regimes where one obtain either single pulses or a burst of multiple pulses. The high-speed excitable response capabilities are promising for neurally inspired information applications in photonics.
Buntenbach, R.W.
1959-06-01
S>An electro-optical apparatus is described which produces electric pulses in programmed sequences at times and durations controlled with great accuracy. An oscilloscope CRT is supplied with signals to produce a luminous spot moving in a circle. An opaque mask with slots of variable width transmits light from the spot to a photoelectric transducer. For shorter pulse decay times a CRT screen which emits UV can be used with a UVtransmitting filter and a UV- sensitive photoelectric cell. Pulses are varied by changing masks or by using masks with variable slots. This device may be used in multiple arrangements to produce other pulse aT rangements, or it can be used to trigger an electronic pulse generator. (T.R.H.)
Space Weather Effects on the Dynamics of Equatorial F Region Irregularities
NASA Astrophysics Data System (ADS)
Bhattacharyya, A.; Basu, S.; Groves, K.; Valladares, C.; Sheehan, R.
Space weather effects on transionospheric radio waves used for navigation and communication may be divided into two categories depending on the spatial scale size of the ionospheric perturbation produced by such effects. For large-scale (> 10 km) perturbations in the ionospheric plasma density, there are changes in the excess time delay for a radio wave signal, which propagates through the ionosphere, while small scale (< 1 m) structures or irregularities in the ionosphere may give rise tok amplitude and phase scintillations on UHF/L-band radio waves, resulting in loss of data, cycle slips and loss of phase lock for signals used in communication/navigation systems. In the equatorial region, where such effects may be severe, space weather effects on the dynamics of equatorial spread F (ESF) irregularities are studied from two different angles. The first one deals with the effect of magnetic activity on the generation of ESF irregularities by helping or hindering the growth of the Rayleigh Taylor (R-T) instability in the post-sunset equatorial F region. For this purpose, spaced receiver observations of scintillations on a UHF signal transmitted from a geostationary satellite and recorded near the dip equator, are used to establish the `age' of the irregularities. This is necessary because the occurrence of scintillations, particularly in the post midnight period, may also be due to irregularities which drift into the path of the radio wave signal, after having been generated more than 3 hours before the actual observation of scintillations. In order to associate the generation of irregularities with major changes in space weather, a parameter that is a measure of random variations in irregularity drift speed is computed from spaced receiver scintillation data. A large value of this parameter is usually a signature of random variations in irregularity drift due to polarization electric fields associated with freshly generated irregularities. Once these electric fields decay, the irregularities drift with the background plasma. This allows a study of the other effect of space weather on the dynamics of equatorial F region irregularities, viz. magnetically disturbed ionospheric drifts in the equatorial region. The drifts estimated for magnetically quiet days with ESF, within a period of a month, display far less variability than the quiet time variability for non-ESF days, thus making it possible to quantify perturbations in irregularity drift due to disturbance dynamo electric fields and/or prompt penetration of transient magnetospheric electric fields.
Emg Signal Analysis of Healthy and Neuropathic Individuals
NASA Astrophysics Data System (ADS)
Gupta, Ashutosh; Sayed, Tabassum; Garg, Ridhi; Shreyam, Richa
2017-08-01
Electromyography is a method to evaluate levels of muscle activity. When a muscle contracts, an action potential is generated and this circulates along the muscular fibers. In electromyography, electrodes are connected to the skin and the electrical activity of muscles is measured and graph is plotted. The surface EMG signals picked up during the muscular activity are interfaced with a system. The EMG signals from individual suffering from Neuropathy and healthy individual, so obtained, are processed and analyzed using signal processing techniques. This project includes the investigation and interpretation of EMG signals of healthy and Neuropathic individuals using MATLAB. The prospective use of this study is in developing the prosthetic device for the people with Neuropathic disability.
Single-Molecule Electrical Random Resequencing of DNA and RNA
NASA Astrophysics Data System (ADS)
Ohshiro, Takahito; Matsubara, Kazuki; Tsutsui, Makusu; Furuhashi, Masayuki; Taniguchi, Masateru; Kawai, Tomoji
2012-07-01
Two paradigm shifts in DNA sequencing technologies--from bulk to single molecules and from optical to electrical detection--are expected to realize label-free, low-cost DNA sequencing that does not require PCR amplification. It will lead to development of high-throughput third-generation sequencing technologies for personalized medicine. Although nanopore devices have been proposed as third-generation DNA-sequencing devices, a significant milestone in these technologies has been attained by demonstrating a novel technique for resequencing DNA using electrical signals. Here we report single-molecule electrical resequencing of DNA and RNA using a hybrid method of identifying single-base molecules via tunneling currents and random sequencing. Our method reads sequences of nine types of DNA oligomers. The complete sequence of 5'-UGAGGUA-3' from the let-7 microRNA family was also identified by creating a composite of overlapping fragment sequences, which was randomly determined using tunneling current conducted by single-base molecules as they passed between a pair of nanoelectrodes.
Xydis, George A; Liaros, Stelios; Botsis, Konstantinos
2017-09-01
The study is a qualitative approach and looks into new ways for the effective energy management of a wind farm (WF) operation in a suburban or near-urban environment in order the generated electricity to be utilised for hydroponic farming purposes as well. Since soilless hydroponic indoor systems gain more and more attention one basic goal, among others, is to take advantage of this not typical electricity demand and by managing it, offering to the grid a less fluctuating electricity generation signal. In this paper, a hybrid business model is presented where the Distributed Energy Resources (DER) producer is participating in the electricity markets under competitive processes (spot market, real-time markets etc.) and at the same time acts as a retailer offering - based on the demand - to the hydroponic units for their mass deployment in an area, putting forward an integrated energy-food nexus approach. Copyright © 2017 Elsevier B.V. All rights reserved.
Simulation of action potential propagation in plants.
Sukhov, Vladimir; Nerush, Vladimir; Orlova, Lyubov; Vodeneev, Vladimir
2011-12-21
Action potential is considered to be one of the primary responses of a plant to action of various environmental factors. Understanding plant action potential propagation mechanisms requires experimental investigation and simulation; however, a detailed mathematical model of plant electrical signal transmission is absent. Here, the mathematical model of action potential propagation in plants has been worked out. The model is a two-dimensional system of excitable cells; each of them is electrically coupled with four neighboring ones. Ion diffusion between excitable cell apoplast areas is also taken into account. The action potential generation in a single cell has been described on the basis of our previous model. The model simulates active and passive signal transmission well enough. It has been used to analyze theoretically the influence of cell to cell electrical conductivity and H(+)-ATPase activity on the signal transmission in plants. An increase in cell to cell electrical conductivity has been shown to stimulate an increase in the length constant, the action potential propagation velocity and the temperature threshold, while the membrane potential threshold being weakly changed. The growth of H(+)-ATPase activity has been found to induce the increase of temperature and membrane potential thresholds and the reduction of the length constant and the action potential propagation velocity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Electric radiation mapping of silver/zinc oxide nanoantennas by using electron holography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, J. E.; Mendoza-Santoyo, F.; Cantu-Valle, J.
2015-01-21
In this work, we report the fabrication of self-assembled zinc oxide nanorods grown on pentagonal faces of silver nanowires by using microwaves irradiation. The nanostructures resemble a hierarchal nanoantenna and were used to study the far and near field electrical metal-semiconductor behavior from the electrical radiation pattern resulting from the phase map reconstruction obtained using off-axis electron holography. As a comparison, we use electric numerical approximations methods for a finite number of ZnO nanorods on the Ag nanowires and show that the electric radiation intensities maps match closely the experimental results obtained with electron holography. The time evolution of themore » radiation pattern as generated from the nanostructure was recorded under in-situ radio frequency signal stimulation, in which the generated electrical source amplitude and frequency were varied from 0 to 5 V and from 1 to 10 MHz, respectively. The phase maps obtained from electron holography show the change in the distribution of the electric radiation pattern for individual nanoantennas. The mapping of this electrical behavior is of the utmost importance to gain a complete understanding for the metal-semiconductor (Ag/ZnO) heterojunction that will help to show the mechanism through which these receiving/transmitting structures behave at nanoscale level.« less
In-situ fault detection apparatus and method for an encased energy storing device
Hagen, Ronald A.; Comte, Christophe; Knudson, Orlin B.; Rosenthal, Brian; Rouillard, Jean
2000-01-01
An apparatus and method for detecting a breach in an electrically insulating surface of an electrically conductive power system enclosure within which a number of series connected energy storing devices are disposed. The energy storing devices disposed in the enclosure are connected to a series power connection. A detector is coupled to the series connection and detects a change of state in a test signal derived from the series connected energy storing devices. The detector detects a breach in the insulating layer of the enclosure by detecting a state change in the test signal from a nominal state to a non-nominal state. A voltage detector detects a state change of the test signals from a nominal state, represented by a voltage of a selected end energy storing device, to a non-nominal state, represented by a voltage that substantially exceeds the voltage of the selected opposing end energy storing device. Alternatively, the detector may comprise a signal generator that produces the test signal as a time-varying or modulated test signal and injects the test signal into the series connection. The detector detects the state change of the time-varying or modulated test signal from a nominal state, represented by a signal substantially equivalent to the test signal, to a non-nominal state, representative by an absence of the test signal.
Mechanical signaling coordinates the embryonic heartbeat
Chiou, Kevin K.; Rocks, Jason W.; Chen, Christina Yingxian; Cho, Sangkyun; Merkus, Koen E.; Rajaratnam, Anjali; Robison, Patrick; Tewari, Manorama; Vogel, Kenneth; Majkut, Stephanie F.; Prosser, Benjamin L.; Discher, Dennis E.; Liu, Andrea J.
2016-01-01
In the beating heart, cardiac myocytes (CMs) contract in a coordinated fashion, generating contractile wave fronts that propagate through the heart with each beat. Coordinating this wave front requires fast and robust signaling mechanisms between CMs. The primary signaling mechanism has long been identified as electrical: gap junctions conduct ions between CMs, triggering membrane depolarization, intracellular calcium release, and actomyosin contraction. In contrast, we propose here that, in the early embryonic heart tube, the signaling mechanism coordinating beats is mechanical rather than electrical. We present a simple biophysical model in which CMs are mechanically excitable inclusions embedded within the extracellular matrix (ECM), modeled as an elastic-fluid biphasic material. Our model predicts strong stiffness dependence in both the heartbeat velocity and strain in isolated hearts, as well as the strain for a hydrogel-cultured CM, in quantitative agreement with recent experiments. We challenge our model with experiments disrupting electrical conduction by perfusing intact adult and embryonic hearts with a gap junction blocker, β-glycyrrhetinic acid (BGA). We find this treatment causes rapid failure in adult hearts but not embryonic hearts—consistent with our hypothesis. Last, our model predicts a minimum matrix stiffness necessary to propagate a mechanically coordinated wave front. The predicted value is in accord with our stiffness measurements at the onset of beating, suggesting that mechanical signaling may initiate the very first heartbeats. PMID:27457951
AC resistance measuring instrument
Hof, P.J.
1983-10-04
An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.
AC Resistance measuring instrument
Hof, Peter J.
1983-01-01
An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.
NASA Technical Reports Server (NTRS)
1988-01-01
ARCO Solar manufactures PV Systems tailored to a broad variety of applications. PV arrays are routinely used at remote communications installations to operate large microwave repeaters, TV and radio repeaters rural telephone, and small telemetry systems that monitor environmental conditions. Also used to power agricultural water pumping systems, to provide electricity for isolated villages and medical clinics, for corrosion protection for pipelines and bridges, to power railroad signals, air/sea navigational aids, and for many types of military systems. ARCO is now moving into large scale generation for utilities.
Electro-optically tunable microwave source based on composite-cavity microchip laser.
Qiao, Yunfei; Zheng, Shilie; Chi, Hao; Jin, Xiaofeng; Zhang, Xianmin
2012-12-17
A compact and electric tuning microwave source based on a diode-pumped composite Nd:YAG-LiNbO(3) cavity microchip laser is demonstrated. The electro-optical element introduces an electric tuning intra-cavity birefringence which causes a tunable frequency difference between two spilt orthogonal polarization states of a longitude mode. Thus a continuously tunable microwave signal with frequency up to 14.12 GHz can be easily generated by beating the two polarization modes on a high speed photodetector.
EMERGE: Engineered Materials that Create Environments for ReGeneration via Electric Field
2015-10-01
lactic co-‐glycolic acid ) (PLGA) Injury Aminophylline REDD-‐2015-‐424 6 3. Accomplishments...laboratories. Previously, we used specific pharmacological activators (aminophylline, ascorbic acid *) or...electric signal and wound healing (shallow epithelial wounds). Aminophylline and ascorbic acid (10 mM)
Magneto-acoustic imaging by continuous-wave excitation.
Shunqi, Zhang; Zhou, Xiaoqing; Tao, Yin; Zhipeng, Liu
2017-04-01
The electrical characteristics of tissue yield valuable information for early diagnosis of pathological changes. Magneto-acoustic imaging is a functional approach for imaging of electrical conductivity. This study proposes a continuous-wave magneto-acoustic imaging method. A kHz-range continuous signal with an amplitude range of several volts is used to excite the magneto-acoustic signal and improve the signal-to-noise ratio. The magneto-acoustic signal amplitude and phase are measured to locate the acoustic source via lock-in technology. An optimisation algorithm incorporating nonlinear equations is used to reconstruct the magneto-acoustic source distribution based on the measured amplitude and phase at various frequencies. Validation simulations and experiments were performed in pork samples. The experimental and simulation results agreed well. While the excitation current was reduced to 10 mA, the acoustic signal magnitude increased up to 10 -7 Pa. Experimental reconstruction of the pork tissue showed that the image resolution reached mm levels when the excitation signal was in the kHz range. The signal-to-noise ratio of the detected magneto-acoustic signal was improved by more than 25 dB at 5 kHz when compared to classical 1 MHz pulse excitation. The results reported here will aid further research into magneto-acoustic generation mechanisms and internal tissue conductivity imaging.
Wireless power charging using point of load controlled high frequency power converters
Miller, John M.; Campbell, Steven L.; Chambon, Paul H.; Seiber, Larry E.; White, Clifford P.
2015-10-13
An apparatus for wirelessly charging a battery of an electric vehicle is provided with a point of load control. The apparatus includes a base unit for generating a direct current (DC) voltage. The base unit is regulated by a power level controller. One or more point of load converters can be connected to the base unit by a conductor, with each point of load converter comprising a control signal generator that transmits a signal to the power level controller. The output power level of the DC voltage provided by the base unit is controlled by power level controller such that the power level is sufficient to power all active load converters when commanded to do so by any of the active controllers, without generating excessive power that may be otherwise wasted.
A portable and integrated instrument for cell manipulation by dielectrophoresis.
Burgarella, Sarah; Di Bari, Marco
2015-07-01
The physical manipulation of biological cells is a key point in the development of miniaturized systems for point-of-care analyses. Dielectrophoresis (DEP) has been reported by several laboratories as a promising method in biomedical research for label-free cell manipulation without physical contact, by exploiting the dielectric properties of cells suspended in a microfluidic sample, under the action of high-gradient electric fields. In view of a more extended use of DEP phenomena in lab-on-chip devices for point-of-care settings, we have developed a portable instrument, integrating on the same device the microfluidic biochip for cell manipulation and all the laboratory functions (i.e., DEP electric signal generation, microscopic observation of the biological sample under test and image acquisition) that are normally obtained by combining different nonportable standard laboratory instruments. The nonuniform electric field for cell manipulation on the biochip is generated by microelectrodes, patterned on the silicon substrate of microfluidic channels, using standard microfabrication techniques. Numerical modeling was performed to simulate the electric field distribution, quantify the DEP force, and optimize the geometry of the microelectrodes. The developed instrument includes an electronic board, which allows the control of the electric signal applied to electrodes necessary for DEP, and a miniaturized optical microscope system that allows visual inspection and eventually cell counting, as well as image and video recording. The system also includes the control software. The portable and integrated platform described in this work therefore represents a complete and innovative solution of applied research, suitable for many biological applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electronic system for floor surface type detection in robotics applications
NASA Astrophysics Data System (ADS)
Tarapata, Grzegorz; Paczesny, Daniel; Tarasiuk, Łukasz
2016-11-01
The paper reports a recognizing method base on ultrasonic transducers utilized for the surface types detection. Ultra-sonic signal is transmitted toward the examined substrate, then reflected and scattered signal goes back to another ultra-sonic receiver. Thee measuring signal is generated by a piezo-electric transducer located at specified distance from the tested substrate. The detector is a second piezo-electric transducer located next to the transmitter. Depending on thee type of substrate which is exposed by an ultrasonic wave, the signal is partially absorbed inn the material, diffused and reflected towards the receiver. To measure the level of received signal, the dedicated electronic circuit was design and implemented in the presented systems. Such system was designed too recognize two types of floor surface: solid (like concrete, ceramic stiles, wood) and soft (carpets, floor coverings). The method will be applied in electronic detection system dedicated to autonomous cleaning robots due to selection of appropriate cleaning method. This work presents the concept of ultrasonic signals utilization, the design of both the measurement system and the measuring stand and as well number of wide tests results which validates correctness of applied ultrasonic method.
Topographic Brain Mapping: A Window on Brain Function?
ERIC Educational Resources Information Center
Karniski, Walt M.
1989-01-01
The article reviews the method of topographic mapping of the brain's electrical activity. Multiple electroencephalogram (EEG) electrodes and computerized analysis of the EEG signal are used to generate maps of frequency and voltage (evoked potential). This relatively new technique holds promise in the evaluation of children with behavioral and…
Grigoriev, K S; Ryzhikov, P S; Cherepetskaya, E B; Makarov, V A
2017-10-16
The components of electric field of the third harmonic beam, generated in isotropic medium with cubic nonlinearity by a monochromatic light beam carrying polarization singularity of an arbitrary type, are found analytically. The relation between C-points characteristics in the fundamental and signal beams are determined, as well as the impact of the phase mismatch on the shape of the C-lines.
Bestel, R; Appali, R; van Rienen, U; Thielemann, C
2017-11-01
Microelectrode arrays serve as an indispensable tool in electro-physiological research to study the electrical activity of neural cells, enabling measurements of single cell as well as network communication analysis. Recent experimental studies have reported that the neuronal geometry has an influence on electrical signaling and extracellular recordings. However, the corresponding mechanisms are not yet fully understood and require further investigation. Allowing systematic parameter studies, computational modeling provides the opportunity to examine the underlying effects that influence extracellular potentials. In this letter, we present an in silico single cell model to analyze the effect of geometrical variability on the extracellular electric potentials. We describe finite element models of a single neuron with varying geometric complexity in three-dimensional space. The electric potential generation of the neuron is modeled using Hodgkin-Huxley equations. The signal propagation is described with electro-quasi-static equations, and results are compared with corresponding cable equation descriptions. Our results show that both the geometric dimensions and the distribution of ion channels of a neuron are critical factors that significantly influence both the amplitude and shape of extracellular potentials.
NASA Astrophysics Data System (ADS)
Maglevanny, I. I.; Smolar, V. A.; Karyakina, T. I.
2018-06-01
In this paper, we consider the activation processes in nonlinear meta-stable system based on a lateral (quasi-two-dimensional) superlattice and study the dynamics of such a system externally driven by a harmonic force. The internal control parameters are the longitudinal applied electric field and the sample temperature. The spontaneous transverse electric field is considered as an order parameter. The forced violations of order parameter are considered as a response of a system to periodic driving. We investigate the cooperative effects of self-organization and high harmonic forcing from the viewpoint of catastrophe theory and show the possibility of generation of third and higher odd harmonics in output signal that lead to distortion of its wave front. A higher harmonics detection strategy is further proposed and explained in detail by exploring the influences of system parameters on the response output of the system that are discussed through numerical simulations.
Su, Li-Chien; Hsu, Yi-Hsiang; Wang, Hsiang-Yu
2012-05-01
An alternating current was used to generate an electric field to enhance the fluorescent labeling of microalgae cellular lipids with Nile red and LipidTOX. The decay of the fluorescence intensity of Chlorella vulgaris cells in 0 V/cm was more than 50% after 10 min, and the intensity variation was as high as 7% in 20s. At 2000 V/cm, the decay rate decreased to 1.22% per minute and the intensity fluctuation was less than 1% for LipidTOX-labeled cells. For Spirulina sp. cells at 0 V/cm, the fluorescence intensity increased by 10% after 10 min, whereas at 2000 V/cm, labeling was more rapid and fluorescence intensity doubled. These results show that applying an electric field can improve the quality of fluorescence detection by alleviating decay and fluctuation or by enhancing signal intensity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Vestibulo-ocular and vestibulospinal function before and after cochlear implant surgery
NASA Technical Reports Server (NTRS)
Black, F. O.; Lilly, D. J.; Peterka, R. J.; Fowler, L. P.; Simmons, F. B.
1987-01-01
Vestibular function in cochlear implant candidates varies from normal to total absence of function. In patients with intact vestibular function preoperatively, invasion of the otic capsule places residual vestibular function at risk. Speech-processing strategies that result in large amplitude electrical transients or strategies that employ high amplitude broad frequency carrier signals have the potential for disrupting vestibular function. Five patients were tested with and without electrical stimulation via cochlear electrodes. Two patients experienced subjective vestibular effects that were quickly resolved. No long-term vestibular effects were noted for the two types of second generation cochlear implants evaluated. Histopathological findings from another patient, who had electrically generated vestibular reflex responses to intramodiolar electrodes, indicated that responses elicited were a function of several variables including electrode location, stimulus intensity, stimulus amplitude, and stimulus frequency. Differential auditory, vestibulocolic, and vestibulospinal reflexes were demonstrated from the same electrode as a function of stimulus amplitude, frequency, and duration.
Optically isolated signal coupler with linear response
Kronberg, James W.
1994-01-01
An optocoupler for isolating electrical signals that translates an electrical input signal linearly to an electrical output signal. The optocoupler comprises a light emitter, a light receiver, and a light transmitting medium. The light emitter, preferably a blue, silicon carbide LED, is of the type that provides linear, electro-optical conversion of electrical signals within a narrow wavelength range. Correspondingly, the light receiver, which converts light signals to electrical signals and is preferably a cadmium sulfide photoconductor, is linearly responsive to light signals within substantially the same wavelength range as the blue LED.
Stress-induced electric current fluctuations in rocks: a superstatistical model
NASA Astrophysics Data System (ADS)
Cartwright-Taylor, Alexis; Vallianatos, Filippos; Sammonds, Peter
2017-04-01
We recorded spontaneous electric current flow in non-piezoelectric Carrara marble samples during triaxial deformation. Mechanical data, ultrasonic velocities and acoustic emissions were acquired simultaneously with electric current to constrain the relationship between electric current flow, differential stress and damage. Under strain-controlled loading, spontaneous electric current signals (nA) were generated and sustained under all conditions tested. In dry samples, a detectable electric current arises only during dilatancy and the overall signal is correlated with the damage induced by microcracking. Our results show that fracture plays a key role in the generation of electric currents in deforming rocks (Cartwright-Taylor et al., in prep). We also analysed the high-frequency fluctuations of these electric current signals and found that they are not normally distributed - they exhibit power-law tails (Cartwright-Taylor et al., 2014). We modelled these distributions with q-Gaussian statistics, derived by maximising the Tsallis entropy. This definition of entropy is particularly applicable to systems which are strongly correlated and far from equilibrium. Good agreement, at all experimental conditions, between the distributions of electric current fluctuations and the q-Gaussian function with q-values far from one, illustrates the highly correlated, fractal nature of the electric source network within the samples and provides further evidence that the source of the electric signals is the developing fractal network of cracks. It has been shown (Beck, 2001) that q-Gaussian distributions can arise from the superposition of local relaxations in the presence of a slowly varying driving force, thus providing a dynamic reason for the appearance of Tsallis statistics in systems with a fluctuating energy dissipation rate. So, the probability distribution for a dynamic variable, u under some external slow forcing, β, can be obtained as a superposition of temporary local equilibrium processes whose variance fluctuates over time. The appearance of q-Gaussian statistics are caused by the fluctuating β parameter, which effectively models the fluctuating energy dissipation rate in the system. This concept is known as superstatistics and is physically relevant for modelling driven non-equilibrium systems where the environmental conditions fluctuate on a large scale. The idea is that the environmental variable, such as temperature or pressure, changes so slowly that a rapidly fluctuating variable within that environment has time to relax back to equilibrium between each change in the environment. The application of superstatistical techniques to our experimental electric current fluctuations show that they can indeed be described, to good approximation, by the superposition of local Gaussian processes with fluctuating variance. We conclude, then, that the measured electric current fluctuates in response to intermittent energy dissipation and is driven to varying temporary local equilibria during deformation by the variations in stress intensity. The advantage of this technique is that, once the model has been established to be a good description of the system in question, the average β parameter (a measure of the average energy dissipation rate) for the system can be obtained simply from the macroscopic q-Gaussian distribution parameters.
Magnetoplasmonic RF mixing and nonlinear frequency generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firby, C. J., E-mail: firby@ualberta.ca; Elezzabi, A. Y.
2016-07-04
We present the design of a magnetoplasmonic Mach-Zehnder interferometer (MZI) modulator facilitating radio-frequency (RF) mixing and nonlinear frequency generation. This is achieved by forming the MZI arms from long-range dielectric-loaded plasmonic waveguides containing bismuth-substituted yttrium iron garnet (Bi:YIG). The magnetization of the Bi:YIG can be driven in the nonlinear regime by RF magnetic fields produced around adjacent transmission lines. Correspondingly, the nonlinear temporal dynamics of the transverse magnetization component are mapped onto the nonreciprocal phase shift in the MZI arms, and onto the output optical intensity signal. We show that this tunable mechanism can generate harmonics, frequency splitting, and frequencymore » down-conversion with a single RF excitation, as well as RF mixing when driven by two RF signals. This magnetoplasmonic component can reduce the number of electrical sources required to generate distinct optical modulation frequencies and is anticipated to satisfy important applications in integrated optics.« less
Stereo optical guidance system for control of industrial robots
NASA Technical Reports Server (NTRS)
Powell, Bradley W. (Inventor); Rodgers, Mike H. (Inventor)
1992-01-01
A device for the generation of basic electrical signals which are supplied to a computerized processing complex for the operation of industrial robots. The system includes a stereo mirror arrangement for the projection of views from opposite sides of a visible indicia formed on a workpiece. The views are projected onto independent halves of the retina of a single camera. The camera retina is of the CCD (charge-coupled-device) type and is therefore capable of providing signals in response to the image projected thereupon. These signals are then processed for control of industrial robots or similar devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltani Gishini, M. S.; Ganjovi, A., E-mail: Ganjovi@kgut.ac.ir; Saeed, M.
In this work, using a two dimensional particle in cell-Monte Carlo collision simulation scheme, interaction of two-color ultra-short laser pulses with the molecular hydrogen gas (H{sub 2}) is examined. The operational laser parameters, i.e., its pulse shape, duration, and waist, are changed and, their effects on the density and kinetic energy of generated electrons, THz electric field, intensity, and spectrum are studied. It is seen that the best pulse shape generating the THz signal radiation with the highest intensity is a trapezoidal pulse, and the intensity of generated THz radiation is increased at the higher pulse durations and waists. Formore » all the operational laser parameters, the maximum value of emitted THz signal frequency always remains lower than 5 THz. The intensity of applied laser pulses is taken about 10{sup 14} w/cm{sup 2}, and it is observed that while a small portion of the gaseous media gets ionized, the radiated THz signal is significant.« less
Tian, Liguo; Meng, Qinghao; Wang, Liping; Dong, Jianghui; Wu, Hai
2015-01-01
The plant electrical signal has some features, e.g. weak, low-frequency and time-varying. To detect changes in plant electrical signals, LED light source was used to create a controllable light environment in this study. The electrical signal data were collected from Sansevieria leaves under the different illumination conditions, and the data was analyzed in time domain, frequency domain and time–frequency domain, respectively. These analyses are helpful to explore the relationship between changes in the light environment and electrical signals in Sansevieria leaves. The changes in the plant electrical signal reflected the changes in the intensity of photosynthesis. In this study, we proposed a new method to express plant photosynthetic intensity as a function of the electrical signal. That is, the plant electrical signal can be used to describe the state of plant growth. PMID:26121469
Tian, Liguo; Meng, Qinghao; Wang, Liping; Dong, Jianghui; Wu, Hai
2015-01-01
The plant electrical signal has some features, e.g. weak, low-frequency and time-varying. To detect changes in plant electrical signals, LED light source was used to create a controllable light environment in this study. The electrical signal data were collected from Sansevieria leaves under the different illumination conditions, and the data was analyzed in time domain, frequency domain and time-frequency domain, respectively. These analyses are helpful to explore the relationship between changes in the light environment and electrical signals in Sansevieria leaves. The changes in the plant electrical signal reflected the changes in the intensity of photosynthesis. In this study, we proposed a new method to express plant photosynthetic intensity as a function of the electrical signal. That is, the plant electrical signal can be used to describe the state of plant growth.
NASA Technical Reports Server (NTRS)
Holliday, Ezekiel S. (Inventor)
2014-01-01
Vibrations at harmonic frequencies are reduced by injecting harmonic balancing signals into the armature of a linear motor/alternator coupled to a Stirling machine. The vibrations are sensed to provide a signal representing the mechanical vibrations. A harmonic balancing signal is generated for selected harmonics of the operating frequency by processing the sensed vibration signal with adaptive filter algorithms of adaptive filters for each harmonic. Reference inputs for each harmonic are applied to the adaptive filter algorithms at the frequency of the selected harmonic. The harmonic balancing signals for all of the harmonics are summed with a principal control signal. The harmonic balancing signals modify the principal electrical drive voltage and drive the motor/alternator with a drive voltage component in opposition to the vibration at each harmonic.
A comparison of pay-as-bid and marginal pricing in electricity markets
NASA Astrophysics Data System (ADS)
Ren, Yongjun
This thesis investigates the behaviour of electricity markets under marginal and pay-as-bid pricing. Marginal pricing is believed to yield the maximum social welfare and is currently implemented by most electricity markets. However, in view of recent electricity market failures, pay-as-bid has been extensively discussed as a possible alternative to marginal pricing. In this research, marginal and pay-as-bid pricing have been analyzed in electricity markets with both perfect and imperfect competition. The perfect competition case is studied under both exact and uncertain system marginal cost prediction. The comparison of the two pricing methods is conducted through two steps: (i) identify the best offer strategy of the generating companies (gencos); (ii) analyze the market performance under these optimum genco strategies. The analysis results together with numerical simulations show that pay-as-bid and marginal pricing are equivalent in a perfect market with exact system marginal cost prediction. In perfect markets with uncertain demand prediction, the two pricing methods are also equivalent but in an expected value sense. If we compare from the perspective of second order statistics, all market performance measures exhibit much lower values under pay-as-bid than under marginal pricing. The risk of deviating from the mean is therefore much higher under marginal pricing than under pay-as-bid. In an imperfect competition market with exact demand prediction, the research shows that pay-as-bid pricing yields lower consumer payments and lower genco profits. This research provides quantitative evidence that challenges some common claims about pay-as-bid pricing. One is that under pay-as-bid, participants would soon learn how to offer so as to obtain the same or higher profits than what they would have obtained under marginal pricing. This research however shows that, under pay-as-bid, participants can at best earn the same profit or expected profit as under marginal pricing. A second common claim refuted by this research is that pay-as-bid does not provide correct price signals if there is a scarcity of generation resources. We show that pay-as-bid does provide a price signal with such characteristics and furthermore argue that the price signal under marginal pricing with gaming may not necessarily be correct since it would then not reflect a lack of generation capacity but a desire to increase profit.
Ruan, Xiaoke; Li, Ke; Thomson, David J; Lacava, Cosimo; Meng, Fanfan; Demirtzioglou, Iosif; Petropoulos, Periklis; Zhu, Yixiao; Reed, Graham T; Zhang, Fan
2017-08-07
We have designed and fabricated a silicon photonic in-phase-quadrature (IQ) modulator based on a nested dual-drive Mach-Zehnder structure incorporating electrical packaging. We have assessed its use for generating Nyquist-shaped single sideband (SSB) signals by operating it either as an IQ Mach-Zehnder modulator (IQ-MZM) or using just a single branch of the dual-drive Mach-Zehnder modulator (DD-MZM). The impact of electrical packaging on the modulator bandwidth is also analyzed. We demonstrate 40 Gb/s (10Gbaud) 16-ary quadrature amplitude modulation (16-QAM) Nyquist-shaped SSB transmission over 160 km standard single mode fiber (SSMF). Without using any chromatic dispersion compensation, the bit error rates (BERs) of 5.4 × 10 -4 and 9.0 × 10 -5 were measured for the DD-MZM and IQ-MZM, respectively, far below the 7% hard-decision forward error correction threshold. The performance difference between IQ-MZM and DD-MZM is most likely due to the non-ideal electrical packaging. Our work is the first experimental comparison between silicon IQ-MZM and silicon DD-MZM in generating SSB signals. We also demonstrate 50 Gb/s (12.5Gbaud) 16-QAM Nyquist-shaped SSB transmission over 320 km SSMF with a BER of 2.7 × 10 -3 . Both the silicon IQ-MZM and the DD-MZM show potential for optical transmission at metro scale and for data center interconnection.
Fotowat, Haleh; Harvey-Girard, Erik; Cheer, Joseph F; Krahe, Rüdiger; Maler, Leonard
2016-01-01
Serotonergic neurons of the raphe nuclei of vertebrates project to most regions of the brain and are known to significantly affect sensory processing. The subsecond dynamics of sensory modulation of serotonin levels and its relation to behavior, however, remain unknown. We used fast-scan cyclic voltammetry to measure serotonin release in the electrosensory system of weakly electric fish, Apteronotus leptorhynchus . These fish use an electric organ to generate a quasi-sinusoidal electric field for communicating with conspecifics. In response to conspecific signals, they frequently produce signal modulations called chirps. We measured changes in serotonin concentration in the hindbrain electrosensory lobe (ELL) with a resolution of 0.1 s concurrently with chirping behavior evoked by mimics of conspecific electric signals. We show that serotonin release can occur phase locked to stimulus onset as well as spontaneously in the ELL region responsible for processing these signals. Intense auditory stimuli, on the other hand, do not modulate serotonin levels in this region, suggesting modality specificity. We found no significant correlation between serotonin release and chirp production on a trial-by-trial basis. However, on average, in the trials where the fish chirped, there was a reduction in serotonin release in response to stimuli mimicking similar-sized same-sex conspecifics. We hypothesize that the serotonergic system is part of an intricate sensory-motor loop: serotonin release in a sensory area is triggered by sensory input, giving rise to motor output, which can in turn affect serotonin release at the timescale of the ongoing sensory experience and in a context-dependent manner.
Krahe, Rüdiger; Maler, Leonard
2016-01-01
Abstract Serotonergic neurons of the raphe nuclei of vertebrates project to most regions of the brain and are known to significantly affect sensory processing. The subsecond dynamics of sensory modulation of serotonin levels and its relation to behavior, however, remain unknown. We used fast-scan cyclic voltammetry to measure serotonin release in the electrosensory system of weakly electric fish, Apteronotus leptorhynchus. These fish use an electric organ to generate a quasi-sinusoidal electric field for communicating with conspecifics. In response to conspecific signals, they frequently produce signal modulations called chirps. We measured changes in serotonin concentration in the hindbrain electrosensory lobe (ELL) with a resolution of 0.1 s concurrently with chirping behavior evoked by mimics of conspecific electric signals. We show that serotonin release can occur phase locked to stimulus onset as well as spontaneously in the ELL region responsible for processing these signals. Intense auditory stimuli, on the other hand, do not modulate serotonin levels in this region, suggesting modality specificity. We found no significant correlation between serotonin release and chirp production on a trial-by-trial basis. However, on average, in the trials where the fish chirped, there was a reduction in serotonin release in response to stimuli mimicking similar-sized same-sex conspecifics. We hypothesize that the serotonergic system is part of an intricate sensory–motor loop: serotonin release in a sensory area is triggered by sensory input, giving rise to motor output, which can in turn affect serotonin release at the timescale of the ongoing sensory experience and in a context-dependent manner. PMID:27844054
NASA Astrophysics Data System (ADS)
Borra, Ermanno F.; Romney, Jonathan D.; Trottier, Eric
2018-06-01
We demonstrate that extremely rapid and weak periodic and non-periodic signals can easily be detected by using the autocorrelation of intensity as a function of time. We use standard radio-astronomical observations that have artificial periodic and non-periodic signals generated by the electronics of terrestrial origin. The autocorrelation detects weak signals that have small amplitudes because it averages over long integration times. Another advantage is that it allows a direct visualization of the shape of the signals, while it is difficult to see the shape with a Fourier transform. Although Fourier transforms can also detect periodic signals, a novelty of this work is that we demonstrate another major advantage of the autocorrelation, that it can detect non-periodic signals while the Fourier transform cannot. Another major novelty of our work is that we use electric fields taken in a standard format with standard instrumentation at a radio observatory and therefore no specialized instrumentation is needed. Because the electric fields are sampled every 15.625 ns, they therefore allow detection of very rapid time variations. Notwithstanding the long integration times, the autocorrelation detects very rapid intensity variations as a function of time. The autocorrelation could also detect messages from Extraterrestrial Intelligence as non-periodic signals.
Skinner, Charles H [Lawrenceville, NJ
2006-05-02
An apparatus for detecting dust in a variety of environments which can include radioactive and other hostile environments both in a vacuum and in a pressurized system. The apparatus consists of a grid coupled to a selected bias voltage. The signal generated when dust impacts and shorts out the grid is electrically filtered, and then analyzed by a signal analyzer which is then sent to a counter. For fine grids a correlation can be developed to relate the number of counts observed to the amount of dust which impacts the grid.
Hybrid Waveguides and Heterodyne Detectors Integrated Optics for 10 Micron Wavelengths
1975-02-28
high pressure (300 Torr). The frequency is scanned by piezoelectrically driven Fabry - Perot reflectors in "push-pull" so that thfy serve as a sweep...local oscillator and a sweep frequency signal generator. The Fabry - Perot intracavity length of these lasers is 16 cm. The demountable Dewar for the...finmiPi|ip«i.uiniiii.ii ^WPÜPXiW^ •^WWBW^1P»WW i L i For the traveling-wave heterodyne detector the electrical demodulated signal wave and both the
NASA Astrophysics Data System (ADS)
Déprez, Grégoire; Montmessin, Franck; Witasse, Olivier; Lapauw, Laurent; Vivat, Francis; Abbaki, Sadok; Granier, Philippe; Moirin, David; Trautner, Roland; Hassen-Khodja, Rafik; d'Almeida, Éric; Chardenal, Laurent; Berthelier, Jean-Jacques; Esposito, Francesca; Debei, Stefano; Rafkin, Scott; Barth, Erika
2014-05-01
For the past few years, LATMOS has been involved in the development of micro-ARES, an electric field sensor part of the science payload (DREAMS) of the ExoMars 2016 Schiaparelli entry, descent and landing demonstrator. It is dedicated to the very first measurement and characterization of the Martian atmospheric electricity which is suspected to be at the very basis of various phenomenon such as dust lifting, formation of oxidizing agents or Schumann resonances. Although the data collection will be restricted to a few days of operations, these first results will be of importance to understand the Martian dust cycle, the electrical environment and possibly relevant to atmospheric chemistry. The instrument, a compact version of the ARES instrument for the ExoMars Humboldt payload, is composed of an electronic board, with an amplification line and a real-time data processing DSP, which handles the electric signal measured between the spherical electrode (located at the top of a 27-cm high antenna) that adjusts itself to the local atmospheric potential, and the lander chassis, connected to the mechanical ground. Since the electric fields on Mars have never been measured before, we can rely on two sources in order to know their expected order of magnitude. The first one is the measurement of the atmospheric electric fields on Earth, at the surface (in dust storms or the so-called dust-devils) or in the high atmosphere (closer to the Martian temperature and pressure conditions). The second one is the computer simulation of the phenomenon, that we obtained by combining two models. On the one hand, the mesoscale PRAMS model, developed at SwRI, which has the ability to simulate the dust transportation, and on the other hand the implementation made at LATMOS of Farell's 2005 dust-triboelectricity equations. Those models allowed us to simulate electric fields up to tens or even hundreds of kilo-volts per meter inside dust devils, which corresponds to the observations made on Earth and transposed to the Martian atmospheric parameters. Knowing the expected electric fields and simulating them, the next step in order to evaluate the performance of the instrument is to determine its sensitivity by modelling the response of the instrument. The last step is to confront the model of the instrument, and the expected results for a given signal with the effective outputs of the electric board with the same signal as an input. To achieve this end-to-end test, we use a signal generator followed by an electrical circuit reproducing the electrode behaviour in the Martian environment, in order to inject a realistic electric signal in the processing board and finally compare the produced formatted data with the expected ones.
Transient current induced in thin film diamonds by swift heavy ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Shin-ichiro; Makino, Takahiro; Ohshima, Takeshi
Single crystal diamond is a suitable material for the next generation particle detectors because of the superior electrical properties and the high radiation tolerance. In order to investigate charge transport properties of diamond particle detectors, transient currents generated in diamonds by single swift heavy ions (26 MeV O 5 + and 45 MeV Si 7 +) are investigated. We also measured two dimensional maps of transient currents by single ion hits. In the case of 50 μm-thick diamond, both the signal height and the collected charge are reduced by the subsequent ion hits and the charge collection time is extended.more » Our results are thought to be attributable to the polarization effect in diamond and it appears only when the transient current is dominated by hole current. In the case of 6 μm-thick diamond membrane, an “island” structure is found in the 2D map of transient currents. Signals in the islands shows different applied bias dependence from signals in other regions, indicating different crystal and/or metal contact quality. Simulation study of transient currents based on the Shockley-Ramo theorem clarifies that accumulation of space charges changes distribution of electric field in diamond and causes the polarization effect.« less
Transient current induced in thin film diamonds by swift heavy ions
Sato, Shin-ichiro; Makino, Takahiro; Ohshima, Takeshi; ...
2017-04-05
Single crystal diamond is a suitable material for the next generation particle detectors because of the superior electrical properties and the high radiation tolerance. In order to investigate charge transport properties of diamond particle detectors, transient currents generated in diamonds by single swift heavy ions (26 MeV O 5 + and 45 MeV Si 7 +) are investigated. We also measured two dimensional maps of transient currents by single ion hits. In the case of 50 μm-thick diamond, both the signal height and the collected charge are reduced by the subsequent ion hits and the charge collection time is extended.more » Our results are thought to be attributable to the polarization effect in diamond and it appears only when the transient current is dominated by hole current. In the case of 6 μm-thick diamond membrane, an “island” structure is found in the 2D map of transient currents. Signals in the islands shows different applied bias dependence from signals in other regions, indicating different crystal and/or metal contact quality. Simulation study of transient currents based on the Shockley-Ramo theorem clarifies that accumulation of space charges changes distribution of electric field in diamond and causes the polarization effect.« less
Codazzi, Franca; Di Cesare, Alessandra; Chiulli, Nino; Albanese, Alberto; Meyer, Tobias; Zacchetti, Daniele; Grohovaz, Fabio
2006-03-29
Conventional protein kinase C (PKC) isoforms are abundant neuronal signaling proteins with important roles in regulating synaptic plasticity and other neuronal processes. Here, we investigate the role of ionotropic and metabotropic glutamate receptor (iGluR and mGluR, respectively) activation on the generation of Ca2+ and diacylglycerol (DAG) signals and the subsequent activation of the neuron-specific PKCgamma isoform in hippocampal neurons. By combining Ca2+ imaging with total internal reflection microscopy analysis of specific biosensors, we show that elevation of both Ca2+ and DAG is necessary for sustained translocation and activation of EGFP (enhanced green fluorescent protein)-PKCgamma. Both DAG production and PKCgamma translocation were localized processes, typically observed within discrete microdomains along the dendritic branches. Markedly, intermediate-strength NMDA receptor (NMDAR) activation or moderate electrical stimulation generated Ca2+ but no DAG signals, whereas mGluR activation generated DAG but no Ca2+ signals. Both receptors were needed for PKCgamma activation. This suggests that a coincidence detection process exists between iGluRs and mGluRs that relies on a molecular coincidence detection process based on the corequirement of Ca2+ and DAG for PKCgamma activation. Nevertheless, the requirement for costimulation with mGluRs could be overcome for maximal NMDAR stimulation through a direct production of DAG via activation of the Ca2+-sensitive PLCdelta (phospholipase Cdelta) isoform. In a second important exception, mGluRs were sufficient for PKCgamma activation in neurons in which Ca2+ stores were loaded by previous electrical activity. Together, the dual activation requirement for PKCgamma provides a plausible molecular interpretation for different synergistic contributions of mGluRs to long-term potentiation and other synaptic plasticity processes.
High-speed optical transmission system using 1.55-μm directly modulated lasers
NASA Astrophysics Data System (ADS)
Kim, Hoon
2018-01-01
We present the small-signal frequency responses of single-mode fiber used in directly modulated laser/direct detection (DML/DD) and externally modulated transmitter/direct detection (EXT/DD) systems, and compare the dispersion tolerance of these two systems. We find out that DML/DD system could be more tolerant to fiber chromatic dispersion than EXT/DD system when an electrical equalizer is employed at the receiver. We also present the transmission of 56- Gb/s 4-level pulse amplitude modulation signals generated from a 1.55-μm DML over 20-km standard single-mode fiber with the aid of a linear electrical equalizer. The performance behavior of this system with respect to the transmission distance is explained by using the frequency response.
NASA Astrophysics Data System (ADS)
Freund, F. T.
2005-12-01
Earthquake forecasting is an elusive goal, not only for seismology. It has been reported that, before major earthquakes, the Earth sends out signals. Most of these signals point to transient electric currents in the Earth's crust. To search for the cause of such currents attention has focused - for decades, but in vain - on piezoelectricity, a property of quartz, an abundant mineral in certain rocks. The fact that no generally accepted, physics-based mechanism for the generation of large currents was available has caused considerable confusion. As part of a program to study electrical signals during rock deformation we have made an amazing discovery: when we squeeze one end of a 1.2 m long slab of granite (or quartz-free rocks such as anorthosite or gabbro), we record two electric currents. The currents flow out of the stressed rock without any externally applied voltage. One current, carried by electrons, flows from the stressed rock volume directly to ground. The other current, carried by defect electrons or holes, flows through the full length of the unstressed rock and out the far end. The two currents are of equal magnitude and opposite sign. They are coupled and fluctuate. We understand where the currents come from, how the two types of electronic charge carriers are activated by stress, and how they propagate through the rocks. The discovery of these currents offers a physical basis to re-evaluate a range of electric and electromagnetic signals that have long been reported in connection with impending earthquake activity but seemed to be so difficult, if not impossible, to explain. It offers the opportunity to re-evaluate non-seismic (and non-geodesic) pre-earthquake signals as tools to forecast impending earthquake activity.
Floating electrode dielectrophoresis.
Golan, Saar; Elata, David; Orenstein, Meir; Dinnar, Uri
2006-12-01
In practice, dielectrophoresis (DEP) devices are based on micropatterned electrodes. When subjected to applied voltages, the electrodes generate nonuniform electric fields that are necessary for the DEP manipulation of particles. In this study, electrically floating electrodes are used in DEP devices. It is demonstrated that effective DEP forces can be achieved by using floating electrodes. Additionally, DEP forces generated by floating electrodes are different from DEP forces generated by excited electrodes. The floating electrodes' capabilities are explained theoretically by calculating the electric field gradients and demonstrated experimentally by using test-devices. The test-devices show that floating electrodes can be used to collect erythrocytes (red blood cells). DEP devices which contain many floating electrodes ought to have fewer connections to external signal sources. Therefore, the use of floating electrodes may considerably facilitate the fabrication and operation of DEP devices. It can also reduce device dimensions. However, the key point is that DEP devices can integrate excited electrodes fabricated by microtechnology processes and floating electrodes fabricated by nanotechnology processes. Such integration is expected to promote the use of DEP devices in the manipulation of nanoparticles.
Electric Water Heater Modeling and Control Strategies for Demand Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.
2012-07-22
Abstract— Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency supportmore » following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms— Centralized control, decentralized control, demand response, electrical water heater, smart grid« less
Energy-efficient neural information processing in individual neurons and neuronal networks.
Yu, Lianchun; Yu, Yuguo
2017-11-01
Brains are composed of networks of an enormous number of neurons interconnected with synapses. Neural information is carried by the electrical signals within neurons and the chemical signals among neurons. Generating these electrical and chemical signals is metabolically expensive. The fundamental issue raised here is whether brains have evolved efficient ways of developing an energy-efficient neural code from the molecular level to the circuit level. Here, we summarize the factors and biophysical mechanisms that could contribute to the energy-efficient neural code for processing input signals. The factors range from ion channel kinetics, body temperature, axonal propagation of action potentials, low-probability release of synaptic neurotransmitters, optimal input and noise, the size of neurons and neuronal clusters, excitation/inhibition balance, coding strategy, cortical wiring, and the organization of functional connectivity. Both experimental and computational evidence suggests that neural systems may use these factors to maximize the efficiency of energy consumption in processing neural signals. Studies indicate that efficient energy utilization may be universal in neuronal systems as an evolutionary consequence of the pressure of limited energy. As a result, neuronal connections may be wired in a highly economical manner to lower energy costs and space. Individual neurons within a network may encode independent stimulus components to allow a minimal number of neurons to represent whole stimulus characteristics efficiently. This basic principle may fundamentally change our view of how billions of neurons organize themselves into complex circuits to operate and generate the most powerful intelligent cognition in nature. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Infrasound from Wind Turbines Could Affect Humans
ERIC Educational Resources Information Center
Salt, Alec N.; Kaltenbach, James A.
2011-01-01
Wind turbines generate low-frequency sounds that affect the ear. The ear is superficially similar to a microphone, converting mechanical sound waves into electrical signals, but does this by complex physiologic processes. Serious misconceptions about low-frequency sound and the ear have resulted from a failure to consider in detail how the ear…
Apparatus for Teaching Physics.
ERIC Educational Resources Information Center
Gottlieb, Herbert H., Ed.
1979-01-01
Describes the following: a device which converts the displacement of a pendulum into an electric signal and is used as a voltage generator of low frequencies; a turn-by-turn transformer demonstration; how to remove the buoyant force on a piece of cork immersed in water; and how to demonstrate Coulomb's Law on the overhead projector. (GA)
Method and apparatus for non-contact charge measurement
NASA Technical Reports Server (NTRS)
Wang, Taylor G. (Inventor); Lin, Kuan-Chan (Inventor); Hightower, James C. (Inventor)
1994-01-01
A method and apparatus for the accurate non-contact detection and measurement of static electric charge on an object using a reciprocating sensing probe that moves relative to the object. A monitor measures the signal generated as a result of this cyclical movement so as to detect the electrostatic charge on the object.
Encarnação, João M; Stallinga, Peter; Ferreira, Guilherme N M
2007-02-15
In this work we demonstrate that the presence of electrolytes in solution generates desorption-like transients when the resonance frequency is measured. Using impedance spectroscopy analysis and Butterworth-Van Dyke (BVD) equivalent electrical circuit modeling we demonstrate that non-Kanazawa responses are obtained in the presence of electrolytes mainly due to the formation of a diffuse electric double layer (DDL) at the sensor surface, which also causes a capacitor like signal. We extend the BVD equivalent circuit by including additional parallel capacitances in order to account for such capacitor like signal. Interfering signals from electrolytes and DDL perturbations were this way discriminated. We further quantified as 8.0+/-0.5 Hz pF-1 the influence of electrolytes to the sensor resonance frequency and we used this factor to correct the data obtained by frequency counting measurements. The applicability of this approach is demonstrated by the detection of oligonucleotide sequences. After applying the corrective factor to the frequency counting data, the mass contribution to the sensor signal yields identical values when estimated by impedance analysis and frequency counting.
Feasibility study on measurement of magnetocardiography (MCG) using fluxgate magnetometer
NASA Astrophysics Data System (ADS)
Sengottuvel, S.; Sharma, Akash; Biswal, Deepak; Khan, Pathan Fayaz; Swain, Pragyna Parimita; Patel, Rajesh; Gireesan, K.
2018-04-01
This paper reports the feasibility of measuring weak magnetic fields generated by the electrical activity of the heart using a portable tri-axial fluxgate magnetometer inside a magnetically shielded room. Measurement of Magnetocardiogram (MCG) signals could be successfully demonstrated from a healthy subject using a novel set-up involving a reference fluxgate sensor which simultaneously measures the magnetic fields associated with the ECG waveform measured on the same subject. The timing information provided by R wave peaks of ECG recorded by the reference sensor is utilized to generate trigger locked average of the sensor output of the measurement fluxgate, and extract MCG signals in all the three orthogonal directions (X, Y and Z) on the anterior thorax. It is expected that such portable room temperature measurements using fluxgate sensor could assist in validating the direction of the equivalent current dipole associated with the electrical activity of the human heart. This is somewhat difficult in conventional MCG measurements using SQUID sensors, which usually furnish only the z component of the magnetic field and its spatial derivatives.
Runoff generation in karst catchments: multifractal analysis
NASA Astrophysics Data System (ADS)
Majone, Bruno; Bellin, Alberto; Borsato, Andrea
2004-07-01
Time series of hydrological and geochemical signals at two karst springs, located in the Dolomiti del Brenta region, near Trento, Italy, are used to infer how karst catchments work internally to generate runoff. The data analyzed include precipitation, spring flow and electric conductivity of the spring water. All the signals show the signature of multifractality but with different intermittency and non-stationarity. In particular, precipitation and spring flow are shown to have nearly the same degree of non-stationarity and intermittency, while electric conductivity, which mimics the travel time distribution of water in the karst system, is less intermittent and smoother than both spring flow and precipitations. We found that spring flow can be obtained from precipitation through fractional convolution with a power law transfer function. An important result of our study is that the probability distribution of travel times is inconsistent with the advection dispersion equation, while it supports the anomalous transport model. This result is in line with what was observed by Painter et al. [Geophys. Res. Lett. 29 (2002) 21.1] for transport in fractured rocks.
Optical properties of an elliptic quantum ring: Eccentricity and electric field effects
NASA Astrophysics Data System (ADS)
Bejan, Doina; Stan, Cristina; Niculescu, Ecaterina C.
2018-04-01
We have theoretically studied the electronic and optical properties of a GaAs/AlGaAs elliptic quantum ring under in-plane electric field. The effects of an eccentric internal barrier -placed along the electric field direction, chosen as x-axis- and incident light polarization are particularly taken into account. The one-electron energy spectrum and wave functions are found using the adiabatic approximation and the finite element method within the effective-mass model. We show that it is possible to repair the structural distortion by applying an appropriate in-plane electric field, and the compensation is almost complete for all electronic states under study. For both concentric and eccentric quantum ring the intraband optical properties are very sensitive to the electric field and probe laser polarization. As expected, in the systems with eccentricity distortions the energy spectrum, as well as the optical response, strongly depends on the direction of the externally applied electric field, an effect that can be used as a signature of ring eccentricity. We demonstrated the possibility of generating second harmonic response at double resonance condition for incident light polarized along the x-axis if the electric field or/and eccentric barrier break the inversion symmetry. Also, strong third harmonic signal can be generated at triple resonance condition for a specific interval of electric field values when using y-polarized light.
Lymphocyte Electrotaxis in vitro and in vivo
Lin, Francis; Baldessari, Fabio; Gyenge, Christina Crenguta; Sato, Tohru; Chambers, Robert D.; Santiago, Juan G.; Butcher, Eugene C.
2008-01-01
Electric fields are generated in vivo in a variety of physiologic and pathologic settings, including penetrating injury to epithelial barriers. An applied electric field with strength within the physiologic range can induce directional cell migration (i.e. electrotaxis) of epithelial cells, endothelial cells, fibroblasts, and neutrophils suggesting a potential role in cell positioning during wound healing. In the present study, we investigated the ability of lymphocytes to respond to applied direct current (DC) electric fields. Using a modified transwell assay and a simple microfluidic device, we show that human peripheral blood lymphocytes migrate toward the cathode in physiologically relevant DC electric fields. Additionally, electrical stimulation activates intracellular kinase signaling pathways shared with chemotactic stimuli. Finally, video microscopic tracing of GFP-tagged immunocytes in the skin of mouse ears reveals that motile cutaneous T cells actively migrate toward the cathode of an applied DC electric field. Lymphocyte positioning within tissues can thus be manipulated by externally applied electric fields, and may be influenced by endogenous electrical potential gradients as well. PMID:18684937
Lymphocyte electrotaxis in vitro and in vivo.
Lin, Francis; Baldessari, Fabio; Gyenge, Christina Crenguta; Sato, Tohru; Chambers, Robert D; Santiago, Juan G; Butcher, Eugene C
2008-08-15
Electric fields are generated in vivo in a variety of physiologic and pathologic settings, including penetrating injury to epithelial barriers. An applied electric field with strength within the physiologic range can induce directional cell migration (i.e., electrotaxis) of epithelial cells, endothelial cells, fibroblasts, and neutrophils suggesting a potential role in cell positioning during wound healing. In the present study, we investigated the ability of lymphocytes to respond to applied direct current (DC) electric fields. Using a modified Transwell assay and a simple microfluidic device, we show that human PBLs migrate toward the cathode in physiologically relevant DC electric fields. Additionally, electrical stimulation activates intracellular kinase signaling pathways shared with chemotactic stimuli. Finally, video microscopic tracing of GFP-tagged immunocytes in the skin of mouse ears reveals that motile cutaneous T cells actively migrate toward the cathode of an applied DC electric field. Lymphocyte positioning within tissues can thus be manipulated by externally applied electric fields, and may be influenced by endogenous electrical potential gradients as well.
Three essays on "making" electric power markets
NASA Astrophysics Data System (ADS)
Kench, Brian Thomas
2000-10-01
Technological change over the past three decades has altered most of the basic conditions in the electric power industry. Because of technical progress, the dominant paradigm has shifted from the provision of electric power by regulated and vertically integrated local natural monopolies to competition and vertical separation. In the first essay I provide a historical context of the electric industry's power current deregulation debate. Then a dynamic model of induced institutional change is used to investigate how endogenous technological advancements have induced radical institutional change in the generation and transmission segments of the electric power industry. Because the Federal Energy Regulatory Commission (FERC) ordered regulated utilities to provide open access to their transmission networks and to separate their generation and transmission functions, transmission networks have been used more intensively and in much different ways then in the past. The second essay tests experimentally the predictions of neoclassical theory for a radial electric power market under two alternative deregulated transmission institutions: financial transmission rights and physical transmission rights. Experimental evidence presented there demonstrates that an electric power market with physical transmission rights governing its transmission network generates more "right" market signals relative to a transmission network governed by financial transmission rights. The move to a greater reliance on markets for electric power is an idea that has animated sweeping and dramatic changes in the traditional business of electric power. The third essay examines two of the most innovative and complex initiatives of making electric power markets in the United States: California and PJM. As those markets mature and others are made, they must revise their governance mechanisms to eliminate rules that create inefficiency and adopt rules that work efficiently elsewhere. I argue that restructured electric power markets in the United States we should consider adopting an integrated procurement approach for electric power and ancillary services, binding forward markets for those commodities, and a market for physical transmission rights.
NASA Astrophysics Data System (ADS)
Irimia, Andrei; Swinney, Kenneth R.; Wikswo, John P.
2009-05-01
In this paper, we clearly demonstrate that the electric potential and the magnetic field can contain different information about current sources in three-dimensional conducting media. Expressions for the magnetic fields of electric dipole and quadrupole current sources immersed in an infinite conducting medium are derived, and it is shown that two different point dipole distributions that are electrically equivalent have different magnetic fields. Although measurements of the electric potential are not sufficient to determine uniquely the characteristics of a quadrupolar source, the radial component of the magnetic field can supply the additional information needed to resolve these ambiguities and to determine uniquely the configuration of dipoles required to specify the electric quadrupoles. We demonstrate how the process can be extended to even higher-order terms in an electrically silent series of magnetic multipoles. In the context of a spherical brain source model, it has been mathematically demonstrated that the part of the neuronal current generating the electric potential lives in the orthogonal complement of the part of the current generating the magnetic potential. This implies a mathematical relationship of complementarity between electroencephalography and magnetoencephalography, although the theoretical result in question does not apply to the nonspherical case [G. Dassios, Math. Med. Biol. 25, 133 (2008)]. Our results have important practical applications in cases where electrically silent sources that generate measurable magnetic fields are of interest. Moreover, electrically silent, magnetically active moments of higher order can be useful when cancellation due to superposition of fields can occur, since this situation leads to a substantial reduction in the measurable amplitude of the signal. In this context, information derived from magnetic recordings of electrically silent, magnetically active multipoles can supplement electrical recordings for the purpose of studying the physiology of the brain. Magnetic fields of the electric multipole sources in a conducting medium surrounded by an insulating spherical shell are also presented and the relevance of this calculation to cardiographic and encephalographic experimentation is discussed.
NASA Astrophysics Data System (ADS)
Zhao, Z.-G.; Zhou, L.-J.; Zhang, J.-T.; Zhu, Q.; Hedrick, J.-K.
2017-05-01
Considering the controllability and observability of the braking torques of the hub motor, Integrated Starter Generator (ISG), and hydraulic brake for four-wheel drive (4WD) hybrid electric cars, a distributed and self-adaptive vehicle speed estimation algorithm for different braking situations has been proposed by fully utilising the Electronic Stability Program (ESP) sensor signals and multiple powersource signals. Firstly, the simulation platform of a 4WD hybrid electric car was established, which integrates an electronic-hydraulic composited braking system model and its control strategy, a nonlinear seven degrees-of-freedom vehicle dynamics model, and the Burckhardt tyre model. Secondly, combining the braking torque signals with the ESP signals, self-adaptive unscented Kalman sub-filter and main-filter adaptable to the observation noise were, respectively, designed. Thirdly, the fusion rules for the sub-filters and master filter were proposed herein, and the estimation results were compared with the simulated value of a real vehicle speed. Finally, based on the hardware in-the-loop platform and by picking up the regenerative motor torque signals and wheel cylinder pressure signals, the proposed speed estimation algorithm was tested under the case of moderate braking on the highly adhesive road, and the case of Antilock Braking System (ABS) action on the slippery road, as well as the case of ABS action on the icy road. Test results show that the presented vehicle speed estimation algorithm has not only a high precision but also a strong adaptability in the composite braking case.
Aspects of elephant behavior, ecology, and interactions with humans
NASA Astrophysics Data System (ADS)
O'Connell, Caitlin Elizabeth
This dissertation is comprised of two chapters relating to the acoustic behavior of elephants, their surrounding ecology and interactions with humans. The first chapter investigates the seismic aspects of Asian elephant (Elephus maximus) acoustic communication. The second chapter is comprised of a synthesis of two separate studies conducted on the African elephant (Loxodonta africana) in Namibia, both in Etosha National Park and the Caprivi region. The two studies were combined and published in Biological Conservation as one large study on aspects of the economic and social impacts of elephant/human conflict and experiments conducted to reduce conflict. In chapter one, seismic and acoustic data were recorded simultaneously from Asian elephants during periods of vocalizations and locomotion. Acoustic and seismic signals from rumbles were highly correlated at near and far distances and were in phase near the elephant and were out of phase at an increased distance from the elephant. Data analyses indicated that elephant generated signals associated with rumbles and "foot stomps" propagated at different velocities in the two media, the acoustic signals traveling at 309 m/s and the seismic signals at 248--264 m/s. Both types of signals had predominant frequencies in the range of 20 Hz. Seismic signal amplitudes considerably above background noise were recorded at 40 m from the generating elephants for both the rumble and the stomp. Seismic propagation models suggest that seismic waveforms from vocalizations are potentially detectable by instruments at distances of up to 16 km, and up to 32 km for locomotion generated signals. Thus, if detectable by elephants, these seismic signals could be useful for long distance communication. In chapter two, the economic impact of elephants, Loxodonta africana , and predators, particularly lions, Panthera leo, on rural agriculturists in the Kwando region of the East Caprivi, Namibia was assessed from the years 1991 to 1995. Elephants were responsible for the greatest number of wildlife conflicts in the region, while lions had the greatest financial impact on farmers. Attempts were made to reduce conflicts between elephants and farmers using deterrents such as electrical fencing, trip-alarm techniques and elephant warning calls. Success of deterrents depended on the frequency of exposure to elephants, maintenance and the ecology of both humans and elephants in the region. Of the deterrent strategies explored, only electrical fencing reduced elephant damage at the community level. The future efficacy of electric fencing is uncertain, however, if elephants do not associate it with fear and possible death. Deterrent efforts played a role in improving relations between communities and conservationists. Scenarios for how human agricultural communities might co-exist with free-ranging elephants are discussed.
Apparatuses for large area radiation detection and related method
Akers, Douglas W; Drigert, Mark W
2015-04-28
Apparatuses and a related method relating to radiation detection are disclosed. In one embodiment, an apparatus includes a first scintillator and a second scintillator adjacent to the first scintillator, with each of the first scintillator and second scintillator being structured to generate a light pulse responsive to interacting with incident radiation. The first scintillator is further structured to experience full energy deposition of a first low-energy radiation, and permit a second higher-energy radiation to pass therethrough and interact with the second scintillator. The apparatus further includes a plurality of light-to-electrical converters operably coupled to the second scintillator and configured to convert light pulses generated by the first scintillator and the second scintillator into electrical signals. The first scintillator and the second scintillator exhibit at least one mutually different characteristic for an electronic system to determine whether a given light pulse is generated by the first scintillator or the second scintillator.
Method, apparatus and system for low-energy beta particle detection
Akers, Douglas W.; Drigert, Mark W.
2012-09-25
An apparatus, method, and system relating to radiation detection of low-energy beta particles are disclosed. An embodiment includes a radiation detector with a first scintillator and a second scintillator operably coupled to each other. The first scintillator and the second scintillator are each structured to generate a light pulse responsive to interaction with beta particles. The first scintillator is structured to experience full energy deposition of low-energy beta particles, and permit a higher-energy beta particle to pass therethrough and interact with the second scintillator. The radiation detector further includes a light-to-electrical converter operably coupled to the second scintillator and configured to convert light pulses generated by the first scintillator and the second scintillator into electrical signals. The first scintillator and the second scintillator have at least one mutually different characteristic to enable an electronic system to determine whether a given light pulse is generated in the first scintillator or the second scintillator.
Homodyne impulse radar hidden object locator
McEwan, T.E.
1996-04-30
An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules. 15 figs.
Homodyne impulse radar hidden object locator
McEwan, Thomas E.
1996-01-01
An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules.
Calcium-Induced Calcium Release during Action Potential Firing in Developing Inner Hair Cells
Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J.
2015-01-01
In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights into the calcium signaling mechanisms involved in early developmental processes. PMID:25762313
Calcium-Induced calcium release during action potential firing in developing inner hair cells.
Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J
2015-03-10
In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights into the calcium signaling mechanisms involved in early developmental processes. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Z.; Zhang, S.; Jin, Y. M.; Ouyang, H.; Zou, Y.; Wang, X. X.; Xie, L. X.; Li, Z.
2017-06-01
A wearable self-powered active sensor for respiration and healthcare monitoring was fabricated based on a flexible piezoelectric nanogenerator. An electrospinning poly(vinylidene fluoride) thin film on silicone substrate was polarized to fabricate the flexible nanogenerator and its electrical property was measured. When periodically stretched by a linear motor, the flexible piezoelectric nanogenerator generated an output open-circuit voltage and short-circuit current of up to 1.5 V and 400 nA, respectively. Through integration with an elastic bandage, a wearable self-powered sensor was fabricated and used to monitor human respiration, subtle muscle movement, and voice recognition. As respiration proceeded, the electrical output signals of the sensor corresponded to the signals measured by a physiological signal recording system with good reliability and feasibility. This self-powered, wearable active sensor has significant potential for applications in pulmonary function evaluation, respiratory monitoring, and detection of gesture and vocal cord vibration for the personal healthcare monitoring of disabled or paralyzed patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian
The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. Themore » following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on plant parameters and the pump electrical signatures. Additionally, the reactor simulation is being used to generate normal operation data and data with instrumentation faults and process anomalies. A frequency controller was interfaced with the motor power supply in order to vary the electrical supply frequency. The experimental flow control loop was used to generate operational data under varying motor performance characteristics. Coolant leakage events were simulated by varying the bypass loop flow rate. The accuracy of motor power calculation was improved by incorporating the power factor, computed from motor current and voltage in each phase of the induction motor.- A variety of experimental runs were made for steady-state and transient pump operating conditions. Process, vibration, and electrical signatures were measured using a submersible pump with variable supply frequency. High correlation was seen between motor current and pump discharge pressure signal; similar high correlation was exhibited between pump motor power and flow rate. Wide-band analysis indicated high coherence (in the frequency domain) between motor current and vibration signals. - Wide-band operational data from a PWR were acquired from AMS Corporation and used to develop time-series models, and to estimate signal spectrum and sensor time constant. All the data were from different pressure transmitters in the system, including primary and secondary loops. These signals were pre-processed using the wavelet transform for filtering both low-frequency and high-frequency bands. This technique of signal pre-processing provides minimum distortion of the data, and results in a more optimal estimation of time constants of plant sensors using time-series modeling techniques.« less
Dissecting single-molecule signal transduction in carbon nanotube circuits with protein engineering
Choi, Yongki; Olsen, Tivoli J.; Sims, Patrick C.; Moody, Issa S.; Corso, Brad L.; Dang, Mytrang N.; Weiss, Gregory A.; Collins, Philip G.
2013-01-01
Single molecule experimental methods have provided new insights into biomolecular function, dynamic disorder, and transient states that are all invisible to conventional measurements. A novel, non-fluorescent single molecule technique involves attaching single molecules to single-walled carbon nanotube field-effective transistors (SWNT FETs). These ultrasensitive electronic devices provide long-duration, label-free monitoring of biomolecules and their dynamic motions. However, generalization of the SWNT FET technique first requires design rules that can predict the success and applicability of these devices. Here, we report on the transduction mechanism linking enzymatic processivity to electrical signal generation by a SWNT FET. The interaction between SWNT FETs and the enzyme lysozyme was systematically dissected using eight different lysozyme variants synthesized by protein engineering. The data prove that effective signal generation can be accomplished using a single charged amino acid, when appropriately located, providing a foundation to widely apply SWNT FET sensitivity to other biomolecular systems. PMID:23323846
A new concept for a cryogenic amplifier stage
NASA Astrophysics Data System (ADS)
Fedl, V.; Barl, L.; Lutz, G.; Richter, R.; Strüder, L.
2010-12-01
The observation of astrophysical objects in the mid-infrared requires Blocked Impurity Band (BIB) detectors based on n-doped Silicon. It is desirable to observe faint astronomical objects with such a detector, which can be achieved with a high signal to noise ratio. These detectors operate at a temperature range from 6 to 12 K. We foresee a new detector concept for the readout of the generated signal charge. Our aim is to implement a Depleted P-channel Field Effect Transistor (DEPFET) Active Pixel Sensor (APS) on the BIB detector in order to have a high sensitivity. We successfully operated the DEPFET under cryogenic conditions and investigated the reset mechanism of the collected signal charge. We identified uncomplete clear with freeze-out of the signal charge into ionized shallow donor states in the heavily doped internal Gate of the DEPFET due to low thermal energy. Therefore, we found a solution to emit these localized signal charges into the conduction band in order to ensure the transport from the internal Gate to the Clear contact. It is possible to apply electric fields higher than 17 kV/cm at the position of the collected signal charge to emit the electrons from the shallow donor states. The electric field enhanced emission is equivalent to the tunneling effect.
Electrically stimulated signals from a long-term Regenerative Peripheral Nerve Interface.
Langhals, Nicholas B; Woo, Shoshana L; Moon, Jana D; Larson, John V; Leach, Michelle K; Cederna, Paul S; Urbanchek, Melanie G
2014-01-01
Despite modern technological advances, the most widely available prostheses provide little functional recovery beyond basic grasping. Although sophisticated upper extremity prostheses are available, optimal prosthetic interfaces which give patients high-fidelity control of these artificial limbs are limited. We have developed a novel Regenerative Peripheral Nerve Interface (RPNI), which consists of a unit of free muscle that has been neurotized by a transected peripheral nerve. In conjunction with a biocompatible electrode on the muscle surface, the RPNI facilitates signal transduction from a residual peripheral nerve to a neuroprosthetic limb. The purpose of this study was to explore signal quality and reliability in an RPNI following an extended period of implantation. Following a 14-month maturation period, electromyographic signal generation was evaluated via electrical stimulation of the innervating nerve. The long-term RPNI was viable and healthy, as demonstrated by evoked compound muscle action potentials as well as histological tissue analysis. Signals exceeding 4 mV were successfully acquired and amplitudes were consistent across multiple repetitions of applied stimuli. There were no evident signs of muscle denervation, significant scar tissue, or muscle necrosis. This study provides further evidence that after a maturation period exceeding 1 year, reliable and consistent signals can still be acquired from an RPNI.
Adjustable electronic load-alarm relay
Mason, Charles H.; Sitton, Roy S.
1976-01-01
This invention is an improved electronic alarm relay for monitoring the current drawn by an AC motor or other electrical load. The circuit is designed to measure the load with high accuracy and to have excellent alarm repeatability. Chattering and arcing of the relay contacts are minimal. The operator can adjust the set point easily and can re-set both the high and the low alarm points by means of one simple adjustment. The relay includes means for generating a signal voltage proportional to the motor current. In a preferred form of the invention a first operational amplifier is provided to generate a first constant reference voltage which is higher than a preselected value of the signal voltage. A second operational amplifier is provided to generate a second constant reference voltage which is lower than the aforementioned preselected value of the signal voltage. A circuit comprising a first resistor serially connected to a second resistor is connected across the outputs of the first and second amplifiers, and the junction of the two resistors is connected to the inverting terminal of the second amplifier. Means are provided to compare the aforementioned signal voltage with both the first and second reference voltages and to actuate an alarm if the signal voltage is higher than the first reference voltage or lower than the second reference voltage.
Thompson, D.O.; Hsu, D.K.
1993-12-14
The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses. 25 figures.
Thompson, Donald O.; Hsu, David K.
1993-12-14
The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses.
Irregular oscillatory patterns in the early-time region of coherent phonon generation in silicon
NASA Astrophysics Data System (ADS)
Watanabe, Yohei; Hino, Ken-ichi; Hase, Muneaki; Maeshima, Nobuya
2017-09-01
Coherent phonon (CP) generation in an undoped Si crystal is theoretically investigated to shed light on unexplored quantum-mechanical effects in the early-time region immediately after the irradiation of ultrashort laser pulses. We examine time signals attributed to an induced charge density of an ionic core, placing the focus on the effects of the Rabi frequency Ω0 c v on the signals; this frequency corresponds to the peak electric-field of the pulse. It is found that at specific Ω0 c v's, where the energy of plasmon caused by photoexcited carriers coincides with the longitudinal-optical phonon energy, the energetically resonant interaction between these two modes leads to striking anticrossings, revealing irregular oscillations with anomalously enhanced amplitudes in the observed time signals. Also, the oscillatory pattern is subject to the Rabi flopping of the excited carrier density that is controlled by Ω0 c v. These findings show that the early-time region is enriched with quantum-mechanical effects inherent in the CP generation, though experimental signals are more or less masked by the so-called coherent artifact due to nonlinear optical effects.
Enhancement and inhibition of second-harmonic generation and absorption in a negative index cavity.
de Ceglia, Domenico; D'Orazio, Antonella; De Sario, Marco; Petruzzelli, Vincenzo; Prudenzano, Francesco; Centini, Marco; Cappeddu, Mirko G; Bloemer, Mark J; Scalora, Michael
2007-02-01
We study second-harmonic generation in a negative-index material cavity. The transmission spectrum shows a bandgap between the electric and magnetic plasma frequencies. The nonlinear process is made efficient by local phase-matching conditions between a forward-propagating pump and a backward-propagating second-harmonic signal. By simultaneously exciting the cavity with counterpropagating pulses, and by varying their relative phase difference, one is able to enhance or inhibit linear absorption and the second-harmonic conversion efficiency.
All Optical Solution for Free Space Optics Point to Point Links
NASA Astrophysics Data System (ADS)
Hirayama, Daigo
Optical network systems are quickly replacing electrical network systems. Optical systems provide better bandwidth, faster data rates, better security to networks, and are less susceptible to noise. Free Space Optics (systems) still rely on numerous electrical systems such as the modulation and demodulation systems to convert optical signals to electrical signals for the transmitting laser. As the concept of the entirely optical network becomes more realizable, the electrical components of the FSO system will become a hindrance to communications. The focus of this thesis is to eliminate the electrical devices for the FSO point to point links by replacing them with optical devices. The concept is similar to an extended beam connector. However, where an extended beam connector deals with a gap of a few millimeters, my focus looks at distances from 100 meters to one kilometer. The aim is to achieve a detectable signal of 1nW at a distance of 500 meters at a wavelength of 1500-1600nm. This leads to application in building to building links and mobile networks. The research examines the design of the system in terms of generating the wave, the properties of the fiber feeding the wave, and the power necessary to achieve a usable distance. The simulation is executed in Code V by Synopsys, which is an industry standard to analyze optical systems. A usable device with a range of around 500m was achieved with an input power of 1mW. The approximations of the phase function resulted in some aberrations to the profile of the beam, but were not very detrimental to the function of the device. The removal of electrical devices from a FSO point to point link decreased the power used to establish the link and decreased the cost.
Robust high-performance control for robotic manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1991-01-01
Model-based and performance-based control techniques are combined for an electrical robotic control system. Thus, two distinct and separate design philosophies have been merged into a single control system having a control law formulation including two distinct and separate components, each of which yields a respective signal component that is combined into a total command signal for the system. Those two separate system components include a feedforward controller and a feedback controller. The feedforward controller is model-based and contains any known part of the manipulator dynamics that can be used for on-line control to produce a nominal feedforward component of the system's control signal. The feedback controller is performance-based and consists of a simple adaptive PID controller which generates an adaptive control signal to complement the nominal feedforward signal.
Robust high-performance control for robotic manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1989-01-01
Model-based and performance-based control techniques are combined for an electrical robotic control system. Thus, two distinct and separate design philosophies were merged into a single control system having a control law formulation including two distinct and separate components, each of which yields a respective signal componet that is combined into a total command signal for the system. Those two separate system components include a feedforward controller and feedback controller. The feedforward controller is model-based and contains any known part of the manipulator dynamics that can be used for on-line control to produce a nominal feedforward component of the system's control signal. The feedback controller is performance-based and consists of a simple adaptive PID controller which generates an adaptive control signal to complement the nomical feedforward signal.
NASA Technical Reports Server (NTRS)
Sims, William Herbert, III (Inventor); Martin, James Joseph (Inventor); Lewis, Raymond A. (Inventor)
2003-01-01
A containment apparatus for containing a cloud of charged particles comprises a cylindrical vacuum chamber having a longitudinal axis. Within the vacuum chamber is a containment region. A magnetic field is aligned with the longitudinal axis of the vacuum chamber. The magnetic field is time invariant and uniform in strength over the containment region. An electric field is also aligned with the longitudinal axis of the vacuum chamber and the magnetic field. The electric field is time invariant, and forms a potential well over the containment region. One or more means are disposed around the cloud of particles for inducing a rotating electric field internal to the vacuum chamber. The rotating electric field imparts energy to the charged particles within the containment region and compress the cloud of particles. The means disposed around the outer surface of the vacuum chamber for inducing a rotating electric field are four or more segments forming a segmented ring, the segments conforming to the outer surface of the vacuum chamber. Each of the segments is energized by a separate alternating voltage. The sum of the voltages imposed on each segment establishes the rotating field. When four segments form a ring, the rotating field is obtained by a signal generator applying a sinusoidal signal phase delayed by 90,180 and 270 degrees in sequence to the four segments.
Experimental investigation on the electrical contact behavior of rolling contact connector.
Chen, Junxing; Yang, Fei; Luo, Kaiyu; Zhu, Mingliang; Wu, Yi; Rong, Mingzhe
2015-12-01
Rolling contact connector (RCC) is a new technology utilized in high performance electric power transfer systems with one or more rotating interfaces, such as radars, satellites, wind generators, and medical computed tomography machines. Rolling contact components are used in the RCC instead of traditional sliding contacts to transfer electrical power and/or signal. Since the requirement of the power transmission is increasing in these years, the rolling electrical contact characteristics become more and more important for the long-life design of RCC. In this paper, a typical form of RCC is presented. A series of experimental work are carried out to investigate the rolling electrical contact characteristics during its lifetime. The influence of a variety of factors on the electrical contact degradation behavior of RCC is analyzed under both vacuum and air environment. Based on the surface morphology and elemental composition changes in the contact zone, which are assessed by field emission scanning electron microscope and confocal laser scanning microscope, the mechanism of rolling electrical contact degradation is discussed.
Electronic filters, signal conversion apparatus, hearing aids and methods
NASA Technical Reports Server (NTRS)
Morley, Jr., Robert E. (Inventor); Engebretson, A. Maynard (Inventor); Engel, George L. (Inventor); Sullivan, Thomas J. (Inventor)
1994-01-01
An electronic filter for filtering an electrical signal. Signal processing circuitry therein includes a logarithmic filter having a series of filter stages with inputs and outputs in cascade and respective circuits associated with the filter stages for storing electrical representations of filter parameters. The filter stages include circuits for respectively adding the electrical representations of the filter parameters to the electrical signal to be filtered thereby producing a set of filter sum signals. At least one of the filter stages includes circuitry for producing a filter signal in substantially logarithmic form at its output by combining a filter sum signal for that filter stage with a signal from an output of another filter stage. The signal processing circuitry produces an intermediate output signal, and a multiplexer connected to the signal processing circuit multiplexes the intermediate output signal with the electrical signal to be filtered so that the logarithmic filter operates as both a logarithmic prefilter and a logarithmic postfilter. Other electronic filters, signal conversion apparatus, electroacoustic systems, hearing aids and methods are also disclosed.
Detection of ventricular fibrillation from multiple sensors
NASA Astrophysics Data System (ADS)
Lindsley, Stephanie A.; Ludeman, Lonnie C.
1992-07-01
Ventricular fibrillation is a potentially fatal medical condition in which the flow of blood through the body is terminated due to the lack of an organized electric potential in the heart. Automatic implantable defibrillators are becoming common as a means for helping patients confronted with repeated episodes of ventricular fibrillation. Defibrillators must first accurately detect ventricular fibrillation and then provide an electric shock to the heart to allow a normal sinus rhythm to resume. The detection of ventricular fibrillation by using an array of multiple sensors to distinguish between signals recorded from single (normal sinus rhythm) or multiple (ventricular fibrillation) sources is presented. An idealistic model is presented and the analysis of data generated by this model suggests that the method is promising as a method for accurately and quickly detecting ventricular fibrillation from signals recorded from sensors placed on the epicardium.
NASA Astrophysics Data System (ADS)
Khosravi, Farhad; Trainor, Patrick; Rai, Shesh N.; Kloecker, Goetz; Wickstrom, Eric; Panchapakesan, Balaji
2016-04-01
We demonstrate the rapid and label-free capture of breast cancer cells spiked in buffy coats using nanotube-antibody micro-arrays. Single wall carbon nanotube arrays were manufactured using photo-lithography, metal deposition, and etching techniques. Anti-epithelial cell adhesion molecule (EpCAM) antibodies were functionalized to the surface of the nanotube devices using 1-pyrene-butanoic acid succinimidyl ester functionalization method. Following functionalization, plain buffy coat and MCF7 cell spiked buffy coats were adsorbed on to the nanotube device and electrical signatures were recorded for differences in interaction between samples. A statistical classifier for the ‘liquid biopsy’ was developed to create a predictive model based on dynamic time warping to classify device electrical signals that corresponded to plain (control) or spiked buffy coats (case). In training test, the device electrical signals originating from buffy versus spiked buffy samples were classified with ˜100% sensitivity, ˜91% specificity and ˜96% accuracy. In the blinded test, the signals were classified with ˜91% sensitivity, ˜82% specificity and ˜86% accuracy. A heatmap was generated to visually capture the relationship between electrical signatures and the sample condition. Confocal microscopic analysis of devices that were classified as spiked buffy coats based on their electrical signatures confirmed the presence of cancer cells, their attachment to the device and overexpression of EpCAM receptors. The cell numbers were counted to be ˜1-17 cells per 5 μl per device suggesting single cell sensitivity in spiked buffy coats that is scalable to higher volumes using the micro-arrays.
Guiding pancreatic beta cells to target electrodes in a whole-cell biosensor for diabetes.
Pedraza, Eileen; Karajić, Aleksandar; Raoux, Matthieu; Perrier, Romain; Pirog, Antoine; Lebreton, Fanny; Arbault, Stéphane; Gaitan, Julien; Renaud, Sylvie; Kuhn, Alexander; Lang, Jochen
2015-10-07
We are developing a cell-based bioelectronic glucose sensor that exploits the multi-parametric sensing ability of pancreatic islet cells for the treatment of diabetes. These cells sense changes in the concentration of glucose and physiological hormones and immediately react by generating electrical signals. In our sensor, signals from multiple cells are recorded as field potentials by a micro-electrode array (MEA). Thus, cell response to various factors can be assessed rapidly and with high throughput. However, signal quality and consequently overall sensor performance rely critically on close cell-electrode proximity. Therefore, we present here a non-invasive method of further exploiting the electrical properties of these cells to guide them towards multiple micro-electrodes via electrophoresis. Parameters were optimized by measuring the cell's zeta potential and modeling the electric field distribution. Clonal and primary mouse or human β-cells migrated directly to target electrodes during the application of a 1 V potential between MEA electrodes for 3 minutes. The morphology, insulin secretion, and electrophysiological characteristics were not altered compared to controls. Thus, cell manipulation on standard MEAs was achieved without introducing any external components and while maintaining the performance of the biosensor. Since the analysis of the cells' electrical activity was performed in real time via on-chip recording and processing, this work demonstrates that our biosensor is operational from the first step of electrically guiding cells to the final step of automatic recognition. Our favorable results with pancreatic islets, which are highly sensitive and fragile cells, are encouraging for the extension of this technique to other cell types and microarray devices.
NASA Astrophysics Data System (ADS)
Zhang, Li; Jabbari, Faryar; Brown, Tim; Samuelsen, Scott
2014-12-01
Plug-in electric vehicles (PEVs) shift energy consumption from petroleum to electricity for the personal transportation sector. This work proposes a decentralized charging protocol for PEVs with grid operators updating the cost signal. Each PEV calculates its own optimal charging profile only once based on the cost signal, after it is plugged in, and sends the result back to the grid operators. Grid operators only need to aggregate charging profiles and update the load and cost. The existing PEV characteristics, national household travel survey (NHTS), California Independent System Operator (CAISO) demand, and estimates for future renewable generation in California are used to simulate PEV operation, PEV charging profiles, grid demand, and grid net load (demand minus renewable). Results show the proposed protocol has good performance for overnight net load valley filling if the costs to be minimized are proportional to the net load. Annual results are shown in terms of overnight load variation and comparisons are made with grid level valley filling results. Further, a target load can be approached in the same manner by using the gap between current load and the target load as the cost. The communication effort involved is quite modest.
Compensated vibrating optical fiber pressure measuring device
Fasching, George E.; Goff, David R.
1987-01-01
A microbending optical fiber is attached under tension to a diaphragm to se a differential pressure applied across the diaphragm which it causes it to deflect. The fiber is attached to the diaphragm so that one portion of the fiber, attached to a central portion of the diaphragm, undergoes a change in tension; proportional to the differential pressure applied to the diaphragm while a second portion attached at the periphery of the diaphragm remains at a reference tension. Both portions of the fiber are caused to vibrate at their natural frequencies. Light transmitted through the fiber is attenuated by both portions of the tensioned sections of the fiber by an amount which increases with the curvature of fiber bending so that the light signal is modulated by both portions of the fiber at separate frequencies. The modulated light signal is transduced into a electrical signal. The separate modulation signals are detected to generate separate signals having frequencies corresponding to the reference and measuring vibrating sections of the continuous fiber, respectively. A signal proportional to the difference between these signals is generated which is indicative of the measured pressure differential across the diaphragm. The reference portion of the fiber is used to compensate the pressure signal for zero and span changes resulting from ambient temperature and humidity effects upon the fiber and the transducer fixture.
Detecting Ionising Radiation with Polarised Light
NASA Astrophysics Data System (ADS)
Parsons, Steven
Several groups have demonstrated the potential of the Pockels effect in Cadmium Zinc Telluride (CZT) as a means to detect ionizing radiation. Migrating charge carriers are believed to generate the signal detected via the Pockels effect due to the distortions they create within the electric field, however trapped space charge beneath the cathode has been regularly observed which suggests that the signal amplitude is potentially dominated by a large dose element. In this work, the effects of electric field collapse at the location of charge carrier generation, rather than where space charge builds up, is demonstrated. This confirms the potential to apply the technique for imaging dose rate distributions. Charged coupled device (CCD) images representing the changes in electric field within the crystal were taken and the response to illumination from a collimated 1550 nm 4.5 mW IR laser and irradiation from 150 kVp X-rays measured. The data demonstrates that the signal acquired is a combination of both the local change in the electric field at the location where the carriers are being released/generated and an element caused by them becoming trapped, leading to space charge near the cathode. Whilst the presence of both components has been demonstrated, their time response to an IR pulse measured via a photo-diode is the same (within the 6 ms time limitation of the system). This means that when using a Pockels detection system the average change in field can be considered proportional only to the incident dose rate when working in the millisecond regime. In addition to finding the origins of the detected signal an investigation into the effects of doping a Cadmium Manganese Telluride crystal with vanadium was carried out to see whether the large increases in Pockels constant found in the literature when using doped CZT could be replicated. However, it was found that whilst there is a slight improvement in the constant and hence the sensitivity of the crystals it was not as significant as hoped. A fibre optic Mach-Zehnder interferometer has also been designed and built with the aim of developing further the results from a previous free-space concept demonstrator. In its present condition the effects of environment have been minimised but the detector system struggles with large attenuation losses due to repeated coupling into fibres and is currently not usable, however, increasing the power of the laser and trying to limit even further the free-space elements in the future should remedy this.
Development of a Multi-Channel Piezoelectric Acoustic Sensor Based on an Artificial Basilar Membrane
Jung, Youngdo; Kwak, Jun-Hyuk; Lee, Young Hwa; Kim, Wan Doo; Hur, Shin
2014-01-01
In this research, we have developed a multi-channel piezoelectric acoustic sensor (McPAS) that mimics the function of the natural basilar membrane capable of separating incoming acoustic signals mechanically by their frequency and generating corresponding electrical signals. The McPAS operates without an external energy source and signal processing unit with a vibrating piezoelectric thin film membrane. The shape of the vibrating membrane was chosen to be trapezoidal such that different locations of membrane have different local resonance frequencies. The length of the membrane is 28 mm and the width of the membrane varies from 1 mm to 8 mm. Multiphysics finite element analysis (FEA) was carried out to predict and design the mechanical behaviors and piezoelectric response of the McPAS model. The designed McPAS was fabricated with a MEMS fabrication process based on the simulated results. The fabricated device was tested with a mouth simulator to measure its mechanical and piezoelectrical frequency response with a laser Doppler vibrometer and acoustic signal analyzer. The experimental results show that the as fabricated McPAS can successfully separate incoming acoustic signals within the 2.5 kHz–13.5 kHz range and the maximum electrical signal output upon acoustic signal input of 94 dBSPL was 6.33 mVpp. The performance of the fabricated McPAS coincided well with the designed parameters. PMID:24361926
Compact biomedical pulsed signal generator for bone tissue stimulation
Kronberg, J.W.
1993-06-08
An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.
Compact biomedical pulsed signal generator for bone tissue stimulation
Kronberg, James W.
1993-01-01
An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.
Alkire, Randy W.; Rosenbaum, Gerold; Evans, Gwyndaf
2003-07-22
An apparatus for determining the position of an x-ray beam relative to a desired beam axis. Where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in an a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.
Method and system for controlling a permanent magnet machine during fault conditions
Krefta, Ronald John; Walters, James E.; Gunawan, Fani S.
2004-05-25
Method and system for controlling a permanent magnet machine driven by an inverter is provided. The method allows for monitoring a signal indicative of a fault condition. The method further allows for generating during the fault condition a respective signal configured to maintain a field weakening current even though electrical power from an energy source is absent during said fault condition. The level of the maintained field-weakening current enables the machine to operate in a safe mode so that the inverter is protected from excess voltage.
Monitoring method and apparatus using high-frequency carrier
Haynes, Howard D.
1996-01-01
A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.
Khan, Shadab; Manwaring, Preston; Borsic, Andrea; Halter, Ryan
2015-04-01
Electrical impedance tomography (EIT) is used to image the electrical property distribution of a tissue under test. An EIT system comprises complex hardware and software modules, which are typically designed for a specific application. Upgrading these modules is a time-consuming process, and requires rigorous testing to ensure proper functioning of new modules with the existing ones. To this end, we developed a modular and reconfigurable data acquisition (DAQ) system using National Instruments' (NI) hardware and software modules, which offer inherent compatibility over generations of hardware and software revisions. The system can be configured to use up to 32-channels. This EIT system can be used to interchangeably apply current or voltage signal, and measure the tissue response in a semi-parallel fashion. A novel signal averaging algorithm, and 512-point fast Fourier transform (FFT) computation block was implemented on the FPGA. FFT output bins were classified as signal or noise. Signal bins constitute a tissue's response to a pure or mixed tone signal. Signal bins' data can be used for traditional applications, as well as synchronous frequency-difference imaging. Noise bins were used to compute noise power on the FPGA. Noise power represents a metric of signal quality, and can be used to ensure proper tissue-electrode contact. Allocation of these computationally expensive tasks to the FPGA reduced the required bandwidth between PC, and the FPGA for high frame rate EIT. In 16-channel configuration, with a signal-averaging factor of 8, the DAQ frame rate at 100 kHz exceeded 110 frames s (-1), and signal-to-noise ratio exceeded 90 dB across the spectrum. Reciprocity error was found to be for frequencies up to 1 MHz. Static imaging experiments were performed on a high-conductivity inclusion placed in a saline filled tank; the inclusion was clearly localized in the reconstructions obtained for both absolute current and voltage mode data.
Ibitoye, Morufu Olusola; Estigoni, Eduardo H.; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M.
2014-01-01
The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05) between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population. PMID:25025551
Reliability as the big persuader to privatize the electrical system in Venezuela
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez B., C.E.
1998-12-31
Throughout the past five years, the Venezuelan authorities, especially the Fondo de Inversiones de Venezuela (FIV), have done a major effort to privatize many of the state owned industries, among them, the electrical public utilities and some important electrical power generation plants or systems based on thermal generation. Mainly along the recent past years, black and brownouts have become more frequent in the system. In other words, system reliability has been diminishing, as a consequence of investment capital and O and M expenses have been reduced to levels below the required by the system. Public opinion is exercising pressure onmore » politicians, so signals are that Congress will probably approve during the current or beginning of next years the required laws to expedite privatization and assure incentives and guaranties to investors. This paper deals with the insides of all these aspects, and with how soon privatization will be carried out. The FIV has been committed to implement this process.« less
NASA Technical Reports Server (NTRS)
Fuerstenau, Stephen; Wilson, Gregory R.
2008-01-01
An instrument for rapidly measuring the electric charges and sizes (from approximately 1 to approximately 100 micrometers) of airborne particles is undergoing development. Conceived for monitoring atmospheric dust particles on Mars, instruments like this one could also be used on Earth to monitor natural and artificial aerosols in diverse indoor and outdoor settings for example, volcanic regions, clean rooms, powder-processing machinery, and spray-coating facilities. The instrument incorporates a commercially available, low-noise, ultrasensitive charge-sensing preamplifier circuit. The input terminal of this circuit--the gate of a field-effect transistor--is connected to a Faraday-cage cylindrical electrode. The charged particles of interest are suspended in air or other suitable gas that is made to flow along the axis of the cylindrical electrode without touching the electrode. The flow can be channeled and generated by any of several alternative means; in the prototype of this instrument, the gas is drawn along a glass capillary tube (see upper part of figure) coaxial with the electrode. The size of a particle affects its rate of acceleration in the flow and thus affects the timing and shape of the corresponding signal peak generated by the charge-sensing amplifier. The charge affects the magnitude (and thus also the shape) of the signal peak. Thus, the signal peak (see figure) conveys information on both the size and electric charge of a sensed particle. In experiments thus far, the instrument has been found to be capable of measuring individual aerosol particle charges of magnitude greater than 350 e (where e is the fundamental unit of electric charge) with a precision of +/- 150 e. The instrument can sample particles at a rate as high as several thousand per second.
Durable fiber optic sensor for gas temperature measurement in the hot section of turbine engines
NASA Astrophysics Data System (ADS)
Tregay, George W.; Calabrese, Paul R.; Finney, Mark J.; Stukey, K. B.
1994-10-01
An optical sensor system extends gas temperature measurement capability in turbine engines beyond the present generation of thermocouple technology. The sensing element which consists of a thermally emissive insert embedded inside a sapphire lightguide is capable of operating above the melting point of nickel-based super alloys. The emissive insert generates an optical signal as a function of temperature. Continued development has led to an optically averaged system by combining the optical signals from four individual sensing elements at a single detector assembly. The size of the signal processor module has been reduced to overall dimensions of 2 X 4 X 0.7 inches. The durability of the optical probe design has been evaluated in an electric-utility operated gas turbine under the sponsorship of the Electric Power Research Institute. The temperature probe was installed between the first stage rotor and second stage nozzle on a General Electric MS7001B turbine. The combined length of the ceramic support tube and sensing element reached 1.5 inches into the hot gas stream. A total of over 2000 hours has been accumulated at probe operation temperatures near 1600 degree(s)F. An optically averaged sensor system was designed to replace the existing four thermocouple probes on the upper half of a GE F404 aircraft turbine engine. The system was ground tested for 250 hours as part of GE Aircraft Engines IR&D Optical Engine Program. Subsequently, two flight sensor systems were shipped for use on the FOCSI (Fiber Optic Control System Integration) Program. The optical harnesses, each with four optical probes, measure the exhaust gas temperature in a GE F404 engine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belle R. Upadhyaya; J. Wesley Hines
2004-09-27
Integrity monitoring and flaw diagnostics of flat beams and tubular structures was investigated in this research task using guided acoustic signals. A piezo-sensor suite was deployed to activate and collect Lamb wave signals that propagate along metallic specimens. The dispersion curves of Lamb waves along plate and tubular structures are generated through numerical analysis. Several advanced techniques were explored to extract representative features from acoustic time series. Among them, the Hilbert-Huang transform (HHT) is a recently developed technique for the analysis of non-linear and transient signals. A moving window method was introduced to generate the local peak characters from acousticmore » time series, and a zooming window technique was developed to localize the structural flaws. The time-frequency analysis and pattern recognition techniques were combined for classifying structural defects in brass tubes. Several types of flaws in brass tubes were tested, both in the air and in water. The techniques also proved to be effective under background/process noise. A detailed theoretical analysis of Lamb wave propagation was performed and simulations were carried out using the finite element software system ABAQUS. This analytical study confirmed the behavior of the acoustic signals acquired from the experimental studies. The report presents the background the analysis of acoustic signals acquired from piezo-electric transducers for structural defect monitoring. A comparison of the use of time-frequency techniques, including the Hilbert-Huang transform, is presented. The report presents the theoretical study of Lamb wave propagation in flat beams and tubular structures, and the need for mode separation in order to effectively perform defect diagnosis. The results of an extensive experimental study of detection, location, and isolation of structural defects in flat aluminum beams and brass tubes are presented. The results of this research show the feasibility of on-line monitoring of small structural flaws by the use of transient and nonlinear acoustic signal analysis, and its implementation by the proper design of a piezo-electric transducer suite.« less
Design and development of a ferroelectric micro photo detector for the bionic eye
NASA Astrophysics Data System (ADS)
Song, Yang
Driven by no effective therapy for Retinitis Pigmentosa and Age Related Macular Degeneration, artificial vision through the development of an artificial retina that can be implanted into the human eye, is being addressed by the Bionic Eye. This dissertation focuses on the study of a photoferroelectric micro photo detector as an implantable retinal prosthesis for vision restoration in patients with above disorders. This implant uses an electrical signal to trigger the appropriate ocular cells of the vision system without resorting to wiring or electrode implantation. The research work includes fabrication of photoferroelectric thin film micro detectors, characterization of these photoferroelectric micro devices as photovoltaic cells, and Finite Element Method (FEM) modeling of the photoferroelectrics and their device-neuron interface. A ferroelectric micro detector exhibiting the photovoltaic effect (PVE) directly adds electrical potential to the neuron membrane outer wall at the focal adhesion regions. The electrical potential then generates a retinal cell membrane potential deflection through a newly developed Direct-Electric-Field-Coupling (DEFC) model. This model is quite different from the traditional electric current model because instead of current directly working on the cell membrane, the PVE current is used to generate a localized high electric potential in the focal adhesion region by working together with the anisotropic high internal impedance of ferroelectric thin films. General electrodes and silicon photodetectors do not have such anisotropy and high impedance, and thus they cannot generate DEFC. This mechanism investigation is very valuable, because it clearly shows that our artificial retina works in a way that is totally different from the traditional current stimulation methods.
Oxygen sensor for monitoring gas mixtures containing hydrocarbons
Ruka, Roswell J.; Basel, Richard A.
1996-01-01
A gas sensor measures O.sub.2 content of a reformable monitored gas containing hydrocarbons H.sub.2 O and/or CO.sub.2, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system.
Oxygen sensor for monitoring gas mixtures containing hydrocarbons
Ruka, R.J.; Basel, R.A.
1996-03-12
A gas sensor measures O{sub 2} content of a reformable monitored gas containing hydrocarbons, H{sub 2}O and/or CO{sub 2}, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system. 4 figs.
NASA Astrophysics Data System (ADS)
Khalil, A. A. I.
2015-12-01
Double-pulse lasers ablation (DPLA) technique was developed to generate gold (Au) ion source and produce high current under applying an electric potential in an argon ambient gas environment. Two Q-switched Nd:YAG lasers operating at 1064 and 266 nm wavelengths are combined in an unconventional orthogonal (crossed-beam) double-pulse configuration with 45° angle to focus on a gold target along with a spectrometer for spectral analysis of gold plasma. The properties of gold plasma produced under double-pulse lasers excitation were studied. The velocity distribution function (VDF) of the emitted plasma was studied using a dedicated Faraday-cup ion probe (FCIP) under argon gas discharge. The experimental parameters were optimized to attain the best signal to noise (S/N) ratio. The results depicted that the VDF and current signals depend on the discharge applied voltage, laser intensity, laser wavelength and ambient argon gas pressure. A seven-fold increases in the current signal by increasing the discharge applied voltage and ion velocity under applying double-pulse lasers field. The plasma parameters (electron temperature and density) were also studied and their dependence on the delay (times between the excitation laser pulse and the opening of camera shutter) was investigated as well. This study could provide significant reference data for the optimization and design of DPLA systems engaged in laser induced plasma deposition thin films and facing components diagnostics.
Charge Generation and Propagation in Igneous Rocks
NASA Technical Reports Server (NTRS)
Freund, Friedemann
2002-01-01
Various electrical phenomena have been reported prior to or concurrent with earthquakes such as resistivity changes, ground potentials, electromagnetic (EM), and luminous signals. Doubts have been raised as to whether some of these phenomena are real and indeed precursory. One of the reasons for uncertainty is that, despite decades of intense work, there is still no physically coherent model. Using low- to medium-velocity impacts to measure electrical signals with microsecond time resolution, it has now been observed that when dry gabbro and diorite cores are impacted at relatively low velocities, approximately 100 m/s, highly mobile charge carriers are generated in a small volume near the impact point. They spread through the rocks, causing electric potentials exceeding +400 mV, EM, and light emission. As the charge cloud spreads, the rock becomes momentarily conductive. When a dry granite block is impacted at higher velocity, approximately 1.5 km/s, the propagation of the P and S waves is registered through the transient piezoelectric response of quartz. After the sound waves have passed, the surface of the granite block becomes positively charged, suggesting the same charge carriers as observed during the low-velocity impact experiments, expanding from within the bulk. During the next 2-3 ms the surface potential oscillates, indicating pulses of electrons injected from ground and contact electrodes. The observations are consistent with positive holes, e.g., defect electrons in the O(2-) sublattice, traveling via the O 2p-dominated valence band of the silicate minerals. Before activation, the positive holes lay dormant in the form of electrically inactive positive hole pairs (PHP), chemically equivalent to peroxy links, O3X/OO\\XO3, with X=Si(4+), Al(3+), etc. PHPs are introduced into the minerals by way of hydroxyl,O3X-OH, which all nominally anhydrous minerals incorporate when crystallizing in H2O-laden environments. The fact that positive holes can be activated by low-energy impacts, and their attendant sound waves, suggests that they can also be activated by microfracturing. Depending on where in the stressed rock volume the charge carriers are activated, they will form rapidly moving or fluctuating charge clouds that may account for earthquake-related electrical signals and EM emission. Wherever such charge clouds intersect the surface, high fields are expected, causing electric discharges and earthquake lights.
Białasek, Maciej; Górecka, Magdalena; Mittler, Ron
2017-01-01
In contrast to the function of reactive oxygen species, calcium, hormones and small RNAs in systemic signaling, systemic electrical signaling in plants is poorly studied and understood. Pulse amplitude-modulated Chl fluorescence imaging and surface electrical potential measurements accompanied by pharmacological treatments were employed to study stimuli-induced electrical signals in leaves from a broad range of plant species and in Arabidopsis thaliana mutants. Here we report that rapid electrical signals in response to a local heat stimulus regulate systemic changes in non-photochemical quenching (NPQ) and PSII quantum efficiency. Both stimuli-induced systemic changes in NPQ and photosynthetic capacity as well as electrical signaling depended on calcium channel activity. Use of an Arabidopsis respiratory burst oxidase homolog D (RBOHD) mutant (rbohD) as well as an RBOH inhibitor further suggested a cross-talk between ROS and electrical signaling. Our results suggest that higher plants evolved a complex rapid long-distance calcium-dependent electrical systemic signaling in response to local stimuli that regulates and optimizes the balance between PSII quantum efficiency and excess energy dissipation in the form of heat by means of NPQ. PMID:28184891
Akhmedov, Dmitry; Braun, Matthias; Mataki, Chikage; Park, Kyu-Sang; Pozzan, Tullio; Schoonjans, Kristina; Rorsman, Patrik; Wollheim, Claes B; Wiederkehr, Andreas
2010-11-01
Glucose-evoked mitochondrial signals augment ATP synthesis in the pancreatic β cell. This activation of energy metabolism increases the cytosolic ATP/ADP ratio, which stimulates plasma membrane electrical activity and insulin granule exocytosis. We have recently demonstrated that matrix pH increases during nutrient stimulation of the pancreatic β cell. Here, we have tested whether mitochondrial matrix pH controls oxidative phosphorylation and metabolism-secretion coupling in the rat β-cell line INS-1E. Acidification of the mitochondrial matrix pH by nigericin blunted nutrient-dependent respiratory and ATP responses (continuously monitored in intact cells). Using electrophysiology and single cell imaging, we find that the associated defects in energy metabolism suppress glucose-stimulated plasma membrane electrical activity and cytosolic calcium transients. The same parameters were unaffected after direct stimulation of electrical activity with tolbutamide, which bypasses mitochondrial function. Furthermore, lowered matrix pH strongly inhibited sustained, but not first-phase, insulin secretion. Our results demonstrate that the matrix pH exerts a control function on oxidative phosphorylation in intact cells and that this mode of regulation is of physiological relevance for the generation of downstream signals leading to insulin granule exocytosis. We propose that matrix pH serves a novel signaling role in sustained cell activation.
Monitoring method and apparatus using high-frequency carrier
Haynes, H.D.
1996-04-30
A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.
Electronic filters, repeated signal charge conversion apparatus, hearing aids and methods
NASA Technical Reports Server (NTRS)
Morley, Jr., Robert E. (Inventor); Engebretson, A. Maynard (Inventor); Engel, George L. (Inventor); Sullivan, Thomas J. (Inventor)
1993-01-01
An electronic filter for filtering an electrical signal. Signal processing circuitry therein includes a logarithmic filter having a series of filter stages with inputs and outputs in cascade and respective circuits associated with the filter stages for storing electrical representations of filter parameters. The filter stages include circuits for respectively adding the electrical representations of the filter parameters to the electrical signal to be filtered thereby producing a set of filter sum signals. At least one of the filter stages includes circuitry for producing a filter signal in substantially logarithmic form at its output by combining a filter sum signal for that filter stage with a signal from an output of another filter stage. The signal processing circuitry produces an intermediate output signal, and a multiplexer connected to the signal processing circuit multiplexes the intermediate output signal with the electrical signal to be filtered so that the logarithmic filter operates as both a logarithmic prefilter and a logarithmic postfilter. Other electronic filters, signal conversion apparatus, electroacoustic systems, hearing aids and methods are also disclosed.
Stopyra, Jason P; Ritter, Samuel I; Beatty, Jennifer; Johnson, James C; Kleiner, Douglas M; Winslow, James E; Gardner, Alison R; Bozeman, William P
2016-10-01
Despite research demonstrating the overall safety of Conducted Electrical Weapons (CEWs), commonly known by the brand name TASER(®), concerns remain regarding cardiac safety. The addition of cardiac biomonitoring capability to a CEW could prove useful and even lifesaving in the rare event of a medical crisis by detecting and analyzing cardiac rhythms during the period immediately after CEW discharge. To combine an electrocardiogram (ECG) device with a CEW to detect and store ECG signals while still allowing the CEW to perform its primary function of delivering an incapacitating electrical discharge. This work was performed in three phases. In Phase 1 standard law enforcement issue CEW cartridges were modified to demonstrate transmission of ECG signals. In Phase 2, a miniaturized ECG recorder was combined with a standard issue CEW and tested. In Phase 3, a prototype CEW with on-board cardiac biomonitoring was tested on human volunteers to assess its ability to perform its primary function of electrical incapacitation. Bench testing demonstrated that slightly modified CEW cartridge wires transmitted simulated ECG signals produced by an ECG rhythm generator and from a human volunteer. Ultimately, a modified CEW incorporating ECG monitoring successfully delivered incapacitating current to human volunteers and successfully recorded ECG signals from subcutaneous CEW probes after firing. An ECG recording device was successfully incorporated into a standard issue CEW without impeding the functioning of the device. This serves as proof-of-concept that safety measures such as cardiac biomonitoring can be incorporated into CEWs and possibly other law enforcement devices. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Yang; Chen, Hung-Yu; Liang, Kevin; Wei, Liang-Yu; Chow, Chi-Wai; Yeh, Chien-Hung
2016-01-01
Traditional visible light communication (VLC) uses positive-intrinsic-negative photodiode (PD) or avalanche PD as the optical receivers (Rx). We demonstrate using a solar cell as the VLC Rx. The solar cell is flexible and low cost and converts the optical signal into an electrical signal directly without the need of external power supply. In addition to acting as the VLC passive Rx, the converted electrical signal from the solar cell can charge up the battery of the Rx nodes. Hence, the proposed scheme can be a promising candidate for the future Internet of Things network. However, a solar cell acting as a VLC Rx is very challenging, since the response of the solar cell is limited. Here, we propose and demonstrate using predistortion to significantly enhance the solar cell Rx response for the first time up to the authors' knowledge. Experimental results show that the response of the solar cell Rx is significantly enhanced; and the original 2-kHz detection bandwidth of the solar cell can be enhanced by 250 times for receiving 500-kbit/s VLC signal at a transmission distance of 1 m. The operation principle, the generated voltage by the solar cell, and the maximum data rates achieved at different transmission distances are also studied.
Guo, Qi; Xu, Xiaoguang; Wang, Fang; Lu, Yunhao; Chen, Jikun; Wu, Yanjun; Meng, Kangkang; Wu, Yong; Miao, Jun; Jiang, Yong
2018-06-01
We report the in-plane electric field controlled ferromagnetism of La 2/3 Sr 1/3 MnO 3 (LSMO) films epitaxially deposited on [Pb(Mg 1/3 Nb 2/3 )O 3 ] 0.7 -(PbTiO 3 ) 0.3 (PMN-PT) (001), (011) and (111) single crystal substrates. The in-plane coercivities (H c∥ ) and remanences of the LSMO films greatly depend on the in-plane electric field applied on the PMN-PT (001) and (011) substrates. The experimental change of H c∥ is consistent with the Stoner-Wohlfarth model and first principle calculation with the electric field varying from -10 to 10 kV cm -1 . Moreover, the Curie temperature and anisotropic magnetoresistance of the LSMO films can also be manipulated by an in-plane electric field. Finally, the LSMO/PMN-PT (001) heterostructure is designed to be a new kind of magnetic signal generator with the source of electric field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Junxing; Yang, Fei, E-mail: yfei2007@mail.xjtu.edu.cn; Luo, Kaiyu
Rolling contact connector (RCC) is a new technology utilized in high performance electric power transfer systems with one or more rotating interfaces, such as radars, satellites, wind generators, and medical computed tomography machines. Rolling contact components are used in the RCC instead of traditional sliding contacts to transfer electrical power and/or signal. Since the requirement of the power transmission is increasing in these years, the rolling electrical contact characteristics become more and more important for the long-life design of RCC. In this paper, a typical form of RCC is presented. A series of experimental work are carried out to investigatemore » the rolling electrical contact characteristics during its lifetime. The influence of a variety of factors on the electrical contact degradation behavior of RCC is analyzed under both vacuum and air environment. Based on the surface morphology and elemental composition changes in the contact zone, which are assessed by field emission scanning electron microscope and confocal laser scanning microscope, the mechanism of rolling electrical contact degradation is discussed.« less
NASA Astrophysics Data System (ADS)
Guo, Qi; Xu, Xiaoguang; Wang, Fang; Lu, Yunhao; Chen, Jikun; Wu, Yanjun; Meng, Kangkang; Wu, Yong; Miao, Jun; Jiang, Yong
2018-06-01
We report the in-plane electric field controlled ferromagnetism of La2/3Sr1/3MnO3 (LSMO) films epitaxially deposited on [Pb(Mg1/3Nb2/3)O3]0.7-(PbTiO3)0.3 (PMN-PT) (001), (011) and (111) single crystal substrates. The in-plane coercivities (H c∥) and remanences of the LSMO films greatly depend on the in-plane electric field applied on the PMN-PT (001) and (011) substrates. The experimental change of H c∥ is consistent with the Stoner–Wohlfarth model and first principle calculation with the electric field varying from ‑10 to 10 kV cm‑1. Moreover, the Curie temperature and anisotropic magnetoresistance of the LSMO films can also be manipulated by an in-plane electric field. Finally, the LSMO/PMN-PT (001) heterostructure is designed to be a new kind of magnetic signal generator with the source of electric field.
Depth of origin of ocean-circulation-induced magnetic signals
NASA Astrophysics Data System (ADS)
Irrgang, Christopher; Saynisch-Wagner, Jan; Thomas, Maik
2018-01-01
As the world ocean moves through the ambient geomagnetic core field, electric currents are generated in the entire ocean basin. These oceanic electric currents induce weak magnetic signals that are principally observable outside of the ocean and allow inferences about large-scale oceanic transports of water, heat, and salinity. The ocean-induced magnetic field is an integral quantity and, to first order, it is proportional to depth-integrated and conductivity-weighted ocean currents. However, the specific contribution of oceanic transports at different depths to the motional induction process remains unclear and is examined in this study. We show that large-scale motional induction due to the general ocean circulation is dominantly generated by ocean currents in the upper 2000 m of the ocean basin. In particular, our findings allow relating regional patterns of the oceanic magnetic field to corresponding oceanic transports at different depths. Ocean currents below 3000 m, in contrast, only contribute a small fraction to the ocean-induced magnetic signal strength with values up to 0.2 nT at sea surface and less than 0.1 nT at the Swarm satellite altitude. Thereby, potential satellite observations of ocean-circulation-induced magnetic signals are found to be likely insensitive to deep ocean currents. Furthermore, it is shown that annual temporal variations of the ocean-induced magnetic field in the region of the Antarctic Circumpolar Current contain information about sub-surface ocean currents below 1000 m with intra-annual periods. Specifically, ocean currents with sub-monthly periods dominate the annual temporal variability of the ocean-induced magnetic field.
NASA Astrophysics Data System (ADS)
Carpenter, A. C.; Herrmann, H. W.; Beeman, B. V.; Lopez, F. E.; Hernandez, J. E.
2016-09-01
This paper covers the performance of a high speed analogue data transmission system. This system uses multiple Mach- Zehnder optical modulators to transmit and record fusion burn history data for the Gas Cherenkov Detector (GCD) on the National Ignition Facility. The GCD is designed to measure the burn duration of high energy gamma rays generated by Deuterium-Tritium (DT) interactions in the NIF. The burn duration of DT fusion can be as short as 10ps and the optical photons generated in the gas Cherenkov cell are measured using a vacuum photodiode with a FWHM of 55ps. A recording system with a 3dB bandwidth of ≥10GHz and a signal to noise ratio of ≥5 for photodiode output voltage of 50mV is presented. The data transmission system uses two or three Mach-Zehnder modulators and an RF amplifier to transmit data optically. This signal is received and recorded by optical to electrical converts and a high speed digital oscilloscope placed outside of the NIF Target Bay. Electrical performance metrics covered include signal to noise ratio (SNR), signal to peak to peak noise ratio, single shot dynamic range, shot to shot dynamic range, system bandwidth, scattering parameters, are shown. Design considerations such as self-test capabilities, the NIF radiation environment, upgrade compatibility, Mach-Zehnder (MZ) biasing, maintainability, and operating considerations for the use of MZs are covered. This data recording system will be used for the future upgrade of the GCD to be used with a Pulse Dilation PMT, currently under development.
Integrated circuit failure analysis by low-energy charge-induced voltage alteration
Cole, E.I. Jr.
1996-06-04
A scanning electron microscope apparatus and method are described for detecting and imaging open-circuit defects in an integrated circuit (IC). The invention uses a low-energy high-current focused electron beam that is scanned over a device surface of the IC to generate a charge-induced voltage alteration (CIVA) signal at the location of any open-circuit defects. The low-energy CIVA signal may be used to generate an image of the IC showing the location of any open-circuit defects. A low electron beam energy is used to prevent electrical breakdown in any passivation layers in the IC and to minimize radiation damage to the IC. The invention has uses for IC failure analysis, for production-line inspection of ICs, and for qualification of ICs. 5 figs.
Integrated circuit failure analysis by low-energy charge-induced voltage alteration
Cole, Jr., Edward I.
1996-01-01
A scanning electron microscope apparatus and method are described for detecting and imaging open-circuit defects in an integrated circuit (IC). The invention uses a low-energy high-current focused electron beam that is scanned over a device surface of the IC to generate a charge-induced voltage alteration (CIVA) signal at the location of any open-circuit defects. The low-energy CIVA signal may be used to generate an image of the IC showing the location of any open-circuit defects. A low electron beam energy is used to prevent electrical breakdown in any passivation layers in the IC and to minimize radiation damage to the IC. The invention has uses for IC failure analysis, for production-line inspection of ICs, and for qualification of ICs.
Non-Intrusive Impedance-Based Cable Tester
NASA Technical Reports Server (NTRS)
Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor)
1999-01-01
A non-intrusive electrical cable tester determines the nature and location of a discontinuity in a cable through application of an oscillating signal to one end of the cable. The frequency of the oscillating signal is varied in increments until a minimum, close to zero voltage is measured at a signal injection point which is indicative of a minimum impedance at that point. The frequency of the test signal at which the minimum impedance occurs is then employed to determine the distance to the discontinuity by employing a formula which relates this distance to the signal frequency and the velocity factor of the cable. A numerically controlled oscillator is provided to generate the oscillating signal, and a microcontroller automatically controls operation of the cable tester to make the desired measurements and display the results. The device is contained in a portable housing which may be hand held to facilitate convenient use of the device in difficult to access locations.
Piezoelectric extraction of ECG signal
NASA Astrophysics Data System (ADS)
Ahmad, Mahmoud Al
2016-11-01
The monitoring and early detection of abnormalities or variations in the cardiac cycle functionality are very critical practices and have significant impact on the prevention of heart diseases and their associated complications. Currently, in the field of biomedical engineering, there is a growing need for devices capable of measuring and monitoring a wide range of cardiac cycle parameters continuously, effectively and on a real-time basis using easily accessible and reusable probes. In this paper, the revolutionary generation and extraction of the corresponding ECG signal using a piezoelectric transducer as alternative for the ECG will be discussed. The piezoelectric transducer pick up the vibrations from the heart beats and convert them into electrical output signals. To this end, piezoelectric and signal processing techniques were employed to extract the ECG corresponding signal from the piezoelectric output voltage signal. The measured electrode based and the extracted piezoelectric based ECG traces are well corroborated. Their peaks amplitudes and locations are well aligned with each other.
NASA Astrophysics Data System (ADS)
Correa-Mena, Ana Gabriela; Zaldívar-Huerta, Ignacio E.; Abril García, Jose Humberto; García-Juárez, Alejandro; Vera-Marquina, Alicia
2016-10-01
A practical application of a bidirectional microwave photonic filter (MPF) to transmit simultaneous analog TV signals coded on microwave carriers is experimentally demonstrated. The frequency response of the bidirectional MPF is obtained by the interaction of an externally modulated multimode laser diode emitting at 1.55 μm associated to the free-spectral range of the optical source, the chromatic dispersion parameter of the optical fiber, as well as the length of the optical link. The filtered microwave bandpass window generated around 2 GHz is used as electrical carrier in order to simultaneously transmit TV signals of 67.25 and 61.25 MHz in both directions. The obtained signal-to-noise ratios for the transmitted signals of 67.25 and 61.25 MHz are 37.62 and 44.77 dB, respectively.
Controller arm for a remotely related slave arm
NASA Technical Reports Server (NTRS)
Salisbury, J. K., Jr. (Inventor)
1979-01-01
A segmented controller arm configured and dimensioned to form a miniature kinematic replica of a remotely related slave arm is disclosed. The arm includes: (1) a plurality of joints for affording segments of the arm simultaneous angular displacement about a plurality of pairs of intersecting axes, (2) a plurality of position sensing devices for providing electrical signals indicative of angular displacement imparted to corresponding segments of the controller shaft about the axes, and (3) a control signal circuit for generating control signals to be transmitted to the slave arm. The arm is characterized by a plurality of yokes, each being supported for angular displacement about a pair of orthogonally related axes and counterbalanced against gravitation by a cantilevered mass.
NASA Astrophysics Data System (ADS)
Hisatake, Shintaro; Yamaguchi, Koki; Uchida, Hirohisa; Tojyo, Makoto; Oikawa, Yoichi; Miyaji, Kunio; Nagatsuma, Tadao
2018-04-01
We propose a new asynchronous measurement system to visualize the amplitude and phase distribution of a frequency-modulated electromagnetic wave. The system consists of three parts: a nonpolarimetric electro-optic frequency down-conversion part, a phase-noise-canceling part, and a frequency-tracking part. The photonic local oscillator signal generated by electro-optic phase modulation is controlled to track the frequency of the radio frequency (RF) signal to significantly enhance the measurable RF bandwidth. We demonstrate amplitude and phase measurement of a quasi-millimeter-wave frequency-modulated continuous-wave signal (24 GHz ± 80 MHz with a 2.5 ms period) as a proof-of-concept experiment.
A Simple Demonstration for Exploring the Radio Waves Generated by a Mobile Phone
ERIC Educational Resources Information Center
Hare, Jonathan
2010-01-01
Described is a simple low cost home-made device that converts the radio wave energy from a mobile phone signal into electricity for lighting an LED. No battery or complex circuitry is required. The device can form the basis of a range of interesting experiments on the physics and technology of mobile phones. (Contains 5 figures.)
Personality identified self-powering keyboard
Wang, Zhong Lin; Zhu, Guang; Chen, Jun
2018-02-06
A keyboard for converting keystrokes into electrical signals is disclosed. The keyboard includes a plurality of keys. At least one of the keys includes two electrodes and a member that generates triboelectric charges upon skin contact. The member is adjacent to one of the electrodes to affect a flow of electrons between the two electrodes when a distance between the member and the skin varies.
Statistical analysis of lightning electric field measured under Malaysian condition
NASA Astrophysics Data System (ADS)
Salimi, Behnam; Mehranzamir, Kamyar; Abdul-Malek, Zulkurnain
2014-02-01
Lightning is an electrical discharge during thunderstorms that can be either within clouds (Inter-Cloud), or between clouds and ground (Cloud-Ground). The Lightning characteristics and their statistical information are the foundation for the design of lightning protection system as well as for the calculation of lightning radiated fields. Nowadays, there are various techniques to detect lightning signals and to determine various parameters produced by a lightning flash. Each technique provides its own claimed performances. In this paper, the characteristics of captured broadband electric fields generated by cloud-to-ground lightning discharges in South of Malaysia are analyzed. A total of 130 cloud-to-ground lightning flashes from 3 separate thunderstorm events (each event lasts for about 4-5 hours) were examined. Statistical analyses of the following signal parameters were presented: preliminary breakdown pulse train time duration, time interval between preliminary breakdowns and return stroke, multiplicity of stroke, and percentages of single stroke only. The BIL model is also introduced to characterize the lightning signature patterns. Observations on the statistical analyses show that about 79% of lightning signals fit well with the BIL model. The maximum and minimum of preliminary breakdown time duration of the observed lightning signals are 84 ms and 560 us, respectively. The findings of the statistical results show that 7.6% of the flashes were single stroke flashes, and the maximum number of strokes recorded was 14 multiple strokes per flash. A preliminary breakdown signature in more than 95% of the flashes can be identified.
Optical Dependence of Electrically Detected Magnetic Resonance in Lightly Doped Si:P Devices
NASA Astrophysics Data System (ADS)
Zhu, Lihuang; van Schooten, Kipp J.; Guy, Mallory L.; Ramanathan, Chandrasekhar
2017-06-01
Using frequency-modulated electrically detected magnetic resonance (EDMR), we show that signals measured from lightly doped (1.2 - 5 ×1 015 cm-3 ) silicon devices vary significantly with the wavelength of the optical excitation used to generate the mobile carriers. We measure EDMR spectra at 4.2 K as a function of modulation frequency and applied microwave power using a 980-nm laser, a 405-nm laser, and a broadband white-light source. EDMR signals are observed from the phosphorus donor and two distinct defect species in all of the experiments. With near-infrared irradiation, we find that the EDMR signal primarily arises from donor-defect pairs, while, at higher photon energies, there are significant additional contributions from defect-defect pairs. The contribution of spins from different spatial regions to the EDMR signal is seen to vary as the optical penetration depth changes from about 120 nm at 405-nm illumination to 100 μ m at 980-nm illumination. The modulation frequency dependence of the EDMR signal shows that the energy of the optical excitation strongly modulates the kinetics of the underlying spin-dependent recombination (SDR) process. Careful tuning of the optical photon energy could therefore be used to control both the subset of spin pairs contributing to the EDMR signal and the dynamics of the SDR process.
Analysis of benzoquinone decomposition in solution plasma process
NASA Astrophysics Data System (ADS)
Bratescu, M. A.; Saito, N.
2016-01-01
The decomposition of p-benzoquinone (p-BQ) in Solution Plasma Processing (SPP) was analyzed by Coherent Anti-Stokes Raman Spectroscopy (CARS) by monitoring the change of the anti-Stokes signal intensity of the vibrational transitions of the molecule, during and after SPP. Just in the beginning of the SPP treatment, the CARS signal intensities of the ring vibrational molecular transitions increased under the influence of the electric field of plasma. The results show that plasma influences the p-BQ molecules in two ways: (i) plasma produces a polarization and an orientation of the molecules in the local electric field of plasma and (ii) the gas phase plasma supplies, in the liquid phase, hydrogen and hydroxyl radicals, which reduce or oxidize the molecules, respectively, generating different carboxylic acids. The decomposition of p-BQ after SPP was confirmed by UV-visible absorption spectroscopy and liquid chromatography.
Payandeh, Jian; Minor, Daniel L.
2014-01-01
Voltage-gated sodium channels (NaVs) provide the initial electrical signal that drives action potential generation in many excitable cells of the brain, heart, and nervous system. For more than 60 years, functional studies of NaVs have occupied a central place in physiological and biophysical investigation of the molecular basis of excitability. Recently, structural studies of members of a large family of bacterial voltage-gated sodium channels (BacNaVs) prevalent in soil, marine, and salt lake environments that bear many of the core features of eukaryotic NaVs have reframed ideas for voltage-gated channel function, ion selectivity, and pharmacology. Here, we analyze the recent advances, unanswered questions, and potential of BacNaVs as templates for drug development efforts. PMID:25158094
Photocapacitive image converter
NASA Technical Reports Server (NTRS)
Miller, W. E.; Sher, A.; Tsuo, Y. H. (Inventor)
1982-01-01
An apparatus for converting a radiant energy image into corresponding electrical signals including an image converter is described. The image converter includes a substrate of semiconductor material, an insulating layer on the front surface of the substrate, and an electrical contact on the back surface of the substrate. A first series of parallel transparent conductive stripes is on the insulating layer with a processing circuit connected to each of the conductive stripes for detecting the modulated voltages generated thereon. In a first embodiment of the invention, a modulated light stripe perpendicular to the conductive stripes scans the image converter. In a second embodiment a second insulating layer is deposited over the conductive stripes and a second series of parallel transparent conductive stripes perpendicular to the first series is on the second insulating layer. A different frequency current signal is applied to each of the second series of conductive stripes and a modulated image is applied to the image converter.
NASA Astrophysics Data System (ADS)
Clauss, Günther; Klein, Marco
2010-05-01
In the past years the existence of freak waves has been affirmed by observations, registrations, and severe accidents. One of the famous real world registrations is the so called 'New Year wave,' recorded in the North Sea at the Draupner jacket platform on January 1st, 1995. Since there is only a single point registration available, it is not possible to draw conclusions on the spatial development in front of and behind the point of registration, which is indispensable for a complete understanding of this phenomenon. This paper presents the temporal and spatial development of the New Year Wave generated in a model basin. To simulate the recorded New Year wave in the wave tank, an optimization approach for the experimental generation of wave sequences with predefined characteristics is used. The method is applied to generate scenarios with a single high wave superimposed to irregular seas. During the experimental optimization special emphasis is laid on the exact reproduction of the wave height, crest height, wave period, as well as the vertical and horizontal asymmetries of the New Year Wave. The fully automated optimization process is carried out in a small wave tank. At the beginning of the optimization process, the scaled real-sea measured sea state is transformed back to the position of the piston type wave generator by means of linear wave theory and by multiplication with the electrical and hydrodynamic transfer functions in the frequency domain. As a result a preliminary control signal for the wave generator is obtained. Due to nonlinear effects in the wave tank, the registration of the freak wave at the target position generated by this preliminary control signal deviates from the predefined target parameters. To improve the target wave in the tank only a short section of the control signal in time domain has to be adapted. For these temporally limited local changes in the control signal, the discrete wavelet transformation is introduced into the optimization process which samples the signal into several decomposition levels where each resulting coefficient describes the control signal in a specific time range and frequency bandwidth. To improve the control signal, the experimental optimization routine iterates until the target parameters are satisfied by applying the subplex optimization method. The resulting control signal in the small wave tank is then transferred to a large wave tank considering the electrical and hydrodynamic RAOs of the respective wave generator. The extreme sea state with the embedded New Year Wave obtained with this method is measured at different locations in the tank, in a range from 2163 m (full scale) ahead of to 1470 m behind the target position-520 registrations altogether. The focus lies on the detailed description of a possible evolution of the New Year Wave over a large area and time interval. The analysis of the registrations reveals freak waves occurring at three different positions in the wave tank and the observed freak waves are developing from a wave group of three waves, which travels with constant speed along the wave tank up to the target position. The group velocity, wave propagation, and the energy flux of this wave group are analyzed within this paper.
NASA Astrophysics Data System (ADS)
Yamazaki, Ken'ichi
2016-07-01
Fault ruptures in the Earth's crust generate both elastic and electromagnetic (EM) waves. If the corresponding EM signals can be observed, then earthquakes could be detected before the first seismic waves arrive. In this study, I consider the piezomagnetic effect as a mechanism that converts elastic waves to EM energy, and I derive analytical formulas for the conversion process. The situation considered in this study is a whole-space model, in which elastic and EM properties are uniform and isotropic. In this situation, the governing equations of the elastic and EM fields, combined with the piezomagnetic constitutive law, can be solved analytically in the time domain by ignoring the displacement current term. Using the derived formulas, numerical examples are investigated, and the corresponding characteristics of the expected magnetic signals are resolved. I show that temporal variations in the magnetic field depend strongly on the electrical conductivity of the medium, meaning that precise detection of signals generated by the piezomagnetic effect is generally difficult. Expected amplitudes of piezomagnetic signals are estimated to be no larger than 0.3 nT for earthquakes with a moment magnitude of ≥7.0 at a source distance of 25 km; however, this conclusion may not extend to the detection of real earthquakes, because piezomagnetic stress sensitivity is currently poorly constrained.
Modified Dual Three-Pulse Modulation technique for single-phase inverter topology
NASA Astrophysics Data System (ADS)
Sree Harsha, N. R.; Anitha, G. S.; Sreedevi, A.
2016-01-01
In a recent paper, a new modulation technique called Dual Three Pulse Modulation (DTPM) was proposed to improve the efficiency of the power converters of the Electric/Hybrid/Fuel-cell vehicles. It was simulated in PSIM 9.0.4 and uses analog multiplexers to generate the modulating signals for the DC/DC converter and inverter. The circuit used is complex and many other simulation softwares do not support the analog multiplexers as well. Also, the DTPM technique produces modulating signals for the converter, which are essentially needed to produce the modulating signals for the inverter. Hence, it cannot be used efficiently to switch the valves of a stand-alone inverter. We propose a new method to generate the modulating signals to switch MOSFETs of a single phase Dual-Three pulse Modulation based stand-alone inverter. The circuits proposed are simulated in Multisim 12.0. We also show an alternate way to switch a DC/DC converter in a way depicted by DTPM technique both in simulation (MATLAB/Simulink) and hardware. The circuitry is relatively simple and can be used for the further investigations of DTPM technique.
Ménigot, Sébastien; Girault, Jean-Marc
2013-01-01
Ultrasound contrast imaging has provided more accurate medical diagnoses thanks to the development of innovating modalities like the pulse inversion imaging. However, this latter modality that improves the contrast-to-tissue ratio (CTR) is not optimal, since the frequency is manually chosen jointly with the probe. However, an optimal choice of this command is possible, but it requires precise information about the transducer and the medium which can be experimentally difficult to obtain, even inaccessible. It turns out that the optimization can become more complex by taking into account the kind of generators, since the generators of electrical signals in a conventional ultrasound scanner can be unipolar, bipolar, or tripolar. Our aim was to seek the ternary command which maximized the CTR. By combining a genetic algorithm and a closed loop, the system automatically proposed the optimal ternary command. In simulation, the gain compared with the usual ternary signal could reach about 3.9 dB. Another interesting finding was that, in contrast to what is generally accepted, the optimal command was not a fixed-frequency signal but had harmonic components.
Monitoring of electric-cardio signals based on DSP
NASA Astrophysics Data System (ADS)
Yan, Yi-xin; Sun, Hui-nan; Lv, Shuang
2008-10-01
Monitoring of electric-cardio signals is the most direct method of discovering heart diseases. This article presents an electric-cardio signal acquisition and processing system based on DSP. According to the features of electric-cardio signals, the proposed system uses the AgCl electrode as electric-cardio signals sensor, and acquires analog signals with AD620 as the prepositional amplifier, and the digital system equipped is with TMS320LF2407A DSP. The design of digital filter and the analysis of heart rate variation are realized by programming in the DSP. Finally the ECG is obtained with P and T waves along with obvious QRS multi-wave characteristics. The system has low power dissipation, low cost and high precision, which meets the requirements for medical instruments.
Henninger, Jörg; Krahe, Rüdiger; Kirschbaum, Frank; Grewe, Jan; Benda, Jan
2018-06-13
Sensory systems evolve in the ecological niches that each species is occupying. Accordingly, encoding of natural stimuli by sensory neurons is expected to be adapted to the statistics of these stimuli. For a direct quantification of sensory scenes, we tracked natural communication behavior of male and female weakly electric fish, Apteronotus rostratus , in their Neotropical rainforest habitat with high spatiotemporal resolution over several days. In the context of courtship, we observed large quantities of electrocommunication signals. Echo responses, acknowledgment signals, and their synchronizing role in spawning demonstrated the behavioral relevance of these signals. In both courtship and aggressive contexts, we observed robust behavioral responses in stimulus regimes that have so far been neglected in electrophysiological studies of this well characterized sensory system and that are well beyond the range of known best frequency and amplitude tuning of the electroreceptor afferents' firing rate modulation. Our results emphasize the importance of quantifying sensory scenes derived from freely behaving animals in their natural habitats for understanding the function and evolution of neural systems. SIGNIFICANCE STATEMENT The processing mechanisms of sensory systems have evolved in the context of the natural lives of organisms. To understand the functioning of sensory systems therefore requires probing them in the stimulus regimes in which they evolved. We took advantage of the continuously generated electric fields of weakly electric fish to explore electrosensory stimulus statistics in their natural Neotropical habitat. Unexpectedly, many of the electrocommunication signals recorded during courtship, spawning, and aggression had much smaller amplitudes or higher frequencies than stimuli used so far in neurophysiological characterizations of the electrosensory system. Our results demonstrate that quantifying sensory scenes derived from freely behaving animals in their natural habitats is essential to avoid biases in the choice of stimuli used to probe brain function. Copyright © 2018 the authors 0270-6474/18/385456-11$15.00/0.
Seismoelectric ground response to local and regional earthquakes
NASA Astrophysics Data System (ADS)
Dzieran, Laura; Rabbel, Wolfgang; Thorwart, Martin; Ritter, Oliver
2017-04-01
During earthquakes magnetotelluric stations occasionally record electric and magnetic signals similar to seismograms. The major part of these magnetic signals is induced by the seismic movement of the magnetometers (induction coils) in the static magnetic field. In contrast, the electric field signals are caused by the seismoelectric effect. Based on more than 600 earthquakes from Chile, Costa Rica and Europe we established a logarithmic magnitude-distance-relationship describing the magnitude threshold to be exceeded for observing seismoelectric (SE) signals with standard magnetotelluric (MT) recording units at given hypocentral distance r and for noise levels less than 3 μV/m. The log(r) term results from the geometric spreading of the radiated seismic waves. A comparison of SE signals at different hypocentral distances shows that observability is not only influenced by the amplitude of the incoming seismic wave. It also depends on the geological structure underneath the station which causes a unique frequency dependent SE response. To quantify these site effects we computed spectral seismoelectric transfer functions representing the ratios of the spectral amplitudes of SE records and acceleration seismograms (SESRs). Some stations show constant SESRs in the major frequency range, while others show a decrease with increasing frequencies. Based on the current Biot-type seismoelectric theory constant SESRs can be explained by coseismic SE waves alone. The observed SESR amplitudes at some sites are indeed consistent with theoretical expectations for electrically highly resistive soils or rocks, in agreement with the local geology of the investigated areas. The frequency dependence of SESRs observed at other locations can be explained if the incident SE waves consist not only of coseismic arrivals but also of a significant contribution from SE interface response waves which are generated at electrical or mechanical boundaries. Therefore, frequency-dependent SESRs can be regarded as an expression of a seismoelectric site effect, which depends strongly on the hydraulic and lithologic conditions underneath the recording station.
Laboratory investigation of dust impacts on antennas in space
NASA Astrophysics Data System (ADS)
Sternovsky, Zoltan; Malaspina, D.; Gruen, E.; Drake, K.
2013-10-01
Recent observations of sharp voltage spikes by the WAVES electric field experiments onboard the twin STEREO spacecraft have been attributed to plasma clouds generated by the impact ionization of high velocity dust particles. The reported dust fluxes are much higher than those measured by dedicated dust detectors at 1 AU, which leads to the interpretation that the STEREO observations are due to nanometer-sized dust particles originating from the inner solar system and accelerated to high velocities by the solar wind magnetic field. However, this interpretation is based on a simplified model of coupling between the expanding plasma cloud from the dust impact and the WAVES electric field instrument. A series of laboratory measurements are performed to validate this model and to calibrate/investigate the effect of various impact parameters on the signals measured by the electric field instrument. The dust accelerator facility operating at the University of Colorado is used for the measurement with micron and submicron sized particles accelerated to 50 km/s. The first set of measurements is performed to calibrate the impact charge generated from materials specific the STEREO spacecraft and will help to interpret electric field data.
Digital resolver for helicopter model blade motion analysis
NASA Technical Reports Server (NTRS)
Daniels, T. S.; Berry, J. D.; Park, S.
1992-01-01
The paper reports the development and initial testing of a digital resolver to replace existing analog signal processing instrumentation. Radiometers, mounted directly on one of the fully articulated blades, are electrically connected through a slip ring to analog signal processing circuitry. The measured signals are periodic with azimuth angle and are resolved into harmonic components, with 0 deg over the tail. The periodic nature of the helicopter blade motion restricts the frequency content of each flapping and yaw signal to the fundamental and harmonics of the rotor rotational frequency. A minicomputer is employed to collect these data and then plot them graphically in real time. With this and other information generated by the instrumentation, a helicopter test pilot can then adjust the helicopter model's controls to achieve the desired aerodynamic test conditions.
Solution-processed organic spin-charge converter.
Ando, Kazuya; Watanabe, Shun; Mooser, Sebastian; Saitoh, Eiji; Sirringhaus, Henning
2013-07-01
Conjugated polymers and small organic molecules are enabling new, flexible, large-area, low-cost optoelectronic devices, such as organic light-emitting diodes, transistors and solar cells. Owing to their exceptionally long spin lifetimes, these carbon-based materials could also have an important impact on spintronics, where carrier spins play a key role in transmitting, processing and storing information. However, to exploit this potential, a method for direct conversion of spin information into an electric signal is indispensable. Here we show that a pure spin current can be produced in a solution-processed conducting polymer by pumping spins through a ferromagnetic resonance in an adjacent magnetic insulator, and that this generates an electric voltage across the polymer film. We demonstrate that the experimental characteristics of the generated voltage are consistent with it being generated through an inverse spin Hall effect in the conducting polymer. In contrast with inorganic materials, the conducting polymer exhibits coexistence of high spin-current to charge-current conversion efficiency and long spin lifetimes. Our discovery opens a route for a new generation of molecular-structure-engineered spintronic devices, which could lead to important advances in plastic spintronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenbaum, Elias; Sanders, Charlene A; Kandagor, Vincent
The development of a retinal prosthesis for artificial sight includes a study of the factors affecting the structural and functional stability of chronically implanted microelectrode arrays. Although neuron depolarization and propagation of electrical signals have been studied for nearly a century, the use of multielectrode stimulation as a proposed therapy to treat blindness is a frontier area of modern ophthalmology research. Mapping and characterizing the topographic information contained in the electric field potentials and understanding how this information is transmitted and interpreted in the visual cortex is still very much a work in progress. In order to characterize the electricalmore » field patterns generated by the device, an in vitro prototype that mimics several of the physical and chemical parameters of the in vivo visual implant device was fabricated. We carried out multiple electrical measurements in a model 'eye,' beginning with a single electrode, followed by a 9-electrode array structure, both idealized components based on the Argus II retinal implants. Correlating the information contained in the topographic features of the electric fields with psychophysical testing in patients may help reduce the time required for patients to convert the electrical patterns into graphic signals.« less
Electric signalling in fruit trees in response to water applications and light-darkness conditions.
Gurovich, Luis A; Hermosilla, Paulo
2009-02-15
A fundamental property of all living organisms is the generation and conduction of electrochemical impulses throughout their different tissues and organs, resulting from abiotic and biotic changes in environmental conditions. In plants and animals, signal transmission can occur over long and short distances, and it can correspond to intra- and inter-cellular communication mechanisms that determine the physiological behaviour of the organism. Rapid plant and animal responses to environmental changes are associated with electrical excitability and signalling. The same molecules and pathways are used to drive physiological responses, which are characterized by movement (physical displacement) in animals and by continuous growth in plants. In the field of environmental plant electrophysiology, automatic and continuous measurements of electrical potential differences (DeltaEP) between plant tissues can be effectively used to study information transport mechanisms and physiological responses that result from external stimuli on plants. A critical mass of data on electrical behaviour in higher plants has accumulated in the last 5 years, establishing plant neurobiology as the most recent discipline of plant science. In this work, electrical potential differences were monitored continuously using Ag/AgCl microelectrodes, which were inserted 15mm deep into sapwood at various positions in the trunks of several fruit-bearing trees. Electrodes were referenced to an unpolarisable Ag/AgCl microelectrode, which was installed 5cm deep in the soil. Systematic patterns of DeltaEP during day-night cycles and at different conditions of soil water availability are discussed as alternative tools to assess early plant stress conditions. This research relates to the adaptive response of trees to soil water availability and light-darkness cycles.
USDA-ARS?s Scientific Manuscript database
This study is the first to fully evaluate whether electrical signals applied to insects during electropenetrography (EPG; also called electrical penetration graph) affect insect behavior. During EPG, electrical signals are applied to plants, and thus to the gold-wire-tethered insects feeding on elec...
Lu, Bin; Yang, Yi; Sharma, Santosh K; Zambare, Prachi; Madane, Mayura A
2014-12-23
A method identifies electric load types of a plurality of different electric loads. The method includes providing a load feature database of a plurality of different electric load types, each of the different electric load types including a first load feature vector having at least four different load features; sensing a voltage signal and a current signal for each of the different electric loads; determining a second load feature vector comprising at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the different electric loads; and identifying by a processor one of the different electric load types by determining a minimum distance of the second load feature vector to the first load feature vector of the different electric load types of the load feature database.
NASA Technical Reports Server (NTRS)
Livas, Jeffrey (Inventor); Thorpe, James I. (Inventor); Numata, Kenji (Inventor)
2011-01-01
A method and system for stabilizing a laser to a frequency reference with an adjustable offset. The method locks a sideband signal generated by passing an incoming laser beam through the phase modulator to a frequency reference, and adjusts a carrier frequency relative to the locked sideband signal by changing a phase modulation frequency input to the phase modulator. The sideband signal can be a single sideband (SSB), dual sideband (DSB), or an electronic sideband (ESB) signal. Two separate electro-optic modulators can produce the DSB signal. The two electro-optic modulators can be a broadband modulator and a resonant modulator. With a DSB signal, the method can introduce two sinusoidal phase modulations at the phase modulator. With ESB signals, the method can further drive the optical phase modulator with an electrical signal with nominal frequency OMEGA(sub 1) that is phase modulated at a frequency OMEGA(sub 2)
Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges
NASA Astrophysics Data System (ADS)
Sobral, H.; Robledo-Martinez, A.
2016-10-01
A fast, high voltage square-shaped electrical pulse initiated by laser ablation was investigated as a means to enhance the analytical capabilities of laser Induced breakdown spectroscopy (LIBS). The electrical pulse is generated by the discharge of a charged coaxial cable into a matching impedance. The pulse duration and the stored charge are determined by the length of the cable. The ablation plasma was produced by hitting an aluminum target with a nanosecond 532-nm Nd:YAG laser beam under variable fluence 1.8-900 J cm- 2. An enhancement of up to one order of magnitude on the emission signal-to-noise ratio can be achieved with the spark discharge assisted laser ablation. Besides, this increment is larger for ionized species than for neutrals. LIBS signal is also increased with the discharge voltage with a tendency to saturate for high laser fluences. Electron density and temperature evolutions were determined from time delays of 100 ns after laser ablation plasma onset. Results suggest that the spark discharge mainly re-excites the laser produced plume.
All-optical single-sideband frequency upconversion utilizing the XPM effect in an SOA-MZI.
Kim, Doo-Ho; Lee, Joo-Young; Choi, Hyung-June; Song, Jong-In
2016-09-05
An all-optical single sideband (OSSB) frequency upconverter based on the cross-phase modulation (XPM) effect is proposed and experimentally demonstrated to overcome the power fading problem caused by the chromatic dispersion of fiber in radio-over-fiber systems. The OSSB frequency upconverter consists of an arrayed waveguide grating (AWG) and a semiconductor optical amplifier Mach-Zehnder interferometer (SOA-MZI) and does not require an extra delay line used for phase noise compensation. The generated OSSB radio frequency (RF) signal transmitted over single-mode fibers up to 20 km shows a flat electrical RF power response as a function of the fiber length. The upconverted electrical RF signal at 48 GHz shows negligible degradation of the phase noise even without an extra delay line. The measured phase noise of the upconverted RF signal (48 GHz) is -74.72 dBc/Hz at an offset frequency of 10 kHz. The spurious free dynamic range (SFDR) measured by a two-tone test to estimate the linearity of the OSSB frequency upconverter is 72.5 dB·Hz2/3.
Laboratory investigation of dust impacts on antennas in space
NASA Astrophysics Data System (ADS)
Drake, K.; Gruen, E.; Malaspina, D.; Sternovsky, Z.
2013-12-01
We are performing calibration measurements in our laboratory using a dust accelerator to understand the mechanisms how dust impact generated plasma clouds couple into electric field antennas on spacecraft. The S/WAVES electric field instruments on board the twin STEREO spacecraft observed short duration (milliseconds), large amplitude (> 15 mV) voltage spikes associated with the impact of high velocity dust particles on the spacecraft [St. Cyr et al., 2009, MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. These sharp spikes have been attributed to plasma clouds generated by the impact ionization of high velocity dust particles. The high count rate has lead to the interpretation that S/WAVES is detecting nanometer sized dust particles (nano-dust) generated in the inner solar system and accelerated to close to solar wind velocities before impacting the spacecraft at 1 AU. The S/WAVES nano-dust interpretation is currently based on an incomplete understanding of the charge generated from relevant materials and the coupling mechanism between the plasma cloud and the electric field instrument. Calibration measurements are performed at the dust accelerator facility at the University of Colorado to investigate the effect of various impact parameters on the signals measured by the electric field instrument. The dust accelerator facility allows experimental control over target materials, size (micron to sub-micron), and velocity (1-60 km/s) of impacting dust particles, geometry of the impact, the ';spacecraft' potential, and the presence or absence of photoelectrons, allowing each coupling factor to be isolated and quantified. As the first step in this effort, we measure the impact charge generation for materials relevant for the STEREO spacecraft.
A novel maximum power point tracking system employing phase comparison techniques
NASA Astrophysics Data System (ADS)
Avaritsiotis, J. N.; Tsitomeneas, S.; Caroubalos, C.
A new MPPT design is presented that is based on the comparison of the phase of a perturbing signal with that of the signal which is the result of the perturbation. More specifically, a voltage ripple is induced on the power loop of the P/V system and its phase is compared to the phase of the resulting ripple on the electric power P = I x V, where I and V are the current and voltage respectively of the P/V generator. A prototype MPPT based on the previous principle has been designed, constructed, and its performance has been studied.
Digital electronic bone growth stimulator
Kronberg, James W.
1995-01-01
A device for stimulating bone tissue by applying a low level alternating current signal directly to the patient's skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures.
Source locations for impulsive electric signals seen in the night ionosphere of Venus
NASA Technical Reports Server (NTRS)
Russell, C. T.; Von Dornum, M.; Scarf, F. L.
1989-01-01
A mapping of the rate of occurrence of impulsive VLF noise bursts in Venus' dark low altitude ionosphere, which increases rapidly with decreasing altitude, as a function of latitude and longitude indicates enhanced occurrence rates over Atla. In a 30-sec observing period, there are impulsive signals 70 percent of the time at 160 km in the region of maximum occurrence; the occurrence rates, moreover, increase with decreasing latitude, so that the equatorial rate is of the order of 1.6 times that at 30 deg latitude. These phenomena are in keeping with lightning-generated wave sources.
NASA Astrophysics Data System (ADS)
Weng, Yi; Wang, Junyi; He, Xuan; Pan, Zhongqi
2018-02-01
The Nyquist spectral shaping techniques facilitate a promising solution to enhance spectral efficiency (SE) and further reduce the cost-per-bit in high-speed wavelength-division multiplexing (WDM) transmission systems. Hypothetically, any Nyquist WDM signals with arbitrary shapes can be generated by the use of the digital signal processing (DSP) based electrical filters (E-filter). Nonetheless, in actual 100G/ 200G coherent systems, the performance as well as DSP complexity are increasingly restricted by cost and power consumption. Henceforward it is indispensable to optimize DSP to accomplish the preferred performance at the least complexity. In this paper, we systematically investigated the minimum requirements and challenges of Nyquist WDM signal generation, particularly for higher-order modulation formats, including 16 quadrature amplitude modulation (QAM) or 64QAM. A variety of interrelated parameters, such as channel spacing and roll-off factor, have been evaluated to optimize the requirements of the digital-to-analog converter (DAC) resolution and transmitter E-filter bandwidth. The impact of spectral pre-emphasis has been predominantly enhanced via the proposed interleaved DAC architecture by at least 4%, and hence reducing the required optical signal to noise ratio (OSNR) at a bit error rate (BER) of 10-3 by over 0.45 dB at a channel spacing of 1.05 symbol rate and an optimized roll-off factor of 0.1. Furthermore, the requirements of sampling rate for different types of super-Gaussian E-filters are discussed for 64QAM Nyquist WDM transmission systems. Finally, the impact of the non-50% duty cycle error between sub-DACs upon the quality of the generated signals for the interleaved DAC structure has been analyzed.
NASA Astrophysics Data System (ADS)
Guo, Jun; Lu, Siliang; Zhai, Chao; He, Qingbo
2018-02-01
An automatic bearing fault diagnosis method is proposed for permanent magnet synchronous generators (PMSGs), which are widely installed in wind turbines subjected to low rotating speeds, speed fluctuations, and electrical device noise interferences. The mechanical rotating angle curve is first extracted from the phase current of a PMSG by sequentially applying a series of algorithms. The synchronous sampled vibration signal of the fault bearing is then resampled in the angular domain according to the obtained rotating phase information. Considering that the resampled vibration signal is still overwhelmed by heavy background noise, an adaptive stochastic resonance filter is applied to the resampled signal to enhance the fault indicator and facilitate bearing fault identification. Two types of fault bearings with different fault sizes in a PMSG test rig are subjected to experiments to test the effectiveness of the proposed method. The proposed method is fully automated and thus shows potential for convenient, highly efficient and in situ bearing fault diagnosis for wind turbines subjected to harsh environments.
Nonlinear plasmonic behavior of nanohole arrays in thin gold films for imaging lipids
NASA Astrophysics Data System (ADS)
Subramaniyam, Nagarajan; Shah, Ali; Dreser, Christoph; Isomäki, Antti; Fleischer, Monika; Sopanen, Markku
2018-06-01
We demonstrate linear and nonlinear plasmonic behaviors of periodic nanohole arrays in thin gold (Au) films with varying periodicities. As expected, the linear optical transmission spectra of the nanohole arrays show a red-shift of the resonance wavelength and Wood's anomaly with increasing hole spacing. The optical transmission and electric near-field intensity distribution of the nanohole arrays are simulated using the finite element method. The nonlinear plasmonic behavior of the nanohole arrays is studied by using picosecond pulsed excitation at near-infrared wavelengths. The characteristic nonlinear signals indicating two-photon excited luminescence (TPEL), sum frequency generation, second harmonic generation, and four-wave mixing (FWM) are observed. A maximum FWM/TPEL signal intensity ratio is achieved for nanohole arrays with a periodicity of 500 nm. Furthermore, the significant FWM signal intensity and contrast compared to the background were harnessed to demonstrate the ability of surface-enhanced coherent anti-Stokes Raman scattering to visualize low concentrations of lipids deposited on the nanohole array with a periodicity of 500 nm.
Shin, Hyunjin; Mutlu, Miray; Koomen, John M.; Markey, Mia K.
2007-01-01
Noise in mass spectrometry can interfere with identification of the biochemical substances in the sample. For example, the electric motors and circuits inside the mass spectrometer or in nearby equipment generate random noise that may distort the true shape of mass spectra. This paper presents a stochastic signal processing approach to analyzing noise from electrical noise sources (i.e., noise from instrumentation) in MALDI TOF mass spectrometry. Noise from instrumentation was hypothesized to be a mixture of thermal noise, 1/f noise, and electric or magnetic interference in the instrument. Parametric power spectral density estimation was conducted to derive the power distribution of noise from instrumentation with respect to frequencies. As expected, the experimental results show that noise from instrumentation contains 1/f noise and prominent periodic components in addition to thermal noise. These periodic components imply that the mass spectrometers used in this study may not be completely shielded from the internal or external electrical noise sources. However, according to a simulation study of human plasma mass spectra, noise from instrumentation does not seem to affect mass spectra significantly. In conclusion, analysis of noise from instrumentation using stochastic signal processing here provides an intuitive perspective on how to quantify noise in mass spectrometry through spectral modeling. PMID:19455245
Rapid fluid disruption: A source for self-potential anomalies on volcanoes
Johnston, M.J.S.; Byerlee, J.D.; Lockner, D.
2001-01-01
Self-potential (SP) anomalies observed above suspected magma reservoirs, dikes, etc., on various volcanoes (Kilauea, Hawaii; Mount Unzen, Japan; Piton de la Fournaise, Reunion Island, Miyake Jima, Japan) result from transient surface electric fields of tens of millivolts per kilometer and generally have a positive polarity. These SP anomalies are usually attributed to electrokinetic effects where properties controlling this process are poorly constrained. We propose an alternate explanation that contributions to electric fields of correct polarity should be expected from charge generation by fluid vaporization/disruption. As liquids are vaporized or removed as droplets by gas transport away from hot dike intrusions, both charge generation and local increase in electrical resistivity by removal of fluids should occur. We report laboratory observations of electric fields in hot rock samples generated by pulses of fluid (water) through the rock at atmospheric pressure. These indicate the relative amplitudes of rapid fluid disruption (RFD) potentials and electrokinetic potentials to be dramatically different and the signals are opposite in sign. Above vaporization temperatures, RFD effects of positive sign in the direction of gas flow dominate, whereas below these temperatures, effects of negative sign dominate. This suggests that the primary contribution to observed self-potential anomalies arises from gas-related charge transport processes at temperatures high enough to produce vigorous boiling and vapor transport. At lower temperatures, the primary contribution is from electrokinetic effects modulated perhaps by changing electrical resistivity and RFD effects from high-pressure but low-temperature CO2 and SO2 gas flow ripping water molecules from saturated crustal rocks. If charge generation is continuous, as could well occur above a newly emplaced dike, positive static potentials will be set up that could be sustained for many years, and the simplest method for identifying these hot, active regions would be to identify the SP anomalies they generate.
Realization of the three-qubit quantum controlled gate based on matching Hermitian generators
NASA Astrophysics Data System (ADS)
Gautam, Kumar; Rawat, Tarun Kumar; Parthasarathy, Harish; Sharma, Navneet; Upadhyaya, Varun
2017-05-01
This paper deals with the design of quantum unitary gate by matching the Hermitian generators. A given complicated quantum controlled gate is approximated by perturbing a simple quantum system with a small time-varying potential. The basic idea is to evaluate the generator H_φ of the perturbed system approximately using first-order perturbation theory in the interaction picture. H_φ depends on a modulating signal φ(t){:} 0≤t≤T which modulates a known potential V. The generator H_φ of the given gate U_g is evaluated using H_g=ι log U_g. The optimal modulating signal φ(t) is chosen so that \\Vert H_g - H_φ \\Vert is a minimum. The simple quantum system chosen for our simulation is harmonic oscillator with charge perturbed by an electric field that is a constant in space but time varying and is controlled externally. This is used to approximate the controlled unitary gate obtained by perturbing the oscillator with an anharmonic term proportional to q^3. Simulations results show significantly small noise-to-signal ratio. Finally, we discuss how the proposed method is particularly suitable for designing some commonly used unitary gates. Another example was chosen to illustrate this method of gate design is the ion-trap model.
Lei, Kin-Fong; Hsieh, Yi-Zheng; Chiu, Yi-Yuan; Wu, Min-Hsien
2015-07-31
This study reports a piezoelectric poly(vinylidene fluoride) (PVDF) polymer-based sensor patch for respiration detections in dynamic walking condition. The working mechanism of respiration signal generation is based on the periodical deformations on a human chest wall during the respiratory movements, which in turn mechanically stretch the piezoelectric PVDF film to generate the corresponding electrical signals. In this study, the PVDF sensing film was completely encapsulated within the sensor patch forming a mass-spring-damper mechanical system to prevent the noises generated in a dynamic condition. To verify the design of sensor patch to prevent dynamic noises, experimental investigations were carried out. Results demonstrated the respiration signals generated and the respiratory rates measured by the proposed sensor patch were in line with the same measurements based on a commercial respiratory effort transducer both in a static (e.g., sitting) or dynamic (e.g., walking) condition. As a whole, this study has developed a PVDF-based sensor patch which is capable of monitoring respirations in a dynamic walking condition with high fidelity. Other distinctive features include its small size, light weight, ease of use, low cost, and portability. All these make it a promising sensing device to monitor respirations particularly in home care units.
Radio-Frequency Plasma Cleaning of a Penning Malmberg Trap
NASA Technical Reports Server (NTRS)
Sims, William Herbert, III; Martin, James; Pearson, J. Boise; Lewis, Raymond
2005-01-01
Radio-frequency-generated plasma has been demonstrated to be a promising means of cleaning the interior surfaces of a Penning-Malmberg trap that is used in experiments on the confinement of antimatter. {Such a trap was reported in Modified Penning-Malmberg Trap for Storing Antiprotons (MFS-31780), NASA Tech Briefs, Vol. 29, No. 3 (March 2005), page 66.} Cleaning of the interior surfaces is necessary to minimize numbers of contaminant atoms and molecules, which reduce confinement times by engaging in matter/antimatter-annihilation reactions with confined antimatter particles. A modified Penning-Malmberg trap like the one described in the cited prior article includes several collinear ring electrodes (some of which are segmented) inside a tubular vacuum chamber, as illustrated in Figure 1. During operation of the trap, a small cloud of charged antiparticles (e.g., antiprotons or positrons) is confined to a spheroidal central region by means of a magnetic field in combination with DC and radiofrequency (RF) electric fields applied via the electrodes. In the present developmental method of cleaning by use of RF-generated plasma, one evacuates the vacuum chamber, backfills the chamber with hydrogen at a suitable low pressure, and uses an RF-signal generator and baluns to apply RF voltages to the ring electrodes. Each ring is excited in the polarity opposite that of the adjacent ring. The electric field generated by the RF signal creates a discharge in the low-pressure gas. The RF power and gas pressure are adjusted so that the plasma generated in the discharge (see Figure 2) physically and chemically attacks any solid, liquid, and gaseous contaminant layers on the electrode surfaces. The products of the physical and chemical cleaning reactions are gaseous and are removed by the vacuum pumps.
Hardware Model of a Shipboard Generator
2009-05-19
controller output PM motor power RM motor resistance Td derivative time constant Tf1 fuel valve time constant Tg1 governor time constant Tg2 governor...in speed, sending a response signal to the fuel valve that regulates gas turbine power. At this point, there is an inherent variation between the...basic response analysis [5]. 29 Electrical Power Rotor Inertia Amplifiers Fuel Valve Turbine Dynamics Rotational Friction and Windage
Neural signal registration and analysis of axons grown in microchannels
NASA Astrophysics Data System (ADS)
Pigareva, Y.; Malishev, E.; Gladkov, A.; Kolpakov, V.; Bukatin, A.; Mukhina, I.; Kazantsev, V.; Pimashkin, A.
2016-08-01
Registration of neuronal bioelectrical signals remains one of the main physical tools to study fundamental mechanisms of signal processing in the brain. Neurons generate spiking patterns which propagate through complex map of neural network connectivity. Extracellular recording of isolated axons grown in microchannels provides amplification of the signal for detailed study of spike propagation. In this study we used neuronal hippocampal cultures grown in microfluidic devices combined with microelectrode arrays to investigate a changes of electrical activity during neural network development. We found that after 5 days in vitro after culture plating the spiking activity appears first in microchannels and on the next 2-3 days appears on the electrodes of overall neural network. We conclude that such approach provides a convenient method to study neural signal processing and functional structure development on a single cell and network level of the neuronal culture.
Filterless frequency-octupling mm-wave generation by cascading Sagnac loop and DPMZM
NASA Astrophysics Data System (ADS)
Zhang, Wu; Wen, Aijun; Gao, Yongsheng; Shang, Shuo; Zheng, Hanxiao; He, Hongye
2017-12-01
In this paper, a filterless photonic frequency-octupling scheme is presented. It is implemented by cascading a Sagnac loop with an intensity modulator (IM) in it and a dual-parallel Mach-Zehnder modulator (DPMZM) in series. The Sagnac loop is used to get the ±2nd-order sidebands of LO signal. The following DPMZM is utilized to obtain the ±4th-order sidebands. By photo-detecting the ±4th-order sidebands, mm-wave signal with the eightfold frequency of LO signal can be obtained. The scheme is verified by experiments, and a 32-GHz mm-wave signal is produced with the assistance of a 4-GHz LO signal. A 20-dB optical sideband suppression ratio (OSSR) and a 17-dB electrical spurious suppression ratio (ESSR) are realized, and no extra deterioration of phase noise is observed. Besides, the verification of the frequency tunability is implemented in the experiment.
Optical and electrical interfacing technologies for living cell bio-chips.
Shacham-Diamand, Y; Belkin, S; Rishpon, J; Elad, T; Melamed, S; Biran, A; Yagur-Kroll, S; Almog, R; Daniel, R; Ben-Yoav, H; Rabner, A; Vernick, S; Elman, N; Popovtzer, R
2010-06-01
Whole-cell bio-chips for functional sensing integrate living cells on miniaturized platforms made by micro-system-technologies (MST). The cells are integrated, deposited or immersed in a media which is in contact with the chip. The cells behavior is monitored via electrical, electrochemical or optical methods. In this paper we describe such whole-cell biochips where the signal is generated due to the genetic response of the cells. The solid-state platform hosts the biological component, i.e. the living cells, and integrates all the required micro-system technologies, i.e. the micro-electronics, micro-electro optics, micro-electro or magneto mechanics and micro-fluidics. The genetic response of the cells expresses proteins that generate: a. light by photo-luminescence or bioluminescence, b. electrochemical signal by interaction with a substrate, or c. change in the cell impedance. The cell response is detected by a front end unit that converts it to current or voltage amplifies and filters it. The resultant signal is analyzed and stored for further processing. In this paper we describe three examples of whole-cell bio chips, photo-luminescent, bioluminescent and electrochemical, which are based on the genetic response of genetically modified E. coli microbes integrated on a micro-fluidics MEMS platform. We describe the chip outline as well as the basic modeling scheme of such sensors. We discuss the highlights and problems of such system, from the point of view of micro-system-technology.
Principle of the electrically induced Transient Current Technique
NASA Astrophysics Data System (ADS)
Bronuzzi, J.; Moll, M.; Bouvet, D.; Mapelli, A.; Sallese, J. M.
2018-05-01
In the field of detector development for High Energy Physics, the so-called Transient Current Technique (TCT) is used to characterize the electric field profile and the charge trapping inside silicon radiation detectors where particles or photons create electron-hole pairs in the bulk of a semiconductor device, as PiN diodes. In the standard approach, the TCT signal originates from the free carriers generated close to the surface of a silicon detector, by short pulses of light or by alpha particles. This work proposes a new principle of charge injection by means of lateral PN junctions implemented in one of the detector electrodes, called the electrical TCT (el-TCT). This technique is fully compatible with CMOS technology and therefore opens new perspectives for assessment of radiation detectors performances.
NASA Technical Reports Server (NTRS)
Maleki, Lute (Inventor); Levi, Anthony F. J. (Inventor)
2005-01-01
Techniques for directly converting an electrical signal into an optical signal by using a whispering gallery mode optical resonator formed of a dielectric material that allows for direct modulation of optical absorption by the electrical signal.
Processing on weak electric signals by the autoregressive model
NASA Astrophysics Data System (ADS)
Ding, Jinli; Zhao, Jiayin; Wang, Lanzhou; Li, Qiao
2008-10-01
A model of the autoregressive model of weak electric signals in two plants was set up for the first time. The result of the AR model to forecast 10 values of the weak electric signals is well. It will construct a standard set of the AR model coefficient of the plant electric signal and the environmental factor, and can be used as the preferences for the intelligent autocontrol system based on the adaptive characteristic of plants to achieve the energy saving on agricultural productions.
The Bionic Clicker Mark I & II
Magee, Elliott G.; Ourselin, S.; Nikitichev, Daniil; Vercauteren, T.; Vanhoestenberghe, Anne
2017-01-01
In this manuscript, we present two 'Bionic Clicker' systems, the first designed to demonstrate electromyography (EMG) based control systems for educational purposes and the second for research purposes. EMG based control systems pick up electrical signals generated by muscle activation and use these as inputs for controllers. EMG controllers are widely used in prosthetics to control limbs. The Mark I (MK I) clicker allows the wearer to change the slide of a presentation by raising their index finger. It is built around a microcontroller and a bio-signals shield. It generated a lot of interest from both the public and research community. The Mark II (MK II) device presented here was designed to be a cheaper, sleeker, and more customizable system that can be easily modified and directly transmit EMG data. It is built using a wireless capable microcontroller and a muscle sensor. PMID:28829413
The Bionic Clicker Mark I & II.
Magee, Elliott G; Ourselin, S; Nikitichev, Daniil; Vercauteren, T; Vanhoestenberghe, Anne
2017-08-14
In this manuscript, we present two 'Bionic Clicker' systems, the first designed to demonstrate electromyography (EMG) based control systems for educational purposes and the second for research purposes. EMG based control systems pick up electrical signals generated by muscle activation and use these as inputs for controllers. EMG controllers are widely used in prosthetics to control limbs. The Mark I (MK I) clicker allows the wearer to change the slide of a presentation by raising their index finger. It is built around a microcontroller and a bio-signals shield. It generated a lot of interest from both the public and research community. The Mark II (MK II) device presented here was designed to be a cheaper, sleeker, and more customizable system that can be easily modified and directly transmit EMG data. It is built using a wireless capable microcontroller and a muscle sensor.
Quantitative Imaging of Microwave Electric Fields through Near-Field Scanning Microwave Microscopy
NASA Astrophysics Data System (ADS)
Dutta, S. K.; Vlahacos, C. P.; Steinhauer, D. E.; Thanawalla, A.; Feenstra, B. J.; Wellstood, F. C.; Anlage, Steven M.; Newman, H. S.
1998-03-01
The ability to non-destructively image electric field patterns generated by operating microwave devices (e.g. filters, antennas, circulators, etc.) would greatly aid in the design and testing of these structures. Such detailed information can be used to reconcile discrepancies between simulated behavior and experimental data (such as scattering parameters). The near-field scanning microwave microscope we present uses a coaxial probe to provide a simple, broadband method of imaging electric fields.(S. M. Anlage, et al.) IEEE Trans. Appl. Supercond. 7, 3686 (1997).^,(See http://www.csr.umd.edu/research/hifreq/micr_microscopy.html) The signal that is measured is related to the incident electric flux normal to the face of the center conductor of the probe, allowing different components of the field to be measured by orienting the probe appropriately. By using a simple model of the system, we can also convert raw data to absolute electric field. Detailed images of standing waves on copper microstrip will be shown and compared to theory.
Herrmann, Andreas; Giuseppone, Nicolas; Lehn, Jean-Marie
2009-01-01
Application of an electric field to liquid crystalline film forming imines with negative dielectric anisotropy, such as N-(4-methoxybenzylidene)-4-butylaniline (MBBA, 1), results in the expulsion of compounds that do not participate in the formation of the liquid crystalline phase. Furthermore, amines and aromatic aldehydes undergo component exchange with the imine by generating constitutional dynamic libraries. The strength of the electric field and the duration of its application to the liquid crystalline film influence the release rate of the expelled compounds and, at the same time, modulate the equilibration of the dynamic libraries. The controlled release of volatile organic molecules with different chemical functionalities from the film was quantified by dynamic headspace analysis. In all cases, higher headspace concentrations were detected in the presence of an electric field. These results point to the possibility of using imine-based liquid crystalline films to build devices for the controlled release of a broad variety of bioactive volatiles as a direct response to an external electric signal.
FPGA Based High Speed Data Acquisition System for Electrical Impedance Tomography
Khan, S; Borsic, A; Manwaring, Preston; Hartov, Alexander; Halter, Ryan
2014-01-01
Electrical Impedance Tomography (EIT) systems are used to image tissue bio-impedance. EIT provides a number of features making it attractive for use as a medical imaging device including the ability to image fast physiological processes (>60 Hz), to meet a range of clinical imaging needs through varying electrode geometries and configurations, to impart only non-ionizing radiation to a patient, and to map the significant electrical property contrasts present between numerous benign and pathological tissues. To leverage these potential advantages for medical imaging, we developed a modular 32 channel data acquisition (DAQ) system using National Instruments’ PXI chassis, along with FPGA, ADC, Signal Generator and Timing and Synchronization modules. To achieve high frame rates, signal demodulation and spectral characteristics of higher order harmonics were computed using dedicated FFT-hardware built into the FPGA module. By offloading the computing onto FPGA, we were able to achieve a reduction in throughput required between the FPGA and PC by a factor of 32:1. A custom designed analog front end (AFE) was used to interface electrodes with our system. Our system is wideband, and capable of acquiring data for input signal frequencies ranging from 100 Hz to 12 MHz. The modular design of both the hardware and software will allow this system to be flexibly configured for the particular clinical application. PMID:24729790
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiter, H.L.; Cook, C.
Regulators need to take a hard look at stranded cost policies that make it difficult for municipalities to replace incumbent distributors, and also reconsider whether distributors should be allowed to roll expansion costs into systemwide rates. This article focuses on the importance of efficient electric distribution in the post-restructuring era and how regulators can promote that efficiency by (1) protecting and encouraging franchise competition, (2) employing regulatory yardsticks, and (3) designing rate structures that send proper price signals about the relative costs of expanding distribution plant and substituting distributed generation, conservation services, or other alternatives.
Power control apparatus and methods for electric vehicles
Gadh, Rajit; Chung, Ching-Yen; Chu, Chi-Cheng; Qiu, Li
2016-03-22
Electric vehicle (EV) charging apparatus and methods are described which allow the sharing of charge current between multiple vehicles connected to a single source of charging energy. In addition, this charge sharing can be performed in a grid-friendly manner by lowering current supplied to EVs when necessary in order to satisfy the needs of the grid, or building operator. The apparatus and methods can be integrated into charging stations or can be implemented with a middle-man approach in which a multiple EV charging box, which includes an EV emulator and multiple pilot signal generation circuits, is coupled to a single EV charge station.
Real-Time Charging Strategies for an Electric Vehicle Aggregator to Provide Ancillary Services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, George; Negrete-Pincetic, Matias; Olivares, Daniel E.
Real-time charging strategies, in the context of vehicle to grid (V2G) technology, are needed to enable the use of electric vehicle (EV) fleets batteries to provide ancillary services (AS). Here, we develop tools to manage charging and discharging in a fleet to track an Automatic Generation Control (AGC) signal when aggregated. We also propose a real-time controller that considers bidirectional charging efficiency and extend it to study the effect of looking ahead when implementing Model Predictive Control (MPC). Simulations show that the controller improves tracking error as compared with benchmark scheduling algorithms, as well as regulation capacity and battery cycling.
Real-Time Charging Strategies for an Electric Vehicle Aggregator to Provide Ancillary Services
Wenzel, George; Negrete-Pincetic, Matias; Olivares, Daniel E.; ...
2017-03-13
Real-time charging strategies, in the context of vehicle to grid (V2G) technology, are needed to enable the use of electric vehicle (EV) fleets batteries to provide ancillary services (AS). Here, we develop tools to manage charging and discharging in a fleet to track an Automatic Generation Control (AGC) signal when aggregated. We also propose a real-time controller that considers bidirectional charging efficiency and extend it to study the effect of looking ahead when implementing Model Predictive Control (MPC). Simulations show that the controller improves tracking error as compared with benchmark scheduling algorithms, as well as regulation capacity and battery cycling.
Pre-steady-state charge translocation in NaK-ATPase from eel electric organ
1993-01-01
Time-resolved measurements of charge translocation and phosphorylation kinetics during the pre-steady state of the NaK-ATPase reaction cycle are presented. NaK-ATPase-containing microsomes prepared from the electric organ of Electrophorus electricus were adsorbed to planar lipid bilayers for investigation of charge translocation, while rapid acid quenching was used to study the concomitant enzymatic partial reactions involved in phosphoenzyme formation. To facilitate comparison of these data, conditions were standardized with respect to pH (6.2), ionic composition, and temperature (24 degrees C). The different phases of the current generated by the enzyme are analyzed under various conditions and compared with the kinetics of phosphoenzyme formation. The slowest time constant (tau 3(-1) approximately 8 s-1) is related to the influence of the capacitive coupling of the adsorbed membrane fragments on the electrical signal. The relaxation time associated with the decaying phase of the electrical signal (tau 2(-1) = 10-70 s-1) depends on ATP and caged ATP concentration. It is assigned to the ATP and caged ATP binding and exchange reaction. A kinetic model is proposed that explains the behavior of the relaxation time at different ATP and caged ATP concentrations. Control measurements with the rapid mixing technique confirm this assignment. The rising phase of the electrical signal was analyzed with a kinetic model based on a condensed Albers-Post cycle. Together with kinetic information obtained from rapid mixing studies, the analysis suggests that electroneutral ATP release, ATP and caged ATP binding, and exchange and phosphorylation are followed by a fast electrogenic E1P-->E2P transition. At 24 degrees C and pH 6.2, the rate constant for the E1P-- >E2P transition in NaK-ATPase from eel electric organ is > or = 1,000 s- 1. PMID:8270908
Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces.
Zhao, Siwei; Tseng, Peter; Grasman, Jonathan; Wang, Yu; Li, Wenyi; Napier, Bradley; Yavuz, Burcin; Chen, Ying; Howell, Laurel; Rincon, Javier; Omenetto, Fiorenzo G; Kaplan, David L
2018-06-01
The increased need for wearable and implantable medical devices has driven the demand for electronics that interface with living systems. Current bioelectronic systems have not fully resolved mismatches between engineered circuits and biological systems, including the resulting pain and damage to biological tissues. Here, salt/poly(ethylene glycol) (PEG) aqueous two-phase systems are utilized to generate programmable hydrogel ionic circuits. High-conductivity salt-solution patterns are stably encapsulated within PEG hydrogel matrices using salt/PEG phase separation, which route ionic current with high resolution and enable localized delivery of electrical stimulation. This strategy allows designer electronics that match biological systems, including transparency, stretchability, complete aqueous-based connective interface, distribution of ionic electrical signals between engineered and biological systems, and avoidance of tissue damage from electrical stimulation. The potential of such systems is demonstrated by generating light-emitting diode (LED)-based displays, skin-mounted electronics, and stimulators that deliver localized current to in vitro neuron cultures and muscles in vivo with reduced adverse effects. Such electronic platforms may form the basis of future biointegrated electronic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanotunneling Junction-based Hyperspectal Polarimetric Photodetector and Detection Method
NASA Technical Reports Server (NTRS)
Son, Kyung-ah (Inventor); Moon, Jeongsun J. (Inventor); Chattopadhyay, Goutam (Inventor); Liao, Anna (Inventor); Ting, David (Inventor)
2009-01-01
A photodetector, detector array, and method of operation thereof in which nanojunctions are formed by crossing layers of nanowires. The crossing nanowires are separated by a few nm thick electrical barrier layer which allows tunneling. Each nanojunction is coupled to a slot antenna for efficient and frequency-selective coupling to photo signals. The nanojunctions formed at the intersection of the crossing wires defines a vertical tunneling diode that rectifies the AC signal from a coupled antenna and generates a DC signal suitable for reforming a video image. The nanojunction sensor allows multi/hyper spectral imaging of radiation within a spectral band ranging from terahertz to visible light, and including infrared (IR) radiation. This new detection approach also offers unprecedented speed, sensitivity and fidelity at room temperature.
Generation and acceleration of neutral atoms in intense laser plasma experiments
NASA Astrophysics Data System (ADS)
Tata, Sheroy; Mondal, Angana; Sarkar, Shobhik; Ved, Yash; Lad, Amit D.; Pasley, John; Colgan, James; Krishnamurthy, M.
2017-10-01
The interaction of a high intensity (>=1018 W/cm2), high contrast (>=109), ultra-short (30fs) laser with solid targets generates a highly dense hot plasma. The quasi-static electric fields in such plasmas are well known for ion acceleration via the target normal sheath acceleration process. Under such conditions charge reduction to generate fast neutral atoms is almost inhibited. Improvised Thomson parabola spectrometry with improved signal to noise ratio has enabled us to measure the signals of fast neutral atoms and negative ions having energies in excess of tens of keV. A study on the neutralization of accelerated protons in plasma shows that the neutral atom to all particle ratio rises sharply from a few percent at the highest detectable energy to 50 % at 15 keV. Using usual charge transfer reactions the generation of neutral atoms can not be explained, thus we conjecture that the neutralization of the accelerated ions is not from the hot dense region of the plasma but neutral atom formation takes place by co-propagating ions with low energy electrons enhancing the effective neutral ratio.
True random bit generators based on current time series of contact glow discharge electrolysis
NASA Astrophysics Data System (ADS)
Rojas, Andrea Espinel; Allagui, Anis; Elwakil, Ahmed S.; Alawadhi, Hussain
2018-05-01
Random bit generators (RBGs) in today's digital information and communication systems employ a high rate physical entropy sources such as electronic, photonic, or thermal time series signals. However, the proper functioning of such physical systems is bound by specific constrains that make them in some cases weak and susceptible to external attacks. In this study, we show that the electrical current time series of contact glow discharge electrolysis, which is a dc voltage-powered micro-plasma in liquids, can be used for generating random bit sequences in a wide range of high dc voltages. The current signal is quantized into a binary stream by first using a simple moving average function which makes the distribution centered around zero, and then applying logical operations which enables the binarized data to pass all tests in industry-standard randomness test suite by the National Institute of Standard Technology. Furthermore, the robustness of this RBG against power supply attacks has been examined and verified.
Charge Assisted Laser Desorption/Ionization Mass Spectrometry of Droplets
Jorabchi, Kaveh; Westphall, Michael S.; Smith, Lloyd M.
2008-01-01
We propose and evaluate a new mechanism to account for analyte ion signal enhancement in ultraviolet-laser desorption mass spectrometry of droplets in the presence of corona ions. Our new insights are based on timing control of corona ion production, laser desorption, and peptide ion extraction achieved by a novel pulsed corona apparatus. We demonstrate that droplet charging rather than gas-phase ion-neutral reactions is the major contributor to analyte ion generation from an electrically isolated droplet. Implications of the new mechanism, termed charge assisted laser desorption/ionization (CALDI), are discussed and contrasted to those of the laser desorption atmospheric pressure chemical ionization method (LD-APCI). It is also demonstrated that analyte ion generation in CALDI occurs with external electric fields about one order of magnitude lower than those needed for atmospheric pressure matrix assisted laser desorption/ionization or electrospray ionization of droplets. PMID:18387311
Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain.
Li, Qufei; Wanderling, Sherry; Paduch, Marcin; Medovoy, David; Singharoy, Abhishek; McGreevy, Ryan; Villalba-Galea, Carlos A; Hulse, Raymond E; Roux, Benoît; Schulten, Klaus; Kossiakoff, Anthony; Perozo, Eduardo
2014-03-01
The transduction of transmembrane electric fields into protein motion has an essential role in the generation and propagation of cellular signals. Voltage-sensing domains (VSDs) carry out these functions through reorientations of positive charges in the S4 helix. Here, we determined crystal structures of the Ciona intestinalis VSD (Ci-VSD) in putatively active and resting conformations. S4 undergoes an ~5-Å displacement along its main axis, accompanied by an ~60° rotation. This movement is stabilized by an exchange in countercharge partners in helices S1 and S3 that generates an estimated net charge transfer of ~1 eo. Gating charges move relative to a ''hydrophobic gasket' that electrically divides intra- and extracellular compartments. EPR spectroscopy confirms the limited nature of S4 movement in a membrane environment. These results provide an explicit mechanism for voltage sensing and set the basis for electromechanical coupling in voltage-dependent enzymes and ion channels.
Fiber-based generator for wearable electronics and mobile medication.
Zhong, Junwen; Zhang, Yan; Zhong, Qize; Hu, Qiyi; Hu, Bin; Wang, Zhong Lin; Zhou, Jun
2014-06-24
Smart garments for monitoring physiological and biomechanical signals of the human body are key sensors for personalized healthcare. However, they typically require bulky battery packs or have to be plugged into an electric plug in order to operate. Thus, a smart shirt that can extract energy from human body motions to run body-worn healthcare sensors is particularly desirable. Here, we demonstrated a metal-free fiber-based generator (FBG) via a simple, cost-effective method by using commodity cotton threads, a polytetrafluoroethylene aqueous suspension, and carbon nanotubes as source materials. The FBGs can convert biomechanical motions/vibration energy into electricity utilizing the electrostatic effect with an average output power density of ∼0.1 μW/cm(2) and have been identified as an effective building element for a power shirt to trigger a wireless body temperature sensor system. Furthermore, the FBG was demonstrated as a self-powered active sensor to quantitatively detect human motion.
A Novel Photonic Clock and Carrier Recovery Device
NASA Technical Reports Server (NTRS)
Yao, X. Steve; Lutes, George; Maleki, Lute
1996-01-01
As data communication rates climb toward ten Gb/s, clock recovery and synchronization become more difficult, if not impossible, using conventional electronic circuits. We present in this article experimental results of a high speed clock and carrier recovery using a novel device called a photonic oscillator that we recently developed in our laboratory. This device is capable of recovering clock signals up to 70 GHz. To recover the clock, the incoming data is injected into the photonic oscillator either through the optical injection port or the electrical injection port. The free running photonic oscillator is tuned to oscillate at a nominal frequency equal to the clock frequency of the incoming data. With the injection of the data, the photonic oscillator will be quickly locked to clock frequency of the data stream while rejecting other frequency components associated with the data. Consequently, the output of the locked photonic oscillator is a continuous periodical wave synchronized with the incoming data or simply the recovered clock. We have demonstrated a clock to spur ratio of more than 60 dB of the recovered clock using this technique. Similar to the clock recovery, the photonic oscillator can be used to recover a high frequency carrier degraded by noise and an improvement of about 50 dB in signal-to-noise ratio was demonstrated. The photonic oscillator has both electrical and optical inputs and outputs and can be directly interfaced with a photonic system without signal conversion. In addition to clock and carrier recovery, the photonic oscillator can also be used for (1) stable high frequency clock signal generation, (2) frequency multiplication, (3) square wave and comb frequency generation, and (4) photonic phase locked loop.
Delivering key signals to the machine: seeking the electric signal that muscles emanate
NASA Astrophysics Data System (ADS)
Bani Hashim, A. Y.; Maslan, M. N.; Izamshah, R.; Mohamad, I. S.
2014-11-01
Due to the limitation of electric power generation in the human body, present human-machine interfaces have not been successful because of the nature of standard electronics circuit designs, which do not consider the specifications of signals that resulted from the skin. In general, the outcomes and applications of human-machine interfaces are limited to custom-designed subsystems, such as neuroprosthesis. We seek to model the bio dynamical of sub skin into equivalent mathematical definitions, descriptions, and theorems. Within the human skin, there are networks of nerves that permit the skin to function as a multi dimension transducer. We investigate the nature of structural skin. Apart from multiple networks of nerves, there are other segments within the skin such as minute muscles. We identify the segments that are active when there is an electromyography activity. When the nervous system is firing signals, the muscle is being stimulated. We evaluate the phenomena of biodynamic of the muscles that is concerned with the electromyography activity of the nervous system. In effect, we design a relationship between the human somatosensory and synthetic systems sensory as the union of a complete set of the new domain of the functional system. This classifies electromyogram waveforms linked to intent thought of an operator. The system will become the basis for delivering key signals to machine such that the machine is under operator's intent, hence slavery.
Tulachan, Brindan; Srivastava, Shivansh; Kusurkar, Tejas Sanjeev; Sethy, Niroj Kumar; Bhargava, Kalpana; Singh, Sushil Kumar; Philip, Deepu; Bajpai, Alok; Das, Mainak
2016-01-01
Silkworm metamorphosis is governed by the intrinsic and extrinsic factors. One key intrinsic factor is the temporal electrical firing of the neuro-secretory cells of the dormant pupae residing inside the silk cocoon membrane (SCM). Extrinsic factors are environmental like temperature, humidity and light. The firing pattern of the cells is a function of the environmental factors that eventually controls the pupal development. How does the nervous organization of the dormant pupae sense the environment even while enclosed inside the cocoon shell? We propose that the SCM does this by capturing the incident light and converting it to electricity in addition to translating the variation in temperature and humidity as an electrical signal. The light to electricity conversion is more pronounced with ultraviolet (UV) frequency. We discovered that a UV sensitive fluorescent quercetin derivative that is present on the SCM and pupal body surface is responsible for generating the observed photo current. Based on these results, we propose an equivalent circuit model of the SCM where an overall electrical output transfers the weather information to pupae, directing its growth. We further discuss the implication of this electrical energy conversion and its utility for consumable electricity. PMID:26907586
Tulachan, Brindan; Srivastava, Shivansh; Kusurkar, Tejas Sanjeev; Sethy, Niroj Kumar; Bhargava, Kalpana; Singh, Sushil Kumar; Philip, Deepu; Bajpai, Alok; Das, Mainak
2016-02-24
Silkworm metamorphosis is governed by the intrinsic and extrinsic factors. One key intrinsic factor is the temporal electrical firing of the neuro-secretory cells of the dormant pupae residing inside the silk cocoon membrane (SCM). Extrinsic factors are environmental like temperature, humidity and light. The firing pattern of the cells is a function of the environmental factors that eventually controls the pupal development. How does the nervous organization of the dormant pupae sense the environment even while enclosed inside the cocoon shell? We propose that the SCM does this by capturing the incident light and converting it to electricity in addition to translating the variation in temperature and humidity as an electrical signal. The light to electricity conversion is more pronounced with ultraviolet (UV) frequency. We discovered that a UV sensitive fluorescent quercetin derivative that is present on the SCM and pupal body surface is responsible for generating the observed photo current. Based on these results, we propose an equivalent circuit model of the SCM where an overall electrical output transfers the weather information to pupae, directing its growth. We further discuss the implication of this electrical energy conversion and its utility for consumable electricity.
Electrokinetic acceleration of DNA hybridization in microsystems.
Lei, Kin Fong; Wang, Yun-Hsiang; Chen, Huai-Yi; Sun, Jia-Hong; Cheng, Ji-Yen
2015-06-01
In this work, electrokinetic acceleration of DNA hybridization was investigated by different combinations of frequencies and amplitudes of actuating electric signals. Because the frequencies from low to high can induce different kinds of electrokinetic forces, i.e., electroosmotic to electrothermal forces, this work provides an in-depth investigation of electrokinetic enhanced hybridization. Concentric circular Cr/Au microelectrodes of 350 µm in diameter were fabricated on a glass substrate and probe DNA was immobilized on the electrode surface. Target DNA labeled with fluorescent dyes suspending in solution was then applied to the electrode. Different electrokinetic forces were induced by the application of different electric signals to the circular microelectrodes. Local microfluidic vortexes were generated to increase the collision efficiency between the target DNA suspending in solution and probe DNA immobilized on the electrode surface. DNA hybridization on the electrode surface could be accelerated by the electrokinetic forces. The level of hybridization was represented by the fluorescent signal intensity ratio. Results revealed that such 5-min dynamic hybridization increased 4.5 fold of signal intensity ratio as compared to a 1-h static hybridization. Moreover, dynamic hybridization was found to have better differentiation ability between specific and non-specific target DNA. This study provides a strategy to accelerate DNA hybridization in microsystems. Copyright © 2015 Elsevier B.V. All rights reserved.
Multi-modal Patient Cohort Identification from EEG Report and Signal Data
Goodwin, Travis R.; Harabagiu, Sanda M.
2016-01-01
Clinical electroencephalography (EEG) is the most important investigation in the diagnosis and management of epilepsies. An EEG records the electrical activity along the scalp and measures spontaneous electrical activity of the brain. Because the EEG signal is complex, its interpretation is known to produce moderate inter-observer agreement among neurologists. This problem can be addressed by providing clinical experts with the ability to automatically retrieve similar EEG signals and EEG reports through a patient cohort retrieval system operating on a vast archive of EEG data. In this paper, we present a multi-modal EEG patient cohort retrieval system called MERCuRY which leverages the heterogeneous nature of EEG data by processing both the clinical narratives from EEG reports as well as the raw electrode potentials derived from the recorded EEG signal data. At the core of MERCuRY is a novel multimodal clinical indexing scheme which relies on EEG data representations obtained through deep learning. The index is used by two clinical relevance models that we have generated for identifying patient cohorts satisfying the inclusion and exclusion criteria expressed in natural language queries. Evaluations of the MERCuRY system measured the relevance of the patient cohorts, obtaining MAP scores of 69.87% and a NDCG of 83.21%. PMID:28269938
Chemotaxis of Dictyostelium discoideum: Collective Oscillation of Cellular Contacts
Schäfer, Edith; Tarantola, Marco; Polo, Elena; Westendorf, Christian; Oikawa, Noriko; Bodenschatz, Eberhard; Geil, Burkhard; Janshoff, Andreas
2013-01-01
Chemotactic responses of Dictyostelium discoideum cells to periodic self-generated signals of extracellular cAMP comprise a large number of intricate morphological changes on different length scales. Here, we scrutinized chemotaxis of single Dictyostelium discoideum cells under conditions of starvation using a variety of optical, electrical and acoustic methods. Amebas were seeded on gold electrodes displaying impedance oscillations that were simultaneously analyzed by optical video microscopy to relate synchronous changes in cell density, morphology, and distance from the surface to the transient impedance signal. We found that starved amebas periodically reduce their overall distance from the surface producing a larger impedance and higher total fluorescence intensity in total internal reflection fluorescence microscopy. Therefore, we propose that the dominant sources of the observed impedance oscillations observed on electric cell-substrate impedance sensing electrodes are periodic changes of the overall cell-substrate distance of a cell. These synchronous changes of the cell-electrode distance were also observed in the oscillating signal of acoustic resonators covered with amebas. We also found that periodic cell-cell aggregation into transient clusters correlates with changes in the cell-substrate distance and might also contribute to the impedance signal. It turned out that cell-cell contacts as well as cell-substrate contacts form synchronously during chemotaxis of Dictyostelium discoideum cells. PMID:23349816
Multi-port, optically addressed RAM
NASA Technical Reports Server (NTRS)
Johnston, Alan R. (Inventor); Nixon, Robert H. (Inventor); Bergman, Larry A. (Inventor); Esener, Sadik (Inventor)
1989-01-01
A random access memory addressing system utilizing optical links between memory and the read/write logic circuits comprises addressing circuits including a plurality of light signal sources, a plurality of optical gates including optical detectors associated with the memory cells, and a holographic optical element adapted to reflect and direct the light signals to the desired memory cell locations. More particularly, it is a multi-port, binary computer memory for interfacing with a plurality of computers. There are a plurality of storage cells for containing bits of binary information, the storage cells being disposed at the intersections of a plurality of row conductors and a plurality of column conductors. There is interfacing logic for receiving information from the computers directing access to ones of the storage cells. There are first light sources associated with the interfacing logic for transmitting a first light beam with the access information modulated thereon. First light detectors are associated with the storage cells for receiving the first light beam, for generating an electrical signal containing the access information, and for conducting the electrical signal to the one of the storage cells to which it is directed. There are holographic optical elements for reflecting the first light beam from the first light sources to the first light detectors.
Imaging local electric fields produced upon synchrotron X-ray exposure
Dettmar, Christopher M.; Newman, Justin A.; Toth, Scott J.; ...
2014-12-31
Electron–hole separation following hard X-ray absorption during diffraction analysis of soft materials under cryogenic conditions produces substantial local electric fields visualizable by second harmonic generation (SHG) microscopy. Monte Carlo simulations of X-ray photoelectron trajectories suggest the formation of substantial local electric fields in the regions adjacent to those exposed to X-rays, indicating a possible electric-field–induced SHG (EFISH) mechanism for generating the observed signal. In studies of amorphous vitreous solvents, analysis of the SHG spatial profiles following X-ray microbeam exposure was consistent with an EFISH mechanism. Within protein crystals, exposure to 12-keV (1.033-Å) X-rays resulted in increased SHG in the regionmore » extending ~3 μm beyond the borders of the X-ray beam. Moderate X-ray exposures typical of those used for crystal centering by raster scanning through an X-ray beam were sufficient to produce static electric fields easily detectable by SHG. The X-ray–induced SHG activity was observed with no measurable loss for longer than 2 wk while maintained under cryogenic conditions, but disappeared if annealed to room temperature for a few seconds. In conclusion, these results provide direct experimental observables capable of validating simulations of X-ray–induced damage within soft materials. Additionally, X-ray–induced local fields may potentially impact diffraction resolution through localized piezoelectric distortions of the lattice.« less
NASA Astrophysics Data System (ADS)
Mahardika, Harry
Hydromechanical energy can be partially converted into electromagnetic energy due to electrokinetic effect, where mechanical energy causes the relative displacement of the charged pore water with respect to the solid skeleton of the porous material and generated electrical current density. An application of this phenomenon is seismoelectric method, a geophysical method in which electromagnetic signals are recorded and associated with the propagation of seismic waves. Due to its coupling nature, seismoelectric method promises advantages in characterizing the subsurface properties and geometry compared to independent employments of seismic or electromagnetic acquisition alone. Since the recorded seismoelectric signal are sensitive to water content changes this method have been applied for groundwater studies to delineates vadoze zone-aquifer boundary since the last twenty years. The problem, however, the existing governing equations of coupled seismic and electromagnetic are not accounted for unsaturated conditions and its petrophysical sensitivity to water content. In this thesis we extend the applications of seismoelectric method for unsaturated porous medium for several geophysical problems. (1) We begin our study with numerical study to localize and characterize a seismic event induced by hydraulic fracturing operation sedimentary rocks. In this problem, we use the fully-saturated case of seismoelectric method and we propose a new joint inversion scheme (seismic and seismoelectric) to determine the position and moment tensor that event. (2) We expand the seismoelectric theory for unsaturated condition and show that the generation of electrical current density are depend on several important petrophysical properties that are sensitive to water content. This new expansion of governing equation provide us theory for developing a new approach for seismoelectric method to image the oil water encroachment front during water flooding of an oil reservoir or an aquifer contaminated with DNAPL. (3) Next, we present a test case which is the first-attempt analysis of seismoelectric sounding measurements done on glacial environment of Glacier de Tsanfleuron through numerical forward modeling. Here we treat the snow-glacial environment similar as with vadoze zone-aquifer zone in unsaturated porous medium. (4) The modified governing equations also provides us foundations to do another case study, which is characterization of seismoelectrical events generated from water content changes in the vadoze zone measured using seismoelectric sounding from NE England. (5) We finalize the thesis with an interpretation of electrical signal generated from water injection experiment done on the top two meter of the soil surface (vadoze zone) using inverse calculation presented on the first topic of the thesis. The fundamental research presented on this thesis hopefully provides a basis for further advancement on seismoelectric or joint seismic-electrical methods for applications ranging from hydrogeology, volcanology and geothermal energy, and oil and gas cases.
Qu, Xue; Liu, Huan; Zhang, Chuchu; Lei, Yu; Lei, Miao; Xu, Miao; Jin, Dawei; Li, Peng; Yin, Meng; Payne, Gregory F; Liu, Changsheng
2018-06-01
Electrical signals can be imposed with exquisite spatiotemporal control and provide exciting opportunities to create structure and confer function. Here, we report the use of electrical signals to program the fabrication of a chloramine wound dressing with high antimicrobial activity. This method involves two electrofabrication steps: (i) a cathodic electrodeposition of an aminopolysaccharide chitosan triggered by a localized region of high pH; and (ii) an anodic chlorination of the deposited film in the presence of chloride. This electrofabrication process is completed within several minutes and the chlorinated chitosan can be peeled from the electrode to yield a free-standing film. The presence of active NCl species in this electrofabricated film was confirmed with chlorination occurring first on the amine groups and then on the amide groups when large anodic charges were used. Electrofabrication is quantitatively controllable as the cathodic input controls film growth during deposition and the anodic input controls film chlorination. In vitro studies demonstrate that the chlorinated chitosan film has antimicrobial activities that depend on the chlorination degree. In vivo studies with a MRSA infected wound healing model indicate that the chlorinated chitosan film inhibited bacterial growth, induced less inflammation, developed reorganized epithelial and dermis structures, and thus promoted wound healing compared to a bare wound or wound treated with unmodified chitosan. These results demonstrate the fabrication of advanced functional materials (i.e., antimicrobial wound dressings) using controllable electrical signals to both organize structure through non-covalent interactions (i.e., induce chitosan's reversible self-assembly) and to initiate function-conferring covalent modifications (i.e., generate chloramine bonds). Potentially, electrofabrication may provide a simple, low cost and sustainable alternative for materials fabrication. We believe this work is novel because this is the first report (to our knowledge) that electronic signals enable the fabrication of advanced antimicrobial dressings with controlled structure and biological performance. We believe this work is significant because electrofabrication enables rapid, controllable and sustainable materials construction with reduced adverse environmental impacts while generating high performance materials for healthcare applications. More specifically, we report an electrofbrication of antimicrobial film that can promote wound healing. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Design principles and realization of electro-optical circuit boards
NASA Astrophysics Data System (ADS)
Betschon, Felix; Lamprecht, Tobias; Halter, Markus; Beyer, Stefan; Peterson, Harry
2013-02-01
The manufacturing of electro-optical circuit boards (EOCB) is based to a large extent on established technologies. First products with embedded polymer waveguides are currently produced in series. The range of applications within the sensor and data communication markets is growing with the increasing maturity level. EOCBs require design flows, processes and techniques similar to existing printed circuit board (PCB) manufacturing and appropriate for optical signal transmission. A key aspect is the precise and automated assembly of active and passive optical components to the optical waveguides which has to be supported by the technology. The design flow is described after a short introduction into the build-up of EOCBs and the motivation for the usage of this technology within the different application fields. Basis for the design of EOCBs are the required optical signal transmission properties. Thereafter, the devices for the electro-optical conversion are chosen and the optical coupling approach is defined. Then, the planar optical elements (waveguides, splitters, couplers) are designed and simulated. This phase already requires co-design of the optical and electrical domain using novel design flows. The actual integration of an optical system into a PCB is shown in the last part. The optical layer is thereby laminated to the purely electrical PCB using a conventional PCB-lamination process to form the EOCB. The precise alignment of the various electrical and optical layers is thereby essential. Electrical vias are then generated, penetrating also the optical layer, to connect the individual electrical layers. Finally, the board has to be tested electrically and optically.
2011-01-01
Background During development, the branchial mesoderm of Torpedo californica transdifferentiates into an electric organ capable of generating high voltage discharges to stun fish. The organ contains a high density of cholinergic synapses and has served as a biochemical model for the membrane specialization of myofibers, the neuromuscular junction (NMJ). We studied the genome and proteome of the electric organ to gain insight into its composition, to determine if there is concordance with skeletal muscle and the NMJ, and to identify novel synaptic proteins. Results Of 435 proteins identified, 300 mapped to Torpedo cDNA sequences with ≥2 peptides. We identified 14 uncharacterized proteins in the electric organ that are known to play a role in acetylcholine receptor clustering or signal transduction. In addition, two human open reading frames, C1orf123 and C6orf130, showed high sequence similarity to electric organ proteins. Our profile lists several proteins that are highly expressed in skeletal muscle or are muscle specific. Synaptic proteins such as acetylcholinesterase, acetylcholine receptor subunits, and rapsyn were present in the electric organ proteome but absent in the skeletal muscle proteome. Conclusions Our integrated genomic and proteomic analysis supports research describing a muscle-like profile of the organ. We show that it is a repository of NMJ proteins but we present limitations on its use as a comprehensive model of the NMJ. Finally, we identified several proteins that may become candidates for signaling proteins not previously characterized as components of the NMJ. PMID:21798097
Electro-mechanical sine/cosine generator
NASA Technical Reports Server (NTRS)
Flagge, B. (Inventor)
1972-01-01
An electromechanical device for generating both sine and cosine functions is described. A motor rotates a cylinder about an axis parallel to and a slight distance from the central axis of the cylinder. Two noncontacting displacement sensing devices are placed ninety degrees apart, equal distances from the axis of rotation of the cylinder and short distances above the surface of cylinder. Each of these sensing devices produces an electrical signal proportional to the distance that it is away from the cylinder. Consequently, as the cylinder is rotated the outputs from the two sensing devices are the sine and cosine functions.
On-demand dark soliton train manipulation in a spinor polariton condensate.
Pinsker, F; Flayac, H
2014-04-11
We theoretically demonstrate the generation of dark soliton trains in a one-dimensional exciton-polariton condensate within experimentally accessible schemes. In particular, we show that the frequency of the train can be finely tuned fully optically or electrically to provide a stable and efficient output signal modulation. Taking the polarization of the condensate into account, we elucidate the possibility of forming on-demand half-soliton trains.
2008-07-01
SUBJECT TERMS Gas turbine, sensors, Hostile Operating Conditions, FADEC , High Temperature Regimes for Sensors, Sensor Needs, Turbine Engine...Authority Digital Engine Control ( FADEC ). The frequency and bandwidth capability of sensors for engine control are drastically different for each sensor...metering valve assembly is responsive to electrical signals generated by the FADEC in response to sensors that measure turbine speed, pressure
Electro-Optic Segment-Segment Sensors for Radio and Optical Telescopes
NASA Technical Reports Server (NTRS)
Abramovici, Alex
2012-01-01
A document discusses an electro-optic sensor that consists of a collimator, attached to one segment, and a quad diode, attached to an adjacent segment. Relative segment-segment motion causes the beam from the collimator to move across the quad diode, thus generating a measureable electric signal. This sensor type, which is relatively inexpensive, can be configured as an edge sensor, or as a remote segment-segment motion sensor.
NASA Astrophysics Data System (ADS)
Pain, C. C.; Saunders, J. H.; Worthington, M. H.; Singer, J. M.; Stuart-Bruges, W.; Mason, G.; Goddard, A.
2005-02-01
In this paper, a numerical method for solving the Biot poroelastic equations is developed. These equations comprise acoustic (typically water) and elastic (porous medium frame) equations, which are coupled mainly through fluid/solid drag terms. This wave solution is coupled to a simplified form of Maxwell's equations, which is solved for the streaming potential resulting from electrokinesis. The ultimate aim is to use the generated electrical signals to provide porosity, permeability and other information about the formation surrounding a borehole. The electrical signals are generated through electrokinesis by seismic waves causing movement of the fluid through pores or fractures of a porous medium. The focus of this paper is the numerical solution of the Biot equations in displacement form, which is achieved using a mixed finite-element formulation with a different finite-element representation for displacements and stresses. The mixed formulation is used in order to reduce spurious displacement modes and fluid shear waves in the numerical solutions. These equations are solved in the time domain using an implicit unconditionally stable time-stepping method using iterative solution methods amenable to solving large systems of equations. The resulting model is embodied in the MODELLING OF ACOUSTICS, POROELASTICS AND ELECTROKINETICS (MAPEK) computer model for electroseismic analysis.